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1.

SYNOPSIS

This treatise is an exposition of the framework method of
stress analysis and of its application to two fields of elasticity,
that of two-dimensional stress discussed in Chapter I, and the field
of bending of plates treated in Chapter II. Main justification for
introduction of this new method lies in the fact that in both fields
mentioned, solutions of the theory of elasticity are available only
in a limited number of special cases.

The framework analysis is essentially an arithmetical
procedure applicable to any problem within the above classification,
dealing with a rectangular plate. The results are only approximate
but believed to be fairly accurate in most cases.

Both the idea and the development of the method are original,
except perhaps for the general background of the method of moment
distribution of Professor Hardy Cross. By the time the main features
of the method had been established, the author's attention was called
to papers by W. Riedel” and K. Wieghardt ? dealing with the same
subject of plane stress by framework, but in a somewhat different and
more restricted menner. Figure 17, Chapter I and supporting discussion
have been somewhat influenced by the second of these papers. At the
seme time the author became aware of application of string network to

deflection of a thin membrane in the paper by Christopherson and

Y,9-  Numerals refer to items in Bibliography.



2.

Professor Southweils) in connection with torsion of a triangular shaft
and in the book of H. Marcus ” in connection with bending of plates.

The presentation of the subject in the two following chapters
proceeds along similar lines., First, it is demonstrated that the
state of two-dimensional stress and strsin on the one hand, and the
flexural state in a bent piate, on the other hand, are faithfully
preserved if the solid medium is replaced by & frameﬁork'of articulated
elastic bars of infinitesimal size and of certain definite patterns
extending over the whole plate, while the acting loads and the restraints
are left unchanged.

Theoretically, the size of the unit of pattern must be
infihitesimal in order to imitate truly the mechanical behaviour of
the continuous materisl, but such framework would be impossible of
solving, and, for practical reasons, the size of the unit is taken not
only finite, but fairly lerge, so as to make the solution less laborious.

An extensive investigation is conducted into verious types
of pattern, satisfying the conditions for equivalence of the framework
and the plate, and the framework constants, i.e., the cross-sectional
areas of the members in two-dimensional stress and the moments of
inertia in the flexural state, are determined. Triangular, rectangular
and square types of pattern are thus examined in Chapter I and two
square patterns in Chapter II. Peculiarly enough, most of tﬁese
patterns are capable only of imitating a solid maeterial with Poisson's
ratio one-third, however, a square unit applicable to any value of V-

has also been found.



A method of successive movements, a procedure reminding
moment distribution of Professor Hardy Cross, and consisting in
moving joints and groups of joints, one after the other, toward
equilibrium, has been adopted in solution of two-dimensional frame-
work. A special form of keeping the record of stresses has been
devised and the quantities known as "distribution factors" have been
derivéd-for ﬁse in the process of balancing the framework.

A more elaborate procedure of bringing to equilibrium a
flexural framework has been made necessary by the greater number of
degrees of freedom of the joints in such framework. Quantities known
as "reaction factors" and "influence factors" have been devised in
addition to the distribution factors, and with their assistance the
distribution has been made possible,

The method of successive movements has proved to be a

- workable equivalent of a great number of simultaneous equations, which

otherwise would be required in order to solve the problem of framework.

(The labour of distribution may be considerably lowered by
the use of the principle of symmetry and antisymmetry, when dealing
with symmetrical plates. Thus, should a plate be symmetrical about
two exes, and should it be loaded with an unsymmetrical load, it is
possible to find the required solution by solving one quarter of the
plate four times and then combining the results.

The last step in the framework method is the interpretation
of the framework or conversion of the bar stresses into the plate

stresses. Simple rules are given for this operation both in plane

3.



stress and in plate bending.

The test of two-dimensional framework method comes when it
is applied to solution of a deep rectangular beam carrying a uniform
load - one of the few cases of rectangular bodies whose exact solution
by elasticity is known. Square frameworks with Y= 3 and V=0 are
used in solution and later the’number of units in the former framework
is doubled in order to depermine the speed of convergence of the
approximate solution to the true one. The results have been found
gratifying, especislly with V=3 .

A somewhat generalized gusset plate at the top chord of a
roof truss has been selected for the second problem handled by square
framework with V?=é . After the first solution the number of units
has'been doubled and the problem rédolved. A close agreement of the
two sets of stresses has been found.

The flexural framework with VW=§ is tesﬁed on an example
of a squere plate with clamped edges loaded with & concentrated load
at the centre. The results are compéred with those derived by an
approximate method of difference eqﬁations by H. Marcus” and with
exact formulae of Professor Timbshenko77. On strength of comparisoﬁ
with exact solution the framework results are excellent in relation
to the deflections, good for the 5ending moments, but unsatisfactory
with regard to torsional moments and some shears. The discrepancy is
attributed to imperfect stress interpretation. Most of the fraﬁework

results are better than the ones by the method of Marcus.



In conclusion, some unsolved problems susceptible to
handling by the framework method and some new fields, into which the
method may be projected, are discussed briefly, and the advantages

and disadvantages of the method are enumerated.

5.



I.

Framework Method Applied to Two-Dimensional Stress,.

1. Plane Stress and Plane Sfrain.

Two-dimension;1~problems of the theory of elasticity are
cherecterized by independence of stresses from one of the coordinates,
taken here as z, which means that the stresses are dependent only
on X and y.

There are two kinds of two-dimensional stress problems,
plene stress and plane strain. In the former type 6; =0 and so
are 27,(3 and Ty; , the stress system being thus limited to 6, 6} and
ny only. This state of stress represents fairly well what happens

in thin plates when they are acted upon by forces lying in their planes,

and distributed uniformly throughout the thickness, with no forces
acting normally to the plates.

The state of plane strain or plane deformation occurs in
long prismatical or cylindrical bodies under the action of forces
constant along the length, and having no components in the longitudinal
direction. The deformations produced are such that é% =0 , so that
the points do not move in the direction of length. 65 is not zero here
but it is independent of 3 , and is expressible through 6, and 6y «
At the same time Z;é and T;; are both zeros.

In both these types of two-dimensionsl problems a thin slice
cut out from the body by sections perpendicular to 3 axis may be

considered as representative of the state of stress in the whole body.

6.



Theoretically, the three independent stress componénts
6x » 63 and ng » Characterizing a two—dimensioﬁal state of stress,
can be found by solving three differential equations pertaining to
this condition in such & way that the stresses or displacements found
satisfy the stress or displacement conditions at the boundary. These

three differential equations for plane stress are as follows: °)

9 b« +%§‘1 +X=0

SZ ptn (e)
,by +71 +Y=O

0
2 2 G
%2 (6.-76) + T2 (6-y6) =2 GeM 5 )

For plane strain the first two equations are the same, but
the third one is somewhat different, and may be obtained from (b) by

Al
-y *

Equations (a) are derived exclusively from statics by

replacing Y- with

considering an infinitesihél element of the body, andbare independent
of any physical characteristics of the material. The third equation
is an equation of continuity and elasticity. When it is first written
in the form.

2%, % _ ‘?2X§ﬂ
0y? * ot T 2x 0y (e)

it merely represents the statement of geometric continuity of the

material. Strains are replaced by stresses by means of elasticity

conditions, which in the absence of 63 ares

€= %(@-VGJ);
&= £ (6-v6); (a)
X;‘j - §IE+Y‘) Y:(j .

’

5) Pages 21-23.

7.



and that transforms (¢) into (b). Equation (b) thus implies that the
material retains its geometrical continuity efter the deformation and
at the same time beﬁaves according to the laws of.elasticity, as
characterized by the constants £ and V.

Equation (c¢) holds also for the plane strain, but relations
(d) do not hold in view of 6’3 # 0,and as a result, the following

equivalent relations are present instead of them:

€= [(1-;*) -¢(1+y-)6”5] r(@-;{;é‘,)
£lo- v~)6-r(1+m6'] =’?(6,-—,’§,—,.6;) (e)
- 2 (1+¥) - 2(’* f\.,, '
()C,- I e el 7

Their substitution into (c) results in the third equation
of plane strain, equivalent to (b) in plane stress.

A comparison of equations (e) with equations (d) shows that
deformability of a material with elastic constants E and V- under
conditions of plane strain is the same as the deformability of a

material under plane stress with elastic constants F' and »' such that

y_ E

E=7n (£
) )
=

Since the first two differential equations are identical for
the two kinds of two-dimensional stress it is evident, that the
stresses 6, 6, and i;y under plane strain conditions are the same as
the corresponding stresses under plane stress in a material with
elastic properties modified according to (£), acted upon by the same

forces in the presence of similar boundary conditions.



Tha’differential equations (a) and (b) taken by themselves
allow an infinite number of mathematical solutions, but among all
these there is only one which represents the true physical solution.
This is the one that satisfies the boundary conditions. Determination
of the proper type of function, capable of satisfying both the
differential equations and the boundary conditions, presents in most
cases a formidable mathematical problem. Apparent inadequacy of
known mathematical functions and methods accounts for the paucity of
the solved cases, and at the same time provides an inducement for
discovery of methods other than those of pure mathematicel analysis

such 88 the one described in this treatise.

2. Framework Analogy
Imagine a plane framework of bars of infinitesimal length

and cross section joined by means of pins perpendicular to its plane
end forming the same ever—répeating pattern in all the parts of it.
The framéwork so formed is given the same external outline and
dimensions as the thin plate éubjected to plane stress, which is under
investigation. Furthermore, the same forces and boundary conditions
are imposed on the framework as on the actual plate, which it proposes
to replace, all the forces being applied at the framework joints.

The action of external forces, imposed on the framework,

causes direct stresses in the bar members and produces elastic

distortion of the structure. A conception of "stress in the framework",

as distinct from stresses in individual bars, will be introduced now

9.
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and will be made analogous to the ordinary idea of stress in
continuous material., Referring to Figure 1, the stresses on plane

AA are defined as,

P
R @

in other words, normal stress on any plane in the framework is simply
the sum of the normal components of bar stresses on the length dx of
this plane, divided by dx, with & similar definition for the tangen-
tial stress.

This definition implies that the size of the pattern a is
considered an infinitesimal of a higher order than dx, otherwise the
value of stress would be indéfinite, depending on inclusion or
exclusion of the last bars that happen to be on either side at the
ends of the length dx. However, once a is of the second order of
smallness compared to dx the presence or absence of these bars in the
sum is immaterisal.

In special cases the relation.of plane of stress to the
framework pattern may be such, that the manner of cutting of the bars
by the plane repeats itself continually along the plane. This is the
case for planes BB and CC in Figure 1, the repeating length being
designated by A . It is clear that should the plane of stress satisfy
this requirement the length _A may be taken in place of dx in equations
(a) and the sums of stress components will naturally refer to this
repeatingllength.

A question arises as to whether it is possible to devise the

form of the infinitesimal pattern of bar arrangement and to determine



the geometrical properties of it, such as cross-sectional areas of
bar members and the angles between them, in such a manner that the
stresses in the framework, as well as the deformations and displace-
ments will be identical with those of the plate prototype, whose
action the framework purports to imitate. This question can be
answered by reference to the differential equations of the two-
dimensgional stress. The two equations of statics are applicable to
the framework just the same as to a continuous material of plate in
view of the similarity of the definition of stress in both cases.
The third equation, expressed in terms of strains, (c), Art.l, is
equally applicable, but its other form (b), Art.l, written in terms
of stresses, holds only if the framework sétisfies the deformebility
conditions (d), Art.l or (e), Art.l. Should this be the case, the
framework stresses are subject to the same differential equations as
‘the stresses in the plate prototype, and in the presence of similar
acting forces and boundary conditions they are bound to assume the
same values as the corresponding stresses in the original plate.
Furthermore, equality of stresses leads to equality in deformations
and displacements, so that the framework becomes a true full-scale
model of the plate. The necessary and sufficient condition for a
complete mechanical equivalence of a framework and plate is therefore
the deformability of the framework in accordance with the laws of
elasticity described by the constants £ and Y. The form of the

pattern, satisfying these conditions, is suiteble for any two-dimen-

sional problem, involving & material of the same E'and.%;.irrespective



of the nature of the applied forces and of the boundary conditions.

The conclusion just reached may be also arrived at from the
general consideration of the mechanical behaviour of the plate and
of its freme analogue. Forces acting on the body are transmitted
through it, on the way to reactions, creating a state of stress and
deformation, whose character is determined by two factors only,
statics and elastic deformability. In order to make the influence of
these two factors felt in the framework in the same manner as in the
plate, it is necessary to prescribe infinitesimal size for the mesh
in order to satisfy the first factor and an equal with plate deform-
ability in order to satisfy the second.

In connection with the latter requirement, it may be stated
that the framework should have no preferred directions as to its

deformability.

3. General Remarks on Pattern.

Determination of pattern consists in assumption of a certain
form for it and in testing its suitability, deriving at the same time
the values for the necessary geometrical characteristics. While it is

not inconceivable that some irregular pattern may be applicable

theoretically, the practical use of such pattern would be inconvenient.

For this reason, only forms possessing two axes of symmetry have been

tried and such axes have been consistently used for the coordinate

axes.

In the following discussion, conditions of plene stress are

assumed everywhere, except when it is specifically stated that plane

12.



strain is

preferred
following
2(b), and

1.

13,

being considered.

The law of elastic deformability of the framework with no
direction may be conveniently stated in terms of the

three conditions, explained with reference to Figures 2(a),
2(c), although other equivalent formulations are possibles
The framework is loaded uniformly with load p per unit
length on X plane and ¥p on Y plane, Figure 2a. The
resultant deformations should be the same as in the plate

prototype. Therefore,
(S
éx_ p( } (a)

= zzziff__
€=0 (b)

where t is the thickness of the plate. The deformations of

the framework €, and €y are expressed in terms of the

geometry of the framework and of the cross-sectional aieas

of the bars, assumed to be made of the material with the

same E as the plate.

Thus, the first condition results in two equations (a) and

(b) serving to determine the framEWork characteristics.

2.

Reversing the planes X and Y on which the loads p and Yp

are applied, two similar equations are produced, Figure 2b.

€,=0 ()

p G-
€y = Le—"— 2 da
y AET . (a)
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It will be noted that the equation (c) is not independent
and follows from (b) by Betti's reciprocal theorem. The second
condition gives thus only one new equation (d) for determining the
framework characteristics.

3, Uniform tangential load p per unit length is applied on

X and Y planes, Figure 2c,and the resultant shear deforma-

tion is.

X;y= 2(;+Ey“)p . (o)

The four independent equations (a), (b), (d) and (e) allow
to determine four characteristics of the assumed framework pattern.
Should the number of characteristics be larger than four, the ones in
excess of this figure may be assigned at will and should the number
be less than four, the pattern type is either totally unfit or else
is suitable only with some additional qualifications, as will be
explained later.

In this discussion of the number of equations available for
determination of the framework constants it has been zssumed that the
geometrical properties of the framework are different in the directions
of the two axes of symmetry X and Y. If, however, the framework has
similar properties in X and Y directions, condition 2 does not provide
any new information, not contained in condition 1. 1In that case,
only three independent equations, (&), (b) and (e) are available for
finding the pattern constants.

A little thought will show that a framework type possessing

requisite deformability under the three above mentioned load conditions



1s.

will deform properly in any state of uniform stress, since any such
state maey be considered as a superposition of the three cases
discussed.

Kinds of Framework .

4, Triangular Pattern.

Framework of Figure 3 is characterized by three constants,
o, A and A;, where A is the cross-sectional area of each vertical
bar, and A; of each inclined one. Since the pattern is different in
X and Y directions four equations are availeble for finding three
constants, and consequently the type may prove suitable only under
some speciel conditions, which become apparent after completion of
the analysis. The size of the mesh & may be considered as an
arbitrary infinitesimal length, and the problem consists in finding
the constants in terms of a, F, ¥ and t, the latter being the thick-
ness of the plate prototype.

Condition 1. Referring to Figure 3, let P be the horizontal
load per joint; i.e., per vertical length 2b, and let S and S; be the
stresses in the vertical and in the inclined bars respectively. Then,
in view of the fact that the plate prototype has no vertical extension,

the vertical loads per joint ere alternately S and (VP Cote - S), since

%}==Cbi1i .

/

Before writing the equations (a) and (b) of the previous
paragraph it is necessary to find the stresses S and 5;.
From a horizontal equilibrium of an outside joints:

2 8, Cosk =P
or P

51 = S Gos ok

(a)



From the vertical equilibrium of one of the upper outside
joints
S+ 28, Sinct = ¥P Cotx -8 3; or

S = ‘”P Cote( - 8, SinX= I~ ”P Cofot - -‘3 tan & -—( yCotol - tan)y(b)

Having found the bar stresses it is not hard to find the

strains of the framework €, and €, ;

S . P
E- 2AE

1

€= (y-Cotk - tanol) (c)

Unit strain of the inclined bar is

_ S _ P
€= AE~ 2AECosx . (@)

The three lengths which before the deformation are a, b and
[ form a right triangle both before and after the deformation.
Therefore,
a® =(% - p?
Differentiating,
ada = [dl - bdb (e)

These differentials may be considered as the corresponding elastic

changes
da = €Exaj
d[=6,[ = —2-—/%( H
db=éyb-2AE(y*Cot<>( tanA ) Tanol = 2/25 (- tanod ).

Substitution of these values into (e) gives,

2
€a’ = 25‘}(05& 2'2‘2 tan (y- tan’® );
1

T e -P '[ / z“ano((V“-t‘anzo()j‘ )

B 2E AlCOS%L - /4

16,



Flastic extension of the plate prototype in X direction is

2
7a ,ja(’n: ;Et , and Y direction zero.
The two equations of the framework, therefore, are:
P ! _ tana(»-Tlan’) - P (1-r?) (2)
2E A, Cos 3 A 2a tand Et
P Cotol - ) = 03
and 2AE(V° tan) = 03 | (h)
After simplifications
| tana(r-tand)| _ (1-7%) (@)
A, Cos’t A af tanx &
tan’x = v ()

Condition 2. In Figure 4 the framework is-loaded with horizontal
forces Pyland per joint and vertical forces S and (P-S) at alternate
joints. The same symbols S and S, designate the stresses in the
vertical and inclined members, although these valués are, of course,

different from the first case. As before:

s, = vp 22X (x) g

2 Cosck

S+ 2 8, Sinol = P-S or
s= £ -5, sinct = P - ytan'ot) (1)

S P 2 ;
€y=ag = 748 (L - vtanc ) (m)

while the determination of &, is not needed.
Equeting € to 2077 gives the third equation:
; Y Y Z2atE
p _ PU-v? _at s, _ 2
s (= vtant) = b 5 or A= ZG(1vtant).

Condition 3. The framework is loaded with horizontal forces P

per joint apd vertical forces P fanol per joint as shown in Figure 5.

17.



Verticel members are evidently unstressed, while members inclined in
one direction have stress + S, and those inclined in the other
direction - S.

From equilibrium of an outside joint:

2 8, Cosot =P 3 or 81 = ZCosx (p)

Deformation of a diagonal member -

_S¢ _ _Pa . ()
- A/E ZAlECOSzO{. ) r

Considerihg the distortion of one of the triangles ABC

dl

(Figure 6) and assuming that the vertical member keeps its alignment
in space, the displacement BD of the vertex B will be vertical in
view of the equaleand opposite in sign deformations of the members AB

and BC. Shear strain of the framework

_ _ ps _ _dt P
26‘7 =4DOB= 2= = TS = 2 AE Sinot Cosx

Equating this value to the shear strain in the plate under

corresponding shear loads the fourth and last equaﬁion is obtained:

P _ P _ P2
24,ESmotCosi  2atG 2atkE 3
- at
Ay = 20+v) SinxX CosZ (s)

Equations (g;), (), (n) and (s) should be solved for A, 4, and X.

e

From (h;) tand = V.
Then from (n) A = at | 3 (t)

From (s) A, =%£ ’—;f—. 3 \

Substitution of these velues into the remaining equation (g,), which

mist slso be satisfied, leads to ¥'=3 . With this value for V"

expressions (t) become: ,

18.
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Thus, & triangular framework may be used in plane stress
U
problems as an analogﬁ)f a material with only one value of » =3L H
the triangles must be equilateral, and the cross-—sectionsl area of
V3

each bar must be A = —5— a; t, where a; is the side of the triangle

and t the thickness of the plate prototype.

[N

5. Simple Squere Pattern with Intersecting Diagonals .

The type shown in Figure 7 consists of squares with two
intersecting diagonals in each. All horizontal and vertical members
have the same area A, while all diagonal members an area A,. It is
immaterial whether to consider the two diagonals in each unit as
totally disconnected or pinned at their intersection at the centre.
The pattern is characterized by two constants A and 4,. The number of
equations available for determination of these is three, since the
fourth equation drops out on account of identity of the framework in
x end y directions. It may be expected, therefore, that the pattern
is suitable only for some particular values of Poisson's ratio.

Condition 1. The framework is loaded with horizontal forces P
per joint and vertical forces VP per joint (Figure 7). Determine
stresses in the members. Since the framework has no vertical
extension.5; = 0. From vertical equilibrium of an outside joint
S, = ﬁé%e— , and from horizontal equilibrium of an outside joint
S+ V28, =P or S=(1-y) P. The horizontel strain in the

framework is €, = 2|§E = -(L;]—‘%-P- (a) while the vertical strain is found



on the basis of deformations in the horizontel and diagonzl members
in the following memner, similar to the previous article, see Figure 8.

b® =1% - 2® and  bdb = 141 - ada “(b)

db = bg =ae, ,

_-(1-¥) Pa
a& = —ZF >

dl=Slt’= )"Pa\/é. - V'Pa
AIE \/-Z'A;E AIE ’

Substituting these expressions into (b)

da

_ »PVZ (-¥)P ____ VZ ey
€% "4 E ~ AE G-
2
Equating €,to —i:%-E—.y—i and €, to zero
(-v\P_ _ (U-v)P _ _at
AE~ T Tate ¢ A= g @

P, 2 -y oA _ YVZA _ »VZ

Condition ,’5/ ?’ When tangential loads P are appvlied at outside
joints, as shown in Figure 9, the horizontal and vertical bars are
unstressed, while the diagonals are stressed with equal tensions and

compressions S, = % , and consequently, are changed in length by

Pa_

the emount § = ‘5[ A 2 ,(f),which transforms each square into a

rhombus , 8ee Figure 10. The shear strain of the framework Xxy is

found from

§
Lra _ 1~ am . H
2 / + b‘
& ) = fan"”t‘an'é" = .—-————/—éx;y 'y
2 /+fan12"anZ¥~ ]+ Ji(rxj xﬁﬁ
the equations (g) and (f) give

V2 PVZ
(ﬁy: cz2 = A E (h)

tan (—— -

&P §l9
N\o, Nloo

+

Since tan (

R0.
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Equating this expression to the shear strain of the plate gives the

third framework equation

pvi _ P __ P20+

!
_ _at
b= TF P (k)
A, can satisfy expressions (k) and (e) only if
at »VZ :
= 3 h s
YA =2 at; which gives
y*‘=§' ;3 A= %at, and Ay = 3?75 at . (1)

Thus, the type of the pettern considered here is good only for the

same perticular value of Poisson's ratio V‘=:§ .

6. Rectangle With Two Diagonals .

It has been expected that transformation of the square form
of the previous pattern into an oblong would make tﬁé framework suitable
for imitating a plate with any arbitrary value of the Poisson's ratio
in view of the fact that four eguations would be available to determine
four characteristics, i.e., three areas and one ratio of the sides of
the rectangle. For this reason an analysis of an oblong framework has
been undertaken.

Condition 1. The framework is loaded with vertical forces P and
horizontal forces 1%? as shown in Figure 11, where k is the ratio
between the horizontal and vertical sides of the rectangle. The
stresses produced in horizontal, vértical and diagonal members are
designated respectively by S, S; and S, while their respective areas

are A, A, and A,. Since there is no deformation of the framework in



horizontal direction S; = 0. From statics:

P VP

2 Sz Cos = ‘%"— or S2 = ——zm

S+28, Sink =P or S:P-—Eg::p(l_’i:z)
since k = Cott . ”

; . P(/“ ',:z“)
Vertical strain €y = ——Fg—

vP-

Strai € =
train in the diagonal &, Zx Cosd A, E
From Figure 12

bdb = 1dl - ada or &’a® = €1% - €4a°

),—
ioh €, = - P _ P~

from which x = %t | Tk Cosxk A ESim AE

The first two equations of framework are:

V- 2
P(/’F) = Pl-7 ) or A= (———~K- ;\9 at
AE katkE (/..y-z)
p P~
a K2) . '

and TR CosX S A, E - AE 0 leading to

vat
2(~-v? Cosot Sin X

Ay =

Condition 2. With loads as in Figure 13,
S=0 5 then by statics

y-k P .
82 = ~35qq s @nd S =P -28; CosxX =P (1-vk%);

P 2
Therefor €= —+(1- vk
erefore, €= ZF (1- yk*)
and the third equation is,

P _ P@-v?) [~ yK?
/TE_(l- Ykz) - atE or Al - /_y.z at *

Condition 3. Under shear load, as shown in Figure 14, only

diagonal members are stressed with compressions and tensions

(2)

(b)

(e) -

()

(e)

(£)

(g)

(n)

(k)

RR.



