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ABSTRACT

A general theory of coherent wave-wave coupling is first
set up. This is then used to furnish a systematic description
of laser-driven plasma instabilities. This description is
physically motivated, and generalizes in a straightforward
manner to magnetized plasmas, depleted pump-waves, plasmas
containing beams, and so on.

First a generalized-coupling-of-modes formalism is con-
structed in terms of the nonlinear conductivity of a medium.
This formalism accommodates arbitrarily many waves, with arbi-
trary propagation and polarization vectors. Generalized-
coupling-of-modes equations are derived, describing how each
wave-envelope varies in space and time due to its being driven
by the other waves to which it is coupled by the nonlinear con-
ductivity. The formalism can describe pump-driven instabili-
ties including the effects of pump depletion, attenuation and
evolution.

The formalism is then specialized to deal with linear
perturbations coupled together by an undepleted, unattenuated
pump-wave. The self-consistent harmonic structure, which the
pump-wave in a nonlinear medium must have, is computed and
included. The coupling coefficients are worked out for a
plasma with arbitrarily many species each described by a warm-
fluid model.

The work is then further specialized to recover systemat-
ically those laser-driven instabilities occurring in unmagnetized
plasma. The effects of third-order conductivity are that the
pump-driven instabilities of simple parametric type become
modified, and that additional instabilities appear. Three-
dimensional dispersion relations are derived for the various
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instabilities, and one-dimensional cross-sections of the time-
asymptotic unstable pulse-responses are found.

This description of laser-driven instabilities requires
no assumptions of frequency disparity or phase-velocity dis-
parity between decay products. The theory therefore general-
izes to both weakly and strongly magnetized plasmas. Also
the coupling coefficients are additive over particle popula-
tions, so that there is no conceptual difficulty in generaliz-
ing to a plasma containing several beams or temperature
components.

Thesis Supervisor: Professor Abraham Bers
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Study

1.1.1 IMPORTANCE OF ANALYTIC STUDIES OF LASER-DRIVEN
INSTABILITIES

A major difficulty in the energetics of laser-pellet
fusion is the competitionl’2 between anomalous sca.tteringz_4
and anomalous absorptions-s. The outcome of this competition
in a typical reactor schemeg-11 cannot be predicted unambigu-

12-19 jade to date.

ously from experimental observations
Anomalous scattering and anomalous absorption are due to pump-
driven instabilities, the laser light constituting the pump

20-23 ¢ these instabilities per-

wave. Computer simulations
formed on present-day machines perforce omit vital aspects of
the physical problem. Therefore they must be complemented by
analytic studies of laser-driven reflective and absorptive
instabilities.

To make a start on understanding laser-pellet interac-
tion, one neglects asymmetries in illumination, heating, and
blowoff, together with their associated magnetic field524-25.

One further replaces the resulting spherically-symmetric pellet
by a plane-parallel model; an unmagnetised plasma with a density-
gradient along z is irradiated by a laser-beam propagating

along z and polarized along X.

17,18,20,21

One-dimensional simulation of the above model

depicts growth and saturation of backscatter instabilities.
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Separate two-dimensional numerical simulations in perpendicular

22 and absorption23.

planes depict the development of sidescatter
To study the simultaneous nonlinear development of all these
instabilities would require a three-dimensional simulation.
However a full three-dimensional simulation with a useful num-
ber of particles is beyond the capability of present day com-
puters. Analytic studies of the three-dimensional problem are
therefore vital, even if initially confined to the linear phase
of unstable growth.

At realistic laser power intensities the linear growth
rates of all the important laser-driven instabilities are com-
parablezs. Thus a correct analysis of the nonlinear saturation
of these instabilities must treat them all on the same footing.
This requires that the problem of linear growth and unstable
propagation be first solved in three dimensions for all these
instabilities individually. This can be done piecemeal, as
discussed in Section 1.1.2, or systematically, as discussed in
Section 1.1.3 and as carried out in this thesis.

15 16

At laser power intensities of 1077-10 watts/cmz,

6'27, thus their

6,7,28

simple parametric instabilities become modified
growth rates are reduced. Further, other instabilities
which are intrinsically higher-order in the pump-field become
important. These effects account for the above-mentioned con-
vergence of the growth rates of the important instabilities.

These effects can be described systematically in terms of the
third-order conductivity of the plasma, and are so described

in this thesis.
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At realistic laser power intensities the linear growth
rates are high enough that the effect of plasma inhomogeneityzg'30
may be neglected. This point is further discussed in Section
1.2.1. The plasma is driven strongly enough by the laser pump-
wave that only coherent interaction need be considered. Thus
we are motivated to set up a general theory of coherent wave-
wave interaction via arbitrarily high-order conductivity in a
homogeneous medium. We are further motivated to apply this
theory to linear laser-driven instabilities in the plasma sur-
rounding the pellet. This general theory and its application
to laser-driven instabilities form the main part of this thesis.
1.1.2 PREVIOUS PIECEWISE TREATMENTS OF LASER-DRIVEN

INSTABILITIES

Theoretical developments in the field of linear laser-
driven instabilities may be divided historically into two phasesf
The first phase lasted from the middle sixties until recently
and comprised piecewise treatments of specific instabilities.
This first phase is outlined in this section. The second phase
is current and comprises attempts to construct general schemes
for dealing with all laser-driven instabilities. This second
phase will be outlined in 1.1.3.

