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ABSTRACT

A general theory of coherent wave-wave coupling is first
set up. This is then used to furnish a systematic description
of laser-driven plasma instabilities. This description is
physically motivated, and generalizes in a straightforward
manner to magnetized plasmas, depleted pump-waves, plasmas
containing beams, and so on.

First a generalized-coupling-of-modes formalism is con-
structed in terms of the nonlinear conductivity of a medium.
This formalism accommodates arbitrarily many waves, with arbi-
trary propagation and polarization vectors. Generalized-
coupling-of-modes equations are derived, describing how each
wave-envelope varies in space and time due to its being driven
by the other waves to which it is coupled by the nonlinear con-
ductivity. The formalism can describe pump-driven instabili-
ties including the effects of pump depletion, attenuation and
evolution.

The formalism is then specialized to deal with linear
perturbations coupled together by an undepleted, unattenuated
pump-wave. The self-consistent harmonic structure, which the
pump-wave in a nonlinear medium must have, is computed and
included. The coupling coefficients are worked out for a
plasma with arbitrarily many species each described by a warm-
fluid model.

The work is then further specialized to recover systemat-
ically those laser-driven instabilities occurring in unmagnetized
plasma. The effects of third-order conductivity are that the
pump-driven instabilities of simple parametric type become
modified, and that additional instabilities appear. Three-
dimensional dispersion relations are derived for the various
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instabilities, and one-dimensional cross-sections of the time-
asymptotic unstable pulse-responses are found.

This description of laser-driven instabilities requires
no assumptions of frequency disparity or phase-velocity dis-
parity between decay products. The theory therefore general-
izes to both weakly and strongly magnetized plasmas. Also
the coupling coefficients are additive over particle popula-
tions, so that there is no conceptual difficulty in generaliz-
ing to a plasma containing several beams or temperature
components.

Thesis Supervisor: Professor Abraham Bers
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Study

1.1.1 IMPORTANCE OF ANALYTIC STUDIES OF LASER-DRIVEN
INSTABILITIES

A major difficulty in the energetics of laser-pellet

fusion is the competitionl,2 between anomalous scattering2-4

5-8
and anomalous absorption5. The outcome of this competition

in a typical reactor scheme 9-11 cannot be predicted unambigu-

ously from experimental observations12-19 made to date.

Anomalous scattering and anomalous absorption are due to pump-

driven instabilities, the laser light constituting the pump

wave. Computer simulations20-23 of these instabilities per-

formed on present-day machines perforce omit vital aspects of

the physical problem. Therefore they must be complemented by

analytic studies of laser-driven reflective and absorptive

instabilities.

To make a start on understanding laser-pellet interac-

tion, one neglects asymmetries in illumination, heating, and

24-25
blowoff, together with their associated magnetic fields

One further replaces the resulting spherically-symmetric pellet

by a plane-parallel model; an unmagnetised plasma with a density-

gradient along z is irradiated by a laser-beam propagating

along z and polarized along x.

One-dimensional simulation17 ,1 8 ,2 0 ,21 of the above model

depicts growth and saturation of backscatter instabilities.



Separate two-dimensional numerical simulations in perpendicular

22 23
planes depict the development of sidescatter and absorption .

To study the simultaneous nonlinear development of all these

instabilities would require a three-dimensional simulation.

However a full three-dimensional simulation with a useful num-

ber of particles is beyond the capability of present day com-

puters. Analytic studies of the three-dimensional problem are

therefore vital, even if initially confined to the linear phase

of unstable growth.

At realistic laser power intensities the linear growth

rates of all the important laser-driven instabilities are com-

26
parable2. Thus a correct analysis of the nonlinear saturation

of these instabilities must treat them all on the same footing.

This requires that the problem of linear growth and unstable

propagation be first solved in three dimensions for all these

instabilities individually. This can be done piecemeal, as

discussed in Section 1.1.2, or systematically, as discussed in

Section 1.1.3 and as carried out in this thesis.

At laser power intensities of 1015-1016 watts/cm 2

simple parametric instabilities become modified6, 27 , thus their

growth rates are reduced. Further, other instabilities
6 ,7,2 8

which are intrinsically higher-order in the pump-field become

important. These effects account for the above-mentioned con-

vergence of the growth rates of the important instabilities.

These effects can be described systematically in terms of the

third-order conductivity of the plasma, and are so described

in this thesis.



At realistic laser power intensities the linear growth

rates are high enough that the effect of plasma inhomogeneity
29 ,30

may be neglected. This point is further discussed in Section

1.2.1. The plasma is driven strongly enough by the laser pump-

wave that only coherent interaction need be considered. Thus

we are motivated to set up a general theory of coherent wave-

wave interaction via arbitrarily high-order conductivity in a

homogeneous medium. We are further motivated to apply this

theory to linear laser-driven instabilities in the plasma sur-

rounding the pellet. This general theory and its application

to laser-driven instabilities form the main part of this thesis.

1.1.2 PREVIOUS PIECEWISE TREATMENTS OF LASER-DRIVEN
INSTABILITIES

Theoretical developments in the field of linear laser-

driven instabilities may be divided historically into two phases.

The first phase lasted from the middle sixties until recently

and comprised piecewise treatments of specific instabilities.

This first phase is outlined in this section. The second phase

is current and comprises attempts to construct general schemes

for dealing with all laser-driven instabilities. This second

phase will be outlined in 1.1.3.

In 1962, Askar-yan31 investigated filamentation in

plasmas from a macroscopic viewpoint. In 1963, Dawson and

Oberman 32 showed that coherent, nonthermal ion fluctuations

could greatly enhance plasma resistivity at frequencies

33
around w . In 1964, Dubois and Gilinsky showed that this



could also happen at frequencies around 2wp, and interpreted

their own result as parametric downconversion from the applied

field to two electron-plasma waves. In 1965, Dubois and Goldman5

described "anomalous" absorption at wP in terms of parametric

downconversion into an electron-plasma wave and an ion-acoustic

wave. Also in 1965 Silin6 used the fluid equations for electrons

and ions to derive not only the aforesaid "parametric" or "decay"

instability but also the purely-growing "nonoscillatory" insta-

bility. Still in 1965 Silin and Gorbunov4 treated stimulated

Raman scattering in plasma. In 1966 Comisar 2, and a little

later Montgomery and Alexeff 3 , derived stimulated Raman scatter-

ing from a simpler coupled-mode treatment. The "nonoscillatory"

instability was rederived from the fluid model via coupled dif-

ferential equations by Nishikawa in 1968. This was extended

34
to Vlasov plasmas by Sanmartin in 1970.

1.1.3 CURRENT EFFORTS TOWARDS A UNIFIED THEORY OF LASER-DRIVEN
INSTABILITIES

Current theoretical developments in the field of linear

laser-driven instabilities are directed towards general schemes

which include all such instabilities. We outline five such

schemes including the one set forth in this thesis.

The first general theory is that of Drake, Kaw, et.al.35

These workers describe all instabilities in terms of the suc-

cessive operation of two physical mechanisms. The first phys-

ical mechanism is that high-frequency oscillations beat with

the pump-field to produce a low-frequency radiation-pressure



pattern which forces a bunching of the electrons. The second

mechanism is that the low-frequency electron-bunches quiver in

the pump field to form a high-frequency current which regenerates

the high-frequency oscillations. This theory has the virtues

of providing a concrete and conceptually simple physical expla-

nation for the instabilities that it covers, and of reducing

the complexity of the calculations. This reduction in complex-

ity is accomplished by considering only the first harmonic of

the pump wave, and considering only those instabilities with a

frequency disparity (more strictly, a phase-velocity disparity)

between the decay products. The theory requires modification31

in order to deal with the two-plasmon instability. It is not

immediately clear how to extend the theory to strongly-magnetized

and multiply-irradiated plasmas where the above reduction in

complexity cannot occur.

37
The second general theory is that of Ott and Manheimer

This resembles that of Kaw, et.al. in that the physical mechan-

isms are again radiation pressure leading to low-frequency

electron bunching, and quivering of the bunched electrons

leading to a high-frequency current. It also resembles that of

Kaw, et.al. in that the physical explanations and the mathemat-

ical calculations are simple and straightforward. Again the

theory needs modification to cover the two-plasmon instability.

The theory extends to plasma which is weakly magnetized in the

sense that the electron and ion cyclotron-frequencies lie well

below the high and low perturbation-frequencies, respectively.
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Again the feasibility broader extensions iS not immediately c/ear.

A review of the interaction of high-frequency electro-

38
magnetic wave with plasma has been carried out by Silin .

This pump wave is allowed to be strong in the sense that the

electron quivering velocity it induces can be much greater than

the thermal velocity. Accordingly the nonlinear dispersion

relation for perturbations coupled by the pump-wave is worked

out exactly to all orders in the pump-field. In these respects

the review is more complete than this thesis. However the

approximation is made that the wavevector of the pump is zero.

Consider an instability occurring in unmagnetized plasma and

having an electromagnetic decay-product. For such an instab-

ility, neglecting the k-vector of the electromagnetic pump would

completely alter the three-dimensional kinematics and would

completely alter the three-dimensional dependence of the

growth rate upon the directions of propagation of the decay-

products. Thus the review perforce refrains from analyzing

scattering instabilities in unmagnetized plasma. The review

does however consider instabilities occurring in a magnetized

plasma and having mixed electrostatic and electromagnetic

decay-products. These instabilities are implicitly restricted

to those for which neither the wavevector-matching conditions

nor the strength of the nonlinear coupling are appreciably

affected by the magnetitude of the pump-wavevector.



A general scheme for obtaining laser-driven instabilities

and carrying out stability analyses on them has been put forward

by Jorna 39. This scheme has the defect that it characterizes

each particle species by a field damping rate, whereas in fact

a damping rate is a characteristic of a particular wave and not

of a particular species. The Bers-Briggs stability criteria 40

are appealed to. However a full three-dimensional stability

41
analysis is not carried out. A series of one-dimensional

stability analyses is carried out with the wavevector in the

perpendicular direction ranging over values that are purely

real. These results do not necessarily furnish a one-dimen-

sional cross-section of an unstable pulse.

Jorna's theory derives dispersion relations by relating

electric-field perturbations at selected frequencies to

particle-density perturbations of certain species at other

selected frequencies. It does this in a way which is not

physically motivated, unlike the theories of Kaw, et.al., and

Manheimer, et.al. This derivation of dispersion relations is

not easily generalized to magnetic fields, multiple pumps,

particle beams and so on.

This thesis generates all laser-driven instabilities

from a generalized-coupling-of-modes formalism. This formalism

is first specialized to consider coupled perturbations on a

self-consistent pump-equilibrium, the latter consisting of an

undepleted pump-wave together with its harmonics. The formalism

is then further specialized to an electromagnetic pump in an
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unmagnetized plasma. One or both of these successive special-

izations can be revoked in the near future; thus the broader

usefulness of the theory is guaranteed.

1.2 Physical Parameters of Problem

1.2.1 EXPECTED SPACETIME DEVELOPMENT OF MACROSCOPIC PLASMA
PARAMETERS

In this section we examine the spatial and temporal

scales of the pellet plasma with a view to justifying the

homogeneous-medium approximation used in this thesis. We

also consider the validity of approximating the spherical

geometry by a planar geometry. The question of physical

departures from the spherical geometry will be considered in

Section 1.2.2.

First consider the temporal scale of the evolution of

the pellet blowoff plasma. This is of the order of the laser

pulse length, which in current experiments 1 7 1 9 is in the

region of 100 picoseconds to a nanosecond. This temporal scale

is much greater than the growth times of the laser-driven

instabilities, which for power-intensities of 1015 watts/cm2

are in the region of 0.5-5.0 picoseconds. This inequality of

temporal scales is unaltered or strenghened by increasing the

pulse length for a given total energy, since linear instability

growth rates vary as the power intensity or as some fractional

power thereof. However, a stretched-out laser-pulse leads to

problems in the spatial scale-ordering, as will now be described.



The fusion-reactor scheme6-9 put forward by Nuckolls,

et.al. differs greatly in its proposed pellet size from experi-

51-53
mental spherical-pellet schemes currently operating or

under construction. Nevertheless the sizes and temperatures

of the plasma atmospheres produced by laser prepulsing in the

latter are comparable to those postulated in the former.

Plasma atmosphere dimensions are of the order of hundreds of

micrometers, and this provides one natural spatial scale for

characterizing plasma inhomogeneity. In considering instabili-

ties of parametric type, however, an important scale-length is

the length over which the decay-products of the instability

become appreciably dephased from the pump. This length is much

shorter than the overall scale-length of the inhomogeneity and

so becomes the important parameter. For the simplest coupled-

mode instabilities the dephasing causes the growth to saturate,

as shown by Rosenbluth, et. al. 2 9 ,30, after a number of e-foldings

given by

log(gain) = 2iry2 ( vglz vg2z dk/dz) 1 1.2-(l)

Here y is the homogeneous growth rate, k(z) is the wavevector

mismatch, v gl vg2 are the group velocities, and z is the

(radial) direction of inhomogeneity. For the calculations in

this thesis the laser is taken to have a wavelength of 1.06 pm

and a power intensity of 1015 watts/cm- 2, and the plasma a



temperature of 1 KeV. The use of (1) then predicts that all

laser-driven instabilities except the Raman will execute

hundreds of e-foldings from the thermal noise which constitutes

their starting amplitudes, and thus will be effectively unchanged

by the spatial inhomogeneity. The Raman instability is stabilized

in its backscatter form but not in its sidescatter form. The

calculations in this thesis based on the homogeneous model thus

retain their usefulness in the great majority of laser-driven

instabilities.

The spatial ordering described here involves the insta-

bility growth rates, and is thus invalidated if relatively low

laser power intensities are maintained for relatively long

periods as required in early versions of laser-fusion proposals 9' 10

However later versions11 of laser-fusion proposals feature

nanosecond overall pulse-length and less emphasis on time-tail-

oring. Also current experiments on pellets certainly have

nanosecond or subnanosecond pulse lengths and pulse-shapes with

no time-tailoring. Thus the calculations in this thesis are

expected to retain physical applicability.

The calculations in this thesis are carried out for

simplicity for the case of a drift-free plasma. The outward

drift-velocity of the actual blowoff plasma is limited to the

ion-sound-speed cs. The propagation velocities appearing in

the pulse-response diagrams of Chapter 4 are the group-velocities

of the decay-products of the corresponding instabilities. For

each instability it is true that at least one decay-product has
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a group-velocity much greater than cs. Thus the form of the

growth of the unstable pulse is not vitally affected by the

relatively low blowoff drift-velocity.

The propriety of approximating a spherical laser-

wavefront of vacuum wavelength 1.06P by a plane wavefront is

discussed in Section 3.2. There, one takes into account both

the increased wavelength in the plasma and the behavior as

described by Ginsburg35 near the critical surface

wp = w

which forms the classical turning point. The effect of

spherical geometry needs to be considered separately for the

instability decay-products only when these have characteristic

wavelengths longer than that of the laser. This is true for

the filamentation and modulation instabilities. For these the

optimum k-values for fastest growth are greater at higher laser

power intensities. For a power intensity of 1015 watts/cm2

the fastest-growing filaments are only about 10 microns across

near the critical surface and 20 microns across at the quarter-

critical surface. Comparison with critical-surface radius of

say 600p justifies the use of the planar approximation for the

problem. Again the ordering is invalidated by excessively long,

relatively low-power laser pulses or early sections of time-

tailored nulses as proposed in early versions 910 of fusion

schemes.
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1.2.2 STABILITY OF SPHERICAL GEOMETRY AGAINST ASYMMETRIC
DEFORMATION

The previous section considered the validity of the

plane-parallel laser-beam, homogeneous-plasma model, as used

to approximate the inhomogeneous spherically-symmetric laser-

pellet plasma.

This section considers the evidence for and against an

even greater departure from the plane-parallel homogeneous

laser-plasma geometry. This is the possibility of asymmetric

deformation of the pellet. This deformation may arise spon-

taneously as a Rayleigh-Taylor instability43 or be driven by

asymmetry in the illuminating beams. Departures from spherical

symmetry tend to be ironed out by the thermal conductivity of

the electrons in the plasma atmosphere 44. However thermal

transport by electrons may be inhibited by magnetic fields45

46
or by anomalously low conductivity4. Indeed, highly uneven

illumination as of a focal spot on a plane target, creates, via

the thermoelectric effect, self-magnetic fields in the target

plasma which may be of the order of megagauss and which inhibit

transverse thermal transport, thus preserving the temperature

47 25
inequality . Such megagauss fields have been observed

The Rayleigh-Taylor instability gives rise to deforma-

tions which have growth times of the order of a nanosecond for

realistic laser-pellet parameters43 . Thus if the incident

illumination is approximately uniform in intensity over the

critical surface and if the laser-pulse length is kept markedly

shorter than in the original fusion scheme put forward by
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Nuckolls, et.al.9, the asymmetry should not interfere with the

implosion. This combination of approximately uniform illumina-

tion and short pulse length is used in many current experiments.

In particular, experiments using four-beam irradiation and nano-

second or sub-nanosecond pulse length have been reported on by

17 18 19
groups at Sandia , Rochester and KMS . Thus the assumption

of a spherical geometry without deformations is a reasonable

one for computational purposes. The further simplification to

a plane-parallel homogeneous model is discussed in 1.2.1 and

in 3.2.

1.3 Outline of Study

1.3.1 DEFINITION OF PROBLEM

To gain insight and simplify calculations, the actual

inhomogeneous, spherical, convergently-illuminated plasma is

replaced by a simplified physical model. The simplified phys-

ical model is that of a plane-polarized, undepleted, unattenuated

laser-pump-wave, permeating an unmagnetized homogeneous plasma

and giving rise to various coupled-mode instabilities. The

theoretical problem is to set up a formalism which is physically

appropriate for the straightforward derivation of the instabili-

ties in the simplified model, and yet generalizes without dif-

ficulty to magnetized plasma, depleted pumps, differential

drift velocities and so on.
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1.3.2 DERIVATION OF THEORY

The general theory is one which describes coherent wave-

wave interaction. It is a generalized-coupling-of-modes form-

alism. It describes a medium by a constitutive relation, namely

a nonlocal conductivity which expresses the electric current

at a space-time point in terms of the electric field at other

points. This conductivity is not only nonlocal, thus leading

to dispersion, but also nonlinear, thus leading to wave-wave

interaction. More precisely, the electric current has a func-

tional Taylor expansion in terms of the electric field. The

kernel of the linear term is the linear conductivity in the

space-time domain, the kernel of the second-order nonlinear

term is the second-order nonlinear conductivity and so on.

One treats the nonlinear conductivity as a small perturbation

on the linear system defined by the linear conductivity together

with Maxwell's equations. The normal modes of that linear

system are coupled by the nonlinearity and their amplitudes

suffer a slow spacetime variation. It is this slow spacetime

variation which is described by the generalized-coupling-of-

modes equations which are the heart of the theory.

1.3.3 AREAS OF APPLICATION

The generalized-coupling-of-modes equations are first

applied to the case of a pump-wave whose spatial attenuation

and temporal depletion are negligible because the other modes

to which it couples are all of sufficiently small amplitude.



This case describes parametric instabilities during the time

of their exponential growth from thermal noise and before their

nonlinear saturation. Equations are derived which describe the

exponential growth of the small-amplitude pump-coupled modes in

terms of coupling coefficients. These coupling coefficients

are evaluated explicitly for a plasma containing arbitrarily

many particle populations, each characterized by species,

temperature and drift velocity, and each described by a warm

fluid model.

The work is then further specialized to the case in which

the pump-wave is a laser beam and the medium is an unmagnetized

drift-free plasma. The three-dimensional dispersion relations

for laser-driven instabilities are derived systematically and

the corresponding one-dimensional stability analyses are car-

ried out for propagation in the direction of greatest growth.

1.3.4 CONCLUSIONS

The successful application of the generalized-coupling-

of-modes formalism to the particular case of laser-driven in-

stabilities in unmagnetized plasma reinforces our belief that

it is the most physically appropriate and computationally

straightforward formalism to use in attacking more general

problems. These more general problems include strong electro-

static pumps, magnetized plasmas, temporally depleted pump-

waves,and spatially-attenuated pump-waves. Such wider applica-

tions of the generalized-coupling-of-modes formalism are dis-

cussed in greater detail in Chapter 5.
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CHAPTER 2

THE GENERAL THEORY OF COHERENT WAVE-WAVE COUPLING

2.1 Genesis of Theory

By the conductivity of a medium we mean the functional

dependence of electric current on electric field within that

medium. The requirement that the field and the dependent

current obey Maxwell's equations yields an electrodynamic theory

governing electromagnetic fields within that medium. A cur-

rent linearly dependent on electric field gives rise to the

usual theory of linear electromagnetic waves in a conductive

medium. An admixture of quadratic dependence on electric

field allows coherent wave-wave interaction which is described

by the well-known coupling-of-modes theory. An electric cur-

rent expressible as an expansion in arbitrarily high powers of

electric field allows coherent wave-wave interaction of

arbitrarily high order, which is described by the generalized-

coupling-of-modes theory presented in this chapter.

The usual coupling-of-modes theory is briefly sketched in

section 2.4, preparing the reader for the detailed presentation

of the generalized-coupling-of-modes theory in section 2.5.

2.2 Scope of the Theory

In this section we compare and contrast the generalized-

coupling-of-modes theory both with the simple coupling-of-modes

theory of which it is an outgrowth and also with the various

special-purpose theories which have been developed to deal with



specific instabilities.

The simple coupling-of-modes theory1 does allow gradual

spatio-temporal variation in the envelopes of electromagnetic

waves, and so does allow for spatial attenuation and temporal

depletion of pump-waves due to interactions with other waves

in a plasma. However, the effect of such pump-wave evolution

on the interactions themselves is not included. The simple

coupling-of-modes theory describes 3-wave interactions in

which two waves combine to produce a 2nd-order nonlinear cur-

rent which drives a third wave. However, higher-order wave-

wave interactions are not included.

The generalized-coupling-of-modes theory also allows for

gradual spatio-temporal variation - gradual in a sense to be

defined precisely later - in the envelopes of electromagnetic

waves. Further, the wave-wave interactions are described in

a manner which correctly incorporates the effect of this

variation to all orders. Thus an instability, driven by a

pump, and depleting that pump, may be described taking into

account not only the instantaneous amplitude of the pump but

also its space-time derivatives. In this way the effect of

pump evolution on pump-driven instabilities may be determined.

The generalized-coupling-of-modes theory describes general

(n + 1)-wave interactions in which n waves combine to produce

an nth-order nonlinear current which drives an (n + 1) th wave.

Thus wave-wave interactions of arbitrarily high order are

included.
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Various special-purpose theories have been developed to

deal with specific instabilities. All assume undepleted,

unattenuated pump-waves. These theories fall into three main

groups.

The first group contains theories which treat all orders

of wave-wave interactions correctly, and thus can treat pump-

waves of arbitrarily high intensity. However, they place

severe restrictions on the directions of propagation and polar-

ization of the waves considered. One-dimensional electrostatic

theories2 of pump-driven instability, including oscillating-

3,4
frame analyses,' fall into this group.

The second group contains theories5,6 which construct four-

wave interactions from successive three-wave interactions, in

a way which depends crucially on disparities between phase-

velocities of particular interacting waves. This reliance on

phase-velocity disparities between particular interacting waves

limits the number of instabilities that can be considered,

especially in magnetized plasma. Also, interactions are formu-

lated as being between certain waves defined by their electric

fields and certain other waves defined by the density of one

plasma component. This lack of parallelism makes it hard to

deal with additional components, whether these be additional

ion species or additional electron population components with

differing drift velocities and temperatures.

The third group of theories restrict themselves to three-

wave interaction between two pump-waves and a single product-
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wave which therefore grows linearly. This restriction makes

these theories relatively simple and they will not be discussed

further.

The propagation and polarization vectors of all waves in

G-C-O-M may lie at arbitrary angles to each other and to any

magnetic field in the plasma. The G-C-O-M theory does not

require phase-velocity disparities between particular interact-

ing waves. All waves are defined by their electric fields,

and their interaction is described in terms of nonlinear con-

ductivity of the plasma. The total conductivity of the plasma

is just the sum of the conductivities of the species it con-

tains. Therefore there is within G-C-O-M theory no methodo-

logical difficulty in introducing additional ion species, or

in introducing electron population components with differing

drift velocities and temperatures and treating them as multiple

species. Further, there is no methodological difficulty in

using any model whatever to describe the plasma, whether cold

fluid, warm fluid, or kinetic.

The G-C-O-M equations as presented in this thesis do not

contain terms describing the effect of inhomogeneity of the

medium. Thus these equations could be used to describe in-

stabilities in inhomogeneous plasmas only in the W.K.B. sense.

The computation and employment of terms describing the effect

of medium inhomogeneity on wave-wave interactions lies beyond

the scope of this work.
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2.3 Present Extent of Utilization

The applications of the generalized-coupling-of-modes

theory which are set out in chapters 3 and 4 do not utilize

the full capability of that theory. To facilitate comparison

with certain other treatments of laser-driven instabilities,

the theory is there applied to an unmagnetized plasma contain-

ing a single unattenuated, undepleted pump-wave with a unique

frequency, wavevector and polarization. The pump-wave is

sufficiently strong that instabilities due to 3 rd-order non-

linear currents become important, and instabilities driven by

2 nd-order nonlinear currents are modified. Wave-wave inter-

actions of order higher than those caused by 3rd- order non-

linear currents are not considered.

The full utility of the generalized-coupling-of-modes

theory will only be realized in future applications. One such

application is to magnetized plasma, where the richer mode

structure as compared with the unmagnetized case allows a

richer variety of mode-couplings and hence of laser-driven

instabilities. A second such application is to a laser-irra-

diated plasma in which one or more decay-products of laser-

driven instabilities have, without losing their coherence,

grown sufficiently to act as additional pumps. A third such

application is to a plasma irradiated by more than one laser

beam. A fourth such application is to plasma containing

attenuated and depleted pump-waves. We hope to bring the
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generalized-coupling-of-modes theory to bear on these problems

immediately upon completion of this thesis.

2.4 Simple Coupling-of-Modes via 2nd-Order Nonlinear Currents

In this section we outline the simplest possible non-

trivial theory of nonlinear coherent wave-wave coupling, namely

the simple coupling-of-modes theory. Only the basic formula-

tion will be given here. This formulation was used by Bers in

deriving a rich body of results to which the interested reader

is referred.

We consider a homogeneous medium in which the dependence

of electric current on electric field is as follows. There is

a part of the current which is 1st-order in electric field and

which arises from the familiar linear conductivity of the med-

nd
ium. The other part of the current is 2 -order in electric

field, and constitutes the simplest possible type of nonlinear

conductivity in the medium.

We derive equations which strongly resemble the usual

equations describing linear electromagnetic waves in a conduct-

ing medium. Indeed the equations describe how the linear sys-

tem, defined by Maxwell's equations and the linear part of the

conductivity, is driven by the nonlinear currents which are

external to it. Each electromagnetic wave of that linear

system is driven by nonlinear current due to other electro-

magnetic waves. The physical motivation for writing the coupling-

of-modes equations in this fashion is to relate as many as

possible of the interacting waves back to the well-understood



normal modes of the linear system.

Let us now perform the mathematical derivation explicitly.

Consider a medium in which the electric current at any one

point in space and time depends not only upon the electric

field at that point, but also upon the values of electric field

at other space-time points. Then the medium is temporally and

spatially dispersive. Further, let the dependence have a lin-

ear part and a quadratic part. Then the medium has a linear

conductivity and also has the simplest non-trivial type of

nonlinear conductivity. The functional dependence of electric

current on electric field then assumes the following general

form:

E(jt )E(7"t ")
2.4-(1)

Here the first and second terms on the right-hand-side are the

linear and nonlinear currents respectively. The linear con-

+LIN
ductivity in the space-time domain, G , has a tensor char-

acter and one of its indices is contracted with that of E.

The 2ndrder nonlinear conductivity in the space-time domain,



GNL(2) has a tensor character and two of its indices are

contracted each with the index of the corresponding E. The

ranges over which the space-time integrations are carried out

must, from causality, be such that the 4-vectors

(x- x, t' - t), (x" - x, t" - t) lie within the backward

light-cone.

Let the medium be spatially and temporally homogeneous.

Then the linear conductivity depends on its space and time

arguments (x,t, ' ,t') only through their differences. One

may write

2.4-(2)

Similarly the nonlinear conductivity depends on its space and

time arguments (x,t,x',t', x",t") only through their differences,

so

-NL(Z) 2.4Z)

2.4-(3)
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Equation (1) now acquires the form

2.4-(4)

This expression for the current must be substituted into

Maxwell's equations to obtain the equations governing the

electromagnetic field in the medium. Before doing this, let

us express E(x,t) in a form which uses our knowledge of linear

media.

The most useful form for E (x,t) is motivated by treating

the nonlinear conductivity as a small perturbation on that lin-

ear system which is defined by Maxwell's equations and the

linear conductivity. The possible electromagnetic fields in

that system are just linear superpositions of its normal modes.

Each such normal mode has, of course, a space-time dependence

which is just a complex exponential. On introducing nonlinear

conductivity, one again allows the electromagnetic field to have

the form of a superposition of waves. Now, however, not all



the waves need to be normal modes of the linear system. Further-

more, each wave is allowed to have a space-time dependence in

the form of a complex exponential modulated by a slowly-varying

envelope:

2.4-(5)

Here one has adopted the convention that the range of the suffix

a includes complex conjugate fields, so that for every value a'

+ +

in the range there exists another value a" with Eat = EaI'
+ 4**

ka, = -kan, wa = wa"ka -ka 11Wa Wa

The next step is to insert the form (5) for the electric

field into the expression (4) for the electric current. The

evaluation of the first term on the right-hand-side of (4) is

carried out using to advantage the slowness of the variation of

the electric field envelopes. The values of the envelopes

Sa(x + t, t + T) are approximated by their lt-order Taylor

expansions about the point (x,t) before the integration is

carried out. The evaluation of the second term on the right-

hand-side of (4) is carried out using to advantage the fact

that this second term is to be thought of as the perturbation

which induces the slow envelope variations. Thus these slow

variations need not be taken into account in evaluating the

perturbation itself. The values of the envelopes
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+ (', t + T'), E (+ , t + T") are approximated by their

values at the point (x,t) before the integration is carried

out. The evaluation yields an expression for the electric

current in terms of the electric field envelopes, the space-

time derivatives of those envelopes, and the conductivities in

the wavevector-frequency domain (see Appendix Al):

E 0- ej,~~N 7

\,2 2.4-(6)

Here, as before, the first and second terms on the right-hand-

side are the linear and nonlinear currents respectively. The

same symbol has been used for conductivity in the wavevector-

frequency domain as for conductivity in the space-time domain;

this will not cause confusion. As before, each linear conducti-

-L IN+
vity, G (ka wa) , has a tensor character and one of its

indices is contracted with that of E a This holds true also

in the derivative terms, where in addition the wavevector-

derivative 3/3k is contracted with the space-derivative 3/3x.



As before, each 2nd-order nonlinear conductivity, GNL(2)

(kb'wb c,wc) has a tensor character and two of its indices

are contracted with those of E b and Ec respectively.

The forms (5) and (6) for the electric field and electric

current are now substituted into Maxwell's equations to obtain

the equations governing the behavior of the electric-field-

envelopes in the medium. It is convenient to use Maxwell's

equations in the form from which B has been eliminated:

j§ 'X "'

2.4-(7)

After substitution, the slow space-time variations of the

field envelopes are retained to first order, except in terms

involving the nonlinear current where they are neglected.

Bringing the nonlinear current terms to the right-hand-side,

(7) assumes the following form, which describes the behavior

of the electric-field-envelopes in the medium (see Appendix Al):

I~~ -&IN(,A~~ ucf* t)

e_7 L
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2.4-(8)

Here the linear dispersion tensor

2.4-(9)

is contracted with E wherever it appears on the left-hand-

side of (8). The wavevector-derivative 3/3k is contracted with

the space-derivative 3/3x.

Assume that the effect of the interactions is small

enough so that the modes considered are still separable in

the wavevector-frequency domain. Multiplication by the rele-

vant exponentials then isolates from (10) the following set of

equations, each equation describing how a particular mode-

envelope E a is driven;

INt

Q~ (Xfl2

iir /t)-

~ic~" rive
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E ( 2.4-(10)

Any mode appearing in (5) has a wavevector and frequency

which lie at or near the sum-wavevector and sum-frequency of

any pair of modes which drive it. This ensures that the sum-

mation on the right-hand-side of (10) includes only those

pairs (Eb, c) of modes such that the wavevector and frequency

mismatches

2.4- (11)

are small.

The family of equations (10) are the coupling-of-modes

equations. They describe the behavior of the electric field

in the nonlinear medium specified by (1). They do this, not

directly in terms of E(xt), but rather in terms of a family

of wave-envelopes Ea (x,t). The waves which these envelopes

modulate are chosen having regard to the physical problem to

be solved and the properties of the medium in the absence of

nonlinearity. The coupling-of-modes equations (10) are a
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family of coupled differential equations. Each such equation

describes the space-time variation of one wave-envelope brought

about by the nonlinear coupling to the other waves.

2.5 Generalized Coupling-of-Modes via Arbitrarily-High-Order

Nonlinear Currents

In this section we outline a generalization of the simple

coupling-of-modes theory set out in the previous section. The

generalized-coupling-of-modes theory is again a theory of non-

linear coherent wave-wave coupling. The physical motivation

for setting up the theory and the line of argument used to

arrive at the final mode-coupling equations are almost the

same as in the previous section. This will enable us to pre-

sent the formulation fairly concisely.

We consider a homogeneous medium in which the dependence

of electric current on electric field is as follows. There is

a part of the current which is 1st-order in electric field and

which arises from the familiar linear conductivity of the

medium. There are also other parts of the current which are

respectively 2 nd-order in electric field, 3 rd-order in

electric field, and so on. Thus the nonlinear conductivity

of the medium has a well-behaved expansion in powers of the

electric field.

Again we derive equations which describe how the linear

system, defined by Maxwell's equations and the linear part of

the conductivity, is driven by the nonlinear currents which



are external to it. Again the physical motivation for writing

the mode-coupling equations in this fashion is to relate as

many as possible of the interacting waves back to the well-

understood normal modes of the linear system.

The explicit mathematical derivation follows. Again

consider a medium with a non-local dependence of electric

current on electric field, a dependence which must therefore

be expressed by space-time integrals. Let the electric current

have a well-behaved expansion in arbitrarily high integral

powers of the electric field. Then the medium sustains a

linear current, a 2 nd-order nonlinear current, a 3 rd-order

nonlinear current, and so on, given by the successive terms in

(cf 2.4-(l)):

~Cr rX C) -t -LU( ~ (j f

-F-~~~ CA(IcA /-

N( ( j)3) 3; f

2.5-(l)



doman,*LIN -*NL (2)The conductivities in the space-time domain, L G

GNL(3) and so on, have a tensor character. Each of these

conductivities has all but one of its indices contracted

with the succeeding E-vectors.

Further, let the medium be spatially and temporally homo-

geneous. Then (1) acquires the form (cf 2.4-(4)):

J(7,±)
UN

0,-f-
/ -r )

=

- (NL3) I

'I P

- t~(~ - "~'

)

+

2.5-(2)

AV NL

t Y 4-

t4- rr )



Before substituting this rather general form for the

electric current into Maxwell's equations, one uses one's

physical knowledge of the characteristics of the medium and of

the interactions to be studied, in order to restrict the form

of the electric field. It is assumed that the electrodynamics

of the linear system, defined by Maxwell's equations and the

linear part of the conductivity, are already fairly well

understood in terms of (possibly weakly damped or growing)

sinusoidal waves. The nonlinear conductivity perturbs this

linear system by allowing interaction between waves with dif-

ferent wavevectors and frequencies, provided these satisfy one

of the approximate sum rules:

or ( i) ) (\K t 9+( ,~) (L jO)

or -

2.5-(3)

In a physically interesting problem, the waves in question will

comprise specific normal modes of the linear system, possibly

some pump-wave or pump-waves, and possibly some harmonics or

sidebands of these. The interactions between all these waves

will cause each sinusoid to be modulated by a slowly-varying
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wave-envelope, so that the total electric field assumes the

form

2.5-(4)

By saying that a particular E a(x,t) is slowly-varying, we

mean that its space-time derivatives can be neglected in the

final mode-coupling equations beyond some finite order. Since

the space-time variations of the wave-envelopes are not known

until the mode-coupling e ations are solved, the assumption

that these variations are slow can only be justified a posteri-

ori. The space-time derivatives will be retained to all orders,

at least formally, for the sake of flexibility. This is done

by retaining all orders in the Taylor expansion of E (x + §,t +T)

about (xi,t). Carrying out the space-time integrations in (2)

then yields (see Appendix A2) an expression for the electric

current, in terms of electric-field wave-envelopes and their

derivatives in the space-time domain, and also of conductivities

and their derivatives in the wavevector-frequency domain. This

expression for the electric current can be written in various

ways. Here we present a form for the current similar to

2.4-( ), augmented by enough additional terms to indicate how

the expansion proceeds:
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Here the single summation on the right-hand-side is recognizable

as the linear current of 2.4-(6), augmented by higher space-

time derivatives of the wave-envelopes and corresponding higher

wavevector-frequency derivatives of the linear conductivity.

The double summation on the right-hand-side is recognizable

as the 2 nd-order nonlinear current of 2.4-(6), augmented by

space-time derivatives of the wave-envelopes and corresponding

wavevector-frequency derivatives of the 2nd-order nonlinear

conductivity. The triple summation on the right-hand-side is

recognizable as the 3rd-order nonlinear current on comparing

its structure with the structure of the previous terms. The

tensor and vector indices in the above are contracted as follows.

As before, the conductivities are contracted with the corres-

ponding electric-field wave-envelopes and the wavevector-

derivatives are contracted with the corresponding space-deriva-

tives.

