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1.

STOPSIS

This treatise is an exposition of the framework method of

stress analysis and of its application to two fields of elasticity,

that of two-dimensional stress discussed in Chapter I, and the field

of bending of plates treated in Chapter II. Main justification for

introduction of this new method lies in the fact that in both fields

mentioned, solutions of the theory of elasticity are available only

in a limited number of special cases.

The framework analysis is essentially an arithmetical

procedure applicable to any problem within the above classification,

dealing with a rectangular plate. The results are only approximate

but believed to be fairly accurate in most cases.

Both the idea and the development of the method are original,

except perhaps for the general background of the method of moment

distribution of Professor Hardy Cross. By the time the main features

of the method had been established, the author's attention was called

to papers by W. Riedel)0 and K. Wieghardt 2) dealing with the same

subject of plane stress by framework, but in a somewhat different and

more restricted manner. Figure 17, Chapter I and supporting discussion

have been somewhat influenced by the second of these papers. At the

same time the author became aware of application of string network to

deflection of a thin membrane in the paper by Christopherson and

Numerals refer to items in Bibliography.9'A..'



Professor Southwell3) in connection with torsion of a triangular shaft

and in the book of H. Marcus in connection with bending of plates.

The presentation of the subject in the two following chapters

proceeds along similar lines. First, it is demonstrated that the

state of two-dimensional stress and strain on the one hand, and the

flexural state in a bent plate, on the other hand, are faithfully

preserved if the solid medium is replaced by a framework of articulated

elastic bars of infinitesimal size and of certain definite patterns

extending over the whole plate, while the acting loads and the restraints

are left unchanged.

Theoretically, the size of the unit of pattern must be

infinitesimal in order to imitate truly the mechanical behaviour of

the continuous material, but such framework would be impossible of

solving, and, for practical reasons, the size of the unit is taken not

only finite, but fairly large, so as to make the solution less laborious.

An extensive investigation is conducted into various types

of pattern, satisfying the conditions for equivalence of the framework

and the plate, and the framework constants, i.e., the cross-sectional

areas of the members in two-dimensional stress and the moments of

inertia in the flexural state, are determined. Triangular, rectangular

and square types of pattern are thus examined in Chapter I and two

square patterns in Chapter II. Peculiarly enough, most of these

patterns are capable only of imitating a solid material with Poisson's

ratio one-third, however, a square unit applicable to any value of Y-

has also been found.



A method of successive movements, a procedure reminding

moment distribution of Professor Hardy Cross, and consisting in

moving joints and groups of joints, one after the other, toward

equilibrium, has been adopted in solution of two-dimensional frame-

work. A special form of keeping the record of stresses has been

devised and the quantities known as "distribution factors" have been

derived for use in the process of balancing the framework.

A more elaborate procedure of bringing to equilibrium a

flexural framework has been made necessary by the greater number of

degrees of freedom of the joints in such framework. Quantities known

as "reaction factors" and "influence factors" have been devised in

addition to the distribution factors, and with their assistance the

distribution has been made possible.

The method of successive movements has proved to be a

workable equivalent of a great number of simultaneous equations, which

otherwise would be required in order to solve the problem of framework.

The labour of distribution may be considerably lowered by

the use of the principle of symmetry and antisymmetry, when dealing

with symmetrical plates. Thus, should a plate be symmetrical about

two axes, and should it be loaded with an unsymmetrical load, it is

possible to find the required solution by solving one quarter of the

plate four times and then combining the results.

The last step in the framework method is the interpretation

of the framework or conversion of the bar stresses into the plate

stresses. Simple rules are given for this operation both in plane

ii



stress and in plate bending.

The test of two-dimensional framework method comes when it

is applied to solution of a deep rectangular beam carrying a uniform

load - one of the few cases of rectangular bodies whose exact solution

by elasticity is known. Square frameworks with f= and 9-=O are

used in solution and later the number of units in the former framework

is doubled in order to determine the speed of convergence of the

approximate solution to the true one. The results have been found

gratifying, especially with -= 1

A somewhat generalized gusset plate at the top chord of a

roof truss has been selected for the second problem handled by square

framework with 9~=j . After the first solution the number of units

has been doubled and the problem rasolved. A close agreement of the

two sets of stresses has been found.

The flexural framework with Vf=-L is tested on an example

of a square plate with clamped edges loaded with a concentrated load

at the centre. The results are compared with those derived by an

approximate method of difference equations by H. Marcus') and with

exact formulae of Professor Timoshenko 7). On strength of comparison

with exact solution the framework results are excellent in relation

to the deflections, good for the bending moments, but unsatisfactory

with regard to torsional moments and some shears. The discrepancy is

attributed to imperfect stress interpretation. Most of the framework

results are better than the ones by the method of Marcus.



5.

In conclusion, some unsolved problems susceptible to

handling by the framework method and some new fields, into which the

method may be projected, are discussed briefly, and the advantages

and disadvantages of the method are enumerated.



I.

Framework Method Applied to Two-Dimensional Stress.

1. Plane Stress and Plane Strain.

Two-dimensional problems of the theory of elasticity are

characterized by independence of stresses from one of the coordinates,

taken here as z, which means that the stresses are dependent only

on x and y.

There are two kinds of two-dimensional stress problems,

plane stress and plane strain. In the former type 6 = 0 and so

are and , the stress system being thus limited to 6 and

Zxy only. This state of stress represents fairly well what happens

in thin plates when they are acted upon by forces lying in their planes,

and distributed uniformly throughout the thickness, with no forces

acting normally to the plates.

The state of plane strain or plane deformation occurs in

long prismatical or cylindrical bodies under the action of forces

constant along the length, and having no components in the longitudinal

direction. The deformations produced are such that 63 =0 , so that

the points do not move in the direction of length. is not zero here

but it is independent of ,and is expressible through 6 and 1Y.

At the same time and are both zeros.

In both these types of two-dimensional problems a thin slice

cut out from the body by sections perpendicular to axis may -be

considered as representative of the state of stress in the whole body.



Theoretically, the three independent stress components

65, , 6' and x , characterizing a two-dimensional state of stress,

can be found by solving three differential equations pertaining to

this condition in such a way that the .stresses or displacements found

satisfy the stress or displacement conditions at the boundary. These

three differential equations for plane stress are as follows:

+ ± + X =0 } (a)
+ + Y =0(a

( -6' ) + .- (6' - '6x) =2(1 + ) -(b)

For plane strain the first two equations are the same, but

the third one is somewhat different, and may be obtained from (b) by

replacing )fwith .

Equations (a) are derived exclusively from statics by

considering an infinitesimal element of the body, and are independent

of any physical characteristics of the material. The third equation

is an equation of continuity and elasticity. When it is first written

in the form,

+ ' = (c)

it merely represents the statement of geometric continuity of the

material. Strains are replaced by stresses by means of elasticity

conditions, which in the absence of are:

Ey= (-f();(d)

-2(1 +f)L .E)g-

~)Pc-ces 21/-2 3.



8.

and that transforms (c) into (b). Equation (b) thus implies that the

material retains its geometrical continuity after the deformation and

at the same time behaves according to the laws of elasticity, as

characterized by the constants E and t.

Equation (c) holds also for the plane strain, but relations

(d) do not hold in view of 0 0,and as a result, the following

equivalent relations are present instead of them:

:1 1 -- ")b -x f(+ )6-y (6'x- 6)

6 ( rz6- (+ 6x(]- 6 (e)

2(i+f) 2___

yE E/y-

Their substitution into (c) results in the third equation

of plane strain, equivalent to (b) in plane stress.

A comparison of equations (e) with equations (d) shows that

deformability of a material with elastic constants E and V- under

conditions of plane strain is the same as the deformability of a

material under plane stress with elastic constants E' and V' such that

E= E

Since the first two differential equations are identical for

the two kinds of two-dimensional stress it is evident, that the

stresses 6;, 6 and %, under plane strain conditions are the same as

the corresponding stresses under plane stress in a material with

elastic properties modified according to (f), acted upon by the same

forces in the presence of similar boundary conditions.
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The differential equations (a) and (b) taken by themselves

allow an infinite number of mathematical solutions, but among all

these there is only one which represents the true physical solution.

This is the one that satisfies the boundary conditions. Determination

of the proper type of function, capable of satisfying both the

differential equations and the boundary conditions, presents in most

cases a formidable mathematical problem. Apparent inadequacy of

known mathematical functions and methods accounts for the paucity of

the solved cases, and at the same time provides an inducement for

discovery of methods other than those of pure mathematical analysis

such as the one described in this treatise.

2. Framework Analogy

Imagine a plane framework of bars of infinitesimal length

and cross section joined by means of pins perpendicular to its plane

and forming the same ever-repeating pattern in all the parts of it.

The framework so formed is given the same external outline and

dimensions as the thin plate subjected to plane stress, which is under

investigation. Furthermore, the same forces and boundary conditions

are imposed on the framework as on the actual plate, which it proposes

to replace, all the forces being applied at the framework joints.

The action of external forces, imposed on the framework,

causes direct stresses in the bar members and produces elastic

distortion of the structure. A conception of "stress in the framework",

as distinct from stresses in individual bars, will be introduced now
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and will be made analogous to the ordinary idea of stress in

continuous material. Referring to Figure 1, the stresses on plane

AA are defined as,

ZPO) 1.-)
and Vx (a)dxd~

in other words, normal stress on any plane in the framework is simply

the sum of the normal components of bar stresses on the length dx of

this plane, divided by dx, with a similar definition for the tangen-

tial stress.

This definition implies that the size of the pattern a is

considered an infinitesimal of a higher order than dx, otherwise the

value of stress would be indefinite, depending on inclusion or

exclusion of the last bars that happen to be on either side at the

ends of the length dx. However, once a is of the second order of

smallness compared to dx the presence or absence of these bars in the

sum is immaterial.

In special cases the relation of plane of stress to the

framework pattern may be such, that the manner of cutting of the bars

by the plane repeats itself continually along the plane. This is the

case for planes BB and CC in Figure 1, the repeating length being

designated by / . It is clear that should the plane of stress satisfy

this requirement the length ./ may be taken in place of dx in equations

(a) and the sums of stress components will naturally refer to this

repeating length.

A question arises as to whether it is possible to devise the

form of the infinitesimal pattern of bar arrangement and to determine
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the geometrical properties of it, such as cross-sectional areas of

bar members and the angles between them, in such a manner that the

stresses in the framework, as well as the deformations and displace-

ments will be identical with those of the plate prototype, whose

action the framework purports to imitate. This question can be

answered by reference to the differential equations of the two-

dimensional stress. The two equations of statics are applicable to

the framework just the same as to a continuous material of plate in

view of the similarity of the definition of stress in both cases.

The third equation, expressed in terms of strains, (c), Art.l, is

equally applicable, but its other form (b), Art.l, written in terms

of stresses, holds only if the framework satisfies the deformability

conditions (d), Art.1 or (e), Art.l. Should this be the case, the

framework stresses are subject to the same differential equations as

the stresses in the plate prototype, and in the presence of similar

acting forces and boundary conditions they are bound to assume the

same values as the corresponding stresses in the original plate.

Furthermore, equality of stresses leads to equality in deformations

and displacements, so that the framework becomes a true full-scale

model of the plate. The necessary and sufficient condition for a

complete mechanical equivalence of a framework and plate is therefore

the deformability of the framework in accordance with the laws of

elasticity described by the constants E and Y-. The form of the

pattern, satisfying these conditions, is suitable for any two-dimen-

sional problem, involving a material of the same E and f, irrespective
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of the nature of the applied forces and of the boundary conditions.

The conclusion just reached may be also arrived at from the

general consideration of the mechanical behaviour of the plate and

of its frame analogue. Forces acting on the body are transmitted

through it, on the way to reactions, creating a state of stress and

deformation, whose character is determined by two factors only,

statics and elastic deformability. In order to make the influence of

these two factors felt in the framework in the same manner as in the

plate, it is necessary to prescribe infinitesimal size for the mesh

in order to satisfy the first factor and an equal with plate deform-

ability in order to satisfy the second.

In connection with the latter requirement, it may be stated

that the framework should have no preferred directions as to its

deformability.

5. General Remarks on Pattern.

Determination of pattern consists in assumption of a certain

form for it and in testing its suitability, deriving at the same time

the values for the necessary geometrical characteristics. While it is

not inconceivable that some irregular pattern may be applicable

theoretically, the practical use of such pattern would be inconvenient.

For this reason, only forms possessing two axes of symmetry have been

tried and- such axes have been consistently used for the coordinate

axes.

In the following discussion, conditions of plane stress are

assumed everywhere, except when it is specifically stated that plane



strain is

preferred

following

2(b), and

1.

being considered.

The law of elastic deformability of the framework with no

direction may be conveniently stated in terms of the

three conditions, explained with reference to Figures 2(a),

2(c), although other equivalent formulations are possible:

The framework is loaded uniformly with load p per unit

length on X plane and /p on Y plane, Figure 2a. The

resultant deformations should be the same as in the plate

prototype. Therefore,

= (a)
LEt

Gy = 0 (b)

where t is the thickness of the plate. The deformations of

the framework E, and EG are expressed in terms of the

geometry of the framework and of the cross-sectional areas

of the bars, assumed to be made of the material with the

same E as the plate.

Thus, the first condition results in two equations (a) and

(b) serving to determine the framework characteristics.

2. Reversing the planes X and Y on which the loads P and pb

are applied, two similar equations are produced, Figure 2b.

IV

(c)

(d)

13.
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It will be noted that the equation (c) is not independent

and follows from (b) by Betti's reciprocal theorem. The second

condition gives thus only one new equation (d) for determining the

framework characteristics.

3. Uniform tangential load p per unit length is applied on

X and Y planes, Figure 2c,and the resultant shear deforma-

tion is,

(e)

The four independent equations (a), (b), (d) and (e) allow

to determine four characteristics of the assumed framework pattern.

Should the number of characteristics be larger than four, the ones in

excess of this figure may be assigned at will and should the number

be less than four, the pattern type is either totally unfit or else

is suitable only with some additional qualifications, as will be

explained later.

In this discussion of the number of equations available for

determination of the framework constants it has been assumed that the

geometrical properties of the framework are different in the directions

of the two axes of symmetry X and Y. If, however, the framework has

similar properties in X and Y directions, condition 2 does not provide

any new information, not contained in condition 1. In that case,

only three independent equations, (a), (b) and (e) are available for

finding the pattern constants.

A little thought will show that a framework type possessing

requisite deformability under the three above mentioned load conditions
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will deform properly in any state of uniform stress, since any such

state may be considered as a superposition of the three cases

discussed.

Kinds of Framework,

4. Triangular Pattern.

Framework of Figure 3 is characterized by three constants,

c4, A and A,, where A is the cross-sectional area of each vertical

bar, and A1 of each inclined one. Since the pattern is different in

X and Y directions four equations are available for finding three

constants, and consequently the type may prove suitable only under

some special conditions, which become apparent after completion of

the analysis. The size of the mesh a may be considered as an

arbitrary infinitesimal length, and the problem consists in finding

the constants in terms of a, E, f- and t, the latter being the thick-

ness of the plate prototype.

Condition 1. Referring to Figure 3, let P be the horizontal

load per joint, i.e., per vertical length 2b, and let S and S, be the

stresses in the vertical and in the inclined bars respectively. Then,

in view of the fact that the plate prototype has no vertical extension,

the vertical loads per joint are alternately S and (VPCotoc - S), since

'L =C-0to',

Before writing the equations (a) and (b) of the previous

paragraph it is necessary to find the stresses S and SI.

From a horizontal equilibrium of an outside joint:

2 S, Coso = P
or

2 CosOl
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From the vertical equilibrium of one of the upper outside

joints

S + 2 S, Sino( =VP CotL -S; or

S = Co tot -S SinO( = -Coto( - tan =-
S 2 t1c 2 ( V'-CoITO- tano,)(b)

Having found the bar stresses it is not hard to find the

strains of the framework 6., and Ey

S E ( V-Cotk - tan of (c)AE2AE

Unit strain of the inclined bar is

6 (d)
AE 2A,E Coso((

The three lengths which before the deformation are a, b and

( form a right triangle both before and after the deformation.

Therefore,

a =t 2 - b2

Differentiating,

ada = [df - bdb (e)

These differentials may be considered as the corresponding elastic

changes

da = 6x a;

dt = 6tPaat = 6 =- 2 A, ECoszo( i

db= 6 =2 ( v-Coto( tan o( ) TanoL= (- tan o ).

Substitution of these values into (e) gives,

2A,a2 a2a tan ( - tanz
2 A, E GAs 2AE

or p ' I ran V(- -(tnf)e -=i [ACs- A )
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Elastic extension of the plate prototype in X direction is

2a tano( Et , and Y direction zero.

The two equations of the framework, therefore, are:

P [ _ tano&- tan) _ P(I-?
2E ACOs o. A I 2a tcznot Et (g)

and ( VCoto( -tan o() 0; (h)
2A E

After simplification:[ I anot((0-tankoI) (i-V)z
A, cosot A ]= at tanga

anzo = (h)

Condition 2. In Figure 4 the framework is-loaded with horizontal

forces Prano per joint and vertical forces S and (P-S) at alternate

joints. The same symbols S and S, designate the stresses in the

vertical and inclined members, although these valuds are, of course,

different from the first case. As before:

Si = tan P 04 (k) and2 -cso

S + 2 S. Sino( = P-S or

S S1 Sin( = f (1 - tan .) (1)
2 2

G AE 2AE (1 tan20N )m)

while the determination of G is not needed.

Equating ey to FaVE gives the third equation:

(l- -tano() PO-) or A= (n)
2AE 2atE A -(

Condition 3. The framework is loaded with horizontal forces P

per joint apd vertical forces P tnot per joint as shown in Figure 5.
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Vertical members are evidently unstressed, while members inclined in

one direction have stress + S,, and those inclined in the other

direction - ,.

From equilibrium of an outside joint:
p

2 Si Coso4 = P ; or Si = 2Cse (P)

Deformation of a diagonal member

S,P Pa
dl = 2 E c sit (r)

Considering the distortion of one of the triangles ABC

(Figure 6) and assuming that the vertical member keeps its alignment

in space, the displacement BD of the vertex B will be vertical in

view of the equaland opposite in sign deformations of the members AB

and BC. Shear strain of the framework

x = LDOB D a S 2A P
Cl ctSrnoc = 2A 1EShOL-os20(

Equating this value to the shear strain in the plate under

corresponding shear loads the fourth and last equation is obtained:

p - P = P2 i+t)
24,ESoOtCosiO ~ 2atq5 2atE

Al = 2. (s)
12 (/+ v) Sin Q( Cos zoc

Equations (g,), (h,), (n) and (s) should be solved for A, A1 and ec.

From (h1 ) tan oc V;7:

Then from (n) A at ; (t)

From (s) A, = ~Z-\V y

Substitution of these values into the remaining equation (g1), which

must also be satisfied, leads to Y~=. With this value for Y~

expressions (t) become:
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ol = 500
(u)

A= A,= at .

Thus, a triangular framework may be used in plane stress

problems as an analogof a material with only one value of >'~ = ;

the triangles must be equilateral, and the cross-sectional area of

each bar must be A = 2 at t, where a, is the side of the triangle

and t the thickness of the plate prototype.

5. Simple Square Pattern with Intersecting Diagonals,

The type shown in Figure 7 consists of squares with two

intersecting diagonals in each. All horizontal and vertical members

have the same area A, while all diagonal members an area A1. It is

immaterial whether to consider the two diagonals in each unit as

totally disconnected or pinned at their intersection at the centre.

The pattern is characterized by two constants A and A,. The number of

equations available for determination of these is three, since the

fourth equation drops out on account of identity of the framework in

x and y directions. It may be expected, therefore, that the pattern

is suitable only for some particular values of Poisson's ratio.

Condition 1. The framework is loaded with horizontal forces P

per joint and vertical forces itP per joint (Figure 7). Determine

stresses in the members. Since the framework has no vertical

extension,S2 = 0. From vertical equilibrium of an outside joint

Si = \ , and from horizontal equilibrium of an outside joint

S + \/Z Si = P or S (1-9) P. The horizontal strain in the

framework is 6. A = (a) ,while the vertical strain is found
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on the basis of deformations in the horizontal and diagonal members

in the following manner, similar to the previous article, see Figure 8.

b2  12 - a2 and bdb = ldl- ada -(b)

db bE65= a ,

da= aE ex

SS, tPaV2 t-Pa
l A1E v A,E - AE

Substituting these expressions into (b)

VE = N - V~ = ( -V2 ) (c)
l AE' AE F A, A

Equating Ex to ai and 6- to zero

(1-t)P p(-}2)P at
A E atE or A (d)

P tV& )=-ty'VA t
and Ig ( - A) 0 or A - %F A V2 at (e).

Condition X!.' When tangential loads P are applied at outside

joints, as shown in Figure 9, the horizontal and vertical bars are

unstressed, while the diagonals are stressed with equal tensions and

P
compressions S, = and consequently, are changed in length by

the amount A 5 (f) which transforms each square into a

rhombus see Figure 10. The shear strain of the framework is

found from

tanS
4a-2- Z a aV

1rA t7 fa -tan 2 - Py,
Since tan (3 - 2 /_+___n__fa /+ I fxy

the equations (g) and (f) give

2 P v2(h)
ry =a - A,E



21.

Equating this expression to the shear strain of the plate gives the

third framework equation

P V P P 2() from Which
A, E atG atE

A, t(k)

A, can satisfy expressions (k) and (e) only if

CZ t V2-- at; which gives:

; A= at, and A= at - (1)

Thus, the type of the pattern considered here is good only for the

same particular value of Poisson's ratio 9,= .

6. Rectangle With Two Diagonals.

It has been expected that transformation of the square form

of the previous pattern into an oblong would make the framework suitable

for imitating a plate with any arbitrary value of the Poisson's ratio

in view of the fact that four equations would be available to determine

four characteristics, i.e., three areas and one ratio of the sides of

the rectangle. For this reason an analysis of an oblong framework has

been undertaken.

Condition 1. The framework is loaded with vertical forces P and

horizontal forces 2 as shown in Figure 11, where k is the ratio

between the horizontal and vertical sides of the rectangle. The

stresses produced in horizontal, vertical and diagonal members are

designated respectively by S, S, and S2 while their respective areas

are A, A. and A2. Since there is no deformation of the framework in



22.

horizontal direction S, 0. From statics:

Y-P
2 S 2 CoS( =

S + 2 S2 Sin (= P

since k = Cobt.

or S2  2,kCos.c

or S = P - = P(1t< 1

Vertical strain 6 =

Strain in the diagonal Ce =Co
2 FcCo.ou A 2 E

From Figure 12

(a)

(b)

(c)

(d)

bdb = ld

from which

1 - ada or Ex Ka = E61 - 6y a

6x= [2KCoso(AzESIn&~ AE

The first two equations of framework are:

katE
or A = at

Q1- Y')

9-p p(I--$)- =- 0
2k Cos ca S/nccAzE A E

v-a t
A2 2-) Co Scol Sinic

(f)

leading to

(g)

Condition 2. With loads as in Figure 13,

S = 0 , then by statics

a - /2,r o ;S2 Sicp

Therefore, E, = E (1- yk 2)

and the third equation is,

p P(_-__)

A,E (1- ika) - __E

and SI P - 2 S2 Coso( =P (1- -k 
2);

(h)

/-okz
or A = - a - (k)

Condition 3. Under shear load, as shown in Figure 14, only

diagonal members are stressed with compressions and tensions

AE

(e)

and
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p
S2 2 Coso( , and the change in length of a diagonal is

Pa2CG5os Snoe Az E which after substitution for A2 Of its

PSm/ /7 -. VA )
expression (g) becomes t ) (1). The shear

strain of the framework (Figure 15) then is:

Ssecot P(i-t )
a - k tc E (M)

and the fourth equation of the framework is

____-_) P 2(+')i(/tciE' =- katE1+ which after simplification gives
I'Vtta E k at E>

while the ratio of the sides of the oblong K cancels out. Substi-

tution of this value of into (f), (g) and (k) gives,

3 3d-I
A 3ta;(1

A (3-k2) ta ; (2)

3 (1+k2)/2

Thus, a somewhat unexpected result of this analysis is that

the oblong framework, like two other previously discussed types, is

only capable of representing a material with Y -=- , while the ratio

of the sides of the oblong k may be arbitrary. The repeated

recurrence of the figure j , which by the way is not far from the

true value for metals, presents a curious fact.

