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ABSTRACT

In recent years more accurate measurements of the enexrgy
shifts and widths in pionic atoms provide a more string-
ent test for pion-nucleus optical potentials. Several
anomalies have been found throughout the periodic table,
calling for a reexamination of the theory. In this work
the Doorway State Approach to the Bound State problem is
developed in order to study these energy shifts and
widths. It is found that within the first doorway trun-
cation the essential physics of this problem is obtained
and effects like Pauli-Blocking, nucleon rescattering in
the presence of Coulomb forces and absorption are summed
up linearly when the first doorway expectation value is
considered. The new optical potential takes into account
nucleon recoil and finite range effects. 1In this way the
contribution of the first order optical potential is
calculated properly. The higher order contributions are
considered through a spreading potential. The parameters
of this potential are found for the pion-nucleon S11

channel and 531 channel through an energy shift fitting
with 4He and 160

solve the 4He problem and the proper energy shift and
width can be obtained with the same set of parameters.
The ratio of the imaginary part of the strength and the
mass difference is the same as the one for the delta-
iscbar. '

the results of this fitting finally
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INTRODUCTION

In recent years more accurate measurements of the energy
shifts and widths in pionic atoms put into test the semiphe-
nomenological optical notentials used to describe the pion-
nucleus interactions. Now it is clear that several anomalies
appear in different regions of the periodic table, calling
for a reexamination of these ontical potentials. Measurements
of the widths of heavy elements, not measured earlier,show a
systematic deviation of the predicted widths from the experi-
mental ones, which can not be explained using standard semi-
phenomenological potentials.All attempts to explain this ano-
maly have faileé to date. There are also problems for very
light nuclei like Helium, which is going to be discussed with
detail throughout this work, and Sodium.

In chapter I a brief presentation of the general phenome-
nology and problems in pionic atoms is given, stressing the
case of narrower widths of 3d levels of heavy nuclei and the

3He and 4He. As a review, effects like

problems of pionic
Pauli-blocking, nucleon binding and Ericson-Ericson-Lorentz-
Lorenz effects are briefly introduced.

In chapter II the problem of Dynamical Nuclear Polariza-
tion is considered. After the successful attempt of Dubach,
Moniz and Nixon, explaining the measured x-ray attenuations

1lOPd can not be ex-

for several nuclei, it was found that
plained within the same simple approach. This fact was parti-

cularly intriguing for these authors when they compare the
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nuclear structure of Pd with the one of Ru, since they
are very similar and the x-ray attenuations are different by
a factor of two. This finding led us to think that nuclear

structure effects have probably little to do with the essen-
tial problem. In their model a mixing between 2% one- and two

surfon states is considered, and for 110Pd there is a third

.2+ state at 1470,1 Kev which can be a participant in the pio-
nic-nuclear mixing that takes place in the Dynamical Nuclear
polarization process. First, the calculation is done with in-
formation coming only from the first and second 2+, with re-
sults that agree with the measured x-ray attenuation. Never-
theless, Coulomb excitation experiments were not able to de-
tect the presence of the 1470,1 Kev state as a 2+. In order
to fit the one, two and three surfon model this state should
be observable in Coulomb excitation experiments. The data for
the quadrupole moment of the first 27 and the reduced transi-
tion probability from this level to the ground state are
guantities measured in a not very accurate way and this all-
ows us to consider the information from the 1470,1 state in
(n,n'y) reactions bringing our result to the value predicted
by Dubach,Moniz and Nixon, which is nearly half of the expe-
rimental one. After that the role of Giant Resonances was al-
so considered, but with negative results. This brings us to
the conclusion that the optical potential has to be reexamined.

In chapter III a convenient tool to achieve that objec-

tive is developed: The Doorway State Approach to perturbation



theory. This method turns out to be a very efficient one in
the handling of perturbations of any size. At the same time
the treatment of fully nonlocal interactions is made possible
showing in this way a definite edge over other methods when
practical numerical calculations are required. The conver-
gence is so good that the essential physics of the problen
can be extracted in most cases with one-doorway truncations.
The whole procedure is an extension of the one developed by
Lenz,Moniz and Yazaki for potential scattering theory. In our
discussion we also consider the case of degeneracy. In order
to study convergence properties very simple systems, like a
harmonic oscillator with a harmonic perturbation, an infinite
square well with a delta perturbation and a finite sgquare well
with a square barrier as a perturbation, are discussed in de-
tail. The last example mentioned is the most interesting one
because a simulation of the pionic atom problem can be made
and in this way we can show that for the purpose of the analy-
sis that comes in chapter V, the first doorway truncation is
more than enough for the energy shift and widths calculations.
In chapter IV the parameters related to the forces are de-
termined using Yamaguchi form factors. This information is
extracted from the phase shifts for the S11 and P33 channels.

In the S channel case there is a problem with the curvature

31
of the phase shift, and instead information from the energy

shift of pionic hydrogen is used. In this way a proper beha-
viour of the very low energy limit is guaranteed. After that,

a plot of the phase shifts for the 831 channel is made and we
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find that the fit is essentially good up to 50 MeV. The rest
of the p-wave channels is not taken into account under the
argument of the A- isobar dominance. In the case of pionie
hydrogen the importance of the Coulomb interaction in the re-
scattering process is demonstrated.

Once these parameters were determined in a reliable way,
the consideration of the A(A-1), N*(A-1),A* (A-1) model is
done in chapter V. There a static resonance model for s-wave
pion-nucleus interaction, already developed in chapter IV, is
used to enrich the A(A-1) model for the description of pion-
nucleus dynamics. Effects like Pauli-blocking, nucleon bin-
ding, nucleon recoil and finite range interactions are consi-
dered in detail for the non-relativistic case. In this chap-
ter the way in which an optical potential can be constfucted
within the Doorway State formalism is just outlined and the
nonlocal character of the effective interaction is shown ex-
plicitly. The energy shift can be calculated, without going
into the célculation of the optical potential first, using
the same procedure. In this way we can compare with the expe-
rimental data using the energy shifts and go more into the
detail of the physical effects by studying the optical poten-
tial. Nevertheless, the first doorway truncation of the ener-
gy shift is going to provide detailed information about dif-
ferent physical effects without considering the structure of
the optical potential, which is the object of future work. In
the first doorway expectation value the contribution of ef-

fects like Pauli-blocking and Coulomb contributions to the
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rescattering and spreading potentials is summed up linearly,
making the intérpretation easier. One new feature of our op-
tical potential is a "spreading potential"” for the s-wave in-
teraction. The "strengths" of this potential were fitted to
the energy shifts and widths of 4He and 160 and the recalcu-
lated quantities agree very well with the experimental ones
when conditions on the signs of the imaginary parts are impo-
sed in order to make the potential consistent with the absor-
ption process. Up to date fittings of a similar kind in 4He

were not able to reproduce the energy shift and width for 4He

16

and even less to achieve the same with O in a consistent

way .
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CHAPTER I

LOW ENERGY PION-NUCLEUS INTERACTIONS:

PIONIC ATOM STUDIES

After a brief description of the essential physics
and quantities to be measured in pionic atoms, a
detailed discussion of pion-nucleus semiphenomeno-
logical optical potentials will follow including
effects like nucleon binding, Pauli-blocking effect,
Lorentz - Lorenz and absorption. Special attention
is going to be paid to the absorption effects. At
the end of the chapter agreement with experimental
data is going to be considered.

(1) General features of pionic atoms:

A pionic atom is formed when a low energy negative
pion is captured in a Bohr orbit. This inditial orbit
is not exactly known and an analysis of X-ray intensi-
ties observed during the cascade to lower levels
indicate that the main gquantum number should be a very
high one, i.e., M >*20. During this cascade process
Auger electrons are emitted as well and it ends with
pion absorption followed by the ejection of nucleons.
The emission of nucleons is not a surprise since thé
absorbed pion provides an enormous amount of energy,
its rest mass around 139.6 MeV. For orbits with main

gquantum numbers'h_<(?%/Me)%, where Me is the electron
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mass, the pion moves inside the electronic cloud and

a pionic atom can be considered a hydrogen -like system
as a very good approximation, transforming a many body
problem into a simple two body problem. With this
system, the electromagnetic properties of the pion-nuc-
leus interaction can be tested. These are the Coulomb
potential, vacuum polarization, electronic screening
and electromagnetic polarization of the nucleus and the
pion. The main interest lies on strong interaction
studies and because of the short range of the pion-nuc-
leon forces (around ~~ 1fm), this effect can only be
seen when the overlap of the pion wavefunction is
appreciable in the nuclear region. Unfortunatley, when
this overlap is big the pion absorption is enhanced and
for very heavy systems, the very internal levels (like
the 1S or ,ZP ) can not be seen. The experimental
observed guantities are transition X-ray energies and
in strong interactions studies the interesting gquanti-
ties are the "energy shift" and the hadronic width.

The energy shifts are defined experimentally as the
enerqgy difference for a X-ray transition between the
situation where the strong interaction is taken into
account fully and the situation where there is total
absence of it, i.e., only electromaagnetic effects
counts. The X-ray lines typically measured are those

related with transitions between circular orbits.
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From the theoretical point 6f view the electromagnetic
contribution is very well known and be calculated
fully. Since the actual energy shift from the upper
level is several orders of magnitude less than the
energy shift from the lower level, the energy difference
can be taken directly as the energy shift (cdue to strong
interaction effects) of the latter. The hadronic width
can be obtained by considering a line broadening problem
with the same line of reasoning as the one used for the
energy shifts. Of course, the energy shifts and widths
are not the only available information which can be ob-
tained from pionic atoms. In chapter II X-ray line
attenuation is going to be considered to obtain inform-
ation about the "hidden" levels that can be seen due to
pion absorption (see chapter II for details). In most
of the pionic atom studies found in the literature, the
ground state of nucleus has spin zero. 1In the case of
non-zero spin, the observation of a splitting is also
possible. So, in this way we can see a wide variety of
phenomena to be studied, which contain valuable informa-
tion about strong interactions, nuclear structure and
atomic phenomena. In the next chapter we are going to
consider the essential tool in pion-nucleus interaction

studies: the phenomenological optical potentials.

pionic atoms:
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The repeated scattering of a pion by several nuc-
leons in a nucleus can best be treated in terms of an
optical potential and its iteration by the Schroedinger
equation. The use of the latter is possible due to the
non-relativistic character of the pionic atom problem.
In one of the first applications of Watson's multiple
scattering theory, Kisslinger(l) in 1955 found the
general form of the pion-nucleus coordinate-space
optical potential produced by the strong P-wave of the
pion nucleon amplitude. Adding the S -wave term, this

on-shell amplitude has the form:
2
f,\,l:32> = ILS (,&,)+fp(4&,),&, m%fﬁl (I-1)
and the off-shell amplitude is given by

<H'NE e NIEY =L U) +5A) E-E a2

whexe:}t is the pion-nucleon relative momentum. From
multiscattering theory the lowest order for the optical

potential can be obtained through(z)

A
/ (1) |~ - J _,-\/ st "
<Er | Ug,y ]f’ﬁ ; fa%} it (Pu <5 B It &)FF>%;(N(I—3]
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where 4 stands for the occupied single particle states
for nucleons. After a double Fourier transform, the
optical potential given by equation (I-3) gives the
velocity-dependent pion-nucleus potential: (neglecting

recoil)

SAPRIPENCEE (k) ) - t, (h)- [g(ﬂ_@fﬁ’ﬁ (1-4)

in equation (I-4) we are not making any distinction
between protons and neutrons. An expression of the

same form of the one given by equation (I-4) can be
found for systems with the same number of protons and
neutrons and the gquantities fs and f} should be re-
placed by the proper ones according to the isospin
differences. Potentials of the form given by equation
(I-4) fail badly when they are confronted with low energy

data. As an improvement, Ericson et al(3)

propcose a
density expansion for these potentials and the isospin
differences were also taken into account for the S -wave

pion-nucleon contribution:

(s)

Up (v) = gﬁm{hﬁ(«rﬂ b, (ﬁ(r)-ﬁ,(ﬂ) + BOJJZ(\—)% (I-5)

where:
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My M
/%@ = _T 4 (I-6)

is the pion-nucleus reduced mass. The coefficients Eo
and bi can be found through a spin, isospin and Fermi
averaqe for the pion-nucleon free space scattering mat-.
rix in the low density limit. The justification for
this procedure comes from a theorem in nuclear matter

for a density expansion of the pion-nucleus optical
(4)

potential . The results for the spin-isospin aVerage
are:
- 1 - } o A4 > s -
o = z(a-wn+ a"ﬂp) = 3 (ag +24) (=7
by = L (g —a-) = L(a, —a,) (T8
1 2 U=y, 0p 2 31 T Tt

where an and G?? are respectively the pion-proton
and pion-neutron scattering lengths and a; and &21
are the scattering lengths for the E%i and S&_chan-
nels. The constant coefficient f% is complex and
contains in principle medium corrections and pion
absorption effects and its determination is possible

through experiments. The isoscalar term nearly cancels

and it has to be corrected taking into account the Paulil
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principle:

Z
L: A (Y 2(@5'31)2<;*>F (1-9)
’ &

where

-1

<= ,?;};F - (I-10)
I

this correction can be shown in a Very simple way

using the medium corrected T -matrix, given by

T = t 4+t (Gum G)T =323

where Gﬂtis the pion and nucleon propagator in the:
medium, EL is the propagator for the same particles in
free space and the £t -matrix is also given for the free
space situation. The expressions for the propagators

in nuclear matter are given_by{4’5)

<F3l6§”(£)”§£> - 6 (b-be) (I-12)

Ef- 0y - 25 M
b~ -
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(+) 1
<}>}3| G (E)BR> = (I-13)
¥ LWy — 2 My
b=
where equation (I-12) takes into account the Pauli-
Blocking effect and equation (I-13) gives the propaga-
tor in free space and only forward scattering is consid-

ered. The quantity PF is the Fermi momentum and

Wy E-]//gder ME (I-14)

gives the pion energy. At the lowest order we can

write:
St o 2{G.-G.Y1 (1~15)

in the pionic atom problem we are interested in the

threshold limit:

A <PE5 1PE> = - L (1-16)
E——)HT;‘H'}N -e/“
and then:

Do SEO_ _ 3&) Lo (4B 6 (k- p)
LM, 2/ B, J @i ET- Wy - 2}7_ M,

- ;‘Zz;‘h[w (pe-P)



-20~-

4a® (I-17)

/IA.

and using equation (I-16), we obtain:

—
=

St = — 21 Sa ' (I-18)
/IA-
leading to the result:
Sa — _2 o (1-19)
m Py F
@ T

and then:

S S g .2 S
%l) = P Ay + 243 \ - _ (a1:)+2(a—3[)22}>

since the nuclear radius is small compared'With the

Bohr radius, guantities like A&, and ,:.S are mainly

determined by ;§> . In reference (5) the values of
lp: and l’i are kept fixed and Bo is determined.

Except for the very light nuclei the fit is good for

values:

ReB /ITmB, =-102 0.1 (I-21)
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-4
Im Bo = 0,042 F’]U (I-22)

The nucleon binding effect can be estimated also
by looking into the nuclear matter problem. The pion
and nucleon propagator, when the latter is bound, is

given by

<3RI61@)IFE> = : (1-23)
EY= Wy - o — U - My

At threshold, we can obtain for the lowest order

of gt
/L i\ QE L
Et> 2 :
Mgty (‘2/” ) iy | E*- Wp ‘.2%,4 = M= Ulp)

1
(I-24)
+ 2
ET- k% —‘j%;—-mﬂ

if the potential is taken as:
Uip) =4, (pF-}J) (I-25)

where LL = - 50 MeV, from equation (I-24) the follow-

ing can be obtained:
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St _ tm 7/ Ul ae % { (I-26)
V/u!uo

and then expanding equation (I-26) in V%/L’LL‘//h:

powers and keeping the lowest order of

3

CH1) _ “(—!U_l Sa,fUl 8'[ ‘;._u:lu,,)] (I-27)
pe e

the following correction can be found:

._S_a.' = — \42/.‘.IU°[ (1—-28)

and

S S $ 32 S \2
Sbo = S( a.” ;20_.3] ) - (a-u) ’]'32. (Qﬁl) -\(%M-IUQI {T-28)

The general prescription to improve the potential

given by these corrections is the use of the local den-

sity approximation(4)
— (<) ] U, — U p6) (1-30)
e~ | £ 5
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where JF(o) is the nuclear matter density. The total

contribution from the pion-nucleon S -wave is given by

(s) —
(Y):_ﬂ +r ) - X 21"
U %mik,f(nbiqon()fP(HB,f()

" (df«_)zgz (43)° ["T%PF(%)>W3+W) (}%&))ﬁ% (I-31)

The analog of equation (I-5) for the

F -wave pion-

nuclear contribution is given by

P L, . .
UTli ("¥) =1t 7, [d(r)' ¥/ S(?—?’)] (I-32}

where

SOEENIONT (fn(\«)j:,mmqf%) (1-33)

and the quantities (, and C, are the isoscalar and

isovector averages of the F -wave pion-nuclear scatt-

ering volumes:

_ P P

“=2l4al, +2a5, +2a], + o] (1-34)
— A 7 7 P T _

Ci = g[(&aﬁ + Q3t ) = (Za'f'ﬁ + a“ )] (I-35)
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the constant CL is complex and takes into account the
medium corrections and pion absorption. There are also

(3) that could be

short-range correlation corrections
expressed in a manner very similar to the Lorentz -
Lorenz effect for the dielectric constant of a crystal.
The pion provides a pseudoscalar field ¢ and its

—
gradient V}ig gives a vector field coupled to the

nucleon according to

?‘JV = 4 g 3656 (I-36)
where ?? is the nucleonic spin and 9ﬁ~u is the
strong interaction coupling constaht. The form of the
coupling described by equation (I-36) has the same form
as the coupling between a dipole and a field and it
tends to orient the nucleonic spin in the direction of
??é . Due to the Pauli principle a nucleon in a
nucleus cannot rotate its spin freely, but if a pion
field is applied to a nucleus an induced axial dipole
appears. Accordingly to the linear response theory the
polarization vector density is proportional to the
applied field and the proportionality function is the

axial polarizability coefficient per unit volume:

4

PE) = XE) VEE) (1-37)
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with
X(?) = Ff(if‘) (I-38)

where ¥ is the polarizability constant and _JD(?) is
the density of the medium. Actually the axial polariz-
ability X(¥) 1is proportional to &(¥) , where
higher order terms of the density should be considered,
but in order to simplify our derivation the lowest
order term proportional to the density is the only one
kept in equation (I-38). Taking into account just the
pion-nucleus P -wave in the equation of motion for

the pion in configuration space, we have:

(w* - H,,?: + Vi ‘o‘—V’j’G‘-)E ) 95(?-) =0 (I-39)
and it can be written as:

v - [ (1- Vj(*))$¢(?)} = — (Wf- m;.)?f:(?) (I-40)

There is a repulsion effect due to Pauli principle
between the nucleon and other nucleons, so a volume
around the nucleon is cleared of nuclear matter. The

normal component of (1~ Kjvﬁﬁ)?}¢($) must be

continuous across the boundary of this volume and it can
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be seen using familiar arguments from electromagnetic

theory. Then, we can write:

(1-%pE) [V9&), ] = | Vi (1-41)
j) ?s _Lwrme THe [ V(;é( )l]ms:bs The
VOLUHE voLuME

If the volume is a spherical one and the angle

average is properly taken, we obtain:

V0], [P0] - Frpo[We] e

INSIDE OUTSIDE INSIDE

and

V@] = 1 V) -
[VQQ( )]msme 14 ‘.;’_Txf&?) ?4 o

with the association:

- -
[V%(ﬂ] = Vgé(?) (I-44)
OUTSIDE
—3
being VQ!’(;') the average field of the medium.

Then, the corrected pion-nucleus F -wave contribution

to the optical potential has the form:



G P

UNde = 3v. —FQ VéE)  (1-e5)

1 + %Tgrf(-?)

Equation (I-45) gives the corrected version

(3)

originally derived by Ericson and Ericson using
similar arguments to the ones outlined in this section.
From a multiple scattering approach, Eisenberg, Hufner

and Moniz(6) were able to obtain the same result. The

difference is a new constant g given by:

= —-IJSE zfx) j_:; e";?' * b () (1-46)

and in reference (3) the value 1is g = 1. The function
k(fz) is the pion-nucleon form factor and 9(x) is
the nucleon-nucleon correlation function. If the

following forms are taken:

4(x) = -6(e-x) (1-47)
and

LL(J&) R S (I-48)
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If Y = 0.5 P S S —— is
evaluated to give E = 0.5, showing that the pionic
Lorentz - Lorenz effect or Ericson - Ericson - Lorentz-
Lorenz (EELL) effect is greatly reduced by finite size
effects. The fits to the data for the p -wave
contribution to the optical potential are performed
with the following two conditions:

L%E) is not varied and Kq,d, = 0O ., Then the
coefficients ¢ , € and -J:mq, are determined for
several values of the parameter § , with 0 £ § & 1
Table (I-I) summarizes the result for these parameters
and show a strong dependence of I&n CL . The analyses
are not very sensitive to g' but consistent with g = 1;
however the variety of assumptions eliminate the poss-
ibility of microscopic interpretation. The fits are
always poor when these potentials are confronted with
light nuclei data. This is particularly noticeable for
1S 1level shift in the 3He case. This will be examined

in the next section.

(3) 1Isotope effects in light pionic atoms

One of the features of the experimental data that
can give us direct evidence of non-local pion-nucleus
interactions is the change of sign observed when a com-
parsion is made between 1S level and QP level shifts.

In the 2p level case a change of sign is expected for
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TABLE (I-I)

Parameters of the Kisslinger potential from a £fit

to experimental data of pionic atoms.

FIT[§=01 FIT[g:t] Scattering volume averages

Co (n73)  0.17 0.23 0.21
C, (i) 0.22 0.22 0.19

Im G (Mz¢) 0.036 0.076

TABLE (I-II)(lO)

Energy Shifts and widths of Helium Isotopes

ISOTOPE ENERGY SHIFT (eV) WIDTH (eV)
3He 3243 2847
4He -75.7%2 45+3
Isotopic Effect 107.7£3.6 1718

(4He - 3He)
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Z 2 36, since the P -wave contributions be-
comes more important for sufficiently large nuclei. The
change of sign is difficult to see due to pion absorp-
tion. Using the "trick" explained in Chapter II for

110Pd, Leon et al(a)

were able to confirm this
theoretical expectation. In the 2P level case, the
change sign is essentially due to the increase in the
size of the system. For 1§ level a change of sign
problem is also reported, although the nature of the
problem seems to be different. While all the 1§ level
shifts are repulsive, the level for 3He is attractive
(9410) in an anomalous ways _ Although the experiment
is complicated, there is a strong confirmation about the
sign of this shift. In table (I-II) the experimental
values of the recent reference (10) are given. The
results for 3He alone are given in table (I-III).
Although the experimental results shown in this table
are not very consistent, the isotope effect is still
large. In reference (9) the pion-nucleus optical
potential is used to calculate the 15 level energy shift
for comparison with the experimental value. All the

(5,7 are used with the exception

established parameters
of bb and C:, . 45 the bo parameter case the argument
is that a strong dependence on the atomic number is

expected for this parameter of the isoscalar local
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potential. The complete set of parameters used in this
calculation is shown in table (I-IV). The calculated

energy shift and widths are
A€y = 30.5 2V E’_S = 33.6¢eV (I-49)

where (1 =0 , as indicated in table (I-IV). Accord-
ing to reference (9) if the pion-nucleon absorption term
contribution is included the 15 level reduces the width
by 24eV whereas from the physics point of view no drama-
tic influence of the }J—wave potential should be expect-
ed on the pionic S -states. The authors claim that the
standard optical potential produces the unphysical
negative P—wave absorption effect on the S -state and
then their experiment suggests that the simplification
of including the absorptive p -wave potential part in
the gradient structure is not correct for light nuclei
and that another form of absorption on the surface may
be more appropriate for the ID—wave interaction.

e case the calculations of the energy

In the
shift and width also show problems. The results are
presented in table (I-V) Although the order of magni-
tude is the correct one, it is clear that the shifts and

widths calculated with optical potentials are not in

good agreement with the experimental value. The stand-
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TABLE (I-III)

Energy Shifts and widths of 3He (18 level)

ENERGY SHIFT (eV) WIDTH (eV) REFERENCE
50 + 18 89 + 67 (11)
44 & 5 42 + 14 (12)
27 5 65 + 12 ( 9)
32 ¢+ 3 28 + 7 (10)

TABLE (I - IV)

Parameter set used in reference (9)
1

b, = - o0.015n7 b, = - 0.09 Mj
c, = 0.21 Mg° Cy = 0.18 M3
B, = i 0.04H Co = 0

R (’He) = 1.88fm

RMS
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ard parameter set (not shown in the table) yields a
shift which is too large if a harmonic well distribution
for the density with "fkns = (1.63 = 0.03) fm 1is used.
When the Ykns is changed in 1%, the energy changes by
0.3eV and the width by 5%. Treating the isoscalar para-

eff (14)
bs

meter as an effective quantity, , the result is

REE

= (~ 0.0235 t 0.0008) m; (I-50)

as the best fit in table (I-V), making Re’B°==O.
Although the energy shift is adjusted to the right value,
the width is far off from the experimental value. This
problem joins the 3He case to show the inadequacy of the
absorption term in standard optical potentials.

In the table (I-VI) the experimental results for the
oxygen case are shown. We can see that the isotope eff-
ect is roughly given by 25% and it is a large one. Us-
ing standard optical potentials there are no reported
problems in regards to the widths.

(4) Anomalous energy shifts and widths in

pionic atoms

Recently shifts and widths have been measured for
3d states in nuclei of considerably higher Z than

earlier and have been found to be several times smaller
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TABLE (I-V)(l4)

Calculated Energy Shifts and Widths for 4He

(13 level)
SHIFT (eV) WIDTH (eV)
Experimental value(14) -~ 15.7T£2:0 45+3
According to Deser et al.(l5)
and Brueckner:(l6)
with parameters of ref. - T5%10 40
(25)
with parameters of ref. - 56 *4 40
(26)
Calculated by Koltun and 64
. (17)
Reiten

Optical Potential Calcultions

it
with l:,f";3c = 0.029Hf - 91 62
with heSf =- 0.023m;t - 75 65
with peff =- 0.018mp* - 61 68



Experimental results for Oxygen

ISOTOPE
160

18

Isotope Effect
(18O = 160)

-

TABLE

(I-VI)

(18 level)

ENERGY SHIFT (eV) WIDTH (eV)

(14) (14)
~15.43% 0.10 7.92 + 0.32
-15.73+ 0.26 (18] 7.56 + 0.50 (18
-19.92+ 0.26 6.33 + 0.43
-20.59+ 0.26 8.67 + 0.70
—4.49 + o.14§i§; ~1.59 % 0.53:%3;
-4.86 + 0.37 +1.11 * 0.09
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(19)

than expected This tendency was pointed out

(13)

earlier by Ericson and Krell Ericson and

Tauscher (20)

give general indications of the possible
origin of the effect:

(a) The origin of the anomaly should be in the
local part of the potential, since the heviest 3d states
are affected while the 4f states behave normally and it
is strongly dominated by the velocity-dependent term.

(b) The anomalous nuclei have strong Coulomb bind-
ing of the pion (high Z number) and then electromagnetic
binding effects on the strong interactions may be res-
ponsible.

(c) The isoscalar scattering length is accidenta-
lly small and the local interaction term of the poten-
tial is dominated by double-scattering contributions
from the Pauli-blocking effect. Any other effect that
would prevent the cancellations from being so accurate
might hence give large contributions, and must be con-
sidered in a careful way.

(20) propose that the energy

Ericson and Tauscher
dependence of the § -wave pion-nucleon amplitude is
mainly responsible for the anomaly since it gives rise
to an energy-dependent potential. Another contribution
is the gauge condition, i.e., everywhere in the equa-

tions momenta b~ should be replaced by ( Bk e €i®u )

-in terms of the vector potential %ﬂﬂ In the case of
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an external Coulomb potential \é(f‘) we should
everywhere replace the pion energy W by [ W — V¢ (v) ]
including the potential. This generates an additional
potential from the energy dependence of the strong -

interaction potential(zo)

V() dV = 4TV ( MeN 0 (1-
SV = VC()Q_@ ~ %\/C()(H'ﬁfjﬁf()(l 51)

since cJ\//cJ(«) is given by

.j_% = -7 (14 .QE')FG}?(Y) (1-52)

)

where P({- can be found through the following expan-

sion for the energy shift:

(45, /4&)M = ¥+ (5(+)£2+ e (1-53)

and ,Qf :-cgz_ m;' . The range of the potential given
by equation (I-51) is the nuclear range. If the energy
. dependence of S -wave pion-nucleon amplitude is

attributed to a non-local interaction, to leading order

and with a non-locality of short range

2V = -7 (H%{a’fﬂf(ﬂ% (+)[ng(f)+f6_)vﬂ (1-54)
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The Coulomb field can be genefated by using the
Laplacion term of pion wavefunction in the Klein-
Gordon equation and it is the same as equation (I-51).
At this point we may wonder if the new Coulomb contri-
bution to the potential or a non-local character of
the interaction are responsible for the results claim-
ed in reference (20). With a standard optical poten-

tial with an additional isospin term of the form

& (fm-ﬁ)(fﬁ—ﬁ)

and the above mentioned Coulomb term, there is good
(20)
agreement with the energy shift experimental data.