The expression (4) for the electric field and the expres-

sion (5) for the electric current are substituted into Maxwell's

wave-equation:



The result is an equation governing the behavior of the elec-

tric-field wave-envelopes in the nonlinear medium. This will

be written in a form similar to 2.4-(8), augmented by enough

additional terms to indicate how the expansion proceeds:
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+LINHere L is the linear dispersion tensor as displayed in

2.4-(9).

Equation (6) is an expansion in orders of nonlinear con-

ductivity, within each term of which lies an expansion in or-

ders of the slow space-time derivatives. As discussed previous-

ly, the ordering and truncation of the combined expansion must

be carried out with regard to the physical magnitudes of the

terms in question , some of which may only be known a posteriori.

Again assume that the effect of the interaction is small

enough so that the modes considered are still separable in the

wavevector-frequency domain. Multiplication by the relevant

exponentials then separates from (6) the following set of equa-

tions, each equation describing how a particular mode-envelope

E is driven;
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2.5-(7)

Since each specific pair of modes appears twice in the double

summation in (6), the factor 1/2! does not occur in the sum over

specific pairs in (7). Similarly, since each specific triplet



of waves appears 3! times in the triple summation in (6), the

factor 1/3! does not occur in the sum over specific triplets of

waves in (7). The exponential factors immediately following the

summation signs are slowly-varying functions of space and time

since the wavevectors and frequencies in the exponent satisfy

(3). As in (6), and also in 2.4-(8), 2.4-(10), the linear dis-

LIN .NL(2)
persion tensor L and the nonlinear conductivities G

NL(3), ... , are contracted with the E-vectors, and the wave-

vector-derivatives 3/3k are contracted with the space-deriva-

tives 3/3x. The expansions in orders of the wavevector-

frequency derivatives and space-time derivatives can be written

in closed form using exponentials of differential operators.

This results in a form of equation more concise and exact than

(7) but less physically transparent. This form has therefore

been relegated to Appendix A2.

The set of equations (7) are the mode-coupling equations.

They describe the space-time variation, in amplitude, phase,

and polarization, of each wave-envelope Ea (x,t) due to nonlinear

currents excited by other waves. They form a set of coupled

nonlinear differential equations. The left-hand-side of each

equation of the set relates the corresponding wave back to the

linear system, defined by the linear conductivity together with

Maxwell's equations. This enables one to classify known un-

stable interactions and predict new unstable interactions on

the basis of pre-existing knowledge of the normal modes of the
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linear medium. This is an aid to understanding the physical

consequences of the growth of such instabilities and hence

predicting mechanisms of saturation.

One does not attempt to retain all terms in each of the

mode-coupling equations. Guided by the specific physical prob-

lem to be solved, one decides for each E a where to truncate the

corresponding equation (7). Note that in the simple coupling-

of-modes theory the mode-coupling equations 2.4-(10) are trun-

cated after the 2 nd-order nonlinear conductivity and the linear

and 2nd-order terms are then truncated after the 1st and

zeroth order of space-time derivatives respectively. After

truncation, the resulting set of coupled differential equations

yields a simultaneous solution for all the Ea(x,t) as functions

of space and time. This solution is used to estimate the

magnitude of the discarded terms, thus providing an a posteri-

ori check on the validity of the procedure. If necessary, the

truncation may be revised to retain additional terms, and the

procedure repeated. It is assumed that in this manner one

arrives at a set of truncated mode-coupling equations which

adequately describe the physical problem while retaining only

one or two orders of the space-time derivatives of the a (x,t).

This is what is meant physically by saying that the E (x,t)

are assumed to be slowly-varying functions of space and time.



2.6 Linear Perturbations on an Undepleted, Unattenuated Pump-

Wave

We now apply the generalized-coupling-of-modes theory of

the previous section to the following physical problem. Consi-

der a nonlinear medium supporting a pump-wave in self-consis-

tent equilibrium with its own harmonics. Then small perturba-

tions introduced, for example by thermal noise, will be

coupled together if they are separated by multiples of the

pump frequency and wavevector. Should this coupling be un-

stable, the perturbations will grow in a fashion which is approx-

imately exponential, until such time as the cumulative effect

of their growth in depleting the pump-wave becomes appreciable.

In this section we derive equations which describe the phase of

approximately exponential growth.

First consider the self-consistent equilibrium of the pump

in the non-linear medium. In such a medium, the field at the

fundamental pump wavevector and frequency, 1(,w1 ), cannot

exist alone. Rather, the fundamental excites 2 nd-order non-

linear currents at the 2nd harmonic (2kZ,2w ), 3rd-order

rd+
nonlinear currents at the 3  harmonic (3k,3w 1) , and so on.

The nonlinear currents in turn excite electric fields and thus

the pump field comprises a set of harmonics:

7 t) + Fo92-(1)-F

2.6-(l)



The relations between these harmonics are investigated using the

generalized-coupling-of-modes theory as follows. The set of

interacting waves E a(x,t) in 2.5-(4) is chosen to be just the

set E of pump harmonics. Then each harmonic En is related to

the others by the corresponding mode-coupling equation. This

equation is obtained from the general mode-coupling equation

2.5-(7) by setting

2.6-(2)

on the left-hand-side and

2.6-(3)

on the right-hand-side. Here n', n", n"', ... are integers

a + I n

appropriately chosen so that the term in E , E n i has n = n + n



the term in n'E n ni, has n = n' + n" + n "', and so on. By

hypothesis the pump wave including its harmonics is in equili-

brium, so En is not a function of (x,t) and the space and time

derivatives in 2.5-(7) can be set to zero. The complex con-

jugates in 2.6-(1) may be included by setting

2.6-(4)

We assume that the pump-wave and its harmonics are undamped so

that (k 1,w 1 ) is real. The mode-coupling equation relating En to

the other harmonics then has the following form, illustrated

for convenience by the examples n = 1, n = 2;

+ NL( 1<
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2.6-(6)

Assuming that the self-consistent equilibrium of the pump-

wave with all its harmonics has already been set up, let us try

to follow the early-time history of a small disturbance by

treating it as a linear perturbation.

Even in the linear approximation, because of the coupling

due to the pump, one must consider a set of such small perturba-

tions, at wavevectors and frequencies separated by multiples of

the pump wavevector and frequency:

2.6-(7)
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Here the indexing is arranged so that w ( is the lowest of the

perturbation frequencies. For positive n, 2_n is the wave-(n)

envelope of the upper sideband of the corresponding pump-har-

monic. For negative n, E is the wave-envelope of the lower

sideband of the corresponding pump-harmonic.

To lowest order, the effect of the existence of these

perturbations on the previously existing pump-wave equilibrium

is given by equations such as (5) and (6) amended by the follow-

ing additional terms. On the left-hand-side are added terms in

the space-time variation of the pump-wave envelope, and on the

right-hand-side are added the nonlinear currents due to the

perturbing fields. Although these added terms are at least 2nd_

order in the small perturbations, they cannot be automatically

neglected in a linear theory of those perturbations. This is

because of their secular nature, which eventually causes their

effect on the pump to be appreciable. The amended versions of

(5) and (6) may be determined from the generalized-coupling-of-

modes theory as follows. Take the superposition of modes

2.5-(4) to include both the pump-harmonics (1) and the pump-

coupled perturbations (6). Then the generalized mode-coupling

equations 2.5-(7) comprise both equations describing the varia-

tions of the pump-harmonics E n(x,t) and also equations describ-

ing the variations of the perturbation-fields E n) (x,t). The

former include the equations describing the variations of

E (x,t) and E2(x,t), which are respectively
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2.6-(9)

These describe the effect of the perturbing waves on the pump

up to terms in 3 rd-order nonlinear conductivity. Higher-order

space-time derivatives on the left-hand-side and all the space-

time derivatives on the right-hand-side have been omitted.

As long as the accumulated effect of the perturbations on

the pump, described by equations such as (8) and (9), remains

small, the pump-harmonic wave-envelopes {E } can be taken to be

constants. Now these pump-harmonic wave-envelopes also appear

in the mode-coupling equation describing the variations of the

7iA NL(2)

Nq2)



perturbation-field wave-envelopes E(n) (,t)}. In fact it is

precisely these pump-harmonics which achieve the coupling between

the various {E }. Take the {E I to be constants, and retain

the { (n)} only to first order. The linearized mode-coupling

equations describing the variations of the perturbation-field

wave-envelopes {( } become a set of linear space- and time-

invariant differential equations. Thus they have solutions

Sn) (,t) with exponential behavior. This exponential space-

time dependence of the perturbation envelopes is just equivalent

to a shift in wavevector and frequency of the perturbation

carrier-waves. For instance, a solution with the {E(n)} grow-

ing exponentially in time may be dealt with by redefining the

frequencies of the perturbation carrier-waves to have a positive

imaginary part. Without loss of generality, therefore, one

may take the { }to be constant and solve the mode-coupling

equations for the basic perturbation wavevector and frequency

(o), w ( ), now possibly complex, and the associated ratio

between the IE n)}. The mode-coupling equations to be solved

now appear as follows:



W\) -+ viTWI)
--- INLIN

wwJ40) +(I wlV

-4-;

/ Iv, t4J,)

i-i

+ j q

+ I -

Y-Q) +-) \AJQ

EI(r~-i)

\Ii 4 KWI

Ef~

- r~v~4,

-14
I

-I

±..

} -L.G (10)

w I)

j1~ ~ ~

(n+~)

i-LI i'iL(~)

(~L(~)

I

A-...

W(,O) + (V -)wl

wj 2w (h 1,

-I

Nq-z) ---14 - k

( k ) + pl -t 1) k f

N(-(3) ( o)-+ m I, w(o)



Here each perturbation E n) couples to other perturbations

separated from it by integer multiples of the pump wavevector

and frequency (ki1 w) . The coupling is via the appropriate

order of nonlinear conductivity and the appropriate harmonic(s)

of the pump.

Consider the set of variables which consists of the 3

spatial components of each E (n). This infinite set of variables

satisfies the infinite set of scalar equations consisting of

the 3 spatial components of 2.6-(10), for each integer n. The

condition for this set of equations to be consistent is an

infinite determinantal equation, which does not involve the

{E n)I explicitly. This determinantal equation involves the

perturbation fields only through the quantities ( () ,w ).

This determinantal equation thus constitutes the dispersion

relation for small perturbations in the pump-permeated nonlinear

medium.

To sum up, as long as the perturbations cause the pump to

depart only slightly from its self-consistent equilibrium, a

linearized theory of the pump-coupled perturbations may be con-

structed. This theory yields a dispersion relation which may

predict growing pump-coupled perturbations. Such growth of

perturbations remains exponential in character only to the extent



that the resulting depletion or attenuation of the pump is

negligible.

2.7 Use of Coupling Coefficients

The equations 2.6-(10) describe linear electric-field

perturbations {E I coupled together by a pump-wave and its

harmonics. The polarizations of the { (n)}are not known a

priori. In fact, for any particular value of the perturbation-

index (n), the vector equation 2.6-(10) comprises 3 scalar

equations involving the 3 Cartesian components of E n). The

right-hand-sides of these scalar equations contain nonlinear

currents which depend on the Cartesian components of (n-1)'

E aNL(2)
(n+l) and so on via the elements of the tensors G

*NL(3)G and so on. However, from a physical viewpoint, the des-

cription of all interacting electric fields in terms of their

polarization components along the same Cartesian axes may not

be the most useful description. Rather, one wishes to express

each electric-field perturbation E ( in terms of polarization

components which have a definite physical meaning for electric

fields at the carrier wavevector and frequency (1k() + nl.

w(o) + nw1 ) in the medium considered. The quantities which

describe the coupling between such suitably chosen polarization

components are known as coupling coefficients. These coupling

coefficients are obtained from the nonlinear conductivities of

the medium as will be shown here.



For each perturbation wavevector and frequency (k + nk1 ,

w (o) + nw 1 ) occurring in the superposition of waves 2.6-(7),

choose a physically appropriate basis triad of polarization

vectors as follows. Express the field E (n) in terms of a

basis of eigenvectors {eA(n) I of the linear dispersion tensor

evaluated at the carrier wavevector and frequency. Here A

indexes the members of the basis. Explicitly

E (n) EA(n)e A(n)
A

2.7-(l)

where the {eA (n) } are eigenvectors of L (k (o) + nk1 ,

w (o) + nw . Similarly one writes

E(nl) EA(nl) eA(nt)

A

2.7-(2)

+LIN
where the {eA(n+l) are eigenvectors of (k (o) + (n + 1)k

w (o) + (n + 1)w1 ), and so on. In the same way, choose physical-

ly appropriate basis triads for expressing the polarization of

the pump-wave and its harmonics. Set

E a E AL 2.7-(3)
1 Al Al

A

2.7-(3)
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+LI

where the {el} are eigenvectors of LLIN ,l1w). Similarly,
etAl

set

E2 E EA2eA2
A

2.7-(4)

where the basis polarization vectors {e A2} are eigenvectors of

-*LI N
L (2kl,2w 1 ), and so on. Define a dimensionless form of the

linear dispersion tensor for convenience:

ZLIN -

D (k,w)

L0 Ow

2.7-(5)

Now substitute (1) - (5) into 2.6-(10). The result is still a

vector equation. To obtain 3 scalar equations from this vector

equation, take its scalar product with each of 3 linearly in-

dependent vectors {A(n)} in turn. Choose this basis triad

{A (n) Ito be eigenvectors of the transposed linear dispersion

tensor L (k + n , w (0 + nw . Then each of the 3 scalar

equations has the form
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(D (n))AA A(n)
B P

-B
B P

(FNL(2)) E E
(n- 1), 1 ABP B(n-1) P

+(F NL( 2 ) )ABP E
n+1), B(n+1) P1

+ (F NL( 2 ) ) EBpnE)E
+ (n-2), 2 / B B(n-2) P2

+( NL() A) E E
n+2),-2/ABP B(n+2) P2

F n 1, PQ EB(n-)EPEQ

NL(3)+ (F(n), 1, -1 /BPQ E B(n) E P E Q

+ (n -1, -)BPQ EB(n)EIE

This equation relates one polarization component, specified by

the index A, of the perturbation field E n) to the various

polarization components of the other perturbations to which it

is coupled, and to the polarization components of the pump-

wave and its harmonics. The quantities (FNL(2 )ABP (FNL (3)ABPQ
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and so on appearing in 2.7-(6) are the coupling coefficients.

The scalar dispersion function (D ) is defined in terms of

the linear dispersion tensor by

~LIN -

(D n)A f A D (k +nk,w +nw) en)
(n) _AA A(n) (0)+1 (0) 1' A(n

2.7-(7)

The coupling coefficients are defined in terms of the nonlinear

conductivities of the medium by

(F NL 2 )AL
Fb, c /ABC

_ Aa
wNL(2)'G (kb, w b, kc, w c) e Bb e Cc

E 0Wa

provided Ea' b' Ec are any 3 interacting electric fields such

that the first of 2.5-(3) is satisfied, and by

FNL(3) A
b, e, d )ABCD

_ Aa (kb, wb ,c, we dwd) Bbe Cc Dd
E 0 Wa

2.7- (9)

provided Ea' b' c Ed satisfy the second of the wavevector

and frequency sum rules 2.5-(3), and so on. The coupling

coefficients are trivially invariant with respect to simultan-

eous identical permutations of b, c, d, ''' and B, C, D, '.

In the form shown in (8) and (9), with the sum-frequency in the

2.7-(8)

_



denominator, they possess additional symmetries, as will be

shown in section 2.8 for the case of the warm-fluid plasma

model.

It is assumed in this section that the eigenvectors of

+LIN
the linear dispersion tensor D (k(0 ) + nk1 , w (0) + nw1 ) are

known in advance. This is despite the fact that the relation

between k ( and w is not known and in fact is the main

object of the investigation. Such an assumption is justified

for the case of laser-irradiated unmagnetized plasma treated in

Chapter 3. Such a plasma is isotropic in the absence of the

+LIN +~
laser-pump. The eigenvectors of D (k,w) are then parallel

and perpendicular to k for any k. We know in advance that the

consistency condition for the set of equations 2.6-(10) yields

a dispersion relation connecting k ( and w 9 . Thus we can

choose k arbitrarily at the start, and the eigenvectors of
4 (o)

D kLIN (0 + nk , w ( +'nw ) will lie parallel and perpendicu-

lar to the perturbation wavevector k + nk Knowing this,

the basis triad for expressing the polarization of the perturba-

tion field E ( can be appropriately chosen, and the set of

equations 2.6-(10) converted to the form (6). The consistency

condition for the set of equations 2.6-(10) is the same as

that for the set (6), and the latter proves more convenient for

computation. The consistency condition for the set of coupled

equations (6) provides a restriction on w (). Since the ori-

ginal choice of k (0 was arbitrary, this restriction is just the

dispersion relation connecting (o) and w (o) for the coupled



system.

In other cases it may not be possible to determine the

+L IN
exact eigenvectors of the linear dispersion tensor D

(k (0) + nk1 , w (0 ) + nw ) in advance of the determination of

the exact values of k (0 and w . Then the basis triad

{e A(n)I of polarization vectors and the triad {fA(n)I employed

in the definitions (7) - (9) must be chosen in some fashion,

with no guarantee that the diagonal elements defined in (7)

are the only scalar dispersion functions that appear. Rather,

the left-hand-side of (6) must be replaced by the expression

(D(n)IAB EB(n)
B

2.7-(10)

where off-diagonal elements of (D (n)) are defined, as expected,

by

LIN
(D (n) AB =fA(n) *D (k(0) + nk, w (0) +nwI) eB(n)

2.7-(11)

The form of the right-hand-side of (6) and the forms of the

definitions (8) and (9) are unaltered.
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2.8 Form of Nonlinear Conductivities in Warm-Fluid Plasma Model

Up to this point the conductivities LIN NL(2) GNL(3)

and so on have not been specified in any way. This section

illustrates how, given the dynamic equations describing a

nonlinear medium, one may proceed to derive the nonlinear con-

ductivities of that medium in the wavevector-frequency domain.

The nonlinear medium chosen as an illustrative example is a

plasma, each of whose species is described by the warm-fluid

model. The applications of this warm-fluid model are discussed.

The nonlinear conductivities will actually be displayed in

the form of coupling coefficients. Recall the definitions

2.7-(8), 2.7-(9) of the coupling coefficients. It may be seen

that, to within a factor, the Cartesian tensor components of

nonlinear conductivity may be recovered from the coupling coef-

ficients. This is done by choosing the triads of basis vectors

which describe the polarization of the interacting waves so that

they lie along the corresponding Cartesian axes. Thus it is

enough to calculate the expressions for coupling coefficients.

The highest order of nonlinear conductivity for which the

coupling coefficient will be calculated is the third. The

calculations are set out in Appendix A4 in such a way that, it

is hoped, the method of continuation to fourth-order nonlinear

conductivity is clear. However, the fourth-order coupling-

coefficient is expected to be extremely complex in form and is

not essential for the interactions studied in the remainder of

this thesis.



The warm-fluid model for a single species in the plasma

is obtained from the Vlasov model for that species. We first

outline the Vlasov model. We then obtain the fluid model by

taking moments of the Vlasov equation in velocity space and

truncating the resulting set of moment equations.

If one neglects many-body correlations in a 1-species

plasma, such a plasma may be described by a smoothed-out dis-

tribution function f(x,v) in 6-dimensional phase-space. This

function obeys the Boltzmann equation. in which the right-hand-

side comprises all effects due to the actual particulate nature

of the plasma:

af - f - 8f / f\
+v' - +-(E+v XB) ' .. -tax av collisions

2.8-(l)

The Vlasov equation is obtained by neglecting the discreteness

of the plasma particles, thus setting the right-hand-side of

(1) equal to zero:

af a f q a f
-+v '-- +--(E+v XB) '. -- =0t m av

2.8-(2)

Multiplying the Vlasov equation by successive powers of the

velocity v and integrating over velocity-space, one forms a

hierarchy of equations relating successive moments of the



velocity. This hierarchy may be truncated by making assump-

tions as to the form of some of these moments. In particular,

make the zero-heat-flow assumption

((v-(v))Iv-(v) 2

2.8-(3)

where () denotes the velocity-space average, and make the iso-

tropic-pressure assumption

2
((v-(v))(v-(v))) = v T

2.8-(4)

Then the truncated hierarchy of moment-equations governing

n(x,t) and (v" (x ,t) is as follows:

an a
+ B - - n(v) = 0

ax

2

)+ ()YVTo(n)YZan = E ) X B)
at n n ax m

2.8- (5)

2.8-(6)

The quantities y, v To n0 in (6) arise as follows. The

assumptions embodied in the equations (3) and (4) lead to the

relation

-7-7



2

n = (n)0
n0 To

2.8-(7)

where y has the value 5. However, the pair of equations (5)3.

and (6) may be used to define a model of the plasma, the so-

called warm-fluid model, independent of any derivation from

the pair of assumptions (3) and (4). In choosing the value

of y to be used in this model, one is guided by physical con-

siderations and, wherever possible, by comparison with the

results from the Vlasov model defined by (2).

When dealing solely with waves whose phase-velocity is

greater than the electron thermal velocity, the value y = 3

is used. When dealing solely with waves whose phase-velocity

is much less than the electron thermal velocity, y is taken to

be 1 for the electrons and is ignored for the ions. Coupling-

coefficients between high- and low-phase-velocity waves are

also evaluated using Ye = 1, Yi = 0. These choices for the

values of y are justified by comparison with the results of

Vlasov theory in Appendix A5.

Before actually calculating the coupling coefficients, re-

call that the conductivities define the constitutive relation

between current and electric field. They describe the internal

response of the system defined by (5) and (6) to an arbitrary

electric field. The actual form of the electric field in the

medium need only be considered at a later stage, when the calcu-
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lated conductivities are substituted into the wave-equation

which governs the electric field:

ax ax ax 8x + t

2.8-(8)

or equivalently into one of the mode-coupling equations

2.5-(7), 2.6-(8,9,10), or 2.7-(6). In all this work, the AC
magnetic field B is treated purely as a subsidiary quantity

defined in terms of the electric field by

aB = M

ax

2.8-(9)

Thus the conductivities are found by imposing an arbitrary

electric field on the medium and calculating, using only (5),

(6), (9) and the definition

,i(x, t) == qTn ff(x, t) ( ) x, t)

species

2.8- (10)

of the resultant current response to this arbitrary field.

We proceed to calculate the linear and nonlinear conduc-

tivities in the wavevector-frequency domain. The linear con-

ductivity is needed not only for use in the linear dispersion



tensor but also because quantities defined in the linear cal-

culation will be used in writing down the nonlinear conducti-

vities. Similarly, quantities arising in the second-order non-

linear calculation will be employed to facilitate the writing-

down of the third-order nonlinear conductivity. All variables

will have their zero-wavevector and -frequency components de-

noted by the subscript 0. The uniform dc electric field E0

will be taken to be zero. The uniform dc magnetic field B0

will be taken to be non-zero and to be included in the specifi-

cation of the medium, rather than being defined as a subsidiary

quantity by (9) as in the case of a finite-frequency magnetic

field. The particle species will be allowed to have drift

velocities (v 7>0. The space-average signs < will be omitted

from the velocities. The species-index 7 will be omitted, on

the understanding that the final expressions for coupling-

coefficients are to be summed over species. This straight-

forward additivity of the coupling coefficients over species

is one of the advantages of the mode-coupling approach to coher-

ent wave-wave interaction.

First find the linear conductivity in the wavevector-fre-

quency domain. Impose an electric field containing a single

complex wave

ik -x - iw t
(x,t)= 2.8-(11)



upon the medium defined by the continuity equation

n+ -ny = 0
at ax

the momentum equation

2
S *av + n (n

at ax 0 0 n

y-2  -

8 x q (E+vXB)
ax

2.8-(13)

and the current equation

2.8-(14)

The quantities n, v, J, B will then have parts which oscillate

at the same wavevector and frequency (k , wa). Denote these by

the subscript a and use capitals for n and v. Then equate all

terms in (12), (13), (14) and (9) which oscillate at this wave-

vector and frequency to obtain

-iw N + ik - (n V +N v) = 0
a a a 2a.a

2.8- (15)

2.8-(12)

J = qnv



T~Z

.&- YV To -
-iw V + V ik V + - ik N =-(E +v X B +V X B

a a 0 a a n0 a a m a 0 a a 0 2. 8-(16)

2.8-(17)
a = q(n 0 V +N v 0 )

2.8-(18)B = k X E /wa a a

From (15), (17) and (18) the fluid velocity and density induced

by the imposed electric field E a are found to be given by

. DR
-iqE

V =Mg aa a DR
mwa

k V
N =n a a

a 0 DR
mwa

2.8-(19)
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*DR DRHere E and w are respectively the electric vector and thea a

frequency of the imposed field as seen by an observer moving

with the drift velocity v0 :

-DRE = E + v X B 2.8-(20)a a 0 a

DR -W a w - k v 0  2.8-(21)

M is a mobility tensor, normalized such that in the absence of

fluid pressure and steady magnetic field it has the value unity.

We shall use mainly its definition in terms of vector operators:

2
YVTokaka iqB -1

M = 1- -+ X x
DR) mwa

(wa a

2.8-(22)

Considered as a matrix operator on column vectors in Cartesian

coordinates with the z-axis along B0, Ma has the explicit form

shown in 2.8-(23). Here the "denominator" divides every element

of the matrix, and wCYC is the cyclotron frequency qB0 /m.

The expressions (19) for the velocity and density response

of the medium are now substituted into (17) to obtain the cur-

rent response. This current response may be written using the

definition (21) as

v k*
J= qn 1 Da )V 2.8-(24)a 0 DR a

w



Using (19) and (21), the definition (19) may be written

-DRE akv * E

DR = DR 
wa w a

2.8-(25)

Thus the linear conductivity

domain has the appearance

tensor in the wavevector-frequency

2.2 vok aO
aLIN- iq n Oka \ a 0G (k,wa -1+ D Mal + DR /

a a mw DRP, ( WD
a w wa a 2.8-(26)

and the normalized linear dispersion tensor defined by 2.4-(10),

2.7-(5) has the appearance

2

LIN (kWa aka +a
D (a, wa 20 + 1

00 a

w2
- 1 + 1 + kay

wa a DR
a a a

2.8-(27)

2 2Here w n= q /ms is the square of the plasma
p 0 o

frequency. The

scalar dispersion functions defined by 2.7-(7) then are given by

2

(fAa -k a)(k eBa) + (f ka
(a AB E 2 + Aa * Ba \~ 2 Z

0wa 0 Owa



2
w(f Aa 0) k -a (eBa 0) ka

\ aAa) Ma eBa + DR /
Waa W aa a

2.8-(28)

The term proportional to w2 in (28) is due to linear conductivi-
p

ty. It is obtained from the linear conductivity in the same

way that the coupling coefficients are obtained from the non-

linear conductivities. The coupling coefficients are suffi-

ciently complex that they can be displayed conveniently only

in terms of velocities rather than in terms of field polariza-

2tions. To show how this is done, we display the w term of
p

(28) in terms of velocities and densities rather than in terms

of field polarizations as follows. We employ, not the polari-

zation vectors e and f, but the fluid velocities and densities

which they would induce according to (19) were they present as

unit fields within the medium. For this purpose eBa is of

course regarded as having a wavevector and frequency (k ,wa).

The vector Aa is the eigenvector (see section 2.7) of the

transposed linear dispersion tensor; from (23) and (27) we

find, for the lossless warm-fluid model considered, that

LIN
jTRANSPOSE w ) LIN -
D (ka, w a D (ka a)

2.8-(29)

This provides a physical motivation for considering the unit

field with electric vector Aa = eA9 and frequency (-k a, -wa)*



The scheme, again, is to express the contribution of the medium

to (28), not in terms of the basis polarization vectors eBa

and t * e -, but rather in terms of the fluid velocity andAa Aa

density vBa and n Ba induced by the normalized wave field

e (ka' wa), and the fluid velocity and density vAE and nAaBa a a A

induced by the normalized wave field Aa (-'a, -wa) . Explicitly,

the contribution of the medium to (28) will be rephrased in

terms of

. - DR

-qeBa-
Ba = a DR

mw a 2.8-(30)

k a Ba
nBa ='n0 DRwa

2.8-(31)

DR
19e Aa

As a DR-mwa

2.8-(32)

n k -V AE
A =n0 DRwa

2.8-(33)

Here the normalized quantities v Ba' n Ba have been derived from

eBa using (15), (19), (21) and (25) in just the same way that

V a N are derived from E . Also the normalized quantities

v , nA7- are derived from e . I in the same way but re-
A Aa Aa Aa

placing (k a ,wa) by (-k ,-wa) in the derivation. In terms of



these induced fluid velocities and densities, then, the w
p

term in (28) has the form

rn0 - -% 2 nARnBa iqB0- V +Yv -DR Aaa'
- 0 vAsa -Ba + To 2 DR MW Aa_ Ba)

0 wa

2.8-(34)

The form (34) is totally symmetric under simultaneous inter-

change of the subscripts A and B and of the subscripts a and a.

DR..- DR
Note wl2R. -wD. The coupling coefficients due to nonlineara a

conductivity of the fluid medium will have forms more complex

than, but similar in construction to, the expression (34).

Now find the second-order nonlinear conductivity in the

frequency domain. Impose an electric field, comprising the

superposition of 2 complex waves indexed by b and c respective-

ly, upon the medium:

ik x - iwbt ik - x - iwet
E(x,t) = Eb e b b+ E e Cc

2.8- (35)

Now (9) and (12)-(14) are to be solved with (35) substituted in

(9) and (13). The quantities n, v, J, and B occurring in (12)-

(14) will then have parts which oscillate at the wavevector

and frequency (kb' wb). Denote these by the subscript "b".

They will also have parts oscillating at the wavevector and

frequency (k c' w c) and denoted by the subscript "c". Since



the equations (12)-(14) are nonlinear, the quantities n, v, J,

and B will further have parts oscillating at the sum-wavevector

and frequency (kb + kc, wb + w) . Denote these by the sub-

script "b,c". The form of the relation between Jbc and the

imposed fields Eb' Ec constitutes precisely the second-order

nonlinear conductivity we seek. As in the case of the linear

conductivity, the scalar components with respect to prescribed

polarization basis vectors can be expressed in terms of velo-

cities. This time, these scalar components are the coupling

coefficients 2.7-(8). This time, the expression in terms of

velocities is significantly more convenient than the expression

in terms of polarizations.

Equate all terms in (12)-(14) which oscillate at the

sum-wavevector and -frequency (kb + kc, wb + wc) to obtain

_1Wb+cNbc + k+c - (n0 Vb,c +Nb Vc +NCV b +Nb,c0) = 0

2.8- (36)

b+c ob,c + v0 - ikb+c b+c + Vb c c + Vc -ikb Vb

yv N Nb i
+ ikbN + (y 2) ikbN + ( - 2) c ikcN

n0  -b+C 0 0 -

=. ( c XB +V XB +V XB B
mI\ b, c 0 b c c b/

2.8-(37)
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Jb, c 0 b c NbVc +

2.8-(38)

Here (kb+c' wb+c) are abbreviations for (kb + kc, wb + wc '

Also from (9)

Bb kbX Eb/wb

Be=kc Ec/wcBC =kC XECWC

2.8- (39)

From the equations (36), (37) and (39) one may calculate the

second-order nonlinear fluid velocity and density to be (see

Appendix A3):

M bc
b, c + V(ke b

wb+c

2 -
YvTo kb+C - N+

w DR k +c bI;n02+ c n0Sb+c0

2 NbNC
+ y(y -Z) VTo kb+C 2

n0



- DR - DR
qE - qEb

+ Vb X ke i> +iVc X kRDWe, mwb

2.8-(40)

k+c
Nbc~ DR -nb,c +Nb c+ NC b

wb+c

2.8-(41)

DRHere wb+c and +c are defined as in (21) and (22) with the

wavevector and frequency (ka' wa) replaced by (kb+c' wb+c

(kb + c, wb + w) . The quantities Vb' Nb' c Nc constitute

the linear responses of the warm fluid to the fields

Eb (k, w) ( ) respectively as given by (19).b b b E c

The expressions (40) and (41) for the second-order non-

linear velocity and density response of the medium are now

substituted into (38) to obtain the second-order nonlinear

current response. This current response may be written

J = gn0 1 + V + N V + N
b, c 0( wDR b,c n 0 e n 0 Vb

b+c

2.8-(42)

Rather than work through the expressions for the nonlinear

conductivity-tensor and for the coupling coefficients in terms

of field polarizations, we shall immediately write the coupling

coefficient in terms of normalized fluid velocities and densities



(2

(see Appendix A3 for the calculation leading to this result).

NL(2 mn0 n Ak -
b, e )BC o _o Bb

nBb -
vCc + -To-- vCc

nCc -+ 2 n AnBbnCc
+o A Bb + y(y-)vTo 3

n0

VA * VBb CCc)
+ DR DR DR

wI wb W c

mf DDRRDR iqB 0
\bw -kcwb / m

2.8-(43)

Here we have taken

(k aw) = (kb, wb) + (kc, wc)

2.8-(44)

The normalized fluid velocities and densities appearing in (43)

are the linear responses to the electric fields chosen as bases

for describing the polarizations of (11) and (35). Explicitly

(cf (30) - (33))

. - DR

AV M ~ _ D 8 (4M DR
~ma

2.8- (45)

vAa



T2

_ a AK
n no

a

2.8-(46)

. -DR
19eBb

vBb Mb DR
mwb

2.8-(47)

kb VBb
nBb - DR

wb

2.8-(48)

. - DR
- iqe~

mc

2.8-(49)

c Cc
nCc = 0 DR

wcWC

2.8-(50)

The expression (43) for the coupling coefficient is totally

symmetric under simultaneous identical permutations of the sub-

scripts A, B, C and of the subscripts a, b, c. (Compare (34).)

For purely real wavevectors and frequencies this sgmmetry is

in accord with the Manley-Rowe relations.

In similar fashion one finds the third-order nonlinear



conductivity in the wavevector-frequency domain, by imposing

upon the medium an electric field containing 3 complex waves;

ik b -x-mfb t
E(x, t) = E b e

ik - x - iw t
+ E ecc

ikd dt
+ Ed e

2.8- (51)

Now (9) and (12)-(14) are to be solved with (51) substituted in

(9) and (13). The medium specified by (12)-(14) then has a

third-order nonlinear response at the sum wavevector and fre-

quency (k + kc + kd wb + c + wd). Equate all terms in (12)-

(14) which oscillate at this sum-wavevector and frequency.

This yields an expression for the third-order nonlinear current

in terms of linear and second-order nonlinear quantities. After

some algebra (see Appendix A3) one finds the third-order coup-

ling coefficient, in terms of the linear response of the fluid

to the electric fields chosen as polarization bases, and the

second-order responses to the same electric fields taken two at

a time. Explicitly



FN L(3))
b, c, d)BCD

- nAK Bb, Cc Dd + n AKCc, Dd VBb + nAi Dd, Bb VCc

+ nBbV Cc, Dd vAd + nBb Dd, AN Cc + nBb A', Cc Dd

+ nCcvDd,AE VBb + nCcv A, Bb VDd +n Cc vBb,Dd Ad

+n DdvAK, Bb vCc + nDdVBb, Cc vAE +n DdVCc, A VBb

+n 0 lABb* vCc,Dd + n0 AE, Cc Bb,Dd + n0 AE, Dd Bb,Cc

2
(nAg, Bb Cc, Dd +Aa, CcnBb, Dd +AE, DdnBb, Cc YTo/n

2 3
+n n n n y(y -2)(y - 3) v /n0

A~aBb Cc Dd ToO0

+n v+n n V)(n v +n v +nv
0 A5,Bb AEa Bb+n1b A) 0 Cc,Dd Cc DdnDd Cc

iqB
0
DRmn 0w c+d

(n 0 vA, Cc +n AeCc +nCc A) (n0 DdBbnDd Bb +nBbvDd)

iqB
0
DRmn0 w d+b

- (n0AE,Dd +fnAV Dd + DdVAa) X (n0OBb, Cc +nBb Cc +n Cc Bb)

iqB
0
DRmn0 wb+c
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DR)
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DR DR
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+WDR(
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\DR
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DR)
wb

iqB
0

DRmwa

b+c
+ DR
Wb+c

b)
~DR/
wb

kd

DR
W d

{ b
\DR
wb

c
DR)

w
C

iqBO

DR
mwa

kc+d
+ DR

wc+d

kd
SDR)

wd

fke
\DR
w

C

kc
DR)

w

kb

iqB
0

wDR_
a

2.8-(52)



Here we have taken

(ka, wa)= (kb, wb) + (kc, wc) + (kd wd)

2.8-(53)

The first-order normalized quantities appearing in (52) are

defined as in (45)-(50). The second-order normalized quanti-

ties appearing in (52) are defined as being the second-order

responses to the corresponding pair of unit basis fields ac-

cording to (40) and (41). For instance

Mb+c
Bb,Cc DR VBb Cc) + VCc(kc v Bb

wb+c

-yV~k n n
Tokb+c nCc - n Bb)

+ DR (+c (\Bb n +vCc )/
wb 0 0

b+c

2 n Bb nCc
+ y(y -Z)vTo kb+c 2

n0

-DR DR
qe qegeCcy\ - { kb Bb

+ ivBb Xk c DR) + IVCc \ X DR/
mw mwb

2.8-(54)
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n(n V + +n i
nBb, Cc = - (0 Bb, Cc Bb Cc Cc Bb)

wb+c

2.8-(55)

Consider the symmetry properties of the expression (52).

The terms not explicitly involving B form a quantity which is

trivially invariant under any simultaneous identical permuta-

tion of the subscripts A, B, C, D and of the subscripts a, b,

c, d. The first 3 out of the 6 terms involving B explicitly

also form a quantity which is invariant in this same sense.

