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ABSTRACT

In recent years more accurate measurements of the energy

shifts and widths in pionic atoms provide a more string-

ent test for pion-nucleus optical potentials. Several

anomalies have been found throughout the periodic table,

calling for a reexamination of the theory. In this work

the Doorway State Approach to the Bound State problem is

developed in order to study these energy shifts and

widths. It is found that within the first doorway trun-

cation the essential physics of this problem is obtained

and effects like Pauli-Blocking, nucleon rescattering in

the presence of Coulomb forces and absorption are summed

ap linearly when the first doorway expectation value is

considered. The new optical potential takes into account

nucleon recoil and finite range effects. In this way the

contribution of the first order optical potential is

calculated properly. The higher order contributions are

considered through a spreading potential. The parameters

of this potential are found for the pion-nucleon S11

channel and S34 channel through an energy shift fitting

with ‘He and 16, the results of this fitting finally

solve the he problem and the proper energy shift and

width can be obtained with the same set of parameters.

The ratio of the imaginary part of the strength and the
mass difference is the same as the one for the delta-

isobar.
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INTRODUCTION

In recent years more accurate measurements of the energy

shifts and widths in pionic atoms put into test the semiphe-

nomenological optical potentials used to describe the pion-

nucleus interactions. Now it is clear that several anomalies

appear in different regions of the periodic table, calling

for az reexamination of these optical potentials. Measurements

of the widths of heavy elements, not measured earlier,show a

systematic deviation of the predicted widths from the experi-

mental ones, which can not be explained using standard semi-

ohenomenological potentials.All attempts to explain this ano-

maly have failed to date. There are also problems for very

light nuclei like Helium, which is going to be discussed with

jetail throughout this work, and Sodium.

In chapter I a brief presentation of the general phenome-

nology and problems in pionic atoms is given, stressing the

case of narrower widths of 3d levels of heavy nuclei and the

problems of pionic te and ‘He. As a review, effects like

Pauli-blocking, nucleon binding and Ericson-Ericson-Lorentz-

Lorenz effects are briefly introduced.

In chapter II the problem of Dynamical Nuclear Polariza-

tion is considered. After the successful attempt of Dubach,

Moniz and Nixon, explaining the measured x-ray attenuations

for several nuclei, it was found that 1104 can not be ex-

plained within the same simple approach. This fact was parti-

cularly intriguing for these authors when they compare the



.Q-

nuclear structure of 11044 with the one of 104g, since they

are very similar and the x-ray attenuations are different by

a factor of two. This finding led us to think that nuclear

structure effects have probably little to do with the essen-

tial problem. In their model a mixing between 27 one- and two

surfon states is considered, and for 11054 there is a third

2% state at 1470,1 Kev which can be a participant in the pio-

nic-nuclear mixing that takes place in the Dynamical Nuclear

polarization process. First, the calculation is done with in-

formation coming only from the first and second 2%, with re-

sults that agree with the measured x-ray attenuation. Never-

theless, Coulomb excitation experiments were not able to de-

tect the presence of the 1470,1 Kev state as a 3*, In order

to fit the one, two and three surfon model this state should

be observable in Coulomb excitation experiments. The data for

the quadrupole moment of the first 27 and the reduced transi-

tion probability from this level to the ground state are

quantities measured in a not very accurate way and this all-

ows us to consider the information from the 1470,1 state in

(n,n'y) reactions bringing our result to the value predicted

by Dubach,Moniz and Nixon, which is nearly half of the expe-

rimental one. After that the role of Giant Resonances was al-

so considered, but with negative results. This brings us to

the conclusion that the optical potential has to be reexamined.

In chapter III a convenient tool to achieve that objec-

-ive is developed: The Doorway State Approach to perturbation
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theory. This method turns out to be a very efficient one in

the handling of perturbations of any size. At the same time

the treatment of fully nonlocal interactions is made possible

showing in this way a definite edge over other methods when

practical numerical calculations are required. The conver-

gence is so good that the essential physics of the problen

can be extracted in most cases with one-doorway truncations.