Sy, = 275%33 , and the chenge in length of a diagonal is
§ =  Ter™ 5;{ 7. E which after sul:stitution for Ay of its
expression (g) becomes 51: _fﬂ%gg%g:l:) (1). The shear
strain of the framework (Figure 15) then is:
Yug= LBt PO (m)
a kyta E :

and the fourth equation of the framework is

plU-v? _ P23+v)
kvtaE =~ katE

, which after simplification gives »* = 3

while the ratio of the sides of the oblong K cancels out. Substi-

tution of this value of into (£), (g) and (k) gives,

2
po= 32 g (1)
by = 3(5K°) ta (2)
2%
PR R GL RGP (3)

16 K
Thus, a somewhat unexpected result of this analysis is that

the oblong framework, like two other previously discussed types, is
only capeble of representing a material with Y'=‘§ , while thé ratio
of the sides of the oblong k may be arbitrary. The repeated |
recurrence of the figure j , which by the way is not far from the
true value for metals, presents a curious fact.

It may be mentioned in brackets that outside of the range
v€§:51<§;V§' the areas A or A, in expressions (n) become negative,
which makes the framework outside of these limits a physical impossi-
bility. That, however, does not make the framework any less suitable
for use in calculations in comnection with problems of two-dimensional

stress.
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7. Square Pattern for an Arbitrary Value of ¥V .

It has been seen that unsuitability of the triangular and
square patterns of framework for any arbitrary Poissonts ratio is
traceable to deficiency in the number of the pattern characteristics
by one unit. Therefore, it has been expected that introduction of
an additional characteristic should remedy the situation.

Figure 16 represents the framework of square pattern
modified by introduction of auxiliary horizontalland vertiéal members

‘pinned to the diagonals. The cross-sectional esrea A, of these
auxiliary members is the third characteristic of the pattern in addi-
tion to A the area of the main horizontal and vertical members and
Al)the area of the diagonals, both inside the square centre portion
of each unit and outside of it. The centre portion, or heart, is
made a square one-half of fhe size a of the unit.

Deformability of this type of framework will be computed on
the basis of displacements of the main joints, i.e., the joints at the
connections of the main horizontal and vertical members, in other
words, streins in éhe framework will be messured by changes in
position of the main joints. The external 1oad§ may be applied at the
main joints only.

It follows from the conditions of equilibrium of the
secondary joints that under any loading the four auxiliary members of
each unit carry equal stresses., Parts of each diagonal inside and
outside of the heart are stressed differently, but the two outside
parts of every diagonal are stressed equally under any loading, which

is evident from equilibrium.of the two secondary joints on the same

diagonal.
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Condition 1. As shown in Figure 16, the framework is loaded with
vertical forces P and horizontal forces y*P at the exterior main

joints. Since €&y = 0, the stress in the main horizontal members

83 = 0-
From horizontal equilibrium of an outside main joint
p
S, =7 (a). From vertical equilibriun of en outside joint

S=P-V28, =(1-»r)P (b). From symmetry and from the fact
that all four auxiliary members have equal stresses it follows that
the heart remains square in shape after the deformation. This consid-

eration permits to determine the stresses S; and S,,, since from

Y2 _ Sie

elastic considerations A=A and from statics of a secondary
‘

joint §,, + V2 S, =8, = IV?P‘ , Wwhere from

5 = P (c)
o T \/E+ZTZT . (o]
v P . (a) -

Strains between the main joints are:

-y
vertical €y =/% = (AéP (e)

A
Sy "‘Slo = v-p (I+ V’L.é- -_‘7) .
ZAE VZEA,(1+V2 42)

and along the diagonal €,=
As was shown in article 5

, Erp I+EE)  1pp
€= -7 (1dl - bdb) = 2€, - €, = EA:(/WE%%) ~ 25 - (8
)

The two equations of framework are:

0-np _ (-F)P _at
AE " GtE or A=~ (n)
i~ _.LAZ - = I“ 2 A
Ly AvP I'ER P, . VEA (VDA )

EA, /ﬂ/gl_g_; AE A +VzA, vat
!



Condition 3. The shear loads P, applied to the framework in
the same manner as in Figure 9 cause no stresses in the auxiliary
members, which follows from considerations of symmetry. Therefore,
all that has been said in connection with this condition in the
article §, dealing with simple square pattern, is equally applicable

here, and leads to the expression (k) of that article:

_at
V2 (1+V)

This value substituted into (j) gives an expression for A,, which

A =

completes the set of values for different areas:

at

A = 1+V- ) (4)
atl

Mt EE (%)

A, 3y~ 6)

20+ (- 2y)
It mey be seen that the previously discussed simple square
pattern is a special case of the form now considered, since for
V= é s A = 0, and the auxiliary members thus disappear. A and A,
are always positive, while A, mey be either positive or negative.
As Y varies between its physically possible limits z’ and 0, A,
changes all way from plus infinity through zero to -é—a‘l‘. The negative
sign of A, mekes impossible construction of a physical model of the
framework for values of Y‘below:%— , but it does not affect its
applicability in computations. ’
Attention is called to the fact that the type of the pattern

here considered may become structurally unstable under compressive

stress, in view of the absence of elastic restraint to rotation of the



heart about an axis perpendicular to the plane of the framework. This
instability, however, does not affect the bar stresses, which continue
to be unique, as long as the distortions are small. Mathematical
suitability of the square pattern with auxiliary members is thus not
impared by instability.

The type discussed in this article completes the list of
patterns that have been investigated. Other types are, of course,

conceivable,

8. Applicability of Discussed Patterns to Different Vs and to

Plane Strain.

The square pattern for Yﬁ=é', by virtue of its simplicity,
has important advantages over the square type for any arbitrary V';
for this reeson, it is profitable to handle problems involving
materials with any ¥V~ by means of simple square framework for V-==§ .
Such substitution is perfectly correct if the boundary conditions are
represented by some known forces or stresses applied at the boundary,
with no external forces acting within the boundary. Stresses under
these circumstances do not depend on ¥ . This deduction follows from
independence from Y~ of the Airy's stress function in the absence of

the body forces.”

If, on the other hand, external forces are applied within

the boundary, or the boundary conditions involve some restraints to

displacements, then the state of stress depends on Y=, and substitution

of a framework with a different Y~ is not correct.

3) qu9e 25.
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Thus, the applicability of any framework with »* =%
is really much wider than what might be expected from its title.
The present discussion explains the reason for prominence given the
framework with V’=:§ in this treatise.

Formulae developed so far for the values of pattern
characteristics have presupposed the presence of plane gtress. If it

is necessary to apply the framework method to plane strain, these

formulae should be modified by replacing E and‘Y“ with ,:sz and

respectively, as hes been explained in article 1. It follows

);.-
-Y-
from this, that the first three types of pattern will be suitable in

plane strain problems only for a material with Y~ determined from:

V- ! L
_TJ‘—:—B— or V"=4 .

The necessary areas of bars in the square pattern with

auxiliary members will be

A = (1—))-) at ) (43)
N o A
by = et (52)
(v (-¥)
A t . 6a
2 z0-3» (6a)
In calculating deflections, the bars must be considered as
endowed with modulus of elasticity /Erz . In 811 these expressions

E and Y are the true modulus and the true Poisson's ratio of the

material subjected to plane strain.

9, TFramework With Finite Size of Unit.

It will be recalled that a framework of a suiteble pattern

is strictly equivalent to a plate only if the size of the unit is
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infinitesimal. However, solution of such infinitesimal framework
would not be in any way different from solution of the plate prototype
since it would apparently require hendling of the same differential
equations and boundary conditions.

In order to make the frameﬁork method suitable for practical
use the size of the unit must be taken finite, which transforms the
method from an exact into an approximate one. As a justification for
this procedure a hypothesis is propounded that the use of finite
units results in a fairly close approximation of stresses and deforma-
tions to their exact values, even if the size of the unit is fairly
large.

This statement seems plausible if it is realized that the
bar stresses in a finite framework satisfy exectly the equations of
statics for a portion of the plate separated along any section, and
at the same time they satisfy, to some measure, the requirements of
continuity by virtue of continuity of the framework at the joints.
Therefore, the plate stresses, obtained by proper interpretation of
these bar stresses, may be expected not to diverge far from the true
ones.

This consideration, however, does not constitute a proof
of the above statement. It is felt, that the truth of the hypothesis
can be demonstrated only by comperison of a number of framework
solutions with the solubtions by the theory of elasticity. One such
comparison will be given later. Since its results are good, it

carries with it a strong argument for the soundness of the hypothesis,
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although, of course,a single example cannot be taken in all fairness
as a conclusive evidence.

Theoretically, the framework method may be applied to any
plane stress problem irrespective of the boundary conditions and of
the character of forces. Figure 17 shows a plate of a curvilinear
outline indicated by dotted line, acted upon by forces applied both
at the boundary and at interior points. A framework of proper pattern
and size of unit is inscribed into the boundary. The acting forces
are all transferred to the nearest main framework joints by statically
determined pairs of bars, such as ab, all or fh, fg etc. This procedure
implies that the deformation of the marginsl area of the plate between
the dotted line and the boundary of the framework proper, i.e., the
lines NA, AB, BC etc., is disregarded.

Use in the same problem of units of different sizes or even
of different patterns is theoretically permissible. Half-size units
near the border may b:ing framework closer to the actual boundary.

Marginal bars of the framework, i.e., bars on lines NA, AB,
BC, CD etc. must have areas equal to one half of the areas of regular
bars. This requirement should be evident, if one considers deforma-
bility of framework near the edge in conditions of uniform stress,
referred to in previous articles as conditions 1 and 2. For the same
reason, a bar belonging to units of different kinds, such as ABC in
Figure 18, should have an area which is average for the two kinds.

Fremework of any rectangular pattern is a structure highly
statically indeterminate. To illustrate this point a two by three

simple square framework, Figure 19, will be considered, although the



same reasoning applies to the oblong framework. Assuming no restraints
of the joints, there will be found one statically unknown quantity for

each square of the first horizontal row and for the first squere of the

second row, with two unknowns for each of the subsequent squares of the

second row. This makes the total number of unknowns eight. With
Joint restraints the number of unknowns will be even higher.

Squares with auxiliary members have the same number of
unknowns as the simple squares, since from comparison of these two
kinds of units it follows that the more complicated type of unit
possesses four more joints and eight more members than the simpler
type, so that the number of additional equations of statics, eight,is
Just sufficient to determine eight extra stresses.

In triangular framework the statical unknowns are less
" numerous, so that a two by three structure of Figure 20 has only two
of them, ‘

Large number of unknowns shows the formidaeble character of
the problem of framework stress analysis (at least with rectangular
units) and presents a good reason for keeping down the number of units
by increasing their size. At the same time this puts limitation to
applicability of the method to plates of curved or irregular outline
and to the use, in the same problem, of units of different types,
which would tend to multiply the number of unknowns.

These considerations restrict the use of triangular pattern
to plates bounded by straight lines at 609 to each other, and make the

square end rectangular patterns primarily useful only for plates of
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simple rectangular outline. Only rectangular patterns will be dealt

with in the following discussion.

10. Outline of Methods of Framework Stress Analysis.

A. Method of Least Work.

Application of this method to framework is in no way
different from its use for stress analysis of statically indeterminate
structures in.general. The large number of simultaneous equations for
determination of statical unknowns mekes the method very laborious and
virtually unusable when many units are involved.

B. Solution by Displacements .

Referring to Figure 19, each joint has two degrees of
freedom and two components of displacement caused by the elastic
distortion of the structure. Without interference with the structural
action of the framework one of its joints mey be considered fixed and
the freedom of another restricted to one degree. Teking components of
displacements of different joints as unknowns, expressing in terms of
them the stresses in all the members of framework, and setting up two
equations of statics for the stresses meeting at each joint, a system
of simulteneous equations is obtained, involving joint displacements
as unknowns. Three of these equations are not independent from others
since the external forces acting on the framework, which naturally is
in equilibrium, must satisfy three equations of statics. 1In example
of Figure 19 this procedure results in a system of 12(2)-3 = 21

simultaneous equations against eight by Least Work.
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The relative disadvantage of this method in comparison
with Least Work is decreased as the number of units is increased, and
as restraints are added to the framework, since such restraints add
to the number of statical unknowms but cut out some of the displacement
components.,

The displacement method hss been discussed here not for its
value in itself, but rather because it leads to a method of successive

movements, used throughout in the present investigation, a method

which is in reality a practicable adaptation of the displacement method.

C. Hethod of Successive Movements

If the elastic displacements of the joints are found and the
joints are brought into their true displaced positions, the stresses
and external forces applied at each joint are mutually balanced.
Instead of finding displacements from equations, one can make guesses
at them, one after the other, on the basis of forces anplied at
different joints, displace the joints one by one by amounts guessed,
calculate after each displecement the stresses in the members, brought
about by these displacements, and from the bar stresses determiﬁe the
remaining unbslanced forces at the joints and correct them agaih and
again by similar procedures until a close balance is established at
all joints. This constitutes the essence of the methed, which, as may
be easily seen, resembles somewhat the method of moment distribution
of Professor Hardy Cross.

A circumstance highly favourable to use of this method in

framework analysis is the identity of the pattern in all parts of the
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framework. For this reason, if a joint gets a unit horizontal
displacement while the adjacent joints remain fixed, stresses brought
ebout in members rsdiating from it are the same &s the stresses in
corresponding members caused by unit horizontal displacement of some
other joint. Such stresses or rather values proportional to them will
be referred to as distribution factors, and their determination will

be undertasken now.

11, Determination of Distribution Factors.

A, Simple Square Pattern.

Let joint 0 (Figure 21) move upward a distence 4 , while all
adjacent joints are held against any movement. Question is, what are
the stresses brought about by this action.

According to (1), Art.5, the areas of horizontal end verticel
members are A =-%-at, and of diagonals A, = 353_ at, OStresses in

horizontsl members are evidently zero. Stress in vertical members is

s=92=3pa. (a). Since change in length of a diagonal is % ,
A E 7 3vZ
its stress is S, = —ffj%z— = —6 EtA (b). H or V component

of 8, = 2 Et4 (o).

It is not the stresses in the diagonals but their horizontal
and vertical components that are used in balancing the joints. It will
be noticed that comp. S, ¢ S =1 & 1. The figures yand 1 are the
distribution factors of the simple square framework. They are simply
smadies—ledwenn- stress components corresponding to certain joint
movement parallel to one of the axes, the value of the movement not

being stated as immaterisl. Distribution factors possess signs. On
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the side toward which the movement is made they are negative for
compression, and on the opposite side, positive for tension. Their
values are shown in circles in Figure 21. It is emphasized here that
the values for diagonals represent not the stresses, but their vertical
or horizontal components.

The distribution procedure will be described in full detail
later; however, in order to give now some preliminary idea of the use
of these factors, reference is made to Figure 22, representing a part
of the framework, whose central joint is acted upon by a vertical
force 100 and by a horizontal force 50, indicated by arrows. It is
required to move this joint toward balance.

The joint is first moved upward 32 units, which causes
stresses 32 and 8 in verticels and diagonals respectively, as recorded
on the corresponding members. By the way, 8 is, of course, not the
stress but a component of it. As a result of this movement, unbalanced
forces 8 appear at the joints A, C, E and G and unbalanced forces 32
at the joints B and F, as shown by the arrows, while the force 100 at
the joint O is reduced to 100 - [k4) 8 + (&) 52] = 4,

All this means that an unbalanced force 96 has disappeared
from .joint 0, while two forces each equal to é-of it have appeared at
the joints B and F, and forces equal to }% of it have come to joints
A, C, E and G, Horizontal unbalanced forces have also come to the
letter four joints.

A similar procedure disposes of a larger part of the

horizontel unbalanced force 50. The additional stresses caused by the



new movement and the resultant unbalanced forces are all recorded
on the diagram.

It will be recalled that a marginal member hzs an area -
twice smaller than that of an interior member parallel to it. For
this reason its distribution factor is also twice smaller; this is
indicated in Figure 23, giving factors for a horizontal movement of
joint O to the right.

Factors corresponding to movement of a marginal joint in
the direction normal to the margin are in no way different from the
regular velues of these factors.

B. Sauare Pattern With Auxiliary Members.

In view of similarity of the distributed factors in all
four units adjacent to the joint undergoing a displacement, it 1s
cguite sufficient to consider a single unit, Figure 24, whose joint O
moves upwerd a distance 4 , while adjacent main joints A, B, C do
not move. The four inner joints move as much as necessary for
equilibrium.

The areas of the members have been found in (4), (5), (6)

al A, = _al__ and A, = 37/
R RV YY) 2 2 (1+v) (1-2v)

Stress in the horizontal member AQ is evidently zero, while stress in

of Art. 7 ¢ A =

the vertical member,

_AEA _ tEA
T a T+ ’ (d)

S

It has been pointed out that the four auxiliary members

carry equal stresses S,, while the two outer portions of each diagonel

are also stressed equally. Symbols S, and SD are selected to desig-

nate these latter stresses. The subscripts a and p stand for the

at.
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words active and passive, which suggest whether the ends of the
diagonal in question move (active) or do not move (passive).

Of five unknown stresses S,, Sp, Seos Sgo and Sy only the
first two are needed for conversion into distribution factors, the
remaining three heve no importance in themselves.

The following five equations are available, two of which
are of statics and three of deformation.

1. From equilibrium of an interior joint of the passive diagonal

Sp = 8, V2 + 8p (e)
2. Same for the active diagonal
S = Sz V' 2 + 840 (£)

3. The total length of the passive diagonal remains unchanged
Sp + Spo = 0 (g)
4, The total length of the active diagonal changes by f%?

Sp + Sag aVZ2 _ A

2 A E ey

(h)

5. The deformation of the heart of the unit is such that
elongation of ED = j%’(elongation of FH + elongation of HD), see
Figure 24 and 25. This follows from the fact that the diagonals remain

oré%gonal after the deformation, since the auxiliary members stay equal

in length.,
v a )
Sz 7 - (Spo * Sao) a_ 1 (k)
Ap E \/-é 2v2 EAy

The following expressions are obtained from the solution of

these equations.
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Sa = Twoewm B4 (1)
Sp = —77‘-;-—%-_—_,’,—2)* EtA (m)
Sao = q—fz—'?f_—y;,)— EtA (n)
Spo = gy BA (p)
S, = T‘B(g}’—z)- EtA . (q)
Thus:

s = o @

V or H Comp. of Sq = -jgg%%q N (r)

V or H Comp. of Sp = —g—u% EtA . (8)

The distribution factors designated by f with proper

subscripts are taken proportional  to these values as follows:

£f =13
= I .
fa= o > )
e o 2y
P 8G-»)

It is needless to say that for the members on the compres-
sion side of the displaced joint the distribution factors have the
same expressions only with minus signs. The value of the factor for
a marginal member adjacent to a joint, which is moved parallel to the
margin, is again % . .

It will be noticed that if the heart of a unit is cut by a
sectién, such as XX in Figure 24, the resultant of the stresses in the
three bars cut is equal to the stress in the outside part of the
diagonal Sp or Sy, as the case may be, and the statical effect in any
part of the framework is not altered if the units are imagined as having
simple diagonals carrying proper stresses Sy and Sp without eny

auxiliary bars. For this reason, the distribution procedure in this



type of the framework is identical with the simple type discussed in
the previous article, except for different values of distributién
factors and for the fact that on displacement of a joint both diagonals
of a unit adjacent to it get stressed, while in case of framework for
V‘=ﬁ§ only active diagonals are affected.

Equations (t) may be rewritten in terms of the reciprocal

of Poisson's ratio, m = ';';. .

fg=1 ,
m+|/
fa = Bm-n (7)
_ 3-m
o= B

Numerical values of these factors for different values of
m are given in Table 1, Plate 24.

Attention may be called to simple round figures of the
factors for a number of different values of m, such as 2, 3, 5, 7,
11 and ¢», This simplicity has much to do with the ease of carrying
out the distribution, and with the practicability of the method in
general. The framework with m = 3 is, however, the easiest of all to
handle, in view of the‘absence of stress in the passive diagonals.

C. Oblong Pattern.

Horizontal Displacement. The areas of the members according

to equations (1), (2) snd (3), Art. 6, are:

3 3% 2 3 (+rc?)%
K=lta, A= 2(3-k)te and Ay = 5

b= =%k 6 kK

ta.

‘Elongation of horizontal member is A , while that of the diagonal is

A Cosol (see Figure 26).
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The distribution factors are obtained by changing these
stresses in proportion, so that S5, becomes unity.

£, =1

)

K2 . (8)
fsn = 2(3-x?)

|

The letter H in the subscript signifies that the correspond-
ing factor refers to horizontal component of the stress in the
diagonal, and that the movement; of the joint, causing it, is horizontal.
Vertical Displacement. While elongation of the vertical

member is A , thet of the diagonal is A Sinol . (see Figure 27)

_AEA _ 3 3k3%*|
S = a -7 " EtA 5 _ (Y)

3
"(2 /Z ! f-

\//+,(.2 16 K a V/‘f'Kz 16 K

V. Comp of S; =

Distribution factors ares

fS =1 >
, (9)
£ =

82V W)

Distribution procedure in oblong framework involves a
complication, which has been absent in square framework, and which
arises from inequality of the vertical and horizontal components of
stresses in diagonals. It will be recalled that each joint displace-
ment is accompanied be recording on the corresponding members the
stress components caused by that displacement, so that the remaining

unbalanced forces at each joint may be easily found by adding proper
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components. While in ﬁhe square framework one figure written on the
diagonal member suffices to show either of the two components of
stress in it, since they both are equal, in oblong framework two
figures might apparently be needed on each diagonal. Such double'
recording would complicate considerably the distribution form, and
would make the method less workable.

Fortunately, however, there is a convenient waylout,
obviating the necessity éf keepiﬁg double sets of figures on the
disgonals. It consists in dividing, before the distribution is
started, =11 horizontal acting forces, i.e., forces parallel to long
dimension of the framework, by k, while the vertical acting forces
are left unchanged. After that, the distribution is proceeded with
in ordinary manner, using the valﬁes of the factors just derived in
(8) and (9) and writing single values on the diagonals. As this
procedure is followed, figures written dowm on the members after each
horizontal movement have the following meaning} on the horizontal
members they are k times less than the true stresses, and on the
diagonal.members, K times less than the horizontal components of
their sﬁresses, or else, equal to the true values of their vertical

components. Therefore, it is correct to balance the latter directly

against the results of vertical distributions, representing true values

of vertical components and stresses.

The distribution procedure with oblong framework may then

be summerized as follows:

1. Divide all horizontal acting forces by K.
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2. Distribute all the vertical and the modified horizontal
forces in an ordinary menner, using the factors (8)
and (9).

3. Interpret the resultant figures on the members in the
following manner: figures on the ﬁertical (short)
members are the true stresses in them; figures on
horizontal members should be multiplied by K in order
to obtain the true stresses; figureé on the diagonals
represent the true vertical components of their stresses.

Numerical velues of the distribution factors for different
values of K are given in Table 2, Plate 24,

It may be observed from equation (2), Art. 6, that for .
kK= V3, A, =0, i.e., the horizontal members are absent. For
K ;>\/3; A, becomes negative, which however, does not affect the

solution. A and A, are always positive.

12. Distribution Procedure in Simple Square Framework .

A. General.

Single joint movement parallel to one of the axes, explained
in previous article, forms the basis for distribution procedure, but,
although it hzs its proper place, its exclusive use would be highly
cumbersome. In order to shorten the distribution and to meke it more
practicable, block movements are resorted to. Any such movement is
quite legitimate as long as the stresses brought about by it may be
clearly visualized., It does not pay to undertake too complicated a

movement, whose stresses could not be easily calculated mentally, for
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fear of error. As long as the stresses are properly calculated and
recorded the contimuity of the framework is preserved, although the
statics is not satisfied. The purpose of movements is to work closer
and closer toward the state when all joints are in equilibrium. An
error in recorded stress is tantamount to break in continuity of the
framework,

A number of typical movements is given below. Although the
movements are general to any kind of the framework, the values of
stresses given all refer to simple square pattern for W= 3" . It is
reminded, that what is referred to and recorded as stress in the
diagonal is actually its V or H component.

B. Types of Block Movements, Y =3.

a. Movement in a row, Figure 28. All joints, but F, G and
H remein fixed. Joint F moves a units to the right which causes
stress a in EF and stresses + %‘ in the four diagonals radiating from
F. At the same time, joint G moves b units away from F, i.e., (a + b)
units altogether, and joint H, ¢ units away from G, i.e., (a + b + c)
altogethg?. It will be noticed that while the horizontal members are

stressed b and c¢, the diagonals meeting at G carry stresses + a;b

and the diagonals CH and MH have stresses 5‘—*-?—5- . A1l the stresses
thus produced can be easily calculated mentally, and there is no
difficulty visualizing the signs of stresses in the diagonals.

b. Movement in & row in a merginal panel, Figure 29, is

snalogous to the one just discussed. The only difference is due to

twice smeller cross-sectional area of the marginal members compared

to the interior ones.

43.



c. Combined movement of & corner joint, Figure 30.

Joint A at the corner of the framework moves a units down and as
much to the right. Stress in the diagonal by superposition is
evidently a. |

d. Shear distortion, Figure 31. The lower row of joints
or the whole lower part of the framework, is moved horizontally 4 K
units. All diagonals of the panel get stressed with + K.

e. Direct stress, Figure 32. All lower part of the
framework is moved down bodily a units. All verticals of the panel,
except the marginal ones, are stressed a, and all diagonals are
stressed % .

f. Interior block displacement, Figure 33. Block BDHF is
moved to the right a units. Members AB and EF are stressed az, while
all diagonals affected carry stresses t %-, whose signs may be
visualized.

g. Rotation about an extefior joint, Figure 34. The right
part of the framework is rotated about 0, so that joint E moves
horizoﬁtally‘g units to the right. Therefore, joints F and G move
2a and 3a units respectively, which explains the stresses produced. ‘

A modification of this movement is illustrated in Figure 35,
in which there are two equal rotations in opposite directions about
0, and Op. Joints B and E move away from each other % units each,
joints C and F, as well as D and G do likewise, only move proportion-
ately farther.