It may be mentioned in brackets that outside of the range

-<X.</1- the areas A or A1 in expressions (n) become negative,

which makes the framework outside of these limits a physical impossi-

bility. That, however, does not make the framework any less suitable

for use in calculations in connection with problems of two-dimensional

stress.
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7. Square Pattern for an Arbitrary Value of .

It has been seen that unsuitability of the triangular and

square patterns of framework for any arbitrary Poissonts ratio is

traceable to deficiency in the number of the pattern characteristics

by one unit. Therefore, it has been expected that introduction of

an additional characteristic should remedy the situation.

Figure 16 represents the framework of square pattern

modified by introduction of auxiliary horizontal and vertical members

pinned to the diagonals. The cross-sectional area A2 of these

auxiliary members is the third characteristic of the pattern in addi-

tion to A, the area of the main horizontal and vertical members, and

Althe area of the diagonals, both inside the square centre portion

of each unit and outside of it. The centre portion, or heart, is

made a square one-half of the size a of the unit.

Deformability of this type of framework will be computed on

the basis of displacements of the main joints, i.e., the joints at the

connections of the main horizontal and vertical members, in other

words, strains in the framework will be measured by changes in

position of the main joints. The external loads may be applied at the

main joints only.

It follows from the conditions of equilibrium of the

secondary joints that under any loading the four auxiliary members of

each unit carry equal stresses. Parts of each diagonal inside and

outside of the heart are stressed differently, but the two outside

parts of every diagonal are stressed equally under any loading, which

is evident from equilibrium of the two secondary joints on the same

diagonal.
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Condition 1. As shown in Figure 16, the framework is loaded with

vertical forces P and horizontal forces )~P at the exterior main

joints. Since Ex = 0, the stress in the main horizontal members

S3 = 0.

From horizontal equilibrium of an outside main joint

tP

S1 = (a). From vertical equilibrium of an outside joint

S =P - \F2 Sl = (1-v-) P (b). From symmetry and from the fact

that all four auxiliary members have equal stresses it follows that

the heart remains square in shape after the deformation. This consid-

eration permits to determine the stresses S2 and S,, , since from

elastic considerations =-- 1 , and from statics of a secondaryj2  A +,

joint S,0 + V-2S 2 =S, -P where from

3P
S/0 V2 +2A

At

and S = -2 2 +v'z1

Strains between the main joints are:

vertical S = = A
; _ AE

(c)

(d)

(e)

1+5, + I~A

and along the diagonal 6t = _c, =- A,

As was shown in article 5

ex =- (ldl - bdb)=26 -6 =ae e - E A, Q+ t ~ A E

The two equations of framework are:

(-I.)P (-/_ )P at

AE atE or A (h)

AA

(f)

(g)

(j)
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Condition 3. The shear loads P, applied to the framework in

the same manner as in Figure 9 cause no stresses in the auxiliary

members, which follows from considerations of symmetry. Therefore,

all that has been said in connection with this condition in the

article 5, dealing with simple square pattern, is equally applicable

here, and leads to the expression (k) of that article:

at

V/z (/+ -V')

This value substituted into (j) gives an expression for A2 , which

completes the set of values for different areas:

at
A = (4)

+Y
A = (5)

A2  at (6)
a 2(/-)(-29)

It may be seen that the previously discussed simple square

pattern is a special case of the form now considered, since for

= , A2 = 0, and the auxiliary members thus disappear. A and A,

are always positive, while A2 may be either positive or negative.

As V varies between its physically possible limits 2 and 0, A2

changes all way from plus infinity through zero to - jat. The negative

sign of A2 makes impossible construction of a physical model of the

framework for values of t below L , but it does not affect its

applicability in computations.

Attention is called to the fact that the type of the pattern

here considered may become structurally unstable under compressive

stress, in view of the absence of elastic restraint to rotation of the
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heart about an axis perpendicular to the plane of the framework. This

instability, however, does not affect the bar stresses, which continue

to be unique, as long as the distortions are small. Mathematical

suitability of the square pattern with auxiliary members is thus not

impared by instability.

The type discussed in this article completes the list of

patterns that have been investigated. Other types are, of course,

conceivable.

8. Applicabiliy -of Discussed Patterns to Different and to

Plane Strain.

The square pattern for t=3 , by virtue of its simplicity,

has important advantages over the square type for any arbitrary f;

for this reason, it is profitable to handle problems involving

materials with any - by means of simple square framework for Y =

Such substitution is perfectly correct if the boundary conditions are

represented by some known forces or stresses applied at the boundary,

with no external forces acting within the boundary. Stresses under

these circumstances do not depend on V. This deduction follows from

independence from t-of the Airy's stress function in the absence of

the body forces. 5

If, on the other hand, external forces are applied within

the boundary, or the boundary conditions involve some restraints to

displacements, then the state of stress depends on Y-, and substitution

of a framework with a different 9' is not correct.

5) Pag e 25.



Thus, the applicability of any framework with Y=

is really much wider than what might be expected from its title.

The present discussion explains the reason for prominence given the

framework with 9 = in this treatise.

Formulae developed so far for the values of pattern

characteristics have presupposed the presence of plane stress. If it

is necessary to apply the framework method to plane strain, these

E
formulae should be modified by replacing E and Y with Ez and

-7respectively, as has been explained in article 1. It follows

from this, that the first three types of pattern will be suitable in

plane strain problems only for a material with ),- determined from:

= or f = -

The necessary areas of bars in the square pattern with

auxiliary members will be

A (1-fI) at , (4a)

(#- (-
A1 = at-- .m(5a)

A2 - (q 1 ( - at (6a)
2 2(/-3 Y-)

In calculating deflections, the bars must be considered as

endowed with modulus of elasticity . In all these expressions

E and t are the true modulus and the true Poissonts ratio of the

material subjected to plane strain.

9. Framework With Finite Size of Unit.

It will be recalled that a framework of a suitable pattern

is strictly equivalent to a plate only if the size of the unit is

.............

28.
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infinitesimal. However, solution of such infinitesimal framework

would not be in any way different from solution of the plate prototype

since it would apparently require handling of the same differential

equations and boundary conditions.

In order to make the framework method suitable for practical

use the size of the unit must be taken finite, which transforms the

method from an exact into an approximate one. As a justification for

this procedure a hypothesis is propounded that the use of finite

units results in a fairly close approximation of stresses and deforma-

tions to their exact values, even if the size of the unit is fairly

large.

This statement seems plausible if it is realized that the

bar stresses in a finite framework satisfy exactly the equations of

statics for a portion of the plate separated along any section, and

at the same time they satisfy, to some measure, the requirements of

continuity by virtue of continuity of the framework at the joints.

Therefore, the plate stresses, obtained by proper interpretation of

these bar stresses, may be expected not to diverge far from the true

ones.

This consideration, however, does not constitute a proof

of the above statement. It is felt, that the truth of the hypothesis

can be demonstrated only by comparison of a number of framework

solutions with the solutions by the theory of elasticity. One such

comparison will be given later. Since its results are good, it

carries with it a strong argument for the soundness of the hypothesis,
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although, of course,a single example cannot be taken in all fairness

as a conclusive evidence.

Theoretically, the framework method may be applied to any

plane stress problem irrespective of the boundary conditions and of

the character of forces. Figure 17 shows a plate of a curvilinear

outline indicated by dotted line, acted upon by forces applied both

at the boundary and at interior points. A framework of proper pattern

and size of unit is inscribed into the boundary. The acting-forces

are all transferred to the nearest main framework joints by statically

determined pairs of bars, such as ab, aN or fh, fg etc. This procedure

implies that the deformation of the marginal area of the plate between

the dotted line and the boundary of the framework proper, i.e., the

lines NA, AB, BC etc., is disregarded.

Use in the same problem of units of different sizes or even

of different patterns is theoretically permissible. Half-size units

near the border may bring framework closer to the actual boundary.

Marginal bars of the framework, i.e., bars on lines NA, P3,

BC, CD etc. must have areas equal to one half of the areas of regular

bars. This requirement should be evident, if one considers deforma-

bility of framework near the edge in conditions of uniform stress,

referred to in previous articles as conditions 1 and 2. For the same

reason, a bar belonging to units of different kinds, such as ABC in

Figure 18, should have an area which is average for the two kinds.

Framework of any rectangular pattern is a structure highly

statically indeterminate. To illustrate this point a two by three

simple square framework, Figure 19, will be considered, although the



31.

same reasoning applies to the oblong framework. Assuming no restraints

of the joints, there will be found one statically unknown quantity for

each square of the first horizontal row and for the first square of the

second row, with two unknowns for each of the subsequent squares of the

second row. This makes the total number of unknowns eight. With

joint restraints the number of unknowns will be even higher.

Squares with auxiliary members have the same number of

unknowns as the simple squares, since from comparison of these two

kinds of units it follows that the more complicated type of unit

possesses four more joints and eight more members than the simpler

type, so that the number of additional equations of statics, eight,is

just sufficient to determine eight extra stresses.

In triangular framework the statical unknowns are less

numerous, so that a two by three structure of Figure 20 has only two

of them.

Large number of unknowns shows the formidable character of

the problem of framework stress analysis (at least with rectangular

units) and presents a good reason for keeping down the number of units

by increasing their size. At the same time this puts limitation to

applicability of the method to plates of curved or irregular outline

and to the use, in the same problem, of units of different types,

which would tend to multiply the number of unknowns.

These considerations restrict the use of triangular pattern

to plates bounded by straight lines at 600 to each other, and make the

square and rectangular patterns primarily useful only for plates of
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Method of Least Work.

Application of this method to framework is in no way

different from its use for stress analJysis of statically indeterminate

structures in general. The large number of simultaneous equations for

determination of statical unknowns makes the method very laborious and

virtually unusable when many units are involved.

B. Solution by Displacements.

Referring to Figure 19, each joint has two degrees of

freedom and two components of displacement caused by the elastic

distortion of the structure. Without interference with the structural

action of the framework one of its joints may be considered fixed and

the freedom of another restricted to one degree. Taking components of

displacements of different joints as unknowns, expressing in terms of

them the stresses in all the members of framework, and setting up two

equations of statics for the stresses meeting at each joint, a system

of simultaneous equations is obtained, involving joint displacements

as unknowns. Three of these equations are not independent from others

since the external forces acting on the framework, which naturally is

in equilibrium, must satisfy three equations of statics. In example

of Figure 19 this procedure results in a system of 12(2)-3 = 21

simultaneous equations against eight by Least Work.

simple rectangular outline. Only rectangular patterns will be dealt

with in the following discussion.

10. Outline of Methods of Framework Stress Analysis.

32.

A.1
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The relative disadvantage of this method in comparison

with Least Work is decreased as the number of units is increased, and

as restraints are added to the framework, since such restraints add

to the number of statical unknowns but cut out some of the displacement

components.

The displacement method has been discussed here not for its

value in itself, but rather because it leads to a method of successive

movements, used throughout in the present investigation, a method

which is in reality a practicable adaptation of the displacement method.

C. Method of Successive Movements

If the elastic displacements of the joints are found and the

joints are brought into their true displaced positions, the stresses

and external forces applied at each joint are mutually balanced.

Instead of finding displacements from equations, one can make guesses

at them, one after the other, on the basis of forces applied at

different joints, displace the joints one by one by amounts guessed,

calculate after each displacement the stresses in the members, brought

about by these displacements, and from the bar stresses determine the

remaining unbalanced forces at the joints and correct them again and

again by similar procedures until a close balance is established at

all joints. This constitutes the essence of the method, which, as may

be easily seen, resembles somewhat the method of moment distribution

of Professor Hardy Cross.

A circumstance highly favourable to use of this method in

framework analysis is the identity of the pattern in all parts of the
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framework. For this reason, if a joint gets a unit horizontal

displacement while the adjacent joints remain fixed, stresses brought

about in members radiating from it are the same as the stresses in

corresponding members caused by unit horizontal displacement of some

other joint. Such stresses or rather values proportional to them will

be referred to as distribution factors, and their determination will

be undertaken now.

11. Determination of Distribution Factors,

A. Simple Square Pattern.

Let joint 0 (Figure 21) move upward a distance A , while all

adjacent joints are held against any movement. Question is, what are

the stresses brought about by this action.

According to (1), Art.5, the areas of horizontal and vertical

members are A = - at, and of diagonals A1 = at. Stresses in

horizontal members are evidently zero. Stress in vertical members is

AESA -3A
S =-a g-EtA. (a). Since change in length of a diagonal is -,a 18 V2

itsstessisS~ A,E - - 3Vzits stress is S1 C- /6 EtA (b). H or V component

of Si = -l EtA (c).

It is not the stresses in the diagonals but their horizontal

and vertical components that are used in balancing the joints. It will

be noticed that comp. S:3 = S :1. The figures 9and 1 are the

distribution factors of the simple square framework. They are simply

-- ~ + stress components corresponding to certain joint

movement parallel to one of the axes, the value of the movement not

being stated as immaterial. Distribution factors possess signs. On



35.

the side toward which the movement is made they are negative for

compression, and on the opposite side, positive for tension. Their

values are shown in circles in Figure 21. It is emphasized here that

the values for diagonals represent not the stresses, but their vertical

or horizontal components.

The distribution procedure will be described in full detail

later; however, in order to give now some prelimInary idea of the use

of these factors, reference is made to Figure 22, representing a part

of the framework, whose central joint is acted upon by a vertical

force 100 and by a horizontal force 50, indicated by arrows. It is

required to move this joint toward balance.

The joint is first moved upward 32 units, which causes

stresses 32 and 8 in verticals and diagonals respectively, as recorded

on the corresponding members. By the way, 8 is, of course, not the

stress but a component of it. As a result of this movement, unbalanced

forces 8 appear at the joints A, C, E and G and unbalanced forces 32

at the joints B and F, as shown by the arrows, while the force 100 at

the joint 0 is reduced to 100 - L(4) 8 + (2) 321 4.

All this means that an unbalanced force 96 has disappeared

from joint 0, while two forces each equal to of it have aopeared at

the joints B and F, and forces equal to j of it have come to joints

A, C, F and G. Horizontal unbalanced forces have also come to the

latter four joints.

A similar procedure disposes of a larger part of the

horizontal unbalanced force 50. The additional stresses caused by the
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new movement and the resultant unbalanced forces are all recorded

on the diagram.

It will be recalled that a marginal member has an area,-

twice smaller than that of an interior member parallel to it. For

this reason its distribution factor is also twice smaller; this is

indicated in Figure 25, giving factors for a horizontal movement of

joint 0 to the right.

Factors corresponding to movement of a marginal joint in

the direction normal to the margin are in no way different from the

regular values of these factors.

B. Square Pattern With Auxiliary Members.

In view of similarity of the distributed factors in all

four units adjacent to the joint undergoing a displacement, it is

quite sufficient to consider a single unit, Figure 24, whose joint 0

moves upward a distance d , while adjacent main joints A, B, C do

not move. The four inner joints move as much as necessary for

eauilibrium.

The areas of the members have been found in (4), (5), (6)

a t a t 3t--atof Art. 7 : A A = a and A2 = at

Stress in the horizontal member AO is evidently zero, while stress in

the vertical member,

AEA _ ___S = A = , (d)

It has been pointed out that the four auxiliary members

carry equal stresses S7, while the two outer portions of each diagonal

are also stressed equally. Symbols Sa and S are selected to desig-

nate these latter stresses. The subscripts a and p stand for the
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words active and passive, which suggest whether the ends of the

diagonal in question move (active) or do not move (passive).

Of five unknown stresses Sa' Sp, Sao' Spo and S2 only the

first two are needed for conversion into distribution factors, the

remaining three have no importance in themselves.

The following five equations are available, two of which

are of statics and three of deformation.

1. From equilibrium of an interior joint of the passive diagonal

Sp = S2 \/ + Spo (e)

2. Same for the active diagonal

Sa = S2 V + Sao (f)

3. The total length of the passive diagonal remains unchanged

Sp + Spo = 0 (g)

4. The total length of the active diagonal changes by

Sa + Sa a \/A (h)
2 AE (

5. The deformation of the heart of the unit is such that

elongation of ED - (elongation of EH + elongation of HD), see
V2.

Figure 24 and 25. This follows from the fact that the diagonals remain

or gonal after the deformation, since the auxiliary members stay equal

in length.

S2a (Spo +Sao) a 1 (k)

A2 E Vf5 2 \5 EA1

The following expressions are obtained from the solution of

these equations.
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Sa =J Et A (1)

Sp= - 3W-S P L/ j.pl2) EtA ~ (n

Sao = 2 EtA (n)

Sp3 Et A (p)

S Et A (q)

Thus:

Eta
S = (a2 (d)

V or H Comp. of SQ = ., (r)

V or H Comp. of Sp = 8( 2 Et A (s)

The distribution factors designated by f with proper

subscripts are taken proportional to these values as follows:

f =1;

f - '_ (t)a 8(-v)

f= aQ )4) .J
It is needless to say that for the members on the compres-

sion side of the displaced joint the distribution factors have the

same expressions only with minus signs. The value of the factor for

a marginal member adjacent to a joint, which is moved parallel to the

margin, is again .

It will be noticed that if the heart of a unit is cut by a

section, such as XX in Figure 24, the resultant of the stresses in the

three bars cut is equal to the stress in the outside part of the

diagonal S-0 or Sa, as the case may be, and the statical effect in any

part of the framework is not altered if the units are imagined as having

simple diagonals carrying proper stresses Sa and SP without any

auxiliary bars. For this reason, the distribution procedure in this

M9WMW6*ftWM -- - - _,.,JNWAdM*_
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type of the framework is identical with the simple type discussed in

the previous article, except for different values of distribution

factors and for the fact that on displacement of a joint both diagonals

of a unit adjacent to it get stressed, while in case of framework for

'~= only active diagonals are affected.

Equations (t) may be rewritten in terms of the reciprocal

of Poisson's ratio, m =

f = 3-MP 8(r-i) '(7

Numerical values of these factors for different values of

m are given in Table 1, Plate 214.

Attention may be called to simple round figures of the

factors for a number of different values of m, such as 2, 3, 5, 7,

11 and a . This simplicity has much to do with the ease of carrying

out the distribution, and with the practicability of the method in

general. The framework with m = 3 is, however, the easiest of all to

handle, in view of the absence of stress in the passive diagonals.

C. Oblong Pattern.

Horizontal Displacement. The areas of the members according

to equations (1), (2) and (3), Art. 6, are:

A 3 ta, A 1 = (3-1j)ta and A, 3 ta.

Elongation of horizontal member is A , while that of the diagonal is

ACoso( (see Figure 26).



A,Es 3 3-kc

H Comp . Of S 2 (__ _/ ) H

The distribution factors are obtained b

stresses in proportion) so that S, becomes unity.

fS =1 )
2

SH= 2(3-.uZJ)

(v)
EA__

ta cag t hEts;(w)aV/f IC?

~changing these

(8)

The letter H in the subscript signifies that the correspond-

ing factor refers to horizontal component of the stress in the

diagonal, and that the movement of the joint, causing it, is horizontal.

Vertical Displacement. While elongation of the vertical

member is A , that of the diagonal is A Sin oL . (see Figure 27)

S =.3 3K2_ EtA (y)

/ 3 +3

\V-/+g / 16 0(z V)t;

Distribution factors are:

fs 2

82V P_ (3 i)
(9)

Distribution procedure in oblong framework involves a

complication, which has been absent in square framework,~ and which

arises from inequality of the vertical and horizontal components of

stresses in diagonals. It will be recalled that each joint displace-

ment is accompanied by recording on the corresponding members the

stress components caused by that displacement, so that the remaining

unbalanced forces at each joint may be easily found by adding proper

40.
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components. While in the square framework one figure written on the

diagonal member suffices to show either of the two components of

stress in it, since they both are equal, in oblong framework two

figures might apparently be needed on each diagonal. Such double

recording would complicate considerably the distribution form, and

would make the method less workable.

Fortunately, however, there is a convenient way out,

obviating the necessity of keeping double sets of figures on the

diagonals. It consists in dividing, before the distribution is

started, all horizontal acting forces, i.e., forces parallel to long

dimension of the framework, by k, while the vertical acting forces

are left unchanged. After that, the distribution is proceeded with

in ordinary manner, using the values of the factors just derived in

(8) and (9) and writing single values on the diagonals. As this

procedure is followed, figures written down on the members after each

horizontal movement have the following meaning: on the horizontal

members they are i times less than the true stresses, and on the

diagonal members, x times less than the horizontal components of

their stresses, or else, equal to the true values of their vertical

components. Therefore, it is correct to balance the latter directly

against the results of vertical distributions, representing true values

of vertical components and stresses.

The distribution procedure with oblong framework may then

be summarized as follows:

1. Divide all horizontal acting forces by k.
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2. Distribute all the vertical and the modified horizontal

forces in an ordinary manner, using the factors (8)

and (9).

3. Interpret the resultant figures on the members in the

following manner: figures on the vertical (short)

members are the true stresses in them; figures on

horizontal members should be multiplied by K in order

to obtain the true stresses; figures on the diagonals

represent the true vertical components of their stresses.

Numerical values of the distribution factors for different

values of K are given in Table 2, Plate 2L1.

It may be observed from equation (2), Art. 6, that for

< =\, A, = 0, i.e., the horizontal members are absent. For

I >V3, A, becomes negative, which,however, does not affect the

solution. A and A2 are always positive.

12. Distribution Procedure in Simole Square Framework.

A. General.

Single joint movement parallel to one of the axes, explained

in previous article, forms the basis for distribution procedure, but,

although it has its proper place, its exclusive use would be highly

cumbersome. In order to shorten the distribution and to make it more

practicable, block movements are resorted to. Any such movement is

quite legitimate as long as the stresses brought about by it may be

clearly visualized. It does not pay to undertake too complicated a

movement, whose stresses could not be easily calculated mentally, for
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fear of error. As long as the stresses are properly calculated and

recorded the continuity of the framework is preserved, although the

statics is not satisfied. The purpose of movements is to work closer

and closer toward the state when all joints are in equilibrium. An

error in recorded stress is tantamount to break in continuity of the

framework.

A number of typical movements is given below. Although the

movements are general to any kind of the framework, the values of

stresses given all refer to simple square pattern for > =. It is

reminded, that what is referred to and recorded as stress in the

diagonal is actually its V or H component.

B. Types of Block Movements, V 3 .

a. Movement in a row, Figure 28. All joints, but F, G and

H remain fixed. Joint F moves a units to the right which causes

stress a in EF and stresses + -! in the four diagonals radiating from

F. At the same time, joint G moves b units away from F, i.e., (a + b)

units altogether, and joint H, c units away from G, i.e., (a + b + c)

altogether. It will be noticed that while the horizontal members are

atb
stressed b and c, the diagonals meeting at G carry stresses + a

and the diagonals CH and MH have stresses c All the stresses

thus produced can be easily calculated mentally, and there is no

difficulty visualizing the signs of stresses in the diagonals.

b. Movement in a row in a marginal panel, Figure 29, is

analogous to the one just discussed. The only difference is due to

twice smaller cross-sectional area of the marginal members compared

to the interior ones.
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c. Combined movement of a corner joint, Figure 30.