The whole procedure is an extension of the one developed by

Lenz ,Moniz and Yazaki for potential scattering theory. In our

discussion we also consider the case of degeneracy. In order

to study convergence properties very simple systems, like a

harmonic oscillator with a harmonic perturbation, an infinite

square well with a delta perturbation and a finite square well

with a square barrier as a perturbation, are discussed in de-

tail. The last example mentioned is the most interesting one

because a simulation of the pionic atom problem can be made

and in this way we can show that for the purpose of the analy-

sis that comes in chapter V, the first doorway truncation is

more than enough for the energy shift and widths calculations.

In chapter IV the parameters related to the forces are de-

termined using Yamaguchi form factors. This information is

extracted from the phase shifts for the S11 and P35 channels.

In the S31 channel case there is a problem with the curvature

of the phase shift, and instead information from the energy

shift of pionic hydrogen is used. In this way a proper beha-

viour of the very low energy limit is guaranteed. After that,

a plot of the phase shifts for the S14 channel is made and we
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find that the fit is essentially good up to 50 MeV. The rest

»f the p-wave channels is not taken into account under the

argument of the A- isobar dominance. In the case of pionic

hydrogen the importance of the Coulomb interaction in the re-

scattering process is demonstrated.

Once these parameters were determined in a reliable way,

the consideration of the A(A-1), N*(a-1),A*(A-1) model is

done in chapter V. There a static resonance model for s-wave

pion-nucleus interaction, already developed in chapter IV, is

used to enrich the A(A-1) model for the description of pion-

nucleus dynamics. Effects like Pauli-blocking, nucleon bin-

ding, nucleon recoil and finite range interactions are consi-

dered in detail for the non-relativistic case. In this chap-

ter the way in which an optical potential can be constructed

within the Doorway State formalism is just outlined and the

nonlocal character of the effective interaction is shown ex-

plicitly. The energy shift can be calculated, without going

into the calculation of the optical potential first, using

the same procedure. In this way we can compare with the expe-

rimental data using the energy shifts and go more into the

detail of the physical effects by studying the optical poten-

rial. Nevertheless, the first doorway truncation of the ener-

gy shift is going to provide detailed information about dif-

ferent physical effects without considering the structure of

the optical potential, which is the object of future work. In

the first doorway expectation value the contribution of ef-

fects like Pauli-blocking and Coulomb contributions to the
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rescattering and spreading potentials is summed up linearly,

making the interpretation easier. One new feature of our op-

tical potential is a "spreading potential" for the s-wave in-

teraction. The "strengths" of this potential were fitted to

the energy shifts and widths of ‘He and 16, and the recalcu-

lated quantities agree very well with the experimental ones

when conditions on the signs of the imaginary parts are impo-

sed in order to make the potential consistent with the absor-

ption process. Up to date fittings of a similar kind in tte

were not able to reproduce the energy shift and width for te

and even less to achieve the same with 16, in a consistent

PT"al
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CHAPTER 1

LOW ENERGY PION-NUCLEUS INTERACTIONS:

PIONIC ATOM STUDIES

After a brief description of the essential physics

and quantities to be measured in pionic atoms, a

detailed discussion of pion-nucleus semiphenomeno-

logical optical potentials will follow including

affects like nucleon binding, Pauli-blocking effect,

Lorentz - Lorenz and absorption. Special attention

is going to be paid to the absorption effects. At

the end of the chapter agreement with experimental

data is going to be considered.

(1) General features of pionic atoms:

A pionic atom is formed when a low energy negative

pion is captured in a Bohr orbit. This initial orbit

is not exactly known and an analysis of X-ray intensi-

ties observed during the cascade to lower levels

indicate that the main quantum number should be a very

high one, i.e.,M#20.Duringthiscascadeprocess

Auger electrons are emitted as well and it ends with

pion absorption followed by the ejection of nucleons.