In 1962, Askar-yan31 investigated filamentation in
plasmas from a macroscopic viewpoint. In 1963, Dawson and
Oberman32 showed that coherent, nonthermal ion fluctuations
could greatly enhance plasma resistivity at frequencies

33

around wp. In 1964, Dubois and Gilinsky showed that this



3

could also happen at frequencies around 2wp, and interpreted
their own result as parametric downconversion from the applied
field to two electron-plasma waves. In 1965, Dubois and Goldman5
described "anomalous" absorption at wp in terms of parametric
downconversion into an electron-plasma wave and an ion-acoustic
wave., Also in 1965 Silin6 used the fluid equations for electrons
and ions to derive not only the aforesaid "parametric" or "decay"”
instability but also the purely-growing "nonoscillatory" insta-
bility. Still in 1965 Silin and Gorbunov4 treated stimulated
Raman scattering in plasma. In 1966 Comisarz, and a little
later Montgomery and Alexeff3, derived stimulated Raman scatter-
ing from a simpler coupled-mode treatment. The "nonoscillatory"
instability was rederived from the fluid model via coupled dif-
ferential equations by Nishikawa7 in 1968. This was extended
to Vlasov plasmas by Sanmartin34 in 1970.
1.1.3 CURRENT EFFORTS TOWARDS A UNIFIED THEORY OF LASER-DRIVEN

INSTABILITIES

Current theoretical developments in the field of linear
laser-driven instabilities are directed towards general schemes
which include all such instabilities. We outline five such
schemes including the one set forth in this thesis.

The first general theory is that of Drake, Kaw, et.al.35
These workers describe all instabilities in terms of the suc-
cessive operation of two physical mechanisms. The first phys-

ical mechanism is that high-frequency oscillations beat with

the pump-field to produce a low-frequency radiation-pressure
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pattern which forces a bunching of the electrons. The second
mechanism is that the low-frequency electron-bunches quiver in
the pump field to form a high-frequency current which regenerates
the high-frequency oscillations. This theory has the virtues
of providing a concrete and conceptually simple physical expla-
nation for the instabilities that it covers, and of reducing
the complexity of the calculations. This reduction in complex-
ity is accomplished by considering only the first harmonic of
the pump wave, and considering only those instabilities with a
frequency disparity (more strictly, a phase-velocity disparity)
between the decay products. The theory requires modification31
in order to deal with the two-plasmon instability. It is not
immediately clear how to extend the theory to strongly-magnetized
and multiply-irradiated plasmas where the above reduction in
complexity cannot occur.

The second general theory is that of Ott and Manheimer37.
This resembles that of Kaw, et.al. in that the physical mechan-
isms are again radiation pressure leading to low-frequency
electron bunching, and quivering of the bunched electrons
leading to a high-frequency current. It also resembles that of
Kaw, et.al. in that the physical explanations and the mathemat-
ical calculations are simple and straightforward. Again the
theory needs modification to cover the two-plasmon instability.
The theory extends to plasma which is weakly magnetized in the
sense that the electron and ion cyclotron-frequencies lie well

below the high and low perturbation-frequencies, respectively.
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Again the feasibilityxbroader extensions iS5 not immediatelyckw.
A review of the interaction of high-frequency electro-
magnetic wave with plasma has been carried out by Silin38.
This pump wave is allowed to be strong in the sense that the
electron quivering velocity it induces can be much greater than
the thermal velocity. Accordingly the nonlinear dispersion
relation for perturbations coupled by the pump-wave is worked
out exactly to all orders in the pump-field. 1In these respects
the review is more complete than this thesis. However the
approximation is made that the wavevector of the pump is zero.
Consider an instability occurring in unmagnetized plasma and
having an electromagnetic decay-product. For such an instab-
ility, neglecting the k-vector of the electromagnetic pump would
completely alter the three-dimensional kinematics and would
completely alter the three-dimensional dependence of the
growth rate upon the directions of propagation of the decay-
products. Thus the review perforce refrains from analyzing
scattering instabilities in unmagnetized plasma. The review
does however consider instabilities occurring in a magnetized
plasma and having mixed electrostatic and electromagnetic
decay-products. These instabilities are implicitly restricted
to those for which neither the wavevector-matching conditions

nor the strength of the nonlinear coupling are appreciably

affected by the magnetitude of the pump-wavevector.
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A general scheme for obtaining laser-driven instabilities
and carrying out stability analyses on them has been put forward
by Jorna39. This scheme has the defect that it characterizes
each particle species by a field damping rate, whereas in fact
a damping rate is a characteristic of a particular wave and not
of a particular species. The Bers-Briggs stability criteria40
are appealed to. However a full three-dimensional stability
analysis4l is not carried out. A series of one-~dimensional
stability analyses is cérried out with the wavevector in the
perpendicular direction ranging over values that are purely
real. These results do not necessarily furnish a one-dimen-
sional cross-section of an unstable pulse.

Jorna's theory derives dispersion relations by relating
electric-field perturbations at selected frequencies to
particle-density perturbations of certain species at other
selected frequencies. It does this in a way which is not
physically motivated, unlike the theories of Kaw, et.al., and
Manheimer, et.al. This derivation of dispersion relations is
not easily generalized to magnetic fields, multiple pumps,
particle beams and so on.

This thesis generates all laser-driven instabilities
from a generalized-coupling-of-modes formalism. This formalism
is first specialized to consider coupled perturbations on a
self-consistent pump-equilibrium, the latter consisting of an
undepleted pump-wave together with its harmonics. The formalism

is then further specialized to an electromagnetic pump in an
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unmagnetized plasma. One or both of these successive special-
izations can be revoked:in the near future; thus the broader

usefulness of the theory is guaranteed.

1.2 Physical Parameters of Problem

1.2.1 EXPECTED SPACETIME DEVELOPMENT OF MACROSCOPIC PLASMA
PARAMETERS

In this section we examine the spatial and temporal
scales of the pellet plasma with a view to justifying the
homogeneous-medium approximation used in this thesis. We
also consider the validity of approximating the spherical
geometry by a planar geometry. The question of physical
departures from the spherical geometry will be considered in
Section 1.2.2.

First consider the temporal scale of the evolution of
the pellet blowoff plasma. This is of the order of the laser

17-19 i< in the

pulse length, which in current experiments
region of 100 picoseconds to a nanosecond. This temporal scale

is much greater than the growth times of the laser-driven

15 watts/cm2

instabilities, which for power-intensities of 10
are in the region of 0.5-5.0 picoseconds. This inequality of
temporal scales is unaltered or strenghened by increasing the
pulse length for a given total energy, since linear instability
growth rates vary as the power intensity or as some fractional

power thereof. However, a stretched-out laser-pulse leads to

problems in the spatial scale-ordering, as will now be described.
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6-9

The fusion-reactor scheme - put forward by Nuckolls,

et.al. differs greatly in its proposed pellet size from experi-

51-53
or

mental spherical-pellet schemes currently operating
under construction. Nevertheless the sizes and temperatures

of the plasma atmospheres produced by laser prepulsing in the
latter are comparable to those postulated in the former.