Joint A at the corner of the framework moves a units down and as

much to the right. Stress in the diagonal by superposition is

evidently a.

d. Shear distortion, Figure 31. The lower row of joints

or the whole lower part of the framework, is moved horizontally 4 K

units. All diagonals of the panel get stressed with + <.

e. Direct stress, Figure 32. All lower part of the

framework is moved down bodily a units. All verticals of the panel,

except the marginal ones, are stressed a, and all diagonals are

stressed .

f. Interior block displacement, Figure 33. Block BDHF is

moved to the right a units. Members AB and EF are stressed a, while

all diagonals affected carry stresses + G whose signs may be

visualized.

g. Rotation about an exterior joint, Figure 34. The right

part of the framework is rotated about 0, so that joint E moves

horizontally a units to the right. Therefore, joints F and G move

2a and 3a units respectively, which explains the stresses produced.

A modification of this movement is illustrated in Figure 35,

in which there are two equal rotations in opposite directions about

01 and 02- Joints B and E move away from each other 4 units each,

joints C and F, as well as D and G do likewise, only move proportion-

ately farther.

Rotations, such as explained in the last two examples are

advantageous in problems involving antisymmetry, such as bending of
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a simple beam. This point will be discussed fully later.

h. Rotation about an interior joint is illustrated in

Figure 36, in which the block OABC is rotated about point 0.

k. Shear combined with tension, Figure 37. In this case

lines AB, EF and GH are rotated separately through equal angles in

the same direction about the points A, E and F. Stresses in the left

vertical bay are the same as in case of rotation of Figure 34, while

in the portion of the framework to the right of AD all diagonals are

stressed + .
-4

All these movements and some of their combinations, as well

as the single joint displacements are used in the distribution. Just

which of these movements should be selected at any time, and how big

should be the distortion is rather hard to state. General principle

is, of course, to work towards balance of the framework and to move

those joints first that are most unbalanced, but the ability to apply

this principle to the best advantage depends mostly on experience. On

the other hand, improper movements do not invalidate the work, but

only retard the progress.

C. Technique of Distribution and Manner of Recording.

The technique and the form used in carrying out the distribu-

tion are explained on an imaginary example of Figure 38. It is felt

that the use of any of the actual somewhat complicated problems for

the purpose of explanation may lead to confusion.

Figure 38 represents a 2 x 3 framework acted upon by forces

applied at most of the joints. A colored pencil is suitable for
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stating these forces and their arrows on the diagram. The four top

joints are assumed restrained in vertical direction, while one of them,

A, is prevented to move at all. The problem may be considered to

represent one-half of a symmetrical plate loaded symmetrically, the

line of restraint AD, corresponding to the axis of symmetry.

It was pointed out in the previous article that the motions

of the joints are accompanied by shift of the unbalanced forces from

joint to joint, while the algebraic sum of the unbalanced components

at all the joints remains constant at all times. The purpose of

distribution in the present problem is to shift vertical unbalanced

forces to the line AD where they may be resisted by the restraining

reactions, and to move those horizontal components, that will not get

mutually balanced, to the joint A, the only joint restrained against

a horizontal motion.

No reasons will be given for the motions which bring the

framework into a state of near-equilibrium. A bona fide solution

would require more movements, and that would only obscure the technique.

Each movement is accompanied by recording the stresses on

the members affected, using a plus sign for tension and a minus for

compression. When this is done, all the joints at both extremities

of the affected members are gone over, and the unbalanced forces

acting on these joints are modified by taking into consideration the

newly added stresses. The resultant state of equilibrium of each

joint is recorded by means of vertical and horizontal arrows, with

appropriate numbers, in the direction of unbalanced forces. The
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original figure is simply rubbed out and replaced by a new one.

After that, a new movement is carried out and the procedure repeated.

The following movements have been used:

1. Shear movement of the joints on the line KN to the right,

causing stresses of + 10 in all diagonals of the lower horizontal

bay.

2. Vertical compression movement causing stresses -4 in all

interior verticals, -2 in marginal verticals and -1 in all

diagonals.

3. Rotation of the block EHNK about the joint E. As a result

of it the verticals BF, CG and DH shorten 8, 16 and 24 units

respectively, the latter vertical being a marginal one getting

a stress -12. The diagonals get stresses: FA and FC, -2;

GB and GD, -4; and HC, -6.

4. Horizontal movement on the middle line, in which joint G

moves 8 units to the left and joint H approaches G by 4 units.

Diagonals radiating from G get stressed + 2, and diagonals HC

and HM, -3.

5. Similar movement on the bottom line with joint L moving

away from M, 8 units, and K away from L, 20 units.

6. Same on top line, with the members AB, BC and CD stressed

in ension respectively, 6, 10 and 12.

The joint forces remaining after all these movements may

be seen in Figure 38 near each joint in form of arrows. While most

of these arrows represent unbalanced forces, those at point A and the
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vertical arrows at the other top joints are balanced by the reactions.

However, in spite of this, they must be recorded for the purpose of

check, as will be explained presently. In order to distinguish these

forces from the unbalanced ones and from the acting forces, it is

advantageous to use for them a pencil of a different colour.

In making the movements it is not nractical to attempt to

achieve a close balance of any of the joints at once. The best

procedure, facilitated by simplicity of the ratio of the distribution

factors exactly one to four, has been found to be as follows. If

the unbalanced forces are expressed by thousands, first use distortions

in round figures of thousands and hundreds of units. After some time,

when the remaining unbalanced forces get reduced to hundreds, use

distortions expressed in tens of units and so on. It is never wise

to use small or fractional distortions when there are still fairly

large unbalanced forces.

In any given problem it takes a certain amount of time to

lower the order of unbalanced forces by one unit, this time being

roughly independent, whether the order is lowered from thousands to

hundreds or from hundreds to tens, etc.

D. Current Checks of Distribution.

In spite of the great simplicity of calculations associated

with the distribution and consisting mainly in addition, subtraction

and division by four and two of round figures, after hundreds and

thousands of these actions, mostly made mentally, errors are bound to

crop in. In a solution requiring sometimes several days to accomplish

it would be unwise to proceed to any great length without some
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effective checks at regular intervals, and a method of distribution

would be useless without such checks being available.

Two types of possible errors may conceivably occur. First -

recording wrong stress on the member, the error consisting in wrong

number, wrong sign or in an omission to record a stress in the member

at all. Such an error is equivalent to failure to preserve continuity

in the framework.

The measure adopted to remedy this sort of error is to go

over the distribution after every 4 - 8 hours of work, dotting with a

coloured pencil every stress that has been found correct. Experience

has shown that, although the original sequence of movements is likely

to be forgotten by the time of checking, the kind of every movement

can always be reconstructed and the check can always be accomplished.

ExceDt for one or two times early in the game, this check

has revealed no errors and for this reason it has been discontinued in

the last few problems on distribution. After experience has been

gained, this check is scarcely needed, if the work is carried on

carefully and without hurry.

Second kind of error is incorrect joint force resulting from

erroneous addition. The effect of this error is that a joint, which

is apparently in equilibrium, is actually out of balance. The

exoerience has been that no reasonable amount of care insures freedom

from this error. Fortunately, however, an easy check is available,

consisting in adding up the joint forces and comparing the sums with

the original ones.
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In the example of Figure 38, the sums of the active forces

at the beginning were 65 f and 15-- and the sums of the joint forces

at the end, including the coloured arrows on the top line of joints,

are found to be equal to the same figures, and this constitutes the

check.

If there is a discrepancy, all the joints are gone over, and

the joint forces are recomputed and compared with their previously

recorded values. As a preliminary step for this operation the bar

stresses must be found by adding up several figures resulting from

separate movements. This is shown in Figure 38. Recomputation of the

joint forces is facilitated by the use of the form shown in Figure 39,

reproducing this calculation for the problem of Figure 38. The form

is self-explanatory.

No error in joint forces will be left undetected after this

check. However, it has been found unwise to rely too much on it and

to compute the joint forces at the time of distribution hurriedly or

carelessly, since this check consumes considerable time.

It has been found most satisfactory to use this check two

or three times in the course of a complicated distribution, applying

it every time when the order of unbalanced forces has been lowered by

approximately two units. The last application should follow completion

of distribution.

E. Final Check.

Although proper current checks, as described in the previous

sub-article, make an error in the distribution improbable, it is

desirable to have some method of testing the correctness afthe final
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result, especially if some of the checks have been waived. This can

be easily done in a small fraction, perhaps one tenth, of the time

required for original solution of the framework.

First step in this final check consists in distorting the

structure in such a manner that all horizontal and vertical members are

stressed to the values found in solution. This usually can be done in

a number of ways, and anyone of them is permissible, if it is consistent

with the restraints of the structure. Stresses present in the diagonals

after this distortion are generally not their true stresses.

Second step consists in giving the structure shear distor-

tions, so that the stresses in some diagonals get changed to their

true values. All remaining diagonals must then also get their true

values, which constitutes the check.

Figure 40 represents such a check of the solution of Figure

33 by means of the following operations:

a. Distortion of the left vertical row, keeping joint A

fixed, so that the stresses in AE and EK are -2. Then stresses in the

diagonals are: in EB, -1; in EL, +1; in KF, -2.

b. Similar operations, in succession, on the other vertical

rows, keeping the top joints fixed in order to satisfy the conditions

of restraint.

c. Distortion of the top horizontal row, leaving joint A

stationary.

d. Distortion of the row EH. In the absence of prescribed

restraining conditions, joint H has been assumed stationary, although
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any other joint might have been taken as such.

e. Distortion of the bottom row, with joint K assumed

stationary.

Stresses in the diagonals are added up and found different

from the true stresses, for which reason two additional ooerations are

necessary:

f. Horizontal shear distortion of the lower bay of such

magnitude that the stress in any of its diagonals assumes its true

value. By comparing stresses in members FF in Figure 40 and 38 the

required shear distortion must be such as to produce stress + 1 in

diagonals parallel to EF and - 1 in the opposite ones. After applying

this distortion the bottom bay diagonals are all found correct.

g. Shear distortion of the top bay causing stress - 3 in

diagonals parallel to AF and + 3 in the ones parallel to EB. After

this movement the values of all top diagonals check.

It is evident that vertical shear distortions are not

necessary since they would be inconsistent with the conditions of

restraint at the top line of joints, however, had the framework been

free at that line it would be required to superimpose some additional

vertical shear distortions.

13. Distribution in a Square Framework with V= 0.

The whole procedure of distribution and recording described

in the preceding article in connection with square framework for

= holds good for a square pattern involving any other value of

9, although the numerical values of distribution factors are different,
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and the pattern of arbitrary /' possesses a peculiarity of causing

stress in the passive diagonals.

In view of some work, referred to later in this treatise,

involving square pattern of Y' 0, the distribution factors and the

stresses for some simple block movements in this type of pattern are

given here.

As is evident from Figure 41, a simple.displacement of one

of the joints results in equal and opposite in sign stresses in the

diagonals of the unit. Since ar distortion of a unit is merely a

combination of displacements of its four corners, stresses in the two

diagonals of the same unit must always be equal and opposite in sign.

This peculiarity of the square pattern for V 0 accounts for some

additional curious properties noted below.

Figures42 and 45 give stresses due to row movements in

interior and marginal rows. They are all computed by superposition

of the values corresponding to the movements of separate joints.

Figure 44 refers to the displacement of the framework corner along

the diagonal.

Figure 45 shows stresses caused by a horizontal shear move-

ment; unlike the previous movements, the stresses of this case are

the same as for V'= .

Figure 46 corresponds to a direct stress distortion. A

peculiar feature of it is that the diagonals are unstressed.

In the internal block displacement of Figure 47 the diagonals

above BD and below FH carry the same stresses as in the framework with
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In rotation about point 0 of the part of the framework to

the right of 0 G, represented in Figure 48, the diagonals in all three

units are stressed equally.

According to Figure 49, if the parts of the framework to the

left and to the right of the bay shown are rotated about 01 and 02

away from each other through equal angles, the diagonals stay unstressed.

14. Reduction of Distribution to a Different Value of Poissonts Ratio,

Square patterns for ir, other than are more complicated to

work with than for f for two reasons. First, there is participa-

tion of passive diagonals and the computer has to remember two values

of distribution factors instead of one, i.e., one value for active and

the other for passive diagonals. This condition, of course, causes the

stresses corresponding to block movements to come out more complicated,

except, perhaps, for V'= 0.

Apart from this general condition, applicable to all f',

there is a second difficulty affecting those YP3, whose factors are

not expressed in round figures. Thus, for f= 0.3, fa = and

f - . Evidently, with such values of factors, dental computa-

tions during distributions are impossible, while the scheme of working

in round figures, first, in hundreds of units, then in tens, etc. also

falls through.

This second difficulty is particularly serious and it makes

a direct solution for a Poisson's ratio like the above mentioned

,-= 0.3 impracticable.
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There is, however, a method by means of which the difficulty

may sometimes be overcome. This method, described below, allows to

reduce a solution made for one value of Poisson's ratio to a different

value of it; in other words, the problem may be solved for a convenient

value of ', and then a second solution is made for the difference in

S

Let fa and f, (Figure 50) be the distribution factors in

the active and passive diagonals for a certain value of K, in other

words, they are the stresses in the diagonals or rather their compo-

nents, when the joint A has been displaced vertically an amount

necessary to cause stress unity in the bar AB.

Consider a unit of Poisson's ratio f~ in a framework that

has been solved for certain load conditions. Let the stresses, (i.e.,

components of stresses) in the diagonals of this unit be Xa + Xp in

one of them and Ya + Y in the other (Figure 51). The part of the

stress Xa is caused by the active participation of the diagonal EG,

i.e., by movements of the joints E and G, while the passive part Xp

is caused by displacements of the joints H and F. Similarly, Ya is

the result of movements of H and F, whole Yp is due to motions of E

and G. Stresses in the horizontal and vertical bars of the unit are

S, S1 , S2 and S3.

Suppose now that the framework, while holding the load, has

,changed its value of Poisson's ratio from V' to 1'-' and m has changed

to mit. The question is, how would this change affect the values of

bar stresses.



Let the values of distribution factors for y ' be fat and

fp'. From (7), Art. 11,
= +|_ 3-Mn
a8( /-/) and fp

Therefore, fa - pa' - f' and

fa' -fa fp' fp (a)

Call the ratio r = - 3-7 /b

Now, imagine that all the movements by means of which the

framework of ) has been balanced are repeated on the framework f1

and in doing that the joints are given each time the same number of

units of displacement as was the case originally in the framework )'.

As a result of this, the horizontal and vertical bars are carrying

now in framework f'I the same stresses as they were carrying before

in the framework 9-, even though their strains are different by virtue

of different areas.

The stresses in the diagonals are, however, not the same as

before. Thus, the diagonal EG carries more stress by the amount:

CX Xa+ fpx
ff4  f p

which by using (a) and (b) transforms into

Ax= ) (Xa + ).

Evidently, PX p = Ya , therefore,

Ax =A Y =a (Xa + Ya) (10)

because the same expression must hold by analogy also for the other

diagonal of the unit.
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The original stresses were in static equilibrium at all

joints of the framework; the stresses which are present now in the

framework f I are different from the original ones by the extra stresses

in the diagonals 4 X and Z.Y, and, consequently, they are out of

equilibrium to the extent of these extra stresses. Therefore, it is

necessary to make a distribution in the framework 'I for these extra

stresses in the diagonals, which condition is shown in Figure 52. A
of th5 solafhon

superposition of the result on the original distribution in the frame-

work )-gives true stresses in the framework V-1.

The unbalanced forces caused by A X will be small if f ' is

close to V, consequently, the distribution for them will be brief,

which is the justification of the method. It is possible to make for

convenience this second distribution using framework Y'instead of f '

and to apply later a second correction for Poisson's ratio.

Equation (10) is inconvenient because, containing only active

stresses in the diagonals, it requires a separation of stresses into

active and passive parts during the distribution, which is not ordinarily

done. This difficulty, however, is absent if = , because in that

case the active stress Xa becomes the total stress X. Substituting

fa the equation (10) becomes for = .

4 X = A Y = (4 fa - 1) (X + Y); (10a)

Thus, reduction of a solution made for = to some other

close value of V presents no difficulty. All that is necessary is

to load the framework t' with stresses in the diagonals according to

(10a), do the distribution, which should not be long because the
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unbalanced forces are small, and superimpose the result on the

original distribution in the framework Y'.

15. Doubling the Framework.

A. General.

As the size of the framework unit is decreased the frame-

work solution anproaches that of the theory of elasticity. Although

the orecision of such solution is generally not certain it may be

tested by cutting the units in half, re-solving the problem and compar-

ing the results. A close agreement should indicate that the stresses

found by framework are not far from the truth. This doubling of mesh,

however, nearly quadruples the number of joints and lengthens greatly

the distribution. Any method, therefore, that may shorten the

procedure would be welcome.

It has been noted that while in the process of distribution

the framework, whose continuity is always preserved, passes through a

number of configurations approaching closer and closer the state of

equilibrium. It stands to reason that if the joints of the doubled

framework are brought into the positions of equilibrium of the previous-

ly solved structure with twice larger mesh, the unbalanced joint

forces of the doubled framework would be not large, and the lengthy

distribution may be shortened.

B. Simple Square Framework,

ABCD in Figure 53 represents an interior unit of a simple

square framework, whose stresses have been found N,, N2, N3, N. and

D, and D2, the two latter being the H or V components of stresses in
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diagonals. The diagonals are assumed pinned at midpoint 0, and E and

F are the midpoints of the bars AB and AD. The problem is to find

stres.s.es in the members of doubled framework whose joints are held in

positions of equilibrium of the points A, B, C, D, E, F, 0 etc. of

the original mesh. It should be understood that the small mesh

structure is not in equilibrium in this configuration.

Since on doubling the units the cross-section areas of

members are halved, the stresses in the new mesh members lying along

the old ones are also halved.

In order to find the stresses in the members shown dotted,

the changes in distances OE and FE brought about by stresses in the

large mesh framework will be determined by the method of virtual work.

Change in distance EO. Since the areas of the members in

the large mesh framework according to (1), Art. 5, are A = at and

A, = v- at, the elastic distortions of OA, OB and AB are as shown in

Figure 54 (a). The equation of virtual work, done by loads and

stresses of Figure 54 (b) on deformations of Figure 54 a gives:

Increase in length OF = or- (Di + D2 -- ); (a)

Change in distance between E and AO. The elastic distortions of the

sides of the triangle AEO are shown in Figure 55 (a). From the

equation of virtual work done by stresses of Figure 55 (b) on

deformations of Figure 55 (a):

2iizD.
! = 3tE

4Vd D2 -Therefore, the increase in length EF = Ea = 3tE - one half of

the deformation of the diagonal DB. This result is evident, if it is
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realized that EF is a median line in ABD (Figure 53) and its length

does not depend on AD and AB, but only on BD.

Since the new bar areas are twice smaller than the corres-

ponding old ones, stress in EF = , and stress in OE = A'
3/4a'E 4a'3=qa' 3E 1'i' + D2 )(Di + D- ) (b)

a' 3f(D+D 2

Here At and at refer to small mesh, and N1 , D, and D2 to the large

mesh.

C. Square Framework for an Arbitrary Y-

Figure 56 represents a large mesh unit with stresses N.,

N2, N3, N4 and S in its horizontal and vertical members and the

components of stresses in the diagonals: DI, D2, C. and C2. The

diagonals of the heart are pinned at 0.

Before determining the relative movements of the midpoints

E, F and 0 brought about by stress distortions, the stresses C,, C2

and S will be expressed in terms of D1 and D2 with reference to

Figure 57 (a).

From statics: C1 = D, -S (c)

C2 = D2 - S (d)

According to (4), (5), (6) of Art. 7 the bar areas are:

Ct a t (3f CZ_ t
A = A2  2(+)(A-22) '

The third equation for finding C1, C2 and S may be written

by virtual work. The bar distortions in Figure 57 (a) are:

A 3 tc by S (e)

C/ V Which by using (c) becomes

I -MME,
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\+$- - (D, - S) (f)

similarly, = E \'2 (D2 - S) ()

Virtual work of stresses of Figure 57 (b) on deformations

of 57 (a) gives

3 P-2) S +2 E ( 0-!D (%5- Dz =0

From which S = 3,-/ (D1 + D2), (h)

Then from (c) and (d)

C1 = D, + (Di + D2) (k)

C2 = D2 + (DY1 + DaDI. (1)

Following the procedure of the previous sub-article, changes

in distances OE and F will be found now.

Change in distance OE is affected only by the deformations

of the members AB, AGO and BHO (Figure 56). Other members, except

GH cause only rotation of the triangle OGH about 0, which does not

influence the distance OE, while a change in GH also leaves point 0

unmoved.

Lengthenings of the members affecting OE are as follows:

At =Na . +V N(m
AB AE t 1  , ()

D+CI ar
A V?- 7 which on substitution of proper

values for C1 a-nd Al becomes:

A 2-)tE L D +(1-3 A) D (n)

similarly, 3j= 20 tE 3)D,+!+')D2 . (0)

Equation of virtual work, done by the same stresses as in

Figure 54 (b) on the deformations (m), (n) and (o), gives the value
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of &e the lengthening of the distance EO.

OE~ V2 AO S' + So)0 - L 4(p)

which on substitution of the values of s becomes:

tE /+V(DI + D) - NJ] (q)

Knowing f ,4 and S4 f = c% the distance A, by

which point E moves away from the straight line AO (joint G does not

in general lie on this straight line) can b e found by virtual work

of stresses of Figure 55 (b):

- (Di + D) - 1 +f/-)D 1 + (1-37)Da
2 22f_),-t E q V2iHE

E + V - DI+(1+I) D 2  . (r)

Since this expression does not depend on N1,
IJ

2E = A 2V1 -tE wV DI + (1 +V-) D2 ' 00

Using expressions for C and A, as well as (s), it is easy to show

that EF *

Suppose now the units are doubled (Figure 58), while the

areas of the members are halved, the new principal joints being

placed at the mid-points such as E, F and 0. The new stresses in

the members along the periphery of the old units, such as AEB, are

evidently equal to half of the old stresses.

Stresses in. the outside parts of the diagonals of the new

unit AEOF depend only on and CF, not depending on o or

Since, howeVer, a the stresses
FO, Ao an EF L 2 XBK9

in the outside Darts of new diagonals are respectively equal to

one half of stresses in old diagonals parallel to them.
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A' E (DI + D21-N tStress in OE = , = L D+D)N , (t)

This expression becomes indeterminate for '= 0, and in order to

find stress in OE in that case it is necessary to go back a few steps.

It will be recalled that for such case D, = -D2 and from Figure 57

it is clear that S = 0 and C1 = D, and C2 = D2 . From this it follows

that A,= -cS , and the equation of virtual work will give instead

of (p) a simpler expression SOe - , which will result in:

stress in OE=- (u)
2

The previous discussion has been dealing with an interior

unit, but it holds also for the marginal unit with the following

single modification caused by twice smaller area of the marginal

members. If a side of the unit, for example AB, is a part of the

margin, and its stress is N, as before, then the expression for the

stress OE of the doubled framework should contain the term - N,

instead of -

All these deductions concerning doubling of units in the

square frameworks with Y , any value, except zero, and Y 0

may be summarized by means of diagrams of Figures 59, 60 and 61. It

will be remembered that the large mesh framework is in equilibrium

under the stresses shown, while the small mesh structure is not,

although its continuity is everywhere preserved. The probability is

that the unbalance of the small mesh is not large, and that time may

be saved by using first this doubling scheme and then proceeding with

the distribution, instead of starting it from the original unbalanced

forces.

-- mawoft- -MM
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It may be added, that the experience with doubling

procedure has not proved beyond doubt its time saving value.

16. Principle of Symmetry and Antisymmetry.

As the units become more numerous, the labour involved in

distribution increases greatly, much faster than in proportion to

their number, and the method soon becomes unworkable. Fifty or sixty

degrees of freedom of the joints, corresponding to an equivalent of

a 4 x 5 framework, is probably all that can be handled without an

excessive expenditure of time.

It is possible, however, at least in some cases, to push

this limit further by utilization of the principle of symmetry. The

necessary and sufficient conditions for a'plicability of this principle

are as follows:

a. The framework should be symmetrical about one or two or

more axes.

b. It should be either unrestrained at all, or restrained

similarly, but not necessarily in identical manner, at the symmetrical

points.