The emission of nucleons is not a surprise since the

absorbed pion provides an enormous amount of energy,

its rest mass around 139.6 MeV. For orbits with main

L

quantum numbers Mn &lt; (M./Me)?, where Me is the electron
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mass, the pion moves inside the electronic cloud and

a pionic atom can be considered a hydrogen -like system

as a very good approximation, transforming a many body

problem into a simple two body problem. With this

system, the electromagnetic properties of the pion-nuc-

leus interaction can be tested. These are the Coulomb

potential, vacuum polarization, electronic screening

and electromagnetic polarization of the nucleus and the

pion. The main interest lies on strong interaction

studies and because of the short range of the pion-nuc-

leon forces (around~~1fm),thiseffectcanonlybe

seen when the overlap of the pion wavefunction is

appreciable in the nuclear region. Unfortunatley, when

this overlap is big the pion absorption is enhanced and

for very heavy systems, the very internal levels (like

the 1S or 2p ) can not be seen. The experimental

observed quantities are transition X-ray energies and

in strong interactions studies the interesting quanti-

ties are the "energy shift" and the hadronic width.

The energy shifts are defined experimentally as the

anergy difference for a X-ray transition between the

situation where the strong interaction is taken into

account fully and the situation where there is total

absence of it, i.e., only electromaanetic effects

~ounts. The X-ray lines typically measured are those

related with transitions between circular orbits.
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From the theoretical point of view the electromagnetic

contribution is very well known and be calculated

fully. Since the actual energy shift from the upper

level is several orders of magnitude less than the

anergy shift from the lower level, the energy difference

can be taken directly as the energy shift (cue to strong

interaction effects) of the latter. The hadronic width

can be obtained by considering a line broadening problem

with the same line of reasoning as the one used for the

energy shifts. Of course, the energy shifts and widths

are not the only available information which can be ob-

tained from pionic atoms. In chapter II X-ray line

attenuation is going to be considered to obtain inform=-

ation about the "hidden" levels that can be seen due to

pion absorption (see chapter II for details). In most

&gt;f the pionic atom studies found in the literature, the

ground state of nucleus has spin zero. In the case of

non-zero spin, the observation of a splitting is also

possible. So, in this way we can see a wide variety of

phenomena to be studied, which contain valuable informa-

tion about strong interactions, nuclear structure and

atomic phenomena. In the next chapter we are going to

~onsider the essential tool in pion-nucleus interaction

studies: the phenomenological optical potentials.

(2) Optical potential phenomenology for

pionic atoms:
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The repeated scattering of a pion by several nuc-

leons in a nucleus can best be treated in terms of an

optical potential and its iteration by the Schroedinger

equation. The use of the latter is possible due to the

non-relativistic character of the pionic atom problem.

In one of the first applications of Watson's multiple

scattering theory, Kisslinger ‘1 in 1955 found the

general form of the pion-nucleus coordinate-space

optical potential produced by the strong p-wave of the

pion nucleon amplitude. Adding the S-wave term, this

on-shell amplitude has the form:

{

B..
41 |

nl} B= bh) + by (h) AL com pip (1-1)

and the off-shell amplitude is given hv

Et LEVIED = 4 (L) +E, 0) BX (1-2)

where x is the pion-nucleon relative momentum. From

nultiscattering theory the lowest order for the optical

potential can be obtained vheough

b "Xen nial (BII=3)
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where&lt; stands for the occupied single particle states

for nucleons. After a double Fourier transform, the

optical potential given by equation (I-3) gives the

velocity-dependent pion-nucleus potential: (neglecting

recoil)

