
MIT Open Access Articles

Attention Increases the Temporal Precision of 
Conscious Perception: Verifying the Neural-ST2 Model

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chennu, Srivas et al. “Attention Increases the Temporal Precision of Conscious 
Perception: Verifying the Neural-ST2 Model.” Ed. Karl J. Friston. PLoS Computational Biology 
5.11 (2009) : e1000576. © 2009 Chennu et al.

As Published: http://dx.doi.org/10.1371/journal.pcbi.1000576

Publisher: Public Library of Science

Persistent URL: http://hdl.handle.net/1721.1/64824

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/64824
http://creativecommons.org/licenses/by/2.5/


Attention Increases the Temporal Precision of Conscious
Perception: Verifying the Neural-ST2 Model
Srivas Chennu1*, Patrick Craston1, Brad Wyble2¤, Howard Bowman1

1 Centre for Cognitive Neuroscience and Cognitive Systems, University of Kent, Canterbury, United Kingdom, 2 Department of Brain and Cognitive Sciences,

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract

What role does attention play in ensuring the temporal precision of visual perception? Behavioural studies have
investigated feature selection and binding in time using fleeting sequences of stimuli in the Rapid Serial Visual Presentation
(RSVP) paradigm, and found that temporal accuracy is reduced when attentional control is diminished. To reduce the
efficacy of attentional deployment, these studies have employed the Attentional Blink (AB) phenomenon. In this article, we
use electroencephalography (EEG) to directly investigate the temporal dynamics of conscious perception. Specifically,
employing a combination of experimental analysis and neural network modelling, we test the hypothesis that the
availability of attention reduces temporal jitter in the latency between a target’s visual onset and its consolidation into
working memory. We perform time-frequency analysis on data from an AB study to compare the EEG trials underlying the
P3 ERPs (Event-related Potential) evoked by targets seen outside vs. inside the AB time window. We find visual differences in
phase-sorted ERPimages and statistical differences in the variance of the P3 phase distributions. These results argue for
increased variation in the latency of conscious perception during the AB. This experimental analysis is complemented by a
theoretical exploration of temporal attention and target processing. Using activation traces from the Neural-ST2 model, we
generate virtual ERPs and virtual ERPimages. These are compared to their human counterparts to propose an explanation of
how target consolidation in the context of the AB influences the temporal variability of selective attention. The AB provides
us with a suitable phenomenon with which to investigate the interplay between attention and perception. The combination
of experimental and theoretical elucidation in this article contributes to converging evidence for the notion that the AB
reflects a reduction in the temporal acuity of selective attention and the timeliness of perception.
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Introduction

During ongoing perception of the world, humans are constantly

faced with an abundance of visual sensory information. As this

information feeds through the various layers of visual cortex, it is

progressively integrated by a sequence of cortical areas that

gradually generalise over spatial information to extract complex

structural detail [1]. Whereas early visual areas extract orienta-

tions, textures and borders, brain areas situated higher in the

visual processing pathway can detect complex objects [2]. Bottom-

up input flowing through this feedforward hierarchical pathway is

constantly monitored for salience (e.g. task relevant or intrinsically

prominent features like luminance or orientation pop-outs).

Within this general description of the visual system, attention is

considered to play a key role, filtering out irrelevant information and

selectively enhancing salient input for further processing. Here we

investigate the temporal dynamics of visual attention with regard to its

role in conscious perception, which becomes apparent when stimuli are

presented in rapid succession [3,4]. Such circumstances occur in rapid

serial visual presentation (RSVP), in which stimuli are presented at a

rate of approximately 10 items per second in the same spatial location.

As each stimulus replaces its predecessor, its featural representation

becomes fleeting due to masking effects, and a transient enhancement

by attention is thought to be crucial in ensuring that salient items can be

successfully encoded into working memory [5].

The attentional blink
An apparent temporal limitation of visual perception is illustrated

by the attentional blink (AB; [6]). The AB describes a finding that

observers often fail to detect a second target stimulus (T2) presented

in short succession (between 100 and 600 ms) after an identified first

target stimulus (T1). If T2 is presented in immediate succession to

T1, however, detection accuracy is typically excellent (‘lag 1

sparing’; [7]). Behaviourally, the AB has been replicated numerous

times [8,9]. It has also been investigated electrophysiologically [10],

where researchers have compared grand average Event-related

Potentials (ERPs) evoked by targets outside and inside the AB, to

investigate how target processing differs during the AB.
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Despite extensive study of the AB, its effect on the underlying

temporal mechanisms of target identification remains to be fully

explored. Evidence from ERP [10,11] and priming [12,13] studies

suggest that targets, rather than being completely lost during the

AB, are processed quite extensively, but fail to enter the final stage

of conscious perception. Furthermore, researchers have found that

when targets in RSVP consist of multiple features, observers often

report features from items neighboring the target in the RSVP

stream and make binding errors referred to as illusory conjunctions

[14]. Behavioural analysis of the changes in the patterns of such

binding errors provides strong support for the claim that the AB

reveals a reduction in the temporal precision of the deployment of

transient attention and target processing [15,16].

The ST2 model
In this article, we use the dynamics of temporal visual processing

as embodied in the ST2 (Simultaneous-Type-Serial-Token) model,

a connectionist model of temporal attention and working memory

[5], to propose an explanation for the observed effect of the AB on

the temporal precision of transient attention. The model explains a

broad set of experimental findings relating to the AB, Repetition

Blindness and RSVP in general. Before elaborating on our central

hypothesis, we explain the fundamental principles of how the ST2

model describes temporal attention and working memory. For a

more detailed description please refer to [5]. It should be

emphasised that throughout this article, we retain the model’s

parameters as published in [17], and use it to generate predictions

and virtual EEG traces comparable to human EEG data.

Types & tokens. The ST2 model employs a types-tokens

account [18–20] to describe the process of working memory

encoding. Types describe all feature related properties associated

with an item. These include sensory properties, such as visual

features (e.g. its shape, colour and the line segments comprising it)

and also semantic attributes, such as a letter’s position in the

alphabet. A token, on the other hand, represents episodic

information. It is specific to a particular occurrence of an item,

and provides a notion of serial order. An item is encoded into

working memory by creating a connection between a type and a

token. At retrieval, tokens contain information about when an

item occurred, in addition to a connection to a type. Thus the

information stored in the tokens can be used to recollect both

identity and temporal order of stimuli.

Model architecture. As illustrated in figure 1, the ST2 model

can be divided into three parts. We describe them in turn:

N Input & extraction of types in stage one: Input values, which

simulate target letters and digit distractors in the AB

experiment, are fed into the model at the lowest layer of stage

one. As activation propagates in a feed-forward manner, the

following layers reflect masking in early visual processing and

subsequent extraction of semantic representations. A task

demand mechanism operates at the highest layer of stage one,

and selects targets for encoding into working memory by

suppressing the representations of distractors. Despite the fact

that stimuli are presented serially during the AB task,

processing within stage one may exceed the presentation time

of sequentially presented items. Hence, these layers are parallel

or simultaneous in nature, in that more than one node can be

active at any one time.