The second condition is explained by reference to Figure 62.

If any point, such as Ais restrained by being given a known displace-

ment 8' (which may be zero), in a certain direction, for example,

along Y axis, then the symmetrically located points B, C and D should

also be given some known, but not necessarily the same, displacements

along the same Y axis. A known displacement of point D along X

instead of Y axis or an absence of any restraint there would destroy
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the applicability of the principle in relation to the X axis.

In order to have the principle still applicable to Y axis

points A and B should be restrained similarly.

The principle does not qualify in any way the manner of

action of any known forces applied to the framework.

If the two above stated conditions are satisfied in relation

to two axes of symmetry, the framework problem may be broken up into

four symmetrical and antisymmetrical cases each of which involves

consideration only of a quadrant of the plate. The four cases must

be solved separately and then combined. The problem of distribution

in the given framework is thus replaced by four distributions in the

frameworks of one quarter of the size of the given one. With large

number of units this substitution is bound to result in a saving of

time.

The method of forming symmetrical and antisymmetrical cases

out of the given problem is illustrated, in the presence of two axes

of symmetry, in Figure 63 (a) to (e). The first of these five figures

shows a plate or framework, symmetrical about X and Y axes, with one

of the forces PX acting on it at point M parallel to X axis. The

four other figures show the four cases into which the problem is

broken up. Case 1, Figure 63 (b) is symmetrical about both axes;

case 2 is symmetrical about X axis and antisymmetrical about Y axis;

case 3 is antisymmetrical about X axis and symmetrical about Y axis;

while in case 4 both axes are the axes of antisymmetry.
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It is convenient in its suggestiveness to designate the

axes of symmetry by capital letters S with subscripts x or y, as the

case may be, and the axes of antisymmetry by letters A with the same

subscripts. This has been done in Figure 63 and everywhere in the

following discussion.

It may be observed that the plate in each of these four

component cases is acted upon by four forces B applied at point M

and at three other symmetrical points. The force applied at M acts

in all four cases in the same direction as the original force P. in

Figure 63 (a), while the forces applied at three other points act

sometimes in the same direction and sometimes in the opposite one,

depending on whether they are located on the other side of S axis

or of A axis in relation to point M. Thus, forces applied at M, act

in the opposite direction to the one applied at M, i.e., symmetrically

with respect to it, if Y axis is the S axis, and in the same direction,

i.e., antisymmetrically, if the Y axis is the A axis.

It may be noticed, that if the four component cases are

superimposed on each other the original case with a single force Px,

acting at M, results.

Forces acting not in the direction of the axes must first

be broken up into components parallel to the axes.

A special case arises if a force is applied at one of the

axes, as shown in Figure 64 (a) to (e). A horizontal force Px, aplied

at point M on Y axis, when broken up into the component cases, appears

only in cases 2 and 4, both antisymmetrical about Y axis. It is

convenient to consider, that two forces are acting in each of these
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two cases, either at point M or at M, each applied to its respective

quadrant of the plate as shown.

The force Qx applied at point N on X axis, appears only in

cases 1 and 2, where one force -- is applied to each quadrant.

A more restricted special case of a single force Px acting

horizontally at the centre of symmetry is shown in Figure 65. The

only component case affected by this force is case 2, Sx,, Ay, in which

four forces IV appear at the corner of each respective quadrant.

A similar discussion is applicable to breaking up of the

known restraints, Figure 62, at the symmetrical points. The four

cases are illustrated in Figure 66.

It may be seen that in any of the four component cases the

state of stress and deformation in any quadrant resembles closely the

state in the three other quadrants. A little thought shows that in two

quadrants located perpendicularly opposite across an S axis the

situation at corresponding points is as follows: the displacements

are symmetrical, the normal stresses and strains along the axes are

identical and the shearing stresses and strains are equal and opposite

in sign, while in quadrants located oppositely across an A axis the

displacements are antisymmetrical, the normal stresses are equal and

opposite in sign, and the shearing stresses are identical. This

explains why it is sufficient to consider only one quarter of the whole

plate in any of the constituent cases, and by doing that to help

greatly the distribution.

mk -' -jMMMVNMMNj*
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The conditions of stress and deformation at the axes, when

a quadrant of the plate is separated out of the whole plate, are shown

in Figure 67. Joints on S axes have no displacements normal to them

being restrained by reactions perpendicular to S axes. Joints belong-

ing to A axes move only perpendicularly to them and are restrained by

reactions in the directions of A axes; at the same time, members lying

along the A axes are unstressed. All these points are illustrated in

Figure 67 (a) to (d), showing quadrants, separated from the original

plate, for the four component cases.

The unknown reactions at the axes are found from distribu-

tions. The bars along the axes are considered as ordinary marginal

bars.

It may be stated that further subdivision of each quadrant

of plate into four smaller quadrants is generally impossible since the

second condition necessary for applicability of symmetry principle

does not hold, in view of the axis joints being restrained, while the

joints on the opposite sides are not.

The method of successive movements in conjunction with the

principle of symmetry presents an exceedingly powerful tool in frame-

work analysis. One of the problems discussed later involves 8 x 12

framework with 404 members, out of which 173 are redundant, and with

117 joints. Its solution by the method of Least Work would require

173 simultaneous equations, and by the Joint Displacements, 251

simultaneous equations. Solution of such number of equations, even

in the problems of research, seems to be entirely out of the question



69.

as a practical possibility, and the use of a slide rule is worthless

from the viewpoint of accuracy of the results. The problem has been

solved by successive movements of the four component cases. Each

case has taken between forty and fifty hours with additional twenty

hours at the end for combining the results, altogether some two

hundred hours of work. The unbalanced joint forces, of the order of

several thousand pounds at a joint, have been reduced in distribution

to a fraction of a pound.

It may be added that each of the four component cases

contains between 38 and 48 redundants and 57 or 58 degrees of freedom.

Even solution of four sets of 38 to 48 simultaneous equations would be

practically impossible.

17. Interpretation of Framework.

A. General.

The problems coming under this heading are of two kinds:

one - how to apply the forces acting on the plate prototype to its

framework analogrand the other - how to convert the bar stresses into

the continuous plate stresses.

Some of the questions belonging here are difficult to answer

and this part of the framework theory, more than any other, requires

additional thought and investigation. Minor disagreements with the

theory of elasticity, where they exist, are mostly traceable to this

source.

When dealing with framework of infinitesimal units no

interpretation difficulties arise. Any force acting on the plate can
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be applied to the infinitesimal framework at the proper place, since

joints are available everywhere, and again the definition of unit

stress in such framework is in no way different from the definition

of unit stress in the plate, and such framework stress varies

continuously from point to point.

The finite framework is, however, different. The forces

must be applied at the joints only, but the joints are few and far

between, and so there is generally an error in the point of applica-

tion. On the other hand, if the same definition of framework unit

stress is to be used with finite units as with infinitesimal, the

value of the stress will depend on the manner of spreading the

individual bar stresses over the tributory areas.

For the sake of convenience, the unit stresses should be

computed first on the planes of the framework axes, and only after

that reduced, if necessary, to other planes by usual formulae.

B. Conversion of Bar Stresses Into Plate Stresses.

a. Normal Stresses.

In order to find the normal stresses in plate on the line

AE, Figure 68 (a), from the bar stresses, a section MM is passed and

the stresses in the bars cut are converted into the normal joint

concentrations, Figure 68 (b), by summing up the normal components,

for example, N8 = S, + S- + S3. In converting intermediate concen-

trations N into stresses, the stress diagramFigure 68 (c), is assumed

polygonal in shape, and each joint ordinate is found from = (a)

t being the thickness of the plate. This is equivalent to transforma-

tion of each N into a triangle of base 2a with maximum ordinate 6,

I
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which is in agreement with both conditions of statics 2H and 7M.

For determining the end ordinate, such as 6-, it would

seem in line with the above procedure to spread NA over the area of

the triangle ab 1 ; then 6,= 2 AA (b)

This, however, would in general violate statics since the center of

gravity of the triangle and N A are not opposite each other. For this

reason three cases will be distinguished:

1. Concentrations N symmetrical about the centre C, as happens

in any of the loading cases, symmetrical about the horizontal axis,

discussed in previous article. Here is taken by formula (b) and

no violation of the moment equation for the whole section results in

view of the symmetrical situation on the other side.

2. Concentrations N antisymmetrical about C as in Figure 69 (a)

and (b). In order to satisfy statics the moment of the triangle ab 1

about C must be equal to the moment of NA, while the area of ab 1 need

not be equal to NA , since Z H condition for the whole section is

satisfied automatically on account of antisymmetry. Therefore,

2 2IVA
A (2 -) at

In general, with 2n units in the section

6. 2/A (d)

3. General case. The end concentrations NA and NE are broken

up into symmetric and antisymmetric parts:

N +Ne
Ng ". = 2 either at A or at E,

Ng~ = I 2 at A and 2 at E,

after which each part is treated as in the two above cases.
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This method of stress interpretation, referred to below as

Method 1, besides being in agreement with statics and with the

definition of stress in the infinitesimal framework, has been

corroborated fairly well on the example discussed in the next article.

Other methods have been tried. In one of them, Method 2,

the ordinates of the stress polygon G in Figure 68 (c) have been

computed as follows. Parts ab, bc, etc. have been assumed to be

simoly supported beams loaded with polygonal load 6 . The key

ordinates 6 , GB , etc. have been found from the condition that the

simple beam reactions at a, b, etc. are equal to the actual joint

concentrations N. The results turned out to be unsatisfactory in

addition to being fairly complicated.

Method 5 for interpreting normal stresses is based not on

statics but on considerations of deformability.

By well-known formulae of elasticity for plane stress:

E EX = 6x - y ,

y= -6  , from which

6 (E Ex + - E Ey ); (e)

Considering first an infinitesimal framework, let the

stresses in horizontal and vertical bars at ary point of the frame-

at
work be Sx and Sy. Since the area of such bars is A , the

strain in the framework is

Sx -+)3x ( -+ v)
E 6J' ")= x and E6 -

which on substitution into (e) give

- -'xt(f)
anat i e s -

and a similar expression for 6y.
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Stresses Sx and Sy must refer to the same point of the

framework or plate. In finite framework, however,- no such stresses

are available, and the equation (f) may be used only approximately.

Thus, the point, where the plate stresses are being determined, may

be taken as the mid-square point 0 (Figure 70). Then the most logical

values for Sx and Sy should be the averages of the corresponding bar

stresses on the two sides: Sx = - (S, + S.) and S = -(S +S).

If the point of stress is taken at midbar, point 1, then

S = S1 and Sy =#g(S + S + S + S ). For the stresses at the joint

point A, Sx = (S, + S2 ); and Sy = i(S3 + S).

When using stresses of marginal bars in these expressions

they should be doubled.

This method for interpreting normal stresses has proved less

satisfactory than the first one.

In the Methods 1 and 2, it has been assumed that no body

forces are applied to the joints on the line AE (Figure 68), and as a

result, the concentrations N are not any different if section MIMI is

used instead of M8. If, however, there are body forces, such as P

(Figure 71), coming from load distributed over the plate all around

point A, the normal concentrations at A on MM and MIMI are different,

and their average value should be taken for determinati'n of normal

stress at A.

If the body force P comes from load distributed over the

plate on the right side of A only, stress at A should be calculated

on the basis of concentration on M1M1 rather than MM.

75.
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The force P may also be caused by a single concentration,

rather than by a distributed load. What happens in that case is

fully discussed later in connection with the gusset plate problem.

Method 1 is fully applicable also to determination of the

normal stresses in the plate at the restrained periphery. The

normal joint reactions at the periphery, found from distribution, play

evidently the Dart of the internal joint concentrations N.

b. Shear Stresses.

In finding shear stresses in the plate on the plane AE,

Figure 72 (a), from the framework stresses, the first step is to find

tangential concentrations at the joints A, B, etc. However, unlike

the normal concentrations, the tangential ones are different for the

planes MIM and MM 1 . Thus, at the joint B the concentration on the

left section is (SZ - S3 ) and on the right (S3 ~ 21), which differs

from (S2 - S3 ) by (SaS - Sac)

This difference of the two concentrations is non-existant

in infinitesimal framework, where (,SA - S6c) is an infinitesimal of

a higher order than any of the bar stresses, and, consequently,

S2 - S3 S3  - St', disregarding higher order infinitesimals.

The inequality of the two tangential concentrations at B

is thus directly traceable to the finite size of the unit, and neither

of the two concentrations may be considered as corresponding to the

shear in the plate at B.

It seems reasonable to think that the left concentration

corresponds to an average shear condition on some length to the left

of B, and the right concentration represents an average shear on

74.



75.

some length to the right of this point. From this a conclusion may be

reached that, unless the shear curve in plate runs irregularly between

the points B1 and B2, the shear at point B should be represented by

the average of the two tangential concentrations on the right and on

the left of this point. Therefore,

TB = 2(Sz - 3) +(53' - 82')] (g

It may be pointed out, that using the same rule for

calculation of tangential concentration on the horizontal plane at

B an equal value is obtained: T8= #2I(S3' - 53) + (S2~ -4)

which is in agreement with the law of equality of shears on two

perpendicular planes.

The concentration at A should be taken

TA =L(sit - S,) .(h)

It is clear that in the nlate shear stress at A is zero

either on horizontal or on vertical plane. The concentration TA,

however, corresponds not to shear at A, but to an average shear on

some length from point A down, so that there is nothing inconsistent

in TA not being zero.

In order to satisfy the requirement of statics the sum

TA + T8 + Tc + TD + TF must be equal to the shearing force on line

AE. That this is the case may be easily proved in the following

manner. Assuming no body forces at the joints on line AE,

Shear on AE = -S, + S2 - S3 + S1 - Sg + S6 - S7 + SS;

and also, Shear on AE = S1 -S2 2+ S3 -S Y + 5 S + S 7 - S ;
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Adding and dividing by 2,

Shear on AE = (S, I - S,) + (Sz- 83) +(S3 ' - S2) + -LJjSs - s) +

(S5 - S )] + ........

The terms on the right are recognized as the expressions for T, T8,

etc.. Therefore,

Shear on AE = TA + T8 + Te + TD + TE, Q.E.D.

The intermediate shear concentrations are converted into

stresses in a manner similar to the one used with normal stresses:

T8
g= -(k)

T-qe end ,concentration, however, cannot be handled as in

normal stress, because the edge shear is zero. The way of taking

care of TA has been to convert it into an area k2f (Figure 72 c)

bounded by a parabola. The mid-panel ordinate is

' 3 T T+3TA
2 2 at Zat

This method of handling TA is not fully satisfactory, and

often results in an unreasonable diagram with a sharp reversal of

slope at point 2, in other words, TA is too large to be applied wholly

in the end panel. A modification of the method, with extension of

the influence of TA to the second panel, is quite possible without

any algebraic difficulties, but the ensuing increase in '9 is hard

to justify from the viewpoint of conditions of statics on the

horizontal plane.

This difficulty with TA is however local, and it affects

the region where the shear is small, while its influence on shear at

points farther in is apparently negligible.

76.
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to be
A method of shear interpretation believedAbetter than the

previous one, although still not fully satisfactory at the edge, is

as follows: The shear diagram (Figure 72 c) is drawn polygonal or

curved in such a manner that its area from f to g, that is for a

distance each way from B, is equal to T.; and its area for a

distance from A is equal to T4. The key ordinates cannot be found

at once, but only in two steps and approximately, so the method is

more laborious.

Shears can also be determined at mid-squares, although

those points are less desirable than the joints, since-the normal

stresses at them are unknown, unless found by interpolation of the

values at the joints.

This calculation is demonstrated in Figure 73. The shear

concentration in each panel is equal to the difference of the stress

components in its two diagonals, i.e., TA = Sz - ,. The stress at

the middle of an interior panel is found by = (m)

The stress in the outside panel is assumed to be parabolic on one

half of the length and constant on the other half, as shown. Therefore,

(n). Having found in this manner the key ordinates at

mid-panels the diagram of shearing stress is drawn, as shown either by

solid or by dotted lines, modifying somewhat, if necessary, the shape

in the two outside panels.

Presence of external forces arising from a load distributed

over the surface of the plate would not change the procedure for

determination of shear stresses. Concentrated loads will be discussed
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later in conte ction with the gusset plate problem.

In problems involving plates with restrained edges the

tangential joint reactions, found from the distribution procedure,

are converted into continuous shearing stresses by the same method

as the internal tangential concentrations.

A peculiar difficulty arises at the corner where two fully

restrained edges meet, see Figure 74. Although the two corner

framework reactions Rx and R, are known, there seems to be no way of

finding what part of RX is due to normal reactions on edge AC near

point A, and what part is caused by shear on the edge AB, the same

difficulty being applicable to Ry.

Some assistance may be derived sometimes from the general

principles of the theory of elasticity. Thus, a plate fully fixed

at both edges will have no stresses at the very corner, which allows

to draw the stress curves along the edges right to the corner.

Exterpolation of the stress curves toward the point A may also be

useful, but the framework method as such seems to fail here.

The same difficulty is present, if the restraint is partial,

with one edge being restrained only normally, and the other edge only

tangentially. On the other hand, if both edges are held only normally

or only tangentially, no trouble arises, since it is evident to which

edges the reactions Rx and Ry should be attributed. Of course, no

comolication is present if only one edge is restrained.

C. Apolication of Loads to the Framework,

The question, how to apply forces acting on the plate to the

corresponding framework, so w to obtain a truly equivalent effect,
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is answered largely by judgment, founded on common sense.

The theory of framework is based on the presence of only

direct stresses in its members, therefore, all forces must be applied

at the joints.

Preservation of statics is important and so the forces

acting on the framework must have the same statical effect as the

loads applied to the plate prototype.

Load distributed over the surface of the plate should be

applied at the nearest joint; thus, joint A (Figure 75) will receive

the load from the area 1,2,3,4, and if the resultant of load on this

area does not pass through A, an additional force will be applied at

some other point to correct the statical effect.

If there is a load over an area 5-6-7-8 acting in Y direction

the proper location for the point of its application to the framework

should be its centre C, but there is no joint available there and,

consequently, the load is applied at D. Even though such displacement

of the load is consistent with statics, it cannot be perfectly equal

in effect.

A concentrated force P (Figure 75) should be broken up into

parts, using the law of the lever, and these parts applied at the

nearest joints.

A complete equivalence in these various adjustments is, of

course, impossible, and the errors may be rightly charged to the

framework method.

The question of applying to the framework, loads acting at

the edges of the plate is the reverse of the problem of stress
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interpretation, since it reauires determination of joint concentra-

tions when the stress diagram is given.

With polygonal shape of stress diagram the normal concen-

trations N are found from formulae (a), (b), (d) of the previous

sub-article. A curved shape of the diagram requires some modification

of values obtained by these formulae, so as to preserve the static

effect of the applied load.

The shear concentrations may preferably be found by calcu-

lating the shear stress area for a length each way from the joint.

The corner joint concentration may be taken from the length 9 near

the corner.

The concentrated edge loads, if not applied exactly at the

joint, should be divided between two nearest joints by the law of the

lever.

18. Bending of a Wide Beam by Framework and Elasticity.

A. General.

In order to check precision of the framework method it has

been applied to a problem for which there is a known solution of the

theory of elasticity, namely, the problem of bending of a wide beam

of a rectangular cross-section, loaded with uniform load and supported

by shears at both ends, Figure 76. The shears are distributed over

the ends in a parabolic manner, as demanded by theory and the uniform

load is applied one half at the top and the other half at the bottom.

There are also normal stresses following the law of cubic parabola,

applied at the ends, whose static effect on each end is zero. They
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are necessary for a rigourous solution of the problem. The problem

is manifestly symmetrical about yy axis and antisymmetrical about

xx axis, therefore, only one quarter of the beam need be considered.

The ratio of span 2 1 to depth 2 c has been taken 4:3, and the

thickness, unity.

The exact solution is found in Theory of Elasticity by

Professor Timoshenko, page 38, with a slight modification, the whole

load being applied at the top of the beam, instead of half at the top

and half at the bottom. The necessary minor changes in formulae may

be easily accomplished. In view of the absence of body forces, the

state of stress is independent of Poisson's ratio.

The framework solution has been done three times: using

4 x 3 framework with V~ = for one quarter of the beam, then again,

using 8 x 6, Y- framework in order to test convergence of the

solution, and finally utilizing 4 x 5 framework, but only with Y- 0.

The stress formulae of the elasticity solution of the problem

are as follows:

-1 (12 _ Xz y + 3L y3 - czy) ,(a)

g= (c2y - y,) (b)

= -(c2 _y2)x (c)
Y 21

where I 2 c 3

B. Framework 4 x 3 with .

Call the size of the square unit a, then c 3a and 1 = 4a.

For convenience, let x = otl and y = c, where O( and ( are

dimensionless coordinates of the points on the beam. Substitution of
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these expressions into (a), (b) and (c) gives:

(1[-loz6 + j(p3 - )ci. (d)

(3 - )9. (e)

x / (1 ) O 9 -(f)

The shear and normal edge stresses found from (d) and (f)
CA

by using o( 1 are shown respectively in Figures 77 and 78 at 2

intervals. These stresses are considered as loads for the framework,

and they are converted into joint concentrations. The methods of

conversion have been different from the recommended ones, since the

latter have been evolved only as a result of experience gained on this

problem. The difference, however, is small and its effects are

confi-tned almost exclusively to the stress conditions at the edge.

In this inferior method the load concentrations at the edge

joints have been found as end reactions of simply supported beams of

spans a, loaded with the load diagrams of Figures 77 and 78, similar

method being used for both the normal and the tangential concentrations.

The setup of the framework problem may be seen in Figure 79,

representing one quarter of the beam with the acting loads applied at

the edges y = 3a and x = 4a. In connection with the tangential

concentrations applied at the latter edge it may be said that it is

important in later calculations to realize from which side these

concentrations are contributed. The load 0.491 is contributed from

below, and 0.102 from above the corresponding joints. The intermediate

concentrations 0.870 and 0.537 come partly from above and partly from

below, which explains the meaning of the figures 0.471, 0.399 and
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others, the upper figure being a contribution from above.

The X and Y axes are respectively the axes of antisymmetry

and symmetry of the beam, and the joints lying along them are

prevented from movement in X direction, while no restraint is placed

on movements in Y direction. The restraint of the axis joints is

accomplished by horizontal joint reactions which are found from

distribution. Members along the X axis are evidently unstressed.

The resultant framework stresses are given in Figure 80

and they are converted into continuous plate stresses by the methods

explained in the preceding article and illustrated on a few examples

below.

The results of these calculations are presented in the form

of several diagrams, showing a quarter of the beam with stresses of

one particular kind, like G , G or , computed at several points

by the theory of elasticity, formulae (d), (e), (f) and by the frame-

work method, the first figure being everywhere the one found by

elasticity. Percent errors are often given too by third figures at

different points.

Figure 81 gives Gx stresses at the joint points by the

Method 1, which is considered the best.

Figures 82, 85 and 84 give G& stresses by Method 5 at

mid-square points, mid-bar points and the joint points respectively.

The percent errors show that the method is not very good, especially

for the joint points, which are the most logical places, where the

stresses should be determined.
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Figure 85 presents 6y stresses at the joint points, while

Figures 86 and 87 show T stresses at the joints and at the mid-

squares respectively.

Typical computations below illustrate how the stresses by

framework have been arrived at. See also Figure 80 in this connection.

6xM at x = y= a; b Method 1.:

Concentration N =

By eq-n (a), Art.

x at x = a, y =

17:

0.209 + 0.152 -

x = 

by M1,ethod 1.

0.038) $a = 0.323

= 0.323 cY .

Concentration N = (0.238 + 0.405) c a = 0.643 q a

6- 3 2(0.6q39By eq-n (d), Art. 17: x 3 1.445

is determined similarly, except for a slight peculiarity at the

edge, where the shearing load must also be taken into consideration.

at x = 4a, y a by Method 1:

Concentration N = (0.376 + 0.152 - 0.399) g a = 0.129 1 a.