Rotations, such as explained in the last two examples are

advantageous in problems involving antisymmetry, such as bending of



a simple beam. This point will be discussed fully later.

h, Rotation about an interior joint is illustrated in
Figure 36, in which the block OABC is rotated about point O.

k. ©Shear combined with tension, Figure 37. In this case
lines AB, EF and GH are rotated separately through equal angles in
the same direction about the points A, E and F. Stresses in the left
vertical bay are the same as in case of rotation of Figure 34, while
" in the portion of the framework to the right of AD all diagonals are
stressed + % .

All these movements and some of their combinations, as well
as the single joint displacements are used in the distribution. Just
which of these movements should be selected at any time, and how big
should be the distortion is rather hard to state. General principle
is, of course, to work towards balance of the framework and to move
those joiﬁts first that are most unbalanced, but the ability to apply
this principle to the best advantage depends mostly on experience. On
the other haend, improper movements do not invalidate the work, but
only retard the progress.

C. Technicue of Distribution and Menner of Recording.

The technique and the form used in carrying out the distribu~

tion are explained on an imaginary example of Figure 38. It is felt
that the use of any of the actual somewhat complicated problems for
the purpose of explanation may lead to confusion.

Figure 38 représents a 2 x 3 framework acted upon by forces

applied at most of the joints. A colored pencil is suiteble for
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stating these forces and their arrows on the diagram. The four top
joints are assumed restrained in vertical direction, while one of them,
A, is prevented to move at all. The problem may be considered to
represent one-half of a symmetrical plate loaded éymmetrically, the
line of restraint AD, corresponding to the axis of symmetry.

It was pointed out in the previous article that the motions
of the joints are accompanied by shift of the unbalanced forces from
joint to joint, while the algebraic sum of the unbalanced components
at all the joints remains constant at all times. The purpose of
distribution in the present problem is to shift vertical unbalanced
forces to the line AD where they may be resisted by the restraining
reactions, and to move those horizontal components, that will not get
mutually balanced, to the joint A, the only joint restrained against
a horizontal motion. ‘

No reasons will be given for the motions which bring the
framework into a state of near-equilibrium. A bona fide solution
would require more movements, and that would only obscure the technique.

Fach movement is accompanied by recording the stresses on
the members affected, using a plus sign for tension and a minus for
compression. When this is done, all the joints at both extremities
of the affected members are gone over, and the unbalanced forces
acting on these joints are modified by taking into consideration the
newly added stresses. The resultant state of equilibrium of each
joint is recorded by means of vertical and horizontal arrows, with

appropriate numbers, in the direction of unbalanced forces. The

46.



original figure is simply rubbed out and replaced by a new one.

After that, a new movement is carried out and the procedure repeated.

The following movements have been used:
1. Shear movement of the joints on the line KN to the right,
causing stresses of + 10 in all diagonéls of the lower horizontal
bay.
2. Vertical compression movement causing stresses —4 in all
interior verticals, -2 in marginal verticals and -1 in all
diagonals.
Z. Rotation of the block EHNK about the joint E. As a result
of it the verticals BF, CG and DH shorten 8, 16 and 24 units
respectively, the latter vertical being a marginal one getting
a stress -12. The diagonals get stresses: FA and FC, -8;
GB and GD, -4; and HC, -6.
" 4, Horizontal movement on the middle line, in which joint G
moves 8 units to the left and joint H approaches G by 4 units.
Diagonals radiating from G get stressed + 2, and diagonals HC
and HM, -3.
5. Similar movement on the bottom line with joint L moving
away from M, 8 units, and K away from L, 20 units.
6. Same on top line, with the members AB, BC and CD stressed

in ®nsion respectively, 6, 10 end 12,

The joint forces remaining after all these movements may

be seen in Figure 38 near each joint in form of arrows. While most

of these arrows represent unbalanced forces, those at point A and the

47.



48,

vertical arrows at the other top joints are balanced by the reactions.
However, in spite of this, they must be recorded for the purpose of
check, as will be explained presently. In order to distinguish these
forces from the unbalanced ones and from the acting forces, it is
advantageous to use for them a pencil of a different colour.

In making the movements it is not nracticasl to attempt to
achieve a close balance of any of the joints at once. The best
procedure, facilitated by simplicity of the ratio of the distribution
factors exactly one to four, has been found to be as follows. If
the unbalanced forces are expressed by thousands, first use distortions
in round figures of thousands and hundreds of units. After some time,
when the remaining unbalanced forces get reduced to hundreds, use
distortions expressed in tens of units and so on. It is never wise
to use small or fractional distortions when there are still fairly
large unbalanced forces.

In any given problem it takes a certain amount of time to
lower the order of unbalanced forces by one unit, this time being
roughly independent, whether the order is lowered from thousands to
hundreds or from hundreds to tens, etc.

D. Current Checks of Distribution.

In spite of the great simplicity of calculations associated
with the distribution and consisting mainly in addition, subtraction
and division by four and two of round figures, after hundreds and
thousands of these actions, mostly made mentally, errors are bound to
crop in. In a solution requiring sometimes several days to accomplish

it would be unwise to proceed to any great length without some



effective checks at regular interﬁals, and a method of distribution
would be useless without such checks being available.

Two types of possible errors may conceivably occur. TFirst -
recording wrong stress on the member, the error consisting in wrong
number, wrong sign or in an omission to record & stress in the member
at all. Such en error is equivalent to failure to preserve continuity
in the framework.

The measure adopted to remedy this sort of error is to go
over the distribution after every 4 - 8 hours of work, dotting with a
coloured pencil every stress that has been found correct. Experience
has shown that, although the original sequence of movements is likely
to be forgotten by the time of checking, the kind of every movement
can always be reconstructed and the check can always be accomplished.

Except for one or two times early in the game, this check
has revealed no errors and for this reason it has been discontinued in
the last few problems on distribution. After experience has been
gained, this check is scarcely needed, if the work is carried on
caerefully and without hurry.

Second kind of error is incorrect joint force resulting from
erroneous addition. The effect of this error is that a joint, which
is apparently in equilibrium, is actually out of balance. The
experience hes been that no reasonable amount of care insures freedonm
from this error. Fortunately, however, an easy check is available,

consisting in adding up the joint forces and comparing the sums with

the original ones.
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In the example of Figure 38, the sums of the active forces
at the beginning were 65 4 and 15« , and the sums of the joint forces
at the end, including the coloured arrows on the top line of joints,
are found to be equal to the same figures, and this constitutes the
check.,

If there is a discrepancy, all the joints are gone over, and
the joint forces are recomputed and compared with their previously
recorded values. As a preliminary step for this operation the bar
stresses must be found by adding up several figures resulting from
separate movements. This is shown in Figure 38. Recomputation of the
joint forces is facilitated by the use of the form shown in Figure 39,
reproducing this calculation for the problem of Figure 38. The form
is self-explanatory.

No error in joint forces will be left undetected after this
check, IHowever, it has been found unwise to rely too much on it and
to compute the joint forces at the time of distribution hurriedly or
carelessly, since this check consumes considerable time.

Tt has been found most satisfactory to use this check two
or three times in the course of a complicated distribution, applying
it every time when the order of unbalanced forces has been lowered by
approximately two units. The last application should follow completion
of distribution.

Although proper current checks, as described in the previous
sub-article, meke an error in the distribution improbable, it is

desirable to have some method of testing the correctness af the final
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result, especially if some of the checks have been waived. This can
be easily done in a small fraction, perhaps one tenth, of the time
required for original solution of the framework.

First step in this final check consists in distorting the
structure in such a menner that all horizontal and vertical members are
stressed to the values found in solution. This usually can be done in
a number of ways, and anyone of them is permissible, if it is consistent
with the restraints of the structure. Stresses present in the diagonals
after this distortion are generally not £heir true stresses.

Second step consists in giving the structure shear distor-
tions, so that the stresses in some diagonals get changed to their
true values. All remaining diagonals must then also get their true
values, which constitutes the check.

Figure 40 represents such a check of the solution of Figure
33 by means of the following operations:

a., Distortion of the left vertical row, keeping joint A
fixed, so that the stresses in AE and FK are -2. Then stresses in the
diagonals are: in EB, -1; in EL, +1; in KF, -2.

b. Similar operations, in succession, on the other verticel
rows, keeping the top joints fixed in order to satisfy the conditions
of restraint,.

¢. Distortion of the top horizontal row, leaving joint A
stationary.

d. Distortion of the row EH. In the absence of prescribed

restraining conditions, joint H has been assumed stationary, although



any other joint might have been taken as such.

e. Distortion of the bottom row, with joint K assumed
stationary.

Stresses in the diagonals are added up and found different
from the true stresses, for which reason two additional operations are
necessarys

f. Horizontal shear distortion of the lower bay of such
magnitude that the stress in any of its diagonals aésumes its true
value. By comparing stresses in members FF in Figure 40 and 38 the
required shear distortion must be such as to produce stress + 1 in
diagonals parallel to EF and - 1 in the opposite ones. After applying
this distortion the bottom bay diagonals are a&ll found correct.

g. Shear distortion of the top bay causing stress - 3 in
diagonals parallel to AF and + 3 in the ones parallel to EB. After
this movement the values of_all top diagonals check.

It is evident that vertical shear distortions are not
necessary since they would be inconsistent with the conditions of
restraint at the top line of joints, however, had the framework been
free at that line it would be required to superimpose some additional

vertical shear distortions.

13. Distribution in a Square Framework with V'=0.

The whole procedure of distribution and recording described
in the preceding article in connection with square framework for
Y= %‘ holds good for a square pattern involving any other value of

¥, although the numerical values of distribution factors are different,



and the pattern of arbitrary )" possesses a peculiarity of causing
stress in the pessive diagonals.

In view of some work, referred to later in this treatise,
involving square pattern of YV = O; the distribution factors and the
stresses for some simple block movements in this type of pattern are
given here.

As is evident from Figure 41, a simple,diéplacement of one
of the joints results in equal and opposite in sign stresses in the
diagonals of the unit. Since any distortion of a unit is merely a
combination of displacements of its four corners, stresses in the two
diagonals of the same unit must always be equal and opposite in sign.
This peculiarity of the square pattern for »'= 0 accounts for some
additional curious properties noted below.

Figures 42 and 43 give stresses due to row movements in
interior and marginal rows. They are all computed by superposition
of the values corresponding to the movements of separate joints.
Figure 44 refers to the displécement of the framework corner along
éhe diagonal.

Figure 45 shows stresses caused by a horizontal shear move-
ment; unlike the previous movements, the stresses of this case are
the same as for V=j.

Figure 46 corresponds to a direct stress distortion. A

peculiar feature of it is that the diagonals are unstressed.,

In the internal block displacement of Figure 47 the diagonals

above BD and below FH carry the same stresses as in the framework with

V'=:§ .
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In rotation ebout point O of the part of the framework to
the right of 0 G, represented in Figure 48, the diagonals in all three
units are stressed equally.

According to Figure 49, if the parts of the framework to the

left and to the right of the bay shown are rotated about 0, and Oy

away from each other through equal angles, the diagonals stay unstressed.

14. Reduction of Distribution to a Different Value of Poisson's Ratio.

Square patterns for ¥ ° other than é‘ are more complicated to

work with than for Y =% for two reasons. First, there is participa-
tion of passive diagonals and the computer has to remember two values
of distribution factors instead of one, i.e., one value for active and
the other for passive diagonals. This condition, of course, causes the
stresses corresponding to block movemenfs to come out more complicated,
except, perhaps, for V= 0.

Apart from this general condition, applicable to 2ll V‘i
there is a second difficulty affecting those )*3, whose factors are
not expressed in round figures. Thus, for Y= 0.3, f, = é% end
fp = —-3% . Evidently, with such values of factors, mental computa-
tions during distributions are impossible, while the scheme of working
in round figures, first, in hundreds of units, then in tenms, etc. also
falls through.

This second difficulty is particularly serious and it makes

a direct solution for a Poisson's ratio like the above mentioned

Y- = 0.3 impracticable.

54,



There is, however, a method by means of which the difficulty
may sometimes be overcome. This method, described below, allows to

reduce a solution made for one value of Poisson's ratio to a different

value of it; in other words, the problem may be solved for a convenient

value of ¥, and then a second solution is made for the difference in
o

Let f, and fp (Figure 50) be the distribution factors in
the active and passive diagonals for a certain value of Y, in other
words, they are the stresses in the diagonals or rather their compo-
nents, when the joint A has been displaced vertically an amount
necessary to cause stress unity in the bar AB.

Consider a unit of Poisson's ratio Y in a framework that
has been solved for certain load conditions. Let the stresses,(i.e.,
components of stresses) in the diagonals of this unit be Xy + Xp in
one of them and Y, + Yy, in the other (Figure 51). The part of the
stress X, is cansed by the active participation of the diagonal EG,
i.e., by movements of the joints E and G, while the passive part X,
is caused by displecements of the joints H and F. Similarly, Y, is
the result of movements of H and F, whole Yp is due to motions of E
and G. Stresses in the horizontal and vertical bars of the unit are
S5, S5, Sz and S3.

Suppose now that the fremework, while holding the load, has
changed its value of Poisson's ratio from Y~ to y! and m has changed

to m'. The question is, how would this change zffect the valuesof

bar stresses.
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Let the values of distribution factors for V' be f ' and

f '. From (7), Art. 11,

P
. m+/ . 3-m
fa = 8(m-1) and fp = Bm-ny ¢

Therefore, fg - £, = 7& =fp' - fp' and

o
fa' - fa_ = fp' - fp (a)
fa m+1
¥ io N = = .
Call the ratio F = 3m (b)

Now, imagine that all the movements by means of which the
framework of Y~ has been balanced are repeated on the framework y-!
and in doing that the joints are given each time the same number of
units of displacement as was the case originally in the framework Y .
As a result of this, the horizontal and vertical bars are carrying
now in fremework y-' the same stresses as they were carrying before
in the framework Y-, even though their strains are different by virtue
of different areas.

The stresses in the diagonals are, however, not the same as
before. Thus, the diagonal EG carries more stress by the amount:

fofe o, b

—+ X
fa & f; p
which by using (a) and (b) transforms into
£t
AX = 2 (X, + rx,).
T etk

Evidently, PXP =Y, , therefore,

AX =AY = i;i—é‘-(anfya) (10)

AX =

because the same expression must hold by analogy also for the other

diagonal of the unit.
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The original stresses were in static equilibrium at all
Jjoints of the framework; the stresses‘which are present now in the
framework y' are different from the original ones by the extra stresses
in the diagonals A4 X and AY, and, consequently, they are out of
equilibrium to the extent of these extra stresses. Therefore, it is
necessary to make a distribution in the framework )'' for these extra
stresses in the diagonals,'which condition is shown in Figure 52. A

of this solution
superposition of the result'on the original distribution in the frame-
work VY~ gives true stresses in the framework Y-!'.

The unbalanced forces caused by AX will be small if ¥y ! is
close to Y’, consequently, the distribution for them will be brief,
which is the justification of the metﬁod. It is possible to make for
convenience this second distribution using framework Y~ instead of Y!
=2nd to apply later a second correction for Poisson's ratio.

Equation (10) is inconvenient because, containing only active
stresses in the diagonals, it requires a separation of stresses into
active and passive parts during the distribution, which is not ordinarily
done. Thisvdifficulty, however, is absent if V’=:§ s because in that
case the active stress X, becomes the total stress X. Substituting
. =z,'* the equation (10) becomes for =‘§ .

AX =AY = (4 £, -1) (X+1); (102)

Thus, reduction of a solution made for ¥V = % to some other
close value of ¥ presents no difficulty. All that is necessary is
to load the framework y-! with stresses in the diagonals according td

(10a), do the distribution, which should not be long because the



unbalanced forces are small, and superimpose the result on the

original distribution in the framework Y.

15. Doubling the Framework .

A, General.

As the size of the framework unit is decreased the frame—
work solution approaches that of the theory of elasticity. Although
the precision of such solution is generally not certain it may be
tested by cutting the units in half, re-solving the problem and compar-
ing the results. A close sgreement should indicate that the stresses
found by framework are not far from the truth. This doubling of mesh,
however, nearly quadruples the number of joints and lengthens greatly
the distribution. Any method, therefore, that may shorten the
procedure would be welcome,

It has been noted that while in the process of distribution
the framework, whose continuity is always preserved, passes through a
number of configurations approaching closer and closer the state 6f

equilibrium., It stands to reason that if the joints of the doubled

fremework are brought into the nositions of equilibrium of the previous-

ly solved structure with twice larger mesh, the unbalanced joint
forces of the doubled framework would be not large, and the lengthy
distribution mey be shortened.

B. Simpnle Square Framework .

ABCD in Figure 53 represents an interior unit of a simple
square framework, whose stresses have been found N,, N,, N,, N, and

D, and Dy, the two latter being the H or V components of stresses in
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diagonals. The diagonals are assumed pinned at midpoint 0, and E and
F are the midpoints of the bars AB and AD. The problem is to find
stres:ses in the members of doubled framework whose joints are held in
positions of equilibrium of the points A, B, C, D, E, F, O etc. of
the original mesh., It should be understood that the small mesh
structure is not in equilibrium in this configuration.

Since on doubling the units the cross-section areas of
members are halved, the stresses in the new mesh members lying along
the o0ld ones are also halved,

In order to find the stresses in the members shown dotted,
the changes in distances OE and FE brought ebout by stresses in the
large mesh framework will be determined by the method of virtual work.

Change in distance EO. Since the areas of the members in

the large mesh framework according to (1), Art. 5, are 4 = f} at and
A= 7%%?-at, the elastic distortions of OA, OB and AB are as shown in

Figure 54 (a). The equation of virtual work, done by loads and

stresses of Figure 54 (b) on deformations of Figure 54 =z gives:

. . _ _ H N,
Increase in length OFE = 6;5‘”.3tE (D1 + D, - _zi)s(a)

Change in distance between E and AO. The elastic distortions of the
sides of the triangle AFQ are shown in Figure 55 (a). From the
equation of virtual work done by stresses of Figure 55 (b) on

deformations of Figure 55 (a):

A = 2V2D,
! 3tE
. . - _ 4vZD, _ .
Therefore, the increase in length FF = 2A, = —5 7=~ = one helf of

the deformation of the diagonzl DB. This result is evident, if it is
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realized that EF is a median line in ABD (Figure 53) and its length
does not depend on AD and AB, but only on BD.

Since the new bar areas are twice smaller than the corres-

!
ponding old ones, stress in EF =:§5, and stress in OE = 4%5%4— =
a'tE H N N,
= — 3P + Da = 5) = (Dy + Dz - 5 ) . ()

Here A' and a' refer to small mesh, and N,, D; and D; to the large
mesh.,

C. Square Framework for an Arbitrary Vo

Figure 56 represents a large mesh unit with stresses N,,
Nz, N, Wy and S in its horizontal and vertical members and the
components of stresses in the diagonals: Dy, Dy, C; and Cp. The
diagonals of the heart are pinned at O.

Before determining the relative movements of the midpoints
E, F and O brought about by stress distortions, the stresses C;, C,

and S will be expressed in terms of D, and D, with reference to

Figure 57 (a).

From statics: C; =Dy - S (e)
C, =D, - S (a)
According to (4), (5), (8) of Art. 7 the bar areas are:
at at @y-ﬂaf
b=y 3 L= Tan %7 T20e00-27)

The third equetion for finding C;, C, and S may be written

by virtual work. The bar distortions in Figure 57 (a) are:

S (e)

—

5 - S _ () (-2»)
GH~ A,E ~  (3v-1) TtE
a

N

- Gave vy :
éék— ———7Ezr—— , wnich by using (¢) becomes
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bax= —2L-VEZ (D - 5) ; (£)
similarly, CS;L= HV V2 (D; - S) . (g)

Virtual work of stresses of Figure 57 (b) on deformations

of 57 (a) gives

y+v»)(1—-2v) ,+y~
3v-1) tE S+2 55— L(S‘D/)*(S"Dzi’ =0

From which § = -2=L (D, + D). (h)

Then from (c¢) and (d)

” (D, + Dy) , (k)
=37 3?‘

Ca =D + —3y= (Dy + Dp) . (1)

Following the procedure oflthe previous sub-article, changes
in distances OF and FF will be found now.

Change in distsnce OF is affected only by the deformations
of the members AB, AGO znd BHO (Figure 56). Other members, except
GH cause‘énly rotation of the trisngle OGH about 0, which does not
influence the distance OE, while a change in GH also leaves point O

unmoved .,

Lengthenings of the members affecting OE are as follows:

Na _ 1+
qe=%F= FEM (m)
_ DG a s . .
5;0—- V3 VEAE which on substitution of proper

values for C, ond A, becomes:

b= "é'viz%?? [(1+r)1),+(/-‘3w) D,_J . (n)

"

similerly, é;o —2—7-%1??&.— [:(173V)D,+("’V)Dz] . (0)

Equation of virtual work, dene by the same stresses as in

Figure 54 (b) on the deformations (m), (n) and (0), gives the value
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of (SZE the lengthening of the distance EO.

- A ‘
be= 75 ( Gaot O80) = 584y 3 ()
which on substitution of the values of 8 S becomes:
_ 1+¥V |-y .
b= FrE [F Mt D) - “‘1} >

Knowing CS:E R é;o and Jpp = £ 48 the distance A4, by
which point E moves away from the straight line A0 (joint G does not
in general lie on this straight line) can be found by virtual work

of stresses of Figure 55 (b):

-2 1+y-
= e + - —_—— - =
4, = e 0y 1) - e ¢ 57)p;]
o 1HV ]
2 T73 FEE [(1 - 3y) Dy + (1 +Y) Dyl . (r)
Since this expression does not depend on N,
/
1+y- .
(S;F =24, = 373 F{E (1 -3¥) Dy + (1 +) Dz:] 5 (8)

Using expressions for C; end A; as well as (s), it is easy to show
that &F= A:; .

Suppose now the units are doubled (Figure 58), while the
areas of the members are halved, the new principal joints being
placed at the mid-points such as E, F and 0. The new stresses in
the members along the periphery of the old units, such as AEB, are
evidently equal to half of the old stresses.

Stresses in. the outside parts of the diagonals of the new
unit AEOF depend only on é:,o and JZ:,.- , not devending on 5;50 or -
5;:0 . Since, however, vé;o= ‘ZL(S,:L and (5;F= —é' B » the stresses
in the outside parts of new diagonals are respectively equal to

one half of stresses in old diagonals parallel to them.
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]
. I s
Stress in OE = ;ﬁ157_2§= 5 [‘7?‘(D1 +Dp) = Nyf , (%)

This expression beccomes indeterminate for Y= 0, and in order to

find stress in OE in that case it is necessary to go back a few steps.

1

It will be recalled that for such case D, = =D, and from Figure 57

1}

it is clesr that S =0 and C; = D; and Cz; = Dy. From this it follows

that é;0==-cg; , and the equation of virtual work will give instead
of (p) & simpler expression 5;e = - 575;3’ vhich will result in:
stress in OF = - é% . ‘ (u)

The previous discussion has been dealing with an interior
unit, but it holds also for the marginal unit with the foliowing
single modification caused by twice smaller aree of the marginal
members. If a side of the unit, for example AB, is a'part of the
margin, and its stress is N, as before, then the expressionvfor the
stress OF of the doubled framework should contain the term - Ny
instesd of - %? . |

A1l these deductions concerning doubling of units in the
square frameworks with Yr§,¢=amvﬂm,wwmza%amvb=0
may be summerized by means of diagrams of Figures$59, 60 and 6l. It
will be remembered that the large mesh framerrk is in equilibrium
under the stresses shown, while the smell mesh structure is not,
although its continuity is everywhere preserved. The probebility is
that the unbalence of the smell mesh is not large, and that time may

be saved by using first this doubling scheme and then proceeding with

the distribution, instead of starting it from the original unbalanced

forces.



It may be added, that the experience with doubling

procedure has not proved beyond doubt its time saving value.

16. Princinle of Symmetry and Antisymmetry.

As the units become more numerous, the labour involved in
distribution increases greatly, much faster than in proportion to
their number, and the method soon becomes unworkable. Fifty or sixty
degrees of freedom of the joints, corresponding to an equivalent of
a 4 x 5 framework, is probably all thet can be handled without an
excessive expénditure of time.

It is possible, however, at least in some cases, to push
this 1limit further by utilization of the principle of symmetry. The
necessary and sufficient conditions for a-plicability of this principle
are as followss

a. The framework should be symmetrical about one or two or
nore axes.

b. It should be either unrestrained at all, or restrained
similarly, but not necessarily in identical manner, at the symmetrical
points.,

The second condition is explained by reference to Figure 62.
If any point, such as A is restrained by being given a known displace-
ment 8; (which may be zero), in a certain direction, for example,
zlong ¥ axis, then the symmetrically located points B, C end D should
also be given some known, but not necessarily the same, displacements
slong the same Y axis. A known displacement of point D along X

instead of Y axis or an absence of any restraint there would destroy
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the applicability of the principle in relation to the X axis.