N Working memory encoding in stage two: An item is encoded

into working memory by connecting its type node in stage one

to a working memory token in stage two. This process is

referred to as ‘tokenization’. If at the end of a trial, the type

node of a target has a valid connection to a token, the target is

successfully ‘reported’, or ‘seen’, by the ST2 model. Inhibition

between working memory tokens ensures only one token is

active at any one time, thus enforcing a serialisation of working

memory encoding.

Author Summary

Our visual system keeps pace with a rapidly changing
stream of information as we view the natural world. To do
so, it uses a strongly regulated system of attentional filters
to constrain which visual stimuli are permitted to be fully
processed to the level of conscious awareness. This article
explores what happens when these filters are opened and
closed in response to important visual stimuli. To
understand these dynamics, our neural network model
provides simulations of the role played by attention. These
simulations can be tested by recording neural data in the
form of ‘brain waves’ (EEG) and comparing the resultant
signals to the output of the model. The data discussed
here confirm a prediction of the model, which suggests
that after the attentional filter has opened to allow one
visual stimulus in, there is increased temporal variability or
‘jitter’ in the subsequent opening of the filter within an
interval of about one-half of a second. These results have
implications for the way our brains process multiple
important stimuli perceived in rapid succession, such as
the sequence of events that might occur at a critical
moment in an airline cockpit or during an automobile
accident.

Figure 1. The ST2 model. (1) Input & extraction of types in stage one
(2) Working memory tokens in stage two (3) Temporal attention from
the blaster. Refer to [5] for an extensive description of individual layers,
and the neural circuits comprising the nodes in each layer. Adapted
from [17] with kind permission of MIT Press.
doi:10.1371/journal.pcbi.1000576.g001

Attention and Temporal Precision
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N Temporal attention from the blaster: Temporal attention is

implemented by a mechanism termed the blaster, which

provides a non-specific excitatory input to nodes in the later

layers of stage one in response to the detection of salient items

(i.e., targets in the context of the AB). Transient Attentional

Enhancement (TAE) from the blaster allows targets to become

sufficiently active to initiate the tokenization process. During

tokenization, the blaster is suppressed until encoding of the

target has completed. The suppression prevents a second

target from re-firing the blaster while the first target is being

tokenised, thus preventing the episodic representations of the

two targets from being conflated.

Virtual ERPs. Computational modelling of cognition is

commonly focused on the replication of behavioural data. In

particular, neural network models of cognition, in addition to

replicating behavioural data, embody a hypothesis about

underlying structure and function. On the empirical front,

advances in technology now allow researchers to record ongoing

brain activity correlated with a particular behaviour, such as the

electrophysiological markers of neural processing. The natural

question that arises is how such data can be combined with

modelling to understand cognition at the neural level. This is

possible because cognitive neural networks consist of nodes that

derive from the functional characteristics of real neurons. Also, the

activation of nodes in a model can be interpreted as the analogue

of the activation of an assembly of real neurons. Consequently,

activation traces in a neural model are comparable to aggregate

neural activity expressed in EEG data.

The ST2 model simulates human behavioural accuracy in the

AB. Using its neural network implementation, we generate virtual

activation traces, called Virtual ERPs [17], by summing across

layers of the model responsible for replicating specific cognitive

functions. These traces are then compared to human ERPs across

experimental conditions [17,21]. The virtual ERP technique

allows us to replicate, interpret and make predictions about human

EEG data in a way similar to behavioural data. In particular,

virtual ERPs allow us to validate our explanation of how the AB

affects the temporal precision of conscious perception.

Attentional precision, the AB and the ST2 model
The ST2 model suggests that working memory encoding

involves creating a binding between the type of a stimulus (which

can include its visual features and semantic attributes) and a token

(an episodic representation specific to a particular occurrence of an

item) [18,20]. In the ST2 model, Transient Attentional Enhance-

ment (TAE) from the blaster amplifies the type representation of a

salient (i.e., task relevant) stimulus to assist in its binding to a token,

in a process referred to as tokenization. This TAE can serve as an

attentional gate, which can be temporarily deactivated to allow

one target’s encoding to be completed before a second is begun.

From the perspective of the ST2 model, the AB is an artifact of

the visual system attempting to assign unique tokens to targets

[22]. More specifically, the process of encoding T1 into working

memory is triggered by TAE, and TAE itself is subsequently

suppressed until T1 encoding has completed. The period of TAE

unavailability varies from trial to trial depending on how long it

takes to tokenise T1, depending on its bottom-up strength. In an

RSVP stream, if a T2 is presented 100–600 ms after a perceived

T1 (as is the case during the AB), its processing outcome depends

on multiple factors. T2’s own strength determines its dependence

on TAE, since highly salient T2s can ‘break-through’ the AB [31]

and get encoded relatively early. T2s with strength values slightly

lower in the range ‘outlive’ the AB (and thus the unavailability of

TAE), and hence are indirectly influenced by T1 strength. Overall,

the variability in the temporal dynamics of T2’s encoding process

is influenced both by T1 and T2 strengths. Hence, over all possible

strengths, the ST2 model proposes that there should be increased

variance in processing latency for targets seen during the AB.

Overview
This article investigates the hypothesis that diminished atten-

tional control increases the temporal jitter in the latency of a target’s

working memory consolidation. The AB provides us with a

suitable phenomenon with which to test our hypothesis: we

propose that the reduced availability of attention during the AB

increases the temporal noise in visual attention. To answer this

question, we compare the EEG signatures evoked by targets seen

outside vs. inside the AB, and determine whether there is a

comparative increase in the variability of the latency of working

memory encoding of targets presented inside the AB. EEG has the

advantage of excellent temporal resolution, allowing us to study

short-lived cognitive events that evoke changes in ongoing EEG

activity. If one averages over multiple segments of such EEG

activity time-locked to the event, the resulting averaged ERP

waveform contains a number of positive and negative deflections,

referred to as ERP components. To test for increased temporal

jitter, we analyse the P3 ERP component, commonly associated

with encoding items into working memory [10,23].

However, analysis of averaged ERP components cannot directly

inform our hypothesis. This is because the averaging collapses

across and hence discards information about temporal fluctuations

in the individual EEG trials contributing to the ERP. Given a set

of trials that are averaged together, both decreases in amplitude

and increases in latency variation within that set will attenuate the

mean amplitude of the ERP. Hence, examining the average does

not directly provide the necessary information to decide which of

the two sources of variation in the individual trials (amplitude or

latency) caused the reduction in ERP amplitude. Further,

measures like 50% area latency analysis [24] cannot be used to

measure latencies in single trials, due to the levels of irrelevant

noise activity. Consequently, we employ time-frequency analysis

techniques that provide alternative measures to investigate single

trial dynamics underlying grand average ERPs. These methods

enable us to perform a more fine-grained analysis of EEG data,

and test our hypothesis using both qualitative and quantitative

means.