This may be seen by using (53) and recalling that w- E -wa a

The last 3 terms of (52) form a quantity which is certainly

invariant under simultaneous identical permutations of B, C,

D and of b, c, d. This lesser symmetry is obvious both by

inspection and from the manner of derivation. The quantity

formed by the last 3 terms if also invariant under permutation

of all 4 subscripts A, B, C, D and a, b, c, d, in the same

sense as the rest of (52). This is proved in Appendix A4,

making use of MACSYMA. MACSYMA is a computer-based symbol-

manipulation system, developed and maintained at Project MAC

by Moses et al. Thus the whole expression (52) is of the form



c 9

NL(3) ~ XA B, C, D
bFc,ABCD Ea, b, c, d

2.8-(56)

where X is symmetric under simultaneous identical permutation

of its upper and lower indices.

+ LINThe most important uses of the conductivities G

+NL(2) -*NL(3)
G G and so on, lie in the generalized-coupling-of-

modes equations 2.5-(7), where they appear along with their

wavevector- and frequency- derivatives; in the equations 2.6-

(4,5) describing pump-wave equilibrium; and in the equations

2.6-(10) (or equivalently 2.7-(6)) describing linearized per-

turbations about a pump-wave equilibrium.
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CHAPTER 3

THIRD-ORDER THEORY OF

LASER-PLASMA-PELLET INTERACTIONS

3. 1 Laser-Driven Instabilities

First we outline the course of this chapter and the relation of its vari-

ous sections to the results of the last chapter. In Chapter 2, the generalized-

coupling-of-modes theory was developed in section 2. 5 and applied in sec-

tion 2. 6 to the problem of perturbations about a pump-wave equilibrium.

In this chapter the pump-wave is specialized to be a laser-beam; section 3. 2

relates the beam-geometry to the geometry of the pellet and surrounding

plasma. The results on pump-wave-equilibrium from section 2.6 are used

in 3. 3 to deduce the self-consistent harmonic structure of the laser-pump,

in particular the amplitude and polarization of the 2 nd harmonic. In Chap-

ter 2, those results from 2. 6 which concerned the behavior of perturbations

about the pump-equilibrium were rephrased in 2. 7 in terms of coupling coef-

ficients between particular wave polarizations. In section 3. 4, the particu-

lar polarizations to be used in describing perturbations about the laser pump

are selected, and the physical grounds for their selection are explained. The

corresponding coupling coefficients are evaluated in two ways. In Chapter 2,

section 2. 8 yielded general expressions for coupling coefficients. Section 3.5

uses these to evaluate coupling coefficients for the perturbations coupled by

the laser pump. Section 3. 6 evaluates the same coefficients directly from

the differential equations describing the plasma dynamics in the presence

of the laser pump-wave. Both yield the same coupled equations describing

the behavior of the perturbations and incorporating physical approximations,
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as displayed in 3. 7. The consistency condition for these coupled equations

is a determinantal equation. Section 3. 8 extracts subdeterminants from

this, connecting specifically polarised components of the perturbations and

hence describing specific laser-driven instabilities. Finally, 3. 9 compares

our results with those derived by certain other workers. These other work-

ers have dealt with laser-driven instabilities by postulating some physical

mechanisms for wave-wave interaction and making the corresponding ap-

proximations ab initio. The limitations of this approach will be discussed.

The aim of this chapter is to provide a systematic derivation of laser-

driven instabilities in unmagnetized plasma and their corresponding 3-dimen-

sional dispersion relations. The theoretical tools for this task were devel-

oped in Chapter 2. Chapter 4 will provide for each individual instability a

simplified physical model and also an analysis of the propagation of initially

localized disturbances.

3. 2 Geometry of Laser Pump

The geometry of the laser-light irradiating the pellet is first idealized

to be a converging wavefront perfectly centered on the pellet. The spherical

geometry of that portion of the pellet plasma accessible to the laser light

has curvature characterised by the inverse radius of the critical surface.

This radius is expected to be about 600 microns in currently-proposed

schemes. This figure is certainly much larger than the free-space wave-

lengths of lasers typically proposed for these schemes. Thus, inferring

the wavefront geometry from the plasma geometry, one might conclude

that a planar approximation would be reasonable. However, it is well to

check the actual laser wavelength inside the plasma to see if this is still



104

small enough compared to the radius of the critical surface.

The local dispersion function gives the W. K. B. result

2 2w - w

k = 3.2-(1)
C2

where wI is the laser frequency. Of course, this breaks down near the

critical surface, and one must have recourse to the exact Airy-function

solutions as described by Ginzburg. These solutions are expressed in

terms of the dimensionless parameter

2 1/3

S= d1 3. 2-(2)

where f is measured outwards from the critical surface. These solutions

are for a planar geometry, a linear dependence of dielectric function on

position and full reflection of the laser light; nevertheless, they still serve

as a guide. Taking the plasma dielectric function

(w ()
p

E1- 2 3.2-(3)
w

one has

2 1/3(X10)
where X 10 is the free-space laser wavelength and L is the scale length of

the plasma density gradient. The widest peak in the Airy-function solution

stretches from about r = -1. 5 to about ( = +2. 5. Thus, taking 1.09-micron
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laser light and 600 micron scale-length for the plasma density gradient, the

Airy-peak has a width of about 7. 5 microns. This is much less than the

radius of the critical surface so that a planar model for the pump geometry

can give valid results.

A more serious issue is the effect of the swelling and broadening of the

field pattern near the critical surface on the absorptive instabilities. The

Airy function deviates appreciably from geometrical optics out to about

; = 5.0. Applying this to the above plasma-laser combination, the deviation

is seen to extend about 9. 4 microns out from the critical surface. This

corresponds to the range of plasma densities

-- < 1 Zw ': w
64 p 1

Since ion-acoustic frequencies are less than the ion-plasma frequency

which itself is roughly w p/40, absorptive instabilities near the critical

surface are subject to the broadening in effective k brought about by the

behavior of the pump-wave near its turning-point. However, these absorp-

tive instabilities to lowest order depend only on k-matching in the direction

perpendicular to the laser propagation, and so their growth is not affected.

The laser pump wave, then, is modeled as a planar wave having a

local wavelength given by the local dispersion relation. The propriety of

studying the behavior of the resulting laser-driven instabilities by taking

the local plasma density and solving the corresponding homogeneous prob-

lem was discussed in subsection 1. 2. 3.

The polarisation of the planar wave is taken to be linear. The laser-

pump is modeled as a wave propagating in the positive z-direction and
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polarised linearly in the x-direction. The cases of circular and elliptical

polarizations are not dealt with in this work.

3. 3 Self-Consistent Laser-Pump Equilibrium

In this section we look at the harmonic structure of the laser-pump.

The oscillating electric field of the laser-fundamental

E (x, t) = E e - - iwt + complex
FUND ( - 1 conjugate 33(1)

induces a quivering motion of the electrons of the plasma:

ik1 * x - iw t complex
FUND 1 conjugate 3.3(2)

We consider a drift-free and unmagnetised plasma. The transversely

polarised fundamental causes no particle bunching in lowest order (see

Figure Fl). Thus the linear response of the electrons is, from 2. 8-(19)

or simply from first principles, given by

iq E
V I=1  3. 3-(3)

el

This quivering takes place in the presence of the oscillating B-field of the

fundamental. The electrons feel a Lorentz force at twice the fundamental

wavevector and frequency in the direction of the laser-beam propagation.

The Lorentz force is directed toward the regions of instantaneous high

field-magnitude. However, the frequency of the Lorentz force lies well

above the electrostatic resonant frequency of the electrons:
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wBOHM-GROSS( 2k) wp ~ w1 < 2w 3. 3-(4)

Also the phase-velocity of the Lorentz-force pattern is much greater than

the velocity of any electron:

v Te C < vphase = 2w 1/2k 1  3. 3-(5)

Thus the Lorentz force actually causes the electron density to be higher in

the regions where the fundamental has a low electric field magnitude.

The physical mechanism we have just described constitutes coherent

wave-wave coupling between the transversely-polarized fundamental taken

twice and a longitudinally-polarized second harmonic. We can use the

mode-coupling equations 2. 6-(5, 6), which govern the self-consistent har-

monic structure of the pump, to look at the amplitude and polarization of

the second harmonic. To lowest order 2. 6 -(5, 6) become

LIN(, w E 0 3. 3-(6)

LIN(2i, 2w ) E 2 =2Ow GPNL(2)(i 1, w 1 , k 1 , w ) E E 3.3-(7)

Using the notation of coupling coefficients introduced in 2. 7, the vector

equation (7) may be written as the triplet of scalar equations

(D ) E = (FNL(2) )xExEx 3. 3-(8)
1 xx x2 2 1,01 xxxll

(D ) E - 1 NL(2) E E 3. 3-(9)
1 yy y2 2 1,:1 yxxll

(Di)zEz= - (LE( 2 )) E 3.3-(10)
1 zz z2 2 1,th 1 Czxx xl Xl

As mentioned in 3. 2, the Cartesian axes are chosen such that the laser-
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beam fundamental is polarized along x to lowest order. From 2. 8-(43),

in the absence of a steady magnetic field the coupling coefficient becomes

the sum over species of

FNL( 2 ) _
1,1i xx

Snn
0

E 0

nA2 v
Vn 0X1 Sv X +2- vn0 x -V +y(y-2) v2

A2 VTO

For a transversely polarized wave in unmagnetized plasma, the first-order

response includes no particle bunching (see 2. 8-(19)).

n = n = n
x2 y 2

and (11) becomes

(FNLNL() = FL2

(FNL(
2 ))

1, 1 zxx

Therefore

3. 3-(12)

Now substitute (13), (14) into (8), (9), (10) and use the linear results 2.8-(19)

and 2. 8-(27). This yields equations specifying the polarization components

of the 2nd harmonic of the laser:

Ex2 y2 0

2w
p

(2w )2 - y(2k ) 2 ve2
E z2

men0 (-2ki

EO (-2w,.

(-2w 1 )2

((-2w1 ) 2 -y(-2k )2 v )
V2

me(- 2 w,) 1

2

n3
0

3.3-(11)

= 0

= 0

mnn
0

E 0

3. 3-(13)

3. 3-(14)

0'
3. 3-(15)

+ 1
2

3. 3-(16)

n 0 1
-v 

X



Here V is the electron quivering velocity induced by the laser fundamental,

as given by (2) and (3). Ion contributions to (16) have been neglected. On

the left-hand side of (16) the linear dispersion relation at twice the laser

frequency can be evaluated accurately enough for our purposes without the

ion term. The contributions of ions to the right-hand side of (16) are smaller

than the electron contribution by the squared ratio of their quivering veloc-

ities, which is to say, by the squared inverse mass ratio. Use

q = -e 3. 3-(17)

and the phase-velocity relations (5) to approximate (16) as follows

2 2w w
p .m p

1- 2E z~ e k V 2  3. 3-(18)

4w 1 w 1

The phase relation between E z2 and E implied by (18) is the same phase

relation given by the Lorentz-force argument quoted previously.

The second harmonic of the laser pump has here been found (see Fig-

ure 3. 3F2) in terms of the uncorrected fundamental E1 . This has been done

by using the mode-coupling equations typified by 2. 6-(5, 6) in their simplest

form, namely (6, 7). Of course, one can now go back and find the correc-

tion to the fundamental due to the presence of the 2nd harmonic, and the

3 rd-order self-correction to the fundamental. One can also extend the

series of mode-coupling equations 2. 6-(5, 6) to find the amplitude and polar-

ization of the 3 rd harmonic. We briefly sketch these further corrections.

Extend (6) to include the effect of the 2nd harmonic and of the self-
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correction to the fundamental:

LIN(J w) E - -i 0 wI GNL(2)( 2 i 2w , -k, -w1  ) E 2EI

+ NL(i, wi, Ei, w , -k , -w ) E E E 3.3-(19)

On the right-hand side, E, and E 2 will, of course, be taken to have their

uncorrected values (1) and (16). Using the notation of coupling coefficients

introduced in 2. 7, the vector equation (19) may be written as the triplet of

scalar equations

(D )AAEAl = 2- FNL(2) A 2zx z2

- (FN( 3  xxxEx1 E A = x, y,z 3.3-(20)
2 \ 1,1 )Axx X1 X1 x1Y

The form 2. 8-(43) for the second-order coupling coefficient, the form

2. 8-(52) for the third-order coupling coefficient, and the form 2. 8-(40) for

the second-order velocities are used to evaluate (20). The right-hand side

of (20) vanishes for A = y, z, and the A = x component yields

w4k 2V2 w ~ w2k lVi
p 1 1 p p 1 1

D ) E = 1 - E + EX 3.3-(21)
-x x 8w1  4w2 1/ 2w1  "

1 1)

The two correction terms may be combined on the right-hand side and the

scalar dispersion function for electromagnetic waves inserted on the left-

hand side. Then the wavenumber of the laser, shifted due to the nonlinear-

ity of the plasma medium, satisfies



2 2
2 2 w w

k Ic p p

2+1 2 =2
w w w

k 2 V21

4w 2-_w2)I p
For a given input laser frequency wi, the laser wavenumber at a fixed

plasma density given by wp is decreased from the wavenumber derived

from the linear electromagnetic dispersion relation. The decrease is

given by the ratio

kCORRECTED

LINEAR PLASMA
klw23. 3.-(24)

1 + 2p

c 4w -_ w 2

This wavenumber correction is the only effect of medium nonlinearity on

the laser fundamental, at least to the order specified by (19). The polari-

zation of the fundamental is unaltered. (See Figure F3.) Extend the series

of mode-coupling equations (6, 7) to find the amplitude and polarization of

the 3 rd harmonic:

LIN(3Ei, 3wI) E 3 - -3i Ow1 [G (i, w1., 2E:, 2wI) E I E2
L~~~ (3kN3() 31

+ 3 NL( 3 )(ic, wIPi , wli, w1) E IE IE I 3.3-(25)

The vector equation (25) may be written as the triplet of scalar equations

3. 3-(23)
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Figure 3.3 Fl LASER-PUMP EQUILIBRIUM TO FIRST ORDER

Figure 3.3 F2 LASER-PUMP EQUILtBRIUM TO SECOND ORDER
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(D3 AAEA3 = -(F L(2 )AxzE E2z

- (FNL( 3 ) ) _ E  E  E A = x, y, z 3.3-(26)

The right-hand side of (26) vanishes for A = y, z and the A = x component

yields

4 2 3 2 1 2 2 3
. m wk 1 1  p im e p 1 1

(D )E = 1 - + 3.3-(27)3 xx x3 24 e w 5 4w 2 6 e w 3
1 1)

The two terms may be combined on the right-hand side and the scalar dis-

persion function for electromagnetic waves inserted on the left-hand side.

Here again VI is the quivering velocity induced by the laser fundamental,

as given by (2) and (3). The ions may be neglected in the dispersion func-

tion on the left since that is evaluated at three times the laser frequency,

and in the nonlinear conductivity term on the right since ion contributions

are smaller by at least the squared inverse mass ratio. The amplitude and

polarization of the 3 rd harmonic electric field of the laser pump are thus

given by (see Figure F3)

9kc 2  w 2 2 3  2 ~12 2 w 2w 2k 2V 3w2
9kIc p . m 1  p

- + 1 - 9 E e= 1 - 3.3-(28)
92 92 'x3 6 e w3 421
1  1  w1  4

Let us now consider the application to succeeding work on laser-driven

instabilities of the detailed harmonic structure of the laser pump. In par-

ticular, let us consider the influence on laser-driven instabilities of the



self-correction to the fundamental, of the existence of a 2nd-harmonic field,

and of the existence of a 3 rd-harmonic field.

In the work which is to follow, the symbol kI will be understood to refer

to the actual value of the laser wavenumber. Thus the wavenumber self-

correction (24) will not appear explicitly in the dispersion relations which

will be derived for specific unstable interactions. Further, the form of

these unstable dispersion relations will not be sensitive to whether or not

the laser wavenumber and frequency lie on the exact linear electromagnetic

dispersion curve. Therefore the self-correction (23, 24) will not be re-

ferred to again.

In the work which is to follow, perturbations about the equilibrium

described in this section will be considered. No more than 3 such perturba-

tions will be considered in dealing with any one specific instability. These

perturbations will comprise, say, E , E(0), E_ _1) in the notation of 2.6-(7).

nd_The 2 -harmonic content of the laser pump, E 1 , is capable of coupling

together the two extreme members of the set of 3 perturbations, via a 2 nd

order nonlinear current. However, this function of coupling together E()

and E(_) can also be performed by the laser fundamental, Ei, entering

twice into a 3rd-order nonlinear current. This may be seen explicitly by

referring to 2. 6-(10) which describes pump-coupled perturbations, and

picking out terms on the right-hand side which contain E(n±2 ). It will be

demonstrated in some detail in section 3. 5 that the laser fundamental E1

nd -

acting twice achieves a stronger coupling than the laser 2 harmonic E2
acting once. This demonstration depends only on the fact that the phase

velocities of the perturbation fields and the electron thermal velocity
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satisfy the following for all laser-driven instabilities of interest:

w(0)

<< c 3. 3-(29)

vT c 3. 3-(30)

vwT,<< k 3.3-(31)

w(0) w(±1)
k k 3. 3-(32)

Note that these restrictions are looser than those imposed by Kaw, White,

et al. In particular, (32) is replaced in their work by

w(0) w(±1)

k (0 k 3. 3-(33)

This point is elaborated in section 3. 9. To repeat, the laser 2nd-harmonic

field, E2 , existing as part of the self-considente laser-pump equilibrium

in the nonlinear plasma medium, will be shown not to be important for the

parametric instabilities driven by that laser pump.

A fortiori, the laser 3 rd -harmonic field, E 3, may be neglected in

work on laser-driven plasma instabilities.

3. 4 Perturbations about Pump Equilibrium

3. 4. 1 DESCRIPTION AND BEHAVIOR OF COUPLED PERTURBATIONS

In section 2. 7 we discussed how to choose for each perturbation a sep-

arate basis triad of polarization vectors, in terms of which to express the
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electric field of the perturbation. When each such basis triad is chosen to

consist of eigenvectors of the corresponding linear dispersion tensor, eval-

uated at the perturbation wavevector and frequency, the coupling of the

polarization components is described by 2. 7-(6). In this section we make

an explicit choice of basis triads for describing the polarization of pertur-

bations which are coupled together by the laser pump described in 3. 3.

Consider the linear dispersion tensor for unmagnetized drift-free

plasma, evaluated at the wavevector and frequency (k(n), w(n) of a pertur-

bation field E (n) The warm-fluid model gives (cf. 2. 8-(27))

-k 2

D LIN w(n)k(n) (n)+
DI(kN w )= 2 +1

OE w

2 2-
w yT v Tk k(n)

2 1+ 2 2 2 3.4-(1)
species w w(n) kv(n)T

This tensor operator has as one eigenvector k (n) with eigenvalue

2wp7T
(D ) 2 2 - 3.4-(2)

(n) SS 2 2 2
species 7 w(n) ~T (n) T1T

Any vector perpendicular to k is also an eigenvector, with eigenvalue

k w
k(n) T

(D )NN = (D ) =- 2 + 2 3. 4-(3)

0 EOw(n) species 7r w(n)

The prescription of section 2. 7 is to choose the basis triad (eA(n)} to be
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"~LIN -
eigenvectors of D (k(n)k w (n). This fixes one member of the triad to be

the electrostatically polarized unit field, i. e. , the unit field in the direction

of the wavevector;

eS (n) =k(n) k(n)| 3. 4-(4)

The other two members of the triad can be any two electromagnetically

polarized unit fields, i. e., any two unit vectors perpendicular to (4). It

will later prove convenient to choose these two as follows. Choose one to

be perpendicular to the polarization of the laser fundamental. This can

always be done, as follows:

eN(n) () X e () e1x 3. 4-(5)

Choose the other electromagnetic polarization, eM(n), perpendicular to

both eS(n) and eN(n). This ensures that eM(n) has the greatest possible

projection on e . In other words, the direction of eM(n) is aligned as

closely with the direction of polarization of the laser as possible consistent

with retaining its electromagnetic character.

M(n) ( (n) 1x (nI(n x)( 3. 4-(6)

The prescription of section 2. 7 is to choose the triad (fA(n)} to be eigen-
-LIN TRANSPOSE . =LIN-

vectors of D (k (n) w(n) ). From (1) the tensorD k(n),w(n)

is symmetric and so one can choose

f =
M(n) M(n)

f e (n3. 4-(7)
N(n) N(n)

S(n) -S(n)



For the laser-driven instabilities considered in this chapter it will be

enough to consider 3 perturbation fields, E , E(0), and E . One uses

2 perturbation fields, E(0) and E(-_), in describing the Brillouin, Raman,

2-plasmon and decay instabilities together with their modified forms. One

uses 3 perturbation fields E( 1 ), E( 0 ), and E(_,) in describing the filamen-

tation-modulation and oscillating-two- stream instabilities. In preparation

for later work, therefore, one considers the coupling via the laser pump

of the 3 perturbations E , E(0), and E(_I) One wishes to do this in terms

of the 3 polarization components of each of the 3 perturbations. Use (4),

(5), and (6) to write each perturbation field in terms of the basis triad

appropriate for its wavevector and frequency:

(1) = EM(1) eM(1) + EN(1) N(1) + ES(1) S(1)

(0) - M(0) eM(0) + EN(0) N(0) + ES(0) S(0) 3.4-(8)

E(1) = EM(-1 M(-1) + EN(1) eN(-1) + ES(_1) e(_1)

The equations relating the amplitudes of the polarization components are

obtained by substituting in 2. 7-(6). There are 9 such equations, one for

each EA(n), A = M, N, S, n = 1, 0, -1. These equations will be written down

to first order in the laser 2 nd harmonic and to the 2 nd order in the laser

fundamental, as follows:

(D1i))AA A1) +x 1 FB 1) ,1,B-1 AB B(1) B F0),1 ABx B(0)

2 x F (- 1,1 AB xB(-1) z2 B F (- )AB B(-1) = 0

separately for each of A = M, N, S
3. 4-(9)
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E1 F 1 ~ E()+((0))AAEA (0)

+E E E FNL(3) ( EX1 X1 B (0), 1, 1 ABx B()

+ E Z F NL(2) E =0X1 B ( -I), ) Bx B(-1)=

separately for each of A = M, N, S 3. 4-(10)

2 E * 2  FNL( 3 ) E2 x1 B (), -1, -1 ABxx B(1)

+ E E NL(2) E E NL(2) E
z 2 B (1), -2/ABz B(1) X1I B \_ (0), -1 /ABx B(0)

z'I NL(NL

+ (D(_..)AAEA(-1)+E 1  F-1,- 1 )ABxx B(-1) = 0

separately for each of A = M, N, S

3. 4-(11)

These 9 equations are linear in the 9 quantities (EA(n)} and can therefore

be written in matrix form. Using partitioned matrix notation they can be

written as in (12). Care must be exercised in using this form of the coupled

equations. The quantities {F} do not transform like tensors since their

subscripts range over different basis triads. Further the quantities indi-

cated by {En} in (12) are column matrices of the components of the per-

turbation fields each referred to a different basis as shown in (8). Equa-

tion (12) essentially describes the pump-induced coupling between pertur-

bation fields whose polarizations are described in terms of polarizations of

of normal modes of the plasma. This is so even though the trequencies of
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the coupled perturbations may be displaced from their normal-mode values.

Upon evaluating the submatrices F of equation (12) with the physical

parameters appropriate to laser-driven plasma instabilities (see section 3.5

and Appendix A5), the couplings

E(*) NL(2)
2 ( ),±2

due to the second-harmonic electric-field component of the pump are seen

to be negligible. The couplings

E(E(*)NL(3)1 1 ( ),±1,±1

due to the fundamental of the pump acting twice are seen to be sums of parts

E ME(*)NL(3)
1 1 ( ),± 1,±1

say which are physically appreciable and other parts

E E(*)NL(3)1 1 ( ),±1,±1

say which are physically negligible for the case of unmagnetized plasma.

These quantities are all evaluated and discussed in section 3. 5 and Appen-

dix A5. The low-frequency self-correction

*=NL(3)
E 1 E I F(0), 1,-i

plays in any case no physical role and can be omitted. With these simpli-

fications (12) acquires the form (13). The physical significance of the var-

ious submatrices of (13) and their connection with various classes of insta-

bilities will be discussed in subsections 3. 4. 2-3. 4. 6 below.
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The consistency condition for the set of coupled equation (13) is that

the determinant of the be zero. Indeed, the condition that this determinant

be zero constitutes precisely the dispersion relation for the coupled sys-

tem. However, the solution of the full 9 X 9 determinantal equation will

not be attempted. Rather the approach will be to use physical arguments

to break (13) in several different ways.

Study the form of (13) further in the light of its intended use for de-

scribing laser-driven instabilities. Consider the physical meaning of the

various submatrices into which the large matrix on the left-hand side is

partitioned. It is profitable to do this even though these submatrices have

not yet been explicitly evaluated.

3.4.2 CONNECTION WITH UNCOUPLED MODES

The submatrices (D(}, n = 1, 0, -1, are, we recall, just the linear

dispersion tensors evaluated at the wavevectors and frequencies (kn w ()

Indeed, were the laser pump to be switched off, the coupled equation (13)

would revert to a set of 3 separate uncoupled equations of the form

'LIN-(n) = 0 n = 1, 0, -1 3. 4-(14)

This is to be expected physically since in the absence of the laser pump

there is no coupling between sufficiently small (linear) perturbations and

therefore no reason for their dispersion relations to differ from the linear

dispersion relation of the plasma. Also, because of the choice of bases

(4)-(6), the submatrices {D} not only lie on the diagonal of (13) but are

themselves diagonal. Thus the vectors {E (n}, n = 1, 0, -1, appearing in

(13), display the electric field of each pump-coupled perturbation as a

12A. 
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linear superposition of the corresponding pump-free normal-mode polari-

zations. For the unmagnetized plasma, as mentioned in section 2. 7 and

made explicit by (4)-(6), this can be done just from knowledge of the { k(n)}

n = 1, 0, -1, and it does not matter that the {w(n)} of the actual pump-

coupled perturbations may not lie on the corresponding pump-free normal

modes.

3.4.3 CONNECTION WITH UNMODIFIED INSTABILITIES

Consider the submatrices whose existence depends on the 2 nd-order

nonlinear conductivity of the plasma, and which involve only the fundamen-

tal of the laser. They are of the forms

NL(2) NL(2) . 4-(15)
1 (n), 1 1 (n), -13 4 (5

They lie just off the leading diagonal of (12), and describe the simplest non-

trivial coupling brought about by the laser pump. Indeed, since they involve

only 2 nd -order currents and involve no space-time derivatives, they fall

within the simple coupling-of-modes theory of Section 2. 4 as well as within

the generalized-coupling-of-modes theory of Section 2. 5. The submatrices

of type (15) together with the submatrices {D (n)} suffice for the descrip-

tion of the so-called "unmodified" laser-driven instabilities. These un-

modified laser-driven instabilities arise as follows. First assume that

the laser pump has been switched off completely. Then (13) decouples

into the 3 vector equations (14). Now there exist values of (k( 0 ), w( 0 )) such

that two adjacent members of the set of 3 vector equations (13) have non-

trivial solutions simultaneously. That is to say, there exist values of
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(k(0), w(o)) such that for some choice of the polarizations A and B

upshifted
branch
(D(_ 1))BB = 0

w

N
N

N

Points labelled I are initial loci of
unmodified instability

Figure 3. 4. F1

(D(0) )AA EA(0) = 0

(D(_ 1))BBEB(-1) = 0

EA(0)

EB(-1) # 0

3. 4-(16)

3.4-(17)

These values are found at points in the wavevector-frequency domain where

a branch of the linear dispersion relation intersects a branch of the same

linear dispersion relation upshifted by the pump wavevector and frequency,

as shown in Figure Fl. Note that it makes no sense to use the pump wave-

vector and frequency in locating these intersections, even though the pump

is supposed to be switched off. This is because these intersections become

the initial loci of instability as the laser-pump field is brought up from

zero to some finite level. This is not to say that the problem of temporally
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or spatially inhomogeneous pump is being attacked here. Rather the dis-

cussion is one of the behavior of solutions of the homogeneous problem,

i. e., the roots of (13), as a function of the constant laser amplitude E .

Returning to (16) and (17), consider what happens to the double root in

(k(0), w(o)) as EP, the laser field, is increased from zero to some very

small value. The double root splits into 2 closely adjacent roots. There

is no need to find these roots from the full 9 X 9 equation (13); they can be

found approximately from the 2 X 2 equation

(D(0) )AA Ex(F 1))ABx EA(O) 0

E FD E 0

E x(0), -1 BAx (-1)BB B(-1) )

3. 4-(18)

Equating the 2 X 2 determinant of the matrix to zero, one obtains the dis-

persion relation for the corresponding "unmodified" laser-driven instabil-

ity. This dispersion relation is valid for sufficiently low values of the

laser-pump field Exi , and correspondingly low growth rates of the coupled

perturbations. Higher values of the laser-pump field Exi lead to higher

growth rates of the coupled perturbations. When (D(0) )AA describes a low-

frequency ion-acoustic mode, the growth rate, can be comparable with the

normal-mode frequency. Then the approximate equation (8) no longer de-

scribes the coupled perturbations accurately, and the unmodified laser-

driven instability must be replaced by the "modified" laser-driven insta-

bility. The modified laser-driven instabilities incorporate the effects of

of 3rd-order nonlinear conductivity, to which we now turn.
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3.4.4 CONNECTION WITH MODIFIED INSTABILITIES

Consider the submatrices of (13) whose existence depends on the 3 rd_

order nonlinear conductivity of the plasma, and which further lie on the

leading diagonal of (12). These are of the form

E E IF (n) 3. 4-(19)

These constitute pump-induced self-corrections to the linear dispersion

tensor at the perturbation wavevector and frequency. Their importance

for laser-driven instabilities arises as follows. Take a low-frequency

perturbation described by the ion-acoustic scalar dispersion function

(D( 0 )) SS, coupled to a high-frequency perturbation described by (D(_ ) BB'

Iw(o) < w(1)I 3. 4-(20)

Let the pump field be sufficiently strong so that the growth rate of the

coupled perturbations is comparable to the ion-acoustic frequency, but

still much less than the frequency of the normal mode from which the high-

frequency perturbation stems. Then (D(0) )SS is large, and the pump-

induced self-correction to (D(_ 1))BB must be included in (18);

(D E F NL(2)E0
E(0) SS E (-(1),1 SBx EA(O) 0

* NL(2) * NL(3)
y(0),-1 BSx (D(_)BB+EXE (F(1,- 2

Equating the 2 X 2 determinant of the matrix to zero, one obtains the dis-

persion relation for the corresponding "modified" laser-driven instabil-

ity.
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3.4.5 CONNECTION WITH THIRD-ORDER INSTABILITIES

Finally, consider the submatrices which occupy the upper-right and

lower-left entries in the partitioned matrix (12). These contain terms

whose existence depends on the 2 nd-order nonlinear conductivity of the

plasma, and which involve the 2 nd-harmonic component of the laser pump.

They also contain terms whose existence depends on the 3rd-order nonlin-

ear conductivity of the plasma, and which involve the laser fundamental.

The importance of the submatrices for laser-driven instabilities arises as

follows. Start as before from the uncoupled equations (13) which govern

the perturbations in the absence of the pump. There exist values of (k(0)'

w0) ) such that the two extreme members of the set of 3 vector equations

(13) have nontrivial solutions simultaneously. That is to say, there exist

values of (k(0), w(0)) such that for some choice of the polarizations A and B,

(D(1))AAEA(1) = 0 EA(l) * 0 3.4-(22)

(D()_ 1 )BBE B( 1) = 0 E B(-1) # 0 3.4-(23)

These values are tound at points in the wavevector-frequency domain where

a branch of the linear dispersion relation downshifted by the pump wave-

vector and frequency intersects a branch of the linear dispersion relation

upshifted by the pump wavevector and frequency, as shown in Figure F2.

Again these intersections become the initial loci of instability as the laser-

pump field is brought up from zero to some finite level. Again the discus-

sion implies no temporal or spatial inhomogeneity, but merely concerns

the behavior of solutions of the homogeneous problem (12) as a function of

the laser field E 1 . Returning to (22) and (23), consider what happens to
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the double root in (k(0), w( 0 )) as E1 , the laser field, is increased from zero

to some very small value. At first one might think that the roots could be

found approximately from the 2 X 2 equation

(D~~~ )AE NL(3))E0(D(1) )AA E1x 1),1,1 )ABxx EA() 0

E *2 4NL(3) (D )E 01x(1),-1,-1 BAxx (-1) BB EB(- 1)) )

by analogy with (17). However, since this direct coupling is via matrix

2elements of order EI, it is of the same order as indirect coupling via the

intermediate low-frequency wave. Further it is of the same order as the

self-corrections to (D(1) )AA, (D _ 1))BB. Thus even for very small laser-

pump field intensities, the course of the double root (k( 0 ), w( 0 )) of (22) and

(23) can only be followed using the equation (24). Equating the 3 X 3 deter-

minant of the matrix in (24) to zero, one obtains the dispersion relation for

the corresponding laser-driven instability, which is "intrinsically 3 rd-

order" in that 2nd-order nonlinear conductivity will not suffice to describe

it even at very low laser-pump field amplitudes. Note that the low-

frequency wave need not lie on or near the ion-acoustic dispersion relation.

3.4.6 RELATION TO LATER SECTIONS

The preceding discussion provides the physical motivation for evalu-

ating the submatrices of (13) in detail. In section 3. 5, the general forms

for warm-fluid coupling coefficients are used to evaluate the submatrices.

Appropriate physical approximations are used to eliminate terms not im-

portant for laser-driven instabilities in unmagnetized plasma, and thus
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justify the replacement of (12) by (13). The details are relegated to Appen-

dix A5. The remaining physically important parts of the submatrices are

evaluated again in section 3. 6 by a quicker, but less general, alternative

method. The self-consistent pump-wave equilibrium is modeled by a sim-

plified oscillating equilibrium with harmonic content removed. The fluid

equations are linearized about this oscillating equilibrium and these linear-

ized fluid equations are used directly to find the behavior of small pertur-

bations in the presence of the pump wave.

The preceding discussion has provided a rather general division of

laser-drived instabilities into unmodified instabilities, modified instabili-

ties, and intrinsically 3 rd-order instabilities. This general division will

be used as a guide in section 3. 8, where specific instabilities will be char-

acterized by the polarization, wavevector and frequency of the interacting

waves. The corresponding reduced matrix equations, of types (18), (21),

or (24) as the case may be, will furnish the determinantal equations which

constitute the dispersion relations for the specific instabilities.

3. 5 Coupling Coefficients from General Formulas of Section 2. 8

The submatrices of the partitioned matrix equation 3. 4-(13) will here

be evaluated by using the general formula 2. 8-(27) for the linear dispersion

tensor, the general formula 2. 8-(43) for the 2nd-order nonlinear coupling

coefficients, and the general formula 2. 8-(52) for the 3 rd-order nonlinear

coupling coefficients. Any intermediate quantities appearing in these for-

mulae will be calculated from other equations of section 2. 8 as required.

The formulae 2. 8-(27, 43, 52) are used omitting the steady magnetic field

B 0 and omitting the drift velocity v 0 . Only the electron contribution to



the nonlinear coupling coefficients is included, although both electron and

ion contributions to each linear dispersion tensor are included, at least

initially.

Consider the entries in the partitioned matrix 3. 4-(13) in increasing

order of nonlinearity. Because of the choice of polarization bases 3. 4-

(4, 5, 6), the linear dispersion tensors appearing in 3. 4-(13) acquire a diag-

onal representation, with entries given by 3. 4-(2, 3);

2 2
(n) w p 0

EOW(n) T W(n)

2 2

~ LIN 0 w(n) +p 0
D(n) 2 01-E

()EEw(n) 7T W(n)

2

0 0 p --
2 2 2

T w(n) -Y k(n)vT

3. 5-(1)

The 2nd-order nonlinear entries in 3. 4-(13) are evaluated from 2.8-(43)

with the simplifications that B 0  0, v 0 = 0, and that na/n 0 = 0 for any wave

ea polarized transversely to its own direction of propagation. Taking only

the electron contributions, one obtains



135

E (F NL(2)X1 (n), 1 ABx
mnn

0

~E 0

A(n+1)
VB(n) Vx1

nB(n)
+ v

n 0 A (n+ 1)

mnn
0

~ E0

A(n-1)

na rn B(n)

3. 5-(2)
jV

x1

nB(n)
+ v -V_

n 0 A(n- 1) x1
3. 5-(3)

To calculate the normalized velocities {v} and densities {n}, refer to

equations (45)-(50) of section 2. 8. In the absence of B0 and v0 , the dimen-

sionless mobility tensor M as well as the dimensionless dispersion tensor

is diagonal with our choice of basis polarizations. Thus for any unit

basis polarization vector eCc, say, the linear response vCc lies in the

direction of eCc and satisfies

iq -

vCc mw Cecc

iqw

Inw2 2 2 \k2
m wc -kc T

-3~ (I

3.5-(6)

3. 5-(7)

3. 5-(8)nCC =0

iqk

M( w2 k 2 v2\
m wc -yc T

I C 3. 5-(9)

LIND

E* (FNL(2)
E1 F(n), -1) ABx

L k
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Therefore the dot products of velocities occurring in (2) and (3), which

embody the effects of the 3-dimensional geometry of the problem, trans-

late immediately into dot products of polarization vectors. Therefore

those submatrices in 3. 4-(13) which describe second-order coupling can

be written down at once. The second-order coupling which involves only

the fundamental of the laser pump is, from (2) and (3), described by the

submatrices (10) and (11).

The 3 rd order nonlinear entries in 3. 4-(13) are evaluated from 2. 8-

(52) taking advantage of the facts that B0 = 0, and that na/n 0 = 0 for any

wave ea polarized transversely to its own direction of propagation. Also

no nonlinear response exists with both zero wavevector and zero frequency.