With the widths the anomaly persists and Ericson and

(20) were not able to provide a suggestion

(21)

Tauscher
about the problem. According to Seki the extra
Z (atomic number) dependence of this potential is
not a real one, since it is buried in the pion wave-
function through the Klein-Gordon equation as it is

also stated in the non-locality discussion around

equation (I-54). This result can be written as

V== ) [ GnTT v g e

and the third term of equation (I-55) has the same

form as the so-called angular transformation terms.
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This angular transformation terms arise when nucleon
recoil is taken into account in pion-nucleon relativis-

tig problemsfzz)

Working with the same problem in a
non-relativistic approach (adequate for pionic atoms),
the result is the same, i.e., the Laplacion term of

2
the density appears. The coefficient of the YZFGO term

is given by

+)

( -3
- (1 g} ) _ﬁ = —~-0.020 My (I-56)
M/ T2

in the non-locality approach to the problem, while the
angular transformation coefficient has a somewhat

smaller magnitude, given by

-3
—7£3=— = o 0,019 qu (I-57)
(H ”r)
where C, is the isoscalar velocity-dependent P -wave
potential parameter and /Q& is the pion reduced mass.

In equation (I-56) the Pauli-blocking corrected /6(+'}

was taken. Based on the same order of magnitude shown

(21) considered

in equations (I-56) and (I-57), Seki
the angular transformation studies for pionic atoms in
a pre&ious work(23) and showed that the terms obtained
in this way can be replaced by a renormalization of the

effective potential parameters. Seki(zl) looks into

the neutron density distributions and the sensitivity
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of the energy shifts and width of 2098[, for the
pionic 3d level. The results are given in fig (I-I),
which is taken from referehce (21) . The parameter C,
is the neutron radius, C} is the proton radius and £
is the nuclear diffuseness. Although it is possible
to obtain the appropriate shift around C, ~ 7.0 fm
there is no practical way to achieve the same thing
with the width and then the essential problem of the
anomaly remains.

There are more reports about anomalous data(24) in

23

the Na case for the 1% width, which joins the Helium

cases in the light nuclei group of problems.

(21)

Seki guestions the reliability of the experimental

23Na case there is the claim that

cases and in the
experimental values have varied by a factor of about 2
in the past. Aside the cases mentioned here, in the
next chapter we are going to consider in detail the
hidden level problem in lloPd case and an anomaly
related to the width will be found, leading us to the
conclusion that the pion-nucleus optical potential
requires reexamination. Since the gquantities related

to the anomalies are the widths, it seems clear that

pion absorption is the center of the problem.
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CHAPTER II

COLLECTIVE EXCITATIONS AND THE

NUCLEAR POLARIZATION

The failure to explain the discrepancy between
the theoretical and experimental widths in pionic atoms for
several nuclei lead us to consider two possibilities: ei-
ther the pion-nucleus optical potential has to be reexamin-
ed or particular nuclear structure effects present in the
bound pion problem are playing a role. An important ef-
fect of this kind is dynamical nuclear polarization, where
nuclear collective excitations are taken into account. Re-
cently L some studies were performed in several nuclei,
considering nuclear excitations above the lowest collec &

110P

tive quadrupole mode and all the studied cases except d

were understood. In this chapter the llOPd case 1s going
to be examined again from the nuclear structure point of
view, taking into account collective excitations like wvi-
brations with three surfon (phonon) states and Giant Res-
onances. All these cases are analyzed in detail leading

to negative results, i.e., it seems that nuclear structure
effects are not going to provide an explanation for the

110Pd case, leaving the optical potential as the only one

possible source of the problem.
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(1) Two and Three surfon states and dynamical nuclear

polarization in pionic atoms: The llOPd case.

The main interest upon dynamical nuclear polar-
ization comes as a way to obtain information from "hidden”
pionic levels. These levels can not be observed directly
in experimental measurements due to pion absorption, which
is very‘strong for low angular momentum pionic states. The
presence of this absorption process is what makes them in-
teresting for the pion-nuclear structure and strong inter-

(6) the idea

actions. With dynamical nuclear polarization
is to find pionic atoms in which a nuclear excitation of
appropiate multipolarity is nearly degenerate with a de-
excitation of a pionic level and a mixing is produced. In

llOPd case can be offer-

order to clarify these ideas, the
ed as a convenient example, since it is going to be studi-
ed in detail throughout this chapter. The level schemelis
depicted in fig. (II-1l). There we see that there is anear
degeneracy in the energy differences between the nuclear
ground state and the first excited state (a 0+';§ 27 tran-
sition) and the pionic n=4 and n=3 states. These dynam -
ical polarization effects were studied for the first time
in muonic atoms wherethe relevant interaction to be consi-
dered is the very well known electromagnetic force, mak -
ing the extraction of the gquadrupole moments of the excit-

ed states a simple task. In the lloPdcase it is this
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quadrupole interaction which is going to give us the in-
: . s - +

teresting mixing between the o ; 4£) and | 27; 3p>states,

giving the following admixture coefficient:

_ 4 _<2tsblHalot #i> (11-1)

E (2+,3p) — E(0*, 4§ )

where HQ is the electric gquadrupole interaction
between the pion and the nucleus. The pionic 3p level 1is
hidden by the absorption effect. Due to the mixing the in-

duced width for the pionic 4f level is given by

r ind

2 :
of ~ |al T3P (T1-2)

and in an approximate way the 3p width is one order
of }nagnitude bigger than the 4f width and if lall2 is small(say.,
two orders of magnitude less than unity), the induced width:«could
be comparable to the radiative width of the 4f level andan
appreciable attenuation of the 4f —~—> 34 x-ray line should
be observed. This transition is represented by a dotted line
in fig.(II-1). The experiment is done by comparing the x-

ray intensities for 108

110

P4 (which has no degeneracy effect)

against those of Pd, through the ratio

= R_(_H_OP.J_.). {II-=3)
R (77

where the quantity R is defined as:



e

R(N,Z)E 1 [(R,E)%(‘ﬂ."i)ﬂ—i)]] (II-4)
T [ (e, 244) > (w,2)] (NZ)

where I represents the x-ray intensity of the
pionic transition and (M,2) are the neutron and proton num-
ber of the particular isotope. Translating equation (II-4)

to our example, we obtain

'P\.(“"‘PJ) 1 [4;—9 3d |
T Iy 4]

{I1I-5)

and a similar expression for R(losPd). The 59
—> 4f x-ray line is not affected by any mixing effect and
it is supposed tobe equal for both isotopes. The ratio R
removes many experimental uncertainties like detector ef-
ficiencies, target absorption, etc. Since the isctope
108

Pd does not have the degeneracy, the x-ray attenuation

given by
A = 1 - g (II-6)

is going to be a direct measurement of the in-

110P

duced pion absorption out of the pionic 4f level in d,

and then

A - rb‘ld (II-7)
It

where the total width of the pionic (n,1) level
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is given by
rﬂut = ['6 [(’ﬂ,-ﬂ) - (“'1>£'4)-] * rg_lgs (")‘e)"'vi.ml (XI=8)

beingxg the width related to the x-ray transi-
tion, Fabs denotes the hadronic width in the absence of
dynamical nuclear polarization and Pind is the induced

width related to the mixing effect and given by eguation

(II-2). 1In general this induced width can be rewritten
as:
r <Ig, T L He | I, T |
d = 2% $3PE VIR [ “aply (II-9)
A€ -2 ¥

where A€ - i¥ is the energydif-

ference between the admixed levels:
AE~-L¥ = & (I.g,”;c)"‘ 5(1',.;,”4;) (II-10)

and I(¥) represents the appro-

110

piate nuclear (pionic) state. 1In the Pd case the ex-

periments yield the following values:

S= 0.841 £ 0.027 (I1-11)

and then:



-

A= (194t 23)°/ (11-12)
the energy difference is given by
AE = (Eﬁ + EsP)—- [Eo+ E,,:;) (II-13)
and

¥ =12_ (]';F — 4_5) (II-14)

for a fixed attenuation A, equation (II-9)gives.
a circular contour in the (A€,¥ ) plane (7) | the experi-
ment can not specify'Aﬁ and ¥ in a separated way. This

circular contour can be seen more clearly if we rewrite

equation (II-9) as:

()" + [K- k4 (L%ﬁ)] = [g (ii_&ﬂz (II-15)

where

Z
§ = J<.L§-,II§IHQ‘I;,JI;>! (1I-16)
F% t YLBS
With equations (II-15) and (II-16) the plots of
fig. (II-2) can be constructed (8). It is clear from fig.

(II-2) that there is a gquantitative disagreement with the

optical potential prediction, resulting a somewhat larger
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level shift and a considerably smaller width. This dis-
crepancy needs an explanation. In a second approach to
the problem, in addition to the mixing of nuclear and
pionic states caused by electromagneticmultipole interac-
tions there is a second mechanism provided by the pion-nu-
cleus interaction. Aside this feature, there isaconsic-
eration of nuclear excitations beyond the lowest quadru -
pole collective mode. This was done first by Dubach, Mo-
niz and Nixon(l). In the description of these collective
states they followed the standard correction which is to
mix the one and two quadrupole phonon states. It was pos-

104Ru 112

485 , ca

sible then to understand cases like
110

’

and 15QSm, but the problem with Pd remains. The calcu-

lated attenuation for several parameter sets of the pion-
nucleus ootical potential gives a value whichis veryclose

to the one reported in reference (8). A strange feature

is that one of the successful cases, 104Ru, has a nuclear

110

structure which is extremely close to Pd and the mea-

sured attenuation is different by an approximate factor of

two. - The calculated attenuation in the absence of strong

(8),

mixing with the Tauscher parameter set is given by:

110

A( Pd) 11.0% (II-17a)

104 11.0% (II-17b)

A Ru)
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while in the presence of the strong mixing with
the same parameter set, the result is
110

Boer ( Pd)

il

11.20% (IT-18a)

104
AST ( Ru)

11.53% (II-18b)

With the Batty parameter set there is some im-

provement:

110

Pd) 12.959% (II-19a)

104

A ( 10 12% ; {(LI=19%)

sB Ru)

Finally, based on results of high energy (p,p')
elastic scattering experimentswhich led to differences in
neutron and proton root-mean-square radii in semiquantita-
tive agreement with those calculated in mean field theory,

(1)

Negele's Hartree Fock calculations were used to obtain

L10%p: and 0.16 Em for “10p

AR = 0.15 fn for d, vyielding
attenuations of 10.0% and 13.2%, respectively, for the
Tauscher parameter set. The only possibility (not relat-
ed to the optical potential problem) which is left is the
consideration of a third state in the mixing which is not
present in the 104Ru case. In reference (1) there is a

suggestion that the state with energy 1470KeV with the
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pionic 2p level is nearly degenerate to the other two,
being the problem the unknown structure and spin-parity of
this state. The state has been observed in (p,p'% ) ex-
periments (ll), in (p,p') experiments and (n,n'%¥ ) exper-
iments{3} and is completely absent in Coulomb excitation

(2) 5 D)

tests . Deye, Robinson and For made a tentative

spin-parity assignment based in three-quadrupole phonon

states, in a pure phonon picture, giving 0+, 2+, 3+, 4+

and 67 to the states 1401, 1472, 1576, 1713 and 1933 KeV
(we used the reported energies of that moment to identify
the states). Their analysis makes the 1470 XeV stateaaOT
based on the model of predictions and the experimental an-
gular distributions for {p,p"). Tha 3+ and 4+assignments
were used for the 1401 and 1576 levels, based upon decay

results (12). The 1713 level was assigned 2+ because of

110 pd and 124

the similarity between Te spectra and the
6" assignment for the 1933 level consistent with (p,p')
leaving ot for the 1472 level. It is now clear that this
assignment can not be correct because gJgamma transitions
were observed between the 1470 KeV level and the0§,2 lev-
els (3). Another kind of information that shbuld be con-
sider=d is the theoretical spectrum that can be calculat-
ed in the interacting boson model. This particular model
has been very succesful in reproducing both the spectra and

transitions rates. Using his model, Iachello provided the

assignments of 3+, 4% and 6+ to the 1212, 1398 and 1574
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KeV levels. Energies predicted by the model in this case
are 1200, 1378 and 1630 KeV respectively. The predictions
for the 2+ states are located at 383, 802 and 1360 Xev. If
we look at the first two 27 in nuclear spectrum of llOPd,
depicted in fig. (II-3), we see that the agreement is quite
good. If we try to associate the 1470 KeV level to the
third one, it would mean that the model prediction would
pe off by more than 100 KeV, which is a relatively large
error for the usual performance of the model. Based on
these considerations we will take an assignment of 2+ for
the 1470 KeV state throughout this chapter. with the tran-
sition strengths predicted by the interacting boson model
there was no imp?ovement in the attenuation calculated by
taking into account a mixing which includes the pionic 2p
level.

The first task in this chapter will be the study
of dynamical nuclear polarization effect in the particular
case of L5 Pd using a microscopic model which takes into

account three excited states described by
5 =1 + & l2> + 313> (11-20a)

I'bmt =[_:,1 11> +(52 127 4 {33I3> (II-20b)

19> =% 1> 1512 1 13D (11-200)
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Fig. (II-3) Nuclear Spectrum of llOPd. The square brac-

kets assignments are from reference (11) . The curly brackets
are the predictions from the interacting boson model. The
sign (?) is used to indicate the association that we are ma-
king between the predicted 1360 KeV level and the observed
1470 %XeV level. The assignments on the left are in agree-
ment with all the references and the ones in angular brackets
are taken from reference (3). All the relevant transitions
for the 1470 level were taken from reference (3) also and are
shown on the right side of the figure. On the left we show

the transitions used in the determination of model parameters.
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the suberipts of the P?) indicate the appro-
piate excited state and [1) ,]2) and |3>are, respectively,
states with one, two and three phonons. In a nucleus with
a ground state density characterized by a radius parameter
ag s the vibrational surface waves (surfon) are introduc-

ed by allowing the radius parameter to be angle dependent:

a.(\fb)=a°{1+zz %ﬁm‘}m(n) _z{%zz [%zmrg (II-21)

@>2) (£22)
where A is chosen to preserve the normalization

to order q3, so that
(& amipoum =4 484) are

where IIﬁ> is a nuclear eigenstate. If a Woods-
Ssaxon shape for the ground state density is used the par-
ameter is very close to unity. The deformation parame-
ters are treated as guantum mechanical operators and can
be written in terms of creation and annihilation operators

as:
”~ _7 ~ m A+ _
Gom = %o [y # ()" By, | T2

with commutation relations:
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~ At
[ a_em " Q’,@"m’—] = S%/Smm/ (IT-24a)
A e ~p A

Then, the nuclear density as operator can be

written, up to order q2, as:

pro=pRa LRI T G e

Oa @ =0 “sm

A . 2, { .2 7
- = ‘Hﬂml-}*z a, 76%_:)

€m

17 G
™

b=

the symbol : : denotes normal ordering, avoiding
in this way vacuum fluctuations.' In general, the multi-

pole (collective) operator can be written as:
ol
Ry, = egc]? Y)? R) D.(+ TI-26
)/u. A/u, )fp ) ( )

P ag
where P.(%) denotes the proton density. In or-
P

der to determine the parameters ofy , Fif and ‘Fi of equa-

i
tions (II-20) and the parameter X2 given in equation (II -
23) (which are the essential parameters of our nuclear mo-
del) measured.experimental gquantities are used. In an i-
nitial approach to this problem the experimental informa-

tion from the first two excited states plus orthonormali-

zation conditions which include the third excited state ,
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are going to give the necessary number of equations for a

-

quantitative determination of the model parameters and in
this way try to asses whether or not the presence of a third
+ ;

27 can lead to an explanation of the 110 Pd problem. There

are reasonable good measurements of the transition proba-

A , + + + + - +
bilities for the lines (2; —> Og),(22-—w9ogj and(22-—>2l)
summarized in table (II-1). Unfortunely the measurements

for the guadrupole moment of the first excited state are not

very conclusive. - Robinson, Mc Gowan, Stelson, Milner ‘)

and Sayer reported a value of Q(2I)=(—83.0 x 0.19) Dbarns
obtained from Coulomb excitation and using a version of the
Winther and De Boer Program for the quantitative analysis.
The reduced matrix elements for the appropiate multipolar
excitation, given by equation (II-33) constitute the in-
put information for this program. Harper, Christy, Hall,
Nagib and Wakefield (13 considered the problem of the
nhase for these matrix elements, i.e., the constructive
and destructive interference between the 2; and the 2;
states, obtaining (-0.72 s 0.12) barns and (-0.45 Io.12)
barns. A previous determination due to Beyer, Scharen -
berg and Thomson(l4) gives values of (—0.483t 0.049)barns
for the constructive interference case and (-0.266jt0.049)
barns for the destructive one. Due to this experimental
situation the variation of the quadrupole moment over a
wide range will be considered. Replacing equation (II-25)

in equation (II-26) fecr the quadrupole case, we obtain the



Enexrgy (KeV)

Experimental Transition Probabilities B(E2,I,—> If)

TABLE (II-I)

373.8

439.,9

813,7

i+

Transition Transition Probability (ezfm4) Reference
21— 0 1820 + 120 (2)
1640 + 160 (13)
2, —> 2] 1800 + 300 (2)
27 —> 0" 25,6 + 2,2 (2)

-09-
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operator:

Qu, = A 45% +BZ ()" [e’Ir2)

m
Zm
2 2 / At A
Q (, > 22 2 _
_MJ/" m & 5 o ?zlm/ }‘em (I1-27)

where Eﬁ] V2¢ +1 and

A = ea.Pf dv ﬁE‘E (II-28)

Ty
B= &2 a;[ de ¥ ”g;% (71-29)

being &+ the proton radius. Using equation
(II-27) the gquadrupole moment for a ekcited state is given

and then, the relevant operator to be used, de-

rived from equation (II-27), is given by:

~agh e 67 (2,2 2 )ferm o 50

the transition probabilities are given by:

B(EL-, I,—7T,) =Z-—1—-;lm(12,11)1z (II-32)
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where the index L stands for the appropiate

multipolarity and Yﬂ(Iz, Il} is the reduced multipole ma-

trix element given by:

M(L, L) = <LUR I (II-33)

Using equations (II-30), (IT-31) and (II-32),
expressions related to experimental quatities are found :

(see appendix iI-A)

Qg .ﬂ/g_ EAX,,_ [ 447wy, + 412 ety |

ol PP, 12 7}
~E g 1o+ 2T 1{
+ BX, [ 2 oh d e ™2 +3% Ay Foe ,194_} (II-33a)

2
B(Ez)zf—aog) = % [{5' AX, o4y +%{.§ gx;xz-] (II-33b)

B(Ezj.{,f-—ag =%[{sz(€1 _{_sxzﬁ] (11-33c)
B (E2,2f —2}) =H[-\D‘4 B+ V5 4ps

12. 59{{5 +___-\/_o(5{31 3% 2 913(53]&‘(2

. 2
+[-ﬁ; x,{s,_ + 10 B %2 +%ﬁ(41ﬂ5+dspz)]ﬁxgs (II-33d)

In order to solve this nonlinear set of egua-
tions a computer program was developed, taking into ac-

count the experimental allowances for each of the quanti-



-63-

ties described in equations (II-33). In the particular case
of the gquadrupole moment the range of values to be consi-
dered is very wide due to the phase problem discussed al-
ready. In spite of that, the solutions were found around
two values: =-50.0 and -70.0 barns. Due to the fact that
we are considering experimental errors, the number of so-
lutions for this problem is, in principle, infinite. Never-
theless the allowances can be tightened to reduce the so-
lution set to -the representative ones, i.e., the solution
set associated with the absence of allowances. It wasver-
ified that in a given neighborhood the parameters relat -
ed to every solution, change very little and they were
very close to the representative solution. Using the ex-
perimental values of table (II-I) and this tightening pro-
cedure lead us to a finite number of solutions. We note

in table (II-I) that the value for the transition probabi-

lity B(E2, 2; —> 0;) is given in a wide range ranking
from 1480 ezfm4 to 1940 e2fm4, being the average around
1710 ezfm4. With the tightening procedure several points

can be explored throughout the range with the result that

4

below 1820 e2fm only solutions with Q(ZI) = -50.0 barns

were found. Looking at the experimental data we see that,

in general, low values for the quadrupole moment of the

(10)

first 27 should be the adopted ones Then, we are go-

+ +
ing to explore the value range for B(EZ, 2l — Og) from

1480 ezfm4 to 1820 ezfm4 with fixed valuesfor’B(EZ,zz-—aog)
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+
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barns, but before this exploration, it is good to see how

and B(E2,2, —> 2;) given in table (II-I) and Q(2]) = -50
the attenuation is going to be calculated. Following ref-
erence (1) the basic procedure is diagonalization of the
pion-nucleus Hamiltonian Hoy in the model basis given by
nearly degenerate states with total angular momentum J and

parity T , i.e., the determinantal equation is given by:
Aot {( (1%, we’ 157 | (E- Hy) [T, ne]oid Y =0  (1I-34)

these nearly degenerate states, as it was men-
tioned before, are direct products of nuclear and pionic
states coupled to total angular momentum J and parity T 4

then

H 110D = €1, 1T0D (IT-35)

{iﬁ + <ot| Uz,., t Hg’- 1°+>} ]“0 = Epg [M) (11-36)

where Hg is the nuclear Hamiltonian, }I?TN§ is
a nuclear state with spin (parity) I(1TN) and élﬁgits en-
ergy, Hem and HS represent the pion-nucleus electromagnet-
ic and strong interaction, respectively, and 10+> is the
nuclear ground state. In equation (II-36), the matrix el-

¥ o ; .
ement <07 | B HSI 0" > gives us the pion-nucleus interac-

tion when the nucleus is in its ground state. The elec -
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tromagnetic part of this interaction represents the Cou-
lomb potential and the strong interaction part represents

the pion optical potential
N
vopr, = Lot | Hg [0t (II-37)

which is non-Fermitian due to the presence of
a strong absorption channel, making Enl complex and the
meaning of the "tilde" over the pionic states in equation
(II-34) is that a bi-orthogonal basis [nl)> should be used.
These states can be obtained through the equation:
(B + VT vyl ) IR = B [0 (11-38)

T CsuL

the matrix element for the pion-nucleus total

Hamiltonian can be written as:

< [Ta) w157 [Hg, | [10,, VAR
= (611?“ +Eng ) 11 Sif,j'ff,., (;nn’s.eﬂ/

+ D150, W2 177 | (May, + 85 ) 1[I0y ne]30>  (x1-30)
where:

- “,j’ -
ML = He = <ot Ll [0*> (11-40)
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T T T .
AHS” =H — <ot IHy o> (II-41)

n .
the operator AHem can be calculated, consider-

ing a multipole expansion of

T 7L
AH. Z AHe,,, ) (IT-42)

€m

where the L-th term is given by

“D_(L) il i
A, = o Ll Z fJ 5 (%) m ?anﬁ@ (II-43)

Z L#1
H=-L

for L # 0, and

A _ez'fcl?’[? D-pEe)| L e

for L. =0. Replacing the density given by equa-

tion (II-25) in equation (II-43), we obtain:

I < a, 8,5, {—fa"cla?iufcl& &%

’a d.F QQP

QZ:'- | izm iLm: ir’;e’f 1 {*HJ'R’WJR' %& +[Jﬂ' g,'- -4 m} %%F

32 %m ?an) 2L+ cal’ i‘f”‘[&uu&% +~rJK z{:i %1%}
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1+(’c/a|,)£r'b(1+a P/é)-
Z,fz
1+T°‘P+Zf nz-'-.()

where: AP —

being t the radius diffus-=ness and aPthe proton
radius. For the strong interactionparteaprescriptionbased
upon the collective model is going to be used, considering
variations in the nuclear radius parameter'a’as it was done
for the nuclear density, being the pion-nucleus optical po-

tential the object of the expansion:

Al = o (2%0)| AT ot iy Tl 1
z_ab (7 2 opt)a ik, ‘Z %2ml31ml: + %‘(%) (II-46)

L
Vzgt is described as the standard version of the
semiphenologicalKisslingerpion»nucleusopticalpotential,

considering just the first two partial waves:

T
\4” = \/s + VF’ (II-47)

where the S-wave contribution is given by:

=4 (1e )b gl s (1+75) by [ 69~ f (0]

+ (1 + M,— )B f (x)} (I1-48)

with Mg ’MN and/& standing for the pion, nuclear
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and reduced mass, respectively. The reduced mass was taken as:

= MM (II-49)
Myt My

being MA the nuclear mass. The p-wave contri-

bution is given by:

V, = %{ I . :i(x) v (11-50)
v 14 _3’1 g et(x)
where:
X(x) = Co + =t Tato-
1+Mg f(x) 1+Mr [f X)ﬁ,(x)]
Fn Mn

d 2
& u (%) (II-51)
rorg S

Mu

and JP(X) =)%$x) + P(x) is the total nuclear den-

sity. The relevant parameters for the optical potential were
already discussed in Chapter I. The Tauscher parameter set
is going to be used throughout this chapter. Up to now we
were discussing all the elements presented in equation
(II-34) and models to be used in the calculation of attenua-
tion. The matrix elements used in actual calculation are
given in appendix (II-B). At the begining of this

section we used the induced width and total



i

width to find the attenuation and now, in order to find
the width in the absence of dynamical nuclear polariza-
tion, equation (II-36) is solved using a version of the
PIATOM computer program provided by Nixon (15). A small
modification allowed the calculation of all the necessary
overlap integrals related to pionic wavefunctions. The to-
tal width is calculated through equation (II-34). The o-
riginal program which gives us the nuclear model parame-
ters was extended to include the attenuation calculation
and all the relevant quadrupole matrix elements for a ve-
rification with Coulomb excitation. The discussionof the
results for pionic 4f level in 110 Pd, including this ve-

rification is the subject of the next section.

(2) Predicted Attenuations for the (4f — 3d) line

and Coulomb excitation tests for the three surfon

state model:

As it was said in the previous section we are

going to explore a range of values for the B(EZ,ZI——> 0;)

from 1480 ezfm4 to 1820 ezfm4 with fixed values for B(E2,
+ + +
22 —_— Og) and B(E2, 22

taking -50 barns as the gquadrupole moment value for the

- 21’) given in table (II-I) and

first excited state with 2+. For the B(E2, 2{ — 0;) =

1820 ezfm4 case several solutions were found,but only four
fall within the experimental allowances for the attenua-

tion as it is summarized in table (II-II). Using experi-

mental information about excitation probabilities for the
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first 2+ in llOPd (13) we can test the parameter sets (1)
and (II) related to a gquadrupole moment value closer to the
adopted one (10). The results are given in table (II-III).
Sets I and II are taken from table (II-II). The set I* is
obtained from set I cancelling all the contributions from
the 2; and set I** is also obtained from set I, making this
time Q(2;) = 0. TFrom these results it is clear that the
choice of the relative phases is sensitive and a better a-
greement 1is obtained with the set II. Looking at the set
I*, it seems the role played by the 2; state is an insig-
nificant one and in that sense is in agreement with the
general experimental observation that the 1470 KeV state

(2). Also taking in-

is not present in Coulomb excitation
to account results from the set I**, we can see that the
particular structure of the 2; state seems.to be not very
relevant when the Coulomb excitation process 1is studied.
The set II corresponds to the destructive interference case
petween the one phonon and two phonon states in the 2{ .
The required matrix elements for the calculation of the at-
tenuation are given in table (II-IIA) and the reduced quad-
rupole matrix elements needed in the Coulomb excitation a-
nalysis in table (IT-1IB). The atomic level information
is provided in table (II-IIC). The induced width in ref-
erence (1) is 1.84 eV and in this work the result was 3.067

eV for the set II. In order to test the sensitivity of

. + ;
these results in terms of the B(EZ,ZE —_— Og)value, it was



-71-

TABLE (II-II)

Calculated Model Nuclear Parameters for

B(22,2] —> 03) = 1820 e?fn?

Attenuation: 17.28% Attenuation: 21.54%
Set I Set II Set III Set IV
-0.9747 -0.9747 +0.9402 +0.9402
-0.2963 +0.2063 -0.2841 +0.2841
-0.0861 -0.0861 +0.1880 +0.1880
-0.1057 +0.1057 -0.1012 +0,1912
+0.7648 +0.7648 -0.7599 -0.7599
-0.6355 +0.6355 -0.6421 +0.6421
+0.1969 +0.1969 #0:.3253 +0. 3253
-0.6104 +0.6104 +0.5847 -0.5847
-0.7673 -0.7673 -0.7432 -0.7432
-0.0948 +0.0948 +0.0948 -0.0948
-50 barns =50 barns -70 barns -70barns
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-

(II-IIA)

Matrix Elements related to Dynamical Polarization in

llOPd for the

We define

and

(energy units

<114Hem12>=

<1|AHemI3>

<z21a8 135S
em

Il

(2IAHemiz>

<31AF__ 3%
em

set II.