 FIGS = SG 4 Up 6) = &amp; BT [pe PH) zo

in equation (I-4) we are not making any distinction

between protons and neutrons. An expression of the

same form of the one given by equation (I-4) can be

found for systems with the same number of protons and

neutrons and the quantities fz and 7 should be re-

placed by the proper ones according to the isospin

differences. Potentials of the form given by equation

(I-4) fail badly when they are confronted with low energy

data. As an improvement, Ericson et a1 (3) propose a

density expansion for these potentials and the isospin

differences were also taken into account for the S -wave

nion-nucleon contribution:

UD(ey=—2{hp b (peo-po) goto|
(I-5)

whera:
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fo = nla
M-+ My

{ T—-)

is the pion-nucleus reduced mass. The coefficients b,

and b, can be found through a spin, isospin and Fermi

average for the pion-nucleon free space scattering mat-

rix in the low density limit. The justification for

this procedure comes from a theorem in nuclear matter

for a density expansion of the pion-nucleus optical

potential (4), The results for the spin-isospin average

3=3

b = 1 F = = 1 &gt; :
: (Qn + Grp ) so 3 (ag +20) (1-7)

b, = =(gy — ayy,) = L(a, - a) (1-8)

where Apr and Cr are respectively the pion-proton

and pion-neutron scattering lengths and a, and .,

are the scattering lengths for the Su and Bay chan-

nels. The constant coefficient B is complex and

contains in principle medium corrections and pion

absorption effects and its determination is possible

+rhrough experiments. The isoscalar term nearly cancels

and it has to be corrected taking into account the Pauli
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principle:

igay
vo o-

.

3 \¢ S 2

5, uot b _ oo Le (a SZ

T= = be

(I-9)

(1-10)

this correction can be shown in a very simple way

using the medium corrected T -matrix, given by

7 4 f (Gm — G, (I-11)

where G,. is the pion and nucleon propagator in the

medium, G. is the propagator for the same particles in

free space and the £ -matrix is also given for the free

space situation. The expressions for the propagators

in nuclear matter are given by (472)

PEE) 3a&gt; o Ofbobe)
Eto wy - pF

(I-32)
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no (+)
&lt;PE| G, (EVBR&gt; Ho -— (I-13)

SEP
A

where equation (I-12) takes into account the Pauli-

Blocking effect and equation (I-13) gives the propaga-

tor in free space and only forward scattering is consid-

eared. The quantity be is the Fermi momentum and

gives the pion energy

Wy = p24m2

a At the lowest order we can

(I-14)

write:

N
 Lt
IP 1) = z (Gy - G.) Tb (1

in the pionic atom problem we are interested in the

15)

threshold limit:

and

Fon &lt;PEIL, IPE&gt; = —
ES Ma tH,

rhen-

uy (I-16)

: —_2 : -

Lo SEO (UVefn[0 _OFF)
Es Neth, hel Engin, J Gr) EP- wp - 2 = My

2 Ma

iT \ 2 7
(£)e “| 3% 8 (pe-P)
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oy
Ts14 by

IA.

(I-17)

and using equation (I-16), we obtain:

5t = —2

M

Sa (I-18)

leading to the result:

Se = 2 al
(I-19)

and then:

S S 2 S

ob, =9 [fer20 = — a +200)" 2 (1-20)
2 2 7 'F

since the nuclear radius is small compared with the

Bohr radius, quantities like AE ye and Fe are mainly

determined by Us . In reference (5) the values of

b’ and b, are kept fixed and 3, is determined.

Except for the very light nuclei the fit is good for

values:

Re B, / Im B, = —1.0 % 0.1 (I-21)
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-4

(I-22)

The nucleon binding effect can be estimated also

by looking into the nuclear matter problem. The pion

and nucleon propagator, when the latter is bound, is

given by

-t

Ji

BEIGE) FE =
Up)-Mu

2 —Et Dh -

r—

At threshold, we can obtain for the lowest

\

(I-23)

order

 SH - (a= [2 _
Sts Met 2p J J Gy | EF- wp -p - My-U(p)

Ef. Wp

2

b 2

oN = HIN
™ \

; mp” ¥
oC

de 3)

if the potential is taken as:

Up) =U. 8 (bb) (I-25)

where U, = - 50 MeV, from equation (I-24) the follow-

ing can be obtained:
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pt. 4 Vu Ul axe fe
w % 2c)Uo|

and then expanding equation (I-26) in [2 1U:\ /pe

(I 26)

powers and keeping the lowest order of

St)_27a’ v $a lle fu&gt; ee Zulu, — Balch) + ol =

2

|
&gt;)

the following correction can be found:

 0% — _ a zn
LS a 2u Us|

(I-27)

(I-28)

and

~ 3 S (3+2(a5)°
Sb = &gt; (fu 2 ) = (hy) 22 Yau lu) (I-29)

The general prescription to improve the potential

given by these corrections is the use of the local den-

sity aporonimation 4

 Ls H[ 207" U, — U,
(+

2
(I-30)
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where fe) is the nuclear matter density. The total

contribution from the pion-nucleon S-wave is given by

(s) =

Uy (7) == 2 8 ot + by (a= 6) + Bp)
2Mp °

3/;

(6, 12 (23,)° $55 )" Ful] 29)]] (I-31)

The analog of equation (I-5) for the b -wave oion=-

nuclear contribution is given by

ot
as, Tv a

&gt;

Py oor 3, [wT SG)
“a 40 2k,

(I-22)

(7) = €. pC) + GQ lpO-AO) Cpt) (1-33)

and the quantities (, and C; are the isoscalar and

isovector averages of the p -wave pion-nuclear scatt-

ering volumes:

ro= 1 P P P Y

 =2 yay +245 r2a] + oy|

Tq
_ 7

= 3] (aaj + Qa ) - (2a, + af)

(I-34)

(I-35)
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the constant C, is complex and takes into account the

nedium corrections and pion absorption. There are also

short-range correlation corcestions'® that could be

expressed in a manner very similar to the Lorentz -

Lorenz effect for the dielectric constant of a crystal.

The pion provides a pseudoscalar field ¢ and its

gradient Ve gives a vector field coupled to the

nucleon according to

N, = —i dm G.Yg
2H

—p

where 6 is the nucleonic spin and pI is the

{ “6)

strong interaction coupling constant. The form of the

coupling described by equation (I-36) has the same form

as the coupling between a dipole and a field and it

tends to orient the nucleonic spin in the direction of

Vo . Due to the Pauli principle a nucleon in a

nucleus cannot rotate its spin freely, but if a pion

field is applied to a nucleus an induced axial dipole

appears. Accordingly to the linear response theory the

polarization vector density is proportional to the

applied field and the proportionality function is the

axial polarizability coefficient per unit volume:

PE) = AE) VE) v4 27)
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1th

X(?) = T p(F) (I-28)

where ¥ is the polarizability constant and PE) is

the density of the medium. Actually the axial polariz-

ability X(¥) is proportional to &amp;(¥) , where

higher order terms of the density should be considered,

but in order to simplify our derivation the lowest

order term proportional to the density is the only one

kept in equation (I-38). Taking into account just the

pion-nucleus b -wave in the equation of motion for

the pion in configuration space, we have:

and

(Ww? - Me + Vi- TYPE) V ) 3%) = 0

it can be written as:

(I-39)

v | (1- Tol) VI@ | = - (uf- ME) ) (1-40)

There is a repulsion effect due to Pauli principle

between the nucleon and other nucleons, so a volume

around the nucleon is cleared of nuclear matter. The

normal component of (1- yp) 7p(e) must be

~ontinuous across the boundary of this volume and it can
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be seen using familiar arguments from electromagnetic

theory. Then, we can write:

(4  So) [VE = | Vo

50( N[ o Li LS J Toe
(I-41)

If the volume is a spherical one and the angle

average is properly taken, we obtain:

Fe T= Ye oe) [Tda

. VE] = [7] 3 spe ie] (I-42)

and

(Vo®)| 2 —

INSIDE 14 AT o(2)~ ! ¥

Vo) (I-43)

with the association:

] ve )] OUTSIDE = v pe) (I-44)

—

being V (2) the average field of the medium.