In addition to presenting and analyzing human EEG data, we

use the ST2 model’s neural network implementation to generate

virtual P3 ERP components [17], which are hypothesised to

correspond to the human P3 ERP component. For each of the

experimental conditions, the virtual P3 is contrasted with the

human P3, both at grand average and single trial level. This

comparative evaluation allows us to validate the ST2 model and

propose explanations for the human ERP effects.

Results

The following section describes the human EEG activity evoked

by targets outside and inside the AB. The data set used in the

following analysis was the same as that contributing to the analyses

presented in [17]. In the final part of the section, we use the ST2

model to generate virtual ERPs, which we compare to human

ERPs, and discuss the implications of this comparison for the

theory underlying the ST2 model. Please refer to the Materials and

Methods section for more details on the experimental design and

computational modelling.

Attention and Temporal Precision
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Analysis of behavioural accuracy
The experiment consisted of RSVP trials presented at a rate of

105.9 ms per item, with two letter targets, T1 and T2, embedded

among digit distractors. T2 was presented at lags 1, 3 and 8

following the T1. The P3 EEG data analysed in this section was

recorded at the Pz electrode. Please refer to the Materials and

Methods section for further information.

Mean human accuracy for T1 identification was 82%. The

accuracy of T2 identification (conditional on correct report of T1)

was 83% at lag 1, 54% at lag 3, and 74% at lag 8. There was a

significant effect of lag on accuracy (F(1.48,12.58) = 15.58, MSE

= 0.03, pv0.001, after applying a Greenhouse-Geisser correction

on the degrees of freedom). Additionally, in pairwise comparisons,

T2 accuracy was significantly lower at lag 3 compared to lag 8

(F(1,17) = 11.66, MSE = .03, p = .003) and lag 1 (F(1,17) = 60.88,

MSE = 0.01, pv0.001). Consequently, the paradigm employed in

this study evoked a reliable AB effect.

Qualitative evidence for reduced temporal precision
The ERPimages [25] in figure 2 compare the P3 evoked by

targets seen outside the AB (seen T2s at lag 8 following a seen T1) with

targets seen inside the AB (seen T2s at lag 3 following a seen T1). They

allowed us to visualise the EEG trials underlying the grand average

P3 ERPs (plotted below them) for targets seen outside and inside

the AB. These ERPimages represent time with respect to target

onset along the X-axis (Note that trials are time-locked to T2

onset), individual trials along the Y-axis, and the single-trial EEG

amplitude using a colour scale. The trials comprising these images

were sorted from bottom to top by descending order of the phase

angle of the single-trial P3 at the time point indicated by the

dashed line, which was set to the peak latency of the corresponding

grand average P3. This phase angle was estimated at the frequency

at which the power of the P3 was maximal. This sorting method

effectively ordered the trials according to the approximate latency

of the single-trial P3 for a target, as estimated by a wavelet-based

time-frequency analysis (see the Materials and Methods section for

more details). The ERPimages were then plotted for each

condition, with trials having longer latency P3s being placed at

the bottom, and trials with shorter latency P3s at the top.

Following from our hypothesis, for targets inside the AB, we

expected to observe an increased ‘‘slope’’ in the red ‘‘smear’’

representing the P3. This would indicate that these targets suffer

greater temporal variance compared to targets outside the AB.

A visual comparison of the ERPimages clearly suggested that

the P3 for targets outside the AB (figure 2A) had relatively little

variation in the phase angle across most trials. In other words, the

P3 onset occurred at approximately the same time in these trials.

In contrast, the P3 evoked by targets inside the AB (figure 2B)

appeared to exhibit an increased temporal fluctuation, as reflected

by the increased variance of the phase angle of the P3 across all

trials. A natural consequence of this jitter in the temporal onset of

the P3 was a ‘smearing out’ of the grand average ERP.

In summary, if there was indeed a reduction in the precision of

the deployment of attention in response to targets during the AB,

we expected this to indirectly affect the working memory encoding

of targets as reflected by the P3. The ERPimages in figure 2

provided qualitative support for our hypothesis. We then extended

this investigation by analysing the distribution of phase angles

corresponding to the P3, to generate numerical evidence that

could be verified statistically.

Quantitative evidence for reduced temporal precision
To back up the qualitative comparisons of the previous section,

we statistically analysed the time-frequency data obtained therein.

We used an approach similar to inter-trial phase coherence

analysis [25], but adapted the idea to directly examine the subject-

wise P3 phase distributions and quantitatively compare temporal

jitter. The phase angles used to sort the individual trials comprising

the P3 ERPimages in the previous section formed a circular

distribution [26] of angular data values that effectively represented

the temporal latency between the onset of the target and its P3. By

statistically comparing the variance in the distribution of phase

angles across targets outside and inside the AB, we tested whether

the visual differences observed were consistent across subjects.

To do so, we performed a subject-wise grouping of the P3 phase

angles calculated at the peak latency of the grand average P3 for

each condition (the same phase angles that were used to sort the

ERPimages presented earlier). This generated multiple smaller

distributions of P3 phase angles, one per condition and subject.

These distributions were then modelled as von Mises distributions

[26] for which the concentration parameter k was calculated using

maximum likelihood estimation. The k parameter of a distribution

is a measure of its density around its mean value, and is an

analogue of the inverse of its variance. The larger the k value of a

circular distribution, the more concentrated it is around the mean.

Importantly, k is a linear parameter, and can be compared using

conventional statistical tools. Hence, in order to test whether

targets inside the AB suffered from increased temporal jitter, we

compared k values of the subject-wise P3 phase distributions

evoked by targets outside and inside the AB, using a standard one-

way repeated-measures ANOVA. The results of the ANOVA

validated what the visual differences observed in the ERPimages

clearly indicated: The k of the phase distribution for the P3

for targets outside the AB was statistically greater than that

for targets inside the AB: Mean k for targets outside the AB was

0.95, whereas mean k for targets inside the AB was 0.52

(F(1,17) = 15.21, MSE = 0.11, p = 0.001).

The potential confound of reduced amplitude. A

potential confound in our time-frequency analysis arose from the

well-established finding of reduced amplitude of the P3 for targets

presented during the AB [10,17,27,28]. Based on this finding, it

could have been argued that the increased variation in the onset

latency of the P3 for targets inside the AB was due to its reduced

amplitude. This potential confound arose because the reduction in

P3-related power could have effectively diminished the ability of

the time-frequency analysis to calculate the phase of the P3. In

other words, given a pair of P3 datasets, one with reduced P3

power compared to the other, the counter-argument to our

interpretation would have claimed to explain the observed

difference in P3 phase distributions by a reduction in P3 power

during the AB.