LUy 1,072,100 = [3p, 27 18D =|2p,23>

:KeV)
-0.1292
-0:1237
-1.8150
-0.7617

-1.4635

TABLE

AH

]

i0.0116
i0.0011
i0.5577
i0.2372

if.3979

(LL=1

AH

em N AHS
<1|AHSI 2>=-0.0299+10.0068
<1IAHSI2>= 0.0101-i0.0029
<2IAHS(3>= 2.1187-10.3483
42|Az~1512>= 0.9213-10.1456
<3lAqu3>= 1.3857-10.2409
IB)

Reduced Quadrupole Matrix elements used in the Coulomb

Fxcitation Analysis for the set II (in barns). We define

1> =10, 12> =[2]> 3D>=]23 Y and [a>=]23>

<1illol2> = -
<z210l2%
<3113

I

1

0.954 <1llolI3d
0.660 <2loll3d
0.971  <3)lali4ad

TABLE

i

I

I

0.113 <1lolled = 0.201
-0.948 <2Joll4d =-0.898

0.161 <4)IQll4y =-0.348

(II-1IC)

Atomic level inforation for pionic lloPd(l)

4f
3p
2p

Energy (
-493.,27

-873.62

-1962.40

KeV)

Width (Kev)
1.88x107°
32.50
94.55

[ (4£—>3d) = 12.8 ev
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TABLE (II-~LIII1)

Excitation Probabilities for the First 2" in H0s4 for a

BLas = 162° (22D x 10%),

Proj. E(MeV) Exp, +3) SET I  SET I* SET I** SET II
‘e 7.00 48,5 + 5.3  53.5 53,6 51.97
‘re 8,00 87,3 + 9,3 97,8 98,1 94,92
165 27,96  454.0 +47 557 562 561 499

165 31,96  819.0 + 86 994 1007 1006 890

165 35,97 1310,0 + 140 1551 1583 1581 1389

165 39,98 1810,0 + 194 2191 2256 2251 1966

Tauscher Parameter Set used for

potential,

TABLE (II-IV)

(-0,0293 + 0,0005)M;"
(0.0428 + 0,0015)iMg "

(0,227 + 0,008) My >

g

the pion-nucleus optical

= (-0,078 + 0,007) M; "

= (0,076 + 0,013)iM7°

F el

L = (0,18 % 0,03) 7>
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increaseduntil wereached 1480 ezfm4 (the lowest possi -

ble experimental value according to the allowances) and
the results are summarized in table (II-V). For certain
values of transition probabilities there is only one solu-
tion and it is denoted in the table by (U), i.e., "unique'.
In the rest of cases the closest attenuation theoretical
value to the experimental one was chosen. We can see that
the overall agreement is good, specially for the first
three values - of the B(E2,2] —> o;) in table (II-V), which
are éssociated to unique solutions. The entry "Reference
(2)" in this table is related to a calculation of the Ex-
citation Probabilities for the first 2% with the parame -
ters given inlreference (2) in order to verify the agree-
ment between the reported experimental values (2,13) and
then we can say that they are consistent , at least from
the Coulomb Excitation point of view. To proceed further
with our test, the Yields and total Cross sections can be
calculated for the attenuation cases 21.17%, 20.93% and
20.26%. The Calculated Yields can be compared with the
measured ones (2) in table (II-VIA) for the 2; state,which
provides an independent verification. The calculated Cross
Sections constitute a prediction of the model. All ' the
Coulomb Excitation calculations were carried out using a
computer code named COULEX and provided by Steadman(ls) i
This program is an Updated and expanded version of the

Winther- De Boer program for Coulomb Excitation calcula -



TABLE (II-V)
Excitation Probabilities for the First 2% in 11054 (13) for a OLas= 162°

(P(2]) x 10%)

Projectile 4He 4He 160 160 160 16O
Energy (MeV) 7.00 8,00 27.96 31,96 35,97 39,98
Exp. value 48,5 87,3 454 819 1310 1810 B(E2,2{—9~0;)
45,3 49,3 +47 +86 4140 +194  (e’tn? units)

Reference (2) 51,4 93,9 480 852 1325 1868 1820
Attenuations:

21.17% (U) 43.8 80,2 464 832 1306 1854 1480

20,93% (U) 45,0 82,2 476 851 1331 1884 1520

20,26% (U) 45,7 83.6 480 861 1355 1934 1550

17.81% 46,2 84,5 484 868 1365 1945 1570

22,74% 46,9 85,8 492 884 1391 1984 1590

16.31% 48,3 88,3 504 903 1414 2006 1640

28,10% 50,9 93,5 543 - 980 1548 2215 1720

.-g/_._
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tions, developed by the MIT Heavy Ion Group. Another in-
teresting test is to predict the Yields for the 2; and
try to estimate if this state can be ohserved in a Coulomb
Excitation experiment. In order to do that, calculated
vields and Total Cross Sections are provided for the 2;
and 2 states in tables (II-VIB)and (II-VIC) .

Tn reference (2) there is no report of a 1470
KeV state and a 30 cm3 Ge(Li) detector was used. We are
going to estimate the heights of the observed peaks 1in
the 20.26% attenuation case, which has the lowest yields
and then is closer to the experimental fact of absence of
peaks. The behavior of the experimental peak height to
total ratio versus gamma ray energy is given in fig (II-
4) (17) ¢£or a detector like the one used in reference (2).
In table (II- vII) this ratio is given for the relevant
transitions in llOPd. In table (II-VIII) the experimen-
tal informaﬁion of the (21 —> 0;) and (2; —-9-0;) lines
(2) is considered in order to obtain the total number of

counts which lead to the estimation of the relative ef -

ficiency, given by the functional form:
log £ = 1 + & 1og(E/E) (II-52)

where o = =1.1580 and E, = 373.8 KeV. Now we
- + ;
can estimate the peak height of the (23 —> Og) line tak-

. + + .
ing into account the information from the (22 —> Og)llne,
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Yields* (/uCoulomb per 0+6

TABLE (II-VIA)

ions) and Total Cross sections (mb) for the

13,8 8,97

23,5 12,36

38.4 16,36

Energy (MeV) Y o) ¥ U&
42,0 13.4 8.72 13,2 8.58
45,5 22,9 12,07 22,3 11,72
49,0 36 15,47 36 15,37

Attenuations 21.17% 20,93%

4

*y x 10"

20,26%

2+

2

state in

EXp. y(2)

13,8
+1,4
22.7

42,5

37,0
+4,0

_8‘/_...



TABLE (II-VIB)

Yields* (/LCoulomb pex O+6 ions) and Total Cross Sections (mb) for the 2; state in

110Pd.

Energy (MeV) Y U Y O% Y UE
42,0 60,0 38,92 12,8 8,31 8.1 5.23
45,0 56 .0 29,38 50,2 26,34 31,2 16,37
49,0 50,1 21,32 45,0 19.16 27 .6 11,77

~ - - ~ —~— ol ~

Attenuation: 21.17% 20.93% 20.26%

*Y x 10—4

_GL.,



TABLE (II-VIC)

Yields* ( &Coulomb per O+6 ions) and Total Cross Sections (mb) for the 2+ state in
i

110Pd'

Energy (MeV)

42,0

45,5

49,0

Attenuation:

xy x 107 %

Y CTT
479,7 311.35
1262,0 662,35
859,0 365,80
T ~ R
21,17%

Y O&
486,1 315,49
1285,2 674.50
879,0 374,16
S~ ~ g
20,93%

500.0 324,42

1327,2

696,55

910,5 387.58

20,.26%

-08_.
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TABLE (II-VII)

Transition Peak/Total
2t ot 0.1532

1T g

2;-—-—-) o; 0.0711
2;-;-3- 0;’ 0,0500
2’3'-9 25 0,0918
2;’-a. 2*1' 0,0550

TABLE (II-VIII)*

Estimated Experimental information from reference (2),.

L + + + +
Transition (21——9 Og) (22-—> Og}

Measured Peak

(including Background) 316000 * 20000 473 + 27
(in counts)

Background 2700 + 450 240 + 40
(in counts)

Peak 313300 + 20000 232 + 68
(without Background)

(in counts)

Total Counts

(after Peak/Total 2045000 + 130000 3270 + 960
correction)

vields (uC per 0*® ions) 1327, 2%* 22, TH**
Total Count/Yield Ratio 1540 626
Relative efficiency 1 0,4062
Energy (KeV) 373.8(2) 813,7(2)

* For 45 MeV Oxygen Ions, ** From table (ITI-VIC), ***Taken

from reference (2),(x0,23 from branching ratio)
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(3

branching ratios , the predicted yield given in table
(II-VIB) and the relative efficiency qivenkw*equatién(lt-
43). This estimation gives a peak which is approximately
the same size of the one for the (2; —_— D;) line, above

the background level. In +he energy region intended for

i
3

times the background level and the conclusion is that it

the (2, —> O; ) transition this means a peak of about three
should be observable. Since this result is in direct con-
tradiction with the éxperimental measurement of reference
(2), +here is the necessary motivation for a repetition of
the experiment. Taking into account this experimental in-
formation in a rigourous way, the propo sal is that the 2;
state of the microscopic theory developed in the previous
section is not the 1470 KeV state and unfortunely there is
no candidate to replace 1it, TIn order to test this propo -
sal the experimental information from reference (3) was
taken into account, particularly the reduced transition

probabilities ratios. From the branching ratios given in

+able (II-IX) the following relaticns can be extracted:
B(E2,2} —> 25) / B(E2,27 —> 27) = 8.84 (I1-53a)
B(E2,2; —> 03) / B(E2,2] —»2]) =19419 (11-53b)

13(1-:2,2‘:*3 — o;) / 3(32,2*3' s 2“{) ~0.026 (II-53c)

with 20% error, Using equations (II-53), the

particular features of the 1470 XeV are incorporated 1in
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TABLE (II—IX)(B)

Branching Ratios for (1470 KeV=—> Ifl* transitions

(20 % error)

Transition 'Fraction ‘Energy (KeV)
2;‘—-;- 21 0,458 1096,3

+ ot

23— 2 0,325 656 ,4

+ +

25> 0 0,140 1470,.1

2;:—> o;’ 0,077 298,8

* Assuming the 1470,1 KeV state a 2+ state,
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the determination of the nuclear model parameters. For
that purpose a new computer program was developed and only
negative results were found, i.e., there was no solution
for the nonlinear system of equations, which is obtained
with the inclusion of equations (II-44a) and (II-44c) re-
placing equations (II-33a) and (II-33b) as conditions for
this determination. A solution was found by relaxing the
orthogonality conditions through small allowances on the
grounds that, in principle, the three states considered do
not span the whole space. The predictéd attenuation 1is
close to 12%, a value already obtained in reference (1) and

using Coulomb Excitation as a test, the intensity of the

+
K

ple. All the quantities related to this calculation are

(2, —> 0;) line is so small that observation is impossi-
given in table (II-X). Then, it seems that collective ex-
citations like vibrations are not going to provide the ex-
planation for the llOPd problem and the only c¢ollective

phenomena which are left are going to be considered in the

next section.

(3) Estimation of the Giant resonance role:

In order to estimate the importance of Giant

Resonances, the starting point is the isoscalar sum rule,
given by

<y =) B (EL, o—<) (€E.~Eo)
<



2 z "
LaLtt)  RDOE By (11-54)
4T My A
where 7 is the proton number, A is the nuclear
mass number, MH is the nuclear mass and < >00 means that
the average is taken over the nuclear ground state. In the
110

Pd case, we can list these sum rules up to the hexade-

capole as:

4

E2 2 2

= £ -
Speg 318.89<c" >, e“MeVim (IT-55a)
5,22 = 669.68 <r4> e2Meven® EI-558 ]
T=0 ) 00

E
s,o8 = 1148.02<r%> () ePmeven® (1I-55¢)

In order to estimate the sum rule in equation

(II-55a), we make the association

2 _ 2 .
< r*> 00 = Trus (II-56)
in llOPd the r experimental value is 5.75 fm

RMS

and the sum rule for the guadrupole isoscalar resonance
takes the 90% of the sum rule as the highest percentage .
We are going to follow this assumption and write:

B(£2,0% —> G2,T=0) = (0.90) St2y (II-57)



B

where Egzo is giving the effective location of
the resonance and B(EZ,O+ —> G2,T7=0) is the effective
transition probability. If perturbation theory is used
for the calculation of the energy shift, the guadrupole
interaction makes a contribution in the second order term
as the lowest possible. For the estimation intended in
this section our attention is going to be concentrated
in this term. This contribution in second order will be
maximum if we take the maximum percentage (already taken)
with the minimum possible energy Eggo. For the isoscalar
E2 we have

g = K (II-59)

A1/3

which describes the position of the resonance
in terms of the energies as a function of the mass number
A. The quantity k is a constant ranking between 63 and

65 MeV and we take the energy in eguation (II-59) as the

T=0

effective location EG2 for the resonance:

T=0 _ o~ -
EGZ = 13.15 MeV (II-60)

and then the effective transition probability is given by

B(£2,0" —> G,; T=0) = 721.60 e2em?  (1I-61)
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The purpose now is to compare the second order

contribution from +his resonance with +he contribution from

the nearly degenerate states which up to this point was
the leading one.
Defining:
| <45 ot 3] i) 5p 2f >]z
Sy = - 50731 Abem p213 (11-62)
and
~ T(2) - z
+ J/] T=o
g, o | <8 ot 3l ablom 13 Co 2] e
£§_E __E’T:o
3 3p Gs

where the relevant quantities used in equations

(II-62) and (II-63) are given in table (II-XI) and the ge-

neral form of the matrix elements is given by:

Bl op o T (:
<neId| AHe,:) | We/1'3

7
f%- 2 Tre'+e+ I 20’ Y
= -\=e (-1 20+1) (2141 ok

1 /
® [6(52,1-911)]/2 (e 2 e/) {;, ? ;} (II-64)

C o6 o

The numerical evaluation of the absolute ratio

gives
S £y — Esp- Eat | | BlEZ, 0 G2 )|o 45" (11765
S €ug - E3p - Eg:" B (g2,0t—27)
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and defining:
| ~ T (2) - 2
o = <4t of 3| alem 2P G, 3>l (II-66)
g%-’ ézp'— Eézxo
and
i () + -
+
_ [ <4f ot | Ml l2p 2 3> 1o

.5, =
"fH - & - E.z‘;

with an absolute ratio in this case given by

= 0.1 (II~68)

Then the possibility of any role for the isos-
calar guadrupole resonance is eliminated since the pontri-
bution is at most one order of magnitude less phan the
leading one . The next case to study is the octupole res-

onance and we have to consider matrix elements of the form:

<z I3 aHE® w3y

7

- . T+0'+2+ 1
=-‘\f%”_ e* (-1) ? (2z+1)[.zr+1)[-24/+1]

27 +1

/

loce s (22Y) {84

o
@f f.'an¢anz* dv - (II-69)

=]
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TABLE (II-X)

110

Results for the three phonon model in Pd taking into

account experimental information from the 1470 KeV state,

Define:iE(“,","‘)EE( 1 Por )—Ef_—"(f.:rfr)
117273 123 1+¥2:%3
ol E— = . —

1 = 0.9965 /31 0,1220 b’l 0,0622

#, ==0.1600 8, = 0,9635 ¥, = -0.0100
oy ==0,1600 5 = 0.1300 ¥, = 0,975

X, = 0,0835

1R| = 1.0aa2  IB] = 0,9601 <l = 0,9644
—_— - — D - —> 2

A.B = -0,0534 A.C = -0,0780  B,C = 0,0380

(in ezfm4 units) Ratios

B(E2,2]—> o;) = 1480 B(E2,25—> 2;)/B(E2,2;-—9 2])=8.813
B(E2,2,—> 2;) = 2100 B(E2,25—> 0;)/B(E2,2§—-> 27)=0.026
B(E2,2)—> o;) = 26,4

+ +

E2,2 oty = s,

B(E2,25—> 2]) = 99.72

B(E2,25—> 27) = 878,8

(in barns units)

Qg74 = =32.47 Qgrq = 36.67 Q1470 = —10.34

Predicted Attenuation: 12 %



o Ty
TABLE (II-XI)

Energies:

E,q =(-493,27-1 0,94x107°) KeV

Eép =(-873,62-1 16,25) KeV
E2P=(—l962.40—i 47.28) KeV

E21:= 373,8 KeV Est= 1470,1 Rev

Transition Probabilities:

B(E2,0+——> 2;) = 28,5 e?fm?
B(£2,0%—> 2%) = 8600 e’fn’
B(E2,0"—> 37) = 85402 e2fm®

Overlap Integrals:

L=

E; 1Ry Rypdr = (-2,5991x107% -1 2,254x107) £m ">
o0

S; %fa?%kﬂs Je = (0,8403x107% +i 0,8452x1077) £m”"
o

g L RisRy Je = (0.4566x1073+1 0.3602x107%) £n”*

(<]
oo
S%QW&F dr= (1.1356x107% +i 3.536x107°) £m™>
o

(the Overlap Integrals were calculated with the PIATOM code)



All the relevant quantities related to the cal-
culation of the matrix elements are given in table (II-XI)

and the results are:

0.1248 + 10,0112 KeV

1

Las 0%3] dmed (D] 3o 273>

(IT-70a)
T -

<at 073laen )| 15 373> =-0.0677 + 10.0068 Kev

' (II-70b)
and finally if we consider the ratio:
~ 4 T(2) 4 4 + m(3) - z
L7t 0t3 ] AHem lspz,s)} <FFo*3| AHem [15 573> | yy3 4 (11-71)
Et}-i-od' - EiS%’

Eugot = Eopst

Then even in this case the contribution from
the isoscalar resonance is two orders of magnitude less
than the leading contribution.

The conclusion at this point is that nuclear
structure is not going to offer a possible explanation,
for the phenomenon observed with attenuation (and then

110?&. In consequence our strategy has to

the widths) in
run to the issue of the optical potential, as 1t seems

that the cause of the problem is located there.
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CHAPTER III

DOORWAY STATE APPROCH TO BOUND STATE
PERTURBATION THEORY

The Doorway State Approach to optical potential
scattering developed in reference (1) is going to give
us an alternative treatment of the energy shifts and
widths in pionic atoms, putting the strong interaction
dynamics and the rescattering process on the same foot-
ing. With this method the essential physics of the
problem can be obtained with few doorway states and
sometimes with just the first one. The original forma-
lism was applied to problems with asymtotic boundary
conditions for the energy and it should be modified and
extended in order to treat bound state problems, like
the pionic atom case. This modification is going
+o be considered in this chapter and in order to test
and demonstrate the power of the method, some simple
examples will be studied at the end.

(1) A different approach to bound state

perturbation theory

It is useful at this point to review perturbation
theory and the first step is the consideration of the

eigenvalue problem:



-94-

4 IHDT> = E; J‘VL*;> (III-1)
where H is the Hamiltonian operator given by
H=H+t+tV, (III-2)
where V& is a perturbation and.
H =T+ WV (III-3)

is the unperturbed or model Hamiltonian related to the
eigenvalue problem that can be solved exactly, being T
the kinetic energy operator and hq the basic inter-

action. The eigenvalue problem
H 7> = &7 1T (III-4)

is known and \é is taken in such a way that there is

a one-to-one correspondence between the states [T> and
the states l%r>'. For the moment, degenerate cases are
set aside. From equation (III-1) the energy shift can be

obtained, with the result

pE. = STV r11o5)
<71 >
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In order to provide an expression for this energy
shift in terms of the information from the unperturbed
system and the exact energy, a formal solution for |4§:>
has to be given. Using the closure relation for the

unperturbed states, h%;> can be written as

1> = <TIE> 151) Imd>mlh > (111-6)
m#T

From equation (III-1) it can be seen that

<m.!l/;,> - 1 <mWZ]4)T> (III-7)
£+

and

Z |m><m|’~f§> =Z m>__ L <m|\é[9/§.> (IT1I-8)

mET m#T ET“ém.
= Go(Ex) Q. Vv, N)r'
where G% projects out the eigenstate IY> and the

Green's Function.GiG%)is given by

G, (Er) EZ Im>dm) 1 (III-9)

m ET"'ém ET"' HD

Replacing (III-8) in (III-6) and assuming that

inverses exist,/ﬁg>can be written as

1
]‘J%>= i_GO(ET)QTVL|T><Tl\P7__> (III-10)



s

Now equation (III-10) can be replaced in (III-5)

with the result

A&y =<1V 1 17> (III-11)
1 - Go (ET) Q‘T VZ

And it should be noted that the guantity ‘<TI¢$\>
cancels exactly. The state ﬁgﬁ>is not normalized and

equation (III-10) can be written as

%> = Ny ! > (1I1-12)
1 - Go (ET)QT Vz_

is the normalization constant to be determined,
provided the formal problem given by equation (ITI-12)
can be solved.
Equations (III-10) and (III-12) give us, in a compact
form, the Brillouin-Wigner perturbation theory results

(2’3). The energy shift is usually expressed in terms

of a perturbation series, which can be obtained by

expanding equation (III-11l) in

A& = <Y1V 115> + LTIV, G, (B Qp Vo I TD+.. (TT11-13)

At the same time equation (III-11l) has a structure

that can be treated adequately using the Doorway State
(1)

Formalism , since it can be written as
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AE, =<TIy, 1 YV, 7> (III-14)
L-vy G. (&) G.TY\-/; :

and we can speak about doorway states in the same sense

(1)

as in reference , being the main difference the

rescattering operator given by

W = \/72 G, (E;) Q,r'\[vz (III-15)

where the Green's Function was replaced by the Reduced

Green's Function:

BEN =G (B)Q, =G - T2 (111
AE,

The starting vectors in the doorway basis are

naturally given by{l)

~ +
ID,> =NV, 17> %> = Ny (VW )1m>  (rz-1m)

and the biorthogonal basis is constructed in the

following way(l):

-1
19,> =N, {W 1D, > -—TLZ <’§9' IW 1D, > |]%'>} (III-18)
3?—'0
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|~n> ng E W+ }5_1> —it <3>9 ) w T ];D;;i> ]5;>}
a'-'-'o

This construction is also known as the Lanczos

(4)

construction or Lanczos method for matrix diagonaliz-

ation. The W operator is tridiagonal in this basis, i.e.,
<DIWID, > #0 i In-ml€1 (111-19)

and this property allows us to write the energy shift as
a continued fraction:

A = (RNY 6y (RN
1 -.Woo s Wm Wlo

i—wu- (ITI-20)

whererthe following definitions were used:
W = <D, IW 1D > (III-21)
G.nm = <P, IT:E-V—V-IDM\/ {TTT~22)

The first order perturbation theory term is related
to the first doorway state normalization through the

equation:
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-1
(;\T:‘NJ = LTV IT> (II1-23)

In this representation the perturbed wavefunction
has a simple structure when it is calculated in the
interaction region. Using equation (III-12), the result
is |

hLVﬂély%:> = erbdo\ﬁZ : | T
1 - S(ET) \/7_

V@]ﬁ: NT;GM D> (111-24)

= NN, t
1—{\72— &(E’;—)ﬁ

Up to now, we were working under the assumption
that the perturbation VE can be factorized as a product
of two square roots. In the case of non-local inter-
actions this kind of factorization may be difficult
since the solution of a nonlinear integral equation is

required:
V(¥,+) =[J?”\3(?,?”)\/A—(?",?/) (1TT~25)

this problem can be solved (1) by noting that the
square root is not needed and a simple product

representation can be taken for the same purpose:
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V Eﬁ‘é’r . ‘9 (III-26)

In this case, the doorway basis and its dual can

be built from two different starting vectors

—~

1D,> = N, ~»(}IT> 1D,>= No%ﬂw (ITT~27)
With the rescattering operator
W = ? B(ET)? (III-28)

The method developed so far in this section for the
calculations of the energy shifts and wavefunctions
assumes that Ef , the exact energy, is known. In
standard problems this is not the case and all the
previous formalism can be useful if a self-consistent
calculation is practical in terms of computer time.

This is possible when the convergence is very strong and
with few doorways the required accuracy is achieved. 1If
the convergence is such that many doorways have to be
used to achieve the reguired accuracy then the calcula-
tion turns to be inpractical and a different approach
should be called for. This approach can be based on the

Rayleigh-Schroedinger perturbation theory where the
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energy shift and wavefunction can be obtained from
information coming only from the unperturbed system.
This will be the topic of the next section.

(2) Rayleigh-Schroedinger perturbation

theory and the Doorway State Approach

The Rayleigh-Schroedinger perturbation theory can
be obtained in a compact form by noting that equation

(III-7) can be rewritten as

mlf>= L Gmyig> =

= Em

16m, <m|(Vz“A£T)11l//T> (III-29)

which is essentially a shift in the energies. Using
equation (III-29) in (III-6), the perturbed wavefunction

is given by

[ = <> : > (III-30)
T " § = %(Gﬂ (v, - &)

where

B(e) EZ dm> <l G, (&) Qy (III-31)

m#T €y = Em

is the reduced Green's Function. Replacing (III-BO) A8

(III-5), the result is
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AE, = <TlY, : 17> (III-32)
1 - ¥ler) (v,- 0 )

and we can rewrite (III-30) as

%> =Ny 1 17> (III-33)
1 -9 (V,_“ Afy)

Equations (III-32) and (III-33) give us the
Rayleigh-Schroedinger perturbation theory. It should
be noted that the self-consistency in the calculation
of the energy shift AET is still present. An expansion
in powers of Af, can be performed on the right hand
side of equations (III-32) and (III-33) and the co-
efficients of such expansion are going to be functions
of the information related to the unperturbed system
and they can be found once, making the self-consistent
calculation trivial. The expansion of equation (III-32)
in powers of Aé-is completely equivalent to the expan-

sion of equation (III-14) around €+ and evaluated for

the energy E%:

A\
A‘Er } (III-34)

AE = () {6;{, (&) +°f L 976 ©) \
n=1 E:"- eT

Y

or for better convergence:
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(N 6, (6

o =4 S5 n -1
g (NfN,)iz 3. m \ AE: (TII-35)
n=1 ) ,BE. E=GT‘

At. =

T

and 600(5> is given by

6. (6) = <3| (III-36)

1
T ST |2, >

It is convenient to introduce the definitions:

Ww(é) = 1/72 8‘(&)@ = w(e) (III-37)

W (& (€) = WN;_ B'&(é)ﬁ (III-38)

c® = h (III-39)
1 -w(e)

Sfb = w("’” s (III-40)

and from equation (III-38) we obtain

n
£ wia) _ (_QWMC*‘“)@T) (III-41)
D& B &

Using equations (III-36) through (III-41) we can
see that higher derivatives of 6;0(5) can be found by
means of recursion relations. For example, the first

derivative is obtained from:



-104-

c® =5’ =- Gmwm s __ e ® %(@ .

and in the same way:

6(3) =1 6" = c @ w.(l,) c® ZO'(Z)SH)-I- 6.(1) w_(s)c-(i)

5@ g L gl s® (TTT~43)

I

2
3!

+ 6(1) Nmﬁ'mw‘(‘?’)@(“i- 6(l)w(2.16\(t) w(a)é..(t)_,_ 6—(1) w(#)o.(t)}

6’”: _ {5(“ w(z,) 6.(1) W (2> 6x(4) Zu.(a) 6~(1)

= _c® gy g g _ g1 g¥) (III-44)

6‘(5) - — 6—(‘#) S(z-) s 6(3) 5(3)_ 6(2) S(‘:‘)_i_ 6(1) 5(5-) (ITI-44a)

and in general

s _ 1 Ve

= Y o (III-45)
(N-1)! & f=e
N
- Z (-t)ﬂ‘i‘i S (N+1'M) S(ﬁ) (III-46)
M=2

Equation (III-35) can be rewritten as:
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Aa-r = (ﬁi‘No)bi 6\021)C6‘]’)
'~ -1 2= X ~
= (NS 6P ag e

n=2

In the construction of the doorway basis the
. 1)
matrix elements UI£n1 are found and Cgo can be calcul-

ated as a continued fraction(l). To obtain all the 6:&1

the following recursion relation has to be used(l)

g0 o L o psa —te =4 3 w5® nTz-mm
1-w 1-w
If we have the doorway basis, the calculation of

the matrix elements:

.

Uwf‘f\_) =<3 | o (&) 1D, > (III-49)

is necessary to obtain the S matrix elements. At

nm
this point the calculation could be expensive in terms
of computer time, and it is therefore important to keep
the AET powers to a minimum. Fortunately in most
practical applications very high powers in the energy
shifts are not needed. Once the Sinm matrix elements
are calculated, equation (III-46) can be used to gener-
ate all the necessary 6£&l' . As a byproduct, the

wavefunction in the interaction region can be found

through a similar expansion:
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oo oo
/ m=1  _(m)
oW 13> =N S ag 6,7 (&) ID> (x1z-50)
Mn=0o m=1
in terms of both powers of the energy shift and the
doorway basis {II%>} . The only one quantity that
has to be determined a posteriori is the normalization NT

and this can be done through equation (III-50), giving

- ~1
N, = [Z | (&) )Zl (III-51)
h=0
and
\3; (&) = Z A&Tm-i S"n(:)(ET) (III-52)
m=1

Standard perturbation theory fails in providing
a good representation for the perturbed wavefunction
and it will be interesting to study what egquation
(ITI-50) has to offer in that respect. This will be
done at the end of this chapter with simple examples
where the exact solution is known.

Another interesting byproduct is the perturbed
Green's Function in the interaction region. To see
this we consider the equation for the full Green's

Function:
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G(E) = G, (€) + G, (E)vw, G(¢&) (FTT=55)

Multiplying from the left by GG'E 1-¢} ; (7%

projects onto the state JT> , eigenstate of H, )

H 11> = € 175 (III-54)

and

G, (£) = 4 (III-55)
€=t

we obtain

Q, G(&) = D)+ By Vv, Ge) (III-56)

where 8’(5) is the Reduced Green's Function:

O(e) =@ G, (&) =) Im2<m] (I11-57)

mzr € -&m

Solving equation (III-56) from the formal point of

view we get

G(&) = 1 Oe) (III-58)

1- 7% -0V,
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Expanding (G(€) in terms of ,PT+ 8(5)\/2 we see

that

G(¢) = 1 G(e (III-59)
1 -9V, )

As in the case of the enerqgy shift and the wave-
function, we can expand (III-59) around E} and evaluate

it for arbitrary € such that

AE 2 £-6y

and

G(e) = b Bl - b D) ae
L-Ber) Vs 4- B‘Cer (6’)1 D&V, "

F—— V) ——— O
1'8(61')\/2 eT)i*B’(éf)\fz ()i B_( ), 8'657‘) AE. + -

(III-60)

In the interaction region we have two alternative

expressions:

Vv, G (¢) =Z 6™ ey ALY W Cer) (III-61)
n=1
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J—\Tz Gy, = [Z c™ ey Aim] W (III-62)

=

We are going to explore equation (III-62) in a
simple example where the full Green's Function is well
known: Harmonic oscillator with a harmonic perturba-
tion. This will be done at the end of this chapter.