Plasma atmosphere dimensions are of the order of hundreds of
micrometers, and this provides one natural spatial scale for
characterizing plasma inhomogeneity. In considering instabili-
ties of parametric type, however, an important scale-length is
the length over which the decay-products of the instability
become appreciably dephased from the pump. This length is much
shorter than the overall scale-length of the inhomogeneity and
so becomes the important parameter. For the simplest coupled-
mode instabilities the dephasing causes the growth to saturate,

29,30

as shown by Rosenbluth, et. al. , after a number of e-foldings

given by

1

log(gain) = Znyg( v dk/dz) 1.2-(1)

glzngZ

Here vy, is the homogeneous growth rate, k(z) is the wavevector

mismatch, Vgl, v_., are the group velocities, and z is the

g2
(radial) direction of inhomogeneity. For the calculations in

this thesis the laser is taken to have a wavelength of 1.06 um

15

and a power intensity of 10 watts/cm-z, and the plasma a
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temperature of 1 KeV. The use of (1) then predicts that all
laser-driven instabilities except the Raman will execute
hundreds of e-foldings from the thermal noise which constitutes
their starting amplitudes, and thus will be effectively unchanged
by the spatial inhomogeneity. The Raman instability is stabilized
in its backscatter form but not in its sidescatter form. The
calculations in this thesis based on the homogeneous model thus
retain their usefulness in the great majority of laser-driven
instabilities.

The spatial ordering described here involves the insta-
bility growth rates, and is thus invalidated if relatively low
laser power intensities are maintained for relatively long

periods as required in early versions of laser-fusion proposalsg'lo

11

However later versions of laser-fusion proposals feature

nanosecond overall pulse-length and less emphasis on time-tail-

oring. Also current experimentsl7-19

on pellets certainly have
nanosecond or subnanosecond pulse lengths and pulse-shapes with
no time-tailoring. Thus the calculations in this thesis are
expected to retain physical applicability.

The calculations in this thesis are carried out for
simplicity for the case of a drift-free plasma. The outward
drift-velocity of the actual blowoff plasma is limited to the
ion-sound-speed Cge The propagation velocities appearing in
the pulse-response diagrams of Chapter 4 are the group-velocities

of the decay-products of the corresponding instabilities. For

each instability it is true that at least one decay-product has
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a group-velocity much greater than Cge Thus the form of the
growth of the unstable pulse is not vitally affected by the
relatively low blowoff drift-velocity.

The propriety of approximating a spherical laser-
wavefront of vacuum wavelength 1.06u by a plane wavefront is
discussed in Section 3.2. There, one takes into account both
the increased wavelength in the plasma and the behavior as

described by Ginsburg35 near the critical surface

which forms the classical turning point. The effect of
spherical geometry needs to be considered separately for the
instability decay-products only when these have characteristic
wavelengths longer than that of the laser. This is true for
the filamentation and modulation instabilities. For these the
optimum k-values for fastest growth are greater at higher laser

15

power intensities. For a power intensity of 10 watts/cm2

the fastest-growing filaments are only about 10 microns across
nea£ the critical surface and 20 microns across at the quarter-
critical surface. Comparison with critical-surface radius of
say 600p justifies the use of the planar approximation for the
problem. Again the ordering is invalidated by excessively long,
relatively low-power laser pulses or early sections of time-

10

, . . 9 .
tailored wsulses as proposed in early versions™' of fusion

schemes.
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1.2.2 STABILITY OF SPHERICAL GEOMETRY AGAINST ASYMMETRIC
DEFORMATION

The previous section considered the validity of the
plane-parallel laser-beam, homogeneous-plasma model, as used
to approximate the inhomogeneous spherically-symmetric laser-
pellet plasma.

This section considers the evidence for and against an
even greater departure from the plane-parallel homogeneous
laser-plasma geometry. This is the possibility of asymmetric
deformation of the pellet. This deformation may arise spon-
taneously as a Rayleigh—Taylor instability43 or be driven by
asymmetry in the illuminating beams. Departures from spherical
symmetry tend to be ironed out by the thermal conductivity of
the electrons in the plasma atmosphere44. However thermal

transport by electrons may be inhibited by magnetic fields45,

or by anomalously low conductivity46. Indeed, highly uneven
illumination as of a focal spot on a plane target, creates, via
the thermoelectric effect, self-magnetic fields in the target
plasma which may be of the order of megagauss and which inhibit
transverse thermal transport, thus preserving the temperature
inequality47. Such megagauss fields have been observedzs.

The Rayleigh-Taylor instability gives rise to deforma-
tions which have growth times of the order of a nanosecond for
realistic laser-pellet parameters43. Thus if the incident
illumination is approximately uniform in intensity over the
critical surface and if the laser-pulse length is kept markedly

shorter than in the original fusion scheme put forward by
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Nuckolls, et.al.g, the asymmetry should not interfere with the
implosion. This combination of approximately uniform illumina-
tion and short pulse length is used in many current experiments.
In particular, experiments using four-beam irradiation and nano-
second or sub-nanosecond pulse length have been reported on by
groups at Sandial7, Rochester18 and KMSlg. Thus the assumption
of a spherical geometry without deformations is a reasonable

one for computational purposes. The further simplification to

a plane-parallel homogeneous model is discussed in 1.2.1 and

in 3.2.