In order to have the principle still applicable to Y axis
points A and B should be restrained similarly.

The principle does not qualify in any way the menner of
action of any known forces applied to the framework.

If the two above stated conditions are satisfied in relation
to two axes of symmetry, the framework problem may be broken up into
four symmetrical and antisymmetrical cases each of which involves
consideration only of a quadrant of the plate., The four cases must
be solved separately and then combined. The problem of distribution
in the given framework is thus replaced by four distributions in the
frameworks of one quarter of the size of the given one. With large
number of units this substitution is bound to result in a saving of
time.

The method of forming symmetrical and antisymmetrical cases
out of the given problem is illustrated, in the presence of two axes
of symmetry, in Figure 6% (a) to (e). The first of these five figures
shows a plate or framework, symmetrical about X and Y axes, with one
of the forces Py acting on it at point M parallel to X axis. The
four other figures show the four cases into which the problem is
broken up. Case 1, Figure 63 (b) is symmetrical about both axes;
case 2 is symmetrical about X axis and antisymmetrical about Y axis;
case 3 is antisymmetrical about X axis and symmetrical about Y axis;

while in case 4 both axes are the axes of antisymmetry.
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It is convenient in its suggestiveness to designate the
axes of symmetry by capital letters S with subscripts x or y, as the
rcaSe may be, and the axes of antisymmetry by letters A with the same
subscripts. This has been done in Figure 63 and everywhere in the
following discussion.

It may be observed that the piate in each of these four
component cases is acted upon by four forces {% applied at poiht M
and at three other symmetrical points. The force applied at M acts
in 811 four cases in the same direction as the original force Py in
Figure 63 (a), while the forces applied at three other points act
sometimes in the same direction and sometimes in the opposite one,
denending on whether they are located on the other side of S axis
or of A axis in relation to point M. Thus, forces applied at M, act
in the opposite direction to the one applied at M, i.e., symmetrically
with respect to it, if Y axis is the S axis, ond in the same direction,
i.e., antisymmetrically, if the ¥ axis is the A axis.

It may be noticed, that if the four component cases are
superimposed on each other the original case with a single force Py,
scting at M, results.

Forces acting not in the direction of the axes must first
be broken up into components parallel to the axes.

A special case arises if a force is applied at one of the
axes, as shown in Figure 64 (a) to (e). A horizontal force Py, applied
at point M on Y axis, when broken up into the component cases, appears
only in cases 2 and 4, both antisymmetrical about ¥ axis. It is

convenient to consider, that two forces é% are acting in each of these



two cases, either at point M or at M; each applied to its respective
quadrant of the plate as shown.

The force Q. applied at point N on X axis, appears only in
cases 1 and 2, where one force‘g% is applied to each quadrant.

A more restricted special case of a single force Py acting
horizontally at the centre of symmetry is shown in Figure 65. The
only component case affected by this force is case 2, SX,‘Ay, in which
four forces é% appear at the corner of each respective quadrant.

A similar ciscussion is applicable to bresking up of the
known restraints, Figure 62, at the symmetrical points. The four
cagses are illustrated in Figure 66.

It may be seen that in any of the four component cases the
state of stress and deformation in any quadrant resembles closely the
state in the three other quadrants. A little thought shows that in two
quadrants located perpendicularly opposite across an S axis the
situation at corresponding points 1s as follows: the displacements
sre symmetrical, the normal stresses and strains along the axes are
identical and the shearing stresses and strains are equal and opposite
in sign, while in quadrants located oppositely across an A axis the
displacements are antisymmetrical, the normel stresses are equal and
opposite in sign, end the shearing stresses are idemtical. This
explains why it is sufficient to consider only one quarter of the whole
plate in any of the constituent cases, and by doing that to help

greatly the distribution.
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The conditions of stress and deformation at the axes, when
a quadrant of the plate is separated out of the whole plate, zre shown
in Figure 67. Joints on S axes have no displacements normel to them
being restrained by reactions perpendicular to S axes. Joints belong-
ing to A axes move only perpendicularly to them and are restrained by
reactions in the directions of A axes; at the same time, members lying
a2long the A axes are unstressed. All these points are illustrated in
Figure 67 (a) to (d), showing quadrants, separated from the original
plate, for the four component cases.

The unknown reactions at the axes are found from distribu-
tions. The bars along the axes are considered as ordinary marginal
bars.

It may be stated that further subdivision of each quadrant
of plate into four smaller quadrants is generally impossible since the
second condition necessary for applicability of symmetry principle
Goes not hold, in view of the axis joints being restrained, while the
joints on the opposite sides are not.

The method of successive movements in conjunction with the
principle of symmetry presents an exceedingly powerful tool in frame-
work snalysis. One of the problems discussed later involves 8 x 12
framework with 404 members, out of which 173 are redundant, and with
117 joints. Its solution by the method of Least Work would require
173 simultaneous equations, and by the Joint Displecements, 231
similtaneous equations. Solution of such number of equations, even

in the problems of research, seems to be entirely out of the question
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as a practical possibility, and the use of a slide rule is worthless
from the viewpoint of accuracy of the results. The problem has been
solved by successive movements of the four component cases., Each
case has teken between forty and fifty hours with additional twenty
hours at the end for combining the results, altogether some two
hundred hours of work. The unbalanced j§int forces, of the order of
several thousand pounds at a joint, have been reduced in distribution
to & fraction of a pound.

It may be added that each of the four component cases
contains between 38 and 48 redundants and 57 or 58 degrees of freedom.
Even solution of four sets of 38 to 48 simultaneous equations would be

practically impossible.

17. Interpretation of Framework.

A. General.

The problems coming under this heading are of two kinds:
one — how to epply the forces acting on the plate prototype to its
framework analogu and the other - how to convert the bar stresses into
the continuous plate stresses.

Some of the questions belonging here are difficult to answer
and this pert of the framework theory, more than any other, requires
additional thought and investigation. Minor disagreements with the
theory of elasticity, where they exist, are mostly traceeble to this
source,

When deasling with framework of infinitesimsl units no

interpretation difficulties arise. Any force ecting on the plate can
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be applied to the infinitesimal framework at the proper place, since
joints are available everywhere, and again the definition of unit
stress in such framework is in no way different from the definition
of unit stress in the piate, and such framework stress varies
continuously from point to point.

The finite framework is, however, different. The forces
must be applied at the joints only, but the joints‘are few and far
between, and so there is generally an error in the point of applica-
tion. On the other hand, if the same definition of framework unit
stress is to be used with finite units as with infinitesimal, the
value of the stress will depend on the manner of spreading the
individuszl bar stresses over the tributory areas.

For the sake of convenience, the unit stresses should be
computed first on the planes of the framework axes, and only after
that reduced, if necessary, to other planes by usual formulae.

B. Conversion of Bar Stresses Into Plate Stresses.

a, HNormal Stresses.

In order to find the normal stresses in plate on the line
AE, Figure 68 (a) from the bar stresses, a section MM is passed and
the stresses in the bars cut are converted into the normal Joint
concentratiéns, Figure 68 (b), by summing up the normal components,
for example, Nz = S, + S, + S;. In converting intermediate concen-
trations N into stresses, the étress diagram Figure 68 (c) is assumed

N
volygonal in shape, and each joint ordinate is found from 0 = at > (a)

t being the thickness of the plate. This is equivalent to transforma-

tion of each N into & triangle of base 2a with maximum ordinate 67,

70.



which is in agreement with both conditions of statics ZH and 2 M.
For determining the end ordinate, such as 6; , it would

seem in line with the sbove procedure to spread N, over the area of

the triangle ab 1 ; then O, = -‘?;’-X—’i : (b)

This, however, would in general violate statics since the center of

gravity of the triangle and N 4 are not opposite each other. For this

reagson three cases will be distinguished:

1. Concentrations N symmetrical about the centre C, as happens
in any of the loading cases, symmetrical about the horizontal axis,
discussed in previous article. Here 0; is teken by formula (b) and
no violation of the moment equation for the whole section results in
view of the symmetrical situation on the other side.

2. Concentrations N antisymmetrical about C as in .I;‘igure 69 (a)
and (b). In order to satisfy statics the moment of the triangle ab 1
about C must be equal to the moment of N,, while the area of ab 1 need

not be equal to NA , since S H condition for the whole section is

satisfied automatically on account of antisymmetry. Therefore,

2 2 Na
% @ et ©
In general, with 2n units in the section
_ n 2 Na
6/: - 0-31_ at ‘ (d)

3. General case. The end concentrations N, and Ng are broken

up into symmetric and antisymmetric parts:

_ Na*Ns
NSym. - 2

Na-Ng
2

either at A or at E,

at A and NE;NA at E,

NAn‘f‘. =

after which each part is treated as in the two above cases.



This method of stress interpretation, referred to below as
Method 1, besides being in agreement with statics and with the
definition of stress in the infinitesimal framework, has been
corroboreted fairly well on the example discussed in the next article.

Other methods have been tried. In one of them, Method 2,
the ordinates of the stress polygon 6 in Figure 68 (c) have been
computed zs follows. Parts ab, bc, etc. have been assumed to be
simply supported beams loaded with nolygonal load 6 . The key
ordinates 6; ’ 0g , etc. have been found from the condition that the
gimple beam reactions at a, b, eﬁc. are equal to the actgal joint(
concentrations N. The results turned out to be unsatisfactory in
eddition to being fairly complicated.

Method 3 for interpreting normal stresses is based not on
statics but on considerations of deformability.

By well-known formulae of elasticity for plene stress:

Eex = 6, -vVby ,

e, = 6y -6 , from which

/

6x = 77 (B& + VEE); (e)

Considering first an infinitesimel framework, let the

stresses in horizontal and vertical bars at any point of the frame-

at

work be Sy and Sy. Since the area of such bars is A = T ? the

strain in the framework is

: = S0 ()5 - @Sy
Eegx = A = Tar end E éy = o )
which on substitution into (e) give
6 = L SxtVSy
X~ at /=y (£)

and a similer expression for 6}.
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Stresses Sy and Sy must refer to the same point of the
framework or plate. In finite framework, however, no such stresses
are available, and the equation (f) may be used only approximately.
Thus, the point, where the plate stresses are being determined, may
be taken as the mid-square point O (Figure 70). Then the most logical
values for Sy and Sy should be the averages of the corresponding bar
stresses on the two sides: Sx = 3 (S, + 8;) and Sy = F (85 + 8).

If the point of stress is taken at midbar, point 1, then
Sy =8 and 8y = (S +8 +8 + 8 ). For the stresses at the joint
point A, Sy = %(S, + S,); and Sy = 5 (S; + S,).

When using stresses of marginal bars in these expressions
they should be doubled.

This method for interpreting normal stresées has proved less
satisfactory than the first one.

In the Methods 1 and 2, it has been assumed that no body
forces are applied to the joints on the line AE (Figure 68), and as a
result, the concentrations N are not any different if section MM, is
used instead of MM. If, however, there are body forces, such as P
(Figure 71), coming from load distributed over the plate all around
point A, the normal concentrations at A on MM and MM, are different,
and their average value should be taken for determinatim of normal
stress at A.

If the body force P comes from load distributed over the
plate on the right side of A only, stress at A should be calculated

on the bssis of concentration on M}, rather than Mf.
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The force P may also be caused by a single concentration,
rather than by a distributed load. What happens in that case is
fully discussed later in connection with the gusset plate problem.
Method 1 is fully applicable also to determination of the
normal stresses in the plate at the restrained periphery. The
normal joint reactions at the perighery, found from distribution, play
evidently the part of the internal joint concentrations N.

b. Shear Stresses.

In finding shear stresses in the plate on the plane AE,
Figure 72 (a), from the framework stresses, the first step is to find
tangential concentrations at the joints A, B, etc. However, unlike
the normzl concentrations, the tangential ones are different for the
planes M and MyM,. Thus, at the joint B the concentration on the
left section is (S, - 83) and on the right (83' - 8,'), which differs
from (S, = S3) by (Sug - Sge)e

This difference of the two concentrations is non-existant
in infinitesimal framework, where (S, - Sg.) is an infinitesimel of
a higher order than any of the bar stresses, and, consequently,
S, - 83 = S3' - 5,1, disregarding higher order infinitesimels.

The inequelity of the two tangential concentrations at B
ig thus directly traceable to the finite size of the unit, and neither
of the two concentrations may be considered as corresponding to the
shear in the plate at B.

It seems ressonable to think that the left concentration
corresponds to an average shear condition on Some length to the left

of B, and the right concentration represents an average shear on
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some length to the right of this point. From this a conclusion mey be
reached that, unless the shear curve in plate runs irregularly between
the points B; and By, the shear at point B should be represented by
the average of the fwo tangential concentrations on the right and on
the left of this point. Therefore,

T,= 4[(5, -85 +(5; - 8,1) . (2)

It may be pointed out, that using the same rule for
calculation of tangential concentration on the horizontal plane at
B an equal value is obtained: 7;‘= %1153' - 83) +(5,- Sz'ﬂ ,
which is in agreement with the law of equality of shears on two
pernendicular planes.

The concentration at A should be taken

Tp = 5(8,' =8,) . (h)

It is clear that in the plete shear stress at A is zero
either on horizontal or on vertical plane. The concentration T,,
however, corresponds not to shear at A, but to an average shear on
some length from point 4 down, so that there is nothing inCOnsistent
in Tp not being zero.

In order to satisfy the requirement of statics the sum
Ty +Tg + Tc + Tp + T must be equal to the shearing force on line
AE, That this is the case may be easily proved in the following
manner. Assuming n§ body forces at the joints on line AE,

Shear on AE = =8, + S, — 85 + S, = S¢ + 8¢ - Sy + Sg3

H

and also, Shear on AE = 5, ' = 8,! + S,' - 5, ' + &¢' - St + S5, - 88';
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Adding and dividing by 2,
Sheer on AE = 4(8,' - 8,) + 4 [(5,- 8,) +(5,' - szv)] + %[(sq- S;) +
(55 = 8, + vevernns
The terms on the right are recognized as the expressions for Tas Tas
ete.  Therefore,
Shear on AE = Ty + Tg + Te + Tp + T, Q.E.D.
The intermediaste shear concentrations are converted into
stresses in a menner similar to the one used with normel stresses:
== (x)
Thé end .concentration, however, cannot be handléd as in
normal stress, because the edge shear is zero. The way of taking

care of T, has been to convert it into an area K2f (Figure 72 c)

bounded by a parabola. The mid-panel ordinate is
T, 3 T T5+3%
2 Y Zatr” 2at ' : (1)

This method of handling T, is not fully satisfactory, and

T, =

often results in an unreasonable diagram with a sharp reversal of
slope at point 2, in.other words, TA is too large to be applied wholly
in the end panel. A modification of the method, with extension of
the influence of T, to the second p=nel, is quite possible without
eny algebraic difficulties, but the ensuing increase in i} is hard
to justify from the viewpoint of conditions of statics on the
horizontal plane.

This difficulty with T, is however local, and it affects

the region where the shear is small, while its influence on shear at

points farther in is apparently negligible.



tobe
A method of shear interpretation believedabetter than the

previous one, although still not fully satisfactory at the edge, is
as followss The shear diagram (Figure 72 c¢) is drawn polygonal or
curved in such a manner that its area from f to g, that is for a
distance-§¥ each way from B, is equal to T,; and its area for a
distance-é;-from A is equal to T,. The key ordinates cannot be found
at once, but only in two steps and aoproximately, so the methéd is
more laborious.

Shears can also be determined at mid-squares, although
those points are less desirable than the joints, since.the normal
stresses at them are unknown, unless found by interpolation of the
values 2t the joints.

This calculation is demonstrated in Figure 73. The shear
concentration in each panel is equal to the difference of the stress
components in its two diagonals, i.e., Ty =5, = S,. The stress at
the middle of an interior panel is found by 7z = 2%%— . {m)

The stress in the outside panel is assumed to be parabolic on one

half of the length and constant on the other half, as shown. Therefore,
Z; = ég%—j (n). Having found in this manner the key ordinates at

mid-panels the diagrem of shearing stress is drawn, as shown either by
solid or by dotted lines, modifying somewhat, if necessary, the shape
in the two outside panels.

Presence of external forces arising from a load distributed
over the surface of the plate would not change the procedure for

determination of shear stresses. Concentrated loads will be discussed
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later in comection with the gusset plate problem,

In problems involving plates with restrained edges the
tangential joint reactions, found from the distribution procedure,
are converted into continuous shearing stresses by the same method
as the internal tangential concentrations.

A peculiar difficulty arises at the corner where two fully
restrained edges meet, see Figure 74. Although the two corner
framework reactions Ry and R, are known, there seems to be no way of
finding what part of Ry is due to normel reactions on edge AC near
point A, and what part is caused by shear on the edge AB, the same
difficulty being applicable to Ry.

Some assistance may be derived sometimes from the general
principles of the theory of elasticity. Thus, a plate fully fixed
at both edges will have no stresses at the very corner, which allows
to draw the stress curves along the edges right to the corner.
Exterpolation of the stress curves toward the point A mey also be
useful, but the framework method as such seems to fail here.

The same difficulty is present, if the restraint is partial,
with one edge being restrained only normally, and the other edge only
tangentially. On the other hand, if both edges are held only normally
or only tangentially, no trouble arises, since it is evident to which
edges the reactions Rx and Ry should be attributed. Of course, no
complication is present if only one edge is restrained.

C. Apolication of Loads to the Framework ,

The question, how to anply forces acting on the plate to the

corresponding framework, so & to obtain a truly equivelent effect,
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is answered largely by judgment, founded on common sense.

The theory of framework is based on the presence of only
direct stresses in its members, therefore, all forces must be applied
at the joints.

Preservation of statics is important and so the forces
acting on the framework must have the same staticel effect as the
loads applied to the plate prototype.

Load distributed over the surface of the plate should be
appliéa at the nearest joint; thus, joint A (Figure 75) will receive
the load from the area 1,2,3,4, and if the resultant of load on this
area does not pass through A, an additional force will be applied at
some other point to correct the statical effect.

If there is a load over an area 5-6-7-8 acting in Y direction
the proper location for the point of its application to the framework
should be its centre C, but there is no joint available there and,
consequently, the load is applied at D. Even though such displacement
of the load is consistent with statics, it cannot be perfectly equal
in effect,

A concentrated force P (Figure 75) should be broken up into
parts, using the law of the lever, and these parts applied at the
nearest joints.

A complete equivalence in these various adjustments is, of
course, impossible, and the errors may be rightly charged to the
framework method.

The question of applying to the framework, loads acting at

the edges of the plate is the reverse of the problem of stress



interpretation, since it requires determination of joint concentra-
tions when the stress diagram is given.,

With polygonal shane of stress diagram the normal concen-
trations N are found from formulae (a), (b), (d) of the previous
sub-article. A curved shape of the diagram requires some modification
of values obtained by these formulae, so as to preserve the static
effect of the applied load.

The shear concentrations may preferably be found by calcu-
lating the shear stress area for a length %-each way from the joint.
The corner joint concentration may be taken from the length % near
the corner.,

The concentrated edge loads, if not applied exactly at the
joint, should be divided between two nearest joints by the law of the

lever.,

18. Bending of a Wide Beam by Framework and Elesticity .

A. General,

In order to check precision of the framework method it has
been apvolied to a problem for which there is a known solution of the
theory of elasticity, namely, the problem of bending of a wide beam
of a rectangular cross-section, loaded with uniform load and supported
by shears at both ends, Figure 76. The shears are distributed over
the ends in a parsbolic manner, as demanded by theory and the wniform
load is applied one half at thé top and the other half at the bottom.
There are also normsl stresses following the law of cubic parabola,

applied at the ends, whose static effect on each end is zero. They
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are necessary for‘a rigourous solution of the problem. The problem
is manifestly symmetrical about yy axis and antisymmetrical about
xx axis, therefore, only one quarter of the beam need be considered.
The ratio of span 2 1 to depth 2 c has been taken 4:3, and the
thickness, unity.

The exact solution is found in Theory of Elesticity by
Professor Timoshenko, page 38, with a slight modification, the whole
load being applied at the top of the beam, instead of half at the top
and half at the bottom. The necessary minor changes in formulae may
be easily accomplished. In view of the absence of body forces, the
state of stress is independent of Poisson's ratio.

The framework solution has been done three times: using
4 x 3 framework with V’=j§ for one quarter of the beam, then again,
using 8 x 6, ==é- framework in order to test convergence of the
solution, and finally utilizing 4 x 3 framework, but only with Y= 0.

The stress formulae of the elasticity solution of the problem

are as follows:

o=k 1 =)y 455 (§93 - 2e) ()
6y= L Py -5 7)), ()
= ..zil_(c2 - yh)x , (c)

!
B. TFramework 4 x 3 with V=3,

Call the size of the squere unit a, then ¢ = 3a and 1 = 4a.

For convenience, let x = 1l and y = }3c, where X and ﬁ are

dimensionless coordinates of the points on the beam. Substitution of
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these expressions into (a), (b) and (c) gives:
6= [0 -oip v £B -2P)]9 (@
6’y= 7(3 —/53)% 5 (e)
L= - @ -pHog . (£)

The sheer and normal edge stresses found fram (d) end (£)
by using o = 1 are shown respectively in Figures77 and 7é at !%
intervais. These stresses are considered as loads for the framework,
and they are converted into joint concentrations. The methods of
conversion have been different from the recommended ones, since the
latter have been evolved only as a result of experience gaoined on this
problem. The difference, however, is small and its effects are
confined almost exclusively to the stress conditions at the edge.

In this inferior method the load concentrations at the edge
joints have been found as end reactions of simply supported beams of
spans g, loaded with the load diagrams of Figures77 and 78, similar
method being used for both the normal and the tangential concentrations.

The setup of the framework problem may be seen in Figure 79,
representing one quarter of the beam with the acting loads applied at
the edges y = 32 and x = 4a. In connection with the tangential
concentrations applied at the latter edge it may be sai& that it is
important in later calculations to realize from which side these
concentrations are contributed. The load 0.491 is contributed from
below, and 0.102 from above the corresponding joints. The intermediate
concentrations 0.870 and 0.537 come partly from above and partly from

below, which explains the meaning of the figures 0.471, 0,399 and



others, the upper figure being a contribution from ébove.

The X and Y axes are respectively the axes of antisymmetry
end symmetry of the beam, end the joints lying along them are
prevented from movement in X direction, whiie no restraint is placed
on movements in Y direction. The restraint of the axis joints is
accomplished by horizontal joint reactions which are found from
distribution. Members along the X axis are evidently unstressed.

The resultant framework stresses are given in Figure 80
and they are converted into continuous plate stresses by the methods
explained in the preceding article and illustrated on a few examples
below.

The results of these calculations aré presented in the form

of several diagrams, showing a quarter of the beam with stresses of

one particular kind, like O , G; or Z;j , computed at several points

by the theory of elasticity, formulae (d), (e), (f) and by the frame-
work method, the first figure being everywhere the one found by
elasticity. Percent errors are often given too by third figures at
different points.

Figure 81 gives 6x stresses at the joint points by the
Method 1, which is considered the best.

Figures 82, 83 and 84 give Ox stresses by Method 3 at
mid-square points, mid-bar points and the joint points respectively.
The percent errors show that the method is not very good, especially
for the joint points, which are the most logical places, where the

stresses should be determined.
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Figure 85 presents 6; stresses at the joint points, while
Figures 86 and 87 show 7.”,,5 stresses at the joints and at the mid-
squares respectively,

Typical computations below illustrate how the stresses by
framework have been arrived at. OSee also Figure 80 in this connection.

@atx=a.y=a; by Method 1:

Concentration N = (+ 0.209 + 0.152 - 0.038) g.2 = 0.323 A

!

N
By eq-n (a), Art. 17: bx = gy = 0.323 g, .

6;( at x =a, v = 323 by Method 1.

Concentration N = (0.238 + 0.405)CLa = 0.643 9 a - '
o0.64
By eg-n (d), Art. 17: Oy = 3‘?_,_ 2 q3)qa = 1.445¢g, .

3
6, is determined similarly, exceot for a slight peculiarity at the
b H

edge, where the shearing load must also be taken into consideration.

6:; at x = 4a, v =8, by Method 1l:

Concentration N = (0,376 + 0.152 - 0.399) g a = 0.129 ci a.
0.129)qga

b a

Then using Method 3 for computing normal stresses, egq-n (f),
1.5
Ert. 17 becomes for V=3 3 6x = ZT_(SX + 3'—8_,).

Ox ot x = 0.5a, ¥ = 1.5a, Method 33

Sx = £(0.189 + 0.469) ga = 0.329 q a,
S, = (0,054 + 22 ) ga = 0.112 g a, 0.054 bar being marginel .

6, = 1.5 (0.%29 + 242 = 0.550 4, .
x —3 19 9

Gx st x = 0.5a, v = 2a, Method 3:

1

Sy = 0.469¢ a ,

1 [2(0.054) + 2(0.035) + 0.116 + 0.087 g.a = 0.095 qa

Sy
6, = 1.5 (0.469 + Z32)q = 0.751 q, -



6; at x=4a, vy = a, Method 3:

Sx = 5(0.189 + 0.152) g a = 0.1705 g a
Sy = %(0.116 + 0.050)g.a = 0.083qa ,
Gy = 1.5 (0.1705 +=5%2) g = 0.297 g 2.

z}y et x = 2, v = a3

Concentration T = é[-0.144 - 0.320 - 0.149 - 0.259] qa = ~0.426 q a.
By egq-n (a), Art. 17, Z;ty= -0.426 q,
At x = 1.5a, y = 0.5a, ‘17,,5= (-0.144 - 0.209)q, = -0.35%3q.