The details of the calculation have been relegated to Appendix A5.

The results for the submatrices appearing on the leading diagonal of

3. 4-(13) are shown in (12). This expression is a good approximation to the

coupling quantity

E 2 NL(3)
1E (t l), 1, -1

provided that the phase velocities of the perturbations and the thermal

velocity of the electron together satisfy the inequalities 3. 3-(29)-(32).

These inequalities are in fact satisfied for all laser-driven instabilities

of interest. Note that these inequalities do not necessitate a phase-velocity

disparity between E(0 ) and E(_ ,. Use is made of 3. 3-(29)-(32) to show

that there does, however, exist a phase-velocity disparity

w(O) w(±2) 3..5-(13)
k(0) k(t2)



and an inequality

v T< w(,2) 3. 5-(14)

Then processes which involve the high frequency of the plasma at (k(,2)'

w(±2)) can be neglected in calculating (see Appendix A5) the pump-induced

self-corrections to the linear dispersion tensors. The result is the expres-

sion (12). These submatrices on the diagonal of 3. 4-(13) comprise the

pump-induced self-corrections to the linear dispersion tensors at the per-

turbation wavevectors and frequencies. Their importance for laser-driven

instabilities was discussed in subsections 3. 4. 4 and 3. 4. 5.

The submatrices in the top-right and bottom-left corners of 3. 4-(13)

comprise pump-induced coupling between perturbations separated by twice

the pump wavevector and frequency. Their role in laser-driven instabil-

ities was discussed in subsection 3. 4. 5. These submatrices are calculated

in Appendix A5 and the results are shown in (15) and (16). Again it can be

shown (see Appendix A5) that the expressions displayed in (15),(16) are

good approximations to the coupling quantities

E2-NL(3)1 (-1), 1, 1

*2 NL(3)
1 (1),-1, -1

Again one uses only the inequalities 3. 3-(29)-(32) which govern laser-

driven instabilities. The processes which involve the high-frequency re-

sponse of the plasma at (k±2, w,2) are neglected in calculating the pump-

induced coupling between E(-,) and Em. This results in the expressions
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(15) and (16).

The physically useful part, then, of the partitioned matrix equation

3. 4-(12) is the partitioned matrix equation 3. 4-(13). The equation 3.4-(13)

describes perturbations coupled together by the laser tundamental via

processes involving the plasma response at (k( 0 ), w(0 )) and atk 1) '

Present in the original equation 3. 4-(12), but omitted on physical grounds,

are coupling via the laser 2nd harmonic, and coupling via processes in-

volving the plasma response at (k,2, w, 2 ) and (k(±2),w(±2)) The physical

grounds in question are the approximations 3. 3-(29)-(32) which we repeat

for emphasis:

w(0) < c
k(0)

vT < c

vT (< t

w(0) - _w___

k(0) k(±1)

The last of these does not necessitate a phase-velocity disparity between

perturbations E(0)' (-1), unlike the case of the theory of Kaw, White,

et al. Also present in the original equation 3. 4-(12) but omitted from

(30) is the self-correction to the low-frequency perturbation. This low-

frequency self-correction does not contribute to the structure of the laser-

driven instabilities, as was discussed in the latter part of section 3. 4.

Equation 3. 4-(13), describing the physically important part of the



coupling between perturbations brought about by the laser pump, can also

be derived from a simpler approach. This approach is set out in section 3.6

and involves expanding the fluid equations directly about a simplified ver-

sion of the oscillating equilibrium set up by the pump. This approach is

worth setting out for the sake of comparison with the present section and

with other treatments of laser-driven instabilities appearing in the litera-

ture.

Whether equation 3. 4-(13) be arrived at from the general forms for

nonlinear coupling coefficients, as in this section, or by expanding about

an oscillating equilibrium, as in section 3. 6, it has one very convenient

feature. Those submatrices within the partitioned matrix which describe

nonlinear coupling each have zero in the row and column describing coupling

to the polarizations eN(n). The polarization components EN(1)' N(0)'

EN(-1) are therefore decoupled. Equation (30), which is a 9 X 9 matrix

equation, factors into the 3 uncoupled equations

(D(n) NNEN(n) = 0 n = 1,0, -1 3. 5-(31)

which describe electromagnetic perturbations polarized perpendicularly

to the laser pump, and a 6 X 6 matrix equation. The 6 X 6 matrix equation

describes laser-induced coupling between electrostatic perturbation and

electromagnetic perturbations polarized as nearly as possible along the

laser polarization direction. This reduction to a 6 X 6 equation was the

motive for choosing the polarization vectors as in 3. 4-(4, 5, 6).



3.6 Coupling Coefficients from a Differential Equation Approach

In section 3. 5 certain coupling coefficients, important for laser-driven

instabilities, were evaluated from their general forms found in section 2.8.

In this section the same coupling coefficients are found by a somewhat

more ad hoc approach, akin to certain other treatments of laser-driven

instabilities appearing in the literature. This more direct approach yields

the same values for the coupling coefficients to within the physical approxi-

mations 3. 3 -(29) -(32).

The "differential equation approach" to deriving coupling coefficients

proceeds as follows. The steady magnetic field and the drift velocities

are set to zero ab initio. The warm-fluid equations 2. 8-(12, 13, 14)

an a8 .
+ - - nv = 0 3.6-(1)
8x

- 2 y -2 q
8a+v + n _n E + v X B) 3.6-(2)

t 0 0 m

J = qnv 3.6-(3)

are expanded directly about a simplified version of the oscillating equilib-

rium set up by the pump. A small perturbing electric field at one wave-

vector and frequency (k (n) w(n) ) then excites nonlinear currents at (k ,

w(n) ' (n 1W ), (n 2), w(n.2)), and so on. These nonlinear cur-

rents are found directly and yield the coupling coefficients of 3. 5. More

strictly, they yield the coupling coefficients

E NL(2) E*NL(2) E 1 2 FNL(3) 3.6-()
1 (n), 1 ' I1 (n), -1 1 (n), 1, -
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exactly; they yield for the coupling coefficients

1 E2 FNL( 3 )
2 1 (-1), 1, 1

+ E tNL(2)
2 (-1),2'

IE*2NL(3)
2 1 (1), - 1, 1 + EIFNL(2 )

2 (1),-2

only their physically important parts, namely, in the notation of section

3. 5,

1 E 2FNL( 3 )
2 1 (-1), 1, '

* 2NL( 3)E1 F( 1), -1, 1

These results are satisfactory within the physical approximations 3. 3-(29)-

(32). They suffice for the description of laser-driven instabilities embodied

in equation 3. 4-(13), which is in fact the description to be used in later

sections.

The oscillating equilibrium set up by the pump is approximated as fol-

lows. The steady magnetic field and the drift velocity for each species are

taken to be zero. The electric field of the laser is approximated by its fun-

damental component (cf. 3. 3-(1))

ik- x - iw I t
EFUND (xt) E1 e + complex

conjugate

The resultant quivering motion of the electrons of the plasma is approx-

imated by its fundamental component (cf. 3. 3-(2))

ik x - iwI t
e + complex

conjugate

The fundamental component of the quivering motion is itself approximated

by the linear response to the fundamental component of the field (cf. 3.3-(3))

3. 6-(5)

3. 6-(6)

3. 6-(7)

3. 6-(8)v x, t) = V
FUND 1
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iqe E

m w
3.6-(9)

The warm-fluid equations (1), (2), (3) are linearized about the approximate

oscillating equilibrium (7), (8), (9) just as if it were the exact oscillating

equilibrium. The resulting small-signal equations are, for each species

in the plasma,

anSMALL

at + - (nSMALL FUND +n 0 SMALL) =0

+ VSMALL
FUND + VFUND

aVSMALL

ax

2
+ YVTO

+ n0

anSMALL

8x

q
m (SMALL +VSMALL XBFUND +vFUND XBSMALL) 3.6-(11)

J = q(nSMALL FUND+n0 vSMALL) 3.6-(1

Here the non-steady magnetic fields are subsidiary quantities defined in

terms of electric fields by

-BFUND FUND

-BSMALL = VX SMALL

2)

3. 6-(13)

3. 6-(14)

The differential equations (10), (11), (12) describe the response of the pump-

modulated oscillating medium to a small perturbing field. In particular,

a small perturbing field E (n) at one wavevector and frequency (k (n) w(n))

excites a response in the form of currents at ( (n)w(n ), (E(n±, w(n± )'

(k , w(n 2)), and so on. These currents are calculated in Appendix A6,

SMALL
at

3.6-(10)



The perturbation field E ) gives rise to a

first-order current at (k(n), w )

i-!
(n)

E0 W(n)

2w
p

2
W(n)

3.6-(15)
(n)

The perturbation field E (n) (n)' w(n)), together with the positive frequency

component of the pump, gives rise to a 2nd-order current at (k"(n+ 1)' w(n+ 1):

2w
p

w(n) w(n+1)

2 )
Tk(n+ 1)k.(n+1)(1 + 2

w(n+) ykn2 2
(n+i1) VT

(n+1) 1

w(n+1)

v T k(n) (n)

1+ 2 - k 2 )
w(n) k(n) vT

The perturbation field E (n)k (n)' w(n) together with the negative frequency

component

E w(n), -
IE w W( -1

of the pump, gives rise to a 2nd-order current at (k (n-1),w(n-1)

2w
p

W(n) (n-i

1 k(n) k(n-1) 1

w(n) w(n+1)
1+

yvTk (n) k(n)

2 - yk 22
w(n) (k~vT

E(n) (n),w(n) ) and the positive-frequency pump component acting twice

1(n), I
E w

I (n)
w(n)

E (n)

3. 6-(16)

Q1 +
2v -

YVTk(n-

2
w(nl)

1)k (n-1)

kn2 2
(n-i) T

E(

3. 6-(17)

and the results are as follows.



give rise to a third-order current at (k(n+2)' w(n+2 )

2
w

p

W(n)W(n+2) (1 +
Y v T(n+2) (n+2)

2 2 2
w~+)- yk(n+2 ) VT xi2W(n+) - ykn2 

2
k(n+l)vT

kk2 - (n+2)

k~n1) +w(n+2)

2 -
YvT ( k(n+ 1)

2 (n)

1 w(n)

k (n)

+ V wn+1) (k(n+1) * 1 W()

k(n+2)

+ 2

2(- -
Yv T k(n) k(n

(n+1) (k(n+1)

3.6-(18)

E ( w ) and the negative-frequency pump-component acting twice

give rise to a third-order current at (E(n-2) w(n-2))

(n) -1,-i

EOw(n-
2 )

2
w

p

wfl(n ~2)

2 -- -1
YvTk(n-

2 ) k(n-2)

2 - yk n-2
W(n-2) k(n-2)Vq~

(n-2) 
2

w Yv T(k(n-1)
W(n-2)

I
2

* 1

2
W(- - yk n - 2

(- vT

(n)

(n)

JC,
+ V w(n-1) k(n-1)

k (n-
2 )

+ w w(n-1)
w(n- 2)

n)

(n)

n-1) - j Yj- 1+

3. 6-(19)

2- -
YTk k(n)

2 - 2 _2 (n)

iJ(n), 1, 1

Eo(n+
2 )

-E(n)
) V

V k(n-1 1 +
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Z (n) w ) and the positive- and negative-frequency pump components

acting in succession give rise to a third-order current at (k , w ) which

forms a self-correction to the perturbation:

iJ(n) 1,-

0 (n)

2w

2
W(n)

1+

V 2 -* +
1k(n-1) 1+

2 - -YvTk(n) k(n)

2 2 2
w -yk vT

(n)

W(n)

2 -
VT (k (n-1)

k(n)

-1 /w n
+V w(n-1) k

2 2 2
w(n- 1 ) y(n-1)VT

k

(n)

1

2 y2 2
(n+1) yk(n+)VT

- k2 -

1k(n+1)V 1

+ V w (n+1)(k (n+1)

2 - -YvT k(n) k(n)

+ 2 2
w(n) - yk v

k () k(n(n) (n)

1w( + w n

E(n)

w(n+1) k(n+1)

3. 6-(20)

In section 2. 7, the coupling coefficients corresponding to second- and

third-order nonlinear currents were defined by equations 2. 7-(8) and

2. 7-(9), respectively. Substituting (16) into 2. 7- (8), one arrives at an

expression for the matrix of coupling coefficients

k )

+wW(n)

- (n)

W(n)
Tv \k(n+ 1) 1 /(k"n+1)k



E 1 F(n), 3. 6-(21)

which is identical to that of 3. 5-(10). Similarly, substituting (17) into

2. 7-(8), one arrives at an expression for

E F(n), 3. 6-(22)

which is identical to that of 3. 5-(11). Moving on to the third-order non-

linear currents, one may substitute (18) into 2. 7-(9), and set n = -1. The

result is identical to the expression for

A
1 2=NL(3)E1() 3. 6-(23)

set out in 3. 5-(26). The expression 3. 5-(26) was obtained from the general

coupling coefficient by omitting the effects o the 2 nd-harmonic electric

field and the 2 nd-harmonic quivering velocity set up by the laser pump.

The agreement between 3. 6-(23) and 3. 5-(26) is thus to be expected, since

in this section the oscillating equilibrium set up by the laser was simpli-

fied by omitting the 2 nd harmonic of the electric field and the 2nd harmonic

of the quivering velocity. Similarly, one may substitute (19) into 2. 7-(9),

and set n = 1. The result is identical to the expression for

_1 E*2-NL(3)
2 E1 F(1), -1 1. -(4

set out in 3. 5-(27). Again the identity occurs because both the expression

3. 5-(27) and the differential-equation approach of this section ignore the

self-consistent 2 nd-harmonic electric field and 2 nd-harmonic quivering

velocity present in the pump wave. Finally one may substitute (20) into

2. 7-(9). The result is identical to the expression for
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E F(n) 1,-i 3. 6-(25)

set out in 3. 5-(15).

In this section we have determined the extent to which an oscillating-

equilibrium treatment can recover the results of generalized-coupling-of-

modes theory. An oscillating-equilibrium in which the 2nd-harmonic

electric field and quivering velocity are neglected can turnish 3 rd-order

coupling coefficients only if the neglect is justified on physical grounds.

This is so for the case of unmagnetized plasma and electromagnetic pump,

because in this case all pump-driven instabilities satisfy the kinematic

inequalities 3. 3-(29)-(32). This in turn is because the normal-mode struc-

ture in unmagnetized plasma is relatively simple. In magnetized plasma

the normal-mode structure in the absence of the pump is much richer than

for the unmagnetized case. Thus the introduction of a pump wave gives

rise to a much greater variety of wave-wave interactions than in the un-

magnetized case. Some of these wave- ave interactions will constitute

pump-driven instabilities, and some of these pump-driven instabilities

will involve 3 rd-order nonlinear conductivity. Because of the rich struc-

ture in (i, w) space of the interacting waves, there will occur pump-driven

instabilities involving 3 rd-order nonlinear conductivity for which no kine-

matic inequalities that would justify neglecting the 2nd-harmonic content

of the pump can be found. For such instabilities in magnetized plasma,

then, the treatment which starts from a simplified oscillating equilibrium

may not be valid. In particular, any treatments of magnetized-plasma

analogues of the oscillating-two-stream, self-focusing, modified-decay

or modified-Brillouin instabilities which start from an oscillating
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equilibrium must either include 2fnd-harmonic components in that pump

equilibrium or explain on kinematic grounds why they can be neglected.

Returning to the unmagnetized-plasma case, the conclusion of this

section is that the physically important terms, describing the behavior of

small perturbations coupled by a laser pump in unmagnetized plasma, can

be derived for illustrative purposes from an oscillating equilibrium treat-

ment as well as from the general results of section 2. 8. In the next sec-

tion, the results of this and the previous section will be assembled for

easy reference.

3. 7 Coupled Equations Incorporating Physical Approximations

In section 2. 8 the warm-fluid model of a drifting, magnetized plasma

was used to derive the coupling coefficients which characterize coherent

wave-wave interaction in general. In section 3. 5 these general results

were specialized to laser-driven instabilities in drift-free, unmagnetized

plasma. This specialization allowed the kinematic inequalities (3. 3-(29)-(32))

w(0)
k <c 3. 7-(1)

(0)

vT " c 3. 7-(2)

Tv T<< kii 3.7-(3)

w(0) w(±i) 3. 7-(4)

k(0) k(tl)

to be used. The behavior of the pump-coupled perturbation fields was then
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given by 3.4-(13). The form of 3. 4-(13) was rederived in 3.6 by directly

expanding the warm-fluid equations about a simplified version of the oscil-

lating equilibrium set up by the laser pump. In this section we set out

3. 4-(13) explicitly, taking advantage of the fact that it is effectively not a

9 X 9 but a 6 X 6 equation, as discussed at the end of section 3. 5. Further,

we neglect the low-frequency electromagnetic response of the plasma at

(k(0), w(0)) The form that 3.4-(13) assumes is then the 5 X 5 matrix equa-

tion written down formally in (5) and more explicitly in (6). Of course,

no attempt will be made to solve this matrix equation directly for the re-

lation between k(0) and w(0). Rather, the discussion in the latter part of

section 3. 4 will be used as a guide in extracting submatrices from (5)

which will be identified with specific instabilities. This extraction of spe-

cific instabilities will be performed in section 3. 8.

3. 8 Isolation of Specific Instabilities from the Full

Determinantal Equation

Chapter 2 provided a general framework for talking about coherent-

wave-wave interactions in nonlinear media. A process of specialization

led up to a discussion in the latter part of section 3. 4 on finding and clas-

sifying laser-driven instabilities in drift-free unmagnetized plasma. That

discussion will be amplified in this section. Details of the polarizations,

wavevectors, and frequencies of the interacting coherent waves will sub-

divide the broad categories of instabilities which were defined by 3. 4-(18),

3. 4-(2 1), and 3. 4-(24), respectively. Those 3 broad categories - simple

parametric instabilities, modified parametric instabilities, and intrinsically

3 rd-order instabilities - will in this manner furnish between them all the
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well-known laser-driven instabilities.

In section 3. 4 the behavior of small perturbations coupled together by

the pump was shown to be described by a set of coupled equations, written

down in matrix form as 3. 4-(13). The consistency condition for this set

of coupled equations was that the determinant of the matrix in 3. 4-(13)

should be zero. Indeed, the condition that this determinant be zero con-

stituted the dispersion relation for the coupled system. However, the

solution of the full 9 X 9 determinantal equation was not attempted. Rather,

the behavior of the roots of the full determinantal equation as a function

of laser-pump intensity was considered. It was shown that the behavior

of each root could be found approximately from an appropriately reduced

set of coupled equations. A root which could be found from a reduced ma-

trix equation of type 3. 4-(18) was termed a simple parametric instability.

Similarly, roots found from reduced equations of type 3. 4-(21) and 3.4-(24)

were termed modified parametric instabilities and intrinsically third-order

instabilities, respectively.

In this section we proceed in a similar manner, but specify in more

detail the polarizations and frequencies of the interacting waves. The

behavior of small perturbation coupled together by the pump is here

represented not by the 9 X 9 matrix equation 3. 4-(12) but the the 5 X 5 ma-

trix equation 3. 7-(5). This preliminary reduction is justified physically

in section 3. 5. Again no attempt is made to solve the full 5 X 5 determi-

nantal equation. Rather, the behavior of the roots of 3. 7-(5) as a function

of laser intensity is considered. First set the laser-pump electric-field

intensity to zero in 3. 7-(5). Locate the double roots of the determinantal

equation. As the laser-pump intensity is brought up from zero, each
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double root splits, and the behavior of each root pair as a function of pump

intensity may be followed approximately. This is done using for each root

pair the appropriate reduced matrix equation, just as described in section

3. 4. The details follow.

The 9 X 9 matrix equation 3. 4-(12) described the behavior of 3 electric-

field perturbations with wavevectors and frequencies separated by the pump

wavevector and frequency. Each of the 3 perturbations E had an electro-

statically polarized component, of amplitude Es(n), an electromagnetically

polarized component perpendicular to the pump field, of amplitude EN(n)'

and an electromagnetically polarized component at the smallest angle to

the pump field, of amplitude E M(n) The equation 3. 4-(2) described how

these 9 electric-field components were coupled together by the laser pump

wave. To reduce 3.4-(12) to 3.4-(13), physical approximations were intro-

duced, based on the normal-mode structure of unmagnetized plasma and

the consequent restrictions on the phase velocities of interacting waves.

Within these approximations, the electromagnetically polarized compo-

nents perpendicular to the laser field, of amplitude EN(n), were decoupled.

In 3. 7 the other electromagnetic component of the low-frequency perturba-

tion, EM(0), was dropped and the resulting 5 X 5 equation 3. 7-(5) forms

the basis of the present section. Interesting solutions of 3. 7-(5) have not

all of the coupled perturbation components EM(M)I E , ES(0), EM(1)'

ES(_,) equal to zero. For interesting solutions, therefore, the determi-

nant of the 5 X 5 matrix must be zero:

IMI = 0 3.8-(1)

where
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M = M(E 1 ) 3. 8-(2)

is the 5 X 5 matrix in 3. 7-(5), with the emphasis on its functional depen-

dence on the laser-pump electric-field intensity E1 . For zero pump-field

EI, (1) reduces to the product

(D( MM(D( ) SS(D(0) )SS(D(_ ))MM(D (_) ) = 0 3.8-(3)

The double roots of (3) will be located in turn and the behavior of the cor-

responding roots of (1) followed as a function of E .

The equation (3) has a double root at any value of (k( 0 ), w( 0 )) such that

(D(0) SS = 0 3.8-(4)

and

(D(_ 1))MM = 0 3. 8-(5)

simultaneously. This has an immediate physical meaning in terms of the

linear dispersion diagram describing the normal modes of the unmagnetized

plasma. Equation (4) states that the wavevector and frequency

(k), w(0)

satisfy either the ion-acoustic-wave dispersion relation or the electron-

plasma-wave dispersion relation. Equation (5) states that the wavevector

and frequency

(- 1), w. _( 0 ), w( 0 )) 1 , wi)

satisfy the electromagnetic -branch dispersion relation.

How is one to locate the values of (12( 0 ), w( 0 )) which satisfy (4) and (5)



simultaneously, bearing in mind that k( 0 ) is a 3-dimensional vector and

that ki, the pump wavevector, is nonzero? The values of (k (0), w( 0 )) sat-

isfying (4) lie on a 3-dimensional hypersurface, H(0)s , say, in the 4-

dimensional (k, w) domain. This hypersurface H(0)SS has 4 sheets, 2

sheets comprising the ion-acoustic branch and 2 sheets comprising the

electron-plasma branch. Each branch has 2 sheets because positive and

negative frequencies are included. The values of (k( 0 ), w( 0 )) satisfying (5)

lie on another 3-dimensional hypersurface, H( 1)MM, say, in the 4-

dimensional (k, w) domain. This hypersurface H(-1)MM has 2 sheets,

comprising the electromagnetic branch upshifted by the pump wavevector

and frequency (k, w ). The values of (k(0 ), w(0)) which satisfy (4) and (5)

simultaneously lie in a 2-dimensional manifold which is the intersection of

the 3-dimensional hypersurfaces H(0)SS and H(-1)MM. These geometrical

objects are difficult to visualize. The 2-dimensional and 3-dimensional

plane cross sections of the 4-dimensional (k, w) domain are useful in this

regard. Such cross sections will be displayed in Chapter 4 as an aid to

understanding the 3-(space) -dimensional dispersion relations for specific

instabilities.

Now follow the behavior of any double root, satisfying (4) and (5) for

E1 = 0, as the magnitude of E 1 increases from zero in (1) and (2). From

the discussion in section 3. 4, we know that the pair of roots into which the

double root splits can be found approximately from a reduced determinantal

equation. Substituting B = M in 3.4-(18) we deduce
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UNMODIFIED BRILLOUIN AND UNMODIFIED RAMAN INSTABILITIES

(D )E(F NL(2)
(0) SS E1 F(-1), 1 /SMx

= 0 3.8-(6)
* (FNL(2))

E F (0), -1MSx (I )MM

Suppose the double root (4), (5) was chosen so that (K(0 ), w( 0 )) lay on the

ion-acoustic branch and (k( _ ,w ) ) on the electromagnetic branch for

E = 0. Then the pair of roots of (6), into which the double root splits for

small nonzero E 1 , describe the unmodified Brillouin instability. Suppose,

on the other hand, that the double root (4), (5) was chosen so that (k(0), w(0)

lay on the electron-plasma branch and (k _17 w1 ) on the electromagnetic

branch for E1 = 0. Then the pair of roots of (6), into which the double root

splits, describe the unmodified Raman instability.

Now follow the behavior of the root pair as the magnitude of the laser

pump field EI is increased further. Suppose the growth rate of the insta-

bility becomes of the order of w(0), but still much smaller than w(_,).

This can happen for the Brillouin instability, and in highly underdense

plasma for the Raman instability. Then, from the discussion in section

3. 4, we know that the root pair can be found approximately from the re-

duced determinantal equation (cf. 3. 4-(21) with B = M).



MODIFIED BRILLOUIN AND MODIFIED RAMAN INSTABILITY

(D )E (F NL(2)
((0) SS E F(-1), 1 / SMx

=0
* NL( 2 ) i2 /NL(3) )E F(0), -1 /MSx (D (-1),1,-1 /MMxx

3. 8-(7)

This describes the modified Brillouin instability or modified Raman insta-

bility, depending on the region of wavevector-frequency space chosen for

h (0), w(0)(
The equation (3) has a double root at any value of (k (0), w(0) ) such that

(D (0) )Ss= 0 3, 8-(8)

and

3.8-(9)(D_ = 0

Equation (8) states that the wavevector and frequency

(0), w(0)

satisfy either the ion-acoustic-wave dispersion relation or the electron-

plasma-wave dispersion relation. Equation (9) will be taken to mean that

((

satisfy the electron-plasma-wave dispersion relation.

Locate the values of (k( 0 ), w(0)) satisfying (8), (9) as follows. Define

the hypersurface H(0)Ss to comprise the ion-acoustic and electron-plasma

- 1) , w(- _0) = (k'(0),. w(0) 1,l w )



branches of the linear dispersion hypersurface, as before. Define the

hypersurface H to comprise the electron-plasma branch, upshifted

by the pump wavevector and frequency. Then the intersection of H(0)SS'

H _1) contains the simultaneous roots of (8) and (9).

Now follow the behavior ol a double root for nonzero laser pump field

E . Again refer to the discussion of section 3. 4 and substitute B = S in

3. 4-(1). The double root splits into the pair of roots satisfying

UNMODIFIED PLASMON-PHONON AND 2-PLASMON INSTABILITIES

( )E (F NL(2)SS
((0) SS E1 F ~

= 0 3.8-(10)

E* F NL(2) SDE1 F(0)., -1 / SSx (D

Suppose the double root (8), (9) was chosen so that (k( 0 ), w(0)) lay on the

ion-acoustic branch and (k w( ) on the electron-plasma branch. Then

(10) describes the unmodified plasmon-phonon or so-called "decay" insta-

bility. Suppose, on the other hand, that the double root from which the

roots of (10) originated was chosen with (k(0 ), w( 0 )) and (k( _),w(1) both

lying on the electron-plasma branch. Then (10) describes the unmodified

2-plasmon instability.

Now suppose the laser field intensity El increased so that the growth

rate of the instability becomes comparable to w(0) but still much smaller

than w( 1 ). This can happen for the plasmon-phonon instability but not for

the 2-plasmon instability. Then, substituting B = S in 3. 4-(21), one finds



(D(0))SS E F 2 )
=0

E* { ( NL(2) )S (+ E 2 {FNL(3) -)
E F(0), -1 /Sx (1) +S x -II, Sx

This would describe the modified plasmon-phonon instability, were it not

for the following fact. The values of k(0) which yield plasmon-phonon

instability lie near values of k(0 ) which yield the oscillating-two-stream

instability, to be discussed later in this section. Raise the laser-pump

field intensity E1 such that the growth rate predicted by (10) becomes com-

parable to the ion-acoustic frequency. Then the plasmon-phonon instabil-

ity becomes strongly affected by the oscillating-two-stream instability,

and can not be considered in isolation from the OTS.

The equation (3) is satisfied at the origin,

($(0), w() ( 0)

where the hypersurfaces

(D(1) )MM = 0 3.8-(11)

(D(_1))MM = 0 3.8-(12)

are tangent to each other. The structure here is more complicated than a

double root, nevertheless the methods of section 3. 4 still apply. Equa-

tions (11), (12) state that the wavevectors and frequencies

(k ( 1 )I w( 1 )) E k(0), w( 0 ) ± ( , wi) = (±k, ±w )

satisfy the electromagnetic dispersion relation.

The hypersurface (11) comprises the electromagnetic branch down-



shifted by the laser wavevector and frequency. The hypersurface (12)

comprises the electromagnetic branch upshifted by the laser wavevector

and frequency. The laser wavevector itself incorporates a self-correction

3. 3-(24) even in the absence of any perturbations, but this self-correction

is via processes which depend on the plasma response at the laser 2nd

harmonic. Such processes are systematically neglected in 3. 7-(5), as

discussed in sections 3. 5 and 3.6. Thus (11) and (12) can be used as a

guide to the location of the unstable roots for nonzero Ei.

For nonzero E, look for unstable roots in the neighborhood of the

origin. Substitute A = B = M in 3. 4-(24) and set the determinant of the

matrix equal to zero. The result is, to within the physical approximations

introduced in 3. 5,

FILAMENTATION AND MODULATION INSTABILITIES

(D (1))MM +

2 FNL(3) E NL(2) E2 (FNL(3
E (1) 1x (0),1 ) MSx x1 (-1),

* / NL(2) (E-(NL(2
E F(1), -1/ SMx (D'(0) SS E F(-1),

*3'2/ MNL(3)x
E 1 F(1),1-/ xx

E* (F NL(2))
XE (0),-1/MSx

1,1)MMxx

) )Sx 0

(D (1))MM +

E 2F(-1),1,-1/MMxx

3.8-(13)

This determinantal equation has pairs of roots in the neighborhood of the

origin. These roots describe the filamentation or self-modulation insta-

bilities, depending on whether k(0) lies perpendicular or nol to the
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pump wavevector k. Omitting the first row and column one recovers equa-

tion (7). Thus the modified Brillouin instability is also contained in (13).

However, the k-vectors characteristic of filamentation and self-modulation

differ greatly from the k-vectors characteristic of Brillouin instability,

so that (7) and (13) may be used separately.

The equation (3) has a double root at any value of (k( 0 ), w(0)) such that

(D(l)S = 0 3.8-(14)

(D= 0 3.8-(15)

Physically this means that the wavevectors and frequencies

(k 1)' w(n) ((O) w(0) + (k1 w )

('(- 1) , w -_) = () -G(0), w (0) 1, wI)

lie respectively on the positive and negative frequency sheets of the

electron-plasma-wave dispersion relation.

In the 4-dimensional (k, w) domain, the values of (k( 0 ), w( 0 )) satisfying

(14) and (15) may be located as follows. Define the hypersurface H( MSS

to consist of the electron-plasma branch, downshifted by the pump wave-

vector and frequency. Define the hypersurface H(-_)ss to consist of the

electron-plasma branch, upshifted by the pump wavevector. Then the

intersection of H( H(_ ySg contains the simultaneous roots of (14) and

(15).

For nonzero E, follow the behavior of the double root as it splits into

a root pair describing unstable interaction. Substitute A = B = S in 3. 4-

(24) and set the determinant of the resulting matrix equal to zero. The



170

result is, to within the physical approximations introduced in 3. 5,

OSCILLATING -TWO-STREAM AND MODIFIED PLASMON-PHONON

INSTABILITIES

(D (1) )S +

J2 1(NL(3) )x E,(NL(2) E 2 (FNL(3)
X1 F Ex1j- (0),1 1 /SSx E1 F_)11Sx

* { NL(2)NL(2))E FNL (2)) (D( 0 ))SS E(F(-1)SSx = 0

(D (1) ) S +

2{ NL(3) * I NL(2)) IE2 (FNL(3) )
E1 (F (1,l-) x E F(),1/x xl \1 (-1,1,-1/SSxxx

3. 8-(16)

This determinantal equation has pairs of roots which for low enough values

of E lie near the double roots of (14), (15). These roots describe the so-

called "non- oscillatory" or "oscillating-two-stream" instability. On

omitting the first row and column one recovers also the determinantal

equation pertaining to the modified plasmon-phonon instability. As ex-

plained previously, the OTS affects the modified plasmon-phonon insta-

bility so that the unstable roots describing the latter must also be found

from the full equation (16).

There exists a certain plasma density, or equivalently, a certain

value of wP/wl, such that equation (3) has the multiple root

(D(0) SS = 0 3.8-(20)

(D(_1))MM = 0 3. 8-(21)
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(D = 0 3.8-(22)

At this plasma density, the wavevector and frequency (k (0), w( 0 )) lie on the

electron-plasma dispersion hypersurface when the wavevector and fre-

quency

(1), w' _( 1) a (0),J w(0) 1 i

(o, -wp

lie on the tangent point of the electron-plasma and electromagnetic disper-

sion hypersurfaces. The behavior of the unstable roots corresponding to

(20), (21), (22) for finite pump amplitude is given by a slight extension of

3. 4-(18). Include two polarizations at the frequency (k( ,)3 W( _)) in the

determinantal equation, then the unstable roots are given by

COALESCED RAMAN-2-PLASMON INSTABILITY

(NL(2) { (NL(2))
((0) SS E F(-"1), 1/SMx E1 F-)l)

E 1 FNL(2) MSx (D 1) MM 0 = 0
x1 (0),-1/I -)M

E*1 (F0(2)SSx 0 (D )x (0) - I S~x(-1) SS

3.8-(23)

These roots describe the coalesced Raman-2-plasmon instability. For

this description to be useful, the plasma density must be near that for

which (20), (21), (22) hold exactly.



3. 9 Reduction to Theory of Kaw, White et al.

Certain physical approximations were used to reduce the equation

3. 4-(12), describing perturbations coupled together by a laser pump wave,

to the simpler form 3. 4.-(13). These physical approximations are valid for

laser-driven instabilities which come about by coherent wave-wave inter-

action in unmagnetized plasma. These physical approximations 3.7-(1, 2,

3, 4) do not include the assumption of a phase velocity disparity between

the perturbation waves. On supplementing the inequalities 3. 7-(1, 2, 3, 4)

with such a phase-velocity disparity, one arrives, at the theory of Kaw,

White et al. This theory does not cover, for instance, the 2-plasmon

instability. The theory of Kaw, White et al. reduces all laser-driven

instabilities to the action of 2 physical mechanisms, to be described below.

For an electromagnetic pump in unmagnetized plasma, it is certainly

true that the pump-wave phase velocity satisfies the inequality

w1
c < 3. 9-(1)

Since electrons are material particles,

vT 0 c

The kinematics of the electromagnetic branch of the unmagnetized plasma

dispersion relation forbid the decay of the pump wave into electromagnetic

waves alone. In each laser-driven instability at least one decay product

is an electrostatic wave, with characteristic phase velocity much less than

the speed of light;
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w(0)

k(0 << C

Now in each specific laser-driven instability, the decay products, which

is to say, the coupled perturbations, are separated by the pump wavevec-

tor and frequency. The pump frequency is greater than the plasma fre-

quency and so at most one decay product can lie in the low-frequency ion-

acoustic region of (k, w) space. The other decay products must be electron-

plasma or electromagnetic waves, with characteristic phase velocities

much greater than the electron thermal velocity;

v << k(1) 3. 9-(4)

However, not every laser-driven instability has a low-frequency decay

product and thus the most that can be said about the relative phase veloc-

ities of the coupled perturbations is that

w (±w 3. 9-(5)
k(0) k ±1

Approximate equality holds for instance in the case of the 2-plasmon

instability. The inequalities (2)-(5) were used in section 3. 4 to derive

equation 3. 4-(13) which describes the behavior of small perturbations

coupled together by the laser pump wave. The equation 3.4-(13) was writ-

ten out more explicitly in 3. 7-(5) and 3. 7-(6), and specific instabilities

were extracted from 3. 7-(5) by the work of section 3. 8. In this section

we investigate the consequences of tightening the condition (5) to a require-

ment of phase-velocity disparity;
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w(0) w .1 9-(6)

The immediate effect is to simplify the equation 3. 7-(6) to the form (7),

where

FM(1) M(l) ex 3. 9-(8)

and so on. The factors of type (8) incorporate all the 3-dimensional geo-

metrical effects in the form of direction cosines. These pertain to the

angles between the polarizations of the high-phase-velocity perturbations

and the polarization of the laser-pump fundamental. On inspecting the ma-

trix in (7), simple relations between the entries become evident. The sim-

plified coupling coefficients appearing in the 1st, 2nd, 4th, and 5th rows

are related to quantities appearing in the 3rd row as follows (cf. 3. 7-(5)).