1.3 Outline of Study

1.3.1 DEFINITION OF PROBLEM

To gain insight and simplify calculations, the actual
inhomogeneous, spherical, convergently-illuminated plasma is
replaced by a simplified physical model. The simplified phys-
ical model is that of a plane-polarized, undepleted, unattenuated
laser-pump-wave, permeating an unmagnetized homogeneous plasma
and giving rise to various coupled-mode instabilities. The
theoretical problem is to set up a formalism which is physically
appropriate for the straightforward derivation of the instabili-
ties in the simplified model, and yet generalizes without dif-
ficulty to magnetized plasma, depleted pumps, differential

drift velocities and so on.



273

1.3.2 DERIVATION OF THEORY

The general theory is one which describes coherent wave-
wave interaction. It is a generalized-coupling-of-modes form-
alism. It describes a medium by a constitutive relation, namely
a nonlocal conductivity which expresses the electric current
at a space-time point in terms of the electric field at other
points. This conductivity is not only nonlocal, thus leading
to dispersion, but also nonlinear, thus leading to wave-wave
interaction. More precisely, the electric current has a func-
tional Taylor expansion in terms of the electric field. The
kernel of the linear term is the linear conductivity in the
space-time domain, the kernel of the second-order nonlinear
term is the second-order nonlinear conductivity and so on.
One treats the nonlinear conductivity as a small perturbation
on the linear system defined by the linear conductivity together
with Maxwell's equations. The normal modes of that linear
system are coupled by the nonlinearity and their amplitudes
suffer a slow spacetime variation. It is this slow spacetime
variation which is described by the generalized-coupling-of-

modes equations which are the heart of the theory.

1.3.3 AREAS OF APPLICATION

The generalized-coupling-of-modes equations are first
applied to the case of a pump-wave whose spatial attenuation
and temporal depletion are negligible because the other modes

to which it couples are all of sufficiently small amplitude.
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This case describes parametric instabilities during the time

of their exponential growth from thermal noise and before their
nonlinear saturation. Equations are derived which describe the
exponential growth of the small-amplitude pump-coupled modes in
terms of coupling coefficients. These coupling coefficients
are evaluated explicitly for a plasma containing arbitrarily
many particle populations, each characterized by species,
temperature and drift velocity, and each described by a warm
fluid model.

The work is then further specialized to the case in which
the pump-wave is a laser beam and the medium is an unmagnetized
drift-free plasma. The three-dimensional dispersion relations
for laser-driven instabilities are derived systematically and
the corresponding one-dimensional stability analyses are car-

ried out for propagation in the direction of greatest growth.

1.3.4 CONCLUSIONS

The successful application of the generalized-coupling-
of-modes formalism to the particular case of laser-driven in-
stabilities in unmagnetized plasma reinforces our belief that
it is the most physically appropriate and computationally
straightforward formalism to use in attacking more general
problems. These more general problems include strong electro-
static pumps, magnetized plasmas, temporally depleted pump-
waves,and spatially-attenuated pump-waves. Such wider applica-
tions of the generalized-coupling-of-modes formalism are dis-

cussed in greater detail in Chapter 5.
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CHAPTER 2

THE GENERAL THEORY OF COHERENT WAVE-WAVE COUPLING

2.1 Genesis of Theory

By the conductivity of a medium we mean the functional
dependence of electric current on electric field within that
medium. The requirement that the field and the dependent
current obey Maxwell's equations yields an electrodynamic theory
governing electromagnetic fields within that medium. A cur-
rent linearly dependent on electric field gives rise to the
usual theory of linear electromagnetic waves in a conductive
medium. An admixture of quadratic dependence on electric
field allows coherent wave-wave interaction which is described
by the well-known coupling-of-modes theory. An electric cur-
rent expressible as an expansion in arbitrarily high powers of
electric field allows coherent wave-wave interaction of
arbitrarily high order, which is described by the generalized-
coupling-of-modes theory presented in this chapter.

The usual coupling-of-modes theory is briefly sketched in
section 2.4, preparing the reader for the detailed presentation

of the generalized-coupling-of-modes theory in section 2.5.

2.2 Scope of the Theory

In this section we compare and contrast the generalized-
coupling-of-modes theory both with the simple coupling-of-modes
theory of which it is an outgrowth and also with the various

special-purpose theories which have been developed to deal with
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specific instabilities.

The simple coupling-of-modes theoryl does allow gradual
spatio-temporal variation in the envelopes of electromagnetic
waves, and so does allow for spatial attenuation and temporal
depletion of pump-waves due to interactions with other waves
in a plasma. However, the effect of such pump-wave evolution
on the interactions themselves is not included. The simple
coupling-of-modes theory describes 3-wave interactions in
which two waves combine to produce a an—order nonlinear cur-
rent which drives a third wave. However, higher-order wave-
wave interactions are not included.

The generalized-coupling-of-modes theory also allows for
gradual spatio-temporal variation - gradual in a sense to be
defined precisely later - in the envelopes of electromagnetic
waves. Further, the wave-wave interactions are described in
a manner which correctly incorporates the effect of this
variation to all orders. Thus an instability, driven by a
pump, and depleting that pump, may be described taking into
account not only the instantaneous amplitude of the pump but
also its space-time derivatives. In this way the effect of
pump evolution on pump-driven instabilities may be determined.
The generalized-coupling-of-modes theory describes general
(n + 1)-wave interactions in which n waves combine to produce
an nth-order nonlinear current which drives an (n + 1)th wave.

Thus wave-wave interactions of arbitrarily high order are

included.
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Various special-purpose theories have been developed to
deal with specific instabilities. All assume undepleted,
unattenuated pump-waves. These theories fall into three main
groups.

The first group contains theories which treat all orders
of wave-wave interactions correctly, and thus can treat pump-
waves of arbitrarily high intensity. However, they place
severe restrictions on the directions of propagation and polar-
ization of the waves considered. One-dimensional electrostatic
theories2 of pump-driven instability, including oscillating-
frame analyses?’4 fall into this group.

S which construct four-

The second group contains theories
wave interactions from successive three-wave interactions, in
a way which depends crucially on disparities between phase-
velocities of particular interacting waves. This reliance on
phase-velocity disparities between particular interacting waves
limits the number of instabilities that can be considered,
especially in magnetized plasma. Also, interactions are formu-
lated as being between certain waves defined by their electric
fields and certain other waves defined by the density of one
plasma component. This lack of parallelism makes it hard to
deal with additional components, whether these be additional
ion species or additional electron population components with
differing drift velocities and temperatures.