These diagrams of stresses show a good agreement of the
framework results with those of elasticity. The greatest errors which,
by the way, never reach 8%, are observed in proximity to the edge
x = 4a, undoubtedly an account of the referred to above irregularity
of the load application at that edge. Most of the errors are, however,
under 4%. Attention is called to the extreme simplicity of the stress
computations, once the framework stresses afe known.

It is interesting also to compare shear stress curves
determined by fremework end by elasticity on one of the vertical lines

of joints, for example, on the plane x = 2a. These curves are shown in

Figure 89, The shear concentration aty = 3a is T = 4 (0.119 - 0.245)ga-=

= -0,063 g @ and it is superimposed as a parabolic area on the
triangular shear curve in the bottom panel, so that the ordinate at
¥ = 2.5a becomes [0.5 (0.272) + 1.5 (0.063)q= 0.230q .
This makes apparent the irregularity of the shear curve,
determined by fremework, near the edge, with too high ordinates in that

area ond too smell ordinates elsewhere. One mey feel that the edge
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shear concentration should be spread over the whole section, but no
rational reason for such procedure is apparent.

C. Framework 8 x 6 with V=3 .

The setup of the problem in this framework is given in
Figure 90 end the results are presented in diagrams of Figures9l, 92,
93 and 94, All computations have followed the routine of the previous
framework, The object of this calculation has been to investigate the
convergence of stress values, found by framework, toward their true
values, & the size of the mesh decreases. The results reveal a great
degree of precision obteined in 8 x 6 framework, the majority of
stresses being within li; % of their true values. It appears that
doubling of the framework improves the accuracy roughly four times,
i.e., in proportion to the number of units, although at some unfavoura-
bly located points the errors are somewhat larger. Minor irregulari-
ties, especielly in the vzlues of small stresses, are due to working
only with three decimals.

It may be of interest to state that the distribution in this
cacse has been a most formidable problem in view of 110 degrees of
freedom of the joints. The work hes been considerably reduced by
distorting the structure into the equilibrium position of the plate
prototype found by elasticity, and then distributing in an ordinary
manner the comparatively small remaining unbzlanced joint forces.

D., TFramework 4 x 3 with . Vv=0.

The same problem hes also been solved using 4 x 3 square

fremework with Y = 0. The loads have been applied in the same menner
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as in the two previously discussed cases. The results appear in
Figures 95 to 99.

For reasons explained earlier, the plate stresses in this
problem, according to the theory of elasticity, should be independent
of ¥, but, this has not been found to be exactly the case with the
framework results. It is, of course, natural that the individual
corresponding bar stresses should be entirely different for the two
¥>, but it is peculiar that, after they have been duly interpreted,
the resultant plate stresses have come out also somewhat different
for ¥'= é‘ and Y“= 0. The results show that the accuracy of Y =0
framework is poorer than that of Y'==é’ for the same number of units.
Quite a few stresses are as much as 6 - 7% out, with the maximum
error reaching 11%. The accurecy of V = 0 framework is thus roughly
70% worse than that of » = é type, however, in spite of this, the
former framework is just as practicable as the latter, and the labour
involved in its use is only slightly higher in the distribution pert,

than the labour necessary to solve a Y = é’ typee.

19. Gusset Plate Problem.

L. Statement of the Problem and General Remarks .

The main utility of the framework method and its main claim
for a place among the tools of structurel analysis is its applicebility
to unsolved problems. Any problem of two-dimensional stress in bodies
of rectangular outline may be handled by it, and, judging from the
results of the previous article, the errors ensuing from the finite

gize of the framework are small, even if the size of the unit is large.
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Among the unsolved problems of structural engineering of
considerable practical value; for which the framework method shows a
good promise, is the problem of stress analysis in the gusset plate,
Although it is quite true that this problem contains & number of
features, for the explanation of whose effects the fremework method
is powerless, such as the presence of the rivet holes, stress
distribution among the rivets, the mamner of action between the rivets
and the plate, including friction under heads, and the influence of
plastic deformation at the points of stregs concentration, still on
the whole, apart from these secondary features, the problem is
essentially the one of plane stress, and may in simpler cases be
handled satisfactorily by fhe method of this treatise.

In making this statement it is not implied that the frame-
work method is considered suitable for commercial use in design of
gusset plates, but rather, that the commonly used. in designing offices
beam formula method, having very little theoretical jﬁstification,
mey be checked and modified by it.

The problem is stated by means of Figure 100 representing
the gusset plate at the top chord joint of a truss. Two top chord
members and three web members, indicated by dotted lines, meet at
this joint. The plate is divided into 4 x 6 square units, and later
into 8 x 12 of such units. The member stresses are assumed distributed
uniformly over the lengths of their attachment to the plate zlong
their axes; this explains twiqe smaller values of the extreme concen-
trations on éach member compared to the intermediate concentrations,

on account of twice smaller tributary length. The losded joints need



not be considered as representing individuai rivets, but they may be
looked upon a s representing a whole group of rivets. This means that
the state of stress in the plate is somewhat generalized, the local
effect of each rivet being lost and replaced by the local effect of a
whole group of them.

The assumed value of Poisson's ratio is é‘, which is not
far from the commonly used for the mild steel value of 0.3,

Lfter solution of 4 x 6 units! structure the framework has
been doubled and re-solved in order to detect tendencies in stresses
on decreasing the mesh and by that to judge of the degree of accuracy.

B. Solution of 4 x 6 Framework.

In order to gimplify distribution the loading of the frame-
work is broken up into four symmetriéal and antisymmetrical cases, as
expleined in Art. 16. The first quadrants of these cases, represented
in Figure 101, are distributed separately, and the results of the
procedure are shown in FigureslO2 to 105.

In order to give an idea of an actual distribution, Figure
105 presents not only the result, but also the whole process for one
of these cases, namely, the doubly antisymmetrical case, A A .
Although the separate movements are difficult to recognize, one can
see how they gradually die down starting with the ones causing
thousands and hundreds of pounds in stresses and finally ending with
fractions of a pound. The remaining unbalanced forces are everywhere

less than a pound.
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C. Interpretation of Concentrated Losds.

It mey be noticed thzt in view of the existence of the active
Joint forces the normel joint concentrations on two gides of the joint
are different, and this feature brings up the question of ﬁroper stress
interpretation in the presence of concentrated londs.

According to the theory of elasticity, Timoshenko, page 111,
3 concentrated force, acting on an infinite plate, causes infinite
normal and shear stresses at the point of application, which, however,
quickly decrease away from the point of action. On the other hand, in
a mild steel specimen, high stresses are relieved by plastic yielding
and lose their significance as far as the actual strength is concerned,
so that while a large finite stress distributed over a large area is
dangerous to the member, an infinite stress over an infinitesimal area
is apparently immateriel in static loading. Furthermore, true concentra-
tion of a finite force at a point is impossible, and such a force in
actual practice is represented by a rivet or a weld of a finite size.

It is also easy to see that a finite framework may have only
finite stresses in its members, whose interpretation by the rules
explained above may lead only to finite plate stressges.

All these somewhat contradictory considerations, arising from
the peculiarities of the theory of elasticity, structural design, and
the framework method, must be reconciled in the proper method of stress
interpretation in the presence of concentrated loads.

Let Figure 106 represent a plate acted upon by three concentrated
forces, which are in equilibrium. Imagine now the same plate under the

same forces, to be infinitely extended in sll directions, and let the



- stresses existing along the obliterated now former boundaries be as
shown in Figure 107.

The state of stress of Figure 106 may evidently be considered
as a supervosition of the following four states shown in Figures 108 (a)
to (d).

a. Infinite plate acted upon by a single force P,.

b. Ditto with a single force Pj,.

c. Ditto with Py.

d. The original finite plate under the action of the boundary

forces equel and opposite to the ones in Figure 107.
These forces, by the way; are in equilibrium.

Cases (a), (b) and (c) mey be solved by the referred to above
article of the theory of elasticity. |

Suppose, that the stresses at point 0, are being investigated.
Contributions of parts (b), (c) and (d) to stresses at 0, are evidently
finite, but that of (2) is infinite, and it is this latter part whose
effect on strength at point 0, is questionable, and may perhaps be best
taken care of by & value assigned by judgment.

Applying these considerations to the framework, it is first
noted that its solutions show the effect of all the above mentioned
factors (a) to (d). Therefore, the proper way of interpreting its
stresses at the joints with concentrated loads should be to separate
the effect (a))to interpret the remaining stresses into the plate
stresses and to augment the latter by some reasonable value, to take

care of the disregarded effect (a). Of course, no special measures
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need be taken with regard to the joints where no concentrated forces
occur.

Effect (a), which should be subtracted from the framework
solution at each joint carrying a concentrated load, is nothing but a
state of stress in an infinite framework under the action of a single
concentrated force P (Figure 109a).

Although the individual ber stresses for this load condition
can be found only by a distribution, the résultant joint concentrations
are aoparent directly from symmetry. Thus, the normal concentrations
at point O on vertical plane are: —g on the right and + -2—) on the
left of O, while normal concentrations on horizontal planes are zero.
The average of two tangential concentrations on horizontal plane above
and below O is T = é [(S1 - Sp) + (33 - S4iI = 0.

Expressed differently, elimination of the concentration
effect amounts to removal from the vicinity of O of the load P and
of the stresses shown in Figure 109 (b), while the same stresses remain
acting on the adjacent joints, in other words, force P is transferred
to the adjacent joints, one-half azhead and one-half behind.

From this it follows that the exclusion of part (2) from the
framework solution causes no change in tangential concentration, and
as to the normal concentrations, it amounts to nothing more than to
taking an average of the two unequal values on two sides of the joint
with a concentrated load. This disposes in an exceedingly simple menner
of the first part of the problem.

The question arising now is what should be added to stresses

in order to take care of the disregarded effect. When considering a
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physically impossible abstraction of a point force, it is rigourously
correct to augment the plate stresses, computed from the modified
fremework stresses, in the four units adjacent to the concentration
point, by the values u (Figure 109b) which are the differences
between the elasticity stresses in an infinite plate and the ordinates
of the dotted closing line AB, which is used rather than the base
line, because the concentration effect (a) has not been disregarded

at the adjacent joints. This procedure applies naturally to all
stresses near 0, 0O, G} and Ty o

In an actual case, when the concentrated force is applied
by means of a rivet, the described procedure would be without éigni-
ficance., A practically reasonable way to take account of the normal
effect of concentration is to add the value of the rivet bearing stress
%5 on the plane normal to the force P, on compression side of it,
leaving the tension side intact. This, of course, presupposes that
the rivet force is transmitted by bearing and not by friction under
the head, which is in line with the conventional method of rivet
analysis.

The normal stress on the plane parallel to force P need not
be affected, but the shear stress should also be modified as is made
clear in the following discussion.

Figure 110 (a) represents a framework near the joint O with
a concentrated force P acting on it. The ﬁrue shear stresses,
either horizontal or vertical, in the plate prototype along the

planes MM, NN and TT are shown in Figures(b), (c) and (d). While



the dotted line corresoonds to the shear caused by the factors
referred to above as (b), (c) and (d), the difference of T ordinates
between the full and the dotted lines is caused by the action of the
concentrated force P on the infinite plate, and this latter effect

is infinite at the point O. Although this sharply concentrated
infinite stress is of no significance for strength of an actual
gusset plate the average horizontal shear, corresvonding to it,

taken over a reasonable area, must not be disregarded. Assuming the
size of the unit g as the rééonable length for averaging shear effect
the resultant diagram of average shear on horizontal vplanes, taken
in different locations along the line M, is shown in Figure (e).

As may be seen, there is a finite discontinuity at the point O whose
amount can be found from Figure 111 as T~ - 1 =-ég%)taking d

! av av

as an infinitesimal and, therefore, the average significant shear

o~

stresses just above and just below O are respectively ¢, + Eé%;and

Z;‘TEE% , where [, is the value found by an ordinary interpretation
a
of the framework. Taking d in Figure 111 as a finite gradually

o

increasing quantity, the difference ( y Z;qw) gradually diminishes

av.—
in view of the effect of the end stresses 0, and 6,, which meens
that the average shear stresses on horizontal plasnes gradually
decrease, giving away from P in vertical direction,

Instead of assuming that the discontinuity-é%;of the average
shear persists for a length a and then suddenly disappears, it has

been thought more reasonable to assume it extending for a distance

2a petering out to nothing at the adjacent joints, as shown in

Figure 110 (f) and (g).
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Although the above reasoning has been dealing with shear
on horizontal vplanes, it is equally applicable to shear on vertical
planes, since the two shears are equal. '

The use of length a for averaging the shear effect of P
seems arbitrary only in case of a single concentrated force; if on
the other hand, there is a line loading of concentrated forces P
acting in the direction of this line the use of length a is logical.

This discussion explains the recommended modification of
the shear interpretation in the vicinity of & concentrated force.

It is emphasized here that the stresses so found are not the true
ones but the averages of true stresses, believed in a way to be more
significant than the true ones for the riveted plates of mild steel
under static loading.

Although the explanation of the shear interpretation in
the vicinity of & concentrated load is somewhat involved the inter-
pretation itself is very simple. First, shear €, is found from the
average tangentisl concentration at the joint by eg-ns (g) and (k) of
Art. 17, paying no regard for the concentrated load P, and then,
secondly, this €, is augmented at the joint in question by * 753?
on two sides of P, this extra addition being gradually petered out
to nothing at the adjacent joints.

That this interpretation is consistent with statics can be
easily proved by repeating the reasoning of Art. 17 in connection
with Figure 72 (a). Assume a vertical force P acting downward on

one of the joints, for example B, slthough this force is not shown
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in Figure 72 (a). Then by definitions

Shear, left of AEY=-S; + Sg - Sz + 54 - S5 + Sg — 87 + Sg

Shear, right of AE = Sg = S, = P = 51! - Sg' + Sg' - S4' + Sg-S¢ + §' ¢ ;5
2dding, dividing by 2 and transposing -g H

51, = 3(S11-S)+ {% +3 [(52“55)+(53'-'52')J} + 3 [(sa-85)+(s57-54n] + o0 0)

The individual terms on the right are recognized as the tangential
concentrations from which the plate shear stresses are determined by
spreading the concentrations over appropriate areas. The second term
may be seen to be the concentration at B modified in the manner
explained on account of presence of the load P. This proves the static
consistency of the method for a section to the left of AE, while an
expression for Sg, similar to (a) above, proves it for a section right
of AE,

The same principles may be extended to concentrated loads
acting at merginal joints, as in case of force P in Figure 112 (a).
Unlike the condition where there are no edge forces the shear stress
at the edge in Figure 112 is not zero, but may be taken as

t .
5’ -8, B

(b) on & plene just above AB
A 2 at at

and TL =5'-5_F (¢) just below AB, as shown in Figure
2 at at

112 (b) and (c). These stresses are again not the true ones but only

the averages.
As to the normsl stress on a vertical plene at A it should
be taken equal to the bearing stress produced by P, while the normal

stress on the horizontal plane at A may be disregarded as insignificant
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in 2 mild steel plate. No other stresses at A need be ccnsidered.

These recommendations concerning normel stresses near a
marginal joint such as A have not been followed in the gusset plete
problem, but instead of them, the horizontal and vertical normel
concentrations have been used and interpreted in the ordinary manner.
As a result of this, some interesting incresse in éi’ at & has been
produced on doubling the framework, as mentioned later.

Similar recommendations can be made when a concentrated
load acts parallel to the margin, however, the actual manner of its
application must also be considered.

It remains to consider now the case of a concentrated force
acting at an angle to the framework axes, Figure 113. In line with .
the previous statements, the plate stresses at O, obtained by using
average concentrations, should be increased by bearing stress 6= -—- )

in the direction OF on COmpression side of P, and by additional

p

shearing stress ¢' =% SBOT =+ 2at (e) ecting parallel to OF

and being positive on one side of this line and negafive on the other,
so that there is a diSCOntinuity in shear stress on line OF of the
amount:é%-at point 0, tapering to zero at points B and C.

Since all stréss calculation is done for the framework exes,
it is necessary to convert these additional oblique stresses into

their O , EE! and Z;V equivalents. Using well known conversion

formulee 5?,
: - P
Equivalents of §' = - Fof 2Te3

6= 6" Cos’et 3 6y= G' Sin’w and 9':5: 46" Sin 2oL (£)

= /2:32 /6.



. D
¥ v t = +_X s
Equivalents of ¢ ot 2Te:

G,= - 6y= ¢! Sin 2oL  and tsz ¢' Cos 2oL (g)
The signs of these stresses szre evident from Figure 113 (b) and (c).

For o = 459 the equations (f) and (g) become as follows.
i

Fquivalents of §' 6y, = 6'5 = ij = %‘ . (h)
Equivalents of ¢' 6,;= -6'5 =T'" and ?;j= 0. (k)

From expressions (g) and (k) it follows that the shear
discontinuity on the inclined plane OF results in discontinuity of
b, » 6y and ’L‘;y stresses on two sides of that plane. Only when
‘A = 450 the break in ijdisappears.

Some of the items among the semes presented here. recommenda-
tions for stress interpretation in the vicinity of concentrated loads,
may undoubtedly raise objections, valid reasons may possibly be given
for their modification, but it is felt that the basic principle of
applicability of the framework meghod to the plane stress problems
involving concentrated loads, will stand intact in spite of possible

change in deteil.

D. Computation of Plate Stresses from 4 x 6 Framework .

‘The average joints concentrations ofi the first quadrants of
the four component framework cases ai'e proberly combined and converted
into the plate stresses. The numerical procedure in relation to
normal stresses is illustrated on the following example referring to
Gy stresses on plane X = 2a. |

Figure 114 (2) presents the sum of the average normal

concentrations in the first quedrant of the two symmetrical about
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X axis cases, while Figure (c) shows a similar sum for the two
entisymmetrical cases. These concentrations are converted into
stresses in Figures(b) and (d). By adding (d) to (b) end then by
subtracting (d) from (b), plate stresses resPectiver below and
above X axis are found, which, however,.need to be modified in view
of the presence o? two concentrated forces. This modification at
the point y = -a amounts to addition of the bearing stress of the
rivet, while the one at X = +a, where the line loading crosses the
plane of stress a£ 459)expresaes itself in two featuresy; first, in
an addition of a coﬁpression stress equal to one half of the bearing
~ value of the rivet, and secondly, in introduction of a break in the

stress diagram equel to iggo. The stress diagram of 6y on the plene

X = 2a is shown in Figure llSl(a). The numbers on this and the
following diagrams give the values of G,a't, where a' = % s for
which reason they are twice smaller than the values found in Figure
114,

The rivet bearing stresses cannot be added numerically to
the ordinates of the curve because they are expressed in terms
different from the ofdinates; for this reason they are indicated on
the diagram by arrows.

A similer procedure is followed in computing normal stresses
on other planes. There is also nothing special to add to what already
has been said about COmpuﬁing shearing stresses.,

The results of stress calculation are presented in the

form of numerous diasgrams. E;,stresses on five different planes are
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given in Figure 115; 6; stresses, in Figure 116; while z%,stresses
appear in Figuresll7 and 118, distributed respectively over the
horizontal and vertical planes,

Before discussing various theoretical and structural
features of the results obtained, a brief reference will be made to
a solution of the same problem by means of an 8 x 12 framework.

E. Solution by 8 x 12 Framework .

This solution has been made in order to compare the results
with the previous ones and through that to form an opinion regarding
convergence of stresses‘toward their true values on decrease of the
size of the mesh,

It is this problem that has .led to some exceedingly
laborious distributions, referfed to’at the end of Art. 16. The
problem itself and its four component cases are given in Figuresll9
and 120 (a) to (d), while the resultant framework stresses for the
four cases appear in Figure 121 (a) to (d).

Figure 122 gives é.copy of an actusl distribution sheet
for the case Sg; Ay, and shows cleerly the amount of arithmetic
involved in such distribution. Both the original and the final
unbalanced forces are shown on the sheet. The partial summations of
the member stresses correspond to several curreﬁt checks of the
distribution explained in Art. 12.

Interpretation of the bar stresses into the plate stresses
has followed the usual routine, and the resultant stress curves have

been drawn for comparison alongside the ones determined earlier in

the same Figures 115 to 118.



The rectilinear diagrams of normal stresses corresponding
to conventional beam formula method have also been recorded in the
same pictures. These stresses have been calculated on the basis of
load condition of 8 x 12 framework; the normal loads that happen to
act at the plane, whose stresses are calculated, have been split
into two halves and pushed one half back and the other forward.

F. Gusset Plate Stresses.

Normal stresses found by framework in many cases are not
completely dissimilar from the ones determined by the beam formule;
this resemblance is particularly close for 6, stresses on plane
x = -a (Figure 115d). The cause of this resemblance lies in the
fact that both sets of stresses must satisfy numerically the same.
two conditions of statics >N and ZM, and this recquirement often
does not permit the two curves to diverge much.

For the same reason the maximum 6} has been found in all
sections nearly the same in magnitude by both methods.

On the other hand, there are also some differences. Thus,
the true meximum stress has a tendency to occur on the line of heavy
loads, rather than at the extreme fiber. Sudden breaks characteriz-
ing the true curves, caﬁsed by shear>discontinuities of the line
loadings, are absent in the conventional diagrams. |

The diagrems of 6; stresses bear little resemblance to
what they appear when using beam formula; this is partly the result
of too small vslues of N and M on the horizontal planes.

In this comparison of normal stresses determined by two

methods, the additional effect of bearing stress, shown by arrows, on
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the stresses determined by framework has been left out, not because
it is immaterial, but because it is expressed in terms of different
variables than the primary part of the stresses. This arrangement,
however, puts the more correct stresses on the same basis as the
conventional ones, because in usual analysis of gusset plates by
the beam formula the local effect of the rivet bearing is also
disregarded.

As to the shear stresses found by framework, their distri-
bution over the section is entirely different from parabolic.

Comparing the stresses found by two framework solutions
with each other, one is struck by the close agreement of each two
curves of stresses on any of the planes, especiallj in view of
representation of the plate in one of these solutions by the frame-
work as crude as only 4 x 6 units. The agreement becomes even more
impressive if one considers the discontinuous character of the load

and the lack of mathematical rigour in the rules of stress interpre-

tation. Only in a few details is the difference more than negligible,

and where it exists it is mostly susceptible to a rational explana-

tion.
The only large disagreement of normal stresses found by

two frameworks occurs in 6; stresses on plene y = -a at the two

edges where concentrated forces are applied to the plate, Figure 1ll6c.

The explanation lies in the fact that the concentration effect of
these two edge forces has not been removed as in the case of all
interior concentrations. The result of it is, that the decrease in

the size of mesh increases Gy stresses at the edges without limit.
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The latter statement will not be demonstrated here, althoﬁgh the
proof is possible by means of a lengthy derivation based on Theory
of Elasticity. In line with previous discuséion, the high edge
stress should be discarded as insignificant.

The same cause explains the sudden turn of the dotted
curve of 6; stress on plane x = 0 (Figure 115c) near the bottom of
the plate. Since the concentrated force applied at this point is
comparatively small, the difference in the two ordinates is also
only minor.

Figures115 (b) and (c) show & fairly large incresse in by
stress at y-= -a and an accompanying increase in area under the curve,
which occur on doubling of the framework. The reason for this
discrepancy is that the two curves are not statically equivalent,
gince their resultant normal forces are not equal. It will be
recalled that elimination of concentration. from a joint amounts to
removal of the load to the adjacent joints, so that one half of the
load is moved forward and the other half backward. Therefore, on
section x = 0, for example, out of 84 kips of stress of the left top
chord member (Figures100 and 119) there will be in 4 x 6 ffamework
77 kips on the left of the section and 7 kips on the right of it,
while in case of 8 x 12 framework there will be 80.F kips on the
left and 3.5 kips on the right. The larger normsl force in 8 x 12
solution accounts for the larger area under the curve than in case
of 4 x 6 fremework. The same applies to Figure 115 (b) which presents

normal stresses on x = a.



Similar effects, only to a smaller degree, are noticed at
y =0 in 6; stress on the plane x = -a (Figure 115d) and in G}
stress on the plene y = 0 &t x = —a and zero (Figure 116b).

The same phenomenon causes a similar discrepancy in
shearing stresses on the plane y = 0 (Figure 117e). The negative
area of shear curve is evidently larger for 8 x 12 framework than for
4 x 6 mesh. On the other hand, considering the two loaded frameworks,
Figures100 and 119, it is easy to see that eliminetion of concentra-
tions from the joints on line y = O results in a numerically larger
negative shearing force on the plane y =0 ip case of 8 x 12 mesh
than in case of 4 x 6 mesh,

Some minor differences may be traced to dislocations of
the concentrated forces from their true positions. Thus, the end
concentrations of all members are slightly displaced. They should be
applied at the centres of their tributary areas, but this is not done
because no joints sre asvailable there. That causes error, and since
the dislocations are different in the two f rameworks, some minor
discrenancies between their solutions are bound to arise.

Small differences are also produced as a result of removal
of concentrations. Since such removal affects only the joint at
which the force is applied, and since the joints in the small mesh
fraemework are spaced closer together, the effect of removal of
concentration is more localized in & small mesh than in a large mesh,
vhich produces some difference in the corresponding states of stress.