-. & _ *{ NL(2))

eA(1) LkEi (1), SB
F(1),1,-1 ABxx E0w(j) exqe L J 3.9-(9)

E N(2 qg3 9 -(10)

0 wq(/E

1((0), 1 ASx Ew) X1 e 1 0 3.9-(1)

(NL(2) 
7

)eA() (0)E F(-1),1/ SB
E FNL3 3., 9-(11)

2 l(-1),1,1 ABxx Ewg X1 e 1 q /Eg

*{NL(2))S

A(- 1) - (0)E F(1),-/S
1 *2 /&NL(3) \ -. e qV
2 E ( ),-1, -1)ABxx E w(_ 1) xL e jq/ E9

- - 3. 9 -(12)
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ekD

* / NL (2) e A(-1) .xe q V (0) e 3.9-(13)
E F0), - 1/ASx E 0w x(1 ) e 1 q e/EO 3

2 (FNFNL(2)
21 Z( NL (3) e (~- -) * (0)E 1\ (1), 1 /SB

E F 1),1,S-1)ABxx = E W e ax1 qe 1
0 (-1) q e E0

3. 9-(14)

Here

(D (0))SS = 1 + D + D 3. 9-(15)

2
p

D=- 2 2 2 3. 9-(16)

(0) - (0) T

The relations (9)-(11) admit a simple physical explanation. The quantities

in square brackets are just the linear and nonlinear contributions to the low-

frequency electron density at (k (0 )' W(0 )) from unit perturbation fields. The

quantities in square brackets, multiplied by eX1 q V1 , are the high-frequency

nonlinear currents at (k( 1 ), w( ) caused by the low-frequency electron

density-bunches quivering in the laser field. Similarly, the relations (12)-

(14) may be physically explained. The quantities in square brackets are

again the normalized contribution to the low-frequency electron bunching

at (k (0 ), w( 0 )) The quantities in square brackets, multiplied by e X q V,

are the high-frequency nonlinear currents at (k ,)w(1 ) ) which are gener-

ated when the electron bunches quiver in the laser field. Thus the rela-

tions (9)-(14) state that the high-frequency perturbations are excited by

currents consisting of low-frequency electron-bunches quivering in the



laser field. To complete the physical explanation of how laser-coupled

perturbations can be driven unstable, one needs to explain physically how

high-frequency perturbations can lead to low-frequency electron-bunching.

To do this we return to the basic warm-fluid equations.

Consider the warm-fluid momentum equation for a single species in

the form

1q
+ v - Vv + nVp = - (E +v X B) 3. 9-(17)

at n m

This contains 2 nonlinearities, namely, a convective and a Lorentz non-

linearity, through which a low phase-velocity perturbation is excited by a

high-phase-velocity perturbation acting with the laser field. Take the lin-

ear terms of (17) to describe the low phase-velocity perturbation and the

nonlinear terms to be functions of the high phase-velocity perturbation

field and the laser field. For both the latter

v = qE/m 3. 9-(18)

Use this and the relation

B = -X x E 3. 9-(19)

to combine the convective and Lorentz nonlinearities:

a(2 qE
+ Vp+V - - = - 3. 9-(20)

at n 2m

The combined nonlinearity has the form of the gradient of an effective

pressure of coherent oscillations, analogous to the preexisting thermal

pressure of random motions. This has a component at (k (0) w (0)) due to



beating between the quivering motion due to the high-frequency perturbation

and the quivering motion due to the laser. The low-frequency response to

the resulting low-frequency pressure variations for unit perturbation field

gives the form of the nonlinear coupling coefficients appearing in the 3rd

row of (7). These therefore satisfy the relations

e(NL(2)) - B(1)E 1) , 1/SBx = D(k0) 1 x1 I w3.9()

E (FN(Z)S =D k V e - 1 3o.9-(22)1 (1), -1/ SBx e (0) 1 x1I w()w(1 )

In Chapter 4 the physical mechanisms driving specific instabilities will be

gone through in detail and the mechanisms described in this section will be

incorporated where appropriate.

- 19, 1 I , - - - -- -1 I - _ I I
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Chapter 4

SPECIFIC INSTABILITIES IN LASER-PLASMA-PELLET
INTERACTION

4.1 Outline of Chapter

4.2 Brillouin Instability

4.3 Modified Brillouin Instability

4.4 Filamentational and Modulational Instabilities

4.5 Plasmon-Phonon (Decay) Instability

4.6 Modified Plasmon-Phonon Instability, treated together

with Oscillating Two-Stream Instability

4.7 Raman Instability

4.8 Two-Plasmon Instability

4.9 Coalesced Raman-Two-Plasmon Instability



4.1 Outline of Chapter

The general formalism developed in Chapter 2 for describ-

ing coherent wave-wave interactions was applied in Chapter 3

to laser-driven instabilities. In particular, Section 3.8

extracted the dispersion relations for specific instabilities.

Those specific dispersion relations form the basis of this

chapter.

In this chapter, each laser-driven instability is dealt

with in detail. The interacting coherent waves are specified.

The expected consequences of the instability for the laser-

fusion concept are briefly outlined. Each instability is phy-

sically characterised either as leading mainly to absorption

of laser energy by the plasma, or as leading mainly to reflec-

tion of laser energy by the plasma. Further, the range of

plasma densities, and hence the spatial region of pellet-

blowoff-plasma, in which the instability can exist, is delin-

eated.

For each laser-driven instability, the physical mechanisms

leading to growth of the perturbations are described. In some

cases, the description of Section 3.9 will prove useful for

this purpose. The full three-dimensional dispersion relation

is written down, using the physical approximations appropriate

to those waves which are interacting. The variation of the

growthrate as the directions of the propagation vectors are

varied in three dimensions is traced back to the physics of the



interacting waves.

The stability analysis of Briggs and Bers is used to ob-

tain, from the dispersion relation, the corresponding time-

asymptotic Green's function. This constitutes the response of

the unstable system to an initial spatially localized pulse-

excitation. The stability analysis is carried out in one di-

mension in the direction of maximum growth. For three-dimens-

ional stability analysis of the unmodified instabilities, the

interested reader is referred to the work of Bers and Chambers

Computations of three-dimensional pulse responses for modified

and 3rd order laser-driven instabilities are relegated to future

work.

The physical parameters for the stability analysis are

those of a 1 KeV plasma irradiated by a neodymium-glass laser

with vacuum wavelength 1.06p . The laser E-field is taken to be
15 2

that of a beam of intensity 10 watts/cm . For some coalesced

and/or 3rd-order instabilities, the Green's function describing

the pulse response may have a complicated structure. If such

is the case for a particular laser-driven instability, the

corresponding stability analysis is repeated using a lower

laser-pump intensity. The physical discussion of sections 3.4

and 3.8 can then be used to clarify the structure of the Green's

function.
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4.2 The Brillouin Instability

The Brillouin instability is a coherent wave-wave inter-

action in which an electromagnetic perturbation and a low-

frequency electrostatic perturbation are coupled together by

the laser pump. The Brillouin instability occurs at low enough

pump-wave intensities so that the perturbations closely resemble

a linear electromagnetic wave and an ion-acoustic wave respec-

tively. In quantum language, the laser photon decays into

another photon and a phonon. As discussed in sections 3.4 and

3.8, the locus of the instability in the (k,w) 4-space is found

from the intersection of the ion-acoustic dispersion hypersur-

face and the upshifted electromagnetic dispersion hypersurface.

However, the physical mechanisms driving the Brillouin insta-

bility, and the most important consequences of the instability's

existence, can be studied adequately using only the case of

collinear propagation. Thus, the locus of the instability will

be illustrated on a (iz ,w) diagram first. Then, an attempt will

be made to sketch the kinematics using two spatial dimensions,

with the vectors k lying in a plane containing the propagation

vector of the laser. The locus of the instability will thus be

illustrated on a (kz',kw) diagram. The kinematics are invar-

iant with respect to rotation about the direction of laser

propagation.

The Brillouin instability leads to scattering of laser

energy by the plasma. Since the frequency of the scattered
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electromagnetic wave is so much greater than that of the ion-

acoustic wave, the Manley-Rowe relations predict very little

absorption of laser energy by the plasma. The instability can

occur at any plasma density into which the laser pump-wave can

propagate, that is, any plasma density less than the critical

density

Wp < w .4.2-(1)

In terms of the spherical pellet geometry, this means that the

Brillouin instability can occur in the region outside the

(spherical) critical surface.

Having indicated the kinematics of the interacting waves,

let us now move on to the dynamics underlying the instability.

In section 3.9, it was shown that two high-phase velocity waves

beating together can cause, by "radiation pressure", a low-phase-

velocity modulation of the electron density. More strictly, a

term appears in the low-frequency fluid momentum equation which

has the form of an effective pressure due to coherent oscilla-

tions. In this section, one of the two high-phase velocity

waves is the laser pump and the other is the electromagnetic

perturbation.

In section 3.9, it was further shown that the low-phase-

velocity electron density modulation, or "bunching", oscillat-

ing or "quivering" in the laser field constitutes a current

which can regenerate the other high-frequency perturbation.

Thus, depending on the relative phases and three-dimensional



alignment of the interacting waves, a regenerative or positive

feedback loop can be set up, causing the high- and low-phase-

velocity perturbations to grow together. This constitutes the

laser-driven instability.

We complete the description of the physical driving mech-

anisms by considering the simplest case -- that of collinear

propagation, the point B in Fig. 1. Recall that the laser

pump-wave propagates along z and is polarized along x, with

wavenumber and frequency (k11w i). The point B describes an

ion-acoustic wave with wavenumber and frequency (k ( ,w

also propagating in the positive z-direction. This ion-acous-

tic perturbation is coupled to an electromagnetic perturbation,

with wavenumber and frequency

(k( , w( 1 ) (k9(0 ),w (0) - (ki,w) . 4.2-(2)

In terms of the more usual convention that all frequencies

should be positive, the wavenumber and frequency of the electro-

magnetic perturbation can be taken to be

(-k _ ,-w ( ) E (k1,w1 ) - (k,(0) w() . 4.2-(3)

The electromagnetic perturbation is thus a backscattered wave.

The propagation vectors look like this:

k (laser pump)

Z

k___ __(ion-acoustic wave)
(0)

-k (backscattered EM wave) Fig. 4.2.3
(-1)
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The physical picture of the mechanisms driving the instabil-

ity appears as follows. The laser and the backscattered wave

form beats leading to a pattern of effective pressure of os-

cillations. This pattern has the wavenumber k (0), which is

about twice the wavenumber of either the laser pump or the

backscattered electromagnetic wave, and moves forward in the

z-direction at the sound speed. If the pattern were station-

ary in the plasma, the electrons would move into the regions

of minimum high-frequency field, dragging the ions with them,

so that striations of higher plasma density would form in the

troughs of the "radiation-pressure" patterns. However, the

pattern is moving forward at the sound speed, and so the stri-

ations of higher plasma density form on the forward slopes

of the radiation pressure pattern (see figures next page).

The phase relationship between the radiation pressure

pattern and the plasma density striations is determined a

posteriori from the coupling coefficient matrix (5) governing

the instability. Thus, the description presented here of

physical mechanisms is presented as an aid to insight and does

not constitute an independent derivation of the unstable dis-

persion relation.

It may easily be checked that this phase relation is

such as to feed energy into the acoustic oscillations. Recall

that in a sound wave, the velocity in the direction of prop-

agation is in phase with the density. The radiation
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pressure pattern therefore does net work on the plasma density

striation, since it exerts a forward force on forward-moving

plasma, and a backward force on backward-moving plasma. The

feedback loop may be closed, as before, by noting that the

high-frequency current formed by electrons oscillating in the

x-directed laser field now has a variation in the z-direction.

One may think of the striated plasma with its x-oscillating

electrons as constituting an endfire-antenna-array which

regenerates the backward electromagnetic perturbation in the

z-direction. Alternatively, one may think of the density stri-

ations as forming a lattice which backscatters the incident

laser.

The full three-dimensional dispersion relation for the

Brillouin instability may be written down from 3.8-(6). Using

physical approximations appropriate to the ion-acoustic and

electromagnetic waves, 3.8-(6) becomes

2 2 2 +
S w V w [e -e ]

1+ pe - p- p xi
2 2 2 2

k V w wk Vk () VTe w(0) w() (o) VTe

= 0
2 2 2 2

V Iw p e -I e, ]) k (.,c +w p
w 2w k V C-i) w2

a)1 Te (-1) 4.2-(4)

Since the unmodified Brillouin instability is defined only

for growthrates small compared to the ion-acoustic frequency

at the point of onset (e.g., point B in Fig. 1), th'e ion-
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acoustic dispersion function occurring in (4) and, a fortiori,

the electromagnetic dispersion function, may be linearized

about that point B. For convenience, first factor out some

powers of k ( XDe* Then Taylor-expand the dispersion func-

tion to first order, about some wavevector and frequency

(k) ,w ) on the intersection of the ion-acoustic dispersion

hypersurface and the pump-upshifted electromagnetic dispersion

hypersurface. Then (4) becomes

V WI
IA A . s(o) s+ e(12(ALwL1J\ e S()C S) Z1 V W-[ 1 xeM( I)1

w k X V w (o) XDe
IA (0) De Te WEM _

0 =
V wp [- ,M] 1j

V w x1 M(-1) kATe EM (0) De

2 (A+ -, y*IVEM
2(Aw+Ak-es(-

1 ) 9

- wEM

4.2-(5)

Here, wIA w k c is the ion-acoustic frequencyIA (0) (0) s

wEM w(-) is the frequency of the backscattered

electromagnetic wave

eS(O) c V is the ion-acoustic group velocity

- EMi EM

-e ( 1) VgE V is the group velocity of the back-

scattered electromagnetic wave.



Introduce VLaser IVFund(Xrt)IPeak 21V 11 4.2-(6)

[See 3.3 -(2)]. Expand (5); the result is the dispersion rela-

tion for the three-dimensional Unmodified Brillouin instability:

(Aw -Ak-e C )(Aw + Ak-es(-1) )S(O) s S(-i) vg

Laser 2 IA + .- 2

16V -p w-EM (ex( eM(- 
4.2-(7)

Te

The maximum growthrate is obtained from this dispersion relation

by setting Ai =, which yields

SLaser WIA + +
Aw = 4 V wp w e *xieM(-) 4.2-(8)

Te EM

This growthrate depends on the three-dimensional nature of the

kinematics via the square-root factor and on the three-dimens-

ional nature of the polarizations via the last factor. This

last factor describes the effectivenesss of electrons oscil-

lating in the laser field along ex as a means of regenerating

the scattered electromagnetic wave polarized along e,(_,). For

electromagnetic radiation scattered at an angle e to the laser

polarization, i.e., such that

ex (-) /1k (-1) e e -($ = cos 0 4.2-(9)

the effectiveness of regemeration by electrons oscillating in the

laser field is (see Fig. 6):
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e -= sin 9 4.2-(10)

The unit polarizations 3.4-(4,5,6) were indeed chosen so that,

for a fixed k(n)' the polarization eM(n) would be the electro-

magnetic polarization closest to the polarization of the laser.

Thus, the purely geometrical dependence of (8) on the scatter-

ing angle may be dexcribed as follows. Recall that the Cart-

esian axes were chosen such that the laser propagates along z

and is polarized along x. The last factor in (8) tells us

that the Brillouin interaction is most effective in scattering

electromagnetic radiation into the y-z plane. The Brillouin

interaction is not effective at all in scattering electromag-

netic radiation into the x-direction.

The three-dimensional dispersion relation (7) can be used

to perform a three-dimensional stability analysis in the manner

described by Bers and Briggs. The time-asymptotic Green's

function is evaluated by a saddle-point method. This yields

the space-time history of a disturbance excited by an initially

localized pulse. Time-asymptotically, this history associates

with every observer moving away from the initial excitation

point a corresponding exponential growthrate of the disturbance

as seen by that observer. The time-asymptotic development of

the disturbance can thus be indicated by a graph of observed

growthrate as a function of observer velocity. In two and

three dimensions, this graph becomes a contour map.

The dispersion relation (7) employs linearized dispersion

relations for the two perturbations which enter the coupling.

The kinematics of the interaction are the same for all planes
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containing the direction of propagation of the laser. The

dynamics of the interaction are the same for all planes contain-

ing the direction of propagation of the laser except for the

last factor in (8), whose effect on the coupling was described

above. These features of the dispersion relation (7) allow the

three-dimensional stability analysis of the unmodified Brill-

ouin instability to be reduced to a two-dimensional problem, as

shown by Bers and Chambers. The contour map of observed growth-

rate versus observer velocity is plotted in the plane of maxi-

mum interaction, namely the plane of propagation perpendicular

to the laser polarization. The contour map in other planes is

obtained by multiplying the growthrates by the appropriate

values of the geometrical factor (10). Thus, the full three-

dimensional pulse response may be built up.

For purposes of comparison with the modified case to be

described in the next section, we sketch here that part of the

pulse response generated by propagation collinear with the

direction of propagation of the laser pump. This is the one-

dimensional cross section along the z-axis of the full three-

dimensional response. Its leading edge advances, in the direc-

tion of laser propagation, at the group velocity Cs of the

ion-acoustic wave. Its rear edge propagates backwards, along

the laser beam, at the group velocity V EM of the backscattered

electromagnetic wave. The exponential growthrate is positive

for intermediate velocities and is greatest at that velocity

which is the algebraic mean of the two edge velocities. This
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maximum growthrate is the same as (8), the maximum growth.

rate for real Ak, deduced directly from the dispersion rela-

tion (7). The pulse response in the direction of laser

propagation, then, looks like this:

Fig. 4.2.8

Vwci

('.45) x

osz

V 0 ' '
Observed growthrate of disturbance vs. observer velocity,

for observer moving along laser beam.

(wo .) Max
V w= Laser IA

w
p wEMTe



4.3 The Modified Brillouin Instability

The modified Brillouin instability, like the unmodified,

is a coherent wave-wave interaction in which the laser pump

couples together an electromagnetic perturbation and a low-

frequency electrostatic perturbation. However, the modified

Brillouin instability occurs at pump-wave intensities which

are high enough so that the growthrate is comparable to the

frequency of the low-frequency perturbation. Thus, the latter

no longer closely resembles an ion-acoustic normal mode of the

plasma. Its wavevector and frequency (k(0),w ) are no long-

er restricted to be near the intersections of the uncoupled

normal mode dispersion surfaces in (k,w) space illustrated in

Figs. 4.2.1 and 4.2.2.

The physical driving mechanisms are the same as for the

unmodified Brillouin instability; only the exact phase rela-

tions are changed. Again, the laser beam and the scattered

electromagnetic wave beat and induce density striations in

the plasma. The electron density striations oscillating in

the laser field form an antenna array which retransmits and

regenerates the electromagnetic perturbation.

The physical import of the modified Brillouin instability

for the laser-pellet fusion process is that the modified

growthrates increase with laser intensity more slowly than the

unmodified calculations would indicate. The qualitative

effect of the Brillouin instability on the laser-fusion pro-

cess is not changed by the modification. The modified
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Brillouin instability is still a mechanism for scattering

the incident laser energy, and to that extent preventing the

laser energy from being absorbed by the plasma.

The dispersion relation 4.2-(4) for the unmodified Bril-

louin instability contains, in the top-left corner of the

determinant, the ion acoustic dispersion function evaluated at

the wavevector and frequency (k (0),w(0) of the electrostatic

decay product. For the unmodifed Brillouin instability that

electrostatic decay product closely resembles an ion-acoustic

wave and the ion-acoustic dispersion function is small. For

modified Brillouin instability that resemblance fades and the

ion-acoustic dispersion function is not small. Therefore, its

cofactor in the determinant must be evaluated to higher order

in IV11 . The full three-dimensional relation for the modi-

fied Brillouin instability may be written down from 3.8-(7).

In this equation, the ion-acoustic dispersion function has a

cofactor, which comprises the electromagnetic dispersion func-

tion supplemented by the self-correction brought about by the

pump. Using the physical approximations appropriate to the

ion-acoustic and electromagnetic waves, 3.8-(7) becomes
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2
w

1 + pe
k2  V 2
(0) Te

Viwp[exi e M()]w

w 2

* + +

V p [ex e m(-) w p
V T-w_ ] k ()V T

p
VTe [-w ( ] k(oyTe

k2 c2  w2
(1) + 1 P .

w 4T
(-1) - --

i p xi M(-1)3

V2 w2
Te (- 1)

4.3-(l)

Expanding, one obtains -- using 4.2-(6), the dispersion rela-

tion

Three-dimensional Modified Brillouin Instability

ion-acoustic
dispersion
function

w 2+ k2- c
p ( -i )

w2

electromagnetic
dispersion
function

VL W -e k2 c2
Laser P [e X1 e M.i)J (0) ns

4 w2
Te (-i1)

coupling
constant

gearietri- effect of
cal

factor

W (0)

modifi-
cation

4.3-(2)

The electromagnetic dispersion function may still be linearized

about a wavevector and frequency lying on the locus of the orig-

inal unmodified Brillouin instability, as illustrated in Figs.

4.1.1, 4.1.2. Then Eq. (2) acquires the form

2- cs 2

w(o) s
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S-k2 c Aw+ Ak-es M Laser w k 0 )cs

w (0) wEM 8VTe wEM xi M(1) (0)

4.3-(3)

This is the form used for stability analysis of the modified

Brillouin instability. The modification is brought about by

high growthrates. The highest growthrates for the unmodified

Brillouin stability analysis occur for propagation collinear

with the direction of laser propagation. The effect of the

modification is therefore expected to be most pronounced in

that direction. A good idea of the type and extent of the

changes in pulse propagation characteristics brought about by

the modification can therefore be obtained by inspecting a one-

dimensional cross section of the modified Brillouin pulse-

response taken along the z- axis, and comparing it with the

unmodified Brillouin pulse-response. The unmodified Brillouin

pulse-response was illustrated in Fig. 4.2.6. The modified

Brillouin pulse-response is illustrated below, with the unmod-

ified result included for comparison. The changes in pulse

propagation brought about by modification are as follows.

The velocities of the forward and backward edges are un-

altered. The maximum gorwthrate is reduced and occurs for a

smaller backward velocity. The extent of these effects is

about 30% for the laser power level considered - namely, 1015

watts/cm2 . Since the Brillouin instability can occur for any

plasma density below the critical density, a range of values of
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w p/wI between zero and unity is included in the figure,

Consider any one plasma density and its associated pulse-

propagation diagram in Fig. 1. The highest growthrate for any

observer velocity is also the highest for any real k, obtained

from the dispersion relation (3). For the unmodified Brillouin

dispersion relation 4.2-(7), the highest growthrate for any

real k is obtained by setting Ak = 0, thus taking k to have

the same value as for a vanishingly small pump intensity. For

the modified Brillouin dispersion relation (3), this is no

longer necessarily true; the value of real k ( for which the

imaginary part of w (0 ) is greatest may shift around. Never-

theless, a lower bound for the maximum growthrate may be ob-

tained by estimating the imaginary part of w from the dis-

persion relation (3) with ik () set to a fixed value such that

k (Cs = IA ' 4.3-(4)

say,

has the same value as for a vanishingly small pump intensity.

Then the dispersion relation (3) becomes approximately

2 2 (o) - wIA VLaser w 2 4 2
(w 2-ae w [e -e I.

W(oA) w EM' 8V 2 w IA xi m(-i)
Te EM

4.3-(5)

In the limit that the growthrate w (O) greatly exceeds the

original ion-acoustic frequency wIA' this cubic equation for

w (0) simplifies to
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3  2. 2 2 + e 2
2ae w y {exi ]w Lae p r x1 eM(-1) .4.3-(6)

(o) 8V wEM

One root of this equation has an imaginary part

- 23 w2 w2 3 + +2/3

w = 3 Laser p IA [ex1*em(-1)] . 4.3-(7)

(V Te )(w EM)

This result is the basis of the oft-quoted statement that for

modified instability, the growthrate varies as the 2/3 power

of the laser field intensity. As was discussed earlier, the

maximum growthrate observed in an unstable pulse is the same

as the maximum imaginary part of the frequency root of the dis-

persion relation as the wavevector ranges over all real values.

No simple approximation is known for this.
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4.4 The Filamentational and Modulational Instabilities

The filamentational and modulational instabilities are

coherent wave-wave interactions in which two electromagnetic

perturbations and a low-frequency electrostatic perturbation

are coupled together by the laser pump. The two electromag-

netic perturbations have wavevectors and frequencies close to

the wavevector and frequency of the laser. Indeed, the super-

position of the two electromagnetic perturbations and the

original laser pump field is equivalent to a modulated laser

beam. The wavevector and frequency of the modulation are very

small, and coincide with the wavevector and frequency of the

electrostatic perturbation. When the modulation wavevector is

exactly perpendicular to the laser wavevector, so that the

light intensity varies across the laser beam but not along it,

the term "filamentation instability" is used. When the modu-

lation wavevector is not quite perpendicular to the laser

wavevector, so that there is a slow modulation of the light

intensity along any one ray of the beam, the term "modulation

instability" is used. The electrostatic perturbation is not

an ion-acoustic wave, although the ion-acoustic dispersion

function is used to describe it. In quantum language, two

laser photons exchange a virtual phonon.

The locus of the instabilities in (M,w) space, as dis-

cussed in sections 3.4 and 3.8, is the region surrounding the

point of tangency of two hypersurfaces. These two hypersurfaces
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are the negative branch of the electromagnetic dispersion

surface, upshifted by the pump wavevector and frequency,

and the positive branch of the electromagnetic dispersion

surface, downshifted by the pump wavevector and frequency.

The laser pump itself satisfies the electromagnetic disper-

sion relation, to within the physical approximations intro-

duced in 3.3-(29-32). Thus, the point of tangency, near

which the values of [k (,w ]describing the electrostatic

perturbation must lie, is just the origin of (k,w) space.

These values of the modulation wavevector k ( cannot lie

exactly at the origin, since that would be physically mean-

ingless. The locus of the instability will be illustrated on

four diagrams.

First, there will be a (k z,w) diagram for modulation

wavevectors parallel to the laser wavevector, which should be

compared with the (kz ,w) diagram 4.2.1., which describes Bril-

louin instability. Secondly, there will be a (k zk ,w) dia-

gram for modulation wavevectors in any one plane through the

laser wavevector, which should be compared with the (kz ,k ,w)

diagram 4.2.2. Thirdly, there will be a (k1 ,w) diagram des-

cribing the kinematics of the "filamentation instability".

This (k1 ,w) diagram may be obtained by taking the kz = 0 cross

section of the (k ,k ,k w) diagram; taking another cross section

of this same diagram at a slight angle to the k -axis, one

obtains a fourth diagram describing the kinematics of "modu-

lational instability". The diagrams follow.
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Since the modulation wavevector k () is so small, both

electromagnetic perturbations propagate in a direction very

close to the original laser beam direction. Thus, the filamen-

tational and modulational instabilities do not lead to scat-

tering of laser energy by the plasma. Rather, laser energy

is fed into the low-frequency electrostatic perturbation which

must eventually heat the plasma nonlinearly. As with the

Brillouin instability, the filamentational and modulational

instabilities can occur for any plasma density less than the

critical density

w < w
p 1

The physical mechanisms underlying these instabilities

are describable in macroscopic terms. Suppose that the laser

pump-wave acquires a slight modulation, or equivalently, that

two small electromagnetic perturbations are superposed on the

steady laser pump. Further suppose that the phase velocity of

this modulation pattern is less than the ion-sound-speed cs.

Then the radiation pressure pattern due to the modulation of

the laser intensity will lead to density striations in the

plasma. These density striations constitute variations in

the dielectric constant in the plasma. Since the dielectric

constant of a plasma decreases with density, these variations

in dielectric constant focus the laser light into the less

dense plasma regions. This increases the radiation pressure

in those regions, expelling the plasma further and increasing
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the depth of the density striations. These mechanisms are

most easily visualized for the case when the modulation is

directly across the laser beam and its phase velocity is

zero. This is the "filamentational instability".

In the filamentational instability, the laser beam is

modulated in intensity across the direction of propagation.

The plasma acquires density striations in the form of par-

allel slabs in the direction of laser propagation. The per-

formance of the resulting parallel-slab dielectric waveguide

as a means of confining the laser radiation to the regions

between the slab can be calculated. This performance factor

for the slab-waveguide, together with radiation pressure cal-

culations of the rate at which the plasma slab structure is

increasing its strength, yield the growthrate for the fila-

mentational instability, as will now be shown.

The growthrate of the filamentational instability will

later be shown to depend very little on the orientation of

the density striations with respect to the polarization of

the laser, provided these striations have a wavelength much

longer than that of the laser. For illustrative purposes, we

take the plasma density to have sinusoidal variations in a

direction perpendicular to the laser polarization, so that

the "slabs" of denser plasma lie parallel to the laser polar-

ization (see next page, Fig. 4.4.6).

Treat the plasma density striations as a given static

structure, namely a sinusoidal-index-profile dielectric-slab

waveguide. The performance of this waveguide may be found by
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standard methods. The result is, to first order in the index-

variations,

ELocal 1

2

+ I As cos k y El
k 2 c 2 E6 0)

(0)

Now the refractive index is a decreasing function of plasma

density

W225 ___ nq 2

1- = 1 1 nq-

Eo w2  w 2 me 01 1

4.4-(2)

Use (1) and (2) to find the variation in the radiation pressure

or effective pressure of coherent oscillations, thus:

2
n0A<VLocal

Aphto lcoherenti
oscillations

22 2 -An w2 1
k c2 c2 P
(o)

n A< V2 > /20 Local

APThermal = V An

Thus, the radiation force overcomes the electron thermal pres-

sure gradient, provided

w 2 V 2
po Laser

k(o)c2 2

2
> V T

2
V2 |V, k2 V 2  k 2 c 2

Laser 1() Te (a) s

4.4- (6)

4.4-(
2W2 2w p

p pt

4.4-(l)

<Va

Also

4.4-(3)

4.4-(4)

4.4-(5)

4 C2 c 2
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For a fixed laser intensity, (7) delimits the range of unstable

k values; this range lies in the neighborhood of the origin

(cf. Fig. 3). When the inequality (7) is satisfied, the

striations can grow in time with growthrate y and all quanti-

ties associated with them have temporal variation evt. The

electrons are forced into the higher plasma density regions,

dragging the ions with them. To the extent that the neutrali-

zation is not complete, there will exist a small electrostatic

field with wavevector and frequency

[io ,w ] - [( 0 )$y, iy] . 4.4-(8)(a~ ) ( 0))Y

This is the low-frequency electrostatic perturbation mentioned

at the beginning of this section. For the ions, the linear-

ized quasistatic fluid equations are

av q
at Estatic 4'

= - n .V-V. 4.4- (10)
at

These quasistatic quantities have temporal variation eyt

therefore

An k q E peak 
4.4-(11)

n Y 2 static

For the electrons, the linearized quasistatic fluid equations

are



2J(,

3V V V<V 2>
e~ ~ - Ett

t 2o+2 m estatic 4.4-(12)

an static

t - - no, 'V . 4.4-(13)

These quasistatic quantities have temporal variation eYt

therefore

Ane _ k(Q) q peake_ ()e Ett. . 4.4-(14)
n oe 2 + k2 2 Vaser 2 static

Te 2c2  wpe me

Substituting in Poisson's equation and assuming quasineutrality,

one obtains the following:

V 2

Y2 Laser w2. - k 2 c2 4.4-(15)
2 C2 pi (0) s

The more exact result from the generalized coupling modes

method used later in this section is that the growthrate sat-

isfies the biquadratic

V2 k4  c 4
72 Laser w2 (0) - k 2 c 2 . 4.4-(16)

2c2  pi k4  c4+4y2w 2  (0) s

The bracketed quantity is the correction factor to the wave-

guide performance, due to the finite temporal growthrate of

its refractive index profile. For striations with wavevector

1t(0) not perpendicular to the laser polarization ex , there

is a further geometrical correction factor. This is more con-

veniently introduced later when treating the filamentation
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instability using the general scheme worked out in Chapter 3.

For the filamentation instability, the density striations

and the associated electrostatic perturbation have a wavevec-

tor k(0 ) perpendicular to the laser wavevector k . For the

modulational instability, the striation wavevector is still

almost perpendicular to the laser wavevector. This allows

the laser modulation pattern to move with the laser beam group

velocity, while the phase velocity of the striations is still

less than or comparable to the ion-sound speed. (See Figs.4.4.6

and 4.4.7).

On taking a one-dimensional cross section of the system

parallel to the laser propagation direction, one sees the mod-

ulation envelope of the laser radiation proceeding with the

group velocity of the laser radiation and the modulation in-

creasing in depth as the instability grows, hence the name,

"modulation instability". However, this 1-D picture is mis-

leading in that the density striations, since they involve

both electrons and ions,. can move only at the sound speed.

Thus, the modulational instability is intrinsically at least

two-dimensional. The dispersion relation for the modulation

instability will now be derived along with that for the fil-

amentation instability, using the general scheme for laser-

driven instabilities set out in section 3.8.

The full three-dimensional dispersion for the filamenta-

tion and modulation instabilities may be written down from
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3.8-(13).

becomes

Using the appropriate approximations,

w +k2  c 2

p ( i)1-
(1)

X*

k ( D

X*Y*

|X21 X
k A
(o) D

1

k 2  X2(0) D

1 -k ( D

w 2 k2 c 2

w2

where X -

Expanding

v 1
vTe

w

W ( eM()(e
Y

' =V
Te

w

W(-1)
x1' M(-1)

(17), one obtains the dispersion relation

k 2  c 2  2
1- () c VLaser

w2 4V 2
W(0) VTe

k )2 c 2 w [ 0 e-M(0)

w2 w - w2-k2  c 2
(0) ( p ( U)

w2 0 2p xi M(-)

w2 - w 2 - k2- c2
p (-1

Expand the

point k

electromagnetic dispersion functions

,w (0))
first order in w .)

for

about the

= ( ,O), keeping all orders in k ()
and

The result is the dispersion relation

3.8-(13)

XY

Y
k kD

= 0

+1Y21

4.4-(17)

4.4-(18)
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Three-dimensional filamentation and modulation instability

k 2  j
2  V2  k2  c2  w- w 0 4]

( ) c V Laser k c wp w -p ex M(1)

w2 8V w w0) w (-k V (Laser k2 c2/2w

++ 2

wp(e M(-1)

W(o) -k(O).VLaser + (k2 c2/2w)g (0

4.4-(19)

Equation (19) was obtained by modeling the instability as a

four-wave interaction, involving the unmodulated laser-pump

9 , two closely adjacent sidebands NM(1) and NM(1) and the

low-frequency electrostatic perturbation 9S(O) whose wave-

vector and frequency is that separating the electromagnetic

sidebands from the laser fundamental. For the filamentation

instability, the angle between the sideband polarization and

the polarization of the laser fundamental is zero when the

striation wavevector is perpendicular to the polarization

of the laser fundamental. This makes the geometrical factors

in (19) equal to their maximum value of unity and thus yields

the maximum filamentation growthrate for a given laser power.

This is the case illustrated in Fig. 5. In fact, on setting

-*. Laser

(0) g

e1 e( = 1 4.4-(20)

e - e M(-1)

in (19) one recovers the growthrate formula (16).
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4.5 Plasmon-Phonon (Decay) Instability

In the plasmon-phonon instability, two electrostatic

perturbations, one high-frequency and one low-frequency, are

coupled together by the laser pump. The unmodified instabil-

ity occurs at low enough pump-wave intensities so that the

perturbations closely resemble an electron-plasma wave and

an ion-acoustic wave, respectively. In quantum language,

the laser photon decays into a plasmon and a phonon. This

plasmon-phonon instability was historically one of the first

coupled-mode instabilities to be considered in plasmas, and

so became known as "the" parametric instability, or "the"

decay instability.

Since the perturbations are electrostatic, the insta-

bility is excited most strongly when these perturbations

propagate parallel to the electric field of the laser. This

parallelism cannot be exact, since the wavevector diagram is

two-dimensional and the laser wavevector is finite:

(ion-acoustic k (0) - k (electron-plasma wave)

wave)

Figure 4.5.1(laser pump)



However, the parallelism can be attained approximately;

in the plasmon-phonon instability, as distinct from the

Brillouin, filamentation and modulation instabilities,

the perturbation wavelengths are characteristically much

shorter than the laser wavelength. The locus of the insta-

bility in (1P,w) space is shown first on a (kz' k,,w) diagram

and secondly on a (k ,w) diagram. The latter describes the

kinematics of the instability with the ion-acoustic pertur-

bation propagating exactly in the direction of the laser

polarization and the electron-plasma perturbation propagat-

ing almost exactly in that direction. This case is conven-

ient for illustrating the results of stability analysis and

comparing them with the results of stability analysis of the

modified plasmon-phonon instability described in section 4.6.

Since both growing perturbations are electrostatic, the

plasmon-phonon instability is an absorptive instability; it

occurs only for plasma densities near the critical surface

w " w . 4.5 - (1)

The physical mechanisms driving the instability are as

follows. Consider a small perturbation in the form of an

electron plasma wave propagating approximately parallel to

the electric field of the laser, with a wavelength much shorter

than that of the laser, but a frequency about the same as that

of the laser. On the spatial scale of this plasma wave, the
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electric field of the laser can be taken to be spatially uni-

form. Thus, the radiation pressure pattern has about the

same wavelength as the plasma wave and moves slowly parallel

to the laser polarization. If the radiation pressure pattern

were stationary, the plasma as a whole would be pushed into its

"troughs". When the radiation pressure pattern moves with the

ion-sound speed cs, the plasma tends to "ride" on the forward

slopes of the pressure peaks. This is made more explicit in

the following diagram, which consists of three successive

snapshots of the same line parallel to the x-axis, taken at

time intervals of a quarter of the laser period. The phase

relations involved are derived by finding the eigenvectors of

the matrix (2) and are used here only to illustrate the physics

of the interaction.

4,

+) t +n
fod

10 0 j4n 7 rfec

w Laser wLaser

Fig. 4.5.4 DYNAMICS OF PLASMON-PHONON INSTABILITY



In Fig. 3, the electron-plasma wave is propagating downward.

Since its frequency is slightly less than that of the laser,

it moves through slightly less than its own wavelength in the

time f/wLaser that it takes for the laser field to reverse it-

self. Thus, the radiation pressure pattern moves slowly up-

wards.

The regions of high R.M.S. electric field sweep the higher

density striations ahead of them. This explains how a pertur-

bation in the form of an electron-plasma wave can give rise to

an ion-sound wave. To complete the feedback loop, we now explain

how the density striations in the presence of the laser beam

can drive the electron-plasma wave. To do this, merely note

that the quivering motion of the electrons in the higher den-

sity striations, as these electrons are acted on by the laser

field,constitutes a current. This current is a maximum at

t = (7/2wLaser ), and opposes the electron-plasma wave field.