The third group of theories restrict themselves to three-

wave interaction between two pump-waves and a single product-
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wave which therefore grows linearly. This restriction makes
these theories relatively simple and they will not bé discussed
further.

The propagation and polarization vectors of all waves in
G-C-0-M may lie at arbitrary angles to each other and to any
magnetic field in the plasma. The G-C-0-M theory does not
require phase-velocity disparities between particular interact-
ing waves. All waves are defined by their electric fields,
and their interaction is described in terms of nonlinear con-
ductivity of the plasma. The total conductivity of the plasma
is just the sum of the conductivities of the species it con-
tains. Therefore there is within G-C-0-M theory no methodo-
logical difficulty in introducing additional ion species, or
in introducing electron population components with differing
drift velocities and temperatures and treating them as multiple
species. Further, there is no methodological difficulty in
using any model whatever to describe the plasma, whether cold
fluid, warm fluid, or kinetic.

The G-C-O-M equations as presented in this thesis do not
contain terms describing the effect of inhomogeneity of the
medium. Thus these equations could be used to describe in-
stabilities in inhomogeneous plasmas only in the W.K.B. sense.
The computation and employment of terms describing the effect
of medium inhomogeneity on wave-wave interactions lies beyond

the scope of this work.



33

2.3 Present Extent of Utilization

The applications of the generalized-coupling-of-modes
theory which are set out in chapters 3 and 4 do not utilize
the full capability of that theory. To facilitate comparison
with certain other treatments of laser-driven instabilities,
the theory is there applied to an unmagnetized plasma contain-
ing a single unattenuated, undepleted pump-wave with a unique
frequency, wavevector and polarization. The pump-wave is

d

sufficiently strong that instabilities due to 3% order non-

linear currents become important, and instabilities driven by
2nd—order nonlinear currents are modified. Wave-wave inter-
actions of order higher than those caused by 3rd—order non-
linear currents are not considered.

The full utility of the generalized-coupling-of-modes
theory will only be realized in future applications. One such
application is to magnetized plasma, where the richer mode
structure as compared with the unmagnetized case allows a
richer variety of mode-couplings and hence of laser-driven
instabilities. A second such application is to a laser-irra-
diated plasma in which one or more decay-products of laser-
driven instabilities have, without losing their coherence,
grown sufficiently to act as additional pumps. A third such
application is to a plasma irradiated by more than one laser

beam. A fourth such application is to plasma containing

attenuated and depleted pump-waves. We hope to bring the
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generalized-coupling-of-modes theory to bear on these probléms

immediately upon completion of this thesis.

2.4 Simple Coupling-of-Modes via 2nd—0rder Nonlinear Currents

In this section we outline the simplest possible non-
trivial theory of nonlinear coherent wave-wave coupling, namely
the simple coupling-of-modes theory. Only the basic formula-
tion will be given here. This formulation was used by Bers in
deriving a rich body of results to which the interested reader
is referred.

We consider a homogeneous medium in which the dependence
of electric current on electric field is as follows. There is
a part of the current which is lSt-order in electric field and
which arises from the familiar linear conductivity of the med-
ium. The other part of the current is 2nd—order in electric
field, and constitutes the simplest possible type of nonlinear
conductivity in the medium.

We derive equations which strongly resemble the usual
equations describing linear electromagnetic waves in a conduct-
ing medium. Indeed the equations describe how the linear sys-—
tem, defined by Maxwell's equations and the linear part of the
conductivity, is driven by the nonlinear currents which are
external to it. Each electromagnetic wave of that linear
system is driven by nonlinear current due to other electro-
magnetic waves. The physical motivation for writing the coupling-
of-modes equations in this fashion is to relate as many as

possible of the interacting waves back to the well-understood
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normal modes of the linear system.

Let us now perform the mathematical derivation explicitly.
Consider a medium in which the electric current at any one
point in space and time depends not only upon the electric
field at that point, but also upon the values of electric field
at other space-time points. Then the medium is temporally and
spatially dispersive. Further, let the dependence have a lin-
ear part and a quadratic part. Then the medium has a linear
conductivity and also has the simplest non-trivial type of
nonlinear conductivity. The functional dependence of electric
current on electric field then assumes the following general

T, t) = [ derdt' G Gt )E )
+ & Jf[fdf/df/d?"dt”‘@ﬂ (xt 5t "T)
Ew,t)E(R5t")

2.4-(1)
Here the first and second terms on the right-hand-side are the
linear and nonlinear currents respectively. The linear con-
N . . ZLIN
ductivity in the space-time domain, G , has a tensor char-

acter and one of its indices is contracted with that of ﬁ.

The 2nd—order nonlinear conductivity in the space-time domain,
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-
ZNL (2) s
G , has a tensor character and two of its indices are

contracted each with the index of the corresponding E. The
ranges over which the space-time integrations are carried out
must, from causality, be such that the 4-vectors
(X' - x, t' - t), (X" - X, t" - t) lie within the backward
light-cone.

Let the medium be spatially and temporally homogeneous.
Then the linear conductivity depends on its space and time
arguments (§,t,§‘,t') only through their differences. One

may write

G (T, %)

|

==

G (w-x% tLt)

'_'_:;'\(*_\

g; ’/‘-7’) Sgy.
2.4-(2)

Similarly the nonlinear conductivity depends on its space and

time arguments (x t, X ',t',x",t") only through their differences,

SO

= . = N2)
TR R A AN ST ASA S A

B S—:NL('Z-) - y =, Y
- g <——'§/~’t// _% ) -T ) S‘Q>’ 2.4-(3)
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Equation (1) now acquires the form
jﬁ(‘x“ﬁ | = ({ A dv ?L’N(*—é_},w)f(i‘ﬁg ter)

+ 4 (5.