(3) Representations of the Reduced Green's

Function and methods for its calculation in applications

The Reduced Green's Function is defined by

Ole) ;-—:Z Im><ml (g)._l><ﬂ (III-63)
mET E—Em - &y
Equation (III-63) is the form used in Brillouin-
Wigner Theory for the self-consistent calculations.
When we follow the approach based on the Schroedinger4

Rayleigh Theory, equation (III-63) becomes a limit:

5 ey = Lim EGO(E)__ IET}_Z%”S (III-64)

—aET

From the operational point of view, equation

(III-64) can be rewritten in a more convenient form as

B (ey) = Lo I"’-—{(E E.r)G(;gﬂS (III-65)
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to the equation (III-65) we give the special name of
differential representation. It is also possible to

obtain an Integral representation:

8’(6{) =_1 _G.(e) de (III-66)
2T c £ - €Er
.

=

where the closed contour contains the point &= €;.
Qur choice of the particular representation will depend
on the particular problem at hand.

An alternative method to the previous two, which
is going to be used in the next chapters, is based on
the fact that once we have the unperturbed state and
the corresponding eigenvalue Gﬁ-, we have all the
necessary information required in the calculation of
the Reduced Green's Function. This feature can be
shown by looking at the simple case of a spherical
local potential. There the differential equation for
the radial part of the Reduced Green's Function is

given by

1 e + L. éj___lﬁa’“z_ 4V, @-)}@M(ﬂm: SCe-v’) (III-67)

— ¥ Bug () Puglerr’
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At the same time the Schroedinger equation gives

us

1o _ L) -
{E“Q'{-;u:r;z“ W'J'vt(f)%sénﬁ.(v) =0 A

In equation (III-67) and (III-68) we will write

the radial parts in the following way:

/
Bre (500 = Une (‘f’f : (I1I-69)
Y'Y
4 () = Hnel) (I11-70)
ne Y

Now the Reduced Green's Function is factorized in

the following way:

Fam

B’u () =~ %M (v)m”_ (¢’ qém (') v’ (III-71)

Replacing equation (III-71) in eguation (III-67)

and using equation (III-68) we get:
! /
f J% (¢ ‘f’u(f)) jJ: My, Coe) émz () v
(I11-72)

Ja / ) f___ - / /
+ T(}gu (r):l:;z mm(«,f)géumv — S(\f' ¥ )~wr9£“€(v) g{w(r’)r
If we multiply equation (III-72) on the left by

#-4326() ; the factor ?aéa#)‘r’ can be cancelled

due to the presence of the Dirac's Delta Function and
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2
£ d §erdie) 4y, (e | = Semr- wipyly (EETT)
Z/u.:l?{ “L( >clr L ?én'e
Equation (III-73) can be decomposed in two

equations that can be solved in sequence:

jj". h, (5¢) =7-§(~'-f’} -/wz 55,; (¢)  (III-74)

Yz(lénz (T)j:'J; mu (‘Gf,‘) = L"n.e (T’T/) LELA=2a]

Equation (III-74) has the following boundary

conditions:
L..“l (o,¢') = o© (III-76)
and solving for knﬂhgfﬁ , the result is:

"
LLM (q,¢/) = e B (v-¢") = e/u.f £ ?ﬁy; () dt (III-77)

from equation (III-75) we obtain:

d M, (o)== B(r-v) - S [f‘?&;(ﬂ# (I1I-78)
Y‘%&&) Y¢ﬁﬁjo

dr

We introduce the following definitions
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m; (e, ¢7) T B

mhe(r,r’)_.

<
P,y F0Y ¥ vy (III-79)

and from equation (III-78) by integrating between
and and conversely, we get

>
mm(v,w)— m:‘sz )

v

¢
= £24% (4)dt  (I11-80)
/L.(zt (#ne({’) /“'/'??;“(3)[ Cl‘tg o

Yﬂ,ﬂe Cepe’) - m (v, ¢”)
ot e e

.ry‘_e,

From the continuity condition for the Reduced

Green's Function, i.e.,

~

o, (ov) = &m (') (III-82)

=/t r=v'"

where \-”’=f’+§ and Y"._:{’-g with S—ro Equation (III-82)

is equivalent to

> <
mhe (viv’) = WLM (vyr'y= Co(v) (III-83)

Using the normalization condition for gghg(r) :
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o)

4 —
fﬁzc‘ﬁ,ﬂ; (6)dt =1 _ftién.ze (5)Jt (III-84)
K

and equation (III-83) in equation (III-80), we obtain:

Wl (‘«‘f’)—-C ¢tz f‘g# (“ij %M(z’:)
)

¥
mm (or') = C <T,)+Z/A[ ﬁ?‘(#“i (t) Jt

“2(\3)

Finally using the projection condition:

8'“2 IYU?> =0

which can be translated as:

o0
2z 2
f 'S 9‘({3“(‘-) m‘nﬁ (‘-),-f)o!v* = 0
0
the function C, (f’) can be obtained through

Coe) = =3 Zqins(x)f?’ de (9) dy

../,,f 2dx ‘?éne(")f fﬁ ?énz(f) Jt

{Z11-88)

(ITII-86)

(ITII-87)

(ITI-88)

(IIi~88)
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The complete radial contribution to the Reduced

Green's Function will be given by

/ /
@’m ) = ¢M(Y‘) mu (%) 24 {v) (II1-30)

Equations (III-85), (III-86), (III-89) and (III-
90) will be applied to the study of pionic atoms in the
forthcoming chapters. This set of eguations gives us
the possibility of immediate numerical applications for
realistic cases. It should be noted that the input
information is coming in its entirety from the state [nd),

.

(4) Degenerate Cases:

One natural guestion is what to do in case of

degeneracy. In such a case we see that:
Ho[s> = & 1> =€51s> (III-91)
where D is a set of states with the feature:

= €, for any [%> in D (ITI-92)

being 63 a constant. The set forms a degenerate set
of states. This property makes the application of our

formalism impossible. In this section, a method is
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going to be developed in order to solve this problem
and it will be based on standard projection technigues.
The use of these techniques to consider degenerate

(3)

cases in perturbation theory is not new , being the
essential difference between previous approaches an
ours, the use of the Doorway State Formalism. The
first step is the introduction of projec£ors:
?y which projects onto the space
(III-93)
Gb==1—1% which is just the complement

Using equations (III-78) the perturbation can be

rewritten as:

V, =% % +HVA+ G T + Y, @ (III-94)

and the following definitions are introduced:

w=\VY,-7%P - (III-95)

Hi= H +BW%E (III-96)
-1

G, (&) = (€-Hy) (III-97)

the eigenvalue problem for the Hamiltonian Hi can be

solved using standard diagonalization techniques and
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in practice it is a simple problem, since usually a

few states should be considered. Once this is done,

new set of states D is generated with the result

a

Hiimy =g, lv> 11> €D (I11-98)

where the degeneracy is removed. If in a given case

the degeneracy is not removed then the prescription is

to apply projection technigues a second time or v times

until it is achieved.

Assuming that in the first step the remotion is
achieved, which is the common case, the state [T)is a

linear combination of the states |5Y € D and
KP,D 17> =?:‘§ Ty =175 (III-99)
Qp 17> = Q3 > =o0 (III-100)
‘Now, equation (III-1) can be written as:

(b 4 2V W IS = () [ =B [4y  (zrz-1oD)

and then the energy shift is given by:
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AET - <T]u,]'1["r> " <TIVZQ3)|]4?> (III-102)
LTy T

equations (III-94) and (III-95) were used in order to

obtain the right hand side of (III-102). Following a

similar procedure to the one outlined by equations

(III-6), (III-7), (III-8) and (III-9), we get:

WT> =<"{l‘1L7> 3 |7> (III-103)
1~ Gt(ET\) QTU—

replacing equation (III-103) in (III-102), the energy

shift can be written as:

1 17> (III-104)
1 - G (&) QU

£5ET = <711V, Q,

by expanding equation (III-104) and using equations

(III-99) and (III-100) in addition to
QpyQr = Qp = Q3 (III-105)

the energy shift can be rewritten as:

A&, =<7V . WS LIV, YD (TII-106)
T P - G, (EQ5 Y, '

and taking into account the important result:



~119-

G, (&) G = G, (E+) @ (III-107)

which essentially is a consequence of the diagonaliza-
tion procedure and allows us to simplify even further

equation (III-106) to give

A& = LTIV 1 TS — IV 1T (III-108)
T Glenggy, 0T el

This equation has a convenient structure for the
application of the Doorway State Formalism and the
interesting feature is that, aside the state [T
(obtained through the first order diagonalization) and
the unéerturbed energy ET , all the required information
comes from the original unperturbed problem. The new

object here is a Reduced Green's Function given by

&P(Er)EGO(ET)Q‘D = G, (ET)_Z [wm> <m | (III-109)
med Evr— Em

and the associated rescattering operator is given by

W (gD = Vv, B (EDVY, (I1I-110)

At this point, the approach based on the Brillouin-

Wigner Perturbation Theory outlined in section (1) can
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be applied without difficulties. In this Rayleigh-
Schroedinger case, equation (III-108) is expanded in
terms of the energy shift AErand the structure is
formally the same as the one outlined in section (2),
being the difference a Reduced Green's Function given

by

i

8'? (&) = G, (&) Qy = G, (e,.’). -Z [m> <m)

=G, (&) - . ie {4 (III-111)
G D
where €& # €p and the expansion is done around the
energy value €;. 1In an alternative way the expansion
can be done around €5 and in this case a differential
representation for the Reduced Green's. Function

can be obtained:

U (e )

n

G, ()@, = B §G, (- L) Im><n]
D

E-> € 5“5:9me‘1)

= eﬁ—?en fg [(e-&) G.(e)] (IT1-112)

From the formal point of view there is no difference
between the calculation of this Reduced Green's
Function and the standard Reduced Green's Function

applicable to the nondegenerate case and that is the
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essential advantage of this alternative approach.

Up to now, the guidelines for a general structure
in the Doorway State Approach to Bound State Peturba-
tion Theory were given and the task to be continued is
the application of this theory to simple cases (which
can be solved exactly) in order to examine and to test
its features, in particular convergence as the most
important one.

(5) Simple Cases to study:

In this section the approach outlined in section
(2) based on the Rayleigh-Schroedinger Theory is going
to be studied through simple cases that can be consider-
ed analytically and with detail. Our atteﬁtion is going
to be concentrated in energy shifts, wavefunctions and
Green's Functions. The functions are found in the
perturbation region with relatively few dcorway states,
being this a success.of the method. We are going to see
that usually less doorways are needed for a good approx-
imation to the energy shifts. In standard perturbation
theory a good representation of the wavefunctions is, in
general, not possible due to the fact that the trunca-
tion is done in terms of the perturbation higher orders.
In the Doorway State Approach, the contribution from
higher order terms in the perturbation is kept at every

level of truncation, which is the origin of strong
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convergence that leads to a good representation of the
wavefunction and a good approximation to the energy
shift. Next, we are going to consider the examples:

(a) One dimensional Harmonic Oscillator and a

Harmonic Perturbation:

In this case the unperturbed Hamiltonian is

considered to be:

A
Ho = 2+ L pa'x’® (ITI-113)
M 2

and the perturbation has a harmonic form also:

2 2 -
V, = -}ﬁm«)X (III-114)
where W is the natural oscillator freguency and ﬁ is a
size parameter for the perturbation. The combination of
equations (III-113) and (III-114) gives us a new
Hamiltonian which is a new Harmonic Oscillator with a

natural frequency given by:
W = Vuﬁ W (III-115)

At this point it is useful to introduce second
quantization language in order to make the handling of

problem simpler and then, the position and momentum
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operators can be defined as:

F = 1.'1/,’:;_“) (af - a) (III-116)

5 : (a+ @) (III-117)

V2 M

using the commutation rule for the position and momentum

i

operators
L%, p] =1t (III-118)

the commutation rule for & and af is found to be

[a,at] =1 (I1I-119)

and then
aln> = [n-> (III-120)
ey = et [d (ITI-121)

and the unperturbed Hamiltonian can be written in normal

form as:

e = [affa, ; l'l o (III-122)
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To find the rescattering operator, we use the

square root of the perturbation given by

W, = % m (' + @) (III-123)

and the Reduced Green's Function:

&(Es)-_-z fmodml 12 IM><M (TTE-194]

with the result:

W = \N &(ésﬂ{—- #MMZ Jm><m1 (“@ (III-125)

mzs ( 3

where [$) is the unperturbed state to be considered,

such that

HIs> = €ls> (III-126)

and

€ =(s+41)w (III-127)

To proceed with the construction of the Doorway

basis it is convenient to write the rescattering operator

bJCh)and the starting vectors |3, and lii§> in the
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Harmonic Oscillator basis:

Wﬁ’ﬂ*ﬂi ) [VE ) S ¢ (00 o
Sou-t) [h ot n (1) Sm,n-z” (II1-128)

(S-wn+1)

N:illD& =N, 13> = Vf_’( M) s> + '\/_,ZS__ [$-1> (111-129)
2

and
¥ -1
(TJO N,) = ?@. (23+1) (III-130)
4
The rest of this basis can be constructed with
equations (III-18). Equations (III-128) and (III-129)

are particularly convenient for computer calculations.
We begin our numerical studies with ﬁ,z {1 (the original
interaction and the perturbation have the same size) and
the state to be considered in detail will be the

ground state. The results for energy shifts calculated
through equation(III-47) and the wavefunction coeffici-
ents in the Doorway Basis given by equation (III-52) are
summarized in table (III-I). In that table N@ represents
the number of Doorway States used and M is the maximum
order in the energy shift expansion, to be considered
for truncation, which gives stable numerical values with
seven figures. The first observation is that conver-

; (n
gence for the energy shift AE ) is very good. At the



A€ (Exact) = 0.2071068 &
AE (First Order Perturbation Theory) = 0.254

Np M %o W 4y ¥,

i 5 0.7830095 0 0 0

2 4 0.9040504 0.4601959 0 0

3 5 0.8307469 0.1829259 0.0809657 0

A 4 0.8285029 0.1743676 0.0349413 0.0146797
5 5 0.8284296 0.1740891 0.0334427 0.0064620
) 5 0.8284272 0.1740802 0.0333943 0.0061917
7 4 0.8284274 0.,1740797 0.0333927 0.0061886
8 4 0.8284274 0.1740797 0.0333927 0.0061883
9 4 0.,8284274 0.1740797 f1.0333927 0.0061883

Q.

Np M 3, O . 3‘6 v,

1 5 0 0 0 0

2 4 0 0 0 0

3 5 0 0 0 0

4 4 0 0 0 0

5 5 0.0026419 0 0 0

6 5 0.0011744 0.0004722 0 0

7 4 0.,0011277 0.0002111 0.,0000839 0

8 4 0.0011262 0.0002029 0.0000377 0.0000149
9 4 0.0011262 0.0002027 0.0000362 0.0000067
Np M ﬂ% Aéo)(munits) AE(M)(ﬂunits)
1 5 0 3 .2 0.1957524
2 4 0 0.2277580 0.2260126
3 5 0 0.2105047 0.2076867
4 4 0 0.2100259 0.2071257
5 5 0 0.2100112 0.2071074
6 5 0 0,2100108 0,2071068
1 4 0 0.,2100108 0.2071068
8 4 0 0.2100108 0.2071068
9 4 0.0000026 0.2100108 J+2071068

=126~

TABLE (III-L}

Results for the Harmonic Oscillator With a
Harmonic Perturbation With /S= 1 for the Ground State
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second Doorway level of truncation there is a ~10%
deviation from the exact wvalue. The exact shift can

be reproduced up to third figure at the third Doorway
State level and up to the seventh figure at the sixth
Doorway State level for an "intermediéte" size pertur-
bation. By intermediate size we mean that the perturb-
ation is about the same size as the original interac-
tion, like the one that we are considering. With the
first Doorway and H=5 we see a 6% deviation while in
the same case with M=o (the simplest truncation) there
is a 3.5% deviation. This behaviour is what makes the
truncation at the first Doorway level interesting in
physical applications. The secend observation is that
a relatively low order in the energy shift expansion is
required for accurate results. If we are interested in
few percent is probable that there is no need in going
beyond the zeroth order in the energy shift. In the
example that we are considering for seven figures, the
saturation value is reached within the fourth and fifth
orders. Of course, this is an extreme case which is
unusual in practical cases. In the case of a Third
Doorway truncation to obtain the energy shift up to the
third figure is possible at the first order in the
energy shift as it is shown in table (III-II). In that

table the sixth Doorway truncation is also shown in
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TABLE (III-IT)

Convergence accofding to the energy shift order for
the third and sixth Doorway truncations in the ground

state case with [5 = 1.

Third Doorway Truncation: Sixth Doorway Truncation:

(n)

M AT ) units) M Ae™( W units)
0 0.2105047 0 0.2100108
1 0.2078735 1 0.2073029
2 0.2076993 2 0.2071203
3 0.2076876 3 0.2071077
4 0.2076868 4 0.2071069
5 0.2076867 5 0.2071068
6 0.2076867 6 0.2071068

TABLE (ITT-III)

Results for the Harmonic Oscillator with a Harmonic
Perturbation with F: 0.1 for the Ground State.

AE (Exact) = 0.024404424) Af(First Order Perturbation
Theory) = 0.025

Np M AE®( w units) 2™ units)
1 3 0.02439024 0.02438290
2 2 0.02441397 0.02440718
3 2 0.02441127 0.02440443
4 2 0.02441127 0.02440442
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detail and we see that it is not necessary to go beyond
the first order to obtain a result with three figures.
So with little effort reasonably accurate numbers can be
obtained for the energy shifts in the presence of
perturbations of intermediate size. For small perturba-
tions is clear that the demands are much less as it is
evidenced in table (IIi-III) and for most physical
applications this is a very interesting case. If we

try a truncation at the first Doorway level in that
particular example we get good results up to the third
figure and just keeping the zeroth order term in the
energy shift expansion. A comparison of the relevant
numerical values in table (III-III) shows that the
approximation is very good and performs much better than
the first order perturbation theory. The real effort
has to be done when the perturbation is a large one as
it is shown in table (III-IV) where a value with three
figures can be obtained at the 8-th Doorway truncation
level. The calculated M values are for saturation with
seven figures and the three figure accuracy can be kept
with four orders in the energy shift. A few percent
accuracy can be achieved at the fourth Doorway level with
zeroth order in the energy shift, which is remarkable if
we realize that the perturbation has a strength five

times than the one of the original interaction.



TABLE
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(LT L=EV)

Results for the Harmonic Oscillator with a

Harmonic Perturbation with (5 = 5 for the Ground State.

A€ (Exact)
' M
1 7
2 3
3 11
4 23
5 23
6 17
7 12
8 9
9 8
10 9

AE@)( () units)

0.555555%

-0.2685097

0.4229183
0.7100424
0.7741272
0.7862582
0.78894938
0.7889031
0.7889777
0.78893913
0.7889937

0.7247449 W, Af(First Order Perturbation Theory
= 1.25W

(W units)

0.4738284
-0,09032234
0.2276600
0.5193817
0.6766929
0.7164256
§.7233197
0.7244950
0.7247004
0.7247369

0.7247434
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Although there is more effort, we can see that results
are guaranteed. Another important item presented in
table (III-I) is the wavefunction coefficients in the
Doorway basis, denoted by fh_. They are calculated

jointly to the energy shifts to show a general feature

of any perturbation theory: Convergence for energy
shifts is faster than converéence for wavefunctions.
In this example when the energy shift is stable within
seven figures at the sixth Doorway truncation, the first
coefficient stabilizes at the seventh Doorway trunca-
tion. This is also the case with the second and the
third coefficients. Looking at these coefficients the
suggestion is that a good representation of the wave-
function in the'perturbation region (same as the
interaction region in this case) is possible. In order
to answer that question, table (III-V) was prepared. In
that table the comparison is made using the normalized
perturbed state given in equation (III-50) with the
state in the perturbation region, given by

NEﬁaf¢bm£Z and the unperturbed state in the region,
NOVV;IQQ> , which is the first Doorway State. The

normalization constant for the exact state



TABLE (III-V)
Unperturbed, Perturbed and Exact wWavefunctions for the Harmonic Oscillator with a

Harmonic Perturbation with = 1 for the Ground State in ch Doorway truncation,

I OZIDD ¢3BIZY <KI3> <K K5I8 <KIT> <SI17> <EIR> <K1Yy Exact

0.25 0,2373923% 0.3664322  0,3455604  0,3329042 0.3301382 0,3296178  (.3295238 0.3295072  0.3295039  0.3295039
0.50 0.4687170 0.634728)  0.5996579 0.5681305% 0.5778223 0,577271% ,5772915 0.57718051 0.5771792  0.5771792
0.75 0,.6013724 0.7447589 0.7098957 0,6957187 0.6941401 0%.6940834 0.6941090 0.6941185 0.6941215 0.6941215
1.00 0.6442884 0.6935005 0.6771193 0.6769788 0.6786062 0.6791118 (0 _6792164 0.6792340 0.6792368 0.6792368
1,25 0.6079180 0.5276924 0.5502862 0.5658687 0.5697309 0.5703481 0.3704151 0.5704176  0.5704159  0,5704159
1.30 0.5172941 0.3172990 0.3914789  0.4173289  9.4208615  0.4240322 0.4209858 0.4209695 0.4209657  0.4209657
1.7% 0.4.20%342 0.1256053 0,2506816 0.2762262 0.2770580 0.2766179  0.2765059 0.2764914 0.2764309 0.2764909
2.00 0.28752033  -0.100108 0.1514028 0.1660472 0.1635807 0,.1628949  0.1628157 0.1628514  0.1628446 0.1628446
2.25 0.1901525 -0,0814552 0.0932142 0.0910036 0.0867081 0.0863457 0.0864033 0.0864230 0.0864252 0.0864252
2.50 0.1166802 -0,1013039 0.0632405 0.0447044 0.0410727 0.0413390 0.0414607 0.0614713 0.0414692 0.0414692
2.75 0.0665862 -0.0901822 0.0474608 0.0182049  0.172513 0.0179749 0.0180474 0.0180364 J.0180326 0.0180326
3.00 0.0354017 ~0.0667965 0.0366965 0.0061678 0.0064840 0.0071848 Q.0071408 0.0017793 0.00711687 0.0071187
" 3.2% 0.0175587 -0.0432922 0.0272287 -0.0023357 0.0024521 0.0026903 0.0023615 0.0025514 0.0025547 0.0025547
3.50 0.0081328 -0.0251355 0.0186710 -0.00446831 0.0013154 0.0009390 0.0008193 0.0008309 0.0008343 0.0008343
3.75 0.0035207 -0.0132447 0.116727 -0.,0043224 0.0010981 0.0002329 0.0002243 0.0002482 0.0002481 0.0002481
4.00 0.0014254 -0,0063852 0.0066378 -0,0032707 0.,00099407 ~0.0000304 0.0000530 0.0000708 0.0000673 0.0000673
4.25 0.0005400 -0.0028315 0.0034400 =-0,0021125  0.0008048 -0.0001385 0.0000217 0.0000206 0.0000i66 0,0000166
4.350 0.0001915 -0.00115%% 0.0016297 -0.0012032 0.0005655 =~0.00013:3 0.0000252 0.0000049 0.0000037 0.0000037
4.75 0.0000636 ~0.0004396  0.0007080 ~0.0006142 0.0003479 -0.0001273 0.0000291 -0.0000015 ©0.0000008 0.,0000008

5.00 0.0000198 -0.0001546 0.0002829 -0.0002836 0.0001897 -0.0000863 ., 0.0000263 =0.0000044 0,0000001 0.0000001

IS = <51 1YY ExacT = <§IW; | Yexacr >

-¢E1-
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is given by

A& et (III-131)

2
]NEl =
<<‘+ExAcT 'Vi‘ 4Ex T>

ALY

where
~ %
Fopt = (W; No) (TTT~133)

is just the first order perturbation theory energy

shift. In the Harmonic Oscillator case we obtain:

(n) )
<¢Exacr ,vzll’bﬁmtr> =7\é(m%)é\) (III-133)
2 e

then the normalization constant is given by

I
- mn
Ne = 2 M (148) (III-134)
/3 (2nt1)
‘and the normalized exact wavefunction in the perturba-

tion region is given by

n ly
<SG g > = Ne (10)4fa ()’
2" n!

e § f, ({“_FS )C—%ﬁzﬁ S (ITI-135)

where
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S =Hw X (III-136)

and the unperturbed wavefunction (First Doorway wave-

function) can be written as:

<5 Vv, 1‘7[;(“’>=Na(§_t¢_)>l/‘*1/@_5_ H (g)g—%g2 (III-137)
: T £ 2" "

since we are working with the ground state M=o is
taken. In the construction of table (III-V) the mass
M and frequency &) were taken as unity. If we examine
the convergence process closely, the immediate observed
feature is that the representation of the wavefunction
is getting poorer as we go farther from the origin
where oscillations appear. With the increasing number
of Doorway States the oscillation region is pulled away
from the origin region where the representation is good.
Within few percent accuracy and for a region close to the
origin , a good representation can be obtained at the
third Doorway truncation. At the level of the nineth
Doorway truncation there is no distinction between the
perturbed and exact wavefunctions within seven signifi-
cant figures. Another interesting point to examine is
the Green's Function representation and in order to do

that, table (III-VIA) was prepared. In this table the



Bxsct 0.0215522  0.1223399%  -0,2978115

TABLE" (III-VIA)
i . R i s
Green's Function in the Perturbation Region Fvaluated at E = Eo + %AEO for
5 3 i i i .
the Harmonic Oscillator with a Harmonic Perturbation Up to the Nineth Doorway Trun
i _ i F 5
cation and /6 = 1, The Symbol (i,j) stands for the i-th Doorway and j-th Doorway
e
Ccoefficient
Ny (1,1) (2,1) (2,2) 5 (3.1) (3,2) (3,3 up (4,1 (4,2) (4.3 (4,4 (3,1) (5,2)
X ~0.197%627 o o o LI o ’ 0.0131577  0.033337  -0.8114672 ° ° °
2 -0.08711197 0.4308044  -0.9723736 o ° ° 3 0.0057460  0.0232923  0,1277826  -0.2767047  0.2341060  0.00948393
3 -0.15¢9363  0.1678514  -0.2936387  0.073792  0.2991220 -0.B632418 . 0.0055121  0.0223461  0,1225807  -0.305622¢  0.0103433  0.0041937
4 -0.1569223  0.1601230  -0.3250252  0.0314632 41275410 -0.2830438 7 0.0055047  0.0223143  0.1224177  -0.3065287  0.0009936  0.0040227
3 -0.1569850  0.1398788  -0.3260169  0.0301238  0.1219486 '-0.3127861 : 0.0055045 0.0223134  0.1224126  -0.3085563  0.0005923  0.0040226
¢ ~0.1569870  0.1398711  -0.3260482  0.0300836  0.1219432  -0.313324B 4 0.0055045  0.0223134  0.1224124  ~0.3065578 0.0009923  0.0040224
? -0.1563871  0.1358705  -0.3260432  0.0300822  0.1213430 -0.3137342 £xace 0.0055045 0.0223134  0.1224128  -0.3065378  ©0.000932)  0.0009321 |
s ~0.1569871 0.1598709  -0,3260492  0.0300822  0.1219430  -0.3137332 S
) _0.1569871  0.1398709  -0.3260492  0.0300822. 0.1219430  -0.3137332 . 6.4 6.5 6.6 a.n 1,2 7.3 ul
: o " i .
Exact -0.1569871  0.1598709  -0.3260492  0.0300B22  0.1219430  -0.3137332 5 b 5 b @ i " !
3 0.0512806 0.2870434 =0.7795151 e ] o
LS (3.3 (5,4 (3.9 (6,1) (s,2) (e,3) 1 0.0228231  0.1277326  -0.2720822  0.0000732  0.0002968  0.001628¢
3 £ 0.0520619  0.2894153  -0.7914250 . 9 @ o ® 0.0219373  0.1227945  -0.2999982  0,0000327  0.0901327  0.0007282
& 0.0230069 0.1278969 -0.2737406  0.00L34B1  0.0016815  0.0052247 9 0.0219099  0.1226411° -0.3008620  0.0000315  ©0.0001277  0.0007003
? 0.0220963  0.1228349  -0.3020752  0.0001846  0.0007484  0.004103¢ pxect 0.0219091 0.1226362  -0,3008895  0.0000313  0.0001273  0.0006334
s 0.0220680  0.1226773  -0,309572 0.0001774  ©0.0007153  0.0039462
9 0.0220671  0.1226725  -0.3029844  0.0601772  0.0007184  0.003341
Exsct 0.0220671 0.1226723  -0.3023844  0.0001772  0.0007184 ©.0039411 ; X, 8.1 en .5 &1 — a8
7 o 0 o 0 o °
Ny 2,4 a,» (7.6) .0 (.11 (s, 2) | o 0.00028C6  0.0015930  0.0089170  0.0502056  0.2839711 -0.7660093
7 ©.0090524  0.0306708  0.2837930  -0.7716220 o : o LY 0.0001286  0.0007347  0,0400073  0.0225254  0,1274073  -0.2703076
s 0.0040473  D0.0226582  0.1273129  -0.2710307  0,1275129  0.0000522 !
9 0.0038930  0.021791%  D0.1226524  -0.2986357  0.0000058  0.0000234 E rece 00001236  0.0006868  0.0386k36  0.0206461  0.124338  -0.2983391
Exsct 0.0033BB1  0.0217638  0.1223373  -0.299312¢  0.0000036  0.0000223 |
. ! M, (9D (9,8) (3,9
Ny (3.1) (9.2) (3.3 (5.4 9,3 0.6 P 0.0498450  ©0,.2829425 -0.7618093
s 0.0000023  0.0000092  0.0000503  0.0002796  0.0015652  0.0088123 i
|
(]

Exact 0.00000 0.0000040 0.0000217 0.0001209 0.0006768 0,0038104
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Green's Function -in the perturbation region is given in
terms of the Doorway basis, i.e., the coefficients of
such expansion are the tabulated quantities. It can be
observed that the convergence properties are quite
similar to the wavefunction ones. It can be shown that
these convergence properties are not altered by the
particular enerqgy where the Green's Function is
evaluated and that is the purpose of tables (III-vIR)and
(III-VIC) where the evaluation is done at & = &.+<ﬁ A€,
and & + A, . The results for a very large perturbation
/%= 1o , are given in table (III-VII) where a good result
for the energy shift can be obtained within three sign-
ificant figures at the nineth Doorway truncation. It
should be noted that after an apparent breakdown at the
second Doorway truncation, the sequence recovers its

way towards the correct values. In this case it is
clear that a big effort has to be done in order to ob-
tain the adequate information, although considering
perturbation theory in its standard form this will be
merely impossible. Then we can conclude that in the
Harmonic Oscillator case with a Harmonic Perturbation
the Approach outlined in this chapter works in a very
adequate fashion and in what follows the main features

are going to be verified for other simple examples.