The resulting negative dissipation causes the electron plasma

wave to grow.

Note that, if the plasma wave frequency were slightly

higher than that of the laser, the radiation pressure pattern

would move downward . The higher density plasma striations

would then appear on the lower side of the radiation pressure

maxima, and the plasma wave would be suppressed; this is to be

expected, since the Manley-Rowe relations prevent unstable up-

conversion in a single three-wave interaction. Note further

that, if the plasma wave frequency were the same as the laser
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frequency the radiation pressure pattern would be stationary.

The higher density plasma striations would then occur in the

regions of minimum radiation pressure. This last situation

occurs in the oscillating two-stream instability, to be dealt

with in section 4.6

The full three-dimensional dispersion relation for the

plasmon-phonon instability may be written down from 3.8-(10).

Using physical approximations appropriate to the ion-acoustic

and electron-plasma waves, 3.8-(10) becomes

S k2 c2 V w
(0) sxD 1 I w exi sIk2 x2w2 k (0A V Te'a

(o) D T -) w-

=0

l * w 
w2

() D i s(-) w2  - 3k2 V2
((-) (-1) Te

4.5 -(2)

As for the unmodified Brillouin instability, expand the deter-

minant and linearize both the ion-acoustic and electron-plasma

dispersion function about the wavevector and frequency of some

point on the instability locus D of Fig. 2. The result is the

dispersion relation for
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Three-dimensional Plasmon-phonon Instability

+ + + +EP
(Aw - AkeS(O) c S)(Aw + Ak-e V ( 1) IV )

v2  w
Laser w2 IA 2 45(3)

16V 2  wp w xi s(-i)
Te

The maximum growthrate for real Ak is obtained from this dis-

persion relation by setting Ak = , which yields

VLaser WIA +
Aw w 4.5-(4)4V Te Ee

This growthrate depends on the three-dimensional nature of

the kinematics via the square-root factor, and on the three-

dimensional nature of the polarization via the last factor.

The kinematics are the same in any plane containing the laser

propagation vector. The dynamics depend on the effectiveness

of the quivering of the electrons in the electric field of the

laser as a means of driving the plasma-wave perturbation. This

effectiveness is given by the last factor in (4).

The three-dimensional dispersion relation (4) can be used

to perform a stability analysis in the manner prescribed by

Bers and Briggs. As in the case of the unmodified Brillouin

instability, the dispersion relation (3) employs linearized

dispersion functions for the two perturbations which enter the

coupling. The kinematics of the coupling are the same for all



planes containing the direction of propagation of the laser.

The dynamics of the interaction are the same for all planes

containing the direction of propagation of the laser except

for the factor

e Xiae- I . 4.5-(5)

These features of the dispersion relation (3) allow the three-

dimensional stability analysis to be reduced to a two-dimen-

sional problem, as shown by Bers and Chambers. The contour

map of observed growthrate vs observer velocity is plotted in

the plane containing the maximum interaction, namely the x-z

plane which contains the x-directed electric field of the

laser. For any other plane through the z-axis, making an

angle a, say, with the x-z plane, the pulse response diagram

can be obtained from the pulse response diagram in the x-z

plane. This is done simply by multiplying all growthrates by

cos a.

For low laser-pump intensities, the contributions of

third order conductivity to the dispersion relation (2) may be

neglected. Further, one may linearize the dispersion functions

for the perturbations which enter the coupling, thus arriving

at the dispersion relation (3) for the unmodified plasmon-

phonon instability. For high enough laser pump intensities,

the growthrate for the plasmon-phonon instability becomes com-

parable to the phonon frequency. Then, the exact ion-acoustic
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dispersion function must be used for the low-frequency elec-

trostatic perturbation. Also, the self-correction due to

third-order conductivity must be added in to the electron-

plasma dispersion function.

These steps will yield in the next section the dispersion

relation for the modified plasmon-phonon instability. To

examine the effect of this modification on the time-asymp-

totic pulse response characteristics of the unstable system,

it will be useful to compare selected one-dimensional cross

sections of the modified and unmodified pulse-response plots.

Since the modification is an effect due to large growthrate,

the cross section chosen for the comparison should include

the observer velocities for which the unmodifed growthrates

are greatest. From the behavior of the geometrical factor

(5), one may infer that the unmodifed growthrates are greatest

when the plasmon has a group velocity in the x-direction. The

comparison of unstable pulse cross sections is actually car-

ried out using the physical approximation that the laser

wavelength is much shorter than that of the perturbation:

|k 1  << |k() I ,k( 1  . 4.5-(6)

This approximation does not affect the physics of the

plasmon-phonon interaction, and was in fact used in the des-

cription of the driving physical mechanisms (cf. Fig. 4). To

within this approximation, the plasmon and phonon group velo-

cities together with the corresponding observer velocities can
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all be taken to lie along the x-axis. This approximation is

convenient for the stability analysis of the modified insta-

bility and is made here to facilitate comparison. The unmod-

ified time-asymptotic pulse response along the x-axis has

the following form:

Fig. 4.5.5 TIME-ASYMPTOTIC PULSE RESPONSE;

COLLINEAR APPROXIMATION

observed growthrate woi

maximum growthrate

(w.) -

VLaser w wIA
4 V wEP

-V -V-Te g

(Vobs)x
xbrvr

veoty

r-- V
g Te

-c s 0 c s



4.6 Modified Plasmon-phonon Instability, Treated Together

with Oscillating Two-stream Instability

In the oscillating two-stream instability, two high-

frequency electrostatic perturbations and one low-frequency elec-

trostatic perturbation are coupled together by the laser pump.

The high-frequency perturbations are electron-plasma waves

driven below their resonant frequencies; the low-frequency

perturbation is a pattern of density striations in the plasma

which moves with phase velocity less than the ion-sound speed.

In quantum language, two laser photons become two plasmons by

exchanging a virtual phonon. The dispersion relation to be

derived for the oscillating two-stream instability will pos-

sess additional roots which pertain to the modified plasmon-

phonon instability.

Since the perturbations are all electrostatic, the oscil-

lating two-stream, like the plasmon-phonon, is excited most

strongly when these perturbations propagate parallel to the

electric field of the laser. Again, since the laser wavevec-

tor is finite, this parallelism cannot be exact. However, for

the purpose of explaining the physical mechanisms which drive

the instability and for the purpose of finding the pulse

response of the instability, the perturbations may be taken

to propagate parallel to the laser polarization.

The locus of the non-oscillatory instability in (k,w) space

is shown first on a (kz,k ,w) diagram and secondly on a (k1 ,w)
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diagram, where k is a wavevector component in any selected

direction perpendicular to the laser wavevector.

Since all three growing perturbations are electrostatic,

the oscillating two-stream instability is an absorptive one.

It occurs only for plasma densities near the critical surface

w p w . 4.6-(1)

The physical mechanisms driving the instability are as fol-

lows. As for the plasmon-phonon instability, consider per-

turbations having wavelength small compared to that of the

laser, and propagating parallel to the electric field of the

laser. In particular, consider two electron plasma waves of

equal amplitude, with frequency equal to the pump frequency,

propagating in opposite directions. Their electric fields

form a standing wave pattern. Let this standing wave have

a temporal maximum one eighth of a cycle after the electric

field of the laser has its maximum ----- the phase relations

which actually hold at the maximum growthrate. These are

derived by substituting the maximum growthrate and associated

optimum real wavevector into (2) and solving for the eigenvec-

tor.

Then, the total high-frequency field amplitude has spatial

minima into which the plasma will be driven to form density

striations. The process is illustrated in Fig. 4.6.3 by three

successive snapshots of the same line parallel to the x-axis,
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taken at time intervals of one quarter of the laser period,

but now starting one eighth of a laser period before the

maximum of the laser electric field.

To complete the regenerative feedback, merely note that

the quivering motion of the striated electrons in the laser

field constitutes a current. This striated current has a

maximum at t + (ff/2 )wLaser' and the standing wave has a maxi-

mum in the opposite sense at t + (ff/4 )/wLaser. The dissipa-

tion E-J is negative and therefore regenerates the two electron

plasma waves.

The full three-dimensional dispersion relation for the



oscillating two-stream instability may be written down from

Using physical approximations appropriate to the

two electron-plasma waves and to the ion-acoustic regime,

pectively, Eq. 3.8-(16) becomes [cf. 4.4-(17)]:

w 2

w2 -3k2  V(1) (1) Te

+ X1 2

1

k2  x2(a) D

X
k XD

k2  c2

_ (0) s

w2w(0)

w

w - 3k2  v2

C-1) (-1) Te

where X =
V

VTe

Expanding Eq.

4.6-(2)

w p

w(1) [e -es
V

V Te

w

w(-) Lx i S s(-i)

(2), one obtains the dispersion relation [cf.

4.4-18)]:

k 2 c Vas2  k2  c 2(0 S Laser (a) s
w2 w 2  - 3k2  V
p Ci1 () C k I) VTeiLexi

w2 w2 w
C0(i ) C i) p

- 3k 2  v 2
(1) Te1

w w2 -32 s(- - 2

w 2 [w2 - w2 - 3k 2- V2
(-1) (..1 p (..D Te

3.8-(16).

1-

res-

X*

k XD
Y

k ( D

X*Y*

= 0

k ( XD
1- +1Y12

w2(0O) 4V 2

( ) 1

4.6-(3)



Now expand the electron-plasma dispersion functions as Taylor

series in wavevector and frequency about some point on the

instability locus, T. Retain first order in wavevector and

frequency. The result is the dispersion relation for

Three-dimensional oscillating Two-stream Instability

and Three-dimensional Modified Plasmon-phonon Instability

+ + 2

k2 c2  v2 2 c 2  w4 [ . ]
(o) s Laser (o) s p X1 s(i)

1 2  2  3  +. EP'
(o) Te () EP s() g

p Xis(13 r+ + '2fl

w 3 [Aw +A -e IV EPi
EP s(-1) 9

4.6-(4)

Here,

(A 'kw) = [k( -kT, w (0- wT] 4.5-(5)

where

(kT,wT) is some point on the instability locus T in Fig. 1.

Also,

wEP' wT +w

wEP wT - w , 9

are the corresponding plasmon frequencies and group velocities,

determined from the displaced dispersion surface passing through

T.

The maximum growthrate for real k can be obtained approx-

imately by treating the oscillating two-stream as a one-dimen-

sional instability with variation only along the x-axis. The
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oscillating two-stream kinematics are then described com-

pletely by Fig. 3.

k2 c V
() s

(0)

The dispersion relation (4) reduces to

L r k2 c 2w 2 w
Laser (2 s , w -E

Te (0) EP Ak

Aw EP
Aw +Ak VEP

g

4.6-(6)

For low enough laser-pump intensities, the ion-acoustic dis-

persion function may be replaced by its value at the point

T in Fig. 2. Then Eq. (6) becomes

V2 w4 2w Ak VEP
-1= Laser p EP g

8V2  w4  Aw2-(Ak V EP)2Te EP g

4.6-(7)

which may be termed the dispersion relation for the "unmodi-

fied OTS". Equation (7) may be written

Aw 2  _ F2 + [(AkVEP) - 0]0 g 0
4.6-(8)

0V 

VTe

w
p Wgg

w 4.wEP

is the maximum growthrate for real wavevector, attained at

Ak = I'/VEP . 4.6-(10)
0 g

where
4.6-(9)



One may rearrange Eq. (7) slightly differently to obtain

the Nishikawa result. Note that each decay plasmon has a

frequency which is lower than that of a free plasmon with the

same wavevector, by the frequency

6 = Ak VEP 4.6-(11)
g

Note also that the unstable roots of (8) are pure imaginary

Aw = iY 4.6-(12)

Substituting (1) and (12) into (7) and rearranging, one

obtains

V w 2 62Laser p - y+ 4.6-(13)
8 V2  w 4  26wEPTe EP El

the well known result of Nishikawa. However, the results of

Silin and of Friedberg and Marder, concerning cold plasma

driven by an electric field oscillating below the plasma

frequency, cannot be recovered from our theory. This is

because the strength of the coupling between modes in our

theory is effectively expressed in terms of the expansion

parameter VLaser Te ' which goes to infinity as VTe goes

to zero.

A stability analysis conducted on the low-pump inten-

sity, one-dimensional dispersion relation (8) yields the

following results. An initially localized excitation dev-

elops time-asymptotitically into an unstable pulse, with

pulse edges propagating at the equal and opposite group
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velocities of the two interacting plasmons. The maximum

growthrate is seen by a stationary observer; this maximum

growthrate is that given by Eq. (9). The time-asymptotic

behavior of the pulse may be described by a plot of observed

growthrate vs. observer velocity (compare Fig. 4.5.5):

Fig. 4.6.4 TIME-ASYMPTOTIC PULSE RESPONSE: COLLINEAR

APPROXIMATION AND LOW PUMP-WAVE INTENSITY

observed growthrate w0o

maximum growthrate

(wo ) - o T -cr
Max

-cs c

For higher intensities of the laser pump, (8) is insuffic-

ient. One may then use the exact ion-acoustic dispersion

function while retaining the one-dimensional approximation,

thus returning to (6). A stability analysis conducted on

the dispersion relation (6) yields the combined time-asymp-

totic pulse response for the oscillating two-stream insta-

bility together with the modified plasmon-phonon instability.



The dispersion relation for the latter is contained in (6).

Indeed, the upper-left 2 x 2 submatrix and lower-right 2 x 2

submatrix of (2) describe the modified plasmon-phonon insta-

bility, although as discussed in section 3.8, these descrip-

tion are not satisfactory in isolation from the oscillating

two-stream. The results of the stability analysis are shown

below for various laser power levels. For sufficiently low

pump intensities, the results resemble a superposition of

the pulse responses for the unmodified plasmon-phonon (see

Fig. 4.5.5), and the low power oscillating two-stream (Fig.

4.6.4). For higher pump intensities, the plasmon-phonon and

OTS instabilities affect each other strongly, then coalesce;

finally, the OTS becomes dominant.
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4.7 The Raman Instability

In the Raman instability, an electromagnetic perturba-

tion and an electrostatic perturbation are coupled together

by the laser pump. The perturbations closely resemble a freely-

propagating electromagnetic wave and an electron-plasma wave,

respectively. In quantum language, the laser photon decays

into another photon and a plasmon. As discussed in Sections

3.4 and 3.8, the locus of the instability in the (k,w) four-

space is found from the intersection of the electron-plasma

dispersion hypersurface and the upshifted electromagnetic

dispersion hypersurface. This locus is illustrated on a

(kz,w) diagram and a (kz,ki,w) diagram.

The Raman instability leads to scattering of laser energy

by the plasma. The instability can occur at any plasma den-

sity less than one-quarter of the critical density:

w < w /2 . 4.7-(l)
p i

The dynamics of the instability bear some resemblance to

those of the Brillouin instability described in section 4.2.

As for the Brillouin instability, its dynamics can best be

described in the case where both electromagnetic and electro-

static perturbations propagate in the same direction as the

laser. The kinematics for this case are shown in Fig. 1.

Consider a small backscattered electromagnetic perturbation.

This beats with the incoming laser beam to produce a pattern

of radiation pressure minima, into which the electrons are
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forced to form a pattern of electron density striations.

When this pattern has a wavevector and frequency near the

electron-plasma wave dispersion surface, the formation of

striations is enhanced. This explains how an electromagnetic

perturbation can generate a perturbation having the form of

an electron-plasma wave. The regenerative or positive feed-

back loop is closed by showing that the electron striations

can regenerate the electromagnetic perturbation. This happens

as in the Brillouin instability. The striated electrons os-

cillating in the laser field constitute an endfire-antenna-

array which reradiates the backscattered electromagnetic wave.

The full three-dimensional dispersion relation for the

Raman instability may be written down from 3.8-( ). Using

the physical approximations appropriate to the electron-plasma

and electromagnetic waves, 3.8-( ) becomes

w2  k (o) V w[ e e.. 1p1___ p 1-( 1
2  - 3k2  V2  w _ [w20) -3k2 VO)V2
(0) (0) Te (T)( l

=0

k V w2 w 2+k 2 c2

(0) i p _ p C
[w 2 i-3k 2  V2  2

((1) C3 ) Te ]

4.7-(2)

The leading diagonal of (2) contains the electron-plasma

wave and electromagnetic-wave dispersion functions. Linearize

these about some wavevector and frequency belonging to the

instability locus R of Fig. 2, for which



(kEP"WEP) 4.7-(3)

SkEM,-WEM (a) iw -w ] . 4.7-(4)

Then, (2) becomes

2[Aw-Ak-es Vg|

wEP

kEP V*

wEM

w 2

2 xi M(.1)
wEP

k V w2
EPi w

- e eeM(.-1
wEM WEP

2[Aw+ Ak-es (-1) M

W EM

Expand (5) and use 4.2-(6). The result is the dispersion re-

lation for the

Three-dimensional Raman Instability

[Aw -Al-Aes(o) |V EP|][Aw + A - E*s (, I EMi

2 2 w42
=-kEP VLaser [4 4eM(-1)] 4.7-(6)

WEMwEP

The maximum growthrate for real k is obtained from this dis-

persion relation by setting Ak = 0, which yields

Aw = i kEP Laser Wp -exeM(-)

/wEPwEM

4.7-(7)

= 0

4.7-(5)

( ) 1 w0)
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This growthrate depends on the three-dimensional nature of

the electrical polarizations via the last factor. This last

factor describes the effectiveness of electrons, quivering in

the laser field along e , as a means of regenerating the

scattered electromagnetic wave, polarized along eM . This

effectiveness factor is unity for electromagnetic radiation

propagating in the y-z plane, i.e., scattering perpendicular

to the laser polarization. The effectiveness factor is zero

for electromagnetic propagation along the laser polarization,

so there is no scattering in the x-direction.

This geometrical dependence on scattering angle is the

same as that in the Brillouin instability described in sec-

tion 4.2.

The dispersion relation (6) has been used by Bers and

Chambers to derive two-dimensional cross sections of the

three-dimensional time-asymptotic pulse response. The cross

section in the y-z plane is found first. The cross section of

the three-dimensional pulse in other planes through the z-

axis is then found by multiplying the observed growthrate at

each observer velocity by the appropriate value of the effec-

tiveness factor. Thus, the full three-dimensional pulse

response is built up.

For comparison with the Brillouin instability, we sketch

here that part of the pulse response generated by propagation

along the z-axis, that is, propagation collinear with the



direction of propagation of the laser pump. This is the cross

section along the z-axis of the full three-dimensional pulse

response. This pulse response has two lobes corresponding to

the two points R',R" of the instability locus in Fig. 1. The

edges of the lobe corresponding to R' propagate at the corres-

ponding plasmon and photon group velocitijes which are the slopes

of the dispersion curves through R'. Similarly, the edges of

the lobe corresponding to R" propagate at plasmon and photon

group velocities given by the slopes of the dispersion curves

through R". The maximum growthrate in each lobe is the same

as that for real At, given in (7), calculated from the disper-

sion relation (6) linearized about R' or R" as appropriate.

The pulse response in the direction of propagation, then,

looks like this:

O

C VCE7n 0 V EP V V C

Observed growthrate of disturbance vs. observer velocity, for

observer moving along laser beam w = kEP'VLaser w w/ E

w"i = kEP" Laser w EPEM"

7-



4.8 The Two-Plasmon Instability

In the two-plasmon instability, two electrostatic per-

turbations, both closely resembling electron-plasma waves,

are coupled together by the laser pump. In quantum lang-

uage, the laser photon decays into two plasmons. As dis-

cussed in sections 3.4 and 3.8, the locus of the instability

in (k,w) four-space is found from the intersection of the

positive-frequency electron-plasma dispersion hypersurface

with the upshifted negative-frequency electron-plasma dis-

persion hypersurface.

This locus is illustrated on a (kz'w) diagram and a

(k z,kw) diagram. As discussed later in this section, the

two-plasmon instability has zero growthrate for collinear

propagation and another zero for propagation perpendicular

to the laser wavevector, so that maximum growthrates occur

for plasmons propagating around 450 to the direction of

laser propagation. The kinematics of this case are sketched

on a (Ik|,w) diagram.

The two-plasmon instability leads to absorption of

laser energy by the plasma. The instability can only occur

at plasma densities lying just outside the quarter-critical

surface:

wp , wI/2 - 4.8-(l)

The dynamics of the instability are more complex than for

the other absorptive instabilities, namely, the plasmon-
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phonon and non-oscillatory instabilities. These other insta-

bilities have decay products which fall naturally into high-

and low-phase-velocity groups. The high-phase-velocity decay

products or perturbations combine with the laser field to

create a radiation pressure pattern which has a low phase

velocity. This pattern reinforces the density striations

of the low-phase-velocity perturbation. The electron density

is modulated along with the plasma density, so that when

the electrons quiver in the laser field, the resulting cur-

rent has a component which regenerates the high-phase-velo-

city perturbation.

In the case of the two-plasmon instability, the two

decay products have roughly equal phase velocities. The

above physical mechanism must be invoked twice; the first

time one considers the radiation pressure from one partic-

ular plasma wave and the modulated electron current due to

the other; the second time, the roles of the plasma waves

are reversed. The coupling coefficient is thus the sum of

two terms. These terms cancel for propagation perpendicular

to the laser propagation. These terms are initially zero

for propagation parallel to the laser polarization.

Thus, the maximum growthrates are attained when the decay

plasmons propagate at roughly 450 to both the propagation

and polarization vectors of the laser.

The full three-dimensional dispersion relation for

the two-plasmon instability may be written from 3.8-( ).
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Using the physical approximations valid for the two electron-

plasma waves, ) becomes

p

w .2-3k 2  V 2
(0) (0) Te

w 0 1 |w ]exl _

w 2(w Ap (0) (0)

w (0)W )
w
p

Oxi s o)]

w (I/k

E -e s(-

w (

1 - p

w 2- 3k2  V 2
(-i) (_1) Te

4.8-(2)

The leading diagonal of (2) contains the

wave dispersion functions. Linearize th

vector and frequency belonging to

Fig. 2, for which

[k( 0 ), w(0)] [kEP', wEPV]

- w ]

[kEP e (-),

two electron-plasma

ese about some wave-

the instability locus P of

4.8-(3)

(-kEP,

wEP]

- wEP

4.8-(4)

Then, (2) becomes

2 (Aw-Ak-es (O) IVO~

WEP'

w EP'wEP

p

xi s (-i

vEP'
ph

xi s(-I)

P'
ph

Xi s(o)

VEPph

2 (Aw+Ake s

WEP

V

=0

wEP wEP)

p

V

Exi S(o)
VEP
ph

= 0

(-1) I gE I

4.8-(5)

xe se o)
w k)

(1'w _1] (0) - k, ,w (0
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Expand Eq. (5) and use 4.2-(6); the result is the dispersion

relation for the

Three-dimensional Two-plasmon Instability

(Aw - Ak-' EP' I + A - * I VEP

s(o) g s () g

2

V2  2 4
Laser P4.8-(6)
16 w VsiP [ so

p . ph ph

The termsin the square bracket are both identically zero when

the plasma waves propagate parallel to the laser propagation

vector;

k(O)I II =k . 4.8-(7)

They cancel exactly when the plasma-wave propagation vectors

form an isosceles triangle with the laser propagation vector:

kIP 1k I I EkE . 4.8-(8)
kEP' (0) (1| - kEP

This happens when both plasmon wavevectors are almost perpen-

dicular to the laser wavevector, since the characteristic

electron-plasma wavenumbers are much greater than the charac-

teristic laser wavenumbers. In order for the square bracket

to be a maximum, one requires plasmon wavevectors, hence
0

plasmon group velocities, at roughly 45 to both the laser

wavevector and the laser polarization. The stability analysis



conducted on the dispersion relation (6) thus yields a pulse

response whose cross section in the x-z plane has four lobes

at 450 to the x- and z-axes. Cross sections in other planes

through the laser wavevector are obtained by multiplying all

growthrates by Icos al where a is the angle betwen the desired

plane and the x-z plane.



4.9 The Coalesced Raman-Two-plasmon Instability

In this instability, two perturbations are coupled

together by the laser pump. One is electrostatic; the other

has a polarization which is neither electrostatic nor elec-

tromagnetic, but is to be determined from the coupling equa-

tions.

The electrostatic perturbation closely resembles an

electron-plasma wave. The other perturbation closely resembles

a linear superposition of an electron plasma wave and an

electromagnetic wave. Indeed, its wavevector and frequency

lie close to the electron-plasma dispersion hypersurface and

also close to the electromagnetic dispersion hypersurface,

simultaneously.. In quantum language, the laser photon decays

into two plasmons or into a plasmon and a photon, with a fixed

probability for the choice. The locus of the instability in

the (k,w) four-space is the region where the locus of Raman

instability, shown in Fig. 4.7.2, closely approaches that of

two-plasmon instability, shown in Fig. 4.8.2. The close

approach occurs only very near the quarter-critical surface:

w p l w1/2 . 4.9-(1)

The close approach is illustrated on a (k z',w) and on a (k ,k ,w)

diagram, which are obtained, respectively, by superimposing

Figs. 4.7.1 and 4.8.1, and superimposing Figs. 4.7.2 and 4.8.2.

The plasma density is chosen so that the close approach becomes

a coincidence on the (kz ,w) diagram and a tangency on the
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(kz'k ,w) diagram.

The absorptive or reflective nature of the instability

depends on the ratio of electrostatic polarization to elec-

tromagnetic polarization in the mixed decay product, i.e.,

the ratio

|E ~ s ' E(-1)M ' E(1 4.9~(l)

The full three-dimensional dispersion relation for the coal-

esced instability, together with the ratio of the electrostatic

and electromagnetic field components in the mixed perturbation,

may be obtained from the coupled equations [cf. 4.7-(2) and

4.8-(2)] valid for low pump power; the result is shown in

Eq. 4.9-(2).

Linearize the dispersion functions lying on the leading

diagonal about the wavevectors and frequencies

[(0) , w ()] (kEP, wEP) 4.9-(3)

[k , w ] E (0, - wEP') 4.9-(4)

E ( - wEM') 4.9-(5)

respectively. Note that the group velocities at (4) and (5)

are zero. Further approximate by setting

w (0 w ; 4.9-(6)
(-1) w(0) p

then 4.9-(2) simplifies to 4.9-(7).

The dispersion relation is obtained by taking the deter-

minant of the matrix and is



1 -w 2
2(-3p

W (2 - 3k 2  V 2
() (a) Te

k V*
-(o)

I W (-,

k ()V

Jw
p x M(-1)

WO) - 3k2 v ] 

w2 +k2 c 2

p (-i)
w2
W(i)

w 2[e -eM(1]

w2 -3kvW(0)31( T

k v * Iw(-) -*

2 x 1  s (-1)w
p

w2

w2 - 3k 2  V2

(-i) (-i) Te

k ( |Vl w |[e e ]
w2 x s(-)
wp

(o)s

E (-,) M

0

0

(-1)s

4.9-(2)



2[Aw - A z-e (O)v EPg

w p

kEPV
w

p

k V*
EP +

wp ln

x 1 M (-1)

+

'es(-1)I

k EP V1

w
p

xe* 
M ( +

] EP 1 .

) xi s
p

2 Aw
-w

p

2Aw
-w

(-1) (O) s

(-i) M

(-i)s

=1 o

4.9-(7)
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Three-dimensional Coalesced Raman Two-Plasmon

Instability

kP k2 V 2

Aw Aw - Akz kEP Laser
Ak9 16

4.9-(8)

This assumes a very simple form for two reasons; the plasma

density was chosen so that an exact coalescence between the

Raman and two-plasmon instabilities occurred even at vanish-

ingly small pump powers (see Figs. 1 and 2); and terms in

Ak2 were omitted from the expansion of the on-diagonal dis-

persion functions in (7). The maximum growthrate for real

Ak is obtained from (8) by setting

Akz = 0 4.9-(9)

whereupon the growthrate becomes

Aw. = k V L /4. 4.9-(10)

The time-asymptotic pulse response calculated from (8) is

essentially one-dimensional and has the form
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Fig. 4.9.3 TIME-ASYMPTOTIC PULSE RESPONSE

w.i

0 EP

Here, w is the observed growthrate, Vobs is the observer

velocity. The maximum observed growthrate (w )Max for

any observer velocity Vobs is the same as the maximum

growthrate (Awi)Max derived from the dispersion relation

(8) for any real Ak, and so

(W o)Max i Max = EP Laser 4 4'9~(11)

The ratio of electrostatic field component to electromagnetic

field component may be recovered for a given Ak by substi-

tution in the coupling equation (7).

The growing instability has the character of Raman side-

scatter for Ak in the y-direction, two-plasmon absorption for

Ak in the x-direction and a mixed instability for AZ lying

in an arbitrary direction in the x-y plane. For moderately



high pump powers the terms in Ak2 should be retained at

least in the electromagnetic dispersion function, whereupon

the dispersion relation for the coalesced instability

becomes

2  2  2 2

(ow -Ak VEP _ EP Laser xi M(-1) + Lexi eS(l)
z g 16 Aw +(Ak 2c 2/2wp) Aw

4.9-(11)

One may also investigate the coalesced Raman-two-plas-

mon instability for plasma densities such that the tangency

of Raman and two-plasmon loci illustrated in Fig. 2 becomes

merely a close approach. Then, for the appropriate dis-

persion relation, one must return to (2). At sufficiently

low pump intensities, one finds separate Raman and two-

plasmon instabilities, and the coalescence in this case

occurs at some finite value of the intensity of the laser

pump.
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CHAPTER 5

RESULTS AND CONCLUSIONS

5.1. Specific Accomplishments

5.2. Relevance to Laser-Pellet Interactions: Thresholds

and Evolution

5.3. Extension to Other Problems



5.1. Specific Accomplishments

In the main body of this thesis, namely Chapter 2, 3,

and 4, we proceeded from the general to the specific. A

generalized-coupling-of-modes theory was first developed to

deal with coherent wave-wave interaction in a nonlinear me-

dium. Then the case of a pump-wave with vanishingly small

depletion and attenuation was considered. The medium was

specialized to a warm-fluid magnetized plasma with drifts.

Finally the pump-wave was specialized to a laser-beam, and

the steady magnetic field and the drift-velocities were set

to zero. Thus the well-known laser-driven instabilities were

recovered, with the advantages over certain other treatments

that their 3-dimensional behavior was automatically included

and that successively higher corrections to their dispersion

relations and Green functions could be ordered and calculated

systematically. We proceed to describe these accomplishments

in more detail.

In section 2.4 the usual coupling-of-modes equations were

first recovered, starting from a general homogeneous medium

as defined by its conductivity. This constitutive relation

between electric current and electric field was allowed to be

non-local, thus giving rise to dispersion, and weakly nonlinear,

thus giving rise to mode-mode coupling and slow variation in

mode amplitudes. The procedure was repeated in section 2.5 to

obtain the generalized-coupling-of-modes equations. The non-
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linear conductivity was no longer restricted to be 2 nd-order

in the electric field, and the slow variation was no longer

restricted to being described by its first-order spacetime

derivatives. This generalized-coupling-of-modes theory forms

the basis for the remainder of the thesis.

The behavior of small-amplitude waves in the presence of

a much stronger pump-wave was then formulated in terms of the

theory. The equations 2.6-(8,9) describe the spatial attenu-

ation and temporal depletion of the first and second harmonic

of a pump-wave due to growing perturbations. The manner in

which these two equations were derived by substitution in

the more general equation 2.5-(7) is straightforward, and

allows one to extend the equation 2.6-(8,9) to higher-order

terms than those written down, and to extend the series of

two equations to describe attenuation and depletion of third

and higher pump-wave harmonics if necessary. Of course any

changes in the polarization of the pump brought about by the

interaction are also comprised in 2.6-(8,9). In cases where

the effect of the growing perturbations on the pump is negli-

gible, as for example in the early stages of their growth out

of thermal noise, those generalized-coupling-of-modes equations



which describe the behavior of the perturbations themselves

acquire a simple form. In these cases the complexity of the

problem is confined to the calculation of the coupling coeffi-

cients.

The actual forms of the coupling coefficients which

describe coherent wave-wave interactions were computed in

Section 2.8 for the warm-fluid plasma model. These forms are

symmetric in all the interacting waves. This model symmetry

did not follow immediately from the method of derivation, and



indeed a certain amount of algebraic manipulation, involving

repeated use of vector identities and wavevector-frequency sum-

rules, was necessary to demonstrate the total symmetry.

The computation of coupling coefficients in unmagnetized

Vlasov plasma, and of coupling coefficients for electrostatic

waves propagating parallel to the magnetic field in magnetized

Vlasov plasma, present no difficulty. The plasma is regarded

as a continuous superposition of cold beams, and the expressions

2.8-(43,52) are summed over these beams. The sums take the

form of integrals over velocity space, which are evaluated

according to the Landau prescription.

Starting from the generalized-coupling-of modes theory

of Section 2.5, Chapter 2 thus furnishes a computational frame-

work sufficient to deal with linear perturbations about an

undepleted, unattenuated pump-wave in a plasma described by

the warm-fluid model.

This computational framework is capable of generating dis-

persion relations for instabilities in a magnetized warm-fluid

plasma, containing any number of beams and permeated by any

number of undepleted unattenuated pump-waves. This framework

is considered to have been proved out by being used, in Chap-

ter 3 and 4, to derive dispersion relations and stability

analyses for laser-driven instabilities in unmagnetized drift-

free plasma. The usefulness of the frame-work is considered

proved by the fact that the three-dimensional nature of the

polarization and propagation of the interacting waves is auto-



matically included in the computations, and also by the fact

that fresh instabilities and modified or coalescent versions

of well-known instabilities can be systematically investigated.

In Chapter 3 the self-consistent harmonic structure of

the pump-wave equilibrium was investigated, and then the

behavior of linear perturbations about this equilibrium was

formulated in terms of coupling brought about by the pump-

wave. This was done for the special case of a pump-wave con-

sisting of a uniform laser beam, and a nonlinear medium consis-

ting of an unmagnetized plasma, each species in the plasma

characterized by a single temperature and a zero drift velocity.

The nonlinear coupling between perturbing waves was computed

from the nonlinear conductivity of the electrons only. The

self-consistent harmonics of the pump-wave were determined to

an order consistent with the order of the couplings which

they bring about. It was shown that for the laser-driven

instabilities in unmagnetized plasma, the effects of the medi-

um nonlinearity on the pump-wave itself can be neglected when

computing the couplings leading to those instabilities.

In Chapter 4 the well-known laser-driven instabilities were

recovered. The physical mechanisms driving them were discussed

and their 3-dimensional dispersion relations were derived.

These 3-dimensional dispersion relations were not derived

from the discussions of physical mechanisms, but from the gen-

eral work on laser-coupled perturbations carried out in Chapter

4. The discussions of physical mechanisms were limited to 1 or
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2 dimensions; their purpose is not to derive dispersion rela-

tions but rather to illustrate the consequences of the growth

of the instabilities and to suggest saturation mechanisms.

Stability analyses were performed in order to obtain

time-asymptotic Green's functions. The three-dimensional

time-asymptotic pulse-response to an initially localized ex-

citation of a specific instability is determined once the

three-dimensional dispersion relation for that instability is

given. For unmodified instabilities involving only the laser

pump and two decay products, with the dispersion functions

for the decay products approximated by first-order Taylor

expansions in wavevector and frequency, the pulse-response

problem was solved by Bers and Chambers.1 For modified in-

stabilities and instabilities involving three decay products,

the calculation of three-dimensional pulse-responses becomes

considerably more complex. However, good physical insight can

be gained by calculating one-dimensional pulse-responses,

which are cross-sections of the three-dimensional pulse-

shapes, along those directions which can be seen by inspection

of the dispersion relations to be directions of greatest

growth.

For those instabilities having as one of their decay pro-

ducts a low-frequency disturbance in the ion-acoustic regime,

the following statement holds: the curve of increasing in-

stability-growthrate versus increasing laser-intensity tends

to flatten out at growthrates of a few times the ".ion-acoustic
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frequency". This statement is deliberately left qualitative

and contains quotation marks, for the following reason. The

highest growthrate of the instability occurs at a value of

the wavevector which itself is a function of the laser inten-

sity. The "ion-acoustic frequency", which appears in formulae

purporting to describe the asymptotic dependence of growth-

rate on laser intensity, must therefore itself depend on

that intensity, in a way which can not be known exactly with-

out solving the dispersion relation.

5.2 Relevance to Laser-Pellet Interactions

The growthrate calculations of Chapter 4 lead to the con-

clusions that at realistic power intensities using realistic

laser wavelengths - 1015 watts/cm 2 at around 1 micron free-

space wavelength, say - all laser-driven instabilities have

growthtimes of the same order, namely between and 5 pico-

seconds. Thus all these laser-driven instabilities will grow

contemporaneously in the laser-irradiated plasma. The state

of the plasma when nonlinear saturation sets in will be de-

termined by the competitive evolution of all the instabilities

up to that time. Since these instabilities have their maxi-

mum growthrates in different spatial directions, an appropriate

theory of the instabilities must not only derive them system-

atically but furnish their 3-dimensional behavior. The theory

of laser-driven instabilities described in this thesis does

both these things,
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The above convergence of growthrates is brought about be-

cause at high pump power-intensities the laser-driven instabil-

ities assume their modified forms. These modified forms re-

quire 3rd-order plasma conductivity for their correct descrip-

tion. The effect of the modification is to reduce growthrates,

and the effect is stronger the higher the unmodified growth-

rates. Thus the above convergence is effected.

One aspect of the instabilities which was not described

in Chapter 4 is the relation between the damping rates of

uncoupled modes and the thresholds of the instabilities that

occur when the same modes are coupled together by the pump.