E(7+5/t+7) E(5+S,Tr)

2 e dE e % NL<2>(~§/—T’ § )

2.4-(4)
This expression for the current must be substituted into
Maxwell's equations to obtain the equations governing the
electromagnetic field in the medium. Before doing this, let
us express E(Q,t) in a form which uses our knowledge of linear
media.

The most useful form for E(Q,t) is motivated by treating
the nonlinear conductivity as a small perturbation on that lin-
ear system which is defined by Maxwell's equations and the
linear conductivity. The possible electromagnetic fields in
that system are just linear superpositions of its normal modes.
Each such normal mode has, of course, a space-time dependence
which is just a complex exponential. On introducing nonlinear
conductivity, one again allows the electromagnetic field to have

the form of a superposition of waves. Now, however, not all
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the waves need to be normal modes of the linear system. Further-
more, each wave is allowed to have a space-time dependence in
the form of a complex exponential modulated by a slowly-varying

envelope:

Ext)-C C.(xt)e

-—

ik X - w,T

2.4-(5)
Here one has adopted the convention that the range of the suffix
a includes complex conjugate fields, so that for every value a'
>%

in the range there exists another value a" with ﬁa' = Ea",

> >k *
ka| = -ka", War T W

The next step is to insert the form (5) for the electric
field into the expression (4) for the electric current. The
evaluation of the first term on the right-hand-side of (4) is
carried out using to advantage the slowness of the variation of
the electric field envelopes. The values of the envelopes
Ea(§ + %, t + 1) are approximated by their lSt—order Taylor
expansions about the point (§,t) before the integration is
carried out. The evaluation of the second term on the right-
hand-side of (4) is carried out using to advantage the fact
that this second term is to be thoughlof as the perturbation
which induces the slow envelope variations. Thus these slow

variations need not be taken into account in evaluating the

perturbation itself. The values of the envelopes



‘39

> > > > > > . ;
E(x+ &', t+1"), E(x+ ¢&", t + 1t") are approximated by their
values at the point (§,t) before the integration is carried
out. The evaluation yields an expression for the electric
current in terms of the electric field envelopes, the space-
time derivatives of those envelopes, and the conductivities in
the wavevector-frequency domain (see Appendix Al):
—_— , _.sé___ ) —_
T(xt) = Tt G Ww)E(RT)
X/ - e g G.}WOL) a X}
a.
D@*Lw ?? = UN B—Eﬁ
— Y ”‘:? ‘F‘l ;X;L ==
Sk Ix 2w ot
_ _

4 2.’722 e(( L+kc)-x—i(w;,+wc)t
Lo

—_—D
—

G "I, k., wc)a(?ﬁ t)E (7t )}

Here, as before, the first and second terms on the right-hand-

2.4-(6)

side are the linear and nonlinear currents respectively. The

same symbol has been used for conductivity in the wavevector-

frequency domain as for conductivity in the space-time domain;

this will not cause confusion. As before, each linear conducti-
>

vity; ELIN (Ea,wa), has a tensor character and one of its

indices is contracted with that of Ea‘ This holds true also

in the derivative terms, where in addition the wavevector-

derivative B/BE is contracted with the space-derivative 8/8§.
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As before, each 2nd—order nonlinear conductivity, GNL(z)

(fb,wb,ﬁc,wc) has a tensor character and two of its indices
are contracted with those of Eb and Ec respectively.

The forms (5) and (6) for the electric field and electric
current are now substituted into Maxwell's equations to obtain
the equations governing the behavior of the electric-field-

envelopes in the medium. It is convenient to use Maxwell's

equations in the form from which B has been eliminated:

33._23.2 Eil Y| 7w
e woaw tan BT = 0

2.4-(7)
After substitution, the slow space-time variations of the
field envelopes are retained to first order, except in terms
involving the nonlinear current where they are neglected.
Bringing the nonlinear current terms to the right-hand-side,
(7) assumes the following form, which describes the behavior

of the electric-field-envelopes in the medium (see Appendix Al):

EiFLQl~X-‘LuJ1"{T=i(JN k: yj )(E? <X"t)

LR R
ok % ow ot -
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2.4-(8)

Here the linear dispersion tensor

T (6 o) kb ke oG )

2.4-(9)
is contracted with Ea wherever it appears on the left-hand-
side of (8). The wavevector-derivative 8/8K is contracted with

the space-derivative 3/8%.

Assume that the effect of the interactions is small
enough so that the modes considered are still separable in
the wavevector-frequency domain. Multiplication by the rele-
vant exponentials then isolates from (10) the following set of

equations, each equation describing how a particular mode-

> . .
envelope E_ is driven;

. :;L ., L OE.
(K)EL ST 5w ot
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which' drive E.
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Any mode appearing in (5) has a wavevector and frequency
which lie at or near the sum-wavevector and sum-frequency of
any pair of modes which drive it. This ensures that the sum-
mation on the right-hand-side of (10) includes only those
pairs (ﬁb, Eé) of modes such that the wavevector and frequency

mismatches

g?f—?—. *kq—i— I((, 4—!(,_
ow

I

\
&
1
&
+
&

2.4-(11)

are small.

The family of equations (10) are the coupling-of-modes
equations. They describe the behavior of the electric field
in the nonlinear medium specified by (1). They do this, not
directly in terms of E(g,t), but rather in terms of a family
of wave-envelopes Ea(g,t). The waves which these envelopes
modulate are chosen having regard to the physical problem to
be solved and the properties of the medium in the absence of

nonlinearity. The coupling-of-modes equations (10) are a
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family of coupled differential equations. Each such equation
describes the space-time variation of one wave-envelope brought

about by the nonlinear coupling to the other waves.

2.5 Generalized Coupling-of-Modes via Arbitrarily-High-Order

Nonlinear Currents

In this section we outline a generalization of the simple
coupling-of-modes theory set out in the previous section. The
generalized-coupling-of-modes theory is again a theory of non-
linear coherent wave-wave coupling. The physical motivation
for setting up the theory and the line of argument used to
arrive at the final mode-coupling equations are almost the
same as in the previous section. This will enable us to pre-
sent the formulation fairly concisely.