Green's Function

the Harmonic Oscillator with a Harmonic Perturbation Up to the Nineth Doorway Trun-

in the Perturbation Region Evaluated at E

TABLE (III-VIB)

cation and F.= 1. The Symbol (i,j) stands for

1)
-0.1996034
-0.0886379
=0.137388)
-0.139)3174
-0.1393770
-0.15%2782

~0.13%3173%

-0.1593739
=0.13%3789
-0.1533)789

3.3
9.03227212
2.023991¢
0.022083%
0.02210380
0.0120572
9.0120371

(7.4)
9.00%2270
0.004024%
0.0038714
0.033106646

(?.1)
0.0030022

0.00C0009

1.1}
°
B.4487%97
g.1728208
8.1630187
0.1627780
0.1627703
0.1627703
0.161710]
0.162770)

0.1427703

(3,8)
0.19120882
0,1285393
0.1214930
9.11331390
0.1233343
0.1233M41

(7,3)
0.0507900
0.C226408
0.0212174
0.0217502

(9.,2)
0.0000089%

©2.0300039

1,0
0

-1.0087664
~-0.1983022
-0.310) 168
-0.3312742
=~0.3311286
-0.3313196
=0.331329%
~0.331329¢
=0.331329%

€3,3)
20.7974178)
-0.2747554
-0.3032447
-0.3041221
-3,3341790
-G.3041798

(7,8)
9.28718359
0.1230188
0.1231118

0.1229840

(9,3)
0.0000494
0.0200211

(.1

°

0
0.0747008
0.0313424
0.0322111
0.0301697
0.0321685
0.0301684
0.0301884
0.030188¢

s,

L]
©0.0004078
0.0001308
0.0001738
9.000173%
0.0001238

.7
-0.77553170
-0.2717113
=0.2995123
-0.3002937

19.4)
0.000276%

0.000k19)

©3,2)

L]

L)
0.3044970
0.128375¢
0.1231579
0.122979%

0.112972)

0.1229751
0.1229741
8.1219741

6.
[
0.0016623
0.0007)?3
0.0007083%
0.0602073
9.000707%

i8,1)

L]
0.0000125
0.0000056
0.0000054

i9,5)
0.001333)
0.0008710

Coefficient
€3,3) 1)
o °
° [
-0.883242 o
-0.2830337 0.0131429
~0.3130854  0.0057034
-0,336017)  0.0054724
-0.3160462  0.003485¢
-0,3160470  ©.0036832
-0.3180470 0.0058632
-0.3160471  0.0034632
6,3 (6.4)
[] °
0.0091984  0.031433¢
0.004078¢ 0.022303¢
0.003920% ©0.0219239
0.0019161 0.0118969
0.003913% 0.0218961
., ‘(8.1
° °
0.0000311 0.0002828
0.0000229 0.00012686
0.0000220 0.0001216
(3,6) 2,7)
0.0087941 0.0499273
0.0017940 0.0213397

the i-th Doorway and j-th Doorway

0

L8, (4.0 (4,4
° ° °
° ] 0 -
[] 0 )
0.0335736 0.2964602 -0.819734L°
©.0232486  0.1286508  -0.27805C)
0.0223076  0.1234433  -0.)071683
0.022278%  0.12328022  -0.)080690
©.0222776  0.1233773  -0.3080948
0.0222773  0.1232771  -0.108097%
0.0222775  0.12321721  -0.)080%17
(4,33 (6.6) .1
° [ o -
0.28933¢3  -D.78:2811 [
0.1282837 -0.1726971F  0.000071%
0.1233246 -0.30093a8 _0.C00031Y
0.1231743  -0.3017987  0.0000307
0.1231637  -0.)018238  0.0000307
(s,8) (8,3) (8.6)
° 0 0
0.001581%  0.0088963  0.0303030
0.0007077  0.0019808  0.02125087
0.0cos801  0.0033259  0.0216)19
(v.8) (3.9
0.2843348 -0.7447292
0.1226767 -0.2904010

+ ,_2; 1113

10

(3,1)

L]

L4

[

L]
9.09101737
0.0010193
0.0009791
0.0009119
0.000%779

0.C00%71%

(1,1)
L
°
0.0002918
0.0001301
0.0001251
0.0001230

(8,7)
L]
Q.2853887
0.1277903
0.122817¢8

0

(5,2

o

o

[}

[]
0.0094442
p.0ca4L3LE
0.003991%
0.00 JQIS‘I.
0.0033860

0.00)7880

1.3)
L]
[}

. 0.0016148
0.0007178

0.0006924

0.000691 3%

(s,
o
-0.7693812
-6.2708919
-0.2992121

for

=LET-



TABLE

(II1I-VIC)

Green's Function in the Perturbation Region Evaluated at E =

E. + E

0

for the

0

Harmonic Oscillator with a Harmonic Perturbation Up to the Nineth Doorway Trun-

cation and

N I T

Exact

(1,1)
-0.1957524
-0.0851070
-0.1516773
-0.1537368
~0.1538037
-0.1538059
-0.1518061
-0.1538061
-0.1538061
-0,1515059

(5.3
0.0517934
0.0210244
0.0221078
0.0220788
0.0220779
0.0220779

(1.,%)
0.0090814
0.,0040769
0.0039202

0.0033152

9,1)
0.0000023

0.0000010

(1,1)
]
0.,i081912
0.163930)
0.156309%
0.1560616
0,1560536
0.1560534
0.1560534
0.1560534

0.156053)

(3,4)
0.2858227
0.1270604
0.122002)
0.1218425
0.1218375
0.1218373

(1,3)

0.050519)

0.02267935

0.0218081
0.0217802

(9,2)
0.0000095
0.00000412

(2,2)
0
-0.9271338
~3.2872470
-0.3180910
-0.3190955
-0.3191279
-0.3191291

© -0.3191291

-0,3191291
-0.3139290

(5,5
-0.781840)
-0,2724563
~0.3005961
-0.3014839
-0.3015116
-0.3015125

(7,6)
0.2829227
0.1270115
0.1221318

0,1219752

(9,3)
0.0000514

0.0000223

(3,1)

0

0
0.0725579
0.0313228
0.0299796
0,0299362
0.0299349
0.1206755
0.0299349
0.0299348

(6,1}
]
0.0004233
0.0001893
0.0001819
0.0001817
0.0001817

(2,7)
-0.7666888
-0.2701732
-0.2976443
-0.2985258

(9,4)
0.0002836
0.00012230

1, The Symbol (i,J)

stands for the i-th Doorway and the j-th

Doorway Coefficient

(3.2)

]

0
0.2923936
0.,1262705
0.1208559
0.1206813
0.1206757
0.1206255
0.1206755
0.1206756

(6.2)
0
0.0017964
0.0007631
0.0007333
0.0007324
0.0007323

(8,1)
0
0.0000133
9.0000060
0.0000058

(9,3)
0.C015777
0.0006841

(3,3

]

0
-0.8352402
-0.2804733
-0.3098510
-0.3107961
-0.,3108283
-0.3108293
-0.31082%)
-0.3108293

(6,3)
0
0.0092571
0.0041395
0.0039781
0.00397130
0.0039229

(8,2)

i []
0.0000537
0.0000242

0.0000232

(9,6)
0.0088353
0.0038310

(4,1)

o

0

o
0.0131595
0.0057928
0.0055553
0.0055478
0.0055475
0.0035475
0.0055475

(6,4)

]
0.0510835
0.0228440
0.0219331
0.0219252
0.0219243

8,3
0
0.0002913
0.0001311
0.0001260

2.7
0.0497408
0.0215675

(4,2)

L]

0

o
0.0530493
0.0233525
0.0223951
0.0223646
0.0223636
0.0223636
0.02236136

(6,5
0
0.2841870
0.1270805
0.1221241
0.1219690

0.1219640

(8,4)
[

0.0016076

0.0007237
0.0006953

(9,8)
0.2811746

0,1219167

(4,3)
0
L]
]

0.2877866

0.1266851
0.1214911
0.1213256
0.1213204
0.1213202
0.1213202

(6,8)

o
-0.7735317
~0.2710539
-0.298111
-0.2976799

-0.2597077

(8,5)

]
0.0089428
0.0040258
0.0038680

(9,9)
-0.758150%
-0.2970697

-0.8010575
-0.274997

-0.3036611
=0.3045744
-0.3046032
-0.3046041
-0.3046041

(7,1)
0
1]
0.0000752
0.0000838
0.0000325
0.0000324

(8,8)

o
0.0500821
0.022548
0.0216622

o
0.002368)
0.c0010528
0.0010109
0.00100%6
0.001009%

0.0010095

(1,23

[+]

o
0.0003033
0.0001361
0.00011309
0.0001308

(8,7)
Q
0.2819458
0.1269254

0.1219510

(5,2)

o

L]

']

o
0.0095473
0.0042442
0.0040752
0.0040700
0.0040697

0.0040697

(7.3

']

0
0.0016456
0.0007388
0.0007104

0.0007095

(8,8)
°-
-0.76168085
-0.2695772

-0.2976919

-8€1-
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TABLE (III-VII)

Results for the Harmonic Oscillator With a Harmonic
Perturbation With p = ]10for the Ground State

AE (Exact) = 1.158312 W
AE (First Order Perturbation Theory = 2.5 W

Np M Jg ﬁi ﬁé 03

1 7 0.2236945 0 0 0

2 4 -0.0091527 =-0.3408318 0 0

3 10 0.1549323 =-0.0960450 =0.4513739 0

4 14 0.3083534 0.1129463 =-0.1110140 -0.4035197
5 12 0.4052915 0.2350880  0.0784918 -0.0729190
6 10 0.4453037 0.2832662 0.1510896  0.0518822
7 8 0.4580210 0.2983051 0.1734846  0.0901557
8 8 0.4617709 0.3027147 0.1800267 0.1013158
9 8 0.4628680 0,3040027 0.1819354  0.1045699
Np XM Uy Vs ¥ vy

1 7 0 0 0 0

2 .4 0 0 0 0

3 10 0 0 0 0

4 14 0 0 0 0

5 12 -0.2610387 0 0 0

6 10 -0.0365490 -0.1418721 0 0

7 g -0.0320615 -0,0172838 =-0.0742780 0

8 8 -0.0520461 0.0189756 =-0.0082730 -0.0350871
9 8 -0.0578714 0.0295422 0.0109577 -0.,0040451
Np M ‘}8 Ag(o) (Wunits) AE(M) (W units)
1 7 0 0.7142857 0.5592363

2 4 0 -0.0387785 -0.0228818

3 10 0 0.6737387 0.0387331

4 14 0 1.115731 0.7708834

5 12 0 1,272837 1.013229

6 10 0 1.320414 1.113259

7 8 0 1.334325 1.145035

8 8 0 1.338371 1.154427

9 8§ =-0.,0207601 1.339548 1.157170
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(b) One dimensional infinite square well with

a delta function perturbation:

Now we are going to consider an unperturbed

Hamiltonian given by

A
H‘3 - .EE- + V() (III-138)
where
0O -—-4Af¢¥x¢a (III-139)
V(x) =

o< otherwise

and a perturbation given by
V,(x) = {3\/0 & % () (III-140)

where %, has energy units and jointly to 4 , which has
units of length, plays the role of the potential
strength. The gquantity Fis just a dimensionless size
parameter for the perturbation. For the unperturbed
problem a purely discrete spectrum is going to be found,
with states of well defined parity as it is the case for
Harmonic Oscillator also. The new ingredient is a high-

ly singular and localized perturbation represented by the
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delta function interaction. As it was done for the
previous case, our concentation will rest upon the

ground state, described by the wavefunction:

VPl = L o T (III-141)
Vo 2 &

the delta function can be replaced by any representation
in a limit form (i.e., gaussions, heavyside functions,
etc.) and we can take the square root of it. Once all
_ the operations necessary for the construction of the
Doorway basis and related quantities are performed, the
proper limit can be taken. Another possible approach
to this problem is an asymmetrical choice in the factor-
ization of the perturbation. For example, the following

starting vectors can be taken:
D> =N, 4> 13> = N, V, 1% (IIT-142)

and the result for the normalization of the states will-:

be:
T
(N, N,) = <43|V2 |1/;>--{6\/° (III-143)

as it will be the case if the limit procedure would be

followed. The rescattering operator is defined in this
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case by

i

w =&\, (III-144)
where %Z is the Reduced Green's Operator, given by

B = Z l“> <"‘| (III-145)
Nn#o
With equations (III-144) and (III-145) it is
possible to find the first Doorway expectation value
for the rescattering operator: (the result is the same

in the limit procedure)

= <Dl = - fk_“;ﬁ\/o (III-146)
T

where specific use of the Reduced Green's Function,

evaluated at the origin, was made:

%(ﬂ 0) = — 7}_‘_2___1___ — s (III-147)

The second Doorway state is given by

<x[D> = ]\Ll{ {g\foa, B;(x,o) ¥ %W%}"x} (III-148)

an expression for the Reduced Green's function can be



-143-

found by solving the appropriate differential equation,

as it was done in section (3), with the result:

% .___‘efaﬁ- : T T -7 e —
Bo(g?g)"‘ ﬁ{—%ﬂgm%g + g,mﬁgc@__zﬂg’

m T 2
T O LT - (ITI-149)
S todganle’ + L (Cc-55)
where:
S = xX (ITI-150)
a

and S< (§>) means that the lesser (greater) between
g and t;/ has to be taken. An interesting feature of
equation (III-148) is the discontinuity of the origin
of the first term with a;(k,o) , when equation

(ITI-149) is used, and it is a natural consequence of
using a singular and localized perturbation. When it
is attempted to proceed further with the construction

of the Doorway basis, the following results:

W"i =W, = o© (III-151)

As it can be verified from equations (III-148)

and (III-142), using as intermediate result:

<1 l5,> = - (/gV, a.)% % g(x) (III-152)
l T2
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in that case the energy shift in zeroth order is given

by:

AE® 5V,

[
Lt ey,
T2 |

(III-153)

and interesting test for this number is provided by
the limit/s-aoo, where our initial problem of one
dimensional box is converted in two adjacent boxes.

The ground state energy in the one box problem is given

by

—2
E, (one tox) = " (III-154)
jus?

and when this box of length 2a is splitted in two boxes

of length & , the new ground state energy is given by

gt @

E (Two BoxES) = __ (III-155)
Z/ua,"

and consequently the shift will be

L& = .';'_ (III-156)

T
ot
taking the limit/g—acaoin equation (III-153) the result

is
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s () T
Fwn DE, - (III-157)

ﬂ—am 27“(,_}

Although %_ is close to % , is clear that higher

order terms in the energy shift expansion are needed to
provide a better accuracy. Considering the first order

term in the energy shift, the result is (for arbitrary

P

( s 5 2 ¢
L\Ef) = AED” _ [ aEP7° wilat 5, 4AF, s (III-158)
T4

which is derived from (III-34) and where

oo

S, = Z 1 = 0.2%39868133¢69¢... (III-159)
n=t N (ns1)?

to obtain equation (III-158) the square of the
Reduced Green's Function evaluated at the origin was

also required:

¥ 4l
Lo = e (III-160)
&l

equation (III-158) can be rewritten as

(o)
A _ AL,

(0% 420" 5 0 S K
t+ (260 Y “ S
T
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Taking the limityg—a oo :

: 2
Lo Aéf” = . m (III-162)

/5—%90 Z(H‘Sz) /;_6:2

where

1

—— (III-163)
2015 0.3§76365...

up to seven significant figures, which compares good
with the exact value of 0.375. So, even if the prema-
ture Doorway truncation is taken into account, the
procedure has its way towards the correct value

through higher order terms in the energy shift expan-
sioh. We can examine also if for finite values of the
size parameter /3 the behaviour is the same. The exact
energies in the perturbed case are given by the solut-

ions of the following trascendental equation

(III-164)

So ke _ Y
A /3 V, a’?
which are summerized in table (III-VIII). Using

equation (III-153) the energy shifts in zeroth order

are given by:

AE?)(SET 1) = 4,555368 MoV A£f°)(ssrE)=z§.303251m\f(111-—165)
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and we see that'equations (III-165) are giving to us a
good representation of the energy shift that can be
improvedin a considerably way when the first order term
in the energy shift is considered using equation

(ITI-161):

AT D) = w.sss298m AE"Ger B)= 23. 031580 Y (111-166)

so it is clear that for arbitrary p the behaviour of
the procedure is the same, i.e., there is convergence
towards the correct energy shift value. The particular
choice of the starting vectors is not going to affect
the energy shift values but it is very sensitive in
regards to the wavefunction. In this particular
example, the choice described by equation (III-142) is
given a wavefunction proportional to the unperturbed
one as the perturbed wavefunction and this is obvious-

ly not correct. Working with the limit procedure

TABLE (III-VIII)

Exact results for the Infinite Square Well with a
Delta Function perturbation with  =150MeV, V, = 50

MeV and & = 5 fw»

7@. _ﬁ_@_ € (MeV) AE (MeV) SET
0.1 1.8283829 17.351110 4.544543 I

1 2.64018301 36.179370 23.372800 BE B
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outlined at the beginning, the energy shift results can
be kept in their entirety, the premature truncation

is still observed when the limit is taken and the
wavefunction is going tc be obtained in the interaction
region. The odd feature of the interaction region in
this case is that it is given by a single point: X =o0.
Then contributions from higher Doorway states are still
possible through a complicated limit procedure that we
are not going to consider here and in that sense this
‘example has been useful to show the importance of the
proper choice for our Doorway basis. Next, we are
going to consider a simple case which is closer to the
kind of applications intended in forthcoming chapters.

(c) Three - dimensional sguare well with a

square barrier as a perturbation:

The unperturbed Hamiltonian is considered to be:

H, = _ti V@ (III-167)
2

/

where \4 (v) is a square well potential given by:
Vi()) ==V, 09 (a-v) (III-168)

being V. the well depth and a the well radius. The

perturbation to be considered in this case is a sguare

barrier:
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Va (v) = \/S 6 (R-v) (ITI-169)

where Vg is the barrier height and R is the barrier
radius. All the numerical treatment in this subsection
will be done for the ground state case where the
orbital angular momentum £ 1is taken as zero, 1i.e.,

S -wave problem. The ground state wavefunction to be

pertubed is given by:
Yoy = A, i A (III-170)
Y
where:
A&7 = (V.-1€1) }
= %/4 c (ITI-171)
with E<o and
-2 - I/Z
A, E{.@._ A sn2br 4+ AMJME (III-172)
IS 3 2le
The starting wavefunctions are given by

<xID> =N, \fvs 6 (o-v) % (+) (III-173)

and
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{ 12._ A M-?.J«LQ}

o
(NIN,) =V, R 4R
> { %_._/£42Aa.+4@fﬁm-g
oo ek (IIT-174)

the Reduced Green's Function can be found using the

methods described in section (3) (see appendix (III-A) )

with the result

/ —%ﬁ{&n&thv)-kim Ao nin Byv’ e
Blor=]  +Ralrembe s he’s eaide an do)]

!

% & e e f Ry e en b

|
SF

~ _.k_°Y‘ .
+?# e AM\-J!,V',% ra. {LIT=175)

and
/ /
(e R ke 4 By S ke
Fg{rjr')=< +~1-2—¥€—]<.V‘M'&°T} Y < &
-k (GYe) o ~klrir’)
tRg €

|
~F
—
l e
I

_ ’
1R, (v e K"(””g <\ ¢>a (III-176)

where:



<

11

,8,:‘-53/“ (V. -1&1) < a/ulE,l (III-177)

being ﬁ, the ground state energy for the unperturbed

problem, obtained through the transcendental equation:

S - K — & (ITI-178)
G - 4

'

the coefficients 1;; are given by

R, = = _ 5 ) (III-179)
= %t
% = M (III-180)
Tk
z
T o Ko & _
Ry = /gd""—k-';e, (I1I-181)
7 A
R, = A e (II1-183)
@
=Y 7
Re= 5L 0% pMia j2ke T Wy 2" (III-184)
2% = 27

e = mWi g2R* (III-185)

2% K

and other quantities are:
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M =h emb e + Keniadga (ITI-186)
W_ = b ain b — Kk Coka (III-187)
W, = o nin e = A Cro (III-188)
ry = b {_ /’.’; [(“m)_i_; the)- _i_‘ﬂ (II1-189)

T =k {a‘»ﬁmm’] */,2";*“; - (2rke) @ woe Aun
_&a_’&nlﬂoai _-/fiwﬂ,a_. 5#,2 pin boa  (III-190)
K‘Z

(LIT-191)

EJ__":]_-l E/‘%‘Gw‘a.a, +i[(i“‘°ﬁ-)“"**~*+£¢ &”4*""] (III-192)

(I11-123})

dw, | . ) i d o makalo ke pndye (III-194)
.Jg-{&ﬁtcmw h peh] - s (1T

and the full radial Reduced Green's Function is given

by
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&(TﬂJ)-z B(ﬁfg (ITII-195)
e
The radius R of the barrier is always considered
to be less than the well radius a . For v<R the momen-

tum is given by
SZE Va (v,-V.-E) (III-196)

and a transcendental equation for the energy eigenvalues

in the full problem is obtained:
Sher [aW, skl - ah_tnkR]

+5R—, ChgR [aMM.&R oW, M;&] =0 (I1I-197)

Using equations (III-178) and (III-197) the results
are summarized in tables (III-IX) and (III-X). In the
case of the set I we have a relatively weak perturbation
and still there the standard perturbation theory has
problems to obtain a good answer. The results for the
energy shifts are summarized in table (III-XI). There,
the First order Perturbation Theory result is off by an
approximated factor of two while with our perturbation
theory, the result is within 0.4% the correct one with

the simplest product of this approach, i.e., the first



TABLE (III-IX)

Parameters for the Exact and unperturbed cases for

the Finite Square Well with a Square Barrier as

perturbation.
. (MeV) Ve (Mev) Q& {fm) Vs (Mev) R (fm)
/
SET I 140 5 50 10 5
SET II 940 30 5 200 3

TABLE (ITI-X)

Results for the Exact and unperturbed energies for
the Finite Square Well with a Square Barrier as

Perturbation.

& (Unperturbed,Mev) & (Exact,MeV) AE (Exact,MeV)

SET I -4.5522039984 -4.,5227800415 0.029423957

SET II -24.0509337249 -11.084767681 12.96616604
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TABLE (III-XI)

Energy shift results for the Finite Square Well
with a Sqguare Barrier as a perturbation in the set I

case.

A€ (First Order Perturbation) = 0.04756713 MeV

A€ (Exact) = 0.029423957 MeV

Np M 2™ (uev) 26 (e
1 1 0.02932351 0.02931341
2 0.02932125
3 0.02932128
4 0.02932128
2 1 0.02944480 0.02943524
2 0.02944250
3 0.02944253
A 0.02944252
5 0.02944252
3 1 0.02942742 0.02941778
2 0.02942513
3 0.02942516
4 0.02942515

5 0.02942515
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Doorway truncation and the zeroth order in the energy
shift expansion. Of course, if more effort is done
results with four correct significant figures can be
obtained at the third Doorway truncation. In this
example the features of the potentials involved are
entirely different from the previous ones and in spite
of that, the convergence properties of the Doorway-
State-based Perturbation Theory behaves in a similar
fashion. For the square well potential the spectrum
can be separated in a continuum and a discrete part
with finite number of bound states. The role of all
these states is taken into account through the Reduced
Green's Function that we can provide in a close form.
The parameters selected for the Set I try to resemble
in a very crude way the essential characteristics of the
potentials related to the pionic atom problem, which is
our aim in forthcoming chapters. The well is shallow
and long ranged in an attempt to stimulate the Coulomb
potential role and the height and radius of the square
barrier were inspired by the repulsive part of the
pion-nucleon S -wave interaction. According to the
results in table (III-XI) it seems that with little
effort in the Doorway State Calculation is possible to
obtain good numbers with two or three significant

figures (that is the limit of accuracy for any of the
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experimental numbers available in the literature) using
the most simple tools of the approach in the pionic

atom case and probably in any physical problem where the
perturbation is relatively weak. In order to examine
the situation with the wavefunctions the table (III-XII)
was prepared. The first Doorway truncation is Jjust the
unperturbed wavefunction multiplied by the sgquare root
of the perturbation. As_it was observed in the Harmonic
Oscillator case the quality of the approximation gets
poorer as we go away from the origin, although if we
compare with the unperturbed wavefunction the improve-
ment is remarkable in that region. Now the set II can
be considered and for that purpose table (III-XIII)was
constructed. In that table the energy shift values are
obtained for different Doorway truncations for a fixed
expansion in the energy shift up to the first order
until saturation and afterwards the energy shift order
is increased. We can see a repetition of the features
already learned in the Harmonic Oscillator case, speci-
ally the breakdown the second Doorway level for a large
perturbation.

The conclusion at this point is that the Doorway
State Approach to bound state perturbation theory is a
powerful tool in a wide range of problems which allows
in a cheap way (from the calculations point of view) to

get the relevant information from the physical system



TABLE (III-XII)

Wavefunction Results for the Square Well Case

for the Set 1.

r(fm)

0.01203
0,06318
0.15431
0.28396
0.45000
0.64969
0.87977
1.13645
1.41552
1.71239
2.02220
2.33986
2066014
2,97779
3.28761
3.58448
3.86355
4,12023
4,35031
4.55001
4.,71604
4,84569
4.93682
4.98797

2 Doorway
Truncation

1
5.251042
12.,828820
23.625720
37.506130
54,326250
734951150
96.265700
121ﬂll7620
148.60090
178.44860
210.58860
244 ,81440
280.80750
318.10710
356.09050
393,97130
430.81460
465.57390
497 .14370
524.,42650
546.40610
562.22030
571.22960

1 Doorway
Truncation

1
2.250893
12.825158
23.599575
37.395945
53.984796
73.088768
94.386914
117..519954
142.096596
167.700721
193.899319
220.250967
246314418
271.657109
295.863218

318.540950
339.328862

357.901105
373.,971503
387.296583
397.677623
404,962062
409.045493

With a Square Barrier as a Perturbation
The Wavefunctions are Normalized
to 1 for the First Point of this Table

Exact

1
5251135
12,.828797

23.622353

37.486731
54.258312

73.768814

95.855340
120.364280
147947523
176 .050785
206.893788
239,445818
273.397866
308.336296
343,722042
378.880101
413,003574
445,175104
474.406964
499 ,697821
520.101876
534,802914
543.186566



TABLE (III-XIII)

= L Ey S

Energy Shift Results for the Finite Square
Well With a Square Barrier as a Perturbation

in the Set II Case

Af(First Order Peturbation Theory) = 103.5592 MeV

AE(Exact) = 12.9661

1=

N e o R i R o

W

o ~N o U

MeV

AEM) (Mev)

11,40%463
-2.233632
20.30162
12.05307
11,98220
11.98057
11,98054
11.98.53
13,72197
12.66118
13.17334
12.,87392
13.03043
12.94175
12,98953

12.96292

14,88294
-5.230289
26.40256
17 .94561
17.84205
17 .83972
17.83968

17 .83968
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under study. This information is given in the form of
energy shifts as the essential products and wavefunc-’
tions and Green's Functions as byproducts. In the
forthcoming chapters the detailed analysis of pionic
atoms will be based entirely in this formalism using
just the information from the energy shifts and hoping
in a future to exploit in a full scale the possibilties

now open with the "byproducts”.
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CHAPTER IV

PION-NUCLEON FORCES AND PIONIC

HYDROGEN.

In the models that are going to be used in the
next chapter, in order to study the energy shifts and
widths, the forces involved have parameters which should
be determined as reliably as possible for the low energy
range. From the phase shift information, these parame -
ters can be extracted in a very simple fashion for the
S]_1 andP33 channels of the pion-nucleon interaction us -
ing the standard Yamaguchi vertex functions. Due to the
behavior of the phase shift for the Sg; channel, the same
parameters are going to be determined from available da-
ta for pionic hydrogen. The importance of Coulomb inter-
action in the rescattering process will be demonstrated.
These patameters are used in the calculation of the phase
shifts for the comparison with experimental data showing

good agreement in the low energy region.