Damping is easily incorporated into the instability dispersion

relations. The dispersion functions for uncoupled modes,

which appear in the dispersion relation describing a specific

instability, are adjusted slightly. Instead of having zeros

at real wavevectors and real frequencies separated by the

pump wavevector and frequency, the dispersion functions are

chosen so that each has a zero at the real wavevector and at

the complex frequency with negative imaginary part equal to

the damping rate of the corresponding uncoupled mode. This

can be done in two main ways. One may insert a more exact

form of the uncoupled-mode dispersion function; for example,

one may replace the warm-fluid dispersion-functions used in

Chapter 4 by the more exact Vlasov dispersion-functions which

incorporate Landau damping. Alternatively one may insert a
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phenomenological damping rate r simply by replacing each un-

coupled dispersion function D (k,w) by an amended dispersion

function:

5.2-(l)

One finds that at the high laser power intensities previously

mentioned the effect of damping on the maximum growthrates of

laser-driven instabilities is relatively slight. The finite

threshold intensities due to damping are orders of magnitude

below the laser intensities actually used. However the presence

of damping has important effects on the spatial evolution of

instabilities. The wavenumbers, and hence Landau damping

rates, of perturbations satisfying the sum rules are dependent

on the plasma density and on the directions of the wavevectors

considered. Thus the presence of damping can confine a speci-

fic instability to a narrower range of plasma densities and

propagation directions, while leaving its maximum growthrate

almost unaffected. This effect is discussed in detail by

Bers and Chambers.2

As an illustration of the use of phenomenological damping

take the case of the unmodified Brillouin instability considered

in section 4.2. The 3-dimensional dispersion relation for this

instability is set out in equation 4.2-(7). The left-hand-



side of this equation is the product of the two dispersion

functions for the uncoupled perturbations, namely the electro-

magnetic dispersion function and the ion-acoustic dispersion

function. Inserting phenomenological damping rates 'EM and

PIA respectively, one obtains the dispersion relation for

unmodified Brillouin instability caused by laser-induced

coupling between lightly-damped modes:

VLASEA -~I 2

5.2-(2)

This has the form of a three-dimensional two-coupled-mode

instability for which the stability analysis has been per-

formed analytically and numerically2 by Bers and

Chambers. 1 The pulse-response cross-section in the direction

of maximum growth was shown in Fig. 4.2-(4) for laser-induced

coupling between undamped modes. For coupling between damped

modes, the pulse-response curve is lowered as follows.2 For

IA
an observer travelling at the group velocity V of the ion-g

acoustic wave, the observed growthrate is reduced by the ion-

acoustic damping rate FIA. For an observer travelling at the

group velocity -VEM of the back-scattered electromagnetic
g

wave, the observed growthrate of the instability is reduced
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by the electromagnetic damping rate F EM. For an observer

travelling at an intermediate velocity Vobs, the observed

growthrate of the instability is reduced by an effective

damping rate rEFF which is a linear interpolation between FIA

and F EM:

/vTA Vog (v0jS-± v'E) r
EFF \ VO 9S) TA C

5.2-(3)

Note that the edges of the undamped pulse thus acquire nega-

tive growthrates. The range of observer velocities for which

the observed growthrate is positive is narrowed down and thus

damping helps to localize the instability spatially as men-

tioned earlier in this section.

For modified and 3 rd-order instabilities, the effect of

damping on the time-asymptotic pulse-response can not be

described by such a simple prescription. However the thresholds

for all these laser-driven instabilities can be easily calcula-

ted from phenomenological damping rates and are as follows:

Brillouin Threshold:

/LAS rFM A
JOA

WEM UJIA

5.2-(4)



Raman Threshold:

VLAISE7 - ~rvM

Cr

5.2-(5)

Plasmot-Phonon Threshold:

V
P TA

JLASE

5.2-(6)

2-Plasmon Threshold:

21
VLRS-Eg? FETP

k z -2
CpVTC

5.2-(7)

Filamentation Threshold:

LAS CR

-r

EI A SR

LAS EK

5.2-(8)

=7 1
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Oscillating-Two-Stream Threshold:

z22

5.2-(9)

No separate thresholds are quoted for modified instabilities

since modification only occurs at high growthrates.

The calculations of Chapter 4 are confined to the linear

behavior of perturbations about the laser pump-equilibrium.

However the physical mechanisms of each instability serve as a

guide to the probable method of nonlinear saturation. An

instability having an electron plasma wave as one decay product

can saturate by the wave growing to an amplitude comparable with

the pump-wave amplitude, or by that wave growing to an ampli-

tude sufficient to trap electrons lying within the main body of

the distribution function. An instability having a plasma

density modulation as one decay product can saturate by having

that modulation grow to a gross macroscopic alteration in plas-

ma density, which destroys the frequency relations necessary

for the instability to grow. Which of these saturation mech-

anisms takes effect first depends on the intensity of the laser

pump and on the fixed ratio between the various exponentially

growing electric field perturbations in the linear phase of

the instability. The latter can be determined in a straight-



forward manner by back-substitution in the coupling matrix

from which the dispersion relation is derived.

5.3 Extension to other problems

The calculations that were actually carried through to

completion in Chapter 3 and 4 concerned a very restricted

case of a pump-permeated plasma. However the theoretical

framework of Chapter 2 can accomodate a much wider variety

of cases. These may include magnetic fields, many pump-

waves and/or particle-beams, attenuated and depleted pumps,

species described by the Vlasov model, and, with only slight

modification, weakly inhomogeneous plasma. This variety is

required for investigating realistic heating schemes both

in laser-pellet and in magnetic-confinement experiments.

We recall that in the course of Chapter 2 and the first

three sections of Chapter 3, the generalized-coupling-of-modes

theory suffered successive specializations. In a sense, each

specialization furnished a test case for the more general

formulation preceding it. In this section, we reverse the

process and go back from the specific to the general. At each

stage, we ask the question: if we remove a particular res-

triction, how do we replicate the calculations which followed

after it, in such a way as to still obtain specific results,

and what is accomplished thereby? This question will turn out



to be a fruitful one. The theoretical framework set out in

Chapter 2 is broad enough that definite prescriptions can be

given for finding the behavior of, say, parametric instabili-

ties in strongly-magnetized plasma driven by an attenuated

electrostatic pump-wave. This is so even though there is

neither time nor space to perform the relevant calculations

in this thesis. The significance of the theoretical frame-

work will thus be brought out physically by exploring and

assessing its adequacy for progressively wider classes of

physical problems. This will be taken as far as the case of

weakly inhomogeneous plasma; the framework of Chapter 2 was

set out in terms of a homogeneous medium, but the modification

of this framework to accomodate inhomogeneity is easy, at least

so long as the coupling terms can be described by a local

approximation. Finally, a possible strategy for investigating

arbitrarily-high-order 3-dimensional couplings in magnetized

plasma, based on a conservation theorem approach, will be

outlined.

The computations in the fourth and later sections of

Chapter 3 and in Chapter 4 were performed for an unmagnetized

drift-free plasma permeated by a single electromagnetic pump-

wave. Without relaxing the restrictions of Sections 2-6,7,8

to undepleted pumps and warm-fluid plasma, the computations in

Chapter 3 could have been performed in an exactly analogous

fashion for the case of magnetized plasma, with each particle
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species containing several beams or several temperature com-

ponents. Several pump-waves could have been employed some

possibly electrostatic, some possibly with large self-con-

sistent harmonic components. In a sense the computations

actually performed in Chapter 4 were a test run, to confirm

the validity of the theoretical formulation and to gain

experience in translating that formulation into actual dis-

persion relations. The success of this test run implies that

we have at our disposal a computational framework for any

problem involving fluid modes and undepleted pumps. This

framework will be used for problems in self-magnetized laser-

irradiated pellets, beam-heated target plasmas, and RF heating

in Tokamaks.

As a next step, one considers how that computational

framework - essentially comprising the coupled equations

2.7-(6) for linear perturbations about an undepleted pump,

together with the expressions 2.8-(43,52) for warm-fluid

coupling coefficients - can be broadened. Chapter 2 certainly

provides the prescription for computing the depletion and

attenuation of pump-waves due to growing instabilities. Chap-

ter 2 certainly also provides the prescription for computing

the effect of the resulting temporal and spatial evolution of

the pump on the coupling coefficients themselves. One may

further consider weakly inhomogeneous plasmas by relatively

slight modifications of the basic arguments in Sections 2.4
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and 2.5, and finally one may investigate the form taken by

coupling coefficients in Vlasov plasma.

The spatial attenuation and temporal depletion of a

pump-wave and its attendant harmonics due to the unstable

growth of pump-coupled perturbations are described by equa-

tions of type 2.6-(8,9). Having equations describing the

space-time behavior of the pump amplitude, one may then

solve the system of equations consisting of these conjoined

with equations of type 2.6-(10) which fix the local instan-

taneous growthrate of the unstable perturbations. This solves

the "attenuated and depleted pump" problem. However, to do

this is to neglect the effects of the finite rate of spatial

and temporal variation in the pump amplitude on the coupling

between the perturbations. The effects of this temporal evo-

lution and spatial gradient of the pump amplitude can be

found by adding to 2.6-(10) the corresponding terms in the

pump-amplitude spacetime derivatives. These extra terms are

prescribed by the form of the generalized-coupling-of-modes

equation 2.5-(7). This solves the "depleted and evolving pump"

problem. These approaches will be used in considering the

following: time-tailored laser pulses impinging on target pel-

lets; strongly-absorbed laser-beam pumps in pellet plasmas; RF

pumps in Tokamaks which have a resonance-cone structure; and

time-tailored RF heating in Tokamaks.
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The simple-coupling-of-modes equations were set up in

Section 2.5 starting from a medium described by a

non-local conductivity, and then taking the medium to be

homogeneous so that the conductivity depended only on the

space-time vector joining the site of the electric field to

the site of the resulting electric current. The assumption

of homogeneity can be relaxed to that of weak inhomogeneity

(see Appendix A7) whereupon the coupling-of-modes equation

2.4-(11) is replaced by the following equation:

%-ko N6 L

2 [
tLose POvs

5.4-(1)



Here the local wavevector and frequency

5.4-(2)

satisfy the phase-uniqueness conditions

vxk
5.4-(3)

In order for the equation (1) to be applicable, the exponential

phase-factor on the right-hand-side must be a slowly-varying

function of space and time; thus (1) can only be used within

some region where

A A' WCt + v (t)
5.4-(4)

for the modes considered. The inhomogeneity of the medium

appears in (1) via terms on the left-hand-side which are of

the order of the inverse scalelength and scaletime of the

inhomogeneity, and via the exponential phase-factor which

multiplies the nonlinear term on the right-hand-side. For

the usual laser-pellet parameters, the nonlinear terms des-

cribing laser-driven instabilities are strong enough so that



the effect of the exponential phase-factor is more important

than the effect of the linear inhomogeneity terms on the left

of (1), as shown by Chambers and Bers.2 The coupled equations

of type (1), with the linear inhomogeneity terms omitted, have

been used by Rosenbluth3 and several others to study blowoff

plasmas. We hope to extend this work to pellets with non-

uniform illumination resulting in non-uniform surface tempera-

ture, and also to RF heating in magnetic confinement devices,

taking into account the effect of plasma inhomogeneity on the

parametric coupling.

Finally, the symmetries of the expressions for warm-

fluid coupling-coefficients computed in Section 2.8 suggest -

though they do not guarantee the success of - an alternative

method for computing such coupling-coefficients which should

be especially valuable for the case of Vlasov plasma. This

method will now be described in more detail.

We hope to rederive the coupling coefficients in a

manner which is a priori symmetric in all the interacting waves,

and which is algebraically less involved. We hope to do this

by finding a quantity, analogous to energy density, which

satisfies a conservation theorem, and expanding this quantity

in terms of physical variables pertaining to the interacting

waves. The second-order part of this quantity will regenerate

the linear dispersion tensor. The third-order part of the

conserved quantity will furnish 3-wave coupling-coefficients,

the fourth-order part 4-wave coupling-coefficients, and so on.
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If the above scheme proves successful, it will be tried

on the magnetized Vlasov plasma. Again expressions for the

coupling coefficients have been derived by expanding the equa-

tions of motion. These coupling coefficients have been

limited to 3-wave interaction, and further limited to certain

directions of propagation.4 The proof of their symmetry is

indirect. Again we would hope to generate coupling coefficients

as coefficients in the expansion of some conserved quantity,

thus obtaining them in a straightforward manner and in an a

priori symmetric form. Such a simplified, systematic derivation

of three-dimensional coupling-coefficients in magnetized Vlasov

plasma is needed before a certain practical possibility can be

investigated. This is the possibility of injecting microwave

energy into Tokamaks and heating the plasma by coupling to

ion-cyclotron modes, rather than to the warm-fluid modes pre-

5
viously considered by Bers and Karney.
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A. 1 Derivation of the Simple-Coupling-of-Modes Equation

The conductivity of the medium is given by 2. 4-(5);

J(x, t) = d LIN -,r) + , t + T)

+ ,d' dr de" d T 
6 NL(2) _ , _7 , II ')

(x+ l, t + T') 19(x-+ "l, t + ")

A1-(1)

As in 2. 4-(6), take

i -xa - iw t
9(x, t) = ka(x, t) e A1-(2)

a

Treat the nonlinear conductivity as a small quantity. The space-time

derivatives of the {$a} will be also treated as small quantities.

Substitute (2) into (1). Expand the {$a} appearing in the linear current

as 1st-order Taylor series about (x, t). Approximate the {9a} appearing

in the nonlinear current by {$(x, t)}. The result is

i - x iwa-it 4LIN ik -*-iwaJ (x, t) = e d dT 0 (-T,-r ) e

(a(x, t) + - + Tb x
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+ 1 ~i(kb+k) - - i(wb +wC )t Idl+ e e b cd' drd" dr"
b c

ONL(2) i b iwb i c - l wc

$b(x, t) 9c (x, t)

A1-(3)

The subexpressions outlined by boxes are just the Fourier-transformed

linear and nonlinear conductivities respectively.

_+ 4ik - X -
J(x= lea

a

6~LIN

In terms of these,

V t (+
a(k, wa (x,t)

a

bx

ibLIN

b waa

i(wb + w C) tb i(k + k ) x
+ e b c

bc

4

NL(2) b' c' C

b(x, t) Ec(x, t)

A1-(4)

Differentiate (4) with respect to time, keeping 1st-order space-time

derivatives of the {9 a} in the linear-current term and no space-time

derivatives of the {9a) in the nonlinear-current term. The result can be

written



y Mj(x, t)
ik x- x-

ea
a

w LIN (ka Wa))

-iwa 6LIN (ka,

a

Ox

Op
wa)) 0Ta

1 b+ xc b ~+ wc) t
+ e bc b c

b c
(-io)(wb + wc)

6NL(2)

A1-(5)

The remaining terms appearing in Maxwell's wave equation 2. 4-(8) are

Sik
e

4
x - iw ta

a X a - x

To first order in space-time derivatives of the {9 a}, these terms can be

written

-1X4 4)
-X(V X E)

S4ik - x - iw t- pa a
-EE =)e
00

a

pS 0 ~ w Na'(, t)kaX (k X) +

'300

iw ta $LIN
-*owa

- a

+ "Ew-a

/S + a (x, t)

A1-(6)

(a,9 wa a(x, t)

(k b, wb' 9kc,0 wc ) b(x, t) 9 c(x, t)

-X(V X 0) - p 0 -
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+

a
kaXk ~ X) + p±Ega

0 a + a a a

A1-(7)

Combining (5) and (7), we find that Maxwell's wave equation 2. 4-(8) has

the appearance

ik* x - iw t
e LIN

k , w )9 a (x, t)

LIN
ib L

bOw aOx

e
-

t f

i(wb+wC)t )(w ±w
(-y b+ wc

+NL(2)

A1-(8)

where the operator LIN

4
LI ( , w)

is the linear dispersion tensor defined by

+ ip 0 w 6LIN (k, W) A1-(9)

In (8), LLIN is contracted with 9a and b/Ok a is contracted with o/Ox.

Equations (8) and (9) yield 2. 4-(9), 2. 4-(10) respectively.

ibLIN-+ NiOL

beC

(k b, wb'9 kCO w c b(x,9 t) 1 c(x, t)

-- X R~* + y E w 2
o o0
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A. 2 Derivation of the Generalized-Coupling-of-Modes Equation

The conductivity of the medium is now given by 2. 5-(2);

$ = \ d d LIN )9(x+ , t +r)

NL(2)
+ del d' d'l" dr"

3. +-S

(x' + ,t + 7I) 9(x + "1, t + 7"1)

4 e
d d d " dT" d("' dT "

4 NL(3) _T _ I

E (x+ ,t+ T)(X + "t +7T) E(x + ',1t + T'")

+ -A2-(1)

Again take as in 2. 5-(4)

ik x - iw t

e t) a a A2-(2)

Again the nonlinear conductivities and the space-time derivatives of the

{Ea} will be treated as small quantities in some sense. These small

quantities will be used as expansion parameters. Unlike Appendix Al,

this appendix retains all orders in these small quantities, at least form-

ally. The user of the final generalized-coupling-of-modes equation

should retain such orders of nonlinear conductivity and such orders of
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space-time derivatives of the {9a} as he judges to be significant for his

physical problem. Substitute (2) into (1). Expand the {$a} appearing

in the integrands as Taylor series about (x, t). The result is

xik
Z(x, t) = zea

a
iw t IS ddad4 dr

ik a- -iwa
e exp

i(k b +k C)
+2!~ eb

b c)t d ' d 1 d '

NL(2 ib b' ie iwaNL(2) (4-10', -elf -7') e e C

exp - + 7' +
b xb b

e(k b
b e

b c d

4 c
c I*-

c d) - x - i(wb+ wc + wd) t

ikb b c c d de e e

ep x+
x Xb 5tb

+el

bxc
C

+
C b xd d

A2-(3)

Here b/bxb, b/Ntb are understood to act only on Eb ' t), and so on.

+

OLIN 4 T

x 4
Ot a't

741 b _+ _+

bt ) ]gb(xo t) 19 C(X, t)
c

]gb(xt) gc(x, t) hAd(x, t)

. . . . -



The subexpressions outlined by boxes are just the Fourier trans-

forms of the linear, 2nd-order, 3rd-order, conductivities. In

terms of these,

exp(-
bka

+ ib
4 wbx a

b )LIN4
(k a, 4 t

w a Wa(x, t)

i(kb+k c x -
e

i(wb+ wc)t

+ io 0
bw bte

-+NL(2) -
G (kbp

4

- e , i ( k b
e

b c d

-+ c c b c
wb,9 k c, wc)E_ b (x, t) 9c (x,. t)

4 4 4
Hk ±k d)x - i(wb+ wc + wd) t

ib .b

b b b b

+ ib
& wd

+_

- wb Otb + b
b±w Otc

C

- -
Od Od

SNL(3M+ +
G (kb, wb, kc,

w kd w (x, t )x t)

Here b/bib, b/btb are understood to act only on b(x t), and so for
b b (.9tadsfo

c, d, -

Compare (4) with the approximate form for the current used in

the simple-coupling-of-modes theory, Al-(4).

44

ika -ex, t ) = 7

a

- iw ta

+ 1
21

b c

exp (- 4
k kb bx b

+ ib
b

0
b -4

bk
c

bx
c

1 I+ 1

exp
iO
4 ck Ox

c

O
I

A2-(4)- - - - -

The expression A1-(4)
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comprises the above linear current to first order in the space-time

derivatives of the {9a} and the above 2nd-order nonlinear current to

zeroth order in those derivatives.

As an illustration, one may expand A2-(4), displaying higher

orders of space-time derivative and higher orders of nonlinear conduc-

tivity than are present in A1-(4). When the first few terms of A2-(4)

are thus explicitly displayed, the result is 2. 5-(5).

From (4), an expression for y J may easily be derived. The

remaining terms in Maxwell's wave-equation, 2. 4-(8), will be written

in the form 4 4
*0 ika- x - iwat
_+4 a a-V x(Vx E)- E = e

a

ik X i+ A E w 2- (x t)
exp + t aX (a aj a

k x wa&-k00

A2-(5)

The only non-zero derivatives that the operator in square brackets

possesses are the first and second with respect to wavevector and the

first and second with respect to frequency. The exponential-operator

notation is used merely for convenience in combining (5) with the

expression for g. The result is Maxwell's wave equation 2. 4-(8) in

the form

ia. x-iat ib 0 ib b )LIN 4e exp - -+ '- + b w3)L (ka, wa) a(x, t)
a Ok bx a



30(,

1 e'r idkb~ke)x ~ (b+wc)texp( 0kb~ B
e e + -iw b( -+ w )

b c b b b c

- - + cH ( o 0b + wC) NL2(kb, w b' c, w c
C c

(,t) E c (x, t)

i(k b4 d). x- i(wb + ±wd)t

b c d

exp - + d o b + wd

NL 3) 4 -+ t -4 -+ b t
ib + ib b W+-+ ± (-i,4) (w+W

4 + 4 w bt 0 ob cd
bk d bX d d d

(kb' Wbs kc, wc, kd, wd) Jb(x, t) Ec(x, t) Ed(x, t)

+ -----.

Here the operator

LIN wL (ko W)

-4
4 LIN
L is the linear dispersion tensor defined by

= X(kX) + y E w 2
o o0 0

G (k, w) A2-(7)

Compare (6) with the simple-coupling-of-modes equation A1-(8).

The equation A1-(8) comprises the linear term of the above to first order

A2-(6)
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in the space-time derivatives of the {Ea}, equated to the 2nd-order non-

linear current taken to zeroth order in those derivatives.

As an illustration one may expand A2-(6), displaying higher orders

of space-time derivatives and higher orders of nonlinear conductivity

than are present in Al-(8). When the first few terms of A2-(6) are

explicitly displayed in this manner, the result is 2. 5-(6).

One may also write A2-(6) formally as

ik K- iw t -
a a -4LIN

a
ka + Ox

w i(kbk i(wb+

b c

6NL(2) -+ ib
b 4 'bxb

wa + oa

wc)t

w + ib
b bt b

wb+w + -)b c Ot

k c b
c

w + ib gc Ot bc
c
c

ko b + kd b+ w + w )tb

bcd

6NL(3) kb4 ibbxbbx b

kd4
bx d

wib 
b c

Oxc

w+ ib
c bt c

wd+ O b c d-d bcdd

A2-(8)

1

+ 1
i(k b +

+ - - - - -



A. 3 Calculation of Coupling Coefficients for

Warm-Fluid Model of Plasma

Coupling coefficients are additive over species.

the warm-fluid model is defined by (see 2. 8-(12, 13, 14))

2
4 _ YvT9S yv +v. + n

Ox 0

nY-2n5

0

On + -
bt 4xbx

:t -t -X_ E"(+ vmX B)m

nv = 0

For each species,

A3-(1)

A3-(2)

The steady magnetic field B is given.

a subsidiary quantity defined by

49
OB

The rest of the magnetic field is

bx
A3-(3)

The electric current is

qnv A3-(4)

Consider 2nd-order conductivity. Impose fields Eb, upon the medium.

(1) and (2) each have a component at the sum-wavevector and frequency

( ) namely
b+c' b+c'

Wb+c b, c
4 4 4 4

+ v - ik V + V
o b+c b, c a

2
4 YvTo 4

- ikbb + n ikb+c Nb, c +

Nb 
+ (y - 2) -ik Nn c cj m b, c

4 4
X B + X B C)

A3-(5)
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-iw N cik -(n'9b, c + Nb V + Nb, co
b+c b, c b+c b bc bcc

Here terms other than those in Vb, c and Nb, are summed over the 2

possible permutations of the subscripts b, c. Rewrite (4) using the

definition 2. 8-(21)

Nb, c
n

0

k
b+c - +

w b+c b+c
A3-(7)

N
+ c )

b n9

Substitute (7) into (5)

Yv 2ik k q
/-DR + To b+c b+c - +

b+ c w DR m b,. c
b+c

Yv2 .4 k
ikb c b VTo ikb+c b+c . N

= b c b Wb bc
w b+c b c

2 N bN c bXl mc)
i Y(y - 2 ) vTo c n 2 +b c r w

0

Use the linear results 2. 8-(19, 25) and the definition (22) to get

A3-(8)

k

-1 ~r b+c - +
+c wDR b c

b+c

Yvk k
To b+c b+c

(wDR )2
b+c

, Nc
b n

k NbN k iqB
+ Dy(R-2)vo D1n 2c ± b DR X( mX c

wb+c n wc

A3-(9)

where terms on the right-hand side other than those in curly brackets are

A3-(6)

b, ec
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summed over the 2 permutations of b, c. The electric current (4) has a

component at the sum-wavevector and frequency (kb+c w b+c), namely

b, c n0 q b, c

N

b n
0

A3-(10)voNb, c)

(10) and (6) yield (see 2. 8-(42)

b, c
+ vo b+cwb7W b±c

b, c

N
+ cb n

0

Now go directly to coupling coefficient defined by 2. 7-(8).

(ka , wa)

A3-(11)

Take

A3-(12)
= (kb, wb) +

and write

(- ,9 -w) = (k~-, w-)a a a a

f =e A-Aa Aa

(FNL( 2 ) )
b, c ABC

eAa *Bb, Cc
9 wo a

\V BbCc Bb
n Cc
n

(from (11))

Then

A3-(13)

A3-(14)

4
eAa

w-a

iqn 0
E
o0

A3-(15)

v k
+ v oa

DRw-
A3-(16)

= qn9 1(

\ (



(Here terms on the right-hand-side other than those in 3Bb Cc and

VBb, Cc and n Bb, Cc are summed over simultaneous interchange of B, C

and b, c. )

(F NL(2)
\b, c ABC

iqn
0

E
0

4DR
eAa

DR
a

( Bb, Cc +vBb nCc)

(from 2. 8-(25))

mn

E A
0

-1 TRANSPOSE

(4 -a) (VBb, Cc +
+ nC

vBb n/
0

(from 2. 8-(32))

/ 4

V BbCc±+
+ n Cc
Bb n

0

(from 2. 8-(22 or 23))

From (11) and the definition 2. 8-( 22) of Ma

FNL(
2 ))

b, c )ABC

+ YVToka ka

(w DR 2
a

+VBb X(4
c

+ 1

mn9 -+

V A

-+ n Cc
Bb n

0

iqB
In m

iqB 0
mS R2

(w D
a

r ka 4
DR V Bbwa

C 2+ y (y-2)vTo

4
V Cc

ka
DRwa

n Bb nCc

n
0

X Cc)'

n
X)vBbfcl

A3-(20)

A3-(17)

A3-(18)

mn
0

0

4

VA
M a

A3-(19)
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Here all terms other than those in the curly braces are summed over

interchange of Bb, Cc. Now use 2. 8-(33), rearrange, and write out the

sum of permuted terms explicitly:

Consider 3rd-order conductivity.

medium.

Impose 3 fields Ib' c' d upon the

(1) and (2) each have a component at the sum-wavevector and

frequency (kb+c+d wb+c+d), namely

S4 -4 b 4iw~cdV + v ik V-iwb~~db, c.9 d o b~c~d b, c, d

+ 4,

2
yv T

ik V + nd b b n ikb+c+dNb,

4

b
-4 4

lk+d cJ,d

Nb
c, d + (y-2) ikcC, dn c+d Nc, d

N d
+ (Y- 2) c, d

n
0

= rn b,mq ,

ikbNb + (y-2)(y-3)
N N

c2d

XB + V XB)
c, d o c, d b/

ikb Nb

A3-(22)
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-iw N +ik b (nV + NV
b~c~d b, c, d b~c~d o bp c.9d b c.9d

+N cdVb +Nb cdvo = 0

A3-(23)

Here all terms other than those in V and N are summed over t
b, c,d b, c.,d

the 3 cyclic permutations of b, c, d. Rewrite (23) using the definition

2. 8-(21)

kb+c+d

wDRWb+c+d

4+ Nb
+ b

b, c, d c, d n
+ V- N c, d)b nd

0

Substitute (24) in (22)

.DR
S1wb+c+d

2 ikb+c+d kb+c+d qB0
+ YvTo DR + m

wb+c+d
X) b, c, d

4+ 4 4 40 44 4 -
-ik *V V -ik dV V+ V

b c, db cdb c, d c

-4 4+

yv2 ikb+c+d kb+c+d (4

To w DR c,
b+c+d

2 .
- y(y-2) vT ik b+c+d

N b

dn

d b wb

Ncd
b nd

0

Nb Nc, d
2

n

- y(y-2)(y-3)vT ik b+c+d

Nb Nc Nd}
3

n
0

Here all terms on the right-hand-side other than those in curly braces

Nb, c, d
n

0

A3-(24)

A3-(25)



are summed over cyclic permutations of b, c, d. Now use the linear

results 2. 8-(19, 25) and the definition (22)

-N+c+d

4 4 4
k V Vb+c+d b c, d

DRWb+c+d

b c+d c, d
DRWb+c+d

b X (q 0 wb
DR

w b+c+d

k k
+ 2 b+c+d b+c+d

To (wDR )2
b+c+d

+ y(y-2)v 2To

+ y(y-2)(y-3)v2

N

\\c, d n 0

-4
kb+c+d NbNc, d

DR 2w nb~c~d o

4
kb+c+d

DRw b±+d

N b Nc N d
n

0

The electric current (4) has a component at the sum-wavevector and

frequency (kb+c+d' wb+c+d), namely

= n q (Vb Nb
c, d c, d n 0

+ Nc9 d+ cV +b n
o

c ,

c Nb, c, d)

(27) and (23) yield

v ok bc+d
c, d n o+c d

b+c+d
-)Vb,

N
+ bc, d C.9d n0

V,bs C, d

V,c, d Xb))

Nc, d'

n

A3-(26)

J+ c+ d

b,

A3-(27)

Nc, d

0

+
b A3-(28)



Now go directly to coupling coefficient defined by 2. 7-(9).

(ka, wa) = (kb, wb) + (ie' Wc) + (id Wd)

and write

(-k , -wa) = (k-, w-)a a

a 4

Aa e Aa

1 ei* e Bb, Cc, Dd

o a

\YBb, Cc, Dd
+ nBb

+ vCc, Dd n0 +
+ nCc, Dd
vBb n

0

A3-(33)

From (28) and the definiton 2.8-(22)

(F3) C
F b, c, dABCD

mn r-a

0

-4 4+ 4+
v X (k XvBb c+d Cc,

DRw

Dd) VCc, Dd X (kb X (iqB0/mwbDR X Vb)
DRwa

+ v2 a a
+ 'yTo (WDR )2aa

2+ y(y-2) v 2

Cc, Dd

a

wa

nBb

n

nBbnCc,Dd +

n

, nCc, Dd
Bb n /

C 2
{y(y-2)(y-3)vf To

a nBbnCc Ddl
wat n3w na 0

A3-(29)

Then

A3-(30)

A3-(31)

4

VAa a
mn

(
0

(Cf (19)

A3-(32)

of 1la

it
L Bb '

4

VC, Dd

Take

(FNL(3 A a,b, c, d)ABCD



nBb
Cc,Dd n o

V, nCc,Dd]
v Bb n J

4A 2 a a
+ -vAa- * 7To (wDR ) 2

4 iqB 0
+ VA X-DRmw Cc, Dd

nBb

n

4 nCc, Dd
+VBb n

0

A3-(34)

Here all terms on the right-hand-side other than those in curly braces

are summed over simultaneous identical cyclic permutations of B, C, D

and b, c, d. Rewrite (34) using the 2nd-order result (7) to substitute for

nCc, Dd'

NL(3)C
b,-c, d/ABCD

mn
00

rnAi 4Ln Bb'
- VBb0

VA XVBb - kc+d XvCc, Dd
DRwa

44. ' 4 /M DR 4 -
vAa b o a /Bb

DRwc+d

0 nBb 4 4
Cc, Dd+ n A * C c, Dd

4 ,4,.4 DR
vAa kb X oiB b xvBb))

DRwa

4
V Cc, Dd

'Cc,Dd

/ 2 nAanBb 4+ (y(Y-2) v 2o -a, -+ VAa
n

0

4 nDd
Cc, Dd + VCc n +

VBb

-4 nCc\
vDd n )+

0

-4

+ iqB 0+ v A X ---- DRmwa
a

nBb 4

n Aao0

4 c+d
v Bb> D

w c+d

iqB

mw

4
V Cc, Dd

+ vAi X
mwa

4 nCc, DdV Bb n +
0

3"4

A3-(35)



The boxed term forms a quantity invariant under simultaneous identical

permutations of all 4 subscripts A, B, C, D and all 4 subscripts

a, b, c, d. Rewrite the remainder, ( (3)ABCD say, using the

following pair of 2nd-order results derived from (7) and (9) respectively.

n4
nAa Bb kc+d

n DR
wc+d

4 nBb4 n Aa
\ Aa, Bb + VAa n Bb n /

0 0

4 2
Aa, Bb To

kc+d kc+d

(wDR 2 '
c+d

A3-(36)

4 iqB
Aa, Bb ~ DR X vAa, Bb

c+d

c+d (4 4*; 2 nAnBb)
~ (D a * Bb +Y(y- 2 )vTo 2w c+d n0

4+ + -+ DR -+
vAa X (kb X (iqB/mwb X vBb

DR
wc+d

Bb X a X oB0/m R X VA a
DRwc+d

+ Yv2 c+d c+d
To (wDR2

c+d

4 _nBb 4 nAa
Aa n Bb ni

The result for the remainder of the 3rd-order coupling coefficient is

)A mn rnA4 4 nBb4 4

(b, c, dABCD= - -9 nL Lin vBb vCc, Dd + -ij- vAa v Cc,

A3-(37)



A 4B
kc+d Xv Cc, Dd

DRwa

Aa X (b X ( /mwR XAa 0a XBb)
DR

Wc+d

4 4C
VA a, Bb *vCDdj

2 nAa, Bb nCc, Dd
To 2

0

iqB9

Bb X 3R
mwc+d

. nDd +
0

4 nCc

Dd n
0

4 4 4 DR 4
vBb X (ka X (iqB mwa X vA))

DR
wc+d

4 4 4 DRvAa X (kb X (iqB DRwb. X VBb))
DRwc+d

' (Cc, Dd

{4 nDd

0

-+ nDd
+v vCc. n +

+C

+ n Cc3
vDd n/

0

4 nCc
Dd n)

0

4 oiqB0

VAa X -- Imwa Cc, Dd

-+ k c+d

w +d

4
(v~cDd

4 nCc+VDd n
0

The right-hand-side is again summed over cyclic permutations of Bb, Cc,

Dd. The sum of the boxed terms is a quantity invariant under all

permutations of Aa, Bb, Cc, Dd.

4
'VCeDd

+4
+ v-.

nBb
n

0

4
iqB

0
+ VA -aX DRmwa

4 nDd
+vCc n0

A3-(38)

The remainder is a quantity,
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A NL(3)

b, c, d) ABCD

ay, which may be written

mn
0

0

VA
4 -4 4

a X vBb *kc~d X Cc, Dd
DR

VAa X VBb* Cc, Dd
+ DR

wc+d

A a X (kb X /mwDR X Bb
DRWc+d

iqB3 0  nCc-
DR XAa, Bb n VDd
c+d

-+ -+ DR
vBb X (k X (iqI/mwa X vA

DR
wc+d

4 4 4 DR

vAi X (k b X (iqBo / wb X v Bb))
DRwc+d

DRwb

DRwa

4

'VCcDd

nCc
n

0
vDd

nCc 4
n VDd

0

nBb -4 X
no V~

iqB
+ VA X- D

mw a

-4
4 kc+d
V Bb DRW

wc+d (v Cc,
nCc -

Dd + n VDd)
0

A3-(39)

Here wavy overscores denote summation over interchange of Cc, Dd,

carried out before the general summation over cyclic permutation of

Bb, Cc, Dd common to the whole right-hand-side. The boxed terms

sum to a quantity invariant under all permutations of Aa, Bb, Cc,

iqB9

m
kaa

wDRwa

iqB9

DR
mw c+d

- Cc, Dd

Dd.
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The remainder,

A(ANL(3)
F bpC d)ABCD say, may be rewritten using the 2nd-

order result derived from (9)

c+d X vCc, Dd

kd

+ c+R+DRW +d

kc+d
DR'

wc+d

'iqB

X K m X v Cc, Dd)

X (Cc X dmwR X Dd

A3-(40)

The result is

A
A mn
/ANL(3)) m 0

c, d/A BCD = oC

4 4
v - XvAa Bb

kcd DR -4
kc+d X (iqB/wc+d XCc, Dd)

DRw
a

-v -XvAa Bb

4 4

+ vAa X vBb

-~ DR -*

c+d X (Cc X X (iqB /mwd X vDd)))

DR DRwa wc+d

-+ ka
Cc, Dd wDR

a

iqB0

DR
mwc+d

-+ 44 DR -4
vA x b X (iqB 0 /mwa X vBb

DRw

Bb X da X iq] /mwDR X v~-
+ DR-

VA+ X (kb X (iqB DR/mw X v
DR

w c+d

+ DR
W c~d

.4
v Cc, Dd

vvDd
, nCc

n 0

.nCc
n Dd0



DRwb

w a

nBb 4

no VA

iqB
+ vAa XD

mwa

iq
X DR 

mw c+d

c+d
- vBbDR

w c+d

4,
v Cc, Dd

{4
\ Cc, Dd +

nCc-+ '~
n Dd/,20

The terms in v Cc, Dd cancel.