To address this claim, we redid our statistical comparison of P3

phase angles, but with an additional step: before comparing the

phase distributions, we first rejected trials from the target outside the

AB condition with the highest power in the P3 window from 300–

700 ms. This had the effect of reducing the mean power of the P3

for that condition, as it consisted only of the remaining trials.

By performing this step, we discounted any influence of the

amplitude of the P3 on the phase calculations. Indeed, we

rejected a sufficiently large number of trials so as to reduce the

mean P3 power for targets outside the AB to a value significantly

smaller than that of the mean P3 power for targets inside the AB.

Specifically, before trial rejection (i.e., including all 938 trials in

the condition) the mean P3 power for targets outside the AB was

7.81 dB. This value was statistically greater than the mean P3

power for targets inside the AB: 6.64 dB (F(1,17) = 33.07, MSE

= 0.37, pv0.001). After rejecting 253 trials with the highest P3

power, the mean P3 power for targets outside the AB was

Attention and Temporal Precision
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Figure 2. Human P3 ERPimages for targets seen outside and inside the AB. The ERPimages are time-locked to T2 presentation. Trials are
sorted by phase at the peak latency of the grand average of the T2 P3 (indicated by the dashed line). The solid line illustrates the variation in phase,
and is plotted by mapping the circular range of phase values onto the linear range of time-points encompassed by the wavelet.
doi:10.1371/journal.pcbi.1000576.g002
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reduced to 6.41 dB. This diminished power was statistically lesser

than that for targets inside the AB (F(1,17) = 5.76, MSE = 0.086,

p = 0.028). But in confirmation of our hypothesis, we found that

the difference between the k values for the phase distributions

corresponding to the targets outside the AB (after trial rejection)

and targets inside the AB conditions was still significantly

different: Mean k for targets outside the AB after trial rejection

was 0.78; mean k for targets inside the AB remained unchanged

at 0.52 (F(1,17) = 5.74, MSE = 0.109, p = 0.028). Thus, this

result addressed the potential confound. In other words, it

confirmed that the differences observed in the P3 phase

distributions reflected underlying differences in the correspond-

ing temporal dynamics, which could not be explained away by

differences in amplitude or power.

Phase distributions of the T1. In order to further elucidate

the statistical comparisons presented above, we compared the

phase distributions for the T2s seen at lag 8 (outside) and lag 3

(inside) the AB with the phase distributions for the T1s preceding

them. The ERPimages in figures 3A and 3B depict the P3s evoked

by the seen T1s preceding seen T2s at lag 8 and lag 3, sorted by

the phases at their grand average peaks at 428 ms and 424 ms,

respectively (Note that these two conditions are equivalent to the

target outside and target inside the AB conditions from figure 2,

but are now time-locked to T1 onset and sorted by T1 phase).

In order to confirm the methodological validity of our time-

frequency analysis, we checked for whether the proximity of the

T1 and T2 P3s at lag 3 had adversely affected the estimation of

phases. Specifically, it could have been that the preceding T1 P3

interfered with the wavelet analysis of the T2 P3 (despite the short

wavelet length) and artificially increased the variance of its phase

distribution. To test for this, we compared the T1 lag 8 P3

(figure 3A) and the T1 lag 3 P3 (figure 3B) conditions. If the

wavelet analysis was indeed confounded, we expected a compar-

ative increase in the variance of the phase distribution (and

concomitant decrease in k) of the T1 lag 3 P3, mirroring the

differences observed between the phase distributions of targets

inside and outside the AB. But instead, we found that the T1 lag 3

P3 had a higher mean k of 1.11 than the T1 lag 8 P3 with a mean k
of 1.06, although this difference was not significant. (F(1,17) v1,

pw0.4). Thus, the T1 lag 3 P3 had a relatively high k value

despite its proximity to the T2 lag 3 P3. Overall, this suggested

that the wavelet analysis was not confounded by this proximity,

and was indeed capturing the EEG activity associated with the P3

being analysed.

The finding of increased temporal variance in T2 processing

during the AB led us to the question of the influence of variance in

T1 processing thereupon. Towards answering this question, we

compared the differential effect of T1 on T2, across its

presentation outside and inside the AB. We found that there were

no visual differences apparent in the temporal variability of the T1

lag 8 P3 (figure 3A) and the T2 lag 8 P3 (figure 2A). In keeping

with this observation, the k values of the corresponding phase

distributions, 1.06 for the T1 lag 8 P3 and 0.95 for the T2 lag 8 P3,

were not statistically distinguishable (F(1,17) = 1.8, p = 0.2). In

contrast, the visual comparison between the T1 lag 3 P3 (figure 3B)

and the T2 lag 3 P3 (figure 2B) suggested that the former had

higher temporal precision. Also, the k of the phase distribution for

the T1 lag 3 P3 (mean k of 1.11) was statistically greater than that

for the T2 lag 3 P3 (mean k of 0.52): F(1,17) = 15.34, MSE

= 0.202, pv0.01. Taken together, these findings led to some

important conclusions: Firstly, the jitter in T1 encoding was not

affected by the lag position of the T2. Further, T1’s influence on

T2 jitter was temporally limited, i.e., T1 significantly increased T2

jitter only when T2 was presented within the AB window.

Following on from these findings, we were interested in whether

there existed a direct relationship between the latencies of

individual T1 and T2 P3s during the AB, as reflected by their

phase values. To test this, we performed a trial-by-trial circular

correlation of phase values of the T1 and T2 P3s at lag 3, but

failed to find any relationship between the phases. This lack of an

effect agreed with visual inferences from figure 2B, which

suggested that sorting by the phase of the T2 lag 3 P3 did not

result in any evident sorting of the T1 P3 preceding it. In the same

vein, sorting by the phase of the T1 lag 3 P3 in figure 3B did not

produce any sorting of the T2 P3 following it.

Virtual ERPs from the ST2 model
In order to validate the ST2 model, we used it to generate

‘artificial electrophysiological’ traces, so-called virtual ERPs [17].

In analogy to human ERP components, we generated virtual ERP

components for targets outside and inside the AB. This approach,

in addition to allowing us to validate the internal dynamics of the

ST2 model, provided theoretical explanations for the human EEG

effects observed in the previous section. Please refer to the

Materials and Methods section for more details on how virtual

ERPs and ERPimages were generated.

Simulated behavioural accuracy. The simulated behavioural

accuracy from the ST2 model was 85% for targets outside the AB and

31% for targets inside the AB. The ST2 model thus qualitatively

replicated the human behavioural data.