Most of the shear diagram; have unsightly looking portions

in the end panels, caused by the manner of transforming the tangential
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concentrations at the edges into shear stresses by adding parabolic
swellings. The only virtue of this arbitrary method of handling the
end shear is its agreement with statics and numerical simplicity.
It is, however, recommended to modify the curves near the ends by
sketching, thus improving their appearance but retaining their areas.
Stresses determined by 8 x 12 framework have been made the
basis for calculation of principal stresses at various points of the
plate as shown in Figure 123. The two principal stresses and the
maximum shearing stress are stated at each point, and the directions
of principal stresses are indicated approximately by the two mutually
perpendicular lines, the longer line corresponding to the numerically
larger stress. It is reminded that the stress discontinuities exist
all along'the working lines of the members. The effect of local
bearing stresses has been left out. The absolute maximum compression
stress occurs at the point x = 0; y = -8, and is equal to 18300 units
against 17813 units found by the conventional method, the latter

however, occurring at a different point.
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II.

Framework Method Apvolied to Bending of Plates .

1. Differentiel Eguations of Bent Plate .

The general theory of small bending of thin plates of
constant thickness made of homogeneous elastic material will be
discussed here briefly, following the presentation of Professor
Timoshenko in his book on Elastic Stabilitv.Q)

A small element of plate in the form of a rectangular
parallelopiped is presented in Figure 124. The moments and shears
per unit length of section are shown on two positive faces of the
element, snd the following may be seid about their sign convention.
The shears Qy an& Qy are positive, if they are acting in the
positive direction of z axis, i.e., downward, on the positive faces
of the element. The bending moments My and M, are positive if they
produce a concavity of the plate upward, while the torsional moments

My, and My, are positive if they act on the element in the clockwise

xy
direction, when looking from inside of the element. From the
equality of shearing stresses on two perpendicular planes it follows
that MXY = -MYX .

The following equations, relating to these various functionms,

are obtained by applying to the element the equations of statics:

22y SNy and ZM,.

oM M, - .
“rTy-r"-"*':a—;(—x--Qx*O ) (b)
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WMy _ M,
20X Y

+ Q=0 (c) which after

elimination of Q, and Qy gives

%M, My . DM, _
axt "¢ X3y 'ayzv“ % @

It may be pointed out that this equation is derived
exclusively from statics, and does not depend on the material of
the plate. By introduction of the laws of deformability it is
transformed into the partial differential equation for plate bending.

The laws of‘deformability may be stated in the form:

/
MX=D(7,;+V'°;—§) , (e)
= / £
MY“D(F;+Y'& ) (f)
_ EAR®
where D = —Ezajj;ij ()

In these expressions /x and ry, are the radii of
curvature of the bent plate. The deformations are assumed small,
the material elastic, and the cross-secticns plene after the
deformation. Replacing the curvatures by thelr expressions in terms
of deflection W the equations (e) and (f) becones

22 'k
Mx=—D(.$:—\2/+V'ayyZ) (h)

22w o'W
-D (39‘;_+V 'axz) . (k)

1}

My
A similar deformability expression for My, will be
derived now. Figure 125 represents a triangular element of the plate
cut out parallel to the axes N and T at 45° to the X,Y axes. It is

assumed that the element is acted upon on the planes N and T by equal



and opposite in sign bending moments M,, while no torsional moments
are present on these planes. It is required to find the moments on
planes X and Y.

Moments acting on the triangular element are indicated by
vector arrows drawn in accordance with the commonly used rule of a
right-handed screw.

From statics M, = 0; M, ZVE = -2 M2 % "- 5 o My, = M,
From this it is easy to see that My = 0 and M, = M,. Thus, the
state of pure bending in opposite directions on two perpendicular
plaenes N and T is acompanied by the state of pure torsion on the
planes X and Y at 45° to the former planes, and the intensities of
bending and torsion are the same. The converse is also true. This
result is utilized below,

Apolying the eguations (h) and (k) to the planes N and T;

faz

M, =M, =-D ( 5nt ’at?-) ) (1) and
2w W
My = < = D('btz +Y‘,on?_) . (m)
From Figure 125:
= _ L

X—-—\/_—E - \/Z y

v.—.-_n_-'._t_

v V7 \/E ¢

By partial differentiation of these:
X _ 9x 1, 9y _ 1 'Dy_/_(n)

"'-—‘_-—-—’

on vz ’ 9t VZ
By double partial differentiation of w with respect to n and t and

by the use of equations (n) the following expressions are obtained:
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Vw_ W W w
?nz“‘é(gxz'+2 gxgy’* 3yz),
w _ J_(’c)‘w o Vw . Vw
?t"-— 2 ?xz - ’axfby 'aj?_) )

which on subtracting give:

Vw _Ddw o, 4w
2nt  9tZ T % 9x0y ‘ (»)

Subtracting (m) from (1), dividing by 2, substituting (p) and
replacing M, by an equal value-My, gives the third deformability
expression, relating the torsional mémeﬂt with the derivative of

the deflectionJ
2w
WxvY

Substitution of the expressions for moments (h), (k) and

M =D (1 -v) (a)

(q) into the equation (d), derived by statics, results in well known

differential equation of the bent plate:

Ww L, Ot 2w _ g
o xH AxFoy* Qy? D

In order to be a true solution for the deflection of the

(r)

plate the expression for W must sati§fy not only the differential
equation (r), but also the boundary conditions. The mathematical
difficulties in the way of finding w are just as great as in solving
problems of plane stress, and many plate problems of considerable
practical interest are still waiting their solution.

Once W is known, the moments and shears mey be found, at

least theoretically, by differentiations: moments from the expressions

(n), (k) and (q) and shears from the following equations, which are

easily derived from (b) and (c).
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3 'asw
0 =D (5E+ 55 s (s)
Vw Vw

(t)

we

Qy = -D ('3X23y + g3 )

Rigourous mathematical solutions, when they exist, usually
give expressions for W in terms of an infinite or even of a doubly
infinite series of terms consisting of trigonometric or hyperbolic
functions. While the converzence of the series for w is usually
very good, SO that only few terms are required to get an accurate
value of the deflection, the expressions for moments and shean, as
a rule, converge slowly, or even do not converge at all, which
lowers the value of mathematical solution, because it is not the
deflections, but the moments and partly the shears that are required
by engineers.

Many approximate methematical solutions, while quité good
as far as the deflections are concerned, become inaccurate in their

expressions for moments.

2. Boundary Conditions and Influence of Y.

Some of the simple boundary conditions will now be
considered.

Simply supported edge. Taking this edge as y = 0, the
conditions which the expression for W must satisfy along it ares

w),.,, =0 ; and (M, o = 0.

= 0, and since

2 2
The latter expression gives: ( :g;é_ "'V/’% "\é )y=o

2
9w is automatically zero along the edge, the two boundary conditions

Bxz *

beconmes
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(Wyeo =0 3 "032) . (u)
One might think that there is a third condition pertaining to thls
edge, namely (va)y=o = 0, but, as explained in the book of
Professor Timoshenko, this condition is satisfied autometically by
trensformation of the edge torsional moment into the statically
equivalent to it additional edge shear, so that the combined shear

UMyx

at the edge becomes (Q, - 3 x )yzo .

Clamped Fdge. Assuming the edge in question again to be
y = 0, the boundary conditions at it are:

(oo =0 5 (B, =0 (v)
By differnntiating the second c0nd1tion with respect to x,
(’bx'bg )y ., =0, from which 1t follows that (M )y=a =0, i.e,, the
torsional moment 2long the clamped edge is absent.

Free Fdge. If this edge is y = 0, the following two

conditions pertain to it:

’aMYx

Combined shear (Q, - =0, and (M,),., = O.

% o
Shear and moments in these expressions are replaced by their values
in terms of derivatives of W, and the following results are obtained

for the two boundary conditionss

P dw o Vw | Vw
[353 (2 -v). ’axzaJL:o =0 3 and (ag + V)03 ().

A question which has an important bearing on the following

work of this treatise is, how much deflections, moments and shears
are dependent on the value of V-, and whether it is possible to
transform a set of numericel values of these functions, obtained for

a plate with certain Y, into a corresponding set for a plate with the
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same loading and edge conditions, but with a different Y.
Consider first a plate whose edges are all either simply

sunnorted or clamped. The Poisson's ratio of the plate is V",

rigidity D and the loading q (x;y). Suppose a function W = £(x;y)

has been found satisfying the differential equation (r) and the
boundary conditions (u) or (v) on all edges. The question is what
happens to W, if Y  changes to y', or D to D!, everytning else
remaining the same.

It does not take long to see that the new value of the

deflection is

Wl:%l— -; (aa)

since it satisfie$s both, the new differential equation and the
boundary conditions, which means that W varies in inverse propor-

tion to D, or

wr=w-a2s (11)

The new shear is

D' Bw
1= Dt + hich substituti £
Q, Dt ( >33 3 2)s Which on itution o

1

(aa) for w! gives,
Qx' = Qx

similarly Q' = Qy

(ac)

This shows that shears are not affected by the change in

Y- or in D.
From (h) and (aa) the new bending moment comes out,

! 2w 25w 2w
M= D! (5%— +v 5oz ) =D (5 +V’—W);(ad)

Dyl
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Substituting into this expression second derivatives of the
0ld w in terms of the old bending moments, the required expression
for the new moment in terms of old moments and the old 2nd new v
is obtained.

Solving together (h) and (k)

2w

%% = 579D (M, +Vv M) ,
0w = ! (M, + VM)
397 " G»3D TV

Substituting these into (ad)

: )
M= [(1— ) My + (1 -y ) My

);»Z
, _ b e
by analogy M,' = e [( P =y ) M+ (1 - v yY) MYJ.
The new torsion moment
Pw! -y
t = DL - 1) 2 = 77 13
My, ' = D ( v)?xay — Mxy (13)

Should change in D be produced by a modification of E or
h the deflection W still varies in inverse oroportion to D, while
moments and shears remain unchanged. Likewise, & change of the
load g (x;y) into a proportional value Kq(x;y) alters all the plate
functions in the same ratio X.

This discussion shows that the following relations exist
between various functions in plates with simply supported or clamped
edges, heving different Y ° or D° but being otherwise identical with
respect to shape, edge conditions and loading: the deflections are
inversely proportional to D, the shears are the same, the torsional

moments are proportional to (L -y ), while the bending moments
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follow a more complicated relationship of egq-n (12). It is
therefore quite possible for such plates to reduce numerical values
of moments, shears and deflections from one value of ¥~ to another.

This important conclusion may be extended further. So far
it has been tacitly assumed that the plate is supported, in the
manner stated, only on the periphery, while no intermediate supports
are present. The latter qualification may be removed now without
changing the above conclusion. The intermediate supports may be in
the form of immovable line supports, transforming the structure
considered into a continuous plate of several spans, or in the form
of immovable point supports, and in both these cases the effect of
Poisson's ratio is still the mme as stated above, as is evident from
the following reasoning.

Suppose there is an immovable intermediate line support
at X = 0. The conditions at it are:

W)y, left = W), right = 0.

w

— in right span.
(5% ght st

. _ oW
)x=o in left span = (ﬁ;;)xzo

(Mx)y-o left = (My),., right,
b 5

the latter reducing to (%ﬁ%}lﬂw left = (55§i)x=o right. All these

conditions are evidently satisfied by the expression (za) for w!
corresponding to changed ¥", which proves the point.

Should there be immovable intermediate point supports, the
reasoning is as follows: Imagine the supports removed, then the
deflections g;, «Sz.... occurring at their points are inversely

proportional to D. Let now the plate be acted upon by the reactions
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of the point supports alone. The deflections &', &,'...

produced now are again inversely proportional to D. If the reactions
have been found correctly for the value of Poisson's ratio Y, then
for that V) 674- 8,' = 03 8,:!- §,0 = 0ueann (ae)
The corresponding equations for a new value of Y~ will be

%8. + % §1' =0 etc. They are evidently satisfied by virtue of
eq-ns (aze) being satisfied, therefore, the values of the reactions
found for Y~ are good also for y'. Having thus proved the invariance
of the reactions with Y7, it is possible to regard them as active
forces, which view reduces the plate to the one supported only at the
periphery, for which the stated dependence of various plate functions
on Yy has already been demonstrated.

These important deductions are utilized in the last article
of this chapter in the use of the framework corresponding to Y =:§
whose solution is considerably more simple than that of a framework
for any other velue of Poisson's ratio.

It is interesting to note that these conclusions regarding
y* do not hold when any of the outside edges of the plate are free,
since the value of w , inversely proportional to D, althoﬁgh satisfy-
ing the differential equation, does not satisfy the boundary condi-
tions (x) in view of their dependence on ¥ . A change in Y~ for such
plate thus produces a drastic change in the shape of deflection
surface and no simple relation between Wand w', or between other
corresponding plate functions, seems to exist. It is possible,

however, that the lack of resemblance is mostly confined to the

vicinity of the free edge.
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Simple relations between various plate functions, corres-
ponding to different values of V", sre also asbsent in the case of
elastic supports, or when, in addition to action by known forces,

some points of the plates are subjected to known deformations.

3. Framework Analogy.

Mathematical difficulties standing in the way of a purely
analytical solution of plate problem present an opportunity for
methods which, like the framework method, do not depend on highly
intricate mathematical procedures.

The variety of the framework method used for solution of
problems of bending of plates has a great resemblance with the one
used in two-dimensional stress. Here again a plane structure is
composed of articulated bars, joined by means of pins normal to the
plane of the structure, the bars being arranged according to some
definite pattern, repeating itself everywhere in the structure, whose
external outline and dimensions in plan are made identical with the
given plate. In addition to that, the same loads and boundary
conditions are imposed on’the frame analog?%s on the plate prototype,
all the loads and the restraints of the frame being applied at the
principal joints. With proper type of pattern, proper sections of
the members and infinitesimal size of unit the framework is again
rigourously equivalent to the plate prototype in its structural
behaviour. In order, however, to solve the problem the size of the

unit must be taken finite and fairly large, which changes the method



from an exact to an approximate one. This latter procedure is again
Justified by a hypothesis assuming that the error involved in the use
of a finite unit is small.

One may notice that all these details are identical with
the ones stated in connection with the plane stress framework. The
feature which distinguishes the framework now considered from the
previous one is that its bars are assumed to be endowed with flexural
property instead of the property of extensibility of the earlier
variety. This flexural property or rigidity is limited to bending
out of the plane of the framework, while no resistance is offered to
bending in the plane of the structure, and none is necessary in view
of articulation of the joints. Furthermore, the bars do not possess
any resistance against torsion. As to the change in length, none
occurs since deflections are small, and the central plane of the plate
neither stretches nor shrinks,

The definition of the terms moment and shear in the frame-
work, as distinct from the moment and shear in an individual member,
is made similar on the one hand to the same terms in the bent plate,
and on the other hand to the term unit stress in the plane stress
framework. This means, for example, that bending moment per unit

length of plane AA (Figure 1) is equal to the sum of corresponding

components of bar moments on length dx, divided by this length. Should

the plane of stress cut the bars in such a way that the manner of
their cutting repeats itself all along the plane, the repeating

length A may be taken in place of dx.
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In order that the infinitesimal framework could faithfully
reproduce the mechanical behaviour of the plate, ss manifested either
in stregses or in deformations, it should possess the same deforma-
bility as the plate, as expressed by any of the equations (e), (f),
(h) or (k) of Art. 1, Chap. II, referred to any direction in the
framework. If this recuirement is satisfied, the three deformability
expressions (h), (k) end (q), Art. 1, hold for the framework as well
as for the plate, with W in them signifying the same deflection in
either one of the two structures; at the same time the equation of
statics (d) is likewise equally applicable to both the framework and
the plate. This means that the basic differential equation (r) is
valid for the framework no less than for the plate, and owing to the
same boundary conditions, the expression for Wcomes out the same in
both cases. This constitutes the proof of the statement that the

problem of bending of & plate is exactly equivalent to the problem of

bending of a corresponding infinitesimal framework of a proper pattern.

It has been just mentioned that a framework whose flexural
deformability in any direction is identical with that of the plate
prototype must satisfy the three equations of deformability (h), (k)
and (g), or their equivalents (e), (f) and (q), in which X and Y are
the axes of symmetry of the framework. In other words, the framework
must deform properly under the following conditions:

1. VWhen subjected to pure bending in X direction, with no
bending deformation in Y direction.
2., TWhen in pure bending in Y direction, with no deformation

in X direction.
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3. When subjected to pure torsion on X and Y planes.

Equations derived from these conditions provide the means
for checking suitebility of each particular pattern and for deter-
mination of its characteristics, such as the rigidities of individual
bars. When the pattern has the same form in directions of both axes
X and Y, the condition 2, naturally, falls out, and only the two
other conditions remain. The only patterns that have been investi-
gated are the two square ones, similar in appearance to the types

used in plane stress.

4, Sqguare Pattern With Simple Intersecting Diagonals .

Before proceeding with the derivation, & new vector nota-
tion for moments, used throughout the remaining part of this treatise,
will be explained here. According to this notation, a moment, acting .
on the plate or on the framework, is designated by an arrow perpen-
dicular to the axis of rotation, i.e., lying in the plane, in which
the turning takes place. This method allows to record the moment in
a framework bar by means of an arrow coincident with the bar, 5
notation which has a decisive advantage in the process of distributionv
described later wherein moments appearing in different members are
recorded s numbers written along the same members, which arrangement
is essential in order to avoid confusion.

It is needless to say that the ordinary rules concerning
various operations on vectors, such as addition, subtraction, breaking

into components and projecting on different lines, hold with respect

to these vectors.



The following sign convention is adopted; the arrow
points in the direction which has a tendency to rise, on account of
rotation produced by the moment. This means that if a bar is bent
with a concavity upward, its moment arrow points away from the member,
resembling an arrow indicating tension in & member with direct stress.
Similarly, a moment producing downward concavity is shown by an arrow
as if it was a compression stress.

The feature which makes the convenient vector notation,
explained here, possible, is that all the moments associated with
flexure of a plate or a framework have their axes coincident with
the plane of the structure. It is evident thst the method would be
unsuitable for designation of moments located at random in three-
dimensional space.

Returning now to framework, shown in Figure 126 (a), it
is assumed that all horizontal and vertical members have moments of
inertia I, while all diagonals have them equal to I and tﬁe two
diagonals of each unit are not connected at intersectioﬁ. All
members of the framework are made of the same material as the plate
prototype. Thickness of plate is h.

Condition 1. Let the plate and the framework, Figure 126,
be bent in X direction to a radius Yy by moments M, per length a,
while the curvature in perpendicular direction remains zero. This
necessitates appls ¢ ation of moments in Y direction of the magnitude
v M, per length a. Let angle change in plate or in horizontal bar
per length a be 6. The corresponding angle change between the two

, ) o
ends of a diagonal is evidently N
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Moment in the vertical bar is evidently zero.

Moment in the horizontel bar M = ﬁf’= EE%Q; - (a)
X
< 8 -
. _ ElL, s _ EL6 .
Moment in the diegonal bar M; = ——>% = Za > (b)
Moment in the plate in X direction per length a is
-3
_ 1 _ . _ ER’G
MO = aD —r: - - /2(/_})2). . (c)

The two equations for determination of the pattern character-

istics I and I, are obtained from the moment equilibrium of the joints
in X and Y directions, illustrated in Figure 127 (a) and (b) by means
of newly defined vectors.

From equilibrium in Y direction:

_aM . ELe _ EA’6»
V—Mo - 2'\/32' » or \/é‘a - /2(,~y‘_z) J
from which I, = ,—"2"7- (/-";z') ah’ . (a)

From equilibrium in X direction:

- 3
— oM, . ELLe , EIe_ Eh’6
M, = 2{2. +M 3 or V3 a +t— = T20-vD R
s . _ ah’ .
from which, using (d): I= 72059 . (e)

Other Condition. Pure torsion on X and Y planes is assumed

here, which has been proved to be equivalent to equal and ooposite

flexures on two planes at 45° to the co-ordinate élanes, Figure 128,
In order to forestall a possible question at this stage,

it may be pointed out that a simulteneous uniform curvature of the.

framework in two opposite directions along the lines at 90° with each

other is not physically inconceivable, because the curvature is small,

and no warping results.

121.



122.

It is easy to see that horizontzl and vertical bars are
unstressed, which follows from symmetry. All diagonals going in one
directidn have moments +M; and those going in the opposite directions
have moments -M;. Moment in the plate per length :%f is My = M, which
gives the third equation of the framework. All that is necessary now

is to substitute for M, and M; their expressions.

Using an equivalent of equation (e), Art. 1,

M = _a__E_hf_(L+V_I_)___._C_I_ ER: |, 6 V»G)____EA36_
e T VZ 120-v3) ‘1, Y V2 120-v) ave T ave 24(1+V) °
M = El, 6
17 Tavz

ah®
Equating M, and My, I = ‘7572ﬂ7155 . (£)

Thus, there are obtained three equations, (d), (e) and (f)
for determination of only two pattern cheracteristics, I and I,.
Evidently, the pattern is suitable only for one value of Poisson's
ratio, determined by equating (e) and (f), which gives V*=é .
Substituting this value into (e) and (f)

ah?

/6
a/13 (14)
16 V2

-
fl
-

i

I

Marginal members have their moments of inertia twice smaller

than the interior members.

A curious identity with the value of Y for the same pattern

in plene stress is noted here.

5. Soguare Pattern With Auxiliary Members .

A pattern similar in all respects to the one used in plane



stress for any arbitrary Y- is adopted here, see Figure 129. The
diagonals are assumed to be not connected at the intersection.

Condition 1. The plate is assumed to be bent to a radius

rx in X direction while remaining straight in Y direction. The
deformation of the framework is such that the horizontal bars are
bent to the same radius I} , the vertical bars remain straight, while
the other members are bent into shapes determined by their conditions
of equilibrium.

It is pointed out in this connection that the deformability
of the framework is considered to be characterized by the positions
of the main joints, while locations of the secondary joints inside the
squares are regarded as insignificant, even if those joints project
one way or another from the general surface determined by the primsry
joints.

Moments zcting in X direction are M, per length a, while

those acting in a perpendicular direction are v M, per length a.

Calling angle change in plate or in a main horizontal bar @, the values

of Mo and of M, the moment in the main horizontal bar, are found as

in the previous article:

_ Eh’e .
Mo= gy 3 (=)
M = bie H (b)

while the moment in the main vertical bar is zero.
The problem requiring solution is to express the moments Ny

scting in the outside parts of the diagonals in terms of the angle ©.
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However, before this is undertaken, it is necessary to demonstrate
that a1l the members inside'the squares are in a state of pure bending,
unaccompanied by any shear, since it is quite conceivable that,
although the fremework as a whole is in a shearless state, the
individual members may be carrying shears, which would change their
moments from end to end.

Considering first horizontal and vertical members large or
small, one by one, it may be concluded from conditions of symmetry
that if their ends are acted upon by any transverse forces, those

forces must be equal and in the same direction at their both ends,

which, however, is impossible from considerations of statics. Therefore,

all these members are in s shearless state. The same conclusion may be
reached in & similar manner with respect to the inner halves of the
diagonals., In connection with the outer parts of these members, it
will be noticed from symmetry that, if the main framework joints act

on them at all, with any transverse forces, they act in the same
direction on all the diagonals. Such a situation, however, contradicts
statics of any main joint or of any heart of the unit, Therefore, all
members of the framework are in a shearless state and carry constant
moments from end to end of each member.

It will be noticed from equilibrium of a secondary joint
that all auxiliary members have moments M, equal in magnitude and sign,
i.e., they have the concavity either all up or all down. HMoments
corresnonding to upward concavity will be considered positive.

As & preliminary step to finding M;, the angle changes in

various interior members are expressed in terms of their moments.
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The total angle change in two outer portions of the same

diagonal is,

_ M, a
&= F1, vz (c)

A similar angle change in the central pdrtion of the diagonal is,

- Mio Q
8 = EL, vz (d)

and in an auxiliary member:

—

EI, 2

The three equations which are necessary for expressing the

8, = [T = . ‘ (e)

moments My, M,, and My in terms of the angle @ are as follows:

1. Equation of equiiibrium of a secondary joint M; = M, +\/§ Mz) 0?))

assuming all the moments positiie.

2. Equation of defbrmatién of the diagonal stating,
total angle change = e%— =0, +6,,
which after replacing 6, and 6,, by their expressions
(c) and (d) gives, My + M, = _ﬁ%%li_ < (g).

3., Equation of deformation of the heart of the unit. The
curvatures of the heart in X and Y directions are equalj;
the curvatures along the two diagonals are also equal;
therefore, the curvature of the heart is spherical, all
lines on it have equal curvatures and, consequently, all
angle changes are proportional to reSpecﬁive lengths,

8, = V2o, . (h)
The same result may also be obtained by superposition. First

give the heart a uniform cylindrical curvature in X direction with



engle change 8, on the length of the auxiliary horizontal member. The

angle change of either diagonel inside the heart is evidently ﬁ? .

Vo

low superimpose an equal cylindrical curvature in Y direction. This
doubles the curvature of the diagonal, wherefrom the relation (h)
follows. Substituting for @, and ©, their expressions (d) and (e)

the following relation is obtained:

Mo _ 12
I, I

: (k)

Simultaneous solution of the three equations (f), (g) and

(h) containing three unknown moments gives,

EI, I,‘f'VEIz
a 21,+21I1, °’

(1)

My, =
while the two other moments are not required.