By eq-n (b), Art. 17: 6 = 2=(29) 0.258 q.

Then using Method 3 for computing normal stresses, eq-n (f),

Art. 17 becomes for = 3 - (S, +-

sxat x = 0.5a. y = 1.Ea. Method 3:

S, = '(0.189 + 0.469) ca = 0.329 J a,

SY = (0.054 + ' ) g a = 0.112 c a, 0.054 bar being marginal

= 1.5 (0.329 + 0'2 ) c. = 0.550 q1

qx at x = 0.5a, y = 2a, Method 3:

S = 0.469 % a ,

S = L2(0.054) + 2(0.035) + 0.116 + 0.087j qa = 0.095 c a

1.5 (0.469 + 0'"9') c 0.751c,,-

.3a :
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6 x at x = a, y = a, Method 5:

Sx =2(0.189 + 0.152) J a 0.1705 c a

Sy = (0.116 + 0.050)c a 0.0839,a

0.83
6, =1.5 (0.1705 + ' )'S=0.297 cga.

Vxy at x =-2a, y = a;

Concentration T = j [-0.144 - 0.320 - 0.149 - 0.239] ca = -0.426 a.

By eq-n (a), Art. 17, = -0.426g.

At x = 1.5a, y = 0.5a, zyy= (-0.144 - 0.209)q, = -0.555 .

These diagrams of stresses show a good agreement of the

framework results with those of elasticity. The greatest errors which,

by the way, never reach 8%, are observed in proximity to the edge

x = 4a, undoubtedly an account of the referred to above irregularity

of the load ,application at that edge. Most of the errors are, however,

under 4%. Attention is called to the extreme simplicity of the stress

computations, once the framework stresses are known.

It is interesting also to compare shear stress curves

determined by framework and by elasticity on one of the vertical lines

of joints, for example, on the plane x = 2a. These curves are shown in

Figure 89. The shear concentration at y = 5a is T = (0.119 - 0.245)cctz

-0.065 c a and it is superimposed as a parabolic area on the

triangular shear curve in the bottom panel, so that the ordinate at

y = 2.5a becomes [0.5 (0.272) + 1.5 (0.063)q= 0.250q .

This makes apparent the irregularity of the shear curve,

determined by framework, near the edge, with too high ordinates in that

area a.nd too small ordinates elsewhere. One may feel that the edge
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shear concentration should be spread over the whole section, but no

rational reason for such procedure is apparent.

C. Framework 8 x 6 with V='

The setup of the problem in this framework is given in

Figure 90 and the results are presented in diagrams of Figures 91, 92,

95 and 94. All computations have followed the routine of the previous

framework. The object of this calculation has been to investigate the

convergence of stress values, found by framework, toward their true

values, s the size of the mesh decreases. The results reveal a great

degree of precision obtained in 8 x 6 framework, the majority of

stresses being within l % of their true values. It appears that

doubling of the framework improves the accuracy roughly four times,

i.e., in proportion to the number of units, although at some unfavoura-

bly located points the errors are somewhat larger. Minor irregulari-

ties, especially in the values of small stresses, are due to working

only with three decimals.

It may be of interest to state that the distribution in this

case has been a most formidable problem in view of 110 degrees of

freedom of the joints. The work has been considerably reduced by

distorting the structure into the equilibrium position of the plate

prototype found by elasticity, and then distributing in an ordinary

manner the comparatively small remaining unbalanced joint forces.

D. Framework 4 x 3 with.V= 0.

The same problem has also been solved using 4 x 3 square

framework with V'= 0. The loads have been aplied in the same manner
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as in the two previously discussed cases. The results appear in

Figures 95 to 99.

For reasons explained earlier, the plate stresses in this

problem, according to the theory of elasticity, should be independent

of , but, this has not been found to be exactly the case with the

framework results. It is, of course, natural that the individual

corresponding bar stresses should be entirely different for the two( but it is peculiar that, after they have been duly interpreted,

the resultant plate stresses have come out also somewhat different

for f =, and f'= 0. The results show that the accuracy of - = 0

framework is poorer than that of f for the same number of units.

Quite a few stresses are as much as 6 - 7% out, with the maximum

error reaching 11%. The accuracy of V = 0 framework is thus roughly

70% worse than that of Y = type, however, in spite of this, the

former framework is just as practicable as the latter, and the labour

involved in its use is only slightly higher in the distribution part,

than the labour necessary to solve a = type.

19. Gusset Plate Problem.

A. Statement of the Problem and General Remarks

The main utility of the framework method and its main claim

for a place among the tools of structural analysis is its applicability

to unsolved problems. Any problem of two-dimensional stress in bodies

of rectangular outline may be handled by it, and, judging from the

results of the previous article, the errors ensuing from the finite

size of the framework are small, even if the size of the unit is large.
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Among the unsolved problems of structural engineering of

considerable practical value, for which the framework method shows a

good promise, is the problem of stress analysis in the gusset plate.

Although it is quite true that this problem contains a number of

features, for the explanation of whose effects the framework method

is powerless, such as the presence of the rivet holes, stress

distribution among the rivets, the manner of action between the rivets

and the plate, including friction under heads, and the influence of

plastic deformation at the points of stress concentration, still on

the whole, apart from these secondary features, the problem is

essentially the one of plane stress, and may in simpler cases be

handled satisfactorily by the method of this treatise.

In making this statement it is not implied that the frame-

work method is considered suitable for commercial use in design of

gusset plates, but rather, that the commonly used. in designing offices

beam formula method, having very little theoretical justification,

may be checked and modified by it.

The problem is stated by means of Figure 100 representing

the gusset plate at the top chord joint of a truss. Two top chord

members and three web members, indicated by dotted lines, meet at

this joint. The plate is divided into 4 x 6 square units, and later

into 8 x 12 of such units. The member stresses are assumed distributed

uniformly over the lengths of their attachment to the plate along

their axes; this expolains twice smaller values of the extreme concen-

trations on each member compared to the intermediate concentrations,

on account of twice smaller tributary length. The loaded joints need
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not be considered as representing individual rivets, but they may be

looked upon as representing a whole group of rivets. This means that

the state of stress in the plate is somewhat generalized, the local

effect of each rivet being lost and replaced by the local effect of a

whole group of them.

The assumed value of Poisson's ratio is 3, which is not

far from the commonly used for the mild steel value of 0.3.

After solution of 4 x 6 units' structure the framework has

been doubled and re-solved in order to detect tendencies in stresses

on decreasing the mesh and by that to judge of the degree of accuracy.

B. Solution of 4 x 6 Framework.

In order to simplify distribution the loading of the frame-

work is broken up into four symmetrical and antisymmetrical cases, as

explained in Art. 16. The first quadrants of these cases, represented

in Figure 101, are distributed separately, and the results of the

procedure are shown in FigureS102 to 105.

In order to give an idea of an actual distribution, Figure

105 presents not only the result, but also the whole process for one

of these cases, namely, the doubly antisymmetrical case, AAy .

Although the separate movements are difficult to recognize, one can

see how they gradually die down starting with the ones causing

thousands and hundreds of pounds in stresses and finally ending with

fractions of a pound. The remaining unbalanced forces are everywhere

less than a pound.
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C. Interpretation of Concentrated Loads.

It may be noticed that in view of the existence of the active

joint forces the normal joint concentrations on two sides of the joint

are different, and this feature brings up the question of proper stress

interpretation in the presence of concentrated lo(-ds.

According to the theory of elasticity, Timoshenko, page 111,

a concentrated force, acting on an infinite plate, causes infinite

normal and shear stresses at the point of application, which, however,

quickly decrease away from the point of action. On the other hand, in

a mild steel specimen, high stresses are relieved by plastic yielding

and lose their significance as far as the actual strength is concerned,

so that while a large finite stress distributed over a large area is

dangerous to the member, an infinite stress over an infinitesimal area

is apparently immaterial in static loading. Furthermore, true concentra-

tion of a finite force at a point is impossible, and such a force in

actual practice is represented by a rivet or a weld of a finite size.

It is also easy to see that a finite framework may have only

finite stresses in its members, whose interpretation by the rules

explained above may lead only to finite plate stresses.

All these somewhat contradictory considerations, arising from

the peculiarities of the theory of elasticity, structural design, and

the framework method, must be reconciled in the proper method of stress

interpretation in the presence of concentrated loads.

Let Figure 106 represent a plate acted upon by three concentrated

forces, which are in equilibrium. Imagine now the same plate under the

same forces, to be infinitely extended in all directions, and let the
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stresses existing along the obliterated now former boundaries be as

shown in Figure 107.

The state of stress of Figure 106 may evidently be considered

as a superposition of the following four states shown in Figures 108 (a)

to (d).

a. Infinite plate acted upon by a single force P1.

b. Ditto with a single force P2 -

c. Ditto with P3'

d. The original finite plate under the action of the boundary

forces equal and opposite to the ones in Figure 107.

These forces, by the way, are in equilibrium.

Cases (a), (b) and (c) may be solved by the referred to above

article of the theory of elasticity.

Suppose, that the stresses at point 01 are being investigated.

Contributions of parts (b), (c) and (d) to stresses at 01 are evidently

finite, but that of (a) is infinite, and it is this latter part whose

effect on strength at point 0, is questionable, and may perhaps be best

taken care of by a value assigned by judgment.

Applying these considerations to the framework, it is first

noted that its solutions show the effect of all the above mentioned

factors (a) to (d). Therefore, the proper way of interpreting its

stresses at the joints with concentrated loads should be to separate

the effect (a), to interpret the remaining stresses into the plate

stresses and to augment the latter by some reasonable value, to take

care of the disregarded effect (a). Of course, no special measures
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need be taken with regard to the joints where no concentrated forces

occur.

Effect (a), which should be subtracted from the framework

solution at each joint carrying a concentrated load, is nothing but a

state of stress in an infinite framework under the action of a single

concentrated force P (Figure 109a).

Although the individual bar stresses for this load condition

can be found only by a distribution, the resultant joint concentrations

are apparent directly from symmetry. Thus, the normal concentrations

at point 0 on vertical plane are: - on the right and + 2 on the2 2

left of 0, while normal concentrations on horizontal planes are zero.

The average of two tangential concentrations on horizontal plane above

and below 0 is T [(S 1 -S2 ) + (S3 ~ )J *

Expressed differently, elimination of the concentration

effect amounts to removal from the vicinity of 0 of the load P and

of the stresses shown in Figure 109 (b), while the same stresses remain

acting on the adjacent joints, in other words, force P is transferred

to the adjacent joints, one-half ahead and one-half behind.

From this it follows that the exclusion of part (a) from the

framework solution causes no change in tangential concentration, and

as to the normal concentrations, it amounts to nothing more than to

taking an average of the two unequal values on two sides of the joint

with a concentrated load. This disposes in an exceedingly simple manner

of the first part of the problem.

The question arising now is what should be added to stresses

in order to take care of the disregarded effect. When considering a
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physically impossible abstraction of a point force, it is rigourously

correct to augment the plate stresses, computed from the modified

framework stresses, in the four units adjacent to the concentration

point, by the values u (Figure 109b) which are the differences

between the elasticity stresses in an infinite plate and the ordinates

of the dotted closing line AB, which is used rather than the base

line, because the concentration effect (a) has not been disregarded

at the adjacent joints. This procedure applies naturally to all

stresses near 0, 6, 6 and

In an actual case, when the concentrated force is applied

by means of a rivet, the described procedure would be without signi-

ficance. A practically reasonable way to take account of the normal

effect of concentration is to add the value of the rivet bearing stress

on the plane normal to the force P, on compression side of it,

leaving the tension side intact. This, of course, presupposes that

the rivet force is transmitted by bearing and not by friction under

the head, which is in line with the conventional method of rivet

analysis.

The normal stress on the plane parallel to force P need not

be affected, but the shear stress should also be modified as is made

clear in the following discussion.

Figure 110 (a) represents a framework near the joint 0 with

a concentrated force P acting on it. The true shear stresses,

either horizontal or vertical, in the plate prototype along the

planes MM, NN and TT are shown in FigureS(b), (c) and (d). While
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the dotted line corresponds to the shear caused by the factors

referred to above as (b), (c) and (d), the difference of 'C ordinates

between the full and the dotted lines is caused by the action of the

concentrated force P on the infinite plate, and this latter effect

is infinite at the point 0. Although this sharply concentrated

infinite stress is of no significance for strength of an actual

gusset plate the average horizontal shear, corresponding to it,

taken over a reasonable area, must not be disregarded. Assuming the

size of the unit a as the reAsonable length for averaging shear effect

the resultant diagram of average shear on horizontal planes, taken

in different locations along the line MM, is shown in Figure (e).

As may be seen, there is a finite discontinuity at the point 0 whose

P
amount can be found from Figure 111 as E - V = ,taking d

/Iav. 2 nd

as an infinitesimal, and, therefore, the average significant shear

stresses just above and just below 0 are respectively + aand

, where Z, is the value found by an ordinary interpretation
*2at

of the framework. Taking d in Figure 111 as a finite gradually

increasing quantity, the difference (ZQ - c ) gradually diminishes

in view of the effect of the end stresses & and 61, which means

that the average shear stresses on horizontal planes gradually

decrease, giving away from P in vertical direction.

P
Instead of assuming that the discontinuity -- of the average

shear persists for a length a and then suddenly disappears, it has

been thought more reasonable to assume it extending for a distance

2a petering out to nothing at the adjacent joints, as shown in

Figure 110 (f) and (g).
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Although the above reasoning has been dealing with shear

on horizontal planes, it is equally applicable to shear on vertical

planes, since the two shears are equal.

The use of length a for averaging the shear effect of P

seems arbitrary only in case of a single concentrated force; if on

the other hand, there is a line loading of concentrated forces P

Ecting in the direction of this line the use of length a is logical.

This discussion explains the recommended modification of

the shear interpretation in the vicinity of a concentrated force.

It is emphasized here that the stresses so found are not the true

ones but the averages of true stresses, believed in a way to be more

significant than the true ones for the riveted plates of mild steel

under static loading.

Although the explanation of the shear interpretation in

the vicinity of a concentrated load is somewhat involved the inter-

pretation itself is very simple. First, shear V. is found from the

average tangential concentration at the joint by eq-ns (g) and (k) of

Art. 17, paying no regard for the concentrated load P, and then,

secondly, this , is augmented at the joint in question by _ 2 at

on two sides of P, this extra addition being gradually petered out

to nothing at the adjacent joints.

That this interpretation is consistent with statics can be

easily proved by repeating the reasoning of Art. 17 in connection

with Figure 72 (a). Assume a vertical force P acting downward on

one of the joints, for example B, although this force is not shown
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in Figure 72 (a). Then by definition:
-S

Shear, left of AE -Si + S2 - S3 + S4 - S5 + S6 - S7 + S8

Shear, right of AE = SR =L - P =l' -S21 + S31 - S4' + S5'- S6 + 571-S6

Adding, dividing by 2 and transposing P;
2,

SL 2 1-S)+ + ( 2- 5)+(S5'-52')J} + 1[(S4-S5)+(S5'-s4' )]+ .... ()

The individual terms on the right are recognized as the tangential

concentrations from which the plate shear stresses are determined by

spreading the concentrations over appropriate areas. The second term

may be seen to be the concentration at B modified in the manner

explained on account of presence of the load P. This proves the static

consistency of the method for a section to the left of AE, while an

expression for SR, similar to (a) above, proves it for a section right

of AE.

The same principles may be extended to concentrated loads

acting at marginal joints, as in case of force P in Figure 112 (a).

Unlike the condition where there are no edge forces the shear stress

at the edge in Figure 112 is not zero, but may be taken as

E-A = + ~ (b) on a plane just above AB
A 2 at at

and = .L.~ S - P (c) just below AB, as shown in Figure
A 2 at at

112 (b) and (c). These stresses are again not the true ones but only

the averages.

As to the normal stress on a vertical plane at A it should

be taken equal to the bearing stress produced by P, while the normal

stress on the horizontal plane at A may be disregarded as insignificant
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in a mild steel plate. No other stresses at A need be considered.

These recommendations concerning normal stresses near a

marginal joint such as A have not been followed in the gusset plate

problem, but instead of them, the horizontal and vertical normal

concentrations have been used and interpreted in the ordinary manner.

As a result of this, some interesting increase in at A has been

produced on doubling the framework, as mentioned later.

Similar recommendations can be made when a concentrated

load acts parallel to the margin, however, the actual manner of its

application must also be considered.

It remains to consider now the case of a concentrated force

acting at an angle to the framework axes, Figure 113. In line with

the previous statements, the plate stresses at 0, obtained by using

average concentrations, should be increased by bearing stress =(

in the direction OF on compression side of P, and by additional

shearing stress ' + PX ( ) acting parallel to OF

2 (80)t -27-;)acnand being positive on one side of this line and negative on the other,

so that there is a discontinuity in shear stress on line OF of the

amount- at point 0, tapering to zero at points B and C.
at

Since all stress calculation is done for the framework axes,

it is necessary to convert these additional oblique stresses into

their ( , G and equivalents. Using well known conversion

5)formulae ,

p
Equivalents of 5 = - are:

= " ' Cosot. ; 6' Sinzo. and = x -' Sin 2oL; (f)

)PCe /G.
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Equivalents of = + are:

=- GIr = Sin 2N, and = ' Cos 2aL. (g)

The signs o these stresses are evident from Figure l13 (b) and (c).

For =450 the equations (if) and (g) become as follows.

Equivalents of 6' : = t = " -- (h)

Equivalents of ti : 6= - and =. (k)

From expressions (g) and (k) it follows that the shear

discontinuity on the inclined plane OF results in discontinuity of

6, ,6igand Vx stresses on two sides of that plane. Only when

o = 450 the break in disappears.

Some of the items among the -es- presented here. recommenda-

tions for stress interpretation in the vicinity of concentrated loads,

may undoubtedly raise objections, valid reasons may possibly be given

for their modification, but it is felt that the basic principle of

applicability of the framework method to the plane stress problems

involving concentrated loads, will stand intact in spite of possible

change in detail.

D. Computation of Plate Stresses from 4 x 6 Framework.

The average joints concentrations of the first quadrants of

the four component framework cases are prooerly combined and converted

into the plate stresses. The numerical procedure in relation to

normal stresses is illustrated on the following example referring to

6. stresses on plane X = 2a.

Figure 114 (a) presents the sum of the average normal

concentrations in the first quadrant of the two symmetrical about
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X axis cases, while Figure (c) shows a similar sum for the two

antisymmetrical cases. These concentrations are converted into

stresses in Figures(b) and (d). By adding (d) to (b) and then by

subtracting (d) from (b), plate stresses respectively below and

above X axis are found, which, however, need to be modified in view

of the presence of two concentrated forces. This modification at

the point y = -a amounts to addition of the bearing stress of the

rivet, while the one at x = +a, where the line loading crosses the

plane of stress at 450 expressies itself in two features, first, in

an addition of a compression stress equal to one half of the bearirig

value of the rivet, and secondly, in introduction of a break in the

stress diagram equal to 5otoo. The stress diagram of 6x on the plane

X = 2a is shown in Figure 115 (a). The numbers on this and the

following diagrams give the values of 6 aft, where a' = , for

which reason they are twice smaller than the values found in Figure

114.

The rivet bearing stresses cannot be added numerically to

the ordinates of the curve because they are expressed in terms

different from the ordinates; for this reason they are indicated on

the diagram by arrows.

A similar procedure is followed in computing normal stresses

on other planes. There is also nothing special to add to what already

has been said about computing shearing stresses.

The results of stress calculation are presented in the

form of numerous diagrams. 3 stresses on five different planes are
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given in Figure 115; 6; stresses, in Figure 116; while stresses

appear in Figures117 and 118, distributed respectively over the

horizontal and vertical planes.

Before discussing various theoretical and structural

features of the results obtained, a brief reference will be made to

a solution of the same problem by means of an 8 x 12 framework.

E. Solution by 8 x 12 Framework

This solution has been made in order to compare the results

with the previous ones and through that to form an opinion regarding

convergence of stresses toward their true values on decrease of the

size of the mesh.

It is this problem that has .led to some exceedingly

laborious distributions, referred to at the end of Art. 16. The

problem itself and its four component cases are given in Figures119

and 120 (a) to (d), while the resultant framework stresses for the

four cases appear in Figure 121 (a) to (d).

Figure 122 gives a .copy of an actual distribution sheet

for the case S,,, Ay, and shows clearly the amount of arithmetic

involved in such distribution. Both the original and the final

unbalanced forces are shown on the sheet. The partial summations of

the member stresses correspond to several current checks of the

distribution explained in Art. 12.

Interpretation of the bar stresses into the plate stresses

has followed the usual routine, and the resultant stress curves have

been drawn for comparison alongside the ones determined earlier in

the same Figures 115 to 118.
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The rectilinear diagrams of normal stresses corresponding

to conventional beam formula method have also been recorded in the

same pictures. These stresses have been calculated on the basis of

load condition of 8 x 12 framework; the normal loads that happen to

act at the plane, whose stresses are calculated, have been split

into two halves and pushed one half back and the other forward.

F. Gusset Plate Stresses.

Normal stresses found by framework in many cases are not

completely dissimilar from the ones determined by the beam formula;

this resemblance is particularly close for E stresses on plane

x = -a (Figure 115d). The cause of this resemblance lies in the

fact that both sets of stresses must satisfy numerically the same

two conditions of statics XN and ZM, and this requirement often

does not permit the two curves to diverge much.

For the same reason the maximum 6 has been found in all

sections nearly the same in magnitude by both methods.

On the other hand, there are also some differences. Thus,

the true maximum stress has a tendency to occur on the line of heavy

loads, rather than at the extreme fiber. Sudden breaks characteriz-

ing the true curves, caused by shear discontinuities of the line

loadings, are absent in the conventional diagrams.

The diagrams of 91 stresses bear little resemblance to

what they appear when using beam formula; this is partly the result

of too small values of N and M on the horizontal planes.

In this comparison of normal stresses determined by two

methods, the additional effect of bearing stress, shown by arrows, on
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the stresses determined by framework has been left out, not because

it is immaterial, but because it is expressed in terms of different

variables than the primary part of the stresses. This arrangement,

however, puts the more correct stresses on the same basis as the

conventional ones, because in usual analysis of gusset plates by

the beam formula the local effect of the rivet bearing is also

disregarded.

As to the shear stresses found by framework, their distri-

bution over the section is entirely different from parabolic.

Comparing the stresses found by two framework solutions

with each other, one is struck by the close agreement of each two

curves of stresses on any of the planes, especially in view of

representation of the plate in one of these solutions by the frame-

work as crude as only 4 x 6 units. The agreement becomes even more

impressive if one considers the discontinuous character of the load

and the lack of mathematical rigour in the rules of stress interpre-

tation. Only in a few details is the difference more than negligible,

and where it exists it is mostly susceptible to a rational explana-

tion.

The only large disagreement of normal stresses found by

two frameworks occurs in G stresses on plane y = -a at the two

edges where concentrated forces are applied to the plate, Figure 116c.

The explanation lies in the fact that the concentration effect of

these two edge forces has not been removed as in the case of all

interior concentrations. The result of it is, that the decrease in

the size of mesh increases stresses at the edges without limit.
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The latter statement will not be demonstrated here, although the

proof is possible by means of a lengthy derivation based on Theory

of Elasticity. In line with previous discussion, the high edge

stress should be discarded as insignificant.

The same cause explains the sudden turn of the dotted

curve of 6 stress on plane x = 0 (Figure 115c) near the bottom of

the plate. Since the concentrated force applied at this point is

comparatively small, the difference in the two ordinates is also

only minor.