We consider a homogeneous medium in which the dependence
of electric current on electric field is as follows. There is
a part of the current which is lSt—order in electric field and
which arises from the familiar linear conductivity of the
medium. There are also other parts of the current which are
respectively 2nd—order in electric field, 3rd—order in
electric field, and so on. Thus the nonlinear conductivity
of the medium has a well-behaved expansion in powers of the
electric field.

Again we derive equations which describe how the linear
system, defined by Maxwell's equations and the linear part of

the conductivity, is driven by the nonlinear currents which
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are external to it. Again the physical motivation for writing
the mode-coupling equations in this fashion is to relate as
many as possible of the interacting waves back to the well-
understood normal modes of the linear system.

The explicit mathematical derivation follows. Again
consider a medium with a non-local dependence of electric
current on electric field, a dependence which must therefore
be expressed by space-time integrals. Let the electric current
have a well-behaved expansion in arbitrarily high integral
powers of the electric field. Then the medium sustains a
linear current, a 2nd—order nonlinear current, a 3rd—order
nonlinear current, and so on, given by the successive terms in

(cf 2.4-(1)):
T t) -  derdt GE R AT
+ 1 ] dedraxdt g™ UG TR U )

2 (] dy et
(‘;‘ "k t vt vtz )
E (% )€ (X 1)E (1)

2.5-(1)
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The conductivities in the space-time domain, ELIN, ENL(Z),
3
+
=NL (3)
G and so on, have a tensor character. Each of these

conductivities has all but one of its indices contracted
with the succeeding E-vectors.
Further, let the medium be spatially and temporally homo-

geneous. Then (1) acquires the form (cf 2.4-(4)):

2,1) = (I8 & V(5 9 EGS, Ter)
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Before substituting this rather general form for the
electric current into Maxwell's equations, one uses one's
physical knowledge of the characteristics of the medium and of
the interactions to be studied, in order to restrict the form
of the electric field. It is assumed that the electrodynamics
of the linear system, defined by Maxwell's equations and the
linear part of the conductivity, are already fairly well
understood in terms of (possibly weakly damped or growing)
sinusoidal waves. The nonlinear conductivity perturbs this
linear system by allowing interaction between waves with dif-
ferent wavevectors and frequencies, provided these satisfy one

of the approximate sum rules:

(Faw) = (kow)+ (K, we)
or (Fowa) = (ke wi)t (Ec/wc)+ (E(,wcl)

OY R O PSR S
2.5-(3)

In a physically interesting problem, the waves in question will
comprise specific normal modes of the linear system, possibly
some pump-wave or pump-waves, and possibly some harmonics or
sidebands of these. The interactions between all these waves

will cause each sinusoid to be modulated by a slowly-varying
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wave-envelope, so that the total electric field assumes the

form N

Ej(y‘/_t) :% Ea(.;z/_t) e}ky)(wlﬁwoj'

2.5-(4)

By saying that a particular Ea(g,t) is slowly-varying, we
mean that its space-time derivatives can be neglected in the
final mode-coupling equations beyond some finite order. Since
the space-time variations of the wave-envelopes are not known
until the mode-coupling e ations are solved, the assumption
that these variations are slow can only be justified a posteri-
ori. The space-time derivatives will be retained to all orders,
at least formally, for the sake of flexibility. This is done
by retaining all orders in the Taylor expansion of E;(;-+ E,t +7)
about (Q}t). Carrying out the space-time integrations in (2)
then yields (see Appendix A2) an expression for the electric
current, in terms of electric-field wave-envelopes and their
derivatives in the space-time domain, and also of conductivities
and their derivatives in the wavevector-frequency domain. This
expression for the electric current can be written in various
ways. Here we present a form for the current similar to
2.4-( ), augmented by enough additional terms to indicate how

the expansion proceeds:
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Here the single summation on the right-hand-side is recognizable

as the linear current of 2.4-(6), augmented by higher space-
time derivatives of the wave-envelopes and corresponding higher
wavevector-frequency derivatives of the linear conductivity.
The double summation on the right-hand-side is recognizable
as the an—order nonlinear current of 2.4-(6), augmented by
space-time derivatives of the wave-envelopes and corresponding
wavevector-frequency derivatives of the 2nd—order nonlinear
conductivity. The triple summation on the right-hand-side is
recognizable as the 3rd-order nonlinear current on comparing
its structure with the structure of the previous terms. The
tensor and vector indices in the above are contracted as follows.
As before, the conductivities are contracted with the corres-
ponding electric-field wave-envelopes and the wavevector-
derivatives are contracted with the corresponding space-deriva-
tives.

The expression (4) for the electric field and the expres-
sion (5) for the electric current are substituted into Maxwell's

wave-equation:
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The result is an equation governing the behavior of the elec-
tric-field wave-envelopes in the nonlinear medium. This will
be written in a form similar to 2.4-(8), augmented by enough

additional terms to indicate how the expansion proceeds:
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SLIN
Here L

is the linear dispersion tensor as displayed in
2.4-(9).

Equation (6) is an expansion in orders of nonlinear con-
ductivity, within each term of which lies an expansion in or-
ders of the slow space-time derivatives. As discussed previous-
ly, the ordering and truncation of the combined expansion must
be carried out with regard to the physical magnitudes of the
terms in question , some of which may only be known a posteriori.

Again assume that the effect of the interaction is small
enough so that the modes considered are still separable in the
wavevector-frequency domain. Multiplication by the relevant
exponentials then separates from (6) the following set of equa-

tions, each equation describing how a particular mode-envelope

>, .
Ea is driven;
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2.5-(7)

Since each specific pair of modes appears twice in the double
summation in (6), the factor 1/2! does not occur in the sum over

specific pairs in (7). Similarly, since each specific triplet
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of waves appears 3! times in the triple summation in (6), the
factor 1/3! does not occur in the sum over specific triplets of
waves in (7). The exponential factors immediately following the
summation signs are slowly-varying functions of space and time
since the wavevectors and frequencies in the exponent satisfy

(3). As in (6), and also in 2.4-(8), 2.4-(10), the l;near dis-

3 >
persion tensor fLIN and the nonlinear conductivities ENL(z),

>
+
3NL (3) > ~
G ; -.., are contracted with the E-vectors, and the wave-

vector-derivatives B/Bﬁ are contracted with the space-deriva-
tives 3/32. The expansions in orders of the wavevector-
frequency derivatives and space-time derivatives can be written
in closed form using exponentials of differential operators.
This results in a form of equation more concise and exact than
(7) but less physically transparent. This form has therefore
been relegated to Appendix A2.