Expressions (a), (b) and (1) of the moments M, M and M,
allow to set up now two equations for determination of the pattern
characteristics I, I; and I,.

Referring again to Figure 127, the two equations of joint
equilibrium,-identical with previous article, are

VZ iy = Vi, (m)

M+ V2, =H, . (n)

After replacing the moments by their expressions and some

simplification the following two equations are obtained:

ah?

I= —givw O (p)
I,f\/z Zz - Wahs (q)

125,431,  [12vZ(1-»Y)
The third equation for determination of I, and I, follows

from the torsional stress condition.
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Other Condition. Pure torsion on X and Y planes which is just

the same as equal and opnosite flexures on two planes at 45°,

The state of stress here considered mey be imagined to be
brougint about in the following menner, First, let the framework be
bent slightly to any constant radius, in a direction at 45° with the
axes, so that all members become coincident with the cylindrical surface
so formed., All members, with the exception of unstressed diagonals,
are bent to circular shapes and, consequently, are in a state of npure
bending, which, by the way, may Ye vreserved .only by the presence of
some necessary external moments at the secondary joints. Now suner-
imnose on this distortion a similar one, but in an ooposite direction
and along the line at right angles to the first one. The new state
of stress created in all members is again that of pure bending. The
second deformation unbends all horizontal and vertical members, and
the only members that remain bent are the diagonel .ones., The constant
moments present in the diagonals are +M; in the members going in one
direction and -M; in those at 90° with the first.

Repeating the reasoning of the previous article with
reference to Figure 128, the eqﬁation M, = My, arising from this
condition, leads to ec-n (f), Art. 4, which, in conjunction with (p)
and (o) gives the following results for the framework characteristics:

ah’
12(1+7) >

ah?
12V2 (1+v) p (26)

_ 3y-1 ah3
L= Gowi—aw 2% - (17)

(15)

—
[y
|




figain it must be remembered that merginal members have
their IS twice smaller than according to these formulae.

This derivation shows that‘the framework of this article
is quite suitable for imitating flexural behaviour of a plate with
any value of ¥, The most remarkable feature is that the necessary
moments of inertia of the bars, equations (15), (16) and (17), can
be obtained from the necessary areas of the bars in the similar plene
stress framework, equations (4),.(5), (6) of Art. 7, Chap. I, by
replacing at in the latter expressions with-%gf.

Similarly to the plane stress framework, I, > O when
$>v>% , I, =0vhen ¥=3 and I,< 0 when £>% > 0. The
negative value of I, in the latter case has no effect on the validity
of calculations,

It is interésting to mention that the torsional state of
stress, just considered in connection with the third equation for
determination of Is, may also be brought about by a load condition
causing shears in the interior members of the units, as is evident
from the following discussion.

Let the boundary conditions be represented by the vertical
loads + P acting up and down at alternate joints, Figure 130, wherein
+P corresponds to a downward load, and -P to an upward one. The
overall effect of these forces is evidently a vure uniform bending
with a moment + —E— per unit length in two directions at 45° with X and
Y axes, bending about one of the axes being positive and about the

other negative. From considerations made clear in previous discussions,

the main horizontal and vertical members are totally unstressed,
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while the central parts of the diagonals have no shear.

If shear exists in the outer portions of the diagonals
then from considerstions of symmetry it must be such that all diagonals
at +450 with X axis act on the main joints in the same direction, say
upward, while all the diagonals at -45° with X axis act on the same
joints in the opposite direction, i.e., downward, which keeps these
joints in balance. Considering equilibrium of one joint after the
other the boundary joints are finally reached, and from their consid-
eration it is concluded that the +45° diagonsls do act on the joints
with forces P in the upward direction, as has been assumed.

The state of stress in the members inside each square may
be explained on Figure 131 (a). The ends A and F are acted upon by
the upward forces P, while the ends K and M by downward forces P.

The shear P in the member AB divides equally between the members BC
and BD, since the central parts of the diagonals are in pure bending.

The shear in BC is augmented by an equal shear coming from EC to

g N

form shear P in CK.

In order to find the distribution of moments in different
members a section MM (Figure 130) is passed through the framework
just touching the corners of the central sguares. Since all horizontal
and vertical members are unstressed and since all diagonals have equal
moments at the points where they are cut by the section MM the moment
in the diagonal at any of these points, such as point B, in
Figure 131 (a) is ‘zevgz’ since the tributory length is s end the
moment per unit length é?. The moment at the outer end of every

. . Pa a
diagonal is then 5 P Y 0.
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This allows to construct the moment diagrem along the
diagonsl inside of each squsre, Figure 131 (b). While parts ab and
ef represent moments in the sections of the diagonal AB and TF, the
part of the diagram be is due to & combined effect of the diagonsal
BE and of the suxiliary members BD, BC etc. In order to sevarate
these two contributions, a section GH is passed through the mid-points
of the auxiliary members. Since moments in the auxiliary members at
G and H are zero from symmetry the constant moment in the central
nortion of the diagonal is found to be'%"é%"

The full line in Figure 131 (c) represents the moment
diagram in the diagonal member, taken by itself. The dotted line,
shown in the same figure, corresponds to the shearless state of
flexure in the diagonal, discussed earlier in this article. A compar-
ison of these two diagrams shows that they have equal areas and equal
statical moments about the outer ends of the‘diagonal. This observa-
tion leads to an important{conclusion that both the linear and the
angular distortions of one end of the diagonal, with respect to the
other, are not affected by non-uniformity of the moment along the
diagonal, when shears are present.

It is peculiar that the flexural rigidities of the members,
and particularly the rigidity of the auxiliary members, depending to
a great extent on the value of V-, have not entered the discussion.
The only effect of Poisson's ratio on deformation in the loading
considered here is the relative displacement in vertical direction
of the adjacent diagonzl lines, brought about by bending of the

auxiliary members while trensmitting shears from one diagonal to
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snother. Owing to this effect, 2ll joints, situated on the diagonals
terminating in the boundary joints, acted upon by forces +P, Figure 130,
are depressed with respect to the other joints. In making this
statement it is reminded that the diagonals are not joined together at
intersections.

The relative vertical displacement of the adjacent diagonal
lines, as any deflection of a beam caused by a concentrated load, is
proportional to J%%:. As the size of the unit is decreased, I, is
decreased in proportion to a, while P remains constant in order to
retain the same intensity of moment per unit length. This causes a
decrease in this relative vertical displacement in proportion to az,
so that this displacement is insignificant for small a.

This discussion shows that in determination of the framework

characteristics no deformation other than shearless need be considered.

. . . . . L
6. Distribution Factors in a Framework with YV =3 -

A, Definitions -

Distribution factors play most important part in the solution

)

of the flexural framework. They are defined as quentities proportional
to moments and shears at the ends of different members radiating from
a joint undergoing one of the following two kinds of deformations
either a vertical displacement without a rotation or a rotation about
one of the framework axes, unaccompanied by any displacement. The

joints adjacent to the one undergoing such movement are considered to

be stationary.
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The following sign convention regarding displacements, shears
and moments in the framework members is adopted. Displacement is
positive if directed downward, i.e., in positive direction of Z axis.
Shear at the end of a member is positive when the member acts on the
joint in the downward direction. As to the moment at the end of the
member, it is positive if the member is concave upward. It is
reminded in this connection that a positive moment in the bar is
indicated by a tension arrow, according to the vector notation of this
treatise.

When investigating rotationel equilibrium of a joint, moments
along the framework axes are added up. For this reason, it is not the
moment in any diagonal that is significant, but its X or ¥ component;
consequently, it is such components that will be considered as the
distribution factors of the diagonals.

B. Disnlacement Factors .

Let a joint, A, (Figure 132) move downward through a distance

A

, while the adjacent joints remain fixed. The moments produced at

the ends of any member are equal snd opposite in sign. The end moment

in any horizontal or vertical member is:

Eip (a)

_~EI A _
M-—?—a—5—a- =6

The H or V component of the end moment in any diagonal iss

_oEL . 4 I _ 3EILA4

Substituting for I and I, their expressions (14) of Art. 4
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H ='%T a > ' (c)
A3
3 4 | ()

Shear in the horizontal or vertical member iss

—

oM 3 EAD
V=== 7% az . (e)

Shear in the diagonal member is:

2 (Comp.M) _ 3 Eha |
R SR L ol (£)

The displacement distribution factors are shown in Figure

132 (a) and (b), (2) giving the shear factors, and (b) the moment

factors. All these factors are numbers proportional to the expressions

(¢), (d), (e) and (f), with the following proportionality factors.

. _ 3 ERA
Factor of proportionality for moments ~-;r-*7;——3(g).

Factor of proportionality for shears =-£} zéggks(h).

The displacement, like the one represented in Figure 132,
which causes a unit shear in horizontal or vertical members, when
their far ends remain stationary, will be referred to later as "unit
displacement”.

It is scarcely necessary to remind that the units of the
two kinds of distribution factors have different dimensionalities,
which necegssitates some later adjustment in the values obtained by
using these factors. Either the moment values will have to be
multiplied by a, or the shgar values divided by a.

It will be noticed that the signs of distribution factors

agree with the above sign convention, assuming a downward deflection

A+ The arrows in Figure 132 (b) represent the moments acting on
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various joints according to the vector notation of this paper.

C. Rotation Factors. Let a joint, A, rotate sbout Y axis

through an angle O, as shown in Figure 133. Vertical members remain
unstressed, while all other members get stressed. Moment on the near
end of a horizontal member, i.e., on the end where the movement takes

place, is,

HEIG
My =g - ()
The H or V component of the moment on near end of the diagonal is,

<
HEL, vz | V2 EI,®
Compe Myv = vz v& = — . (1)

Substituting for I and I, their expressions
M, = FEZ G , (m)
- 3

Comp. M,y = TR (n)

The corresponding moments on far ends of the members are twice smaller.

Shear at either end of a horizontal member is,

_ 3 EKS
8 Ta (p)

while shear on the end of a diagonal is,

3
-3

The rotation distribution factors appear in Figure 133 (a)
snd (b), the former showing the shear factors and the latter the
moment factors. All these factors are proportional to the expressions
(m) to (q), with the following proportionality factors.

Factor of proportionality for moments = j-Em?9‘3 (r) ,

Factor of proportionality for shears = —é— é%gg_;(s) .

A rotation causing stresses of Figure 133 will be called

tunit rotation.
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The signs of distribution factors in Figure 133 are in
agreement with the convention stated, and so are the arrows representing
the joint moments.

An important relation between the shear and the moment
factors either in case of displacement or in case of rotetion is as
follows. Shear at any end of any member teken with its sign equals
the moment on the other end minus the moment on this end, both moments
being taken with their signs. This relation is used in checking
moments and shears, as will be explained later.

Distribution factors of marginal members are twice smaller
than those of interior members.

Similar distribution factors exist also in the flexural
square framework corresponding to any arbitrary ¥, Their determina-

tion is quite laboWrious and has not been carried out for lack of time.

Te Methods of Framework Solution.

Much of what has been ®id about the plane stress framework
in Art, 9, Chap. I regarding the use of finite units of uniform and
different sizes, suitability of the method for different shapes of
plates in the plan and high statical indeterminacy holds equally well
for the flexural framework. For practical reasons, however, the square
pattern is scarcely applicable to any plates but rectangular in plan,

It is reminded that forces acting on a flexural f ramework
are limited by the nature of the problem to transverse loads &and to

moments about axes lying in the plane of the framework.



In discussing questions involved in solution of framework
it is important to realize structural features of thé pattern related
to statical indeterminacy and to freedom of joints to move.

Each framework member mey be considered as possessing two
unknowns, i.e., moment and shear, on one of the ends, while the values
of similar functions on the other end follow from statics of the member.
Three equations of statics may be written for each joint, one equation
for shears and two others for moments in the directions of the sxes.

From these considerations it is easy to deduce that the
introduction of auxiliary members in the framework with arbitrary v-,
compared with V’=:§ framework, does not increase statical indetermin-
acy of the structure since the number of new members added in each
unit is 6, corresponding to 12 new unknowns, while the number of new
equations of statics is also 12, owing to 4 new joints. Therefore,
the more complicated type of pattern is not different in its indetermin-
acy from the type with simple diagonals.

Each simply supported joint, whether standing by itself or
forming a part of a boundary, has one reaction associated with it.

A joint, other than a corner one, forming a part of a clamped edge
possesses two reactions, i.e., a vertical reaction and a moment about
an axis parallel to the edge. It is peculiar that such a joint is not
restricted to turn about an axis normal to the edge. A corner joint

belonging to two clamped edges possesses three reactions, one vertical

reaction and two moments.
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Calling the number of members in the framework, with )*==§ 5
m, the number of joints j, the number of statical unknowns u, and the
total number of reaction values r, it may be seen that if r > 3,

u=2m+r-3j | (a)
and if r < 3,

u=2m+ 3 -3 j N (b)
the difference between these two relations being due to the fact that
the active forces corresponding to the latter case are not fully
independent,

Each unrestrained mein joint of the framework has three
degrees of freedom, il.e., one vertical displacement and two rotations
about the framework axes. A simply supported joint has two degrees
of freedom, i.e., two rotations. An intermediate joint belonging to
a clamped edge has one degree of freedom, as has been stated, while
a2 corner joint at intersection of two such edges cannot move at all.

The following methods may theoretically be used for
solution of flexural framework.

1. Method of Least Work. This method would be extremely
labofrious for the reason of the large number of unknowns. Thus,
a 4 x 4 framework, (Figure 154)Jsimply supported at the edges has the
following number of elements: m = 72, J = 25, r = 16, and the number
of statical unknowns comes out 85.

2. Method of Slope-deflection. Joint movements may be taken
as unknowns, end moments and shears expressed through them and equa-

tions of equilibrium of joints set up to find these unknowns. This



method applied to the problem just mentioned leads to 59 simultaneous
equations, which, although better than Least Work, is still prohibitive.
Introduction of more restraints, for example, by making the edges
clamped, is favourable to this method and unfavourable to Least Work.
3. Method of seccessive joint movements is the one that has
been found the best for solving flexural fremeworks. The idea of this
method is similar to the one used in connection with plane stress frame-
work, Different joints are given successive movements consisting of
displacements and rotations. The end moments and shears, caused by
these movements in the members of framework, are computed by means of
distribution factors of the previous article, simply by multiplying
these factors by the number of units of movement given to the joint.
Summation of end moments and shears at each joint gives the unbalanced
functions. The purpose of successive movements is to reduce to zero
these unbalanced joint mements and shears. The record of current
values of functions during distribution is kept on two diagrams of
framework, one for shears and thé other for moments., Shears and
moments at the ends of members are recorded by means of figures written
on the members. The total joint shears and moments are also stated
near joints, the moment figures being accompanied by two arrows,
indicating the directions of X and Y moment components. The method
of recording is much similar to the one used in plane stress. Further-
more, it is very convenient, when combining the moment arrows into the
resultant joint moments, to think of them as if they were tensions or

compressions in a plane stress framework.
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By consideration of Figures132 (b) and 133 (b) it may be
seen that a joint displacement results in moment arrows radiating from
‘this joint and directed in all the members either all away or all
toward the displaced joint. In case of rotation, the moment arrows
sre 2ll streaming in the same direction through the rotated joint.

In rotating the joint toward the balance it is not even necessary to
visualize the direction of rotation. All that is required is to envly
to the unbalanced joint and to its neighbours, moment arrows directed
in accordance with the above made observations.

This exolsnation presents only a brief outline of a rether
elaborate procedure. The difficulty encountered in application of
the method is that, unlike the plasne stress vroblem, the movements
which would lead to equilibrium of Joints are not apparent. It is
easy enough to eliminate the moment unbslance by proper rotations of
joints, but this leads to shear unbalance; on the other hand, & removal
of shear unbslance by the necessary displacements leads to unbalanced
moments; at the seme time it seems impossible to foresee directly the
true combination of the two kinds of movements.

In order to overcome this difficulty an indirect procedure
hes been adopted, in which an important part is vlayed by the so-called
reaction factors, whose meaning may be explained with reference to
Figure 135 representing any arbitrary framework.

Suppose, that transverse forces are applied to all the
joints of the framework so that one of the joints, for example A, gets

s unit transverse displecement, while all other joints remain in their
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original locations; &t the same time all the joints are left free to
rotate to equilibrium. These joint forces are called the reaction
factors corresponding to movement of joint A. The values of these
factors quickly decrease as the distance from joint A increases,
epproaching zero at the joints more than three framework units away
from A,

These factors may be computed either exactly by using the
actuel framework of the problem, or avproximestely, by using an
imeginary framework, extending from the displaced joint not more than
three units on each side. The computation is comparatively simple,
since the displacements are known, and the distribution of rotations
can be easily performed.

Sets of reaction factors must be computed for displacements
of all the joints of the framework. Approximate factors should be
preferred since their computation is easier, and since they have
similar values for several sets as long as the displeced joints are
not less than three nnits distant from the periphery. Actual boundary
conditions should be taken into account for those sets whose displaced
joints are, like joint B, only one or two units distant from the edge.

There is only a limited number of sets of approximate
resction factors; they may be calculeted beforehand and used in all
framework problems. On the other hand, the number of sets of the
exact factors is larger, =nd they are good only for one particular
framework.

Figures 136 to 140 give five sets of reaction factors,

utilized later. TIn these figures, frameworks extend for one, two or
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three uniﬁs from the displeced joints. All edges are assumed clamped.
Since the frameworks are symmetrical sbout one or two axes, reaction
factors repeat themselves in corresponding parts, and only one qucrter
or one half of each framework is shown on the drawing.

Rotational distributions used in determination of these
factors have been carried out only approximately, and the values of
the factors are not extremely accurate.

Reaction factors asre made the basis for an approximate
determination of joint displecements, which is done on a separate form.
In this part of the problem joints are displaced one at & time through
a number of units of displacement estimated on the basis of unbalanced
joint forces; new joint forces, caused by the movements, are added up
and the operation is repeated until the unbalanced joint forces
become small.

The joint displacements so found are, however, only approxi-
mate, in view of the approximate nature of the reaction factors. The
next step in the procedure is to introduce these displacements into
the actuel fremework, and to distribute all unbalanced moments. If
the displacements were correct, no unbalenced joint forces would be
present. In actual problem, however, unbalenced forces do show up,
although they are of the order of some twenty times smaller than the
original unbalances. Two or three additional cycles of the same
procedure are necessery to make the unbalances negligible.

This explanation gives a general idea of the process of

solving a flexural framework. Some minor features will be added later



when an actual problem will be solved.

4, TFinding joint displacements by equations. This is a modi-
fication of the method just described. In this method the exact
reaction factors are found by rotational distributions in the actual
framework. In order to find joint displacements necessary for equil-
ibrium a system of simultaneous equations is set up by means of
reaction factors, each equation expressing equilibrium of a free joint.
After the equations are solved, the framework is given the necesseary
displacements and the unbalanced moments are distributed by means of
rotations. The number of simultaneous equations is equal to the
number of free joints. This method is believed to be more laboWrious
than the previous one.

The principle of symmetry is no less appliceble in flexural
framework than in plane stress. The necessary and sufficient require-
ment for its application is symmetry of the structure, including its
restraints, sbout one, two or more axes. The manner of breaking up
of the problem into its compongent cases, similarity of stress condi-
tions in different portions of the plete and some other features of
the principle discussed in the chapter on plane stress, ere equally

applicable in flexural framework and will not be repeated here.

8. Principles Used in Checking. Routine of the Distribution.

Stress Interpretztion.

As has been explsined in the chapter on plane stress, current

checks are imperative in any lengthy arithmetical procedure, such as
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distribution of unbalanced joint forces in a framework.

Consideration of Figures132 (a) and 133 (a) shows that the
algebraic sum of all the joint shears springing up after either a
displacement or a rotation is zero, which is the direct result of the
fact that the shears on two ends of any member are numerically equal
and opposite in sign. It is needless to say that the same statement
holds for the movements of marginal joints.

This principle is made the basis for checking the unbalanced
joint shears (joint forces). At any stege in the distribution the
algebraic sum of the unbalanced joint shears, including the shears at
the boundary joints, before they are neutralized by the reactions, is
equal to the algebraic sum of the original joint loads. The purpose
of distribution is to push these unbalanced joint forces to the points
of support, where they become neutralized by the reactions.

The situation with the moments is somewhast more complicated.
While in cese of joint displacement, Figure 132 (b), the algebraic sum
of the joint vectors, either horizontal or vertical, is zero, in case
of rotation, Figure 133 (b), the sum of vertical moment vectors is
zero, but the sum of horizontal ones is 43— of which vector 3 —>
is applied at the rotated joint, and the remainder comes from the
adjacent joints. Thus, when a rotation of a joint takes place,
adding a certain moment vector to the rotated joint, the framework, as

a whole, receives a moment vector 1% times larger than the one applied

at the joint in question.
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Since it is convenient to base a check on equality of certain
velues to zero, an arrangement will be agreed upon to accompany any
joint rotation by entering in a special column a moment vector 1%
times larger than the one applied to the rotated joint, in the
direction opposite to it. This vector will be referred to as "balance"
vector. The slgebraic sum of the joint vectors and of the balance
vectors, either in a horizontal or in a vertical direction, remains
constant at all stages of distribution, and, unless the original
loading of the framework is effected by means of couples, this sum
stays zero. Two columns are used for the balance vectors, one,
indicated in Figure 133 (c), for the horizontel vectors, and the other
for vertical ones.

So far, only the movements of the interior joints have been
considered. Balance vectors corresponding to movements of marginal
joints are somewhat different, and will be discussed now.

In Figure 141, rotation of a marginal joint sbout an axis
perpendicular to the margin is shown. The balance vector is again
LgH?rger than the moment applied to the rotated joint, which ratio
is preserved in all cases of rotation. No vertical balance vector
is needed.

Figures 142 and 143 show rotations of an intermediate and
corner merginal joints about horizontal axes, and the balance vectors
that result from these movements. In case of corner joint two balance
vectors are needed.

Balance vectors are also required in case of a vertical

disvlacement of a merginal joint as demonstrated in Figuresl44 and 145.
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Unlike rotation, the balance factors accompanying joint displacement
are twice larger than the moments applied to the displaced joint.

In the framework problem solved below, the portion of
structure subjected to distribution is separated from the framework
by means of cuts along two axes of symmetry, one of which follows
the direction of a diagonel and forms a margin at 45° to the frame-
work axes. Although this feature does not introduce any new principles,
it becomes necessary to state the values of distribution and balance
factors for movements of joints adjacent to the diagonal margin. The
~section of members along such margin is naturally twice smaller than
that of an\ordinary diagonal. Since the loading of the problem is
symmetrical dout this mergin, rotetions of marginal joints will be
considered only about axes normal to the margin.

In Figure 146, moment factors end balance vectors corres-
ponding to displacement of the marginal joint A are shown. In
Figure 147, a joint B, which is a short distance awey from the margin
is displaced. Since, in view of the symmetrical nature of the loading,
this displacement is assumed to be accompanied by a similar movement
of a joint located symmetrically on the other side of the margin, the
diagonal joining these two joints remains straight. This accounts
for the moment unbalance of the joint B and for the presence of the
balance vectérs.

Figure 148 represents rotation of the joint A about an axis
perpendicular to the margin. The values of the distribution factors

may be obtained by superposition of two rotations sbout the horizontal
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and vertical axes. In Figure 149, joint B rotetes about a horizontal
axis, while another joint symmetrically located on the other side of
the margin, verforms a symmetrical movement, i.e., rotates about a
vertical axis. The half-member BB'!' is in a state of pure bending with
moment equal to one half of the moments of the other diagonal members
at point B. In recording the balance vectors, first the two vectors
-.% each are entered, which trensforms joint B into a regular interior
joint, then the vertical vector + 4% is entered in order to neutralize
the moments corresnonding to rotation of an ordinary interior joint.
When checking moments, the vector arrows at the joints similar to B!
must also be included in the summation.

Since joints situated on the inclined mergin are permitted,
in view of the load symmetry, to rotate only about the axes perpendic-
ular to the margin it is necessary to break up their moments into
components oerpendicular and psrallel to the mergin. Vhile the former
arrows are neutralized by the moments coming from the other side of
the margin, the latter constitute the true unbalanced moments.

The rule for transforming horizontal and vertical moment
arrows is very simple and becomes evident from consideration of
Figure 150, in which the horizontal and vertical moment vectors X and
Y sre changed into vectors N and T parallel to lines at 45% with X
and Y. In line with previous convention, numbers N and T stand for

the values of the horizontal or vertical components of these vectors.

Therefore,
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X+Y
N = —3 —
(a)
T = _xi
2 b)
or X=N+T7 5
(b)
and Y=¥N-T

Another idea utilized in current checks of a framework
solution has been alluded to in the article on distribution factors,
and should be mede clear from comparison of the shear and moment
factors in Figures132 and 133. At any stage of distribution, the
shear at the end A of & framework member AB is equel to the algebraic
difference of the moments at the ends B and A.

The following routine in working out each cycle of distri-
bution hes been found convenient.

1. Determination of joint displacements by means of spproximete
reaction factors.

2. Introduction of these displacements into the framework,
accompanied by recording of the moments and shears at the ends
of the members, of the balance vectors, and of the unbalanced
joint moments and shears.

3, Distribution of moment unbalances by joint rotations, one
by one, accompanied by recording of the same functions as in 2,
The unbalanced joint forces now decrease some fifteen to twenty
times comnared to the original values.