Figures115 (b) and (c) show a fairly large increase in (

stress at y.= -a and an accompanying increase in area under the curve,

which occur on doubling of the framework. The reason for this

discrepancy is that the two curves are not statically equivalent,

since their resultant normal forces are not equal. It will be

recalled that elimination of concentration. from a joint amounts to

removal of the load to the adjacent joints, so that one half of the

load is moved forward and the other half backward. Therefore, on

section x = 0, for example, out of 84 kips of stress of the left top

chord member (Figures 100 and 119) there will be in 4 x 6 framework

77 kips on the left of the section and 7 kips on the right of it,

while in case of 8 x 12 framework there will be 80.5 kips on the

left and 3.5 kips on the right. The larger normal force in 8 x 12

solution accounts for the larger area under the curve than in case

of 4 x 6 framework. The same applies to Figure 115 (b) which presents

normal stresses on x = a.
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Similar effects, only to a smaller degree, are noticed at

y = 0 in 62 stress on the plane x = -a (Figure 115d) and in 65

stress on the plane y = 0 at x = -a and zero (Figure 116b).

The same phenomenon causes a similar discrepancy in

shearing stresses on the plane y = 0 (Figure 117e). The negative

area of shear curve is evidently larger for 8 x 12 framework than for

4 x 6 mesh. On the other hand, considering the two loaded frameworks,

Figuresl0O and 119, it is easy to see that elimination of concentra-

tions from the joints on line y = 0 results in a numerically larger

negative shearing force on the plane y = 0 in case of 8 x 12 mesh

than in case of 4 x 6 mesh.

Some minor differences may be traced to dislocations of

the concentrated forces from their true positions. Thus, the end

concentrations of all members are slightly displaced. They should be

applied at the centres of their tributary areas, but this is not done

because no joints are available there. That causes error, and since

the dislocations are different in the two frameworks, some minor

discrepancies between their solutions are bound to arise.

Small differences are also produced as a result of removal

of concentrations. Since such removal affects only the joint at

which the force is applied, and since the joints in the small mesh

framework are spaced closer together, the effect of removal of

concentration is more localized in a small mesh than in a large mesh,

which produces some difference in the corresponding states of stress.

Most of the shear diagrams have unsightly looking portions

in the end panels, caused by the manner of transforming the tangential
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concentrations at the edges into shear stresses by adding parabolic

swellings. The only virtue of this arbitrary method of handling the

end shear is its agreement with statics and numerical simplicity.

It is, however, recommended to modify the curves near the ends by

sketching, thus improving their appearance but retaining their areas.

Stresses determined by 8 x 12 framework have been made the

basis for calculation of principal stresses at various points of the

plate as shown in Figure 123. The two principal stresses and the

maximum shearing stress are stated at each point, and the directions

of principal stresses are indicated approximately by the two mutually

perpendicular lines, the longer line corresponding to the numerically

larger stress. It is reminded that the stress discontinuities exist

all along the working lines of the members. The effect of local

bearing stresses has been left out. The absolute maximum compression

stress occurs at the point x = 0; y = -a, and is equal to 18300 units

against 17813 units found by the conventional method, the latter

however, occurring at a different point.
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II.

Framework Method Applied to Bending of Plates.

1. Differential Equations of Bent Plate.

The general theory of small bending of thin plates of

constant thickness made of homogeneous elastic material will be

discussed here briefly, following the presentation of Professor

Timoshenko in his book on Elastic Stability.

A small element of plate in the form of a rectangular

parallelopiped is presented in Figure 124. The moments and shears

per unit length of section are shown on two positive faces of the

element, and the following may be said about their sign convention.

The shears Qx and Q. are positive, if they are acting in the

positive direction of z axis, i.e., downward, on the positive faces

of the element. The bending moments M% and My are positive if they

produce a concavity of the plate upward, while the torsional moments

and yare positive if they act on the element in the clockwise

direction, when looking from inside of the element. From the

equality of shearing stresses on two perpendicular planes it follows

that Mxy = -Vyx .

The following equations, relating to these various functions,

are obtained by applying to the element the equations of statics:

2 M, MX and MY.

+D + =0 (a)

Dy 3M'a

10y /Ix +x-, b
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- Y + Q 0 (c) which after

elimination of Q. and Qy give:

- 2 Y=_ -- (d)'DX ' ' 'X -?y '

It may be pointed out that this equation is derived

exclusively from statics, and does not depend on the material of

the plate. By introduction of the laws of deformability it is

transformed into the partial differential equation for plate bending.

The laws of deformability may be stated in the form:

M= D + (e)

MY= D ( + VOL ) , (f)

where D (g)

In these expressions r and ry are the radii of

curvature of the bent plate. The deformations are assumed small,

the material elastic, and the cross-sections plane aLfter the

deformation. Replacing the curvatures by their expressions in terms

of deflection W the equations (e) and (f) become:

MT = -D ( + ) (h)

My=-D ( + .Z(k

A similar deformability expression for MXy will be

derived now. Figure 125 represents a triangular element of the plate

cut out parallel to the axes N and T at 450 to the X,Y axes. It is

assumed that the element is acted upon on the planes N and T by equal
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and opposite in sign bending moments M., while no torsional moments

are present on these planes. It is required to find the moments on

planes X and Y.

Moments acting on the triangular element are indicated by

vector arrows dran in accordance with the commonly used rule of a

right-handed screw.

From statics M= 0; M Iy Vf = -2 M.1 ; orMy -M 0 .

From this it is easy to see that Illy = 0 and MY .= M. Thus, the

state of pure bending in opposite directions on two perpendicular

planes N and T is acompanied by the state of pure torsion on the

planes X and Y at 450 to the former planes, and the intensities of

bending and torsion are the same. The converse is also true. This

result is utilized below.

Applying the equations (h) and (k) to the planes N and T;

M =M =N -D ( + 'a ) ? (1) and

Mi.= -MVo =-D ' Z+ )7 , (m)

From Figure 125:

tr t

By partial differentiation of these:

x / X /y / /

- v -- V- - and -- -= (n)

By double partial differentiation of W with respect to n and t and

by the use of equations (n) the following expressions are obtained:

V
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_~ +2

which on subtracting give:

- 14 = 2 1W(p)

Subtracting (m) from (1), dividing by 2, substituting (p). and

replacing M. by an equal value-MXy gives the third deformability

expression, relating the torsional moment with the derivative of

the deflect ion,

= D (1-V-) (q)

Substitution of the expressions for moments (h), (k) and

(q) into the equation (d), derived by statics, results in well known

differential equation of the bent plate:

+ 2 + - =- - . (r)

In order to be a true solution for the deflection of the

plate the expression for W must satisfy not only the differential

equation (r), but also the boundary conditions. The mathematical

difficulties in the way of finding W are just as great as in solving

problems of plane stress, and many plate problems of considerable

practical interest are still waiting their solution.

Once w is known, the moments and shears may be found, at

least theoretically, by differentiations: moments from the expressions

(h), (k) and (q) and shears from the following equations, which are

easily derived from (b) and (c).
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33
Q= -D + - ) ; (s)

Qy=-D (' ay+ ) ; (t)

Rigourous mathematical solutions, when they exist, usually

give expressions for W in terms of an infinite or even of a doubly

infinite series of terms consisting of trigonometric or hyperbolic

functions. While the convergence of the series for W is usually

very good, so that only few terms are required to get an accurate

value of the deflection, the expressions for moments and shearp, as

a rule, converge slowly, or even do not converge at all, which

lowers the value of mathematical solution, because it is not the

deflections, but the moments and partly the shears that are required

by engineers.

Many approximate mathematical solutions, while quite good

as far as the deflections are concerned, become inaccurate in their

expressions for moments.

2. Boundary Conditions and Influence of V

Some of the simple boundary conditions will now be

considered.

Simply supported edge. Taking this edge as y = 0, the

conditions which the expression for W must satisfy along it are:

(w 0)= 0 and (M=) =0.

The latter expression gives: ( + ) = 0, and since

is automatically zero along the edge, the two boundary conditions

become:
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(wa =0 ; =0 (u)

One might think that there is a third condition pertaining to this

edge, namely (M) 9 . = 0, but, as explained in the book of

Professor Timoshenko, this condition is satisfied automatically by

transformation of the edge torsional moment into the statically

equivalent to it additional edge shear, so that the combined shear

at the edge becomes (Y - M.X

Clamped Edge. Assuming the edge in question again to be

y = 0, the boundary conditions at it are:

(V)J = 0 ; 0. (v)

By differentiating the second condition with respect to x,

( 3 ) = 0, from which it follows that (Myy) 0  = 0, i.e., the

torsional moment along the clamped edge is absent.

Free Edge. If this edge is y = 0, the following two

conditions pertain to it:

Combined shear (Qy - )b= 0, and (My4 0 = 0.

Shear and moments in these expressions are replaced by their values

in terms of derivatives. of W , and the following results are obtained

for the two boundary conditions:

+ (2-v-) 0 ; and + =0 (x)

A question which has an important bearing on the following

work of this treatise is, how much deflections, moments and shears

are dependent on the value of V, and whether it is possible to

transform a set of numerical values of these functions, obtained for

a plate with certain t, into a corresponding set tbr a plate with the
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same loading and edge conditions, but with a different V.

Consider first a plate whose edges are all either simply

supported or clamped. The Poissonts ratio of the plate is V,

rigidity D and the loading q (x;y). Suppose a function W = f(x-y)

has been found satisfying the differential equation (r) and the

boundary conditions (u) or (v) on all edges. The question is what

happens to h , if f' changes to ft, or D to D', everything else

remaining the same.

It does not take long to see that the new value of the

deflection is

= (aa)

since it satisfieS both, the new differential equation and the

boundary conditions, which means that W varies in inverse propor-

tion to D, or

t = W. (11)

The new shear is

Q -D= -D V 1+ - 2), which on substitution of

(aa) for Wi gives,

Q =(ac)

similarly Q' = Q I

This shows that shears are not affected by the change in

or in D.

From (h) and (aa) the new bending moment comes out,

= -D ++ );(ad)
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Substituting into this expression second derivatives of the

old / in terms of the old bending moments, the required expression

for the new moment in terms of old moments and the old and new

is obtained.

Solving together (h) and (k)

Substituting these into (ad)

M I1-?' MX + ( Vg1 - g A ) My
_ (12)

by analogy M ( f - X) M, + (1 - V- T- ) My .

The new torsion moment

M = D'(1 - ) MY

Should change in D be produced by a modification of E or

h the deflection W still varies in inverse proportion to D, while

moments and shears remain unchanged. Likewise, a change of the

load q (x;y) into a proportional value Kq(xjy) alters all the plate

functions in the same ratio K.

This discussion shows that the following relations exist

between various functions in plates with simply supported or clamped

edges, having different V" or Ds but being otherwise identical with

respect to shape, edge conditions and loading: the deflections are

inversely proportional to D, the shears are the same, the torsional

moments are proportional to (1 - Y ), while the bending moments
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follow a more complicated relationship of eq-n (12). It is.

therefore quite possible for such plates to reduce numerical values

of moments, shears and deflections from one value of Y' to another.

This important conclusion may be extended further. So far

it has been tacitly assumed that the plate is supported, in the

manner stated, only on the periphery, while no intermediate supports

are present. The latter qualification may be removed now without

changing the above conclusion. The intermediate supports may be in

the form of immovable line supports, transforming the structure

considered into a continuous plate of several spans, or in the form

of immovable point supports, and in both these cases the effect of

Poissonts ratio is still the a.me as stated above, as is evident from

the following reasoning.

Suppose there is an immovable intermediate line support

at X = 0. The conditions at it are:

(W)., left = (W)x. 0 right = 0.

( ) in left span=( ) in right span.

(Mx)%-o left = (MX) x. right,

the latter reducing to (21L) left =right. All these

conditions are evidently satisfied by the expression (aa) for W'

corresponding to changed ~, which proves the point.

Should there be immovable intermediate point supports, the

reasoning is as followsi Imagine the supports removed, then the

deflections , .... occurring at their points are inversely

proportional to D. Let now the plate be acted upon by the reactions
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of the point supports alone. The deflections &', 8'...

produced now are again inversely proportional to D. If the reactions

have been found correctly for the value of Poisson's ratio /~, then

for that )~ {+ S1' = 0; S= 0..... (ae)

The corresponding equations for a new value of ' will be

.DS+ 'S' = 0 etc. They are evidently satisfied by virtue of

eq-ns (ae) being satisfied, therefore, the values of the reactions

found for )f are good also for yi. Having thus proved the invariance

of the reactions with )', it is possible to regard them as active

forces, which view reduces the plate to the one supported only at the

periphery, for which the stated dependence of various plate functions

on 'fr has already been demonstrated.

These important deductions are utilized in the last article

of this chapter in the use of the framework corresponding to 7 = 3

whose solution is considerably more simple than that of a framework

for any other value of Poisson's ratio.

It is interesting to note that these conclusions regarding

f do not hold when any of the outside edges of the plate are free,

since the value of vV , inversely proportional to D, although satisfy-

ing the differential equation, does not satisfy the boundary condi-

tions (x) in view of their dependence onthe s A change in i for such

plate thus produces a drastic change in the shape of deflection

surface and no simple relation between W and w', or between other

corresponding plate functions, seems to exist. It is possible,

however, that the lack of resemblance is mostly confined to the

vicinity of the free edge.
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Simple relations between various plate functions, corres-

ponding to different values of P~ , are also absent in the case of

elastic supports, or when, in addition to action by known forces,

some points of the plates are subjected to known deformations.

3. Framework Analogy.

Mathematical difficulties standing in the way of a purely

analytical solution of plate problem present an opportunity for

methods which, like the framework method, do not depend on highly

intricate mathematical procedures.

The variety of the framework method used for solution of

problems of bending of plates has a great resemblance with the one

used in two-dimensional stress. Here again a plane structure is

composed of articulated bars, joined by means of pins normal to the

plane of the structure, the bars being arranged according to some

definite pattern, repeating itself everywhere in the structure, whose

external outline and dimensions in plan are made identical with the

given plate. In addition to that, the same loads and boundary

conditions are imposed on the frame analogfas on the plate prototype,

all the loads and the restraints of the frame being applied at the

principal joints. With proper type of pattern, proper sections of

the members and infinitesimal size of unit the framework is again

rigourously equivalent to the plate prototype in its structural

behaviour. In order, however, to solve the problem the size of the

unit must be taken finite and fairly large, which changes the method
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from an exact to an approximate one. This latter procedure is again

justified by a hypothesis assuming that the error involved in the use

of a finite unit is small.

One may notice that all these details are identical with

the ones stated in connection with the plane stress framework. The

feature which distinguishes the framework now considered from the

previous one is that its bars are assumed to be endowed with flexural

property instead of the property of extensibility of the earlier

variety. This flexural property or rigidity is limited to bending

out of the plane of the framework, while no resistance is offered to

bending in the plane of the structure, and none is necessary in view

of articulation of the joints. Furthermore, the bars do not possess

any resistance against torsion. As to the change in length, none

occurs since deflections are small, and the central plane of the plate

neither stretches nor shrinks.

The definition of the terms moment and shear in the frame-

work, as distinct from the moment and shear in an individual member,

is made similar on the one hand to the same terms in the bent plate,

and on the other hand to the term unit stress in the plane stress

framework. This means, for example, that bending moment per unit

length of plane AA (Figure 1) is equal to the sum of corresponding

components of bar moments on length dx, divided by this length. Should

the plane of stress cut the bars in such a way that the manner of

their cutting repeats itself all along the plane, the repeating

lengthy.t may be taken in place of dx.



118.

In order that the infinitesimal framework could faithfully

reproduce the mechanical behaviour of the plate, as manifested either

in stresses or in deformations, it should possess the same deforma-

bility as the plate, as expressed by any of the equations (e), (f),

(h) or (k) of Art. 1, Chap. II, referred to any direction in the

framework. If this reouirement is satisfied, the three deformability

expressions (h), (k) and (q), Art. 1, hold for the framework as well

as for the plate, with W in them signifying the same deflection in

either one of the two structures; at the same time the equation of

statics (d) is likewise equally applicable to both the framework and

the plate. This means that the basic differential equation (r) is

valid for the framework no less than for the plate, and owing to the

same boundary conditions, the expression for Wcomes out the same in

both cases. This constitutes the proof of the statement that the

problem of bending of a plate is exactly equivalent to the problem of

bending of a corresponding infinitesimal framework of a proper pattern.

It has been just mentioned that a framework whose flexural

deformability in any direction is identical with that of the plate

prototype must satisfy the three equations of deformability (h), (k)

and (q), or their equivalents (e), (f) and (q), in which X and Y are

the axes of symmetry of the framework. In other words, the framework

must deform properly under the following conditions:

1. When subjected to pure bending in X direction, with no

bending deformation in Y direction.

2. When in pure bending in Y direction, with no deformation

in X direction.
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5. When subjected to pure torsion on X and Y planes.

Equations derived from these conditions provide the means

for checking suitability of each particular pattern and for deter-

mination of its characteristics, such as the rigidities of individual

bars. When the pattern has the same form in directions of both axes

X and Y, the condition 2, naturally, falls out, and only the two

other conditions remain. The only patterns that have been investi-

gated are the two square ones, similar in appearance to the types

used in plane stress.

4. Square Pattern With Simple Intersecting Diagonals.

Before proceeding with the derivation, a new vector nota-

tion for moments, used throughout the remaining part of this treatise,

will be explained here. According to this notation, a moment, acting

on the plate or on the framework, is designated by an arrow perpen-

dicular to the axis of rotation, i.e., lying in the plane, in which

the turning takes place. This method allows to record the moment in

a framework bar by means of an arrow coincident with the bar a

notation which has a decisive advantage in the process of distribution

described later wherein moments appearing in different members are

recorded as numbers written along the same members, which arrangement

is essential in order to avoid confusion.

It is needless to say that the ordinary rules concerning

various operations on vectors, such as addition, subtraction, breaking

into components and projecting on different lines, hold with respect

to these vectors.
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The following sign convention is adopted; the arrow

points in the direction which has a tendency to rise, on account of

rotation produced by the moment. This means that if a bar is bent

with a concavity upward, its moment arrow points away from the member,

resembling an arrow indicating tension in a member with direct stress.

Similarly, a moment producing downward concavity is shown by an arrow

as if it was a compression stress.

The feature which makes the convenient vector notation,

explained here, possible, is that all the moments associated with

flexure of a plate or a framework have their axes coincident with

the plane of the structure. It is evident that the method would be

unsuitable for designation of moments located at random in three-

dimensional space.

Returning now to framework, shown in Figure 126 (a), it

is assumed that all horizontal and vertical members have moments of

inertia I, while all diagonals have them equal to I, and the two

diagonals of each unit are not connected at intersection. All

members of the framework are made of the same material as the plate

prototype. Thickness of plate is h.

Condition 1. Let the plate and the framework, Figure 126,

be bent'in X direction to a radius r. by moments M. per length a,

while the curvature in perpendicular direction remains zero. This

necessitates applic ation of moments in Y direction of the magnitude

VIM0 per length a. Let angle change in plate or in horizontal bar

per length a be 9. The corresponding angle change between the two

ends of a diagonal is evidently V.*



Moment in the vertical bar is evidently zero.

E1~- E IMoment in the horizontal bar M = -- a ;

Moment in the diagonal bar M = a v7 = - a

Moment in the plate in X direction per length a is

MO = aD = DO-Fx- /2(/-),-2)

(a)

(b)

(c)

The two equations for determination of the pattern character-

istics I and I, are obtained from the moment equilibrium of the joints

in X and Y directions, illustrated in Figure 127 (a) and (b) by means

of newly defined vectors.

From equilibrium in Y direction:

M, E I E1h13e
-M0 = 2 V ; orE

from which I: /2 ah (d)

From equilibrium in X direction:

MO = 2- + M ; or + a IEO E2/7 e

from which, using (d): = a/ 3  (e)

Other Condition. Pure torsion on X and Y planes is assumed

here, which has been proved to be equivalent to equal and opposite

flexures on two planes at 450 to the co-ordinate planes, Figure 128.

In order to forestall a possible question at this stage,

it may be pointed out that a simultaneous uniform curvature of the

framework in two opposite directions along the lines at 900 with each

other is not physically inconceivable, because the curvature is small,

and no warping results.

121.



122.

It is easy to see that horizontal and vertical bars are

unstressed, which follows from symmetry. All diagonals going in one

direction have moments +Mi and those going in the opposite directions

have moments -M1 . Moment in the plate per length 77- is M = Ml which

gives the third equation of the framework. All that is necessary now

is to substitute for M0 and M1 their expressions.

Using an equivalent of equation (e), Art. 1,

a_ Eh i a E 3  ( 8) EhA3e

M - V 2(- 1
2) r 2(-- a ~ 2/(/+1)9

=, Eie

ah 3

Equating M0 and M1 , I / v (f)

Thus, there are obtained three equations, (d), (e) and (f)

for determination of only two pattern characteristics, I and I,.

Evidently, the pattern is suitable only for one value of Poissonts

ratio, determined by equating (e) and (f), which gives '=

Substituting this value into (e) and (f)

aA 3
/6

3 (14)
I,= I /g -

Marginal members have their moments of inertia twice smaller

than the interior members.

A curious identity with the value of ' for the same pattern

in plane stress is noted here.

5. Square Pattern With Auxiliary Members.

A pattern similar in all respects to the one used in plane
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stress for any arbitrary V~ is adopted here, see Figure 129. The

diagonals are assumed to be not connected at the intersection.

Condition 1. The plate is assumed to be bent to a radius

r in X direction while remaining straight in Y direction. The

deformation of the framework is such that the horizontal bars are

bent to the same radius x , the vertical bars remain straight, while

the other members are bent into shapes determined by their conditions

of equilibrium.

It is oointed out in this connection that the deformability

of the framework is considered to be characterized by the positions

of the main joints, while locations of the secondary joints inside the

squares are regarded as insignificant, even if those joints project

one way or another from the general surface determined by the primary

joints.

Moments acting in X direction are M per length a, while

those acting in a perpendicular direction are VM, per length a.

Calling angle change in plate or in a main horizontal bar 9, the values

of M. and of M, the moment in the main horizontal bar, are found as

in the previous article:

Eh36MO = h'e (a)

Ele
E r e(b)

while the moment in the main vertical bar is zero.

The problem requiring solution is to express the moments M,

acting in the outside parts of the diagonals in terms of the angle 9.
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However, before this is undertaken, it is necessary to demonstrate

that all the members inside the squares are in a state of pure bending,

unaccompanied by any shear, since it is quite conceivable that,

although the framework as a whole is in a shearless state, the

individual members may be carrying shears, which would change their

moments from end to end.

Considering first horizontal and vertical members large or

small, one by one, it may be concluded from conditions of symmetry

that if their ends are acted upon by any transverse forces, those

forces must be equal and in the same direction at their both ends,

which, however, is impossible from considerations of statics. Therefore,

all these members are in a shearless state. The same conclusion may be

reached in a similar manner with respect to the inner halves of the

diagonals. In connection with the outer parts of these members, it

will be noticed from symmetry that, if the main framework joints act

on them at all, with any transverse forces, they act in the same

direction on all the diagonals. Such a situation, however, contradicts

statics of any main joint or of any heart of the unit. Therefore, all

members of the framework are in a shearless state and carry constant

moments from end to end of each member.

It will be noticed from equilibrium of a secondary joint

that all auxiliary members have moments M2 equal in magnitude and sign,

i.e., they have the concavity either all up or all down. Moments

corresponding to upward concavity will be considered positive.

As a preliminary step to finding M1 , the angle changes in

various interior members are expressed in terms of their moments.
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The total angle change in two outer portions of the same

diagonal is,

E , a
9 C= L I (c)

A similar angle change in the central portion of the diagonal is,

Q '* /V0 C (d)to ELI vi -(

and in an auxiliary member:

=2 E 2  2 (e)

The three equations which are necessary for expressing the

moments M1 , M,0 and Ma2 in terms of the angle G are as follows:

1. Equation of equilibrium of a secondary joint M1 = M,, + V2 M,2 (f)

assuming all the moments positive.

2. Equation of deformation of the diagonal stating,

total angle change 91 + 9,0 ,

which after replacing 91 and 9,0 by their expressions

(c) and (d) gives, Mi + M,0 = E . (g).