Virtual ERPimages. As with the analysis of human ERPs,

grand average virtual ERPs are ‘blind’ to underlying trial-by-trial

fluctuations, and could not be used to dissociate potential sources

of aggregate effects. Hence, we investigated the correspondence

between model and human ERP data at the level of individual

trials. This was done by generating virtual ERPimages from the ST2

model. Similar to their human counterparts, virtual ERPimages

illustrate the activation profiles of simulated trials making up a

particular condition. However, human ERPimages unavoidably

include inter-subject variability, occurring naturally in the neural

dynamics across the subject pool. Hence, in order to generate

comparable virtual ERPimages, we simulated inter-subject

variability by introducing a small, random subject-wise delay in

the processing of all stimuli in the model (see the Materials and

Methods section for more details). For each such ‘simulated’

subject with a particular delay value, we executed a complete run

of the model. This procedure was then repeated as many times as

there were experimental subjects. In this way, we generated

multiple datasets of simulated trials, one per subject and condition,

which could then be statistically analysed. Further, by combining

trials across all simulated subjects, we generated virtual

ERPimages that captured some of the complexity present in the

human ERPimages.

Qualitative comparisons to human ERPs. The virtual

ERPimages in figure 4 depict the virtual P3s (with the corre-

sponding grand averages plotted below them) evoked by targets

seen outside the AB (seen T2s at lag 8 following a seen T1) with targets

seen inside the AB (seen T2s at lag 3 following a seen T1). These

conditions mirror the ones analysed with the human EEG data.

However, note that in contrast to the human ERPimages in

figure 2, the virtual ERPimages only depict simulated activity

related to the target in question. This was done for visual clarity,

and was possible because we could isolate and selectively plot

activation generated by a specific target in the ST2 model. Further,

the trials comprising the virtual ERPimages were sorted by 50%

area latency [24] of the appropriate virtual P3 within 200–

1100 ms after target onset (indicated by dashed lines in figure 4) in
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Figure 3. Human P3 ERPimages for seen T1s with T2 at lag 8 and at lag 3. The ERPimages are time-locked to T1 presentation. Trials are
sorted by phase at the peak latency of the grand average of the T1 P3 (indicated by the dashed line). The solid line illustrates the variation in phase,
and is plotted by mapping the circular range of phase values onto the linear range of time-points encompassed by the wavelet.
doi:10.1371/journal.pcbi.1000576.g003
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Figure 4. Virtual P3 ERPimages for targets seen outside and inside the AB. The ERPimages are time-locked to T2 presentation. Trials are
sorted by 50% area latency (indicated by the solid line) within the window indicated by the dashed lines.
doi:10.1371/journal.pcbi.1000576.g004
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each trial. We used the 50% area latency measure with virtual

ERPs, since, unlike human ERPs, they were free from noise.

The ERPimages for the virtual P3 showed that the simulated

EEG activity for targets outside the AB (figure 4A) was well aligned

with target onset. In comparison, the virtual P3 for targets inside

the AB (figure 4B) varied over a wider range of latencies. This

difference provided a qualitative replication of the pattern of

effects in the human P3 ERPimage (figure 2).

Quantitative comparisons to human ERPs. We statistically

tested the observed qualitative differences in the virtual ERPimages,

by comparing across simulated subjects the 50% area latencies of

the virtual P3 within the 200–1100 ms window (the same latency

values used to sort the virtual ERPimages). We found that targets

outside the AB (mean latency = 529.68 ms) had significantly earlier

mean 50% area latency than targets inside the AB (mean latency

= 649.31 ms): F(1,17) w100, MSE = 6.69, pv0.001. This shift in

the mean latency of the virtual P3 during the AB follows from the

delayed consolidation hypothesis of the ST2 model [29]. Previous

ERP studies of the AB [27,30] have reported such a shift in the

human P3, which is mirrored by the observed shift in the peak

latency of the grand average human P3s in our data.

To quantitatively test whether the virtual P3 suffered from

increased temporal variance for targets inside the AB, we

compared the standard deviations of the 50% area latencies of

the virtual P3 across simulated subjects. In keeping with the

qualitative differences observed in the virtual ERPimages, virtual

P3s evoked by targets outside the AB had much smaller standard

deviation in their latencies (mean S.D. = 44.80 ms) than those

evoked by targets inside the AB (mean S.D. = 93.81 ms). This

difference was highly significant: F(1,17) w100, MSE = 0.052,

pv0.001, and mirrored the statistical differences in the phase

distributions of the human P3s.

Discussion

Our qualitative and quantitative comparisons of human

ERPimages support the notion of increased temporal variance in

target processing during the AB. Further, we have shown that the

observed differences in the phase distributions of targets seen

outside and inside the AB are indeed real, and cannot be explained

by differences in amplitude or any methodological limitations.

Finally, our analysis also suggests that T1 processing significantly

influences the variance in T2 processing during the AB window,

though this could not be confirmed by a trial-by-trial correlation of

T1 and T2 phases. At the end of this section, we interpret this

finding in relation to predictions from the ST2 model.

The virtual ERPs and ERPimages have provided a means for

visualising the theory underlying the ST2 model, at a fine-grained

level of detail. Using this novel methodology of comparing model

and data both at the level of averages and single-trials, we have

shown that, in line with the ST2 model’s hypothesis, activation

traces of attentional response and consequent working memory

encoding show decreased temporal precision for targets inside the

AB compared to targets outside it. However, it is clear from the

virtual ERPimages that the virtual P3 for targets inside the AB is

exaggerated in terms of its delay and duration. This is a

consequence of the strong suppression of TAE in the ST2 model

during target consolidation. But it does not affect the qualitative

comparisons with the human ERPimages, or the conclusions we

have drawn therefrom.

To further clarify the causes of temporal variability in the ST2

model, we now summarise the underlying mechanisms that

produce it. In the model, transient attentional enhancement

(TAE) is evoked by detection of a target, and this attention triggers

the encoding of that target into working memory by binding its

type representation to a working memory token, which results in

this target being correctly reported at the end of the trial. For

targets presented outside the AB, such as a T2 at lag 8, the TAE

mechanism (i.e. the blaster circuit) is readily available. It fires as

soon as an item is classified as a target, and encoding is thus tightly

timelocked to the target onset. Thus, there is little variation in the

tokenization delay and consequently the latency of the virtual P3.

Also, because attention is immediately deployed, the model’s

behavioural accuracy at detecting targets outside the AB is high.

However, as described previously, the processing of a target

presented during the AB (a T2) is complicated by multiple factors.

Firstly, T1’s strength determines the period of unavailability of the

blaster. In addition, T2’s own strength determines its dependence

on the blaster, as highly salient T2s (at upper end of the range of

target strength) can break-through the AB [31] and get encoded

early. T2s with slightly lower strength values can outlive the AB,

but require the blaster’s enhancement. Quite a few T2s, however,

have insufficient strength to survive the delay in the blaster

response and are missed, producing an AB. This complex

relationship between T1 and T2 at lag 3 increases temporal

variability in the latency of T2’s virtual P3, but implies that the

model does not predict a strong, direct correlation between T1

and T2 P3 latencies. A possible reason for the lack of any such

correlation between the corresponding human P3 phase distribu-

tions could be insufficient variation in T1 strength in our

experiment, combined with noise obscuring a weak effect. With

sufficient variation in T1 strength (for example, when comparing

across T1 masked vs. unmasked) the dynamics of the ST2 model

propose a stronger relationship between the duration of the T1 P3

and the latency of the T2 P3 during the AB. Indeed, the model

suggests that there should be a reciprocal influence of T1 strength

on its encoding duration [29], which would in turn have

implications for T2 P3 latency. Testing for such a relationship

would be informative, but a detailed investigation of this topic is

beyond the scope of this article.