(1) The Sll and P33 channels in the pion-nucleon

interaction:

The pion-nucleon interaction is described in a

separable form with vertex functions:

(IV-1)

V() =

w24 k2



o
w
|

where o is the cut off parameter related to the
interaction range. In phase shift analysis for a separa-
ble interaction probklem the relevant quantity is the

Fredheolm Determinant:

~4 2
D(E) = l.'_D(E)I e > 2 (IV-2)

which in a relativistic treatment of this pro-

blem is given by:

2= 23 5 (4
¢/ — Wy ﬁ-«;?
where f(qz) contains the vertex functions of the
particular channel and M, is the bare mass for the reso -

nance. The energies 6% and (43% are, respectively, the nu-—

clear and the pion energies given by:

— %" \
e%= 2?1: + MN (IV-4)

A/ %."‘ + M7 (IV=5)

Now we follow the semi-relativistic treatment

(l)'

Wy

of this problem by Moniz and Sevgen introducing:

§-z- E — My (IV-6)



and ignoring terms of order l/Mi, a simple form

for equation (IV-3) can be obtained:

2 2 c: () 5(¢")
DE)=E —M&—- :é—-—[&%a = (IV-7)
N

= ¥ T 44
where:

2 2
Kz' = —f;g (IV-8)
+

Mn

2 in equation (IV-8) behaves like

the quantity K
the squared relative momentum and it can be approximated
in thaﬁ way up to Ea(l/Mz). In the next chapter when the
S-wave pion-nucleon channels will be considered, a renor-
malization procedure will be required in order to elimi-
nate the dependence of our model on the resonance masses.
The reason for this is given by the fact that these res-
onances are located in an energy region where particle
formation processes may occur and should be taken into
account in the bare mass determination. This complica -
tion is not necessary for low energy range and can be a-
voided by factoring out (EZ—MRz) in equation (IV-7) and

renormalizing the coupling constant G2 in the following

way:
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2

=2 Ge  Ge
] B ems—mes o=
s EZ-MZ  (E+MR)(E-Mg)

(TN ~8 ]

and taking the low energy limit, the result is:

, 2 At G — 2
éb—Tna e =G0 = (M-f-MR‘)AH&ml% (IV-10)

where )L= +1 accordingly to the attractive or

repulsive character of the interaction and

M= P’\N+ M,._ (IV-11)
AM, = MM (IV-12)

this procedure yields the following Fredholm De-
terminant for the channels of the S-wave pion-nucleon in-

teraction:

A . )~ 2 J_~ ,5(1}) i
D E) 1+ & 5%”‘ K*— §*+47 R

Equation (IV-13) can be applied to the Sllchan—

nel case, where the vertex form factor is taken to be:

G T.9
T

o~
where T is the nucleon isospin operator and Qb

(IV-14)

l’\.(i'.) =



is the pion isospin wavefunction given by:

1 1 0
C}S=—1—‘1 , qﬁoz 0 | (zv-15)

— 1
=—|1 =

the coupling constant G is rewritten in terms

of

+ 2
GG = —-% (IV-16)

where A_= -1 was taken for the S,,. due to its

attractive nature and

~t ~
T.T = 3 (IV-17)

The Fredholm Determinant is given by

2
3 1 f (IVv-18)

DE) = 1- 1+ 5 8T (x-4iK)*
Mn

where K is given by equation (IV-8) and E by
equation (IV-6). From equation (IV-18) the phase shift

can be ocbtained:
g K
AT (1+ £ ) (3+ D2 35 (2 i?
( M,;)(K'+ ) %,_l(at k*)

(IVv-19)

't3 SCK-) ™
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and the scattering length:

C(.s = Eim t% S(Kf} = 2&82

" k—o K BTd—Pz 3%4

(IV=-20)

where Fzg MN /M and M is given by eguation
(IV-11). In our problem we have essentially two parame-
ters to be determined, the coupling constant gzand the
cut off parameter oK . Since we are primarily interested
in very low energies, a way to assure the proper behav-
ior in that limit is to replace 32535 a parameter by the

scattering length &,, using equation (IV-20):
11

| s
,az= 1 gT? Qg
B 1+ Xy 2

then the experimental value for a11 can be used,

(IV-21)

reducing our problem to one parameter. This experimental

value is given by(Z)

3 -
@y, =(0.170%0.004) M, (1v-22)

the results of our fit are shown in table (IV-
I). The R.M.S. deviation for the fit was 0.35 degrees
and the experimental standard deviation was 0.78 degrees,
for the phase shifts. Under -these conditions the parame-

ters are:
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-3
%z(sn) =11 735.46§~m. =/08.86 MS (IV-23)
and
-1
o«f, =9.2%m =/815.16 MeV/C (IV-24)

the scattering length is bound within the ex-

perimental allowances:
S -1
Q44 =0.168 My (1v-25)

and we can see that the fit is quite good. The
experimental values given in table (IV-I) are taken from
references (2,3). Since our main interest lies .in the
low enerqgy region, from now on in this work we will consi-
der the low energy limit for equation (IV-18), with the

result:

2
D(E) = 1 — =Y, 1 (IV-26)

T ¢ (X —4K)?

and the coupling constant is conveniently re-

defined once more as:

+ )\%2'
66 = 5

(IV-27)

the factor of ZMnis introduced in egquation



-1 69=

TABLE (IV-I)

Phase Shifts fit for the Sll channel. Pion mo-

mentum measured in the Center of Mass System.

Pion Momentum Experimental Phase Calculated Phase
(Me V/c) Sshift (degrees) Shift (degrees)
146.90 7.33 £ 0.40 7.92
173.80 8.59 < 0.34 8.88
193.70 9.68 * 0.29 9.50
207.10 9.91 £ 0.34 9.87
228.70 10.31 £ 0.69 10.42
247.60 11.34 £ 0.52 10.83
259.50 13.35 £ 1.60 11.07
275.90 11.69 < 1.89 11.36
292.90 13.87 £ 0,93 11.64

(IV-27) to obtain the proper factors in equation (IV-26)
The same form for the coupling constant will be used in the
831 channel case, which will be considered later in this
chapter.

For the P33 channel the analysis is already
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done(l) and our reguirement is to translate the result to
the very low energy case. In this channel the Fredholm

Determinant is given by:

D(e) = B M- L[ __ ¥
3[1+ 3 ] @1)* (<*+ 424 (K- ¢)

where the semi-relativistic treatment is fol -

(Iv=-28)

lowed and X and § are given by equations (IV-6) and

(IV-8) and the vertex form factor are taken to be

37 T-¢

5 = (IV=-29)
<" + 3’_

h®) = G

——p
where S is the spin transition operator be -

tween spin 1/2 and spin 3/2 defined by the matrices (6):
B n

Gz ©
o -4z

Sx = (IV-30)
1/{'6' )
R
F1/qi 0
0 146
SY =4 (IV-31)

146 )
0 142




(IV-32)

An useful relation is the product:

+ 2 i -
C=%2Y%.. - —4 €,:3 6 (IV-33)
and it behaves like a J = 3/2 projection operator.

This formalism is identical for the isospin transition operator
L d

T given in equation (IV-29).

In the non-relativistic limit equation (IV-28) can

be written as:

D(E) = (E—MA)(EHL)-G-Q—T (:__)%é(dz+ 1")?( —f) (IV-34)
- 2

where/ﬁh is the vion-nucleon reduced mass given by

- Mg M
/u. My + My

(IV-35)

and in order to obtain egquation (IV-34) the follow--

ing replacement was taken:

: —— >/3 = _E':'- = v (17-36)
Now - RELATIVIITI C . pe
i+_l'§l_u LT .

the coupling constant can be renormalized to:
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2 r A

< .
3& = i / —3— (Iv-37)

and we consider the Fredholm Determinant in the

non-relativistic limit to be:

P __1__3_2_& d7 1’2 -
’-DNR,(b> = E-T, 5.2[-15.[@-%3(“2_*_%2)2.(2_32)( -
Zrs
with
2

t %
o )
2M (M+Ma) (s

il

In order to werify these results with experi -
mental information at low energies, the scattering volume

P is calculated using equation (IV-39):
3

P 28, %"
a.. = 2 _
where:
AM = My-M (1v-41)

(1)

and according to reference the parameters

obtained in the semi-relativistic treatment are:

M, = /370 MeV = 6.94 §m ' (1v-422)
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0(;; =300 MeV/Cc =152 §~m,"1 (IV-42b)
94" (%) = 11.38 Mi=1226.75 S 2 (Tv-a2¢)

with this set of parameters a phase shift 1is
calculated and compared in table (IV-II) in order to show
the quality of the fit. Using these quantities in equa-

tion (IV-37) the result is:

? -
ass = 0.589 §m3 =0.209 M“S (IV-43)

In reference ‘) the value 0.2133 M3 is obtain-
ed from the model and the experimental value is (0.215 z
0.005) M-3 . So we can see that the renormalization pro-

cedure presented in this section for the treatment of the
very low energies case is consistent with the low energy
information. In this point, our discussion about the pa-
rameters for the forces in the sllandP33 channel cases

is completed and in order to consider the 831 channel case,
the pionic hydrogen information is studied first in the

next section.



TABLE (IV-II)

Phase Shifts fit for the P33 channel

E (MeV) Calculated Phase Shift Experimental Phase
(Degrees) Sshift (Degrees)

1089 D5 0.6

1099 1.6 1.8

1110 3.3 33

112 73 Tl
1148 14.6 15.2
1172 27.7 28..3
1186 38.4 38.3
1202 _ 535 53.6

1221 74.2 74.6
1235 89.0 89.4
1253 105.1 105.1
1275 119.7 119.6

1292 128.0 126.8
1320 138.0 135.6

1337 142.5 139.5
1362 147.9 144.7
1390 152.6 149.3

1416 156.1 ; 1534
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(2) Energy Shift for pionic hydrogen

The pionic hydrogen is the simplest pionic at-
om that can be considered. First, we have a two body
system in which the orbital angular momentum is equal to
the relative angular momentum between the pion and the
nucleon, allowing us to look directly on particular chan-
nels of pion-nucleon interaction. For instance, the 18
level has contributions only from the $11 and SBlchannels.
Unfortunately the available experimental data is not going
beyond this pionic level so far, but this will be enough
for our purposes. Second, the absorption phenomenon is not
present due to the fact that a nucleon can not absorb a
pion with conservation of energy and momentum. Then, pion-
ic hydrogen is an excellent testing ground for 5 wave
pion-nucleon interaction studies in the low energy limit.
Now we are going to develop a formalism to calculate the
energy shift using separable interactions. This model will
be fully justified and developed in the next chapter. Then,
for the particular channel of interest the interaction can

be described in the following form:

13_

3 gﬂ- (IV-36)

In chapter III it was shown that for cases like



the pionic atom problem perturbation theory in the Door-
way State Approach can be applied without going beyond the
zeroth order in the energy shift and the approximation is
very good, i.e., for practical purposes we are going to
replace the exact energy by the unperturbed value ES in

equation (III-14), giving the following energy shift:

A& = (Sl} 3+js> (IV-47)

1

1- 5t ‘Bf(c%)g
Ny Ny

1 - R (&)

(IV-48)

A€

where:
: .
NV = f%sk(ﬁ é(p :]J’y’- H(:;)t;@s(?-) (IV-49)
and:

R-(fs) = f W @) 3'(5; *,-"";-““/) LL(?’) e (IV-50)

/
the functionB’(%; 2, T7) is the Reduced Green's

Function calculated for the pionic state S and the h(qz)
(orh( 2 )) is the vertex function for the interaction.
The pion wavefunction in the state S is symbolized by é{?l).

The quantity R(E‘ ), given by equation (IV-50), is givento
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us a measure of the rescattering effect and in particular

for the pionic 15 state we have:

R(&) = §+3c W (1v-51)

where:
+ 2

ch G ; Ge = .1.2.’. (IV-52)

41 A
and

- kY
- G

L\,(?)Ef é;—- b} h(})E :Zl:-—:’- (IV-53)
and:

~X -t Y’
W I?AV ~r/ cl'f‘ _Y._%' (T'T‘)_C_Y_l_. (IV-54)

The Reduced Green's Function is given by

— Ky (Y‘-i-‘f"/)

% (e, ¢)=— ’1‘/4« ZAgs € (IV-55)

tyans]

where Z is the atomic number,o(FS= 1/137 1is

® {E’F‘Kz(f*r

the fine structure constant and



-178~

oo
1 ™ "N
G, (x) EZ 2 2 (IV-56)
= ()

In order to obtain Ei}r,r') the results of sec-
tion (III-3) were used and the details of the
tion are given in appendix (IV-A). The calculation of W
is very lengthy,
Here we offer the final result:

W = - tpl e § 5-2¥-20m2- by (14 )

(K, +)4

_13 K _ 27 - 1
4 (kt4)5 4K (KM)3 T 2e (kgtet)3

+ 1+ % 1t - )
by ( “)[mmaﬁ K (K te)" k,’(;g,u)lnm R

where Kl in equations (IV-54) and .(IV-56) is
given by
Ky E/""z"‘r-'s (IV-58)
and then:
1g
R(&) = —?—— W (IV-59)
322 M;

The vertex functions are given by
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Ny = fclv Lj{w‘}% ) _4;,3(C15[ —-Cou-ié;)ﬁ‘_

7z C

(IV-60)
(et ky)?

1l

where C,. is the normalization constant for the
~

pionic wavefunction given by:

2 3
|Cs| = K¢ (IV-61)

T

the energy shift is finally given by:

23
Aty = }(1 Ke ! (IV-62)
2T My (2t k) 1 - R (&)
Equation (IV-62) is the energy shift for a par-
ticular channel and the total one is obtained by adding
the contributions from the Sll and 531 channels. Inorder

to combine them, we have to take into account:

(F-_) |z m>=

,3,7," > (IV-63)

VZ( Myt1)

for the S channel, and:

31

VJ'-‘- (7. ; ),2 my> = L (“2‘“7)] ,=My > (IV-64)

; b . ;
for the Sll channel. The ket ,z»wvr is Just

the nucleon isospin state and the kets on the rigth re -
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present the isospin states of the particular channels.
Using equations (IV-62), (IV-63) and (IV-64), the com-

bined (total) energy shift is given by:

£, = K %; 1
STy Gt k)t 1= Ry (&)
3 -2
“ gt ! (IV-65)

T 3T (44 K)* 1 -Ry ()

Equation (IV-65) is going to be used to find
the parameters for the S3l channel and to test the ef -
fect of the rescattering process in the energy shift in
the next section. This will be possible thanks to a re-
ported experimental value for the 1S energy shift in

pionic hydrogen, given by:

A& =(5.5 *1.5) eV (IV-66)

(3) Force parameters for the 531 channel.

In the simplest possible approach to the prob-
lem the 831 channel interacion can be described through
vertex functions of simple structure like the ones for the

and P channels:

S 33

11

k(?{) =G T3 (IV-67)
<% 4 1’z
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where | 1s the transition isospin operator

used in the P33 channel, then:

L

T-T

I
-

(IV-68)

and the coupling constant is given by:

2
G+G a (IV-69)
2Mg

following the non-relativistic treatment alread-
y outlined in this chapter. The Fredholm Determinant is

given by:

:D(K.) = 1+ /5‘2 L (IV-70)

Tt (ot=ik)?

and then the phase shift can be extracted from

2
%S(K.) 5 g K - (IV-71)
4T (24 2 )* 2 % K
£ ( i g (<2 K)
and the scattering length is obtained through

the limit:

Z
a§, o 5& ¢ (1V-72)

K-»0 4 Y . alx
el

Using equations (IV-71) and (IV-72) a fit sim-

ilar to the one obtained for the Sll channel can be at-
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tempted, but difficulties appear at intermediate energies
due to the curvature of S(K). It is possible to under-

stand the problem looking at the expansion of:

K Ce’%%(ic) t %

where @ is the scattering length and r is the

Y'Kf doaes (IV-73)

nna

effective range. For the S-wave interaction the experi-
mental measurements of quantities related to the effective
range are given in the table (IV-III) and defined through

the following equation:

B = -2 (a'zx + Kgii_) (Iv-74)

az;

all the quantities reported here are given 1in
pion Compton wavelengths. In equation (IV-74) the index

I is the isospin.channel with values 1/2 and 3/2 . From refer-

TABLE (IV-III)

Effective range parameters for the S-wave

interaction
ﬁ, + 2/53 #, - Pi References
' I
- 0.15 + 0.06 0.027 + 0.015 7

- 0.133 £ 0.02 0.040 + 0.018 8
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[This values are taken from "Compilation of
Coupling Constants and low Energy Parameters" (1378- e-
dition), reference (5) which leads us to references (7)

and (8)]
ence (7) the effective ranges are given by

G =(Lart 13D ;' g =(1z02se)ng TS

and from reference (8):

~1 -1
v, = (0.92 % 1.00) lly = (132 3. )My (xv-76)

Then we can see that the effective ranges -are
positive as they are extracted from the experimental da-
ta, giving a positive curvature to K cotg S(K). Wwith
the simple vertex function given by (IV-67) the curvature
has opposite sign for reasonable values of the parameters,
degrading in this way the quality of the fit at low and
intermediate energies. It is easy to prove this by look-
ing at the explicit form of Kcotg %(K), according to e-

quation (IV-71):
KCA%S(K.) = _fgz(k?nf)ié: (<% K} = $Ge) (v-77)

making the expansion given by (Iv-73), we get:
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R S S L (IV-78)

|af . 2 f&gz

2
= 1 16T (IV-79)

A 2

Y
Combining equations (IV=78) and (IV=79) the
result is:

XY = 3 — A (IV-80)

< |a|

Positive effective ranges can be obtained for:

< = (Iv-81)

3lal

and then this sets a lower bound around 10fm

Yy
|a

1

for the cut-off constant & , which is very high value for
a realistic description of the 531 interaction. On the
other hand the error allowances for the reported values
of the effective ranges are too wide to give us any rea-
sonable value for the interaction parameters. Our only
choice in this point is to consider the information ob-
tained froa pionic hydrogen, which can be extracted us-
ing the expressions derived in the previous section and
after that,try to verify our results by looking at the
behavior of phase shifts at low energies. The inter -

action parameters of the Sll Channel are supposed to be

known and by just fitting equation (IV-65) to the expe-
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rimental value given by equation (IV-66), using equation
(IV-72) to remove one parameter (the coupling constant in

this case) the result for the cut-off parameter can be

obtained to give:
S -1
A3y = 3,482 fm = (87 HeV/c (IV-82)

and in equation(IV-72) for the scattering length,

we use the experimental value:

5 -1
@y = — (o100 F 0.020) Mgz (1v-83)

during the fitting procedure we allowed the
scattering length to vary within the experimental allow-
ances, in order to meet the 1S energy shift value and the
proper behavior for the phase shifts in the low energy
1imit. In this sense the scattering length that we have

to report is
@ =1
y = —0.112 Hg (IV-84)
the corresponding coupling constant is given by
-3 3
32(531) =463.347an = 430 M, (IV-85)

The calculated phase shift is shown 1in table
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(Iv=1V) for purposes of comparison. In spite of the GE
nitial problem, we can see that the fit at low energies
up to 50 MeV (or 126 MeV/c for the pion momentum) is fair-
ly good. In this way we have a reliable tool that can

be used in the study of low energy phenomena.

TABLE (IV-IV)

Phase shift fit for the 531 channel. Pion

momentum is measured in the Center of Mass System.

Pion Momentum Experimental Phase Calculated Phase

(MeV/c) Shifts (Degrees) shifts (Degrees)
67.60 -2.92 + 0.17 ~3.07
82.60 ~3.55 L 4,23 ~8.73
94.70 ~4.41 T 0.29 -4.25
109.20 4,76 = 0:17 -4.86
126.40 -5.84 % 0.34 -5.57
140.50 -7.62 £ 0.46 | -6.13
152.40 -8.48 = 0.34 -6.59

(4) Rescattering process and Coulomb interaction

effects:

The pionic hydrogen system is a very good play-
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ground to study the effects of the Coulomb interaction
of rescattering process in isolation from many effects
present in heavier systems. In order to consider this

problem, we can rewrite equation (IV-65) in the follow-

ing way:
¥ 1 ¥ 1
A = (I\J NDY 8 L (NN SN (IV-86)
YOVITIR,, (N v)u 1- Ry
where
3 2
(NeNy),, = L] (1v-87)
31 Cﬁ-nf (dy‘!’ K1 )4
and
3.2
X
(NV MV)“ = — K1 911 (IV-88)

37”'1”- (d" P K1)L,

In order to see theeffect of the Coulomb inter-
action, we just consider the energy shift in the absence
of it, i.e., the denominators in equation (IV-86) are go-

ing to be replaced by a Fredholm Determinant of the form:
D -5 der ™" s
(5s) =1- vc(rv r'e G,(rh,e (IV-89)

equation (IV-89) is the analogous to equation
(IV-50), where the Reduced Green's Function has been re-

placed by the Green's Function for a free particle, re-
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presented by Go(r,r‘). The guantities (NV*NV) represent
the energy shift in first order perturbation thery and in
the particular case of the pionic 1S state for hydrogen,

they are given by:

AE15 (Sﬂ ;EO-PT) = (N‘fh'v)‘” - - ‘1‘.3‘1‘!‘5e\/ (IV-90)

and

*
A& (Sgy,F.02T) = (N Nyly = 4.2180eV  (xv-o)
the full rescattering contributions are

R-“ =-3.6150 Ra31 = 0.34%¢(Y% (IV-92)

and the Fredholm Determinants in the absence of

Coulomb interaction are:

:D‘H = 0.4784% D

3y = 1.379¢ (IV-93)

If we define the combined energy shift in the

absence of Coulomb interaction as:

-1 % -1
(&), = (NN ), Dy + (NG N)y Dy (xv-ow)

Then the final results for our comparison are:

(AES):FTCC = —6b. /36\/ A£‘5 = 9. 50-6\/
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then, the elimination of the Coulomb interac -
tion in the rescattering term has a violent effect and
can not be neglected. Based on these results, we should
include Coulomb interaction in our studies of more com-
plex systems in the next chapter. This will be done us-
ing the Doorway State Formalism to bound state perturba-
tion theory already developed in chapter III. There the
inclusion of this effect will come through the exact cal-
culation of the Reduced Green's Function, using the pro-
cedures of section (III-3), making the whole analysis pos-

sible quantitatively.



(1)

(2)

(3)

(5)

(8)
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CHAPTER V

PION-NUCLEUS OPTICAL POTENTIAL IN THE PIONIC

ATOM PROBLEM

The [ A (A—t),f\‘ée (A—f), A¥ (a-1) 1 model will
be developed as an extension of the A (A-1) model for
the pionic atom problem. The natural separable structure
- of the model allows an immediate application of the Door-
way State Method to the bound state problem already con-
sidered in Chapter III. The non-local properties of the
effective potential can be treated adequately from the
quantitative point of view in contrast with the difficul-
ties encountered by standard methods used to date. The
convergence of the procedure allows the study of the
essential physical effects using just the first doorway
expectation value. At the same time the study of the
resultant pion-nucleus optical potential can be done
with the same tools as it is outlined in section (2).
Being our main interest to study the role of the pion-
nucleon S-wave interaction, the 1S5 levels of 4He and
16O will be considered guantitatively in order to obtain

the strengths of the spreading potentials for the S11

and 531 channels. This spreading potential is the new
ingredient related to pion absorption in the optical

potential. Due to the renormalization considered for
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* * y ; '
the N and A , the imaginary part of these strengths is
*
given in terms of a ratio Wb/ AM , which turns out to be
the same as the ratio Wy, /AM, for the A-isobar. 1In

the A

He case the new parameters allow to obtain good
agreement with the data in contrast with similar two

parameter fitting attempted to date.

(1) The [ ACA—-1, N¥ (A-1) ,A*(A-1)] model
L)

For p-wave absorption a A(A-1) mode was already
considered and an extension of this model in order to
include the S-wave pion-nucleon interaction is required
for the treatment of the pionic atom problem due to the
fundamental role of this partial wave at very low ener-
gies. In parallel to the formation of the A -isobar

( spin %, isospin % ) related to the P33 channel, the
"intermediate particles" N* (spin %, isospin %) and Af
(spin %, isospin %) related to the S11 and 831 channels,

respectively, should be considered. Within the framework

of this model, the Hilbert Space can be spanned through

states with A nucleons and one pion, a A and A-1 nuc-
W+ it g .
leons, aQﬁorN)and A-1 nucleons and finally, A nucleons
to include the possibility of absorption. This statement

can be written in the form of a closure relation:

P = v-1
?F+?A+?N*+A*+?A—i (v-1)

where Pi is a projector onto the i-th space. The remain-
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ing p-wave channels can be igncored due to our interest

in very low energy phenomena where the P channel is

33
clearly the dominant one. This low energy region allows
the use of non-relatvistic quantum mechanics throughout
all the formalism, including the pion case where rela-

tivistic effects can be treated as corrections.

The Hamiltonian for the whole system is given by
H=kq t {KN PRyt Kyt Kyt V(NN—oNn) +V (N Na)
: \/(NM*“"’ MM*) - V(NA*—-; Na*)}a +\/C + V (Vv-2)

where Ki is the kinetic energy of the i-th particle.and
v, is the pion-nucleus Coulomb interaction when the
nucleus is in 1its ground state. The symbols V(NN->NN)
and V(NA— NA ) denote fundamental processes described
by the diagrams in fig. (V-l); In these diagrams the
"wiggled" line means that the specific exchange is
unknown and a phenomenclogical approach is going to be
followed to describe these interactions. Similar
considerations can be applied to the N* and A: cases.

The remaining V term can be represented by

Vo= % Ve, &+ QV, R+ @ Ven Q

FVENZ N + V(INZ2 8") + V(TIN=2) (V-3)
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+ {v (NAZNN) +VINNE 2 i)+ V(Ne* 2 NM)}A

The first three terms in V represent the pion-nuc-
leus electromagnetic interactions when the nucleus is
excited or a transition takes place. These terms take
into account all the nuclear polarizaﬁion effects. The
next three terms represent the creation and decay for
the N#, A* and A particle described by means of dia-
grams in fig. (V-2). The absorption process is repres-
ented in the last line of equation (V-3) and is grap-
hically described by the diagrams of fig. (V-3). Again,
a wiggled line symbolizes our lack of knowledge about

the relevant exchanges.

N N N N

V(NN = NN) V(NA=> NA)

Fig. (Vv-1)



=i 9ig =

-“—\&
N A
N
V3N &)
(b)
Fig. (V-2)

N

V(TN a)
(c)

In order to find an effective interaction for the

pion-nucleus problem, a T matrix projection onto the

one pion and A nucleons subspace of the Hilbert Space

is needed.

winger equation:

T(E)=V+VG(E) T(€)

Qur starting point is the Lippmann - Sch-

(V-4)

where V is the interaction described by equation (V-3)

and ¢ (&) is the Green's Function related to the rest

of the Hamiltonian H. Defining:

gn
131'.,. = P.n. ('?ovgn Q, u Qovsn?u t QvVEn Qo >?Tl'

= T1V91G% t Q@V&;K *'(QoV&1Q%

(V-5)
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and using the projectors given in equation

N NN/

Fig. (V-3)

. following set of coupled equations is obtained

_ M LM
o = %Gy e * Gma G Ty

+ %N* GN* TN*‘JT + ?WA* Gﬂ* IA*T]'
Tar = 9 * 943" r Ve 1 Vi G Tap
Tyrp = ?N* J 9N*n Gy Tar + Vg Ca Tor
t f GeT +Vas G.T,
Té*ﬁ i 9A*ﬁ * BA*E(SW T &A a AT
TMT = V&AGATAF t VAN* GN*T\!*‘;T As¥ GA"' AT

where the following notation is used:

the

(V-6a)

(V-6b)

(v-6C)

(V-6d)

(V-6e)
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Ty = E‘,T(ﬁ)?; G, = .G, (v-7)
The i and j indices stand for 7, A, A , N and
A*. In the interaction case the projectors are the

following:

§ eapnE
?“’V/Pa = < ?*3 ,(, =T 3 = A)l\\*)&*

(V-8)

\ VA;a' bg = A, NE A A

= *
where the first line involves creation of A, N or
*
A , the second line gives the decay of some particles
and Vij denotes the absorption process. The next task

is the formal solution of the system of equations given

by (V-6). Defining:

Nl

S = 1 1 G Typ s

and

A

A
Z- = \/M&, G/h \/,k,a (V-9b)

equation (V-6e) can be replaced in equations (V-6b),
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(v-6c) and (V-6d), and using equations (V-9) we get

A
Tary = [ B+ E o Gy Gy | 730
1.—25‘*66*
Tore = [ g1 + T, G T + 50, | 77D
i N'T A!‘ WA * A *A*r

L= Z :*N*GN*

i I (V=12)
15’ 1 Z G [dbiljzf ZAN* * N*T z GA* AJT]

But due to the pion-nucleon S and p-wave spin-iso-
spin channels projectors involved, there are cancella-

tions of
=0 if v F 4 (V-13)

and then, a simplified version of equations (V-10),

(Vv-=-11) and (V-12) can be obtained:

i +
Ter = Garr Jer (v-14)
- ¥ G

AXAY
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i 1 (V-15)
-Th*ﬁ = A 9N*ﬁ le
- ZN*N* GN*
- v-16
—tAW - 3bn 1l ( )
1 "Z Ga
Equations (V-14), (V-15) and (V-16) can be replaced

in (V-6a) to give:

TTI']T =

E: + 2&'& o "ZA ?TIA'F%'M*G_,_ A %ﬂu

N¥N*

4 ?‘Y’A*G_l iZA %A*ﬂ' } (1 + GTHTTTRT? (V-17)

In equation (V-17), the "intermediate particles”

* * 2
M, A and A are treated on the same footing. Following

the renormalization procedure outlined in Chapter IV,
* * :
where N and A are taken as static resonances and it

yields the result:

R ~ +
g = { T 9"&* —'z:‘— N (V-18)
-3 -
U ?TA* ?a*n 40 =3 ?An}(ﬂ Crr Ty )
Zﬁx-&* A —Z

where the tilde means that these quantities have been
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renormalized. Then in equation (V-18), separable
interactions for the S11 and 531 channels are provided
in a natural way. This was aiready done in Chapter IV,
where the parameters of the forces were determined.
From equation (V-18) the isolation of an effective

interaction V is possible and the result is:

£n ~
ﬁ. = 13—]]’ + g-ﬁ'N*

ot
91\1*‘1’

I (V-19)

1 +
¥ 9{5* %A*PT + ?’M Gt A Dai
254‘53‘ a —ZAA

'

The Shift Matrix for the combined nuclear and pionic

states is given by
I3 i* {}

where S is the pionic state and I is the nuclear state.