4, Current check, consisting in the following procedure.

a. OSeparate additions of X components of joint moments



and balance vectors, ditto Y components and, thirdly,
unbalanced joint shears. FEach sum must be equal to the
original value of it before the distribution.

b. If any of these sums do not check, the end moments and

shears in all members are found by adding up individual items

on the members. The shears are checked against the
differences in end moments, as has been explained.

c. Unbalanced joint moments and shears are found by
addition of corresponding functions at the ends of the
members. Results are compared with the original figures of
joint unbalances, which are thus checked.

Lfter the summations referred to in 4 a,are found to check,

another cycle of distribution is carried out. It is believed that no

error can escape detection in this procedure, but on a few occasions

the discreponcy hes been found to be due to errors in the balance
vectors or even in a failure to enter these quantities at all., For
this reason special care should be exercised in dealing with belance

vectors, and it may even be necessary to go over them once more for

check.

The simplicity of the ratios between different values of
distribution factors mekes possible to perform distribution in round
figures. In order to avoid undesirable fractions the displacements
must be taken in numbers of units multiple of 8 and 16, and the

rotations in multiples of 24 or 12.

After completion of distribution a final check, similar to

the one used in plane stress, mey be easily carried out, although it
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is unnecessary if current checks have been properly followed. In this
final check the framework is given due displacements after which the
Jjoints are rotated, one by one, through the angles necessary to bring
about the moments found at the ends of horizontal and vertical members.
The state of deformetion, resulting from these rotations, must be the
true state of equilibrium, if the original solution is correct,
therefore, the end moments in the diagonals must agree with the origin-
ally found values, which constitutes the check. There is no need to
check shears, since they have been found in the last current check to
agree with the moments.

Interpretation of framework stresses into continuous moments
and shears of the bent plate follows the princinles explained in the
chapter on plane stress and will be mentioned here only briefly. All
- the plate functions per unit. length of plate, i.e., bending and
torsional moments M and shears Q will be found from the corresponding

framework joint concentrations K by formulaes

M=K, (0)1
K ’ for intermediate joints,
Q=122 @ [
and M=2K, (e)
for edge joints.
_ 2Ka (£) o ge J
=g

Concentrations K for shears and torsional moments are the
averages of the values on two sides of the joint. The absence of a
in the expressions for moments follows from the difference in
dimensions of the proportionality factors for shears and moments as

has been mentioned in Art., 6. It is assumed here that the plate is
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loeded with vertical loads and not with the load couples. Should the
opposite be true, the right hand sides of the expressions (c) to (f)
would have to be divided by a.

Some minor qualifications in using these formulae will be

mentioned later.

9. Problem of Bending of a Clamped Fdged Square Plate by a

Concentrated Load at the Centre.

A, Solution of the Framework,

An 8 x 8 square framework with Y’==§-, Figure 154, Plate 18,
is used in solution of this problem. Since the framework is symmetrical
about four axes a triangular octant of the structure is all that is
necessary to consider. Being axes of symmetry the two cuts, separating
the octant from the rest of the structure, do not rotate about the
axes parallel to them, so that the corresvonding components of the
joint moments are balanced by the moments coming from the other side.
Joints located along the clamped edge do not displace and do not rotate
about the axes parallel to the edge. Due to an oversight, they were
at first not allowed to rotate about thé axes perpendicular to the edge,
which left some torsional moments at the edge. This error was corrected
by an additional cycle of distribution at the end of the procedure.

The stendasrd distribution routine has been modified in the
first cycle, and the problem has been commenced by distorting the
framework according to Figure 151 (a). Numbers stated at the joints
represent their units of displacement, arrived at by réugh visual

estimation of the expected deflected shape of the plate. They are



all made devisable by 8, while the numbers along the inclined cut
are made devisable by 16 in order to avoid fractional shears and
monments., Numbers written along the members represent relative dis-
placements of the two ends. It must be realized that the actual
values of displacements are immaterial in this problem, and all the
numbers might have been taken ten times larger or smaller.

Shears and moments, corresnonding to these disnlacements,
are now entered on the distribution diagram. It may be observed
thet the shear values in the horizontal and verticsl interior members
are equal to the displacement numbers with proper signs, shears in the
horizontal marginal members equal to one half of the displacement
numbers, shears in the interior diagonal members are obtained by
dividing the displacement numbers by 4, while those in the marginal
diagonal members by dividing by 8. IEnd moments caused by these
displacements are found by dividing the corresponding shears by -2.

Horizontal and vertical balance vectors are now found and
duly entered. There is no need to find them for each member separately
since their total may be found more easily. This is best done by
adding up the displecement numbers, separately for horizontal,
vertical and diagonal members going each way, wherein the numbers on
the marginal members are divided by two, and by obtaining contribu-
tions to the balance vectors separately from each sum.

X and Y components of the umbalanced joint moments are now
determined and recorded. Unbalanced joint shears may also be

calculated, although this may be waived.
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The next step is to distribute unbalanced moments by
rotations about X and Y axes except for the joints along 45° margin,
which are rotated only about the lines normal to the edge. Rotations
are cérried out one by one beginning with lerger unbalances. It is
recommended to take into consideration, at least approximately, the
future influence of rotations of the adjacent joints, even though
such influence is not great.

If an interior joint (see Figure 13%c) is sllowed to rotate
to equilibrium, one third of the unbalanced moment goes into the near
end of the horizontal or vertical member parallel to rotation and
ﬁz into each diagonal. The far ends of the members get moments
twice smeller, This consideration allows to estimate the number of
the neceséary units of rotetion, and the influence of rotation of the
neighbouring joints. In order to avoid fractions the number of units
must be made a multinle of 24 for interior joints and of 12 for
marginal joints.

The added end moments, end shears and balance vectors must
be immediately recorded after each joint rotation. All affected
joints are gone over and the unbalanced moments modified by the new
additions, the old figures being simply rubbed out. If the unbalanced
joint shears have been recorded, they are also modified now. It is
desirasble to use coloured pencil for those joint moments and shears
which are balanced by restraints.

When the joint moments are all reduced to small values they
are checked as has been already explained in the previous article,

and this completes the first cycle. The end moments and shears,



resulting from the first cycle, may be seen in Fipure 152 (a) and
(b) as the first partial sums recorded on all the members nearest
the joint centres.

The unbalanced joint shears remaining after the first cycle
ere stated in Figure 153 (a), while the unbalanced joint moments,
which are small, are not shown. These shears are quite large, which
indicates that the assumed displacement curve is not the true one.

If the guess at the first éycle displacements had been correct the
joint shears would have been everywhere zero with the exception of
the edge joints and of the joint at the centre.

Joint displacements used in the second cycle are determined
by means of the reaction factors, Figures 136 to 140. These factors,
however, have to be adjusted in order to suit the peculiarities of
the problem. Since the plate and the loading conditions are symme-
trical about the four axes shown in Figure 154, a displacement of any
intermediate joint, such as 4, must be accompanied by similar
displacements of seven other symmetrical joints A, to 4,. Similarly,
a displacement of a marginal joint B is co-existent with similar
displacements of B,, B, and By. Therefore, in order to find a
reaction factor at some joint, such as M, caused by translation of the
joint A, it is necessary to superimpose the effects of unit transla-—
tions of the joints A, A,, A,, A,, Ag and A7 On M. Translations of
A, and As are too far distant to be felt at M. These factors will
be referred to as "influence factors", and the one at M due to

displacements at A, A,.may be found from Figure 139 to be
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f,0 = % [2 (0.228 + 0.029 + 0.002)] = 0.259, the reason for the

M4
coefficient %j being that the joint M is a part of an interior margin.

It mey be mentioned that the influence factors are subject
to the law of reciprocity, which may be proved by Bettifs theoren,
whereby fy, = foq. This has been used as a check of the determined
values of the factors, and in case of a minor disagreement the average
of the two may be taken as the true value.

The five sets of reaction factors, Figures 136 to 140, are
theoretically incomplete for determinatién of all the influence
factors, but the deficiency is immaterial and may be supplemented by
judggment. Furthermore, the reaction factors themselves are not only
approximate by their nature, but have also been determined approxi-
mately. All this accounts for certain lack of precision on the part
of the influence factors. Although they have done a good work by
cutting down unbalanced joint forces on each cycle some fifteen to
twenty times, it is felt now that it probably would pey to have them
calculated with greater accuracy.

Influence factors are shown in Table 3, Plate 24. The
second cycle displacements, found by means of these factors, are
presented in Figure 151 (b), while the results of two other cycles
appear in Figure 151 (c) and (d).

Each set of displacements is handled in the distribution
diagrams of Figure 152 (2) and (b) in exactly the same way as has
just been eplained. The total unbalenced joint forces remaining after
each cycle are shown in Figures 153 (2) to (c) and in Figure 152 (b).

These figures show how the joint forces everywhere, with the exception
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of the centre and the edge, decrease with each cycle until in
Figure 152 (b) they become negligible.

The technique of finding the displacements of each cycle
by means of influence factors is demonstrated in Figure 155, in
relation to the third cycle displacements. The procedure amounts
to a solution of nine simultaneous equations by approximations.
Figures at the heads of third columns may be recognized from Figure
153 (b) as the joint unbalances left after the second cycle. Succes-—
sive movements, recorded in the first columns and decided upon from
inspection of unbalanced forces, are introduced at various joints;
the corresponding joint forces, found by multiplication of the number
of units of displacement by the influence factors, are stated in the
second columns, while the resultant joint forces appear in the third
columns. New displacements are added until the remaining joint
forces are small. It is not an easy meatter to decide what should be
the values of the displacements, and it may be seen from Figure 155
that most of the movements have been underestimated on the first
trial, while the movement of the joint 1,0 has even been tken origi-
nally in wrong direction. Proficiency in this procedure depends
greatly on experience., The central joint has been left stationary
which simplified somewhat the work. In other problems this joint may
have also to be moved.

The final sums in Figure 152 (a) and (b) represent the
solution of the framework problem, which, however, is erroneous insofar
as the edge joints have not been allowed to rotate about axes perpen-

dicular to the edge, and, therefore, some torsional moments remain at
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the edge. This oversight has been corrected by allowing these joints
to rotate and by adding one more cycle of distribution. TFinal dis-
placements, shears and moments are given in Figure 156 (a), (b) and (c).

B. Plate Stresses by Framework and by Other Methods.

In connection with interpretation of results of framework
solution into the plate stresses, a few words must be said about the
signs. It is clear that the sign convention of the framework, determined
by the needs of distribution procedure, does not agree with the theory
of elasticity convention of Art. 1; this necessitates some sign conver-
gion before the results may be presented in form of stresses. How this
operstion should be done on shears is quite evident; in case of moments,
however, some explanation is necessary, and it is done by means of
Figure 157. The arrows K represent joint concentrations of the moments
externsl to the framework which correspond to positive M, My; Mxy\and
Myx according to the elasticity convention.

The numerical results of the distribution just accomplished
may be reduced to general form, corresponding to the action of a force
P at the centre of the framework, in the following manner.

Let letter K, with an appropriaste subscript, stand for a
joint concentration of bending or torsional moment, then, since the size

3
of the unit of moments, or the proportionality factor of Art.6 is %Ehf%,

3 =3
s 3 ER"A
= 3—- E/'aA Ky - or My = b az Kx - (2)

M, a
Since the shear concentration at the centre joint of the octant is
A
347.29 snd since the size of the unit of shears is —‘3— E/z37‘—2- >
= P .3_ 3 .é_. b
P =8 (847.29) 5~ Eb° S | (b)

Fliminating A from (a) and (b),



K D

W= 277832 ; (c)

which is the required expression.
Replacing K, with K, or K, , similar expressions for the
other unit moments result, Corresponding expression for shear per

unit length of plate is,

K. P_ ke P
Q "3578.32 a4~ 694.58 Ha ° (d)

where 4s is half side of the square plate.

Let k be the number of unite of deflection corresponding
to the given joint (Figure 156a), the size of the unit being 4 ,
which agrees with the size of the unit for shears. Then deflection

at that joint is,

S=xa . (e)
Eliminating A from (b) and (e),
_ K paz
T 2083.7¢% ER® (£)

It will be reminded that the deflections and the moments
found in this problem apply only to a plate with V= é’, although they
may be easily reduced to any other value of Y by formulse (11) and (12)
of Art, 2. The shears, on the other hand, are good for any V.

In order to check the method, the results have been compared
with those derived by Mercus @ end by Professor Timoshenko.” A few
words sbout their methods are in order.

The method of Marcus, referred to below as Method No.2, is
an epproximate one, based on the replacement of the differential
equations of the bent plate by the corresponding difference equations

obtained by using ratios of finite quantities for the derivatives)like
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(bW _ Wz,"W,
X a ) (g)
lazh/ w. -2 + W,

or 5L = 22/”* () etc.

Marcus divided the plate into the same number of squares as has been
done in the framework solution, namely 8 x 8, and used the corners of
those squares for the key ordinates w,, w,.... This makes the degree
of his approximation appear comparable to the one used in this
problem. Since the results of the comparison of two solutions have
been found not very satisfactory, an additional computation has been
made by the equations derived by Professor Timoshenko 0.

The latter method, called below No.3, is an exact one, and
its solution is expressed in the form of a combination of several
infinite series of trigonometric and hyperbolic terms. In order to
meke the solution workeble, terms sfter a certain number, have been
discarded by Professor Timoshenko, which made his final formulae also
somewhat spproximate., However, from & practicael viewpoint they will
be considered as exact.

Some of the results below are given by all three methods,
vhile others by only two or even one.

Figure 158 presents deflections by all three methods. The
framework figures are almost indistinguishable from those of Professor
Timoshenko, while Marcus' figures are everyvhere considerably out.

At the centre, for V ='§

Pec? PUa)
4 = 5.85955‘3- = 0.240 =5~ (k)

where 4a is one half of the side of the square plate.
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Moments M,, M, and sheers Q are steted in Figures159, 160
enG 161 respectively. Bending moments sre given also by two other
methods, and torsional moments by the Method No.3, while the figures
of shears sre supported by comparison with Method No.2 at the
perivhery points only.

ligreement of the framework moments M, with those by Method
No.3 is good, excent near the centre znd at a few points where the
moment values are very low., Method No.2 again comperes unfavourably
with No.1l, slthough its disadvantage is not so great as in deflections.

At the centre M, is theoretically infinite. The framework
method by its very nature cennot produce infinity, since it averages
the effect over a unit of framework. Therefore, the value given by
it for My at the centre should not be teken as en indication of the
true moment at that point. The same applies to the method of Marcus;
the flettened shape of his moment curve near the centre is not typical
for the moment conditions near a point of concentraticn. It apneers
that he has assumed the load P distributed uniformly over a certain
area near the centre.

It is the proximity of the point of application of load P
that is believed to be resvonsible for somewhat poorer nrecision of
the framework values of M, at points 1,0 and O,l.

The showing of torsional moments determined by framework in
comparison with the results of Method No.3 (Figure 160) is unexpectedly
poor, the difference being mostly around 15-20% with as much as nearly
40% of the true velue at the worst point.

The values of shear Q, by the methods 1 and 2 show an
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excellent agreement at the edge psrallel to Y axis (Figure 161),
while similar values at the other edge are badly out. Although the
method of Marcus does not appesr very relisble, the error in this
particular case probably lies in thevframewori method. No check has
been made on shears at intermediste points.

The same data on moments and shears by these various methods
are agein presented in the form of curves in Figures 162 to i66. The
curves of My and Qy are plotted from the equal'vaiues of My and Qy at
corresponding vpoints, since M, at point x, y is equai to My at the
point y, x. At the edge perpendicular to X axis %%f== Vo= j%z This
relation is satisfied by the framework values fairly closely.

The poor showing of the framework method in torsional
moments and in shears Qg at the edge x = 4a has been most disappointing
and unexpected in view of the excellent results with deflections &and
good results with bending moments and other shears. No explanation
of the discrenancy has been found, although it is believed thet
imperfect interpretation is at the root of the trouble.

In Figures187 to 169 are given by the same three methods
some of the functions for the nlate with y—= 0. The curves by Marcus
are borrowed from his book. There is a fair agreement of all three
methods in moments M and MY on the plane x = 0, excent near the
centre of the plate. Peculiarly enough, moment M, at the edge x = 4a
does not depend on the value of v, which may be seen from the eg-n
(12), £rt. 2, therefore, Figure 162 (e) may be referred to for the
curve of this moment for ¥ = 0. Figure 169 presents three different

functions, taken at the points along the diagonal of the nlate.
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These functions ares MXY; My, which is the bending moment cn the plane
normal to the diagonal, and My, bending moment on the plane of the
diegonal. Moments M; and Mp are computed from the formulee:

My = My = Myy , )

Mp = My + Myy .

The presumably true curves determined by the method of
Professor Timoshenko split nearly evenly the differences in ordinates
determined by the two other methods. It is evidently the error in Mxy
which makes the framework values of M, and My disagree with the true
values. The true value of M; or M, at the centre of the plate is
infinity. ‘

It may be concluded from these curves and diagrams that,
in the absence of adequate explanations of the discrepancies, the
framework method cannot be considered fully satisfactory at least for
determination of torsionzl moments and, possibly, shears, but even
with that it compares favourebly in accuracy with the method éf Marcus.
The results of the deflections and bending moments show that the
method is correct in its basic idea, and that the source of error lies
in some of its secondary features.

The framework method is of course very labodrious, but so
is the method of Marcus and on the strength of its presentation by
'its author one would not expect it to be less time consuming than the

-

method of this treatise.

As to the method of Professor Timoshenko, it has taken the

writer approximately nine days to compute the data oresented in this



162,

article from the apperently explicit formulae with all coefficients
given. The fﬁrmulae of this method are bulky and the series long, on
account of slow convergence, which, by the way, has been the reason
for not having calculated shearé by this method. In some cases it has
been necessary to include as many as twenty terms, and even after
that, a special investigation has been required of the error involved
in disregarded part. Difficulty has also been experienced in devising
any adequate check, The method, however, is the least labo¥rious of
all three, if the values of moments or shears sre recuired only at e
few definite points, and if the values of the besic coefficients are

known beforehand.
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III.

Conclusion

The most important peculiarity of the framework method
is its applicebility to a variety of unsolved problems of elasticity
in which the shape of the stressed body conforms to the rectangular
form of the framework pattern, and the points of application of loads
may bé adjusted to the locations of the joints, The following examples
will be cited.

The gusset plate problem of Chapter I may be modified in
such a menner that all truss members will be assumed as deformed
equally with the gusset plate all along their lengths of attachment,
instead of delivering to the gusset plate a uniform line loading, as
assumed in the problem solved. The framework bars coincident with
the attached parts of the truss members will have to be increased in
area, and the corresponding distribution factors modified. In this
form the gusset plate problem will, probably, be closer to the truth,
even though the deformsbility of the rivets will be left out of
consideration. |

In another problem, the plate, acted upon by forces in its
plane, mey heve different thicknesses in its different parts, with a
guelification, that the boundaries between them must coincide with
the framework bars.

The plate may also have rectangular openings of the sizes
multiple of the size of the unit. A few half size units will,

probably, be necessary near the re-cntrant corners.



The plate under plane stress may be a reinforced concrete
plate with reinforcing bars running in directions of the framework
members. The areas of framework bars will heve to be modified to
allow for reinforcing. It will be necessary to assume that no crack-
ing occurs. It mey be pointed out that the basic differential equation
of deformability will not hold in this case without some modification.
As an application of this vnroblem, stresses set up by shrinkage of
concrete at the junction of a wall and a floor slsb may be investigated.

It seems feasible to extend the method into the realm of
three dimensions in aoplication to rectangular elastic blocks, although
the manner of keeping record of bar stresses during distribution may
prove clumsy.

A variety of problems on bending of plates may also be
attacked by the framework method. OSome of the problems, however,
cannot be solved by the pattern with V'==é , and so, before the
extension of the method, the distribution factors for other values of
Y~ must be computed. A1l possible edge c§nditions may be handled,
although fixed edges are the simplest in distribution. Increased
plate thickness over part of the area, as in dronped panels of flat
slabs, presence of rectangular openings, also common in these
structures, strengthening of free edges by beams, preéence of
reinforcement, 2ll these features and some others, although increasing
considerably the labour of solution, may, nevertheless, be taken
care of by the method of this treatise.

Another field into which this method may possibly be

extended is the analysis of cylindrical shells with determination of
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both, the membrane stresses and the bending stresses caused by the
edge restraints.

As an interesting by-product of theoretical investigation,
application of the framework method to model analysis seems also
feesible, at least for the material with ¥ =% . Such framework
model of a plate in the conditions of plane stress may orobably be
more easily loaded, especially at the interior noints, than the
bakelite or rubber models, and the strains of the bar members may be
investigated in ordinary ways by strain gauges or by a microscope.

It will be remembered that the stresses in the plate
subjected to plane stress and loaded at interior points depend on V.
For this reason, when investigating a metal plate so loaded, a model
éf it in the form of a framework with )’==é- has an advantage before
photoelastic or rubber models with ¥~ = 0.4 - 0.5; in view of prox-
imity of the figure 3 to the actual values of Poisson's ratio for
metals, ranging‘within the limits ;& - é .

The distribution procedure, especially in the flexural
framework, seems quite involved to a beginner, but once experilence
has been gained, this feeling disappears, and all the necessary steps
are taken in a stride. A thorough familiarity with the values of
distribution factors, kinds of block movements and with the manner of
keening record is, however, essential in this kind of work.

The following remarks summarize the most important features

of the framework method.
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Advantages,

1. Applicability to a wide range of unsolved problems from

two-dimensional stress to bending of plates and shells.

2. Suitability to any value of V" and to all boundary condi-
tions.

3. Availebility of good checks.

4. Absence of any higher mathematics.

Disadvantages,

1. Great amount of labour involved in solution.

2. Impossibility of solving a part of the framework without

solving all of it.

3, Defects of stress interpretation.
4, Intricacy of the arithmetical procedure.
5. Large degree of devendence of proficiency on the experience

of the computor.
6. Limitation of applicability of square pattern to rectangular
plates.

Host of tﬁe work on the framework method, if this method is
going to become an established tool of structural analysis, lies ahead,
since the present treatise is merely its introduction. Among the
important tasks standing now before the investigator may be mentioned
further comparisonvof the framework solutions with the available
results of the theory of elasticity, research into the question of
stress interpretation, further improvement of the distribution

procedure, especially in flexural framework, and investigation into
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new types of patterns. Then, there is a wide room for extension of
the method to new problems and into new fields, some of which have
been mentioned. It is not an idle dream to suggest that should a
fraction of time and energy used now in some kindred lines of
endeavour, like the photoelasticity, be diverted to the study and

research in this new field, some very important results will ensue.
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/-0 +0.59/ |=1.839 |+0.48/|-0:/25 |+1.047|-0.075|-0.080|-0./23 {+0-024 |+0:0{(2
2.0 ~O- 14/ +0. 48/ |~/.900 [+0-643 [+0.2/4 |+1.09y |+0.254|-0.283 |-0.078 |+0.032 slo 2lo Ao
3.0 t0.026 ~0./25 |10.643|-2.068 |-0./46 |+0.2/% |*/-095 |-0./129 |-0.233 |+0.047
/-1 +0.09/ |+1,.047 |+0.2/14 |~0.146 |-2:166 |+/.109 |~0.305 |+0-/24 |~0./34 |0.007 3l 2l v
2./ ~0./35 |~0.075 |+1.094 |+0.2/4 |+/.109 |-3.80/ |+0.966 |+/.263 |-0.05/ |~0.143 sl 2
3./ +0.030 [-0.080 |+0.254 {+/.095 |~0.305 | +O-966 |~-4.414 |+0.253 |+0.995 0:285
2.2 ~0.004|~0.123 |-0.283 |-0.129 |+0./2y |#/.263 |+0.283 |-1.900 |+1.256 |+0./26 313
3.2 +0.012 |+0.024 |~0.078 |~0+233 |~0.13Y |-0.05/ |+0.995|+/.256 |-4.0/2 |+/.134
3.3 +0.00/ |+0.0/2 |+0.032 |+0.047|~0.007{-0./43 |~0.285 | +0./126 |*+/./34 |~2.20Y

Table 3.

[ntlvence Fz-zcll‘or's.
for S7uare Plate with C/am/bea/ Ec{?es.

/Vumber'mj of Jornls. |
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Fig. 152 6.
Shears.

End shears in members are subdivided inlo
four cyc/es with sSummaries stlated .

Shkears on opposile ends of same member are equal

and oplqosxfe /r 6/'_7/7-

These Torces at left edoe are reversed Peacf/on.g

and at The QJ'O//zZL ~reversecl acfmy force .

ornt’ forces after ‘/:/c/es are slafed /n circles.
A

Qo 1T
S | :
AR
H 0 PeS h
Tl
b |° 199
SRt
+ 1 +
=28
+196.8;-97.2
|96 ~9-96; -9¢.-16
2
~1.08; ~97.24
-2 -6/  +656 -723  -)24
-88 +400 -7 42
-6 +/89 +57
(a)
~64 34 After /st cyc/e.
%
+122-5 +/1.6 -9./ +/3./ -34%8.2
+186-7. |t35.4 -9 ~-5.8
+54.9 +39.5 -15.3
(b).
ekt 56 After 2nd cyc/e.

Az

+/29.3 +2.42 +0.16 +0.6 -3Y46.44
+203.67 |tl.0/ =1y ~2.29
+72-68 +4.89 ~0-2Yy
(C)
4537 | 7036 After 3rd Cyc/e.
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