The set of equations (7) are the mode-coupling equations.
They describe the space-time variation, in amplitude, phase,
and polarization, of each wave-envelope Ea(g,t) due to nonlinear
currents excited by other waves. They form a set of coupled
nonlinear differential equations. The left-hand-side of each
equation of the set relates the corresponding wave back to the
linear system, defined by the linear conductivity together with
Maxwell's equations. This enables one to classify known un-
stable interactions and predict new unstable interactions on

the basis of pre-existing knowledge of the normal modes of the
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linear medium. This is an aid to understanding the physical
consequences of the growth of such instabilities and hence
predicting mechanisms of saturation.

One does not attempt to retain all terms in each of the
mode-coupling equations. Guided by the specific physical prob-
lem to be solved, one decides for each Ea where to truncate the
corresponding equation (7). Note that in the simple coupling-
of-modes theory the mode-coupling equations 2.4-(10) are trun-
cated after the 2nd—order nonlinear conductivity and the linear
and 2nd—order terms are then truncated after the ISt and
zeroth order of space-time derivatives respectively. After
truncation, the resulting set of coupled differential equations
yields a simultaneous solution for all the Ea(§,t) as functions
of space and time. This solution is used to estimate the
magnitude of the discarded terms, thus providing an a posteri-
ori check on the validity of the procedure. If necessary, the
truncation may be revised to retain additional terms, and the
procedure repeated. It is assumed that in this manner one
arrives at a set of truncated mode-coupling equations which
adequately describe the physical problem while retaining only
one or two orders of the space-~time derivatives of the Ea(§,t).
This is what is meant physically by saying that the ﬁa(§,t)

are assumed to be slowly-varying functions of space and time.



5¢

2.6 Linear Perturbations on an Undepleted, Unattenuated Pump-

Wave

We now apply the generalized-coupling-of-modes theory of
the previous section to the following physical problem. Consi-
der a nonlinear medium supporting a pump-wave in self-consis-
tent equilibrium with its own harmonics. Then small perturba-
tions introduced, for example by thermal noise, will be
coupled together if they are separated by multiples of the
pump frequency and wavevector. Should this coupling be un-
stable, the perturbations will grow in a fashion which is approx-
imately exponential, until such time as the cumulative effect
of their growth in depleting the pump-wave becomes appreciable.
In this section we derive equations which describe the phase of
approximately exponential growth.

First consider the self-consistent equilibrium of the pump
in the non-linear medium. In such a medium, the field at the
fundamental pump wavevector and frequency, ﬁl(ﬁl,wl), cannot
exist alone. Rather, the fundamental excites an-order non-
linear currents at the an harmonic (ZEl,Zwl), 3rd—order

d

nonlinear currents at the 3r harmonic (3§1’3wl)’ and so on.

The nonlinear currents in turn excite electric fields and thus

the pump field comprises a set of harmonics:

- = ink X inw T complex
Erm’b(?, t) = {E/n e T COnJquT&
n= |

2.6-(1)
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The relations between these harmonics are investigated using the
generalized-coupling-of-modes theory as follows. The set of
interacting waves ﬁé(g}t) in 2.5-(4) is chosen to be just the
set ﬁh of pump harmonics. Then each harmonic ﬁh is related to
the others by the corresponding mode-coupling equation. This
equation is obtained from the general mode-coupling equation

2.5-(7) by setting

(:E;‘/ h/*) = ( V\Lf, , V\bd,)

2.6-(2)
on the left-hand-side and
—_— — N . R R
gL/ t-C)E_alj - Eh/) EH’I)E"‘)”/)‘

(kew), (kowe), (ki wa), -
= (n’k,)n’w,) }(n"k,/ r)”w,), (n"’k,/w”’wj).“.

2.6-(3)

on the right-hand-side. Here n', n", n"', ... are integers
] 1"

appropriately chosen so that the term in En'ﬁn" has n=n + n ,



the term in En'gn"ﬁn"' has n=n' +n" +n "', and so on. By

hypothesis the pump wave including its harmonics is in equili-

¥ ¥

brium, so En is not a function of (§,t) and the space and time
derivatives in 2.5-(7) can be set to zero. The complex con-

jugates in 2.6-(l) may be included by setting

2.6-(4)

We assume that the pump-wave and its harmonics are undamped so
that (ﬁl,wl) is real. The mode-coupling equation relating En to

the other harmonics then has the following form, illustrated

for convenience by the examples n = 1, n = 2;
::3(J~ — )
(k w)E = =W

1 “Z’(z:? 20,E ~w|ELE
+§ (Zk Sw, 2k, - 1w)li€:;+““]

+£%€NL2)(I< v k,,\/\/,,’k' 'W,)E,E, A

—_—
—

+ (7;’ ") ( '<,, W, )’Zk,ﬂw,;’)_k =, 'E‘CA:,{—,]{_M
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“(2, ) E, = —Lip,

[
[7‘. NL@(k W, 3 w,)fa

/

M R,k W) EET ]
+(gwt(3)( 2, k,/w,/-_/;;w,)'fljj c* +]

2.6-(6)

Assuming that the self-consistent equilibrium of the pump-
wave with all its harmonics has already been set up, let us try
to follow the early-time history of a small disturbance by
treating it as a linear perturbation.

Even in the linear approximation, because of the coupling
due to the pump, one must consider a set of such small perturba-
tions, at wavevectors and frequencies separated by multiples of

the pump wavevector and frequency:

E ctoiden (X t) =
VE <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>