The energy shift is given by
= <T,5) ME 1T, (V-20Db)
- ? nro T

Equation (V-20b) can be expressed in a convenient
way using the formalism developed in chapter III and
exploiting the separable nature of the effective inter-

action given in equation (V-19), with the exception of
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the electromagnetic term 1}%EM' In the calculation

of the energy shifts, the nuclear ground state is
combined with the pionic state of interest and a project-
ion of‘Tn;%_onto this ground state is adequate, yielding

the following system of coupled eguations:

W = B + A% QG My T

+?u (1}S+VEH) QG G‘lj‘Qn Ynﬁc:;' ?o (Vv-21)
QM % = QVen® + & (K+ve)RQGE My R

b Q%4 Ven) Gy Gr @, Mg B+ QY7 (v-22)

where ﬁg gathers all the contributions related to the
strong interaction part. From equations (V-21) and (Vv=-22)

an equation for ?L'WQ%F'R can be obtained:
0l 08§
T Mg % = U+ UGLQR, (P Mar ) (V-23)

where U is the full optical potential (electromagnetic and
strong interaction), given by:
W =%%% + % (Kt Ven) QGG :
1-Q, (753“]&:} QG
@ Q (%+Ve) T (v-24)
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Nuclear polarization is considered through the
electromagnetic contributions in equation (V-24).
These contributions are not going to be studied through-
out this work under the grounds that they constitute a
second order effect in comparison with the strong inter-
action contribution and the optical potential to be

considered in this chapter is given by:

U=BA%+7%Q G Q, : Q %7 (v-25)
1~ &Y% QG

the structure of J; is fully separable and the formalism
of Chapter III is completely applicable. To do the same
separation with the lzsn interaction, appropriate fac-
torizations have to be found and linear combinations of
electromagnetic and strong interactions terms will appear
in the construction of the Doorway basis. At this point
only strong interactions are considered and it makes the
choice for the vectors in the Doorway basis a direct and
unambigious one, due to its natural separable structure.
To show explicitly the details of this construction in
the next section the optical potential in the Doorway
State approach will be considered.

(2) Pion-Nucleus Optical Potential in the

Doorway State Approach

The optical potential of equation (V-25) can be
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written more explicitly using equation (V-19). The
result is:

u =?> {@J’#—M* i "ﬁj"-
= e o N
L= L™ door G Ok

N ¥

+ ’éims* =3 Ni — %’;‘rr
1 -ZA*A* - g'A-Krr G‘h'Qo 9'”5*

1 +
‘g SEEES
2" = Las ~ %1 GrG !

In spite of all the simplifications considered so
far equation (V-26) gives a potential which is hard to
use in actual calculations. The hope in this case is
the standard one, i.e., tke first order effect can be
calculated almost exactly and higher order terms, where
many-body effects are present, can be studied in a semi-
phenomenological way. In consequence it is important
to have an adequate description of the first order term
in order to do meaningful phenomenology with higher order
terms. The pion absorption process is given in terms of
the form Zf; and the lowest order diagram related to
them is given in fig. (V-IV). The contribution of this
diagram is hard to evaluate and there is no successful

attempt to date. The wiggled lines indicate our ignor-

ance about the relevant exchanges to be considered. A
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possible approach to this problem is the introduction

of A , % and A spreading potentials as it is done in
references (3), (4) and (5). The essential idea is to
replace the process depicted in fig. (V-V,a) and higher
order contributions, by an effective interaction repres-
ented in fig. (V-V,b). Then the "bubble" of fig. (V-IV)
can be replaced by the "tadpole" of fig. (V-V,c). The
result is the density dependent spreading potential

given by

N

N

Fig. [V-IV)
The strength WO(E) incorporates the many-body reac-

tive content of the T -nuclear T-matrix through a com-

plex gquantity given by
W, = (20~ L%0) HeV (V-28)

This value has been tested for pion energies between
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Fig. (V=V)

100 MeV and 250 MeV and it is almost independent of the
energy. This strength for the spreading potential is
consistent with the widths obtained from the p-wave

interaction contribution in the pion-nucleus optical

potential in pionic atoms. In the latest version a spin-
orbit part has to be included(S)
So A \
Wy () =242, V() (V-29)
—_ —_
where l; and EZA are the orbital angular momentum

and the spin 3/2 of the propagating A(1232). ©Non-local-

ities enter through this term and the following functional
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form was used:

2
—J“T

—4 @ 2 S
v15(+) VLS /hpr e / (V=-30)

by the authors of reference (5) and for 16O and 12C the

parameters are essentially the same(s):

.-
= 0.3 4m (V-31)
VLS = (=10 = it) MeV (V-32)

These parameters independent of the pion energy. The

inclusion of the spin-orbit part is necessary to improve

160 differential cross

sections at pion energies of 114 MeV and 240 Mevfs) In

in a considerable way the pion -

the absence of the spin orbit term, the strength of the

central term for the spreading potential is strongly

energy dependent and in pion - 160 scattering case, it
was found that WO = (2 - i55) MeV at 114 MeV and
W, = (-12-135) MeV at 240 Mev. (°)

In this chapter we are going to consider a "spread-
ing potential" for the S-wave interaction in the same
way that it is done for the p-wave i.e., a parametriza-
tion of higher order effects through a mean field for
the center of mass of the interacting pion-nucleon sys-

tem. This potential has the form given in egquation
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(V=-27). The strengths of these potentials can be
obtained from fits to the energy shifts and widths in
pionic atoms and details of this fitting will be stud-
ied in the next section. The spin-orbit contribution
to the spreading potential will not be taken into
account in this work for the S-wave interaction case.

Now we can examine the problem of the construction
of the pion-nucleus optical potential, using the Door-
way State Approach. For a particular channel in equation

(V-26) we can write:

A
U (§,50=) <jol R 5 | S\
D)% %7 2@ % 3” >
f-)fi g(é)*z %GUQ‘,?L ’

A2
where: ,
{for the S11 and 831 channels)
1- W 2
~ An*_f (V-34)
g(E)z
A o~
(for the P33 channel)

being G% a projector that projects out the nuclear ground
state and jS the nuclear density operator, normalized to
1 in the origin.” In the coordinate representation this
density operator gives a function of the center of mass
of the interacting pair, i.e., pion-nucleon center of

mass. The indices i1 and j label the nucleons. The
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parameter Mé gives the strength of the spreading poten-
* *
tial in the N and A cases and Wg does the same in

the A particle case. The mass difference AM* 1is

defined as

AM* = MgeM - m* (V-35)

* * *
where M represents the A and N bare mass and the
ratio in equation (V-34) is a consequence of the renor-
malization procedure outlined in section (1). The natur-

al starting vectors in the Doorway basis are given by
-1 L ~ ]y ) N
NI 0> =N IRG> =) 9; 350> (V-36)
}

The rescattering operators for the S and p-wave are

given by
W, = We 545 4, G Q (V-37)
S Arte S Eﬂ 2 Cr 31_
Wo= 1 A
P - g -lv[}ﬂb {TA : 2 VA + Wﬂf + WSO + HA-i

+3 ?j@,Geroﬂa 1 )
ke

P~

where € is the total energy without the relevant
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masses, which are given in &Nh . The last term of
equations (V-37) and (V-38) includes the Pauli-Blocking
and nucleon binding effects. For a given channel the

contribution to the optical potential can be written as:

U3, =4, Z <? aj}, ?3 150> (v-39)
431

where

1 in the s-wave case (V-40)

=
it

1
€+ M,

in the p-wave case

Treating the momenta'i ’ gl as parameters, a door-
way basis can be constructed for both waves using the
rescattering operators ﬁs and ﬁp. Making the insertion
of a complete set of doorway states between 95 and

(l-ﬁ)—l, we obtain:

U370 =UN'(§) ) <30l % IRGIDEL) (v-eb)
Ly
if /\“E '%' ,Tg'/ ) is the n-th doorway momentum space

range function defined by:



—

N (3,30 =N, ”‘a"}\T <gooly, 10,305 v-42)

At the first doorway truncation the optical

potential is given by
U(fg)'g’) = U, (% %) oo % (V-43)

where

() — i
L= Weo ) (v

If we are interested in a coordinate representation
for the pion-nucleus optical potential the construction
procedure is identical and the starting vectors of

equation (V-36) are replaced by
NI e =N ITE> =) 9; [ (V-45)
In this case the range function
A, (7%= N ). <0l 1> v-a6)

has a direct physical meaning associated with the range

of the effective interaction in the n-th doorway, i.e.,
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after n rescattefings.

In an initial apprecach to the problem a shell
model may represent the nuclear system and the pion-
nucleon interaction is described through the models
developed in chapter IV, i.e., we use vertex form

factors. Then, the Doorway State can be written as:

12,605 =N, ) 13:,3 (#) Az Lu; lo> (V-47)
z

where ‘}; was replaced in equation (V-36) by
A~
F 5 At s i
?3 -Z ﬂ;a Ah( p P3> (V-48)

A

The notation used is such that A represents

* *
N , A or the same A . Here the gquantized language is

introduced for convenience. The operators in equation

(V-48) are defined in the following way:
A—t‘ (AL) creates (destroys) a Delta (N* A% D) (v-49a)
i}-+ ( P) creates (destroys) a particle (V-49b)
A w
"‘: (L‘%> creates (destroys) a hole (V-49c)

and for all these Fermions we have the following
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conmutation relations:

{ S:bz 9 and {3{:4;%2 jr;s {5 LJ% =0 (v-50)

o~
The operator fr‘

A acts on pion states only and

in the coordinate representation we can write:

<7 1/9;3- Is> = % (¥ <F1s> (V-51)

being ¥ the pion coordinate and

4

D=l d e Tl _
f; (7)= @,ﬁ%“‘”g(ﬁﬂ?)@ 3> ¢ 1T wes2)

where 5(?) is the interaction form factor and i ( 5 )
labels the delta (hole) states. The parameter fﬁlis due

to nucleon recoil as it is given by the ratio

/31 - Mg (V=-53)
! MWJFMM
which is the non-relativistic one. The first doorway

normalization can be written as:

(W“L); o Z 19;; ) 1}9 ) (V-54)
ia’

In the S channel case we have

11
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~1 )¢
(NN,) < =--3—Zf’f’ (P) Fy (13- gl)WL (%)f, _§L (V=33)

@U @ﬂ

where (see appendlx V-3)

F(-3l) = 1
P W 15
® {%9(204 -3 +~— 4, A=lb-g b3l b v-se)

bot 2~ [P g
and
1 xX2o
(V-57)
B (x) =
o x<Lo
The range function for the first doorway is given
by
T ! ?--. 3
Ao(“'ﬁ)'-'-é—Z[‘;(F)F(!p il’%(%)ez 35)' 4y (v-58)
3 2@3

The sum runs over proton states. In the 831
channel the range function separates the contribution

from protons and neutrons:
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R S
(3) e*(f’"’“g'ﬂg’g JF ; (V-59)
: @iy Gi®

In equations (V-58) and (V-59) the highly non-
local character of the effective potential can be apprec-
iated in detail. From the complexity of the expressions
already found for the first doorway normalization, it
is clear that to obtain analytical expressions even for
the first doorway expectation value of the rescattering
operator is going to be difficuit. For the time being
we are going to postpone the analysis of the considered
effects,from the optical potential point of view,for a
future project and at this time all the efforts will be
concentrated in the 19 energy shifts and widths for
light nuclei where the Doorway State Approach will be
very useful and will open the possibility of numerical
applications with highly non-local potentials as the one
we considered in this section. Up to now zero-ranged
potentials were used in a variety of numerical calcula-
tions and the use of non-local potentials with standard

methods is rather difficult.
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(3) Energy Shifts and Widths in the Doorway

State Approach

Using equations (V-20a), (V-20b) and (V-23) the

energy shift can be obtained as:

L R —— § oo
R +
3 £~ L 4Cr 02 ~L 5 CraRye

where %Z is defined by equation (V-34) and more

specificly the rescattering terms are given by:

i = ,+G = ’ R (V-61)
%2{. n'Qvg,ﬂ ,&;,9&5—- 32

g

7~ H

R

n

+ t
Gj Q ”Po = lo> Qs <ol (7=62)
,&Zz 9& T ?E % 9,}2, g 7 9,@

7 T I-U_

A

The E: term represents pion rescattering while the
nucleus 1is in an excited state and the %i term gives the
contribution of Coulomb forces to the rescattering process
while the nucleus 1is in its ground state. The nuclear
polarization effects related to collective excitations
of the nucleus are not going to be considered in this
initial stage of the problem since in comparison with

the phenomena that we already studied, they constitute

+
second order effects. The vertex interaction aé is
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defined by equation (V-48). The starting vectors are
given by:
! 4
12,> = N 1By = 5,0 = ARl (v-63)
Zz Z L A

and the first doorway normalization is

CADY =3 ]\5;; |© (V-64)
“)

=T [Gr-p RSl s S5

i

For the S-wave case, which is the one that we are
going to consider in detail, the total rescattering
operatér relevant to the construction of the doorway

basis is given by:

A A A ,
W = E%"ﬁ +Y + R (V-65)

where

~

JD

The density given in equation (V-66) is related

In

+
fj‘ﬂ A}LA‘Q (V-66)

to the center of mass of the interacting pair as we
stated earlier. The application of every piece of the

rescattering operator to the first doorway state, gives
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the following results:

T Dy = N, fm(i) TR A, kit a
.ﬁ4;;;wt ﬁ; - Em 2 F% RW *
(&,3 &F) v

i N mq 1}' L%)I}' ——%A }j})(v 67)
)ﬁrk' & -
beF:ak¢F) 3 j%K

RIDS> = Jiz _E:T;L_f_ﬁg_v' A Mb v-68)

f\DQ 5 Z f,ha A&,“ J o> (V-69)

%;c- F)

In equation (V-69) we have the linear combination
of A -hole and A -particle-2hole states. So as early
as the second doorway state, we obtain contributions
from orders in the optical potential higher than the

first one. The first doorway expectation value of the

same quantities are:

<'§°l§]®o>=ﬁ:‘l\f,,z g i&t“ﬂhwl} 97 (v-70)

“0 Gl
4y WY& 9 6 {k—-§7 i
(ef—‘ rdF)
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n ¥ S
AR = \:*NZ 1534, 73;4,15;3 %’ (V-71)
A, ES - £,
C’LéﬁaéF}
S¥ S
<~ Al' = ¥ . B : (V=72
D‘,lf DD WONO.Z 7%&9)&11%39 v-72)
vk
éeF)

—~4
*
with the normalization N, No given by equation (V-64).
The ground state energy for the nucleus is taken as

A . :
a reference, soO é; = o. Regrouping factors in equa-

tion (V-70) we obtain:

FEey- 1y 4?44%

&) G-
AEFO?TQEF Gap Gip} Giy? y (§) <2173

® §+{§-Fﬁ)ia ﬁ;@gﬁ/—f ) <a- 3] >?g(% é%f (V-73)

where the self-energy E:, is given by:

Z 7,3) = [—% F(3-pP)<F| Qr B>

Gi)3 5 E ( i
+ j% ﬁN

® F@'{%,@) (V-74)

The operator QF' projects out the Fermi Sea states



=218~

and f}N is the mean-field which confines the nucleons.
In equation (V-73) Pauli-Blocking and nucleon binding
effects are taken into account in this way. Since our
interest lies in light and closed shell nuclei and spin-
orbit effects are not going to be taken into account,
then a choice of a local potential for 1} is a reason-

N

able one. The energy - & is associated to the hole
”~

?

state |5}> and the operator Z: can be redefined such

that:
<PIZJR>

(V=75)

=5 [ & Si) FIDBRD g
'M{F[@}%;% (S E’EH}%TZ"&, ; %FQ)

T
~

where 14&1 is the Hamiltonian for a (A-1) nucleons. If
the s?}f~energy operator of equation (V-71) replaces the
full E: given by equation (V-61), we are keeping just
the contribution of A -hole states and neglecting any
contribution that is coming from /\ -particle - 2hole
states and more complicated combinations. The general
assumption (based on our studies of the convergence of
this method in Chapter II) is that with a first doorway
truncation will suffice to obtain all the essential
physics of the pionic atom problem. At the first door-
way level there are no contributions from higher excita-

tions like /A -particle-2hole states as it was shown in

equations (V-67), (V-68), (v-69) and specially (V-70).
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Then the suggested replacement will not change the
first order physics in which we are interested in. All
the published work in pion-nucleus interactions. that
make use of A -hole models and the Doorway State
Approach for the scattering case reach the same kind
of conclusion about the first doorway truncation role.
‘Usually the treatment of the Pauli-Blocking effect in
equations like (V-71) is rather cumbersome due to the
number of states that could be involvedif the system is
appreciable large. To make the calculation of terms
related to equation (V-71) possible, a complement of
the Heavyside function like the one given in equation

(V=57) is inserted in equation (V-71) to give:
- ~
<PIL IS
(V-76)

=) [ 30w L AER fam e (G-k)

%ﬁ— Hy 1~k

The complement of the Heavyside function in
equation (V-76) eliminates any contribution from the
states in the Fermi Sea, since £F,is the Fermi Energy.

The complement of the Heavyside function is given by

1 X < o0

6. (x) = (V-77)

Equation (V-70) can be rewritten as:
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<"§]Ai"@>= a7 L2 a3Y B
17

-ZHN

® O, W_@m- ]lGD a“L(% 3&/ L

«<2My

where

=GP o (3-Q) (V-79)

<

and now the complement of the Heavyside function works
as an operator. This operator can be written in terms

of the Heavyside function as:
A anZ A ~ ~ .
6. [E-37, §i-6]- 10 [ee- 305 oo
N

The second term of equation (V-80) accounts for

the Pauli-Blocking effect. We note that:

+ QZ_%) = 5 (“ F@) s (v-81)

.... '2”N

In non-relativistic terms equation (V-81) is making
a transformation from the pion-nucleon set of coordina-
tes in the left-hand side to the relative-center-of-mass
coordinates in the right hand side. The masses/ﬂ-and M

are respectively the reduced and total mass. Aside this
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we also note that ‘I}N is a local potential and then:
<GF-31HE&F> = R G-D) (v-82)

The interaction 'l}N will act on the center of
mass of the interacting pair. With equations (v-81)

and (V-82) the self-energy is given now by

<FITIE> =[ 8 $f-a5)¢3 !
o N
(V-83)

& O, }_" (3 %é’)+£"+?& & j%}l'ci>§+(§‘-iefd)

Equation (V-83) can now be expanded in the recoil

parameter F’l' The zero order term is given by:

ZIQ,> ( __ & yh-£\(v-84a)
6736405 Hy-i - if— keLﬂ%ﬁ F}

and
Glg*) = 5(@3&@) | (V-84b)

* o _
where again A represents (N, A, A ) and in the

particular case of the A we can make the standard
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association:
~ iL .
Fal
being ka the Hamiltonian:
A i .
hy =T, +V, (V-86)

and VA is a confining mean-field which is taken to

be proportional to the nuclear mean-field. In the re-
coil parameter expansion the first order term cancels
exactly and the next non-zero term is in the second ord-
er in /51. The contribution of this last term is
exceedingly small and in the calculations to be present-
ed in the next section, it will be neglected. To see
how the cancellation of the first order occurs we use
equation (V-80) and the following representation of the

Heavyside function:

e(x-?j)g,@-'}» _@_f’x Jt (V-87)

rA Z
€—>o0 ’IT“OQ E +Ct-\a>
Defining:
Ay 4 . a2 Nd
AEQ—’(%-B: ) + 9 + 7 - : (V-88)
7Y 2M 2hr
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From Equation (V-80) we can obtain:

2 R - - [e.-A (V-89)
‘9{;519‘- [B-¢.] %8 ]
= _ bm £ ng Jt @ (V-90)
S e T ) eu(t-Aqeo)’% €3 (’c«a(f
and then:
2 gk Loe(” 70 [t
-,—%—19 A-fpjlfwo:_xf—“/‘?ryeh(t—ﬁ@)z ‘_§:; 3
(V-91)

1
%] =
€24 (- A(»)?

When equation (V-91) 1is inserted in an integral
2
which contains even powers % , the total result cancels
-~

—_—
due to the presence of the %-Q factor. Then the self-

energy operator can be written as:
A ~
: (o) '
ZS((&” =Zs° + 8’((65) (V-92)

The first term of equation (V-86) is diagonal in

A -hole states:

b E9 180> <[4 1
A 5 (}3’,3 %5“ aE QL—%-+ E;]

(V-93)
Sm” %kk’
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It is clear that, in general, higher order terms
are not going to exhibit this property. Below threshold
this quantity should be naturally real (by "naturally"
we mean that the expansion is not going to alter this
real character of the self-energy below threshold).
Expansions of the self-energy in the absence of the
Pauli-Blocking effect may have terms with imaginary
contributions that should cancel when they are summed up.
It can be shown that the self-energy given by equation
(V-93) has no imaginary contribution since the denomina-
tor in the integrand of (V-93) never cancels, i.e., does

not have poles. The denominator in question is given

by:
T z
Alf) = &- & - & - ;@a

=&t (6 -&) + (Ep- &y & )+(§_z__§f)(v-94)

Since tfk is a hole state energy, the correspond-

ing particle energy is given by - £k, and
=&, -& <o (v-95a)

by just looking at the argument of the function E;C in
equation (V-93), there are non-vanishing contributions

when
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£ =&y~ <o (V-95b)

We note that:

7 2 2 i
_ o 2 (V-95c)
4 .;“; F <o

2N T

and finally, since the pion is bound
& <o (V-95d)

Equations (V-95) lead to the conclusion that
PANK( %2) < o for every value of %2 and the integrand in
equation (V-93) does not have poles. In this way the
artifical appearance of imaginary parts is avoided. We

can rewrite equation (V-93) as:

<@y, C:O 2
<AL\.I Z S ibfh, > :2—%2[% c!% 81’_ G@x; g} %A!ghh; (V-96)
g, s S a"_;,,_

where

9, = Van(g-g) 6(&-&) (v-97)

and in the S-wave case, using the form factors of
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chapter IV we get:
Gl¢) = et 1
2Mg (%4 @2)1 (V-98)
where A = +1 depending on the channel. In order to check
that the procedure outlined here is actually taking into
account that Pauli-Blocking effect in the next section a
specific calculation will be done with 4He.
A

The matrix elements of the R operator can be rewrit-

ten as:

FIRIB> =) [ & (649 <70 KED
-&2&5: Qi‘)3(2n

8 <318-9> 11 (3-p0) (v-99)
where %S(q,q'} is the Reduced Green's Function in the mo-
mentum representation for the pionic state labeled by S.
This Reduced Green's Function is an object described in
detail in chapter III and for the Coulomb case in chapter
IV also. Equation (V-99) gives the Coulomb contribution to
the rescattering process. The methods shown in chapter III
are used to calculate the Reduced Green's Function and for
the 1S level, which is the one that is going to be studied
in the next section,the Reduced Green's Function is given

in appendix (IV-A).
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(4) Energy Shifts and Widths for the 1S

pionic state in 4He and 160

The specific forms of the starting vectors in the

S-wave channels are given by

NS =REHES =Y . INhD (v-100a)
N*h

for the Sll channel and

NS = WTHES = Y, 1A

(V-100b)
Ath
for the 531 channel, where
* t ot
IN¥h> = A ¥ ]n,h lo>> (V-101a)
I T
[8¥h> = ATy hy o> (V-101b)

For the particular models that we are using the

coefficients fTth are given by (see appendix V-B)

S
- _\[2
1}”% = =i GS‘MT,%SHT)_% F;(*hs) (V-102a)

Yy G
¥, T — ————
VZ(14my)

gnr)\mr-{ 1‘5 GF lﬂ,S) (V=-102b)
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with

N a2
= )‘a (Vv=-103)
ZAy

and where

X+ pLe me FEp¥
Rlns) = 04 [ 103106103

GRIGTEARME

M* /M. m L L

)
e

N~

- ~ .
® ,[F’-* (NLL [tA¥ |x) xzi,é,,;g () (%) dx (V-104)

* * *
being (N,L,J ,M ) the guantum number set for the N or

A , | V,Jl,/h) the pion guantum number set and
(n,1,7,m) the hole guantum number set.

¢,k
") (x) and

The functions

yél(x) are respectively the nucleon and the
pion wavefunctions and

Foa (NLL TtA T ) f Prdp g (P) 4 (? (V-105)
il (B ®2)™ Y (1207

. / PN
with y&dP) = (-1)
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* *
where ¢’ (P) is the N or A wavefunction in the

- NL
momentum representation. To obtain (V-99), the origin-
al denominator was expanded in the pion momentum and we
approximate by just keeping the leading order term which
is the one shown in equation (V-105). This approxima-
tion is justified on the grounds of the small scale of
pion momentum.

The matrix element of the rescattering associated

with Coulomb is given by (see appendix V-B)

;5

/ 4 /
T 3z H-r)"’ WIT n'j")"' MT’

<N*RIRINRS = A5 ¢

1
3Ng WW’E

® ?5 (xh, *" W) (v-106a)

for the Sll channel and

<A*‘nlﬁsm*’h’>-_-__‘gz_ 1 S w
tHy V(teme) (14 m) nr’m'-i%‘mﬂ

® G (xh,*'h") (V-106b)

for the S channel, where

34
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g, (eh,w/i) = (340 (903100 L) L3V [/ 2000e)

6T*
o (S22 (B L AC)

~¥ 3/
{ > 9 P * 9/ A LeL tmam’+ T4 T* nt p¥/
8 4 L (-1)

k-
2

® jx‘cix B (NLL [t A¥ 1) 1/’,,? (X)fx”cfx’ o (%7

o]

h
¢ ¥ (x) F, (NUL [LA¥ ) (V-107)

where st)(x x') is the Coulomb Reduced Green's
Function. The matrix elements for the self-energy z:
are already described by equation (V-96). Finally the

matrix elements of the spreading term are simply given Dy:

b Wy 1¥R'> = Wo G Sy r§anes 0007
A
(v-108)

QI;c‘x }LNL(x)J?A (x) H%/L (x)

With the coefficients and matrix elements already
defined we can study the 1S level for two cases: 4He
and 160.

The nuclear model to be used is a shell model with

harmonic oscillator wavefunctions. The same kind of
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* *
basis is going to be used for N -hole and A -hole
4
states. In the "He case there are two experimental
quantities which are important for the model, the

separation energy
S(%H,) = —12.516 MeV (V-109)

and Root-Mean-Square radius

VD =163 fm | (V-110)

With these parameters and assuming a gaussian
density the estimated potential strength is Vo = 85.0 MeV.
Other parameters of interest are the oscillator

frequency
W, =23.381 HV (V-111)
and the cut-off parameter
Ay = 0751 fnt (V-112)

The oscillator frequency agrees at least with the
experimental observation of a first excitation at

20 MeV. The cut-off parameter is extracted from
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information coming from form factors obtained through
electron scattering, i.e., through the R.M.S. radius.
In table (V-I) the relative strengths for the N*~hole
and 13*—hole are shown. We see that the state with

N =0 and L = 0 exhausts almost all the sum rule:

e a‘z [ Ayne 1 (V-113)
N

where ANn are the coefficients of the Doorway State
expansion in N*-hole and £;-hole states. Then as a very
good approximation we can keep only the contribution

from N =0 and L = 0 in 4He . If N is different from

n the cancellation is enormous due to the fact that the
number of nodes is also different. So in actual calcula-
tions we impose the condition N = n, in order to keep a
particular N*-hole or Aﬁ-hole state. With these rules
the number of coefficients to be calculated is complete-
ly determined. At this point we can offer a verification
for equation (V-96), i.e., the consideration of the

' Pauli-Blocking effect. This check can be done easily in
the 4He case. A direct calculation of the Pauli-Blocking

term gives:

B(o) 3
<le - L}Qj_(% HW[AC/\M‘\
e A3+AEJ
2
(V=-114a)

A”+Ac

@féqjs—



L

-y
=
i
o

where /\N = 0.751 ;m.”i) /\C = 0,717

and

“s

= 217 ’53 + &Y (V-114b)
For comparison we offer the following table:

(o)

{v) PBC,,
{mfzg fm> <MIZ} lvi) Ditlevence <‘”\lzs >

Channel e
Sll 0.522387 +0.021105 0.501282 0.499449
831 -0.382356 -0.0422092 -0.34014¢ -{.336391

In the first column we have the contribution of the
self-energy in the absence of Pauli-Blocking effect, the
next column has the Pauli-Blocking contribution described
by equation (V-114a) and in the last column we obtain the
quantity calculated with equation (V-96). The comparison
between this last column and the difference column is a
very favorable one. The small observed deviation should
be mainly due to the different way in which the expan-
sions are done. Equation (V-1l4a) is the direct
Pauli-Blocking term with Pl = 0 just in the vertex
functions and the dependence of the nucleon wavefunctions
and binding energies, as well as the dependence of the
pion kinetic energy on this parameter 151 is ignored.

From the table it is clear that this last contribution
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should be a small one.

In table (V-II) the values obtained from the Doorway
State Approach calculation are listed. The contribution
of the pion-nucleon p-wave interaction to the pionic 1%
level should be small and then the experimental values
giﬁen in table (V-III) are going to be used to find the

strenghts for the spreading potential in the S and

11
531 channels. The expression for the energy shift in

this case is given by:

Ay = A&y (Suy ForT ) % A&y (Ss,, FofT) (V-115)
LW W5 -Wog (5) 1= Warhly (5)- Weg 5,,)

where WOOR gives all the rescattering contributions,

including Coulomb, and WOEP

is the contribution from the
spreading potential. If there is no restriction about
the proper signs for the contribution of the imaginary
part, a direct fit gives the wrong signs. If-the proper
signs are imposed as a condition, the experimental num-
bers are not reproduced exactly but the result is remark-
able close to the experimental one as it is shown in
table (V-III). The contribution from the p-wave inter-

action is attractive and absorptive so if it were includ-

ed the result would be a decrease in both real and imag-



-235~

inary parts of the already computed energy shifts.
This is an indication that we are moving in the right
direction since 1in that caée the calculated values will
be even closer to the experimental number. Previous
fittings of the parameter b, (as it was commented in
Chapter I) for 4He, where bo is real and Re BO= o
~ (actually two parameter fit), were not able to provide
a number close enough to the experimental value and
when the energy shift was perfectly adjusted, the width
was off by a rough factor of two. Interestingly enough
the ratio W / AM, in the case of the A-isobar is

0.14 also. Based on these results a sys?ematic
study of the entire periodic table will be considered
after this work, using the new optical potential obtain-

*
ed through the N*, A, A -hole model.
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TABLE (V-I)

. %
Relative Strengths ( IAan’l /Sng) for the Doorway

States for the 1% level in pionic 4He. (n=0, = L =0)
Sll channel 831 channel
N Strengths N Strengths
0 0.9981894 0 0.998119
1 0.0001808 1 0.0001878
2 0.0000027 2 0.0000029
3 0.0000000 3 0.0000000

TABLE (V-III)

Extracted Spreading Potential Strengths and experi-

mental values for the energy Shifts and Widths in 4He

16

and 0.