5. Equation of deformation of the heart of the unit. The

curvatures of the heart in X and Y directions are equal;

the curvatures along the two diagonals are also equal;

therefore, the curvature of the heart is spherical, all

lines on it have equal curvatures and, consequently, all

angle changes are proportional to respective lengths.

-. 9 = \/2 92 (h)

The same result may also be obtained by superposition. First

give the heart a uniform cylindrical curvature in X direction with
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angle change 92 on the length of the auxiliary horizontal member. The

angle change of either diagonal inside the heart is evidently

Now superimpose an equal cylindrical curvature in Y direction. This

doubles the curvature of the diagonal, wherefrom the relation (h)

follows. Substituting for 9,0 and 92 their expressions (d) and (e)

the following relation is obtained:

-I -Z (k)

Simultaneous solution of the three equations (f), (g) and

(h) contalning three unknown moments gives,

E I&, j,+vi 7e
MIA = _ _I 9~ (1)aC 2 1-, +i Q,,r

while the two other moments are not required.

Expressions (a), (b) and (1) of the moments MM and MI

allow to set up now two equations for determination of the pattern

characteristics I, I, and 12-

Referring again to Figure 127, the two equations of joint

equilibrium, identical with previous article, are

\/2 MI = Mm)

M + M = (n)

After replacing the moments by their expressions and some

simplification the following two equations are obtained:

ah 3
I= >Z (P)

t IV2- 12 32i1-

The third equation for determination of I, and 12 follows

from the torsional stress condition.
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Other Condition. Pure torsion on X and Y planes which is just

the same as equal and opoosite flexures on two planes at 450.

The state of stress here considered may be imagined to be

brought about in the following manner. First, let the framework be

bent slightly to any constant radius, in a direction at 450 with the

axes, -so that all members become coincident with the cylindrical surface

so formed. All members, with the exception of unstressed diagonals,

are bent to circular shapes and, consequently, are in a state of pure

bending, which, by the way, may be oreserved only by the presence of

some neces3ary external moments at the secondary joints. Now super-

impose on this distortion a similar one, but in an ooposite direction

and along the line at right angles to the first one. The new state

of stress created in all members is again that of pure bending. The

second deformation unbends all horizontal and vertical members, and

the only members that remain bent are the diagonal .ones. The constant

moments present in the diagonals are +MI in the members going in one

direction and -M in those at 900 with the first.

Repeating the reasoning of the previous article with

reference to Figure 128, the equation M= M , arising from this

condition, leads to ec-n (f), Art. 4, which, in conjunction with (p)

and (g) gives the following results for the framework characteristics:

ah 3

I = (15)

ctA 3
I = (16)

3>'--3
2 =- -~~- .(17)12 (,)_2) 24
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Again it must be remembered that marginal members have

their IS twice smaller than according to these formulae.

This derivation shows that the framework of this article

is quite suitable for imitating flexural behaviour of a plate with

any value of V . The most remarkable feature is that the necessary

moments of inertia of the bars, equations (15), (16) and (17), can

be obtained from the necessary areas of the bars in the similar plane

stress framework, equations (4), (5), (6) of Art. 7, Chap. I, by

replacing at in the latter expressions with .

Similarly to the plane stress framework, I2,> 0 when

I2 = 0 when = and I -L>when >-> 0. The

negative value of 12 in the latter case has no effect on the validity

of calculations.

It is interesting to mention that the torsional state of

stress, just considered in connection with the third equation for

determination of IS, may also be brought about by a load condition

causing shears in the interior members of the units, as is evident

from the following discussion.

Let the boundary conditions be represented by the vertical

loads + P acting up and down at alternate joints, Figure 130, wherein

+? corresponds to a downward load, and -P to an upward one. The

overall effect of these forces is evidently a pure uniform bending

with a moment + P per unit length in two directions at 450 with X and

Y axes, bending about one of the axes being positive and about the

other negative. From considerations made clear in orevious discussions,

the main horizontal and vertical members are totally unstressed,
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while the central parts of the diagonals have no shear.

If shear exists in the outer portions of the diagonals

then from considerations of symmetry it must be such that all diagonals

at +450 with X axis act on the main joints in the same direction, say

upward, while all the diagonals at -450 with X axis act on the same

joints in the opposite direction, i.e., downward, which keeps these

joints in balance. Considering equilibrium of one joint after the

other the boundary joints are finally reached, and from their consid-

eration it is concluded that the +450 diagonals do act on the joints

with forces P in the upward direction, as has been assumed.

The state of stress in the members inside each square may

be explained on Figure 131 (a). The ends A and F are acted upon by

the upward forces P, while the ends K and M by downward forces P.

The shear P in the member AB divides eaually between the members BC

and BD, since the central parts of the diagonals are in pure bending.

The shear f in BC is augmented by an equal shear coming from EC to

form shear P in CK.

In order to find the distribution of moments in different

members a section MM1 (Figure 130) is passed through the framework

just touching the corners of the central squares. Since all horizontal

and vertical members are unstressed and since all diagonals have equal

moments at the points where they are cut by the section MM the moment

in the diagonal at any of these points, such as point B, in

Figure 131 (a) is since the tributory length is and the

moment per unit length $ . The moment at the outer end of every

diagonal is then Pa 2-2 V2
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This allows to construct the moment diagram along the

diagonal inside of each square, Figure 131 (b). While parts ab and

ef represent moments in the sections of the diagonal AB and EF, the

part of the diagram be is due to a combined effect of the diagonal

BE and of the auxiliary members BD, BC etc. In order to separate

these two contributions, a section GH is passed through the mid-points

of the auxiliary members. Since moments in the auxiliary members at

G and H are zero from symmetry the constant moment in the central

3 Paportion of the diagonal is found to be

The full line in Figure 131 (c) represents the moment

diagram in the diagonal member, taken by itself. The dotted line,

shown in the same figure, corresponds to the shearless state of

flexure in the diagonal, discussed earlier in this article. A compar-

ison of these two diagrams shows that they have equal areas and equal

statical moments about the outer ends of the diagonal. This observa-

tion leads to an important conclusion that both the linear and the

angular distortions of one end of the diagonal, with respect to the

other, are not affected by non-uniformity of the moment along the

diagonal, when shears are present.

It is peculiar that the flexural rigidities of the members,

and particularly the rigidity of the auxiliary members, depending to

a great extent on the value of V-~, have not entered the discussion.

The only effect of Poisson's ratio on deformation in the loading

considered here is the relative displacement in vertical direction

of the adjacent diagonal lines, brought about by bending of the

auxiliary members while transmitting shears from one diagonal to
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another. Owing to this effect, all joints, situated on the diagonals

terminating in the boundary joints, acted upon by forces +P, Figure 130,

are depressed with respect to the other joints. In making this

statement it is reminded that the diagonals are not joined together at

intersections.

The relative vertical displacement of the adjacent diagonal

lines, as any deflection of a beam caused by a concentrated load, is

Pai3
proportional to . As the size of the unit is decreased, 12 is

decreased in proportion to a, while P remains constant in order to

retain the same intensity of moment per unit length. This causes a

decrease in this relative vertical displacement in proportion to a',

so that this displacement is insignificant for small a.

This discussion shows that in determination of the framework

characteristics no deformation other than shearless need be considered.

6. Distribution Factors in a Framework with '=

A. Definitions.

Distribution factors play most important part in the solution

of the flexural framework. They are defined as quantities proportional

to moments and shears at the ends of different members radiating from

a joint undergoing one of the following two kinds of deformation:

either a vertical displacement without a rotation or a rotation about

one of the framework axes, unaccompanied by any displacement. The

joints adjacent to the one undergoing such movement are considered to

be stationary.
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The following sign convention regarding displacements, shears

and moments in the framework members is adopted. Displacement is

positive if directed downward, i.e., in positive direction of Z axis.

Shear at the end of a member is positive when the member acts on the

joint in the downward direction. As to the moment at the end of the

member, it is positive if the member is concave upward. It is

reminded in this connection that a positive moment in the bar is

indicated by a tension arrow, according to the vector notation of this

treatise.

When investigating rotational equilibrium of a joint, moments

along the framework axes are added up. For this reason, it is not the

moment in any diagonal that is significant, but its X or Y component;

consequently, it is such components that will be considered as the

distribution factors of the diagonals.

B. Displacement Factors

Let a joint, A, (Figure 132) move downward through a distance

A, while the adjacent joints remain fixed. The moments produced at

the ends of any member are equal and opposite in sign. The end moment

in any horizontal or vertical member is:

EI A 6ETA
M=2-c3a =6 (a)

The H or V component of the end moment in any diagonal is:

EL / 1 3EIA
Comp. MI 2 a# 3 - (b)

Substituting for I and I, their expressions (14) of Art. 4
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3 Eh'A cM (c)

3 EA
Comp. M = - a (d)

Shear in the horizontal or vertical member is:

V 2M 3 Eh3  (e)
a 4 (Z2.

Shear in the diagonal member is:

2 (Cornp./Ml) 3 E 3t. 3

The displacement distribition factors are shown in Figure

132 (a) and (b), (a) giving the shear factors, and (b) the moment

factors. All these factors are numbers proportional to the expressions

(c), (d), (e) and (f), with the following proportionality factors.

3 Eh A
Factor of proportionality for moments = -J- -
Factor of proportionality for shears = ' (h).

The displacement, like the one represented in Figure 132,

which causes a unit shear in horizontal or vertical members, when

their far ends remain stationary, will be referred to later as "unit

displacement".

It is scarcely necessary to remind that the units of the

two kinds of distribution factors have different dimensionalities,

which necessitates some later adjustment in the values obtained by

using these factors. Either the moment values will have to be

multiplied by a, or the shear values divided by a.

It will be noticed that the signs of distribution factors

agree with the above sign convention, assuming a downward deflection

, . The arrows in Figure 132 (b) represent the moments acting on

I
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various joints according to the vector notation of this paper.

C. Rotation Factors. Let a joint, A, rotate about Y axis

through an angle 9, as shown in Figure 133. Vertical members remain

unstressed, while all other members get stressed. Moment on the near

end of a horizontal member, i.e., on the end where the movement takes

place, is,

4 ETE6 (k)

The H or V component of the moment on near end of the diagonal is,

e
E , i / v2- EIa

Comp. MaV a

Substituting for I and I, their expressions

V = Eh 9 (m)

Comp. M, = Eh3 Q (n)

The corresponding moments on far ends of the members are twice smaller.

Shear at either end of a horizontal member is,

3 EA 3e (p)

while shear on the end of a diagonal is,

3 h(q)

The rotation distribution factors appear in Figure 133 (a)

and (b), the former showing the shear factors and the latter the

moment factors. All these factors are proportional to the expressions

(m) to (q), with the following proportionality factors.

Factor of proportionality for moments = Eh3 ? (r) ,

Eh3e
Factor of proportionality for shears = - (s)

A rotation causing stresses of Figure 133 will be called

"unit rotation".
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The signs of distribution factors in Figure 133 are in

agreement with the convention stated, and so are the arrows representing

the joint moments.

An important relation between the shear and the moment

factors either in case of displacement or in case of rotation is as

follows. Shear at any end of any member taken with its sign equals

the moment on the other end minus the moment on this end, both moments

being taken with their signs. This relation is used in checking

moments and shears, as will be explained later.

Distribution factors of marginal members are twice smaller

than those of interior members.

Similar distribution factors exist also in the flexural

square framework corresponding to any arbitrary t'. Their determina-

tion is quite labo'Arious and has not been carried out for lack of time.

7. Methods of Framework Solution.

Much of what has been mid about the plane stress framework

in Art. 9, Chap. I regarding the use of finite units of uniform and

different sizes, suitability of the method for different shapes of

plates in the plan and high statical indeterminacy holds equally well

for the flexural framework. For practical reasons, however, the square

pattern is scarcely applicable to any plates but rectangular in plan.

It is reminded that forces acting on a flexural framework

are limited by the nature of the problem to transverse loads and to

moments about axes lying in the plane of the framework.
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In discussing questions involved in solution of framework

it is important to realize structural features of the pattern related

to statical indeterminacy and to freedom of joints to move.

Each framework member may be considered as possessing two

unknowns, i.e., moment and shear, on one of the ends, while the values

of similar functions on the -other end follow from statics of the member.

Three equations of statics may be written for each joint, one equation

for shears and two others for moments in the directions of the axes.

From these considerations it is easy to deduce that the

introduction of auxiliary members in the framework with arbitrary f,

compared with f framework, does not increase statical indetermin-

acy of the structure since the number of new members added in each

unit is 6, corresponding to 12 new unknowns, while the number of new

equations of statics is also 12, owing to 4 new joints. Therefore,

the more complicated type of pattern is not different in its indetermin-

acy from the type with simple diagonals.

Each simply supported joint, whether standing by itself or

forming a part of a boundary, has one reaction associated with it.

A joint, other than a corner one, forming a part of a clamped edge

possesses two reactions, i.e., a vertical reaction and a moment about

an axis parallel to the edge. It is peculiar that such a joint is not

restricted to turn about an axis normal to the edge. A corner joint

belonging to two clamped edges possesses three reactions, one vertical

reaction and two moments.
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Calling the number of members in the framework, with =

m, the number of joints j, the number of statical unknowns u, and the

total number of reaction values r, it may be seen that if r > 5,

u = 2 m + r- j (a)

and if r 4< 3,

u = 2 m + 3 3j (b)

the difference between these two relations being due to the fact that

the active forces corresponding to the latter case are not fully

independent.

Each unrestrained main joint of the framework has three

degrees of freedom, i.e., one vertical displacement and two rotations

about the framework axes. A simply supported joint has two degrees

of freedom, i*e., two rotations. An intermediate joint belonging to

a clamped edge has one degree of freedom, as has been stated, while

a corner joint at intersection of two such edges cannot move at all.

The following methods may theoretically be used for

solution of flexural framework.

1. Method of Least Vork. This method would be extremely

labotrious for the reason of the large number of unknowns. Thus,

a 4 x 4 framework, (Figure 134),simply supported at the edges has the

following number of elements: m = 72, j = 25, r = 16, and the number

of statical unknowns comes out 85.

2. Method of Slope-deflection. Joint movements may be taken

as unknowns, end moments and shears expressed through them and equa-

tions of equilibrium of joints set up to find these unknowns. This
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method applied to the problem just mentioned leads to 59 simultaneous

equations, which, although better than Least Work, is still prohibitive.

Introduction of more restraints, for example, by making the edges

clamped, is favourable to this method and unfavourable to Least Work.

3. Method of seccessive joint movements is the one that has

been found the best for solving flexural frameworks. The idea of this

method is similar to the one used in connection with plane stress frame-

work. Different joints are given successive movements consisting of

displacements and rotations. The end moments and shears, caused by

these movements in the members of framework, are computed by means of

distribution factors of the previous article, simply by multiplying

these factors by the number of units of movement given to the joint.

Summation of end moments and shears at each joint gives the unbalanced

functions. The purpose of successive movements is to reduce to zero

these unbalanced joint mements and shears. The record of current

values of functions during distribution is kept on two diagrams of

framework, one for shears and the other for moments. Shears and

moments at the ends of members are recorded by means of figures written

on the members. The total joint shears and moments are also stated

near joints, the moment figures being accompanied by two arrows,

indicating the directions of X and Y moment components. The method

of recording is much similar to the one used in plane stress. Further-

more, it is very convenient, when combining the moment arrows into the

resultant joint moments, to think of them as if they were tensions or

compressions in a plane stress framework.
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By consideration of Figures132 (b) and 135 (b) it may be

seen that a joint displacement results in moment arrows radiating from

this joint and directed in all the members either all away or all

toward the displaced joint. In case of rotation, the moment arrows

are all streaming in the same direction through the roteted joint.

In rotating the joint toward the balance it is not even necessary to

visualize the direction of rotation. All that is required is to apply

to the unbalanced joint and to its neighbours, moment arrows directed

in accordance with the above made observations.

This explanation presents only a brief outline of a rather

elaborate procedure. The difficulty encountered in application of

the method is that, unlike the plane stress problem, the movements

which would lead to equilibrium of joints are not apparent. It is

easy enough to eliminate the moment unbalance by proper rotations of

joints, but this leads to shear unbalance; on the other hand, a removal

of shear unbalance by the necessary displacements leads to unbalanced

moments; at the same time it seems impossible to foresee directly the

true combination of the two kinds of movements.

In order to overcome this difficulty an indirect procedure

has been adopted, in which an important part is played by the so-called

reaction factors, whose meaning may be explained with reference to

Figure 135 representing any arbitrary framework.

Suppose, that transverse forces are applied to all the

joints of the framework so that one of the joints, for example A, gets

a unit transverse displacement, while all other joints remain in their
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original locations; at the same time all the joints are left free to

rotate to equilibrium. These joint forces are called the reaction

factors corresponding to movement of joint A. The values of these

factors quickly decrease as the distance from joint A increases,

approaching zero at the joints more than three framework units away

from A.

These factors may be computed either exactly by using the

actual framework of the problem, or approximately, by using an

imaginary framework, extending from the displaced joint not more than

three units on each side. The computation is comparatively simple,

since the displacements are known, and the distribution of rotations

can be easily performed.

Sets of reaction factors must be computed for displacements

of all the joints of the framework. Approximate factors should be

preferred since their computation is easier, and since they have

similar values for several sets as long as the displaced joints are

not less than three tnits distant from the periphery. Actual boundary

conditions should be taken into account for those sets whose displaced

joints are, like joint B, only one or two units distant from the edge.

There is only a limited number of sets of approximate

reaction factors; they may be calculated beforehand and used in all

framework oroblems. On the other hand, the number of sets of the

exact factors is larger, and they are good only for one particular

framework.

FigurE3136 to 140 give five sets of reaction factors,

utilized later. In these figures, frameworks extend for one, two or
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three units from the displaced joints. All edges are assumed clamped.

Since the frameworks are symmetrical about one or two axes, reaction

factors repeat themselves in corresponding parts, and only one quarter

or one half of each framework is shown on the drawing.

Rotational distributions used in determination of these

factors have been carried out only approximately, and the values of

the factors are not extremely accurate.

Reaction factors are made the basis for an approximate

determination of joint displacements, which is done on a separate form.

In this part of the problem joints are displaced one at a time through

a number of units of displacement estimated on the basis of unbalanced

joint forces; new joint forces, caused by the movements, are added up

and the operation is repeated until the unbalanced joint forces

become small.

The joint displacements so found are, however, only approxi-

mate, in view of the approximate nature of the reaction factors. The

next step in the procedure is to introduce these displacements into

the actual framework, and to distribute all unbalanced moments. If

the displacements were correct, no unbalanced joint forces would be

present. In actual problem, however, unbalanced forces do show up,

although they are of the order of some twenty times smaller than the

original unbalances. Two or three additional cycles of the same

procedure are necessary to make the unbalances negligible.

This explanation gives a general idea of the process of

solving a flexural framework. Some minor features will be added later
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when an ectual problem will be solved.

4. Finding joint displacements by equations. This is a modi-

fication of the method just described. In this method the exact

reaction factors are found by rotational distributions in the actual

framework. In order to find joint displacements necessary for equil-

ibrium a system of simultaneous equations is set up by means of

reaction factors, each equation expressing equilibrium of a free joint.

After the equations are solved, the framework is given the necessary

displacements and the unbalanced moments are distributed by means of

rotations. The number of simultaneous equations is equal to the

number of free joints. This method is believed to be more labo~rious

than the previous one.

The principle of symmetry is no less applicable in flexural

framework than in plane stress. The necessary and sufficient require-

ment for its application is symmetry of the structure, including its

restraints, about one, two or more axes. The manner of breaking up

of the problem into its compontent cases, similarity of stress condi-

tions in different portions of the plate and some other features of

the principle discussed in the chapter on plane stress, are equally

applicable in flexural framework and will not be repeated here.

8. Principles Used in Checking. Routine of the Distribution.

Stress Interpretation.

As has been explained in the chapter on plane stress, current

checks are imperative in any lengthy arithmetical procedure, such as
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distribution of unbalanced joint forces in a framework.

Consideration of Figures132 (a) and 133 (a) shows that the

algebraic sum of all the joint shears springing up after either a

displacement or a rotation is zero, which is the direct result of the

fact that the shears on two ends of any member are numerically equal

and opposite in sign. It is needless to say that the same statement

holds for the movements of marginal joints.

This principle is made the basis for checking the unbalanced

joint shears (joint forces). At any stage in the distribution the

algebraic sum of the unbalanced joint shears, including the shears at

the boundary joints, before they are neutralized by the reactions, is

equal to the algebraic sum of the original joint loads. The purpose

of distribution is to push these unbalanced joint forces to the points

of support, where they become neutralized by the reactions.

The situation with the moments is somewhat more complicated.

While in case of joint displacement, Figure 132 (b), the algebraic sum

of the joint vectors, either horizontal or vertical, is zero, in case

of rotation, Figure 133 (b), the sum of vertical moment vectors is

zero, but the sum of horizontal ones is 4-* of which vector 3--

is applied at the rotated joint, and the remainder comes from the

adjacent joints. Thus, when a rotation of a joint takes place,

adding a certain moment vector to the rotated joint., the framework, as

a whole, receives a moment vector l- times larger than the one applied

at the joint in question.
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Since it is convenient to base a check on equality of certain

values to zero, an arrangement will be agreed upon to accompany any

joint rotation by entering in a special column a moment vector ly

times larger than the one applied to the rotated joint, in the

direction opposite to it. This vector will be referred to as "balance"

vector. The algebraic sum of the joint vectors and of the balance

vectors, either in a horizontal or in a vertical direction, remains

constant at all stages of distribution, and, unless the original

loading of the framework is effected by means of couples, this sum

stays zero. Two columns are used for the balance vectors, one,

indicated in Figure 133 (c), for the horizontal vectors, and the other

for vertical ones.

So far, only the movements of the interior joints have been

considered. Balance vectors corresponding to movements of marginal

joints are somewhat different, and will be discussed now.

In Figure 141, rotation of a marginal joint about an axis

perpendicular to the margin is shown. The balance vector is again
times

l larger than the moment applied to the rotated joint, which ratio

is preserved in all cases of rotation. No vertical balance vector

is needed.

Figures 142 and 145 show rotations of an intermediate and

corner marginal joints about horizontal axes, and the balance vectors

that result from these movements. In case of corner joint two balance

vectors are needed.

Balance vectors are also required in case of a vertical

disolacement of a marginal joint as demonstrated in Figures144 and 145.
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Unlike rotation, the balance factors accompanying joint displacement

are twice larger than the moments applied to the displaced joint.

In the framework problem solved below, the portion of

structure subjected to distribution is separated from the framework

by means of cuts along two axes of symmetry, one of which follows

the direction of a diagonal and forms a margin at 450 to the frame-

work axes. Although this feature does not introduce any new principles,

it becomes necessary to state the values of distribution and balance

factors for movements of joints adjacent to the diagonal margin. The

section of members along such margin is naturally twice smaller than

that of an ordinary diagonal. Since the loading of the problem is

symmetricaldtout this margin, rotations of marginal joints will be

considered only about axes normal to the margin.

In Figure 146, moment factors and balance vectors corres-

ponding to displacement of the marginal joint A are shown. In

Figure 147, a joint B, which is a short distance away from the margin

is displaced. Since, in view of the symmetrical nature of the loading,

this displacement is assumed to be accompanied by a similar movement

of a joint located symmetrically on the other side of the margin, the

diagonal joining these two joints remains straight. This accounts

for the moment unbalance of the joint B and for the presence of the

balance vectors.

Figure 148 represents rotation of the joint A about an axis

perpendicular to the margin. The values of the distribution factors

may be obtained by superposition of two rotations about the horizontal
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and vertical axes. In Figure 149, joint B rotates about a horizontal

axis, while another joint symmetrically located on the other side of

the margin, performs a symmetrical movement, i.e., rotates about a

vertical axis. The half-member BB' is in a state of pure bending with

moment equal to one half of the moments of the other diagonal members

at point B. In recording the balance vectors, first the two vectors

- each are entered, which transforms joint B into a regular interior

joint, then the vertical vector + 4- is entered in order to neutralize

the moments corresponding to rotation of an ordinary interior joint.