Related work
Our experimental results and theoretical explorations comple-

ment and inform previous research on temporal selection and the

AB. We now discuss these findings and propose interpretations in

terms of the ST2 model.

Chun (1997), Popple and Levi (2007). Chun [32] provided

initial evidence regarding the effect of the AB on temporal

binding. Employing an RSVP paradigm consisting of letters

enclosed in coloured boxes and target letters marked by a

distinctively coloured box, he investigated the distribution of

responses made by participants when either one or two targets

were presented. He calculated the centre of mass of this

distribution for targets outside and inside the AB, and found

that for targets outside the AB, the distribution was roughly

symmetrical around the target position. But for targets inside the

AB, he observed a significant shift in the response distribution

toward items presented after the target. In addition, behavioural

data presented in [32] shows that the variance of the response

distribution for T2 report increases when it is presented inside the

AB. Popple and Levi [15] presented additional behavioural

evidence consistent with Chun’s findings [32]. Using a colour-

marked RSVP paradigm where each item had two features (colour

and identity), they found that incorrect responses mostly came

from the distractor items that were presented close to, and

generally following the T2. In addition, they observed that this

distribution of responses for T2 showed a pronounced increase in

its spread compared to T1.

Attention and Temporal Precision

PLoS Computational Biology | www.ploscompbiol.org 9 November 2009 | Volume 5 | Issue 11 | e1000576



These findings are well explained by the ST2 model. In ST2, the

inhibition of the blaster delays the deployment of attention to a T2

presented during the AB. Consequently, non-targets presented

right after the T2 are more likely to be tokenised when the second

stage becomes available, resulting in the observed shift in the

response distribution. Also, as explained in the previous section,

due to a combination of factors influenced by T1 and T2

strengths, there is increased temporal variability in T2’s encoding

process. This in turn leads to increased variation in the

behavioural response for T2s presented inside the AB.

Vul, Nieuwenstein and Kanwisher (2008). Vul, Nieuwenstein

and Kanwisher [16] propose that temporal selection is modulated

along multiple dimensions by the AB. They employed an RSVP

paradigm consisting of letters, with targets delineated by simul-

taneously presented annular cues. Their behavioural analysis suggests

that target selection is affected by the AB in one or more of three

externally dissociable dimensions discussed below: suppression, delay,

diffusion. However, with the ST2 model, we demonstrate that all three

can result from the suppression of attention.

N Suppression refers to the reduction in the effectiveness of

temporal selection during the AB, and a concomitant increase

in random guesses. Vul et al. [16] measured this effect in the

form of a decrease in the mean probability of selecting a

proximal response (from +3 item positions) around the target,

when it occurs during the AB. In contrast to results in [15],

they found a significant decrease in this value for T2s during

the AB. In the ST2 model, suppression can be explained by a

reduction in the probability of a target triggering the blaster.

During the AB, a relatively large percentage of T2s fail to fire

the blaster and do not have enough bottom-up strength to be

tokenised. The model would hence predict the suppression

observed by [16], because the percentage of trials in which the

blaster fires in response to a T2 would be reduced during the

AB. Furthermore, as participants were forced to indicate a

response for both targets [16], this reduction would translate to

an increase in the number of random guesses for the T2.

Finally, as one would expect, the time course of suppression

follows the time course of the AB as simulated by the ST2

model.

N Delay refers to a systematic post-target shift in the locus of

responses chosen for T2 when compared to T1. Vul et al. [16]

quantified delay as the centre of mass of the distribution of

responses for each target, calculated similarly to the API

(Average Position of Intrusions) measure in [14] and the

intrusion index score in [32]. This notion of an increase in the

latency of attentional selection is reflected in the ST2 model.

Specifically, suppression of the blaster during T1 encoding

results in an increase in the latency of its response to a T2

during the AB (see [29] for more details on delayed T2

consolidation in the ST2 model). As a result, in an RSVP

paradigm like that used by [16], items presented after T2 are

more likely to get the benefit of the blaster and get chosen as

responses, resulting in the observed shift in the response

distribution. However, this shift in the locus of responses

observed by [16] seems to persist at late T2 lag positions well

beyond the duration of the AB, and is somewhat more

puzzling. This finding could perhaps be attributed to the

cognitive load associated with holding T1 in working memory.

N Diffusion refers to a decrease in the precision of temporal

selection, corresponding to an increase in the overall spread in

the distribution of responses during the AB. Vul et al. [16]

estimated diffusion by comparing the variance around the

centre of mass of the response distributions for T1 and T2, and

found that it is significantly increased for T2s during the AB.

This observation is explained by the ST2 model as follows: in

the context of the paradigm in [16], there would be increased

temporal variation in T2 encoding because of the influence of

T1 processing. Hence, due to the influence of both T1 and T2

strengths on response selection, erroneous responses further

away from the target position would get selected for

tokenization, producing increased variance in the distribution

of responses. Again, the time course of diffusion is similar to

that of suppression, and is in keeping with the window of the

AB predicted by the ST2 model.

In summary, we think that a single underlying mechanism of

variation in the temporal dynamics of attention from trial to trial

could potentially explain the three effects observed in [16]. An

explicit computational account of these three dimensions in terms

of the ST2 model is beyond the scope of this article (and would

require it to be extended to simulate the conjunction of multiple

stimulus features). Nevertheless, the explanation proposed above

highlights the role that the temporal dynamics of transient

attention would play in explaining these effects.

Sergent, Baillet and Dehaene (2005). Sergent, Baillet and

Dehaene [33] combined behaviour and EEG to investigate the

timing of brain events underlying access to consciousness during

the AB. They analysed early and late ERP components evoked by

a pair of targets, a T1 followed by a T2 either at a short lag

(equivalent to our inside the AB condition) or at a long lag

(equivalent to our outside the AB condition). They plotted unsorted

ERPimages to visualise the inter-trial variation in the EEG

activity, and found that when T2 was presented within the AB,

T1’s P3 influenced the temporal dynamics of the ERP components

correlated with conscious access to T2. In particular, the

ERPimage depicting their T1 and T2 P3s clearly shows that

even when T2 is seen during the AB window, it evokes a more

‘smeared out’ P3 as compared to the T1. However, the analysis of

single-trial data in [33] presents ERPimages that are not sorted

(unlike the phase sorting we have performed in this article), thus

limiting their interpretation. Further, they did not compare

temporal variability of targets seen outside and inside the AB.