4

DE |
Zlfig( 160, Experimental )

He, Experimental ) (75.7%2.0-i22.5t1.0)eV

it

(15.64+0.1-13.97%0.15)KeV

Result of the fit:

Wll = - 0.45 + 1 0.14 W31 = 0.45 - 1 0.14
Recalculated Shifts and Widths values:
A& (YHe) = (77.815 - i 22.411) eV

Acfls (1%0) = (18.749 - i 3.01) KeV
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TABLE (V-II)

Results of the Doorway State Calculation for ‘He

and 160 in the pionic 1S state case.
Sll Channel:
Zlflq (*#e, First Order Perturbation Theory)
= = 92,707 eV
15815 (160, First Order Perturbation Theory)
= - 21.776 KeV
Woo (4He, Total Rescattering Contribution) = 0.58735
1 16 . : ; . _
oo (770, Total Rescattering Contribution) = 0.54875
Woo (4He, Spreading Contribution) = 0.37208
W 16 2 . . _
oo (-°0, Spreading Contribution) = 0.180075

831 Channel:

Af1‘5 (4He, First Order Perturbation Theory)

= 356.403 eV

élfls (160, First Order Perturbation Theory)

= 83.741 KeV
Woo (4He, Total Rescattering Contribution) = - 0.67357
Woo (160, Total Rescattering Contribution) = - 0.48720
Yoo (4He, Spreading Contribution) = 0.37208
W (160, Spreading Contribution) = 0.18075

00
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(2)

(3)

(4)

(5)
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CONCLUSIONS

(1) With the Doorway State Approach to
Perturbation Theory, a wider range of problems not
solved by standard perturbation theory can be treated.
In particular it does well with the combination of
strong interaction coupling and non-local forces, which
is the case in pion-nucleus studies. Other methods fail
to offer a solution, even from the numerical point of
view. One remarkable feature is that the essential
physics of the problem can be obtained within the first
doorway truncation due to the strong convergence of the
method. This makes the interpretation of the physics
easier, because we can read directly in the first door-
way expectation value each phenomenon under study.

(2) ©Nuclear structure effects can not explain

110Pd Dynamical Nuclear Polar-

the anomaly observed in
ization. The standard pion-nucleus optical potentials
also fail in explaining the widths of the 3d levels in
heavy elements and this problem remains without explana-

tion.

(3) The [A(A-1), N (A-1), A (A-1)] model is

used to determine a new optical potential. This poten-
tial is characterized by a phenomenology of higher orders
different from the standard forms used to date. Effects

like Pauli-Blocking, nucleon recoil, nucleon binding and
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finite range of the interactions are included in order

to make a correct description of the first order term
and the physical interpretation of the higher order terms
becomes easier. There is a "spreading potential" for

the S-wave contribution to the optical potential which

is related directly to the pion absorption problem. In
this way the absorption process is treated phenomeno-
logically in a first step and our intention is to pursue
a detailed microscopic description of this process in the
future using the parametrization developed in this work
as a reference. 1In this way the energy shifts and widths

of 4He and 16

0 can be explained in a simultaneous way for
the first time, according to the discussion of Chapter I
in regards to the 4He case. The "strengths" for the
spreading potential are

W - 0.45 + 1 0.14

11

W31 = 0.45 - i 0.14

which is the result of the best fitting if the condition
for the signs in the imaginary parts is imposed to
produce the absorption effect. At the same time the
recalculated shifts and widths are consistent with the
experimental observations. The absolute value of

imaginary part of these strengths is given by:

_W_s\z 0.14
AV
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Interestingly enough for the ZX-—isobar.this ratio

is the same

W

S l= 0.14
AM,
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APPENDIX (II-A)

REDUCED TRANSITION PROBABILITIES AND QUADRUPOLE MOMENTS IN
THE THREE SURFON MODEL,

(a) Quadrupole Matrix Elements:

In order to calculate the guadrupole moment, we have
to work with the operator:

o

o~ s 2z 2%Ng ¢
Q,, = A%, —’\/_“;.EBZ (_m m)?z)_m%zm(II-A-l)

where
o
A=zeaq | de 40 (IT-A-2a)
P
fo) 'E}Q.P
eo 2
B=2 ;5; Q;[ de v¥ 2P (II-A-2b)
I o Q?
and
Fa

?Lﬂm =2, [“—zm + (‘1)m afi-m—-\ (II-A-3)

with
3 1
[ sz) C(e/m/] = [ng . Qz’m’_l =0 (II-A-4a)

[ Qg QZ!M;'_I = Sﬂl’gmm’ (II-A-4b)

In equations (II-A-2) ‘fP is the proton density and



A

is the proton radius, Now we consider the product:

~ . %
Fz T T %, {QZ;-M Um + oy a}

2,-m

m

m +
+ (-1 [1+a2;‘m Qz)_m + a+ azm_} (IT-A-5)

but

ZM)(MO m,/) = ©°

(II-A-6)

Then, we have:
:'A%zi 10622(2 z 2
V7 X2 -m o m> {gi;ma'z)m,
m

+ + m + o
Fd, af o H ) [ Gyt G @ ]} (TR

We define the coupling in each term of equation (II-A-7]
as:

[a,a,] 20 Z(mo 3,.,) Qpom Yem
=L bt s

m “z-m (IT-A-8Db)
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g z 2z + _ L
.___.Z (_mm o)az’_m %m (II-A-8c)

The equation (II-A-8c) applies also to the last term
of equation (II-A-7), Now we apply the Wigner-Eckard Theorem to

equations (II-A-8) to obtain:

<KTN[Ga) N> = (_QI“I,,,Z {2, 2 2‘3

/ f
Iff IW IW I
e <I/NanI"><T"NanT,> (II-B-9a)
— =
<T/Ca LU TN = (v 12 Z,%QS
1" I, 1. 1"
o <I.latnl"> <1l aj!iIQ (II-A-9b)
wda b L \TW-T "2 2 B
<HNLE&LITS = (077 ) () ER%
<tipnatnTs < ain’
g <Il,l&l Lyl 42 (IT-A-9c)

where I labels the nuclear spin, Equation (IT-A-7)

can be written as:
2 g f 2§ £ 5t
Q,, = A —@sx,, $La, 8], + [ag a1t

}
b B [az a,z’Jzo 75 (IT-A-10Q)
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Using the following notation for one, two and three

surfon states:

[ = |4,223 (T T=A~T1la)
2> = [2,22> (II-A-11Db)
13> = 3,22 (II-A-1lc)

We obtain:

<1I’anl1> = ~1}i?,ze,xj<t)[a§ai']z°h>

g 2 2 12 z
=2t (3% )) 2 ’ng.najnw) (I1-A-12)
L
and L2l Gylioy= ‘(E: , then:

<1l(ﬂz°l1>=_?ﬁgxzz (II-A-13)

Now:

<1125 = A L11§a 125 = AX, <1lay 12>
= A%, (_22 z §><2illa2uzz> (II-A-14)

I
ut < Tl ai’ 17,=2> = [2 (2’5.2“)]/2, 50
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<116, 12> = <2}§@lt>=%A><z (11-A-15)
G = - L z [ oA R r I
18,1 = —flgx? (5 F ") <anlealia>
2 » (2 2 27
=~ B {2 . ﬂ <M1 2> <2 18,0125
- £ 2z gxz"' = <3}'Q20|1> (II-A-16)
w17
<el@w\z>= % BX; (II-A-l6a)

<,21@wlab = A <2 %ﬁ,!b =\[.3-75-_sz<@£1};¢2”23>
o Z_W[_zsz = &3] &&, 123 (II-A-17)
7

and finally:

pA

ZahBe | ¥ = 2 ey [ag‘aﬂznzp:s;i gx. (1I-a-18)
%3

where the following table was used:

1, 0 2 4
3%
7% (20/7)* (36,77
15% 6"
1
(99/7)* (90/7)"2
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This table was taken from A. Bohr and B. Mottelson,

vol., II, p. 691, 1975,

Other important matrix elements are:

Loll@, 12> = V5 AX, (II-A-19a)
and

<oll@QlI2,> = —@ g%, <ol[a,a,], 12>

3 ?T - -
- = \]- 8)(2_ (II-A-19Db)
since

<ol [a,6,),112,> = {; ZZ ;3 Lol @,l1z>  (11-A-19c)
® < la,la,>
With the matrix elements given in this section, we are
going to find expressions for the relevant reduced transition
probabilities and quadrupole moments in the next section of this

appendix.

(b) Reduced Transition Probabilities and Quadrupole-Moments

related to the problem:

The state ZI with energy 373.8 XeV above the ground

state level can be written in our model as:

l"%w>§ 4 (1D + o125+ oy 13 (II-A-20)
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and then the guadrupole moment is given by:

—
Qua = /T §_ 4 px2a?s 12 gx? ? 4 2% gx2x2

=yl s -2 + L= BX, A LT BXa A
W =Ygt g B gp st PR

Y A7 a2y .
r Wt b L2 B X +5%/:-2-;1)<2044575(11 a-21)

The reduced transition probabilities are given by:

R(EL, T,-T;) = ! ](IZHQL“L}]?_ (II-A-22)

—

2T+ 1

and in the 2{ state case, we have:

<ol Q31> =VE A%, 4 +3 15 BX%, (11-A-23)

-+

and for the 2, state, a similar expression can ke

found with the results:

2
B (€2, 324—0) = %[@szxt +.;%1[$? BX; 042] (1I-A-24a)

B (62, §14—> 0 ) =-1§ [«EAXZFI ,L%\[E ijrsz__]z (II-A-24b)

-

and with the matrix elements calculated previously,

we also have:
Bz, 14— 374) = L5391 Qull > |? (11-2-25)

and
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P —

__ 4 & g i
<3?'[1‘ ” Q,lll 3!‘1‘> - = iv%‘é Bxg 0{4_‘31 ‘i'% @sz_o{iiéz
¢ 2 12,135 px? ol
+;§ V5 BX; 041{33 + T \E_ szo(z/%Z
+ ]/EAXZ O(zfq + 295 AX, O(Zﬁ.%

+ Tr‘%‘{f; B 0(3(31 + 215 AX, 0‘3/32

u 2
+ -3-'2'_.43.. \/%_:—g BXZ 043/3;

(IT-A-26)
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APPENDIX (II-B)

MATRIX ELEMENTS RELATED TO THE NUCLEAR POLARIZATION PROBLEM.

In actual calculations we used square densities of

the form
f(v) :fo 6 (a-v) [ET=B=1)

to simplify the calculations and based on the low sen-
sitivity of the results on the detailed form of the nuclear den-
sity in previous work, Powers of the density will have the same

form, In such conditions, the contribution of the electromagnetic

part is given by:

K TTAHL WHTT S

/ y
I : T+ +2+ T 20741 Z
= \{;-e, (-1) (28+1)(2L+1) :2.3__;1-—]

o Tacest=r]¥ (22 4) 124 4

0 0 [o)
d
1 J av (II=-B=2)

where the overlap integral is calculated numerically
using radial wavefunctions of the pion, generated by the com-

puter code PIATOM, and from the s-wave interaction contribution

to the optical potential:

_ L
<G 131 8H] T3> = B )™ g [l
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©(2lrt)a,Vs [¢ 2 £) [y
3?2? ) {- Q z } ng Rﬂg’;

\0 (o] ») III

® - I
[B(EL; T-I°))"% (IT=B<3}

The proton and neutron radius is taken to be the

same, a,, and the essential form of this potential is given by

r = (V4 V) 6 (amv) =V, 6 (a-v) (II-B-4)

S

(o) |, : , \
where V%Q includes the isoscalar amplitude and ‘4

contains the absorption coefficients and it is proportional to
the square of the density in the interior of the nucleus, In

the p-wave interaction case the optical potential is given by

1
{LT~-B-5)

\7 VP_V"Q(R—Y‘)Q

within the square density approximation, and

?,YB = \/P { g(a-v) == g(‘l"‘“)

@ [Y?_ = G‘ ~ ﬁ%‘%ﬂ]% (II-B-6)

and then, the corresponding matrix element is given

by
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_ ! T sl !
& 55 Ty iBH; /T3S = Yﬁou _1)T+€+JZH (204 Eng—::)‘)

/o - / / . _ {/
@k-dl.-i-i) a;;\/g' f i f;) {f-/ % 3’-_3 [B(Ezgi"—)if)] L
< <

¢ { [-2 (b2 Bg)eny I, o, (11-8-7)

+ [ % 2 (v 2 Ru) - g’%—gj’)&l lQ""“’;-lﬁa- %
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APPENDIX (III-A)
FINITE SQUARE WELL REDUCED GREENS FUNCTION FOR THE GROUND

STATE,

In this appendix we are going to use the differen-
tial representation of the Reduced Green's Function to treat
the finite square well case, The first step is to find the ra-

dial part of the Green's Function given by
ﬂjﬁ(ﬂf’)f Gy, (e, (III-A-1)

where Gk(r,r') is the full radial Green's Function

for a given partial wave, To the differential equation problem:

{ Eh _@ﬂ) V() g(\rr = SL’\”-T’) (ELZ=RA~2)
3 T - )

we add the boundary conditions:

}(" )= {°° Y=o (III-A-3a)
?(*’;f’)lrs i j(\rm') )\r=v“" (III-A-3b)
- ’ cj = e
..i_;f}(‘f'ﬂ' ) ‘Y-- T’: TY"}(Y‘;T’) }Y'-f‘f'—: 2/14- (III-A-3c)

and the potential in this case can be written as:

V(r) = -V, 8 (a-r) (III-A-4)
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The solution for 1=0 is given by:
-e(rla) .
- %& e S Rt Y a
+

?é;(*“ﬂf) = <

- { -
\ _}% {%e K(w\-wr_,go,)‘!_ é_g(\f—,-\qﬂx 'CY":-a.(III A-5a)

TN

- % Lo b, windo + W- pin b i ety O

A

?’(W’H ¢
\ .__%i g'K("'““) i Jo? Y>a  (III-A-5b)
where
A= z/u(vc— lel) (III-A-6a)
ko= 7‘!5] (III-A-6b)
and
W, (ki) = A& erha + K ain Ao (ITI-A-7a)

W_(he)= b aw he - Coda (III-A-7b)
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W, (,{5) k) = I i ol ol O 2. (III-A-7¢)
We note that

W, (k) =o0 (ITI-A-8)

is the eigenvalue equation for 1=0,
The next step is the direct application of the di-

fferential formula:

3’(r,r’).__ /o J (E—-E\N(‘f\r") (ITI-A-9)
— 0}9 )
E-E, d¢
where & is the ground state energy for 1=0, which
will be the studied case in Chapter III, The momenta k and K are
functions of the energy and equation (III-A-8) is satisfied
for = y Ly Bay has a pole there, It is convenient then

to consider the expansion:
W, () = E(E-e) 4T (58 Lolle-€?2]  (1rr-a-10)

There is no order zeroth term in equation (III-A-10}

since
W, (&) =» (III-A-11)

due to the eigenvalue condition, Next, we are going

to consider the limit process of equation (ITI-A-9) for all the
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sensitive terms of equations (III-A-5a) and (III-A-5b)., Then,
the first term to be treated is:
e A‘{&>&>M;m;£vénﬂ”}
_ A i Wo aiader A A 7
E-E Je L b [Z+T (e-¢)4 DIE-€Y) §

2 l ‘4— —-‘Ai: : ; "} ,__.E {W_ ) . s .
4 d§ { ) N - =2k PO S 1Y Lg& (ITI-A-12)
where
= 2w . 1
A= 23 | ==t 1 1 1< oy
D€ 8=€f‘ g" {K + )y [’p"‘"‘?:ﬁ;(i +Kza.)]} (III-A-13a)
’E = i.’Bi] - _ k it
<] 7521‘5=£:' /63% { “ +2ﬁi ﬁh&j&a%

2
- /’j,‘“ﬁ; {(uk.a)m&a« %iwﬁ.ag-fa Cro A

K

2 (ITI-A-13Db)

— |
ZEE?AhuiLa.

and
dw :
2V~ = A [(trka)smba b hetnda] + A ew (III-A-14)
e [Ezéog ] # toke

the rest of the derivatives are elementary, The se-

cond sensitive term is given by:



L .;4. { edk'(f-&)m&\l" (5_56)
E—¢ dé W+ 3
-4 d { - ke-a) | } T | - kle-a) . B
3¢ Miwg:@——% {6 ”‘*‘“‘Q"*"zgﬁ (III-A-15)
The last sensitive term is written as:
Bk o g( W, . mk(err=2a)
L 3y (é-&)Me }
E-¢ d
€ W,
- :_1._ -J_- {-\:j}é K(\"i-‘f.izﬁl-)} - E iwl e"‘ k(‘(“l-‘f.l.za,) (III-A—IG)
a d& LK 2t L &
E=¢, £=4
with
W, |
= -1 + - 3 -A-17
Te fat 'ﬁ'[(Kﬁ )Caaioﬂ- »La.mizﬂq,] /ﬁ‘:m:&.a— (ITI-A )
If the following definitions are introduced:
Com— M W, podw. (ITI-A-18)
S ARSI
co= AW p W (III-A-19)
‘ ’ﬁz “[£=a i ¥E=a

the result for the radial Reduced Green's Function

is given by:



%?f, ) =4

~25 B~
R L il
2o

+%4_ (f Cro A i Hot” 4 « sy cgoit,\p’ﬂs 1,0 L %

Gteer=

- "y _Ky
~ iR e B ke 1 R ve T ey
7); 2 3
Iy @, e Y i oy X >4 (III-A-20a)

I Vv - e
N A T ey A

+ Ry e’—-m’f“‘;‘* 'R’o“'} Y<a
4

)~ (h=t) ~  —KeOrr)
_%{: { ¢ 7 Tt Rse

—~ == /
.+ Re (rev e ko (4 )k i e Y (III-A-20b)

~

where the coefficients TZL- are defined as:

Ro==- s W_ (III-A-21a)
T oyt
’[?:] = W bt

=75 (III-A-21b)
s



=2 50=

@ R
a_'?.
o 2K
5§ = e,;; by - hha- = E'Mﬂ
26 Gk Zze

The full radial Reduced Green's Function i

B(T}T!) =

F (o)

e

(ITI-A-21c)

(III-A-214)

(III-A-21le)

(III-a-21f)

(III-A-21g)

(ITI-A-22)
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APPENDIX (IV-3)

REDUCED GREENS FUNCTION IN THE COULOMB CASE FOR THE 1S
PIONIC STATE,

The Reduced Green's Function in the Coulomb case can
be found using equations (III-85),

(ITI-86) and (III-89). The
functions (gér,r') and Gér,r') are defined as:
Gl e ) sfii?__fﬁt"éz (6) dt (IV-A-1)
A 2 ne
‘{'"a Sé\\f.(\?) o

T__:}__J 242 (0 dt
v’?iﬁi(ﬁ)dé :

(IV-A-2)

In the case of the state ls, the radial wavefunction
is given by

(IV-A-3)

(IV-A-4)

where/m.is the pion-nucleus reduced mass,:%FS is the
fine structure constant and

Cﬁ =4Q

(IV-A-5)

The integration in equations (IV-A-1) and (IV-A-2)
is almost inmediate and the result is:



~2f1l=

15 =<
Gy ¢V = oL (xx') ¢ LY 2 2 y't) (1v-a-6)
Ytk zz, =z n! (41

15
G ff’h-_ﬂ {x X X _ A 1 ] (IV-3-7)
6(} i'&“& ..ZX"}

X

and we introduce the definition:

G, (x) = 2 x (IV-A-8)

Then:

>
=Gl 4 cx/p A X Ly L] i
Mg Coyr > /ﬁé{x % +,€0‘?_x’ Ssby (VAo

m; (T)TI) = Cg (‘rl) —/&

=X Gl() + Gl | (1v-a-10)
Kf

With the definitions of equations (IV-A-1) and

(IV-A-2) we can write Co(r') as:
15 > 2
Co(r') = 2u Gy (O,r’)—?./ufx‘Jx éis(x) Gg (%,v') (Tv-2-11)
o

Using the tables of I, S, Gradsteyn and I, M, Ryzhik,

the integral
o0
2 -
x2dx e %}c = 3-2Y% (IV-A-12])
(o]

which is a particular case of:

fx Ya ﬁwax dx = 4,.““ [1:,_*2.:,.,_4,%_?_%/‘] (IV-A-13)

/
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being ¥ the Mascherioni Constant, and R%/L> o .
Using equation (IV-A-12) in equation (IVv=-A-11) we
obtain:
C(v") = I / &? /4 15 } IV-a-14)
0 o yex ZX"E’-GJX) 2+ (

Ky

Replacing equation (IV-A-14) in equations (IV-A-2)

and (IV-2A-10) we get:

WM (ev!) == A {5_ s o 1 e (IV-A-15]
15(2 /K? > =¥ Xx-% &?zx,, +M)+Gu(()7]

and the radial part of the Reduced Green's Function

is given by:

8’15 (v,w') = ggis () mu(f,v’) ¢ (")

-k (r+r’) [ 8
= —buk, e F-v - klrrt)-dm 200, 4
/“' 1 { 2 1 1> ETaS

b G (ke )7; (IV-A-16)

Equation (IV-A-16) will be used for pionic lH,.4He
and 160 calculations. It is interesting to note that equation
(IV-A-16) includes contributions from the continuum of states,

which is not taken into account in most of the estimates done

L

up to date in perturbation theory,
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APPENDIX (V-RA)
FORM FACTOR INTEGRAL FS(Q) FOR THE PION-NUCLEON S-WAVE

INTERACTION.

In Chapter V the first doorway normalization for the Sll

channel and 531 channel is given by

t P &7 My & =) (V-A-
=0 Gz[("? (?%3(?03 [d +HP F?) J}l"f. )Z]VTL ¢ %) o

where Mj is an isospin weight factor defined by

Mé - 1/3 (311) (V-a-1la)
1/3 (S3,) ProTons (V-A-1b)
M; =
Y
1 (33,) NEuTZoNS (V-aA-1lc)
since
T;T; =1 for the Sy, channel (V-A-2a)

and
7;7- = for the 531 channel (V-A-2Db)

The form factor integral is defined by:
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F0Gq) f L (V-2A-3)
—§ q (Zlf)g [d_2+ 'KF"!Q;?)Z] [042‘!_(%-_‘},32—?)2“\3

and it is part of the integrand of equation (V-A 1)
if the following shift is done:

—

'F _->‘|§ + P %‘—a '?‘ +73 (V-B-4)

followed by the inversions

it Fdt

(V-A-5)

with the result:
~ "1
¥
(NO NO)_?)'

= GGZI/’J_’J 1% (P)»] F(Tw )ﬁ‘-(ZﬁP ) (V-A-6)

zr)l(z@l ?

Defining:

<}

= '1'5-'?;' (V-A=T)

equation (V=-A-3) can be rewritten as:

(p) R(K)=14 IJ” 1

S G} [¥Z+(K+?)2]LJ+P2]
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[ PdP 2 [ofzf-(mP)zw (V-A-8)
f@ K <>(+P~" x?4(Kk-P)%

The fundamental integral to be found is given by

I- ?cl ) [x%(k&?)z] (V-A-9)
L L4t éﬂ& <2 4 (i-9)?

and using the known results:

[TheePugx o &
o FZ.}-%"

(V-A-10)

with F)o , and

[ﬁqfa (eip)+ % ?

(x (5)24"52 1 Sip b X dx = 2;_ _rmpk (V-A-11)

with Re ¥ >0 ,l[m(;’ ¢ReX and }o>0 , the integral IF
can be found:

oo
I -_-f dx & JPM Px [ ‘:4 (K.+P22
A ) x4 (K-P)
o
= 27 A KX &_de dx
x

(V-A-12)

(V-2-13)
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Then FS(K) can be rewritten as:

SRAA T Ty - 1 __‘w‘&\g(v-aﬂlcl)
; ¥ K . 5 (2= K)Jrﬂ'mc/% bt e

where

< =[F-7| (V-A-15)
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APPENDIX (V-B)

MATRIX ELEMENTS FOR THE COULOMB RESCATTERING OPERATOR IN

THE N*-HOLE, *-HOLE APPROACH,

The vertex function for the Sll channel is given by:

5.{'(3') -G 7 (V-B-1)
OIS A
where
X =.-.2f (V-B-2)

M

The Coulomb Rescattring matrix element reads:
<N RV NFRTS :fJ“ 78 &3 «n¥3 .

R AR Sie N w>§ﬁ§ i?)
® <P-7l YA (33 )<w1a-g"> %*(qi(;,a,) LRI (v-B-3)

Before any further development of this matrix element,

we consider the coefficient of the Doorway State in a N*-hole

basis:

* = Jd J_ 5 G T: iy z
Frhs) =[5 s € gy S

i

YZ G o s Syt T @R S) (V-B-4)
)

1
T3

where we used
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T [z m 1[-(wzmr) |L,-my>y  (V-B-5)

We define the different set of gquantum numbers rela-
ted to the problem as:

—~—~

N = (NL 3 T¥m%) (V-B-6a)
T = (net Lo -m) (V-B-6b)
S = (v)/u) (V-B-6c)

Then we can write:

V(PR = _% & Ry P> Hnu ) <1>-11T&>
ain’ G ol ® +% Fﬁ)

= (‘1)Ej+m<NL%fH¥lVyx/ulnﬂia,-m\) (V-B-7)

Using the Wigner-Eckart Theorem:
.y . . TE
<NLIT'M \V,)/k\nzzg,-m> = (-1) [3%)
* \ ;
(d i QJ INLET (1D lmedg™> (V-B-8)

where L[3¥]=Y25%1 ,Iand

l -
<NLETHIVy In2d > = £y FE Tt [500)
. -
® ; %].LE NLI Vo nd

(V-B=-9)
2
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Using the Wigner-Eckard Theorem again, we find:

L L ¢
(-1) [V] (é o o) INLIV,y Une™>

_[dF & ¥ ¢ (V-B-10)
‘/'C?f') (-)3 NLoﬁ) D:ai?évp—)'a %‘Leorq) VB

The scale of _%. is fixed by %) C%?) and in the pionic

atom case it is a very small quantity. So, if the following

expansion is considered:

1 1 2313 '—é 2 (V-B-11)
~ et A ey 8‘ ( )
I A A G :

The approximation of keéping just the first term of

equation (V-B-11l) is more than justified since the second term

is 10~° times smaller than the leading one, If this approxi-

mation is done, the reduced matrix element is given by:

1 L X2
<NLIVy ime> = L (3] Le] ( )

Qo o (o}

® “oxlp \I (?)fx JXa,L(PX)yﬁmfx) ‘rlvzf") (V-B-12)
°

oz"'+ifs, pl

Introducing the definition:

SRCITHENED E[ﬂJ_?_ ;Z“L(?) a'L(px) (V-B-13)
(e 7)™

we can write the matrix element given by egquation

(V-B-9) as:



At yratl
- [51 001000 [e]

(V-B-14)

h -~
® (¥, (%)

Then, we define:

- x‘_-

o (1) (A [T 1 1]

o0
' h T
gfgi(NLleA‘lx)xlyu (X)VLV)(Y)CJX (V=b=15)
0

and the full coefficient is given by:

\}(N*hs) = —\[-‘;: Ggmr)% Qﬁr_i }'—'(* hs) (V-B-16)
/2

In equation (V-b-13) the function H&m(P) is related

to the N* wavefunction in momentum space through

(Vv-B-17)

¥ () =), ()

Once the coefficients ﬁfﬂ‘ks) are found the cal-

culation of the matrix element given by equation (V-B-3) 1s in-

mediate if we make the replacement:



:g}\(%) E—— a-p}\ (/%;%’) (V-B-18)
The result is:

Ly - / ~
LNFRIRGINTR> = 3 ¢ LS St e b
® g (xh ,%"h') (V-B-19)

where:

Js Cehh = A L3 157101 L1 5 0 )0V L2

SO ) )

y

Goa) (s

{jx 2 ) {3*1 2 )3( Lri’ +mam’+ T 7¥0 ph
L -;- Y

o (5%,

1
[,
o

1

L' &

o0 h Corm h
@[xz dx £, (NLL A% [ %) Ys (")I&vk {X)x")}%&,(){)

(¢}

o B, (VUL [a*]x’) x/4dx’ (V=B=20)

The vertex function for the 831 channel is given by:

(V-B=-21)
E (%) ¢-+qz
where
Eh =4 (V-B-22)

)
=
=



-272-

and

T Am> = __t 1_32, ,My=1> (V-B-23)

V2 (L+my)

So, formally speaking is not different from the S11

channel, aside the isospin factors and we can write down in-

mediatly
ﬁ(b"h&) =—_G gﬂy,mr—i Fox hs ) (V-B-24)
V2(i+my)
and
= Z
LAYh g 8%y = - 3 1 S gﬂf’,m,’-i

n'r J‘m?-"l
MW | Gemy) (14my7)

& Y5 (xh,¥'h))
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