When checking moments, the vector arrows at the joints similar to B'

must also be included in the summation.

Since joints situated on the inclined margin are permitted,

in view of the load symmetry, to rotate only about the axes perpendic-

ular to the margin it is necessary to break up their moments into

components perpendicular and parallel to the margin. Y1hile the former

arrows are neutralized by the moments coming from the other side of

the margin, the latter constitute the true unbalanced moments.

The rule for transforming horizontal and vertical moment

arrows is very simple and becomes evident from consideration of

Figure 150, in which the horizontal and vertical moment vectors X and

Y are changed into vectors N and T parallel to lines at 450 with X

and Y. In line with previous convention, numbers N and T stand for

the values of the horizontal or vertical components of these vectors.

Therefore,



N = 2

NT X-Y2T = .

XA N + T

Y =N - T-and

(a)

(b)

Another idea utilized in current checks of a framework

solution has been alluded to in the article on distribution factors,

and should be made clear from comparison of the shear and moment

factors in Figures132 and 133. At any stage of distribution, the

shear at the end A of a framework member AB is equal to the algebraic

difference of the moments at the ends B and A.

The following routine in working out each cycle of distri-

bution has been found convenient.

1. Determination of joint displacements by means of approximate

reaction factors.

2. Introduction of these displacements into the framework,

accompanied by recording of the moments and shears at the ends

of the members, of the balance vectors, and of the unbalanced

joint moments and shears.

3. Distribution of moment unbalances by joint rotations, one

by one, accompanied by recording of the same functions as in 2.

The unbalanced joint forces now decrease some fifteen to twenty

times comoared to the original values.

4. Current check, consisting in the following procedure.

a. Separate additions of X components of joint moments

147.
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and balance vectors, ditto Y components and, thirdly,

unbalanced joint shears. Each sum must be equal to the

original value of it before the distribution.

b. If any of these sums do not check, the end moments and

shears in all members are found by adding up individual items

on the members. The shears are checked against the

differences in end moments, as has been explained.

c. Unbalanced joint moments and shears are found by

addition of corresponding functions at the ends of the

members. Results are compared with the original figures of

joint unbalances, which are thus checked.

After the summations referred to in 4 aare found to check,

another cycle of distribution is carried out. It is believed that no

error can escape detection in this procedure, but on a few occasions

the discrepancy has been found to be due to errors in the balance

vectors or even in a failure to enter these quantities at all. For

this reason special care should be exercised in dealing with belance

vectors, and it may even be necessary to go over them once more for

check.

The simplicity of the ratios between different values of

distribution factors makes possible to perform distribution in round

figures. In order to avoid undesirable fractions the displacements

must be taken in numbers of units multiple of 8 and 16, and the

rotations in multiples of 24 or 12.

After completion of distribution a final check, similar to

the one used in plane stress, may be easily carried out, although it
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is unnecessary if current checks have been properly followed. In this

final check the framework is given due displacements after which the

joints are rotated, one by one, through the angles necessary to bring

about the moments found at the ends of horizontal and vertical members.

The state of 4ieformation, resulting from these rotations, must be the

true state of equilibrium, if the original solution is correct,

therefore, the end moments in the diagonals must agree with the origin-

ally found values, which constitutes the check. There is no need to

check shears, since they have been found in the last current check to

agree with the moments.

Interpretation of framework stresses into continuous moments

and shears of the bent plate follows the principles explained in the

chapter on plane stress and will be mentioned here only briefly. All

the plate functions per unit length of plate, i.e., bending and

torsional moments M and shears Q will be found from the corresponding

framework joint concentrations K by formulae:

M ) (c)
M KM ()fo'r intermediate joints,

1<= 4 (d)

and M 2 Km (e)
for edge joints.

Concentrations K for shears and torsional moments are the

averages of the values on two sides of the joint. The absence of a

in the expressions for moments follows from the difference in

dimensions of the proportionality factors for shears and moments as

has been mentioned in Art. 6. It is assumed here that the plate is

Sao
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loaded with vertical loads and not with the load couples. Should the

opposite be true, the right hand sides of the expressions (c) to (f)

would have to be divided by a.

Some minor qualifications in using these formulae will be

mentioned later.

9. Problem of Bending of a Clamped Edged Square Plate by a

Concentrated Load at the Centre.

A. Solution of the Framework,

An 8 x 8 square framework with -= -3 , Figure 154, Plate 18,

is used in solution of this problem. Since the framework is symmetrical

about four axes a triangular octant of the structure is all that is

necessary to consider. Being axes of symmetry the two cuts, separating

the octant from the rest of the structure, do not rotate about the

axes parallel to them, so that the corresponding components of the

joint moments are balanced by the moments coming from the other side.

Joints located along the clamped edge do not displace and do not rotate

about the axes parallel to the edge. Due to an oversight, they were

at first not allowed to rotate about the axes perpendicular to the edge,

which left some torsional moments at the edge. This error was corrected

by an additional cycle of distribution at the end of the procedure.

The standard distribution routine has been modified in the

first cycle, and the problem has been commenced by distorting the

framework according to Figure 151 (a). Numbers stated at the joints

represent their units of displacement, arrived at by rough visual

estimation of the expected deflected shape of the plate. They are
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all made devisable by 8, while the numbers along the inclined cut

are made devisable by 16 in order to avoid fractional shears and

moments. Numbers written along the members represent relative dis-

placements of the two ends. It must be realized that the actual

values of displacements are immaterial in this problem, and all the

numbers might have been taken ten times larger or smaller.

Shears and moments, corresponding to these displacements,

are now entered on the distribution diagram. It may be observed

that the shear values in the horizontal and vertical interior members

are eaual to the displacement numbers with proper signs, shears in the

horizontal marginal members equal to one half of the displacement

numbers, shears in the interior diagonal members are obtained by

dividing the displacement numbers by 4, while those in the marginal

diagonal members by dividing by 8. End moments caused by these

disolacements are found by dividing the corresponding shears by -2.

Horizontal and vertical balance vectors are now found and

duly entered. There is no need to find them for each member separately

since their total may be found more easily. This is best done by

adding up the displacement numbers, separately for horizontal,

vertical and diagonal members going each way, wherein the numbers on

the marginal members are divided by two, and by obtaining contribu-

tions to the balance vectors separately from each sum.

X and Y components of the unbalanced joint moments are now

determined and recorded. Unbalanced joint shears may also be

calculated, although this may be waived.
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The next step is to distribute unbalanced moments by

rotations about X and Y axes except for the joints along 450 margin,

which are rotated only about the lines normal to the edge. Rotations

are carried out one by one beginning with larger unbalances. It is

recommended to take into consideration, at least approximately, the

future influence of rotations of the adjacent joints, even though

such influence is not great.

If an interior joint (see Figure 133c) is allowed to rotate

to equilibrium, one third of the unbalanced moment goes into the near

end of the horizontal or vertical member parallel to rotation and

into each diagonal. The far ends of the members get moments

twice smaller. This consideration allows to estimate the number of

the necessary units of rotation, and the influence of rotation of the

neighbouring joints. In order to avoid fractions the number of units

must be made a multiple of 24 for interior joints and of 12 for

marginal joints.

The added end moments, end shears and balance vectors must

be immediately recorded after each joint rotation. All affected

joints are gone over and the unbalanced moments modified by the new

additions, the old figures being simply rubbed out. If the unbalanced

joint shears have been recorded, they are also modified now. It is

desirable to use coloured pencil for those joint moments and shears

which are balanced by restraints.

Wfhen the joint moments are all reduced to small values they

are checked as has been already explained in the previous article,

and this completes the first cycle. The end moments and shears,
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resulting from the first cycle, may be seen in Figure 152 (a) and

(b) as the first partial sums recorded on all the members nearest

the joint centres.

The unbalanced joint shears remaining after the first cycle

are stated in Figure 153 (a), while the unbalanced joint moments,

which are small, are not shown. These shears are quite large, which

indicates that the assumed displacement curve is not the true one.

If the guess at the first cycle displacements had been correct the

joint shears would have been everywhere zero with the exception of

the edge joints and of the joint at the centre.

Joint displacements used in the second cycle are determined

by means of the reaction factors, FigurE 136 to 140. These factors,

however, have to be adjusted in order to suit the peculiarities of

the problem. Since the plate and the loading conditions are symme-

trical about the four axes shown in Figure 154, a displacement of any

intermediate joint, such as A, must be accompanied by similar

displacements of seven other symmetrical joints A, to A1 . Similarly,

a displacement of a marginal joint B is co-existent with similar

displacements of B,, B2 and B3. Therefore, in order to find a

reaction factor at some joint, such as M, caused by translation of the

joint A, it is necessary to superimpose the effects of unit transla-

tions of the joints A, A,, A2, A3, A6 and A7 on M. Translations of

Aq and Ay are too far distant to be felt at M. These factors will

be referred to as "influence factors", and the one at M due to

displacements at A, A...rmay be found from Figure 139 to be
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f [2 (0.228 + 0.029 + 0.002) 0.259, the reason for the

coefficient ± being that the joint M is a part of an interior margin.

It may be mentioned that the influence factors are subject

to the law of reciprocity, which may be proved by Bettits theorem,

whereby fm = feA. This has been used as a check of the determined

values of the factors, and in case of a minor disagreement the average

of the two may be taken as the true value.

The five sets of reaction factors, Figures 136 to 140, are

theoretically incomplete for determination of all the influence

factors, but the deficiency is immaterial and may be supplemented by

judgkment. Furthermore, the reaction factors themselves are not only

approximate by their nature, but have also been determined approxi-

mately. All this accounts for certain lack of precision on the part

of the influence factors. Although they have done a good work by

cutting down unbalanced joint forces on each cycle some fifteen to

twenty times, it is felt now that it probably would pay to have them

calculated with greater accuracy.

Influence factors are shown in Table 3, Plate 24. The

second cycle displacements, found by means of these factors, are

presented in Figure 151 (b), while the results of two other cycles

appear in Figure 151 (c) and (d).

Each set of displacements is handled in the distribution

diagrams of Figure 152 (a) and (b) in exactly the same way as has

just been ecplained. The total unbalanced joint forces remaining after

each cycle are shown in Figures 153 (a) to (c) and in Figure 152 (b).

These figures show how the joint forces everywhere, with the exception
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of the centre and the edge, decrease with each cycle until in

Figure 152 (b) they become negligible.

The technique of finding the displacements of each cycle

by means of influence factors is demonstrated in Figure 155, in

relation to the third cycle displacements. The procedure amounts

to a solution of nine simultaneous equations by approximations.

Figures at the heads of third columns may be recognized from Figure

153 (b) as the joint unbalances left after the second cycle. Succes-

sive movements, recorded in the first columns and decided upon from

inspection of unbalanced forces, are introduced at various joints;

the corresponding joint forces, found by multiplication of the number

of units of displacement by the influence factors, are stated in the

second columns, while the resultant joint forces appear in the third

columns. New displacements are added until the remaining joint

forces are small. It is not an easy matter to decide what should be

the values of the displacements, and it may be seen from Figure 155

that most of the movements have been underestimated on the first

trial, while the movement of the joint 1,0 has even been aken origi-

nally in wrong direction. Proficiency in this procedure depends

greatly on experience. The central joint has been left stationary

which simplified somewhat the work. In other problems this joint may

have also to be moved.

The final sums in Figure 152 (a) and (b) represent the

solution of the framework problem, which, however, is erroneous insofar

as the edge joints have not been allowed to rotate about axes perpen-

dicular to the edge, and, therefore, some torsional moments remain at

-I
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the edge. This oversight has been corrected by allowing these joints

to rotate and by adding one more cycle of distribution. Final dis-

placements, shears and moments are given in Figure 156 (a), (b) and (c).

B. Plate Stresses by Framework and by Other Methods.

In connection with interpretation of results of framework

solution into the plate stresses, a few words must be said about the

signs. It is clear that the sign convention of the framework, determined

by the needs of distribution procedure, does not agree with the theory

of elasticity convention of Art. 1; this necessitates some sign conver-

sion before the results may be presented in form of stresses. How this

operation should be done on shears is quite evident; in case of moments,

however, some explanation is necessary, and it is done by means of

Figure 157. The arrows K represent joint concentrations of the moments

external to the framework which correspond to positive MV, My, My and

M according to the elasticity convention.

The numerical results of the distribution just accomplished

may be reduced to general form, corresponding to the action of a force

P at the centre of the framework, in the following manner.

Let letter K, with an appropriate subscript, stand for a

joint concentration of bending or torsional moment, then, since the size

of the unit of moments, or the proportionality factor of Art.6 is Eh-d>

3 EAA_ 3 EA
Maa = 1 a Kx or M', =-- 0 Kx . (a).

Since the shear concentration at the centre joint of the octant is

3h3 A
347.29 and since the size of the unit of shears is - Eh a ,

P 8 (547.29) 3 Eh3 A (b)

Eliminating d from (a) and (b),
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2778-32 P,(c)

which is the required exoression.

Replacing KC with Ky or K, similar expressions for the

other unit moments result. Corresponding expression for shear per

unit length of plate is,

Q 2778.3 = 69q.58 6a -, (d)

where 4a is half side of the square plate.

Let k be the number of units of deflection corresponding

to the given joint (Figure 156a), the size of the unit being A ,

which agrees with the size of the unit for shears. Then deflection

at that joint is,

S = k A - (e)

Eliminating A from (b) and (e),

2083.7 E(f3

It will be reminded that the deflections and the moments

found in this problem apply only to a plate with V- = , although they

may be easily reduced to any other value of V' by formulae (11) and (12)

of Art. 2. The shears, on the other hand, are good for any .

In order to check the method, the results have been compared

with those derived by Marcus 6 and by Professor Timoshenko. 7 A few

words about their methods are in order.

The method of Marcus, referred to below as Method No.2, is

an approximate one, based on the replacement of the differential

equations of the bent plate by the corresponding difference equations

obtained by using ratios of finite quantities for the derivatives,like
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WZaI (g)

or 2 2a (h) etc.

Marcus divided the plate into the same number of squares as has been

done in the framework solution, namely 8 x 8, and used the corners of

those squares for the key ordinates W,, Wo.... This makes the degree

of his approximation appear comparable to the one used in this

problem. Since the results of the compnarison of two solutions have

been found not very satisfactory, an additional computation has been

made by the equations derived by Professor Timoshenko .

The latter method, called below No.3, is an exact one, and

its soolution is expressed in the form of a combination of several

infinite series of trigonometric and hyperbolic terms. In order to

make the solution workable, terms after a certain number, heve been

discarded by Professor Timoshenko, which made his final formulae also

somewhat approximate. However, from a practical viewpoint they will

be considered as exact.

Some of the results below are given by all three methods,

while others by only two or even one.

Figure 158 presents deflections by all three methods. The

framework figures are almost indistinguishable from those of Professor

Timoshenko, wbile Marcus' figures are everywhere considerably out.

At the centre, for V =
Pat P&Ia)

= 3.839 - = 0.240 Eh)Eh 3  sid Eh 3  q (k)

where 4a is one half of the side of the square plate.



Moments 1, MP and shears Qx are stated in Figuresl59, 160

and 161 respectively. Bending moments are given also by two other

methods, and torsional moments by the Method No.3, while the figures

of shears are supported by comparison with Method No.2 at the

periphery points only.

Agreement of the framework moments MX with those by Method

No.5 is good, except near the centre and at a few points where the

moment values are very low. Method No.2 again compares unfavourably

with No.1, although its disadvantage is not so great as in deflections.

At the centre M. is theoretically infinite. The framework

method by its very nature cannot produce infinity, since it averages

the effect over a unit of framework. Therefore, the value given by

it for M. at the centre should not be taken as an indication of the

true moment at that point. The same applies to the method of Marcus;

the flattened shape of his moment curve near the centre is not typical

for the moment conditions near a point of concentration. It appears

that he has assumed the load P distributed uniformly over a certain

area near the centre.

It is the proximity of the point of application of load P

that is believed to be responsible for somewhat poorer precision of

the framework values of M7 at points 1,0 and 0,1.

The showing of torsional moments determined by framework in

comparison with the results of Method. No.5 (Figure 160) is unexpectedly

poor, the difference being mostly around l5-20% with as much as nearly

40% of the true value at the worst point.

The values of shear QX by the methods 1 and 2 show an

159.
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excellent agreement at the edge parallel to Y axis (Figure 161),

while similar values at the other edge are badly out. Although the

method of Marcus does not appear very reliable, the error in this

particular case probably lies in the framework method. No check has

been made on shears at intermediate points.

The same data on moments and shears by these various methods

are again presented in the form of curves in Figure5162 to 166. The

curves of M9 and Qg are plotted from the equal values of M. and Qx at

corresponding points, since MV at point x, y is equal to My at the

point y, x. At the edge perpendicular to X axis Y Thisi y3.

relation is satisfied by the framework values fairly closely.

The poor showing of the framework method in torsional

moments and in shears Q5 at the edge x = 4a has been most disappointing

and unexpected in view of the excellent results with deflections and

good results with bending moments and other shears. No explanation

of the discrepancy has been found, although it is believed that

imperfect interpretation is at the root of the trouble.

In Figures167 to 169 are given by the same three methods

some of the functions for the plate with -= 0. The curves by Marcus

are borrowed from his book. There is a fair agreement of all three

methods in moments MX and M, on the plane x = 0, except near the

centre of the olate. Peculiarly enough, moment Mx at the edge x = 4a

does not depend on the value of ', which may be seen from the eq-n

(12), Art. 2, therefore, Figure 162 (e) may be referred to for the

curve of this moment for V'= 0. Figure 169 presents three different

functions, taken at the points along the diagonal of the plate.
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These functions are: Mxv; M1 , which is the bending moment on the plane

normal to the diagonal, and M2, bending moment on the plane of the

diagonal. Moments M1 and M2 are computed from the formulae:

Mi = M - M(iY

M2 = M + M)y .

The presumably true curves determined by the method of

Professor Timoshenko split nearly evenly the differences in ordinates

determined by the two other methods. It is evidently the error in MY

which makes the framework values of Mi and M? disagree with the true

values. The true value of 1 or M2 at the centre of the plate is

infinity.

It may be concluded from these curves and diagrams that,

in the absence of adequate explanations of the discrepancies, the

framework method cannot be considered fully satisfactory at least for

determination of torsional moments and, possibly, shears, but even

with that it compares favourably in accuracy with the method of Marcus.

The results of the deflections and bending moments show that the

method is correct in its basic idea, and that the source of error lies

in some of its secondary features.

The framework method is of course very labotrious, but so

is the method of Marcus and on the strength of its presentation by

its author one would not expect it to be less time consuming than the

method of this treatise.

As to the method of Professor Timoshenko, it has taken the

writer approximately nine days to compute the data presented in this
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article from the apparently explicit formulae with all coefficients

given. The formulae of this method are bulky and the series long, on

account of slow convergence, which, by the way, has been the reason

for not having calculated shears by this -method. In some cases it has

been necessary to include as many as twenty terms, and even after

that, a special investigation has been required of the error involved

in disregarded part. Difficulty has also been experienced in devising

any adequate check. The method, however, is the least labotrious of

all three, if the values of moments or shears are reouired only at a

few definite points, and if the values of the basic coefficients are

known beforehand.
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III.

Conclusion

The most important peculiarity of the framework method

is its applicability to a variety of unsolved problems of elasticity

in which the shape of the stressed body conforms to the rectangular

form of the framework pattern, and the points of application of loads

may be adjusted to the locations of the joints. The following examples

will be cited.

The gusset plate problem of Chapter I may be modified in

such a manner that all truss members will be assumed as deformed

equally with the gusset plate all along their lengths of attachment,

instead of delivering to the gusset plate a uniform line loading, as

assumed in the problem solved. The framework bars coincident with

the attached parts of the truss members will have to be increased in

area, and the corresponding distribution factors modified. In this

form the gusset plate problem will, probably,-be closer to the truth,

even though the deformability of the rivets will be left out of

consideration.

In another problem, the plate, acted upon by forces in its

plane, may have different thicknesses in its different parts, with a

qualification, that the boundaries between them must coincide with

the framework bars.

The plate may also have rectangular openings of the sizes

multiple of the size of the unit. A few half size units will,

probably, be necessary near the re-entrant corners.
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The plate under plane stress may be a reinforced concrete

plate with reinforcing bars running in directions of the framework

members. The areas of framework bars will have to be modified to

allow for reinforcing. It will be necessary to assume that no crack-

ing occurs. It may be pointed out that the basic differential equation

of deformability will not hold in this case without some modification.

As an aonlication of this problem, stresses set up by shrinkage of

concrete at the junction of a wall and a floor slab may be investigated.

It seems feasible to extend the method into the realm of

three dimensions in aoplication to rectangular elastic blocks, although

the manner of keeping record of bar stresses during distribution may

prove clumsy.

A variety of problems on bending of plates may also be

attacked by the framework method. Some of the problems, however,

cannot be solved by the pattern with V - , and so, before the

extension of the method, the distribution factors for other values of

V' must be computed. All possible edge conditions may be handled,

although fixed edges are the simplest in distribution. Increased

plate thickness over part of the area, as in dropped panels of flat

slabs, presence of rectangular openings, also common in these

structures, strengthening of free edges by beams, presence of

reinforcement, all these features and some others, although increasing

considerably the labour of solution, may, nevertheless, be taken

care of by the method of this treatise.

Another field into which this method may possibly be

extended is the analysis of cylindrical shells with determination of
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both, the membrane stresses and the bending stresses caused by the

edge restraints.

As an interesting by-product of theoretical investigation,

application of the framework method to model analysis seems also

feasible, at least for the material with t 1 - . Such framework

model of a plate in the conditions of plane stress may probably be

more easily loaded, especially at the interior points, than the

bakelite or rubber models, and the strains of the bar members may be

investigated in ordinary ways by strain gauges or by a microscope.

It will be remembered that the stresses in the plate

subjected to plane stress and loaded at interior points depend on

For this reason, when investigating a metal plate so loaded, a model

of it in the form of a framework with h= has an advantage before

photoelastic or rubber models with V'= 0.4 - 0.5; in view of prox-

imity of the figure to the actual values of Poisson's ratio for

metals, ranging within the limits -

The distribution procedure, especially in the flexural

framework, seems quite involved to a beginner, but once experience

has been gained, this feeling disappears, and all the necessary steps

are taken in a stride. A thorough familiarity with the values of

distribution factors, kinds of block movements and with the manner of

keeping record is, however, essential in this kind of work.

The following remarks summarize the most important features

of the framework method.
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Advantages.

1. Applicability to a wide range of unsolved problems from

two-dimensional stress to bending of plates and shells.

2. Suitability to any value of V and to all boundary condi-

tions.

3. Availability of good checks.

4. Absence of any higher mathematics.

Disadvantages.

1. Great amount of labour involved in solution.

2. Impossibility of solving a part of the framework without

solving all of it.

3. Defects of stress interpretation.

4. Intricacy of the arithmetical procedure.

5. Large degree of dependence of proficiency on the experience

of the computor.

6. Limitation of applicability of square pattern to rectangular

plates.

Most of the work on the framework method, if this method is

going to become an established tool of structural analysis, lies ahead,

since the present treatise is merely its introduction. Among the

important tasks standing now before the investigator may be mentioned

further comparison of the framework solutions with the available

results of the theory of elasticity, research into the question of

stress interpretation, further improvement of the distribution

procedure, especially in flexural framework, and investigation into
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new types of patterns. Then, there is a wide room for extension of

the method to new problems and into new fields, some of which have

been mentioned. It is not an idle dream to suggest that should a

fraction of time and energy used now in some kindred lines of

endeavour, like the photoelasticity, be diverted to the study and

research in this new field, some very important results will ensue.
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