Despite these differences, their data agree well with ours, and

provide qualitative support for our hypothesis of reduced temporal

precision during the AB. This is because we would expect

increased inter-trial variability in the P3 evoked by a T2 inside the

AB to result in a ‘smearing out’ effect in its ERPimage, when trials

are plotted after smoothing, but without sorting by phase.

Conclusion
In this article, we have presented human ERP evidence in

favour of a reduction in the temporal precision of transient

attention during the AB. The AB provides us with a suitable

phenomenon with which to investigate the interplay between

attention and perception. The interplay between these tightly

linked cognitive processes is adversely affected during the AB,

producing the reduction in precision observed in behavioural and

EEG data.

Using ERPimages, we have provided qualitative evidence

arguing for an increase in temporal variation in the dynamics of

P3s evoked by targets seen outside vs. inside the AB window. This

evidence is supported quantitatively, by statistical comparison of

the phase distributions corresponding to the P3. This analysis

suggests that there is significantly increased temporal jitter in the

ERP activity evoked by targets inside the AB. This notion of a

decrease in the temporal precision of attention is inherent in the

theoretical framework of the ST2 model. Specifically, we have
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used the ST2 model’s neural implementation to generate both

virtual ERPs and ERPimages, which we have then compared to

their human counterparts. We believe that correlating model and

electrophysiological data in this way provides a two-fold benefit.

Firstly, it has provided a sufficient explanation for the modulatory

effects of the AB on the temporal precision of visual processing.

Secondly, it has allowed us to instantiate and test the model at the

level of single-trial dynamics, and show that the theoretical

assumptions about the nature of temporal visual processing

embodied by it can be validated using EEG data, in addition to

traditional behavioural verification. We believe that the combina-

tion of experimental and theoretical analysis presented in this

article contributes to converging evidence for the notion that the

AB results in a reduction in the temporal acuity of selective

attention, which is an important mechanism for ensuring the

timeliness of conscious perception.

Materials and Methods

Experimental methods
This section describes the experiment (the same as Experiment

2 from [17]) used to collect the human EEG data analysed in this

article.

Participants. We recruited 20 under- and postgraduate

university students (mean age 23.1, SD 3.2; 10 female; 18 right-

handed). Two participants were excluded from the analysis. The

first one seemed to be a non-blinker [34], as his performance was

at ceiling across all three lags. The second participant was

excluded due to persistently high oscillations in the alpha band

throughout the experiment. Hence, 18 participants remained for

behavioural and EEG analysis (mean age 22.5, SD 2.7; 9 female;

18 right-handed). Participants were free from neurological

disorders and had normal or corrected-to-normal vision.

Ethics statement. All participants provided written consent

and received 10 GBP for participation. The study was approved

by the ethics committee of the Science, Technology and Medical

Studies Faculty at the University of Kent.

Stimuli and apparatus. We presented alphanumeric

characters in black on a white background at a distance of

100 cm on a 21’’ CRT computer screen (10246768@85 Hz)

using the Psychophysics toolbox [35] running on Matlab 6.5 under

Microsoft Windows XP. Stimuli were in Arial font and had an

average size of 1.03u60.69u visual angle.

Procedure. Participants viewed 4 blocks of 100 trials. Before

starting the experiment, participants were asked to make 5 eye

blinks and 5 horizontal eye movements to record the typical

pattern of EOG activity. This was used to configure the algorithm

for eye blink artifact rejection. Participants performed 8 practice

trials, which were not included in the analysis. As shown in figure 5,

RSVP streams were preceded by a fixation cross in the centre of

the screen. After 400 ms, the cross turned into an arrow indicating

the side on which the targets would be presented. After 200 ms,

two streams of digits were simultaneously presented at an equal

distance of 2.6u visual angle to the left and right of fixation. The

RSVP stream consisted of 35 items presented for 105.9 ms each

with no inter-stimulus interval. For 84% of trials in a block, the

stream on the side indicated by the arrow contained 2 targets (T1

& T2), in 16% of trials both streams were made up of distractor

digits only. The ‘distractor only’ trials were randomly inserted to

make the occurrence of targets less predictable. In a trial, T1 and

T2 were selected from a list of 14 possible targets (A, B, C, D, E, F,

G, H, J, K, L, N, P, R, T, U, V, Y); distractors could be any digit

except ‘1’ or ‘0’. T1 appeared between stream position 5 and 17;

T2 followed T1 at position 1 relative to T1 (no intervening

distractors - lag 1), position 3 relative to T1 (2 intervening

distractors - lag 3) or position 8 relative to T1 (7 intervening

distractors - lag 8). The arrow remained in the centre of the screen

until the streams were over and then turned into either a dot or a

comma.

Before the experiment started, participants were told to keep

their eyes fixated on the centre of the screen from presentation of

the cross until the dot/comma, as trials with eye movements would

be identified in the EOG and excluded from the analysis.

Participants were told to direct their covert attention towards

the indicated stream, search for the two target letters and

remember whether the last item was a dot or a comma.

Participants were informed that streams could contain either two

or zero targets. Following stream presentation, participants were

presented with the message ‘If you saw letters - type them in order,

then dot or comma for the final item’ and entered their response

without time pressure using a computer keyboard. The dot-

comma task was included to ensure that participants kept their

eyes fixated on the centre of the screen throughout the RSVP

stream.

EEG recording. EEG activity was recorded from Ag/Ag-Cl

electrodes mounted on an electrode cap (FMS, Munich, Germany)

using a high input impedance amplifier (1000MV, BrainProducts,

Munich, Germany) with a 22-bit analog-to-digital converter.

Electrode impedance was reduced to less than 25kV before data

acquisition [36]. EEG amplifier and electrodes employed

actiShield technology (BrainProducts, Munich, Germany) for

noise and artifact reduction.

The sampling rate was 1000 Hz and the data was filtered at

80 Hz low-pass and 0.25 Hz high-pass at recording. 20 electrodes

were placed at the following standard locations according to the

international 10/20 system [37]: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz,

C3, C4, C7, C8, Pz, P3, P4, P7, P8, Oz, O1, O2, T7 and T8.

Horizontal eye movements, recorded from a bipolar EOG channel

placed below and to the left of the participant’s left eye, indicated

when participants had moved their eyes away from fixation and

towards one of the RSVP streams.

EEG analysis. EEG data was analysed using BrainVision

Analyzer (BrainProducts, Munich, Germany), in conjunction with

EEGLAB 6.01b [25] and custom MATLAB scripts. In Analyzer,

the data was first referenced to a common average online and re-

referenced to linked earlobes offline. Left mastoid acted as ground.

Figure 5. Experimental design. Each trial began with a central
fixation cross, which turned into an arrow indicating the side on which
targets would be presented. This was followed by two simultaneous
RSVP streams on either side of fixation. The central arrow was finally
replaced by a dot or a comma.
doi:10.1371/journal.pcbi.1000576.g005
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Signal deviations in the EOG channel of more than 50mV within

an interval of 100 ms were identified as eye blink and movement

artifacts, and a window of 200 ms before and after an artifact were

marked for rejection. To verify that these artifacts were accurately

identified by the algorithm, we performed a manual inspection

after the algorithm had been applied.