Then, the corrected pion-nucleus b -wave contribution

to the optical potential has the form:
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"J... =
_ PE Vee) (I-45)

1+ Z FY Pe)

Equation (I-45) gives the corrected version

originally derived by Ericson and Ericson '?) using

similar arguments to the ones outlined in this section.

From a multiple scattering approach, Eisenberg, Hufner

and Moniz (©) were able to obtain the same result. The

difference is a new constant € given by:

= — | dx a(x JT ER ¢

[go] £e he (4?) (I-46)

and in reference (3) the value 1is g = 1. The function

h (42) is the pion-nucleon form factor and 5x) is

the nucleon-nucleon correlation function. If the

following forms are taken:

)
B(¢-x)X) = =— (I-47)

and

h (42) = —
1 + A

(I-48)
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If YY, = 0.5 fm and « = 6 fm the constant is

evaluated to give g = 0.5, showing that the pionic

Lorentz - Lorenz effect or Ericson - Ericson - Lorentz-

Lorenz (EELL) effect 1s greatly reduced by finite size

effects. The fits to the data for the p -wave

contribution to the optical potential are performed

with the following two conditions:

ud is not varied and Re c = O . Then the

coefficients C, , &lt;4 and Im C are determined for

several values of the parameter § , with 0 £ g £1

Table (I-I) summarizes the result for these parameters

and show a strong dependence of Im C . The analyses

are not very sensitive to g but consistent with g = 1;

however the variety of assumptions eliminate the poss-

ibility of microscopic interpretation. The fits are

always poor when these potentials are confronted with

light nuclei data. This is particularly noticeable for

1S level shift in the he case. This will be examined

in the next section.

(3) Isotope effects in light pionic atoms

One of the features of the experimental data that

can give us direct evidence of non-local pion-nucleus

interactions is the change of sign observed when a com-

parsion is made between 1S level and 2p level shifts.

In the 2p level case a change of sign is expected for
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TABLE (I-I)

Parameters of the Kisslinger potential from a fit

tO experimental data of pionic atoms.

3 3 =0 ] FIT x1] Scattering volume averages

Co (ng ®) 0.17

Cy (n:*) 0.22

ImC, (MZ°) 0.036

0.23 C - 21

0.22 0 13

0.076

TABLE (1-11) (19)

Energy Shifts and widths of Helium Isotopes

ISOTOPE ENERGY SHIFT

‘Ha
3}

nN

3 3

-75.7+2

Isotopic Effect 107.7+3.6

(3He - 34e)

1
Er)

(eV) WIDTH (eV)

28+7

45+3

17+8
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Z 2 36, since the Pp -wave contributions be-

comes more important for sufficiently large nuclei. The

change of sign is difficult to see due to pion absorp-

tion. Using the "trick" explained in Chapter II for

1104, Leon et a1 (® were able to confirm this

theoretical expectation. In the 2p level case, the

change sign is essentially due to the increase in the

size of the system. For 15 level a change of sign

problem is also reported, although the nature of the

problem seems to be different. While all the 15 level

shifts are repulsive, the level for He is attractive

(9,10) in an anomalous way: _ Although the experiment

is complicated, there is a strong confirmation about the

sign of this shift. In table (I-II) the experimental

values of the recent reference (10) are given. The

results for He alone are given in table (I-III).