(FNL(3 ) mn
F b, c, d/ABCD C-

0

VA- X VBb - vCc
DR
a

The remaining terms may be written

c+d -k X amwDR X v )
D d X o d XvDd)

wc+d

VA X vBb X -+ DR - c+d -*
+ DR d X (iqB0/mwd X vDd) D VCc

wa wc+d

VAX vBb
+ DR

wc+d

4 4+

-vA a vBb
~ DR

wc+d

-4

iqB
0

AaXvBb b DR
mwa

kc+d
DR

wc+d

{ a iqB nCc-
\DR mo) ncDd
w 0a

k b iqB nCc

DR mo/ nvDd
wb 0

nCc -+
n VDdi

0

A3-(42)

The boxed terms sum to a quantity totally symmetric in the subscripts

A3-(41)
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Aa, Bb, Cc, Dd. The remainder may be written

A
A4 4

NL(3)\ mn L VAa X v Bb nDd4
Fb, c, d)ABCD DR n VCc

0 w a o0

iqB kc+d
m DR /wc+d

VA X vBb VCc
+ DR

wa

VA a X vBb
+ DRWc+d

VAa X vBb
DR

Wc+d

kd iqB, 4

DR m) VDdwd

nDd -+
n Cc0

nDd 4
n9 Cc

0

iqB

( m

iqB

(m

kc+d
WD7
w c+d

4+ 4 4 4
k a -+-+ 4 4 c iqB o kc+dka ~ ~ 0 --v c~~ ~
DR) VAaVBb 'Cc \ m /VDd DRw c wa Wc~d

kb

Dw DR /
b

A3-(43)

A
A
A m

(ANL(3)~ 
0-m

0

4 4
v - X v
AaDR Bb

Wc+d

n Dd4 iqB
n Cc m

-4
, k c+d

K~DRwa

~W~WW~
4 4 -4

Aa X vBb Cc 4
+ DR vDd

wa

kc+d iqB 0

Wc+d

The right-hand-side of (44) is first summed over interchange of Cc, Dd

and then summed over cyclic permutations of Bb, Cc, Dd. It is the

same as the following, summed over cyclic permutations of Bb, Cc, Dd:

4
k a
DRwa

kb

Wb

kd

w d

kc
w

c

A3-(44)



A
A
A
/ANL(3))
b, c, d/ABCD

mn 0vAa X vBb Cc 4

- L DR Dd
0 wc+d

44 4+ _

VAa vBb -vCc4 d
DR Dd' DR

wb+d Wd

VAa X vBb - vCc4 c+d
+ DR VDd DR

wc+d wa

VAa X vBb VCc
DR

wb+d

A
A
A
ANL(3)

A (aFb., c, d/BCD "~

kc+d
+ DR
w c+d

4
k

\DR
wd

-4

4 b+d
VDd DR

w a

mn
0

0

kc +

DR)+
w C

323

kd
DR

wd

iqB

m

iqB 
0

m

iqB

m

VAa X vBb Cc4
DR vDd*w
a

k+ dk b

DR Wb
w b+ d w b

kb
DR)

A3-(45)

This quantity summed over cyclic permutations of Bb, Cc, Dd can be

shown (see Appendix A6) to be completely symmetric in Aa, Bb, Cc, Dd.

Thus the whole third-order coupling coefficient is completely symmetric

in Aa, Bb, Cc, Dd. Reassemble the whole coefficient by bringing back

the boxed terms which were successively set aside in (35), (38), (39),

and (42). The result is

iqB

m

k c+d

w a

-4

k a
+ DR

w a

Wb
~DR
w b

kc
w C

-4
ka

w a

k

DR)
w C

-4

k b+d

w
a

Skd

DR ~
wd

/ kd

wd

{ke

\wDRc

Skd

DR
d

Wc

wb

4
k d

w d

iq0

m

A3-(46)



I NL(3)>
'Tb, c, d/ABCD ~

7L Aa Bb b A a Cc, Dd + VAa, Bb nCc VDd Dd Cc
0

4 4
+ n9VABb 'Cc, Dd

2
To

n nAa, Bb nCc, Dd

+ {y(Y-2)(y-3) To n- nBbnCc nDd
n

0

4cI 0(non -v+ n - + n di\vAaBb nAa Bb +nBbvAa)X Cc,DdnCcvDdnDdvCc/* DR
o c+d

k k
+n 0A-X vBb-vCc)vDd \ DR \DRwd w

b+d

wb+d

kb

wb

d

wd

k b

wb

c± dkc+d

w c+d

k
( d

wd

i .
c)

w
C

iqBg

a DR
mw

A3-(47)

In (47) the terms on the right-hand-side other than those in curly braces

are summed over cyclic permutations of Bb, Cc, Dd. Writing out the

summation explicitly,

( NL( 3 )
\b, c, d/ABCD

m(n -v+ n- + (n -+ -+
E LAaBb Bb Aa Cc, Dd Cc d D+nd C - vA a, Bb
0



Aa(nAa Cc + nCcvAa) - vDd, Bb +
4 B b

(n Dd vBb + n Bb V Dd)

+ (Aa Dd + nDdvAa)

SovAaBb

vBb, Cc + (nBbvCc

Cc, Dd +fnvAa, Cc * Dd, Bb

4 -4
±CcVBb) VADd

+ n vAa, Dd
4V Bb, Cc

2
(n n ±n- n - n 2/
Aa., Bb Cc, Dd Aa, Cc Dd, Bb Aa., Dd Bb, Cc TTo/

2 3
+nAa IBb nCcDd y(y2)(y3)vTo nO

novAa, Bb +nAa Bb +nBb Aa) X(novCc, Dd+nCc Dd+nDdvCc

4 4 4-

(nvAa-., Cc +nAv Cc+nCcvA) X(nvDd, Bb+ nDd VBb +nBbvDd)

+Aa Dd nDd Aa ) Bb,

40 iqB

Cc +Bb Cc +CcvBb mn 'D
o b+c

+r n(vA - X VBb VCc )vDd

-4 4+

{ d { c

w d w c

kb

wb

kc+d { d

wc+d wd

-4
k

JDR
wb

k d

DR)
wd

4 4

kd kc
\DR DR/
w d w c

-4
iqB0

+±n (v - Xv
DR 0 Aa cc

mw-

kd+b
+ DR

wd+b

'kb

\DR
wb

kd

DR/
wd

-4
kc+b

+DR
w c+b

vAa, Cc

iqB

mn wo c+d

iqB

mn wo d~b

o Aa , Dd

4c )

wC

k

wb+d

kb( DR
wb

vDd) VBb

4 4
k

wc

kb

DR)
wb

iqB9

DRmw-a
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+ n(vAX vDd 'Bb Cc

4 4 _ 4 -4 4 4 -4 4
kc kb kd kb+c ke kb kd +c( kd kc , iqB -

-DR D R~DDR DR DR DR JDR)>Diwc wb wd wb+c wc wb wd+c wd wc mwa

A3-(48)

The prescription for evaluating (48) is as follows. The normalized
4

mobility tensors M are found from 2. 8-(22 or 23). The first-order

velocities and densities are then found from 2. 8-(19). The second-

order velocities are found from (9) and the second-order densities from

(7). Both the 2nd-order coupling coefficient (21) and the 3rd-order

coupling coefficient (48) are to be summed over particle species. They

are also to be summed over different drift-velocity and temperature-

components for a single species, if such exist in the plasma.
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A. 4 Verification of Symmetry of 3rd-Order Coupling

Coefficient Using MACSYMA

The 3rd-order coupling coefficient (FNL(3)ABCD for a warm-fluid

plasma is displayed in A3-(48) or equivalently in 2. 8-(52). The displayed

form is constructed from first- and second-order velocities and densities

which characterize the interacting waves. The method of construction

is totally symmetric in the 4 interacting waves, except for the last 3

terms. The sum of the last 3 terms forms a quantity, b, c, d)ABCD

say, which is certainly symmetric in the 3 waves characterized by the

subscripts Bb, Cc, Dd. We shall show that despite its appearance it is

also symmetric in all 4 subscripts Aa, Bb, Cc, Dd. This will be done

using MACSYMA - Project MAC's SYmbolic MAnipulation system. This

is a highly interactive computer system, implemented and maintained at

M. I. T. 's Project MAC by Joel Moses and his group. No attempt will be

made to describe the workings of MACSYMA. Rather, the console

session will be reproduced. Only those few features of MACSYMA used

in the calculation will appear, and their function will be obvious. Of

course, the range and power of MACSYMA's facilities are by no means

limited to the relatively simple operations appearing on the printout in

this appendix.

From 2. 8-(52)

(P N)=+mn
b, c, dABCD 0

L vA &vCc XvDd vBb'

( kb kk dbkd kb kb~ k k qB5
b c d d+b d b b+c b c a
DR (DR ~ DR DR (D R~ DR ~~K T)R mw)) DR

w b wec w d w d+b w d w b w b+ c wb we c i



+ (vA v DdXvBb )vCC
4aD bC

kd

w d

kb

w b

-4 -4
kb+c 

1 kb
DR D-Rwb+c wb

kc

~DRw
c

+ (V V Bb X vCc vDd

k c+d {ke
+5 DR\DRwc+d w

kd

~ DR/
wd

kd+b { kd
+ DR DRwd+b wd

kb
DR)

wb

iqB0

mwaa

A4-(1)

Consider the vector

Aa VA (vBb Cc X vDd)

and the 3 other distinct vectors formed from it by even permutations of

the 4 subscripts of the v

uBb - (Bb(vA

uCc vCc (VA a

uDd Dd Aia

4 -
' Dd X vCc

- Bb X vDd

' Cc X vBb)

An even permutation of the subscripts of the {V} induces the same even

permutation of the subscripts of the (u}. An odd permutation of the sub-

scripts of the {v} induces the same odd permutation of the subscripts of

the [u*}, together with an overall sign change. Further, using vector

identities,

k

DR'
wc

kc +d
WDR
wc+d

k

DR
wc

kd

w d

kd

wd

iqB0

DRmw-a

{ kb
k DR

wb

4
kc)

DR)wC

A4-(2)



4 + + 4 4
UAa±UBb Cc Dd

iqn B
k- -

a E
0

and so for the subscripts b, c, d. Then

- + b + c +
a b c d

In terms of these variables
A
A
A

(kb, c, d)ABCD-

4 b c-UBb DR DR
b c

c d

4 lk
-+ d

-uDde DR
wd

( b
DR

wb

d
DR

wd

b

w b

ec )
DR)

w
C

d+b
DRwd+b

-4
kb+c

+DR
wb+c

kc+d

DR
wc+d

Id
DR

w d

Ib
DR

wb

c
DR

w

"b kb+c b
DR) DR( DR

w b wb+c wb

c kc+d e c
~DR) DR DR

we wc+d w

wd)
wd

d+b ( d
DR\ DR

wd+b wd

c DR
DR a

we

d/w DR

~DR/
wd

Yb DR

DR a
wb

A4-(6)

Interchanging the 2 subscripts Aa, Bb on the right-hand-side of (1)

transforms it into the quantity (note we have used (10) and the immediately

preceding discussion)

Q = (Bb - uCc - uDd

Define

= 0 A4-(3)

a-a
A4-(4)

= 0 A4-(5)



3-30

a

+uCc'(DR

c

d44

+uDd DR

d

C

DRw

pd

wDR
Wd

a
wDR
a

d
~ DR
wd

a >

a

wDR>w
C

d+ia
DR

wd+a

a+c
DR
a+c

c+d

Wc+d

DR
Wd

a

(DR'

cR
w

c

/

DR)
a

c
DR)w
c

d
DR

Wd

a+c
+DR

Sc+d
wDRkc+d

+ d+kD -

d+a

wDR
a

c

wDRc

d

DRwd

c )/wDR
DR bw
c

d )WDR

Wd

_ __\/ DR
DR)) /wb
a

A4-(7)

(6) and (7) may be written as say

A

Sb, c, d)ABCD
4

_u UBb

-4

- uCc

-4
u UDd

- VECC

- VECD A4-(8)

- - -(-u Bb -uCc Dd

+ uCc-

4
+uDd

TVECC

TVECD

+ lib + zc + zd

DR+ DR + DR
a b c

= 0

+ DR
d

The MACSYMA system is given the form of VECB, VECC, VECD,

TVECB

Also

A4-(9)

A4-(10)

= 0 A4-(11)



TVECB, TVECC, TVECD, appearing in (6) and (7). It is then given the

relations (3), (10) and (11). Using evaluation followed by rational

simplification we find that MACSYMA returns the results (see printout)

VECB - TVECB = 0

VECC + TVECC - TVECB =

VECD + TVECD - TVECB = 0

A4- (12)

Therefore AA

Q = (b, c, d}ABCD A4-(13)

Therefore the right-hand-side of (1) is, despite its appearance, invariant

under interchange of the subscripts Aa, Bb. It is clearly invariant under

any permutation of the 3 subscripts Bb, Cc, Dd. It is therefore totally

invariant under any permutation of all 4 subscripts Aa, Bb, Cc, Dd.

Therefore the whole 3rd-order coupling coefficient for the warm-fluid

plasma model is symmetric in the 4 interacting waves. The actual

console session is reproduced on the following 10 pages.



macsym AK

THIS IS MACSYMA 250

FIX 250 DSK MACSYM
LOADING DONE

BEING LOADED

(Cl) vecb1 : k[b]/w[b];

(D1)

(C2) vecbl: vecb1*(P[c]/w[c] - [d]/w[d]);

L L D
KB W- WDC D

WB(D2)

KB

WB



(C3) vecb2 : (k[d]+ k[b]) /(w[d]+ w[b]);

K +K
(D3) D B

wD+ WB

(C4) vecb2: vecb2*(f d] /w[d]- k[b]/w[b]);

L L
(KD + KB)D

(D4) D B
WD + B

(C5) vecb3: (k[b]+k[c]) /(w[b]+w[c]);

K + K
(D5) C B

) W + W B

(C6) vecb3: vecb3*( [b]/w[b]- 1(c] /w[c]);

(KC + K LB LC

(D6) B C
W cB



-32 w

(C7) Rine :70$

(C8) vecb: (vecbl +vecb2+vecb3) /w[abar];

L DLB
(KD + KB) - )

D B
WD + WB(D8)

+B W wD
+ C D

WB

(Ke + KB) B C
+ B C

W C + W B
WABAR



(C9) genvec: subst([b=bb, c = cc, d= dd], vecb);

L DD
(DD + BB W DD

LBB

W BB)

WDD +WBB

L ccLD
K CC LDD

+BB W CC W DD

+ WBB

+ B BB
(Kcc + KBB BB LcC

/WABAR
WCC + WBE

(D9) (



3R36

(C1O) vecc :subst([bb= c, cc = d, dd=b], genvec);

(KD + KC) ( )

W D + DW+C

KL DLB
KC - B

W c
(Kc + KB)

wC

WABAR

(C1l) vecd: subst(bb=d, dd=c, cc=b],genvec);

(KD +KC
C

(D11)

LD

D
(KD +K LD LB

DD 

S WD +WB
WABAR

LB LC

B C

WD

(D10)

LCL B

B
+ WB

WD + W



(C12) tvecb: subst([abar =bb, b= aabar], vecb)$

(C13) tvecb: subst([bb=b, aabar = abar],tvecb);

(KD + KABAR) LD

( W +WD AIBAIR

LABAR )
WABAR +

L
KABAR W

WABAR

(K + KABAR) LABARC + WABAR
ABAR

W C + W ABAR

Le

C )/WB

(D13)

LD

WD



(C14) tvecc :subst([abar =bb, b=aabar], vecc)$

(C15) tvecc :subst([bb=b, aabar =abar],tvecc);

(KD + KC)
DD15) C D

(D1 5) (- WD +W w

L D
KC (

WD
WC

LABAR

WABAR

LABAR
(Kc + KABAR WABAR

Wc + WABAR

LC

C ) /WB



(C16) tvecd: subst([abar=bb,b=aabar],vecd)$

(C17) tvecd: subst([bb=b, aabar=abar],tvecd);

LC LD
(KD +K) W W DwC D)

WD + WC

LD LABAR
(KD + K ) -ABARAA D ABAR

+ D + WABAR

L RL
LABAR v

WABARD

C ) K
C D ) /WB

(D17)



-LD - LC - LB

(C19) k[abar]:-k[b] -k[c] -k[d];

-KD - KC - KB

(C20) w[abar]:-w[b] -w[c] -w~d];

-WD - WC - WB

(D18)

(D19)

(D20)

(Cl18) l[abar ]: -f [b] - [c] -fi [d];



-41

(C21) ratsimp(ev(vecb - tvecb));

(D21)

(C22) ratsimp(ev(vecc + tvecc - tvecb));

(D22)

(C23) ratsimp(ev(vecd+tvecd - tvecb));

(D23)



A5. Coupling Coefficients From General Formulas of Section 2.8

The submatrices of the partitioned matrix equation 3.4-(13)

will here be evaluated by using the general formula 2.8-(27) for

the linear dispersion tensor, the general formula 2.8-(43) for

the second-order nonlinear coupling coefficients, and the gen-

eral formula 2.8-(52) for the third-order nonlinear coupling

coefficients. Any intermediate quantities appearing in these

formulae will be calculated from other equations of Section 2.8

as required. The formulae 2.8-(27, 43, 52) are used omitting

the steady magnetic field B0 and omitting the drift velocity

v0. Second-order nonlinear entries in (12) are evaluated from

2.8-(43) with the simplifications that B0 = 0, v0 = 0, and that

na/n0 = 0 for any wave E a polarized tranversely to its own

direction of propagation. Taking only the electron contribu-

tions, one obtains

{iNL(2) mno nAn+l) -+ -+

ABX 0 n vB(n)xl

+ B(n)n0 A(n+l) xl A5-(l)

E *(FNL(2) mn 0 nA (n-1)- *
xl (n) ,-l) ABX 0 n0  B(n) xl

+ nB-n An1 x A5-(2)no vA-(n--1 xl)



NL (2) mn 0 nA~I-+ + nB(-1) -*Ez2 (F (l)r 2) -- n~' v B(-l) n vATABZ n B- z2 + 0  VAIT

N2
V + n ATIT vB(-l)

2

+ Y(y 2 )vT nATlTnB(-1) z2
n3
n0

A5- (3)

*I/NL (2) mn0 nA (-lT * nB (1) -
Ez2 IF (1) ,-2 n B (1)' z2 + n0  VA (-)ABZ COn BI0

*

- Vz VA (-1) B (l)

y (y-2) v 2nA(1n (l) N2+ YYvT nATI-TnB l)z2 1

n3

A5- (4)

To calculate the normalized velocities I(V and densities jn[,

refer to equations (45)-(50) of Section 2.8. In the absence of

B0 and Y', the dimensionless mobility tensor M as well as the

=ILINEARdimensionless dispersion tensor D is diagonal with our

choice of basis polarizations. Thus for any unit basis polari-

zation vector eCc say, the linear response v lies in the dir-

ection of e and satisfiesCc

v e e Lk A-(5)cc mwc Cc Cc c



0... iqw c - A I
VCc = 2 2 2 eCc e Cc kc A5-(6)

m(wc- kc v

nCc =0 e A5-(7)

iqk c
nCc = 2T 2 2 Cc c A5-(8)

m(wc- kc T

Therefore the dot-products of velocities occurring in (l)-(4),

which embody the effects of the three-dimensional geometry of

the problem, translate immediately into dot-products of polari-

zation vectors. Therefore those submatrices in 3.4-(12) which

describe second-order nonlinear coupling can be written down

at once. The second-order coupling which involves the second

harmonic of the laser-pump is, from (3) and (4), described by

the submatrices (9) and (10).

The third-order nonlinear entries in 3.4-(12) are evaluated

from 2.8-(52) taking advantage of the facts that B0 = 0, v0 = 0

and that n a/n0 = 0 for any wave Ea polarized transversely to

its own direction of propagation. Also no nonlinear response

exists with both zero wavevector and zero frequency.

The third-order nonlinear entries on the leading diagonal

of 3.4-(12) are given by the terms surviving after substitution

into 2.8-(52);

E 1 2 FNL (3) n0  2 nA~(nT
xl (n),1, -l, ABxx - ~T Exl vxvB(n)xl

(F I-A~x C0 n0 xiV~)x



-3 1J

n B (n) n VATJn(n -b
+ VA~(iT, x I n0 + VA~(iiT,xT * B(n) ,xl n0 xlV BTiiT,x

nB (n) --- 2 _ - 2
+ VATnT,xl n0 + VATn ,xl' B (n) ,xT - -- nATnT,xT nB(n) ,xl

n 0

+ nATT,xl nB(n) x A5- (11)

The second-order Ini are expressed in terms of the second-order

by 2.8-(41). The second-order v3are expressed in terms

of first-order quantities most conveniently by A3-(9). The

first-order quantities satisfy (5)-(8) because of the choice of

basis polarizations. Use 2.8-(41) to express the second-order

n 3in terms of the second-orderSv

2 NL(3) = - E nAT112 -
Exl (n) ,1, -l/xxl IA(n),x+ n0  X

Yvk(n+1) k(n+1)( nB (n) --

w(n-1) n0

2
nA-(nT _4 YvTk (n-1) k (n+1)

+ VA (n) ,xl + n 0 v *, 1 2
(n-1)

.B(n) ,x - + nB(n) vx) - 2 nA n- nB (n) - - ] AS- (12)
B () ,xl n0 l n n



-- :,NL(2)
Ez2.F-I),2. - -"NZ z

/

re-P2 (1) -

w w(l) I&Ie 0 EW v (1) W(.-

LWZWL,) W~ ( ) 1

I
..- ~ - _ _- - - j o. - 0." dof 1--%W -

I 0'W o-

[w (,

Lw wk-,. (
S- # --- -.-- - I

* e
+ vk ~.)J

y1/

[W-V(- k 4 ~ Yl

L')

VrL w2

AJ3 - (47)

/ I L '

I ~ /~b,

20V

---J"*ez2)L wt e

+
4-

W. 'IV (1) W(-
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e 14 (- )
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Now express the second-order [VI in terms of first-order

quantities using A3-(9);

mn E 2
0

k (n+l) n nATnT-

(n+l) VA~n~T x+ n0

yk k
T (n+1) (n+1)

2
w(n+1)

(n+1) -
w (n+1) vB(n)' xl

n+ B (n) -6
+ n0 V + k (n-1) -'

w (n-1) VATnT * x1

YvTk (n-1) k (n-1)
2
(n- 1 )

___ nB(n)

n0 xT n 0 vxl

( k (n-1) nB (n)
w (n-1) BB(n) xl no

\ AnTl , B(n) xl
n0 xl n0 X]

Use the operator identities which are valid for our choice of

basis (see 3.4)

24 -4 -1
YvTk (n+l) k (n+l))

2
w (n+1)

.. _ - A-

e M (n+l) eM (n+l) + eN (n+1) eN (n+1)

2
w (n+1)

+ es (n+1 ) es (n+l) w2  2 2
w (n+l) -yk (n+1) T

2 2
yk 2 v 2(n+1) T - -

2 2 2 es (n+1)es (n+1)w (n+l) -yk (n+l) VT

- 1 -

+ nATnT
+ n0

A5- (13)

A5- (1f)

E 12 (FNL (3)
xl (n) ,1-l
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Express the first-order n in terms of the first-order

using 2.8-(19). Then (13) becomes

inn0

2
w (n+1)

k ( k (n+1 (n) k (n+)
w () B (n)) w (nl) X +(7vB (n) xl w(n) -vATnT w (n+ 1)' "

2 2
yk (n+l) VT k () k . sn)

+ 2 2 2 w VATT w * B (n) x*es (n+1
w (n+)-yk (n+l)V (n) (n)

xl' s (n+l)J+ (n-1)

w -yk v T(n-i) (n-i) T
Oxl) ( B (n) VI

+ ATn%~ xl) W B(n) (n

k (n-1) yk (r
(1 + 2(n-1) .X1 2 _

(n-1)

Vxl- es (n+1) x es (n+1)

Oxl + VB(n) " xl w ATnT

k (n) k(n) n

2 w (n) -vA w (n)AVB (n)

A5- (15)

Let A,B range independently over the polarizations M, N, S.

Use the facts that

V = V e

A5- (16)Vx - Vxle

E 1(F A xx

-V XT vB (n)" VX + (VA ()"Vx



in+

k~ko)n

:~~ ~~e 9(n)i ~ne 'V4)-+)xfq~h

(w ((2,)- k~n ) (' 4 1) v~j

t4(~~~ -Kk~v.75~( t4/1i

1 ~~ () w-e 4-i~f

ex

V-A5-(\A/



and the forms (5,6) for the first-order velocities. One gen-

erates from (16) precisely the elements of (17).

These submatrices on the diagonal of 3.4-(12) comprise the

pump-induced self-corrections to the linear dispersion tensors

at the perturbation wavevectors and frequencies. Their import-

ance for laser-driven instabilities was discussed in the latter

part of Section 3.4. The self-correction to the low-frequency

dispersion tensor, namely the submatrix

E1 2 tNL(3) A5-(18)

plays no important role. The self-corrections to the high-

frequency dispersion tensors, namely the submatrices

E 2 F A5-(19)

are important for laser-driven instabilities. However, not all

the terms in the explicit form (15) need be used. Rather, each

of (17) may be expressed as the sum of two submatrices, say

A A

E2 NL (3) _ 2NL (3) + 12 NL(3)
IEl F (+1)o,1,-l - JEl1 (+1)1 ,1-l I El F (+1) ,1,-l

A5- (20)

Here the first object on the right-hand side describes processes

which involve the low-frequency response of the plasma at

(k (o) ,w (o ) and is displayed in (21). The second object on

the right-hand side describes processes which involve the
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high-frequency response of the plasma at (k (+2)'w (+2) ), and is

displayed in (22).

It is also required to calculate the submatrices appear-

ing in the top-right and bottom-left corners of 3.4-(12). For

zero magnetic field, zero drift-velocity, and transversely

polarized pump these submatrices have elements given by the

sum of (9,10) and (23,24) below. The third-order nonlinear

entries in the top-right and bottom-left corners of 3.4-(12)

are given by the terms surviving after substitution into 2.8-(52);

1 E2 ( NL (3) = - 2
Tx (-1)1,1 ABxx 0 1

nATT - 3 I nB(-1)

n0 vX1vvB(-1),xl + VATITxl n0  vX

__% --A l' m

VATIT,xl' B(-l) ,xl T n ( , - E

[ nATITM nB(-) - B x

n0 v B(-1)'vx1,x + n0 vATIT x1,xl + VATIT,B(-l) l

2YvT

n AT, B (-1) nxl,xlI A5-(23)
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E*2 FNL( 3 ) = Amno E *2
2 xl (1)-l,-lABxx e0

nA (- 1) .- A -A -. n B (1) '*-

T vXVB(l),xl+ VA (-1j, xlf no vx + VA-1, xf'B(1),xi

2
YvT T mn0 *2

n0 A(-xT 1B(l),x1J 2 n0 E

nAT-1) - nB (1)

n0 v1B(l)' x1,xl no VA (-1) vxT,xr + VA(-1,B(l)xTx1

2
YVT
- v nA (-1) , B (lxnA5- (24)

0 KFIY),Bl x1,x1 I

Again the second-order In) are expressed in terms of the

second-order by 2.8-(41). The second-order v are

expressed in terms of first-order quantities most conveniently

by A3-(9). The first-order quantities satisfy (5)-(8) since

the basis polarizations are eigenvectors of their respective

mobility tensors M . Split (23,24) into F terms not involving

the quantities (v n xlfnxflxl- ) and. F terms which

do involve these quantities. Use 2.8-(41) to express all

second-order n in terms of second-order v ;



E2(PNL(3) n E22  (-1) ,1,1ABX 0 xi

n ATIT- k ()k (n) B (-)
ATiT,xl n0 v1 - 2 B(-1) ,xl n o x

\ w0)

nATTf" nB (1) -- A
no vxl no Vxl

1E*2 (NL (3)
2 xl (1) , -1, -1 ABxx

A5- (25)

mnn E*2
0

V- +
L(A (-1) ,'xli

n ATT
nf0l 

r

n A (-1) -- n B (1)-z
n xlf n xl'0 0

E2 (NL (3)
2 xl (-1) 11,1 ABxx

24

YVTk () k ()n B ( 1)
w2 B (1) ,xT n0 f

(0)

A5- (26)

1 mn0  2
"T 0 X

. nA0TT B +
[V AT)~,B (-1) + n0 VB(-l)

nB (-1) --
n0VA1TIT1no v~l

y Tk2k2 -j

w * -1

A5- (27)

1 mnn0  *2
= -XE

1 *2 NLO() 
1

'I El ABxx

(v +nA-1) nB (1)
VA(-1) ,B(1) + n0 VB (1) + n0 VA (-1)

YvTk2k2

2 (2 x
2

A5- (28)
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Now express the second-order {v}

quantities using A3-(9);

1 E(2 NL(3)
T x1 (-1) 1 ABxx

in terms of first-order

_mn E2

0

2 -'b -b -1
n k k

n (o)0 w (o)

nB
+ nB(-1)

+ n0xvvB(-1)* xl

1 *2 ANL(3)
T xl (1) ,-1

vA(1) vxi)

,-) ABxx

nAT)- __ nB(1) -
no yxle no vxl A5-(29)

0-.

E 0 xl

nA
+nA(-1) a.

+ n vxT 4
0

ZA . -1
y v'k kYT (o) (o)

~ 2w(0

+ nB(1) _nA(-1n0 xT n 0 xiY
,_B_ V j A5-(30)

n 0

1 E2 NL (3)
2 xl\ (-1) ,1 ,/ABxx

*vB(-1))

_ lOE2
0

nA1) .A
+ n 0 v B(-1)

+ nB (-1)
+ n0 VATIT)

-1
k v 2Q* -vX

(1 -
A5- (31)



mn0  *2
= -XE

l *2 (NL (3)
2 E x )ABxx

A 2 A -.,+ n A + n B (1 ) a
I B(lf+ n0 B(l) + n0 VAT-~

Yv 2 k2
1 - 2

w 2

k2 
2

2
A5- (32)

Again use the operator identities (14) valid for the choice of

basis made in 3.4. Also express the first-order {n} in terms

of the first-order {v} using 2.8-(19). Then (29),(30) become

1 E2 (NL (3)
2 xl (-1) ,1 '1/ABxx

in
0

s0

2
w( 0 )

w2 -Yk2 v2
(o) (o) T

kW (o) + 0)w w xl + vB() VXl wvA TIT w Xl

2 2 Fyk (0 VT Jk ..... k _1

+ w2 2 - -k2 v24w ATiT w ( 0'B(-l) xl s jxl
() k ( ) T)

A5- (33)

* xl 1 B(-1)x) +VATV1 xl (-,)



E *2(NL(3) mn0
2 xl (1) ,-,-l )ABxx E0

w2 k2

w2 yk 2 v2 w A(-1).Vx B(1)o xA + (-1)
(0) (o) T (o)

w B(l) w + VBl)x1 w A(-l) w

2 26k2  v k k

+ 2 - 2 2 w( 1 ) VATTIT)\V 1) Vx ~ sO 1xfe~)1w -yk (0)v T

A5-(34)

Let A,B range independently over the polarizations M, N, S,

and use (16) together with the forms (5), (6) for the first-

order velocities. One generates from (33) and (34) precisely

the elements of (35) and (36), respectively.

It is desired to add (3) and (4) to (31) and (32),

respectively to obtain matrix elements describing the total

coupling due to the plasma response at the laser second

harmonic. Use 3.3-(16) to express the second harmonic laser

field in terms of the field of the fundamental. One may

obtain the relations

k w2w 2
V = 2 -- V2 2 p A5-(37)
z2 T ;W2 w -y2_k v 2-2yk 2 -w2
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k 2
12 2 2

z2 + 2 w X2 w -Yk2v2)

k w 2
l 22 w____1 2 w2 2  A5-(38)

I2W2 1( 2 Yk2 2w 2)

Using these one finds

Ez2 F ),2 ABz + EABxx 1 n0 2

w 2 k2

w -_Yk2v 2-w2 2 AT1TB(-l)

k v B(-l k2
+ w w AIT +

k ( .vAT1T k 2-- )
+w () w 2 B (-1))

2 2
W2w

w -Yk 2v

k2

- ' (Y-2 2)
w 2

A5- (39)

E* NL (2)
z2 (1) ,-2 ABz

+1 E*2 NL (3)
+ -)-E- ABxx

1 mn0  *2
T -0 xl

2
w
2

w 2-yk 2v 2-w 22 22 2

k2

WVA )

WV1 k .vA(-1 k2-
.v B~ + w w (l)

2 2
w~w

(w -Ykv w-Yk -w)

k2
- 3(Y-2)

w
2

C

A5- (40)

I Z/'

)II
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Let A,B range independently over the polarizations M, N, S

and use (16) together with the forms (6,7) for the first-order

velocities. One generates from (39) and (40) precisely the

elements of (41) and (42), respectively.

The submatrices in the top-right and bottom-left corners

of 3.4-(12) comprise direct pump-induced coupling between per-

turbations separated by twice the pump wavevector and frequency.

Their role in laser-driven instabilities was discussed in the

latter part of Section 3.4.

The results for these submatrices are shown in the

following fashion. The terms of (23), (34) not containing the

quantities (v , nxl xl, n - ) are fashioned into

the submatrices

1 2 'NL(3) 1 *2 NL(3)
2E xl (- ,l' Ex, F(l) 11 say.

These submatrices describe processes which involve the low-

frequency response of the plasma at (k (o),w (0)) and are dis-

played in (35) and (36). The terms of (23) and (24) which do

contain the nonlinear responses (vxlxl, vxrXE,nxlxl,nxrxr)

at the laser second harmonic due to the electric field of the

laser fundamental are fashioned into the submatrices

A A
1 2  ' NL(3) 1 *2 -NL(3)
7 E F , E F say.



34

These are added to (12) and (13) which describe coupling due to

the pre-existing electric field of the laser second harmonic,

and the sums are displayed in (41) and (42). Equations (41)

and (42) contain the coupling processes which involve the high-

frequency response of the plasma at (2k1,2w 1 ).
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A6. Motivation for Choice of Values for y in the Fluid Model

In this appendix certain quantities are evaluated using the

warm-fluid model and the Vlasov model in turn. The results of

the latter are used as a guide in choosing the most appropriate

values of y for use in the former. The quantities are evaluated

for collinearly propagating electrostatic waves in an unmagne-

tized drift-free plasma. The quantities in question are the

contribution of a single species to the linear dispersion func-

tion and the contribution of a single species to the second-

order nonlinear coupling coefficient. The Vlasov model will

yield separate results, and hence indicate separate choices of

y, for phase-velocities much greater than the spec ies thermal-

velocity and for phase-velocities much less than the species

thermal-velocity.

First look at the contribution of a single species to the

linear dispersion function. Using the warm-fluid model this

contribution is, from 2.8-(28)

2 2w w
(D ) -aA-l
\ a AA/ single species 2 2 222wa wa Yka vT

Now evaluate this quantity using the Vlasov model. One gets the

usual Landau result

w2 2f 0 (v)/2v

(a AA) single species k-wak A6-(2



Here the variable of integration v and the velocity distribution

function f0 (v) are one-dimensional in the direction of k a, and

the mark 0 indicates that the contour of integration goes below

the singularity in the complex plane, as prescribed by Landau.

On taking the distribution function to be Maxwellian and employ-

ing the plasma dispersion function described by Fried and Conte,

one finds the contribution

2
w W

(DaAA) single species 2k22 Z (a A6-(3)
2kv T T

For phase-velocities much greater than the thermal velocity, the

asymptotic expansion of the Z'-function gives

/ 2 2
2 3k vw a T

((DaAA) single species =-K + + . .)
w a w a

A6-(4)

This clearly corresponds to taking y=3 in the fluid model. For

phase-velocities much less than the thermal velocity, the power-

series expansion of the Z'-function gives

2 2 3
W W W

aAA) single species = a2 2 k3 2
a a T0  a T0

4
w

+ gag + A6-(5)

ka T..



The real part corresponds to taking Y-l in the fluid model. The

imaginary part is the Landau damping term which cannot be re-

covered directly from the fluid model. Secondly, look at the

contribution of a single species to the coupling coefficient

describing the effect of second-order nonlinear conductivity.

Using the warm-fluid model, the contribution is

mnn0 k kb kc 2 k-kbkc
(Fb~c AAA 0 w b + w- + y(y -2)vT2 w wbwc

0wabw wa iwc

/w2 -k2 2 )(2 yk2 v2 2_y 2 2 (wa. -yky0 b-b T )(c-yk TO )

A6-(6)
where

(kg, wj) E -(ka'wa) -(kb,wb) - (kc,wc)

The corresponding expression in the Vlasov model may be deduced

from the fact that coupling coefficients are additive over par-

ticle populations. Since the particle-velocity distribution-

function in the Vlasov model may be thought of as describing a

continuous superposition of cold beamlets, the coupling-coef-

ficient in the Vlasov model Ihas the form of the coupling-

coefficient for a cold, drifting particle population, weighted

by the distribution function and integrated over all velocities:

k- kb kc

Thd fv(v
mn 0 w,( w b w c -i

(Fb,c AAA 0 v v A6-(7)

wabwc
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This result can also be obtained directly from the Vlasov

equation.

Here w-Ew--k-v
a a a

Wb W b - kb - A6-(8)

vb

w c w c - k cv

are the wave frequencies as observed in a frame moving with the

beamlet which has velocity v.

Again take the distribution-function to be Maxwellian, and

consider the behavior of the integral (A6-(7)) for various

limiting cases of the phase-velocities. When all three phase-

velocities are much greater than the thermal velocity of the

species, asymptotic expansion of the integral (A6-(7)) gives

mn k- k k kl k 2 k2)

(Fb,c AAA +- + + 23v 2\w + /
a wb wc

k-k k+ 3v2 a bc 1 A6-(9)

0 w wbwc wwbwc m

This clearly corresponds to taking y=3 in the fluid model. When

one phase-velocity, say wb/kb, is much smaller than the thermal-

velocity, but the other two are much greater, an appropriate com-

bined expansion of the integral (A6-(7)) gives



7~7(

mn k k-k k2 k
(Fb cAA0 -1 + VT 0  + a c + w

aa

w 63
2 A6- (10)

wa(-kb T )wc m
0

This corresponds to taking y=l in the fluid model, with the

proviso that y(y-2) should be replaced by +1 whenever it appears.

This unsatisfactory feature is of no consequence if (A6-(10)) is

approximated by its leading term as is done for use in laser-

driven instabilities.
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