The continuous EEG data from each participant was loaded

into MATLAB and low-pass filtered at 25 Hz. The data was then

segmented into trials. This was done by extracting a time window

of 2500 ms to 1500 ms around the target onset times for the

conditions of interest, namely seen T2s at lag 8 following a seen T1

(targets outside the AB), seen T2s at lag 3 following a seen T1

(targets inside the AB), seen T1s with a seen T2 at lag 8 (T1 lag 8)

and seen T1s with a seen T2 at lag 3 (T1 lag 3). Trials marked as

containing artifacts by the procedure defined above were excluded

from further analysis. After artifact rejection, the total number of

trials in the above conditions were - seen T2s at lag 8: 938; seen

T2s at lag 3: 853; seen T1s with T2 at lag 8: 1188; seen T1s with

T2 at lag 3: 843. A linear detrend function was applied to all trials.

Finally, trials in all conditions except the targets inside the AB

condition were baselined to the 2200 ms to 0 ms window before

presentation of the target to which the trial was time-locked. Trials

in the targets inside the AB condition were baselined to the 2500

to 2300 ms window before T2 presentation, to ensure that there

was no T1-related activity in the baseline window.

To plot grand average ERPs, ERPimages and to perform

statistical analyses, the P3 was generated using data recorded at

the Pz electrode. Repeated measures Analysis of Variance

(ANOVA) were performed on subject averages using custom

MATLAB scripts, which implement functions from [38]. Where

appropriate, p-values were adjusted using Greenhouse-Geisser

correction.

ERPimages. To plot the ERPimages in this article, trials

were vertically sorted by the phase angle, which is calculated using

wavelet-based time-frequency analysis, performed separately for

each trial. A half-cycle Morlet wavelet (cycle length of 0.5) at

1.53 Hz was used as the template for the time-frequency analysis.

This frequency was set by identifying the peak power spectral

density of the P3 EEG trials contributing to the outside the AB

condition. This frequency generated a wavelet with a half-cycle

duration of 326.8 ms, which when centred on the peak of the

grand average P3, ensured that it only captured activity related to

the single-trial P3 evoked by the target in question. The time-

frequency analysis returned a pair of two-dimensional matrices,

indexed by trial number and time point, and consisting of the

power and phase values calculated at the specified frequency. In

order to then pick out the phase of the phasic P3 across trials in a

condition, the peak of the grand average P3 ERP for that

condition was used. This peak occurred at 444 ms for the T2 at lag

8, and at 496 ms for the T2 at lag 3. For each of these

experimental conditions, this then produced a circular distribution

[26] of phase values within the range {p,zp½ � radians, consisting

only of the phase values at the chosen time point, across all the

trials for the condition. Finally, ERPimages were plotted as a

colour-map for each condition by sorting the trials based on these

phase values, and then vertically smoothing over them using a

sliding window of 50 trials, in order to better visualise patterns in

the single trials underlying the grand average ERP. The phase

distributions thus generated for P3s outside and inside the AB were

statistically compared using R [39] and MATLAB, by first

grouping the phase values by subject and estimating the

concentration parameter k for the subject-wise phase distri-

butions using maximum likelihood estimation, and feeding them

into a standard one-way repeated measures ANOVA.

Computational methods
ST2 model configuration. The input patterns presented to

the model were comprised of 25 items presented for 20 timesteps

(equivalent to 100 ms) each. T1 appeared at position 7 in the

RSVP stream and T2 followed T1 with 0 to 7 distractors (lags 1–8)

between the two targets. All target and distractor strength values

and model parameters are fixed to be the same as those published

in [17].

Virtual ERPs and ERPimages. The philosophy we adopted

to generate virtual ERPs from activation dynamics of the model

(discussed in greater depth in [17]), was to employ a

straightforward approach with no parameter fitting, while

keeping it as close as possible to the processes assumed to occur

in the brain (For a more neurophysiologically detailed account of

ERP generation, see [40]). Cortical pyramidal neurons in the

brain have inter-layer connectivity and are aligned perpendicular

to the cortex, which is why they are thought to be a major

contributor to human EEG [41]. We assumed the major weighted

connections across layers in the ST2 model (figure 1) to be

analogues of synaptic projections in the brain. Accordingly, we

generated virtual ERPs by summing across the excitatory

postsynaptic potentials of all relevant nodes in the layers that

perform cognitive functions reflected by the human ERPs in

question. These virtual ERPs are averages of the activation profiles

collapsed across all trials in a complete simulation run of the

model, encompassing a range of target strengths. It is obvious,

however, that virtual ERPs thus calculated remain a coarse

approximation of human ERPs, as physical topography of the

brain, skull and scalp are not taken into account. Consequently,

though one can realistically only expect to obtain a qualitative

match to human ERPs, virtual ERPs can serve as valuable

predictors of the patterns of change in human ERPs, particularly

with regard to temporal factors.

Virtual P3. The human P3 is a broad component spread over

a large group of parietally centred electrode sites, and is considered

to be a correlate of working memory consolidation [10]. In the

ST2 model, working memory encoding occurs by creating a

binding link between types from stage one and tokens from stage

two. Hence, the virtual P3 component contains activation from

later parts of the first stage, the nodes in stage two and the binding

link connecting the two stages.

Virtual ERPimages. Virtual ERPimages are used to

qualitatively compare single trial dynamics of the model to

human EEG data. They depict the individual simulated trials that

underlie the average virtual ERP, just as human ERPimages

depict the experimental trials that contribute to the grand average

ERP. Further, the conditions plotted are defined exactly the same

as with human ERPimages: the targets seen outside the AB

condition includes trials with seen T2s at lag 8 following a seen T1,

and the targets seen inside the AB condition includes trials with

seen T2s at lag 3 following a seen T1.

In order to generate virtual ERPimages comparable to their

human counterparts, we combined simulated trials across multiple

complete runs of the model. For each of the 18 subjects in the

human data, a complete simulation run of the ST2 model was

executed once, over all combinations of T1 and T2 strengths. For

all trials in each such run, a small delay (fixed per subject) was

introduced in the processing of stimuli presented to the model.

This delay was a positive or a negative integer value, randomly

sampled once per run, from a normal distribution with a mean of

0 ms and a standard deviation of 50 ms. It was ensured that,

despite the introduction of this delay, the behavioural performance

of the model was the same as that published in [5]. To generate

the virtual ERPimage for a particular experimental condition, the
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corresponding trials from all the runs were collected together,

sorted by 50% area latency within the 200–1100 ms window in

each trial, and plotted as a colour-map with a vertical smoothing

window of 15 trials to improve visual clarity.
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