Although the experimental results shown in this table

are not very consistent, the isotope effect is still

large. In reference (9) the pion-nucleus optical

potential is used to calculate the 19 level energy shift

for comparison with the experimental value. All the

established parameters &gt;’) are used with the exception

of b. and c . In the b, parameter case the argument

is that a strong dependence on the atomic number is

axpected for this parameter of the isoscalar local
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potential. The complete set of parameters used in this

~alculation is shown in table (I-IV). The calculated

energy shift and widths are

A a " —
20 &gt; \/ lo = 38.6eV (I-49)

vhere a = 0 , as indicated in table (I-IV). Accord-

ing to reference (9) if the pion-nucleon absorption term

contribution is included the 1% level reduces the width

by 24eV whereas from the physics point of view no drama-

tic influence of the p -wave potential should be expect-

ed on the pionic S -states. The authors claim that the

standard optical potential produces the unphysical

negative p -wave absorption effect on the S -state and

then their experiment suggests that the simplification

of including the absorptive p -wave potential part in

the gradient structure is not correct for light nuclei

and that another form of absorption on the surface may

be more appropriate for the p -wave interaction.

In the ‘He case the calculations of the energy

shift and width also show problems. The results are

presented in table (I-V) Although the order of magni-

tude is the correct one, it is clear that the shifts and

7idths calculated with optical potentials are not in

good agreement with the experimental value. The stand-
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TABLE (I-III)

Energy Shifts and

ZNERGY SHIFT (eV)

50+18

44 + 5

27 + 5

32 +

wid “hs of ‘He (18 level)

WIDTH (eV)

89 + 67

42 + 14

65+12

28 + ~

REFERENCE

(11)

(12)

( 9)

(1D)

TABLE (I - IV)

Parameter set used in reference (9)

-~1
b, = - 0.015 ng

c, = 0.21 M3°

| ~u

B= i 0.04 My

b =~ T
2] .09 7

Cy = 0.18 My

c=0
3 =

Roms (THe) = 1.88fm
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ard parameter set (not shown in the table) yields a

shift which is too large if a harmonic well distribution

for the density with ens = (1.63 + 0.03) fm is used.

When the Vans is changed in 1%, the energy changes by

0.3eV and the width by 5%. Treating the isoscalar para-

meter as an effective quantity, bert, the” resale 1s¥

(- 0.0235 + 0.000% )
-1

Me (1 0)

as the best fit in table (I-V), making ReB, =o0.

Although the energy shift is adjusted to the right value,

the width is far off from the experimental value. This

oroblem joins the He case to show the inadequacy of the

absorption term in standard optical potentials.

In the table (I-VI) the experimental results for the

oxygen case are shown. We can see that the isotope eff-

ect is roughly given by 25% and it is a large one. Us-

ing standard optical potentials there are no reported

problems in regards to the widths.

(4) Anomalous energy shifts and widths in

pionic atoms

Recently shifts and widths have been measured for

3d. states in nuclei of considerably higher Z than

sarlier and have been found to be several times smaller
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TABLE (I-V) (14)

Calculated Energy
Snifts and Widths for ‘He

‘1 Q level)

SHIFT (eV)

-75.7+2.0

WIDTH (eV)

45+3Experimental value (1¥

According to Deser et 21. 13

and Brueckner: ‘1%

with parameters of ref.

25)

with parameters of ref.
126)

75+10 40

56 4 Ar7

Calculated by Koltun and
. (17)

Reiten

ry1

Optical Potential Calcultions

bett =- 0.029Hf - 91

best =- 0.023m;t - 75

hefy =- 0.018 pt - 61

32

65

58
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TABLE (I-VI)

Experimental results for oxygen (18 level)

ISOTOPE

16,

ENERGY SHIFT (eV)

-15.43+ 0.10 (1%)

WIDTH (eV)

7.92 + 0.3214)

15 73+ (.2¢ (18) 7 5g + 0.5018)

18, -19.92%+ 0.26

-20.59+ 0.26

6.33 £ 0.43

8.67 + 0.70
——

Isotope Effect

(18, - 16,4)

~4.49 + 0.147%)
-4.86 + 0.37

-1.59 * 0.5315)
+1.11 + 0.09
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than expected (13) This tendency was pointed out

earlier by Ericson and Krell (13) Ericson and

Tauscher (24) give general indications of the possible

origin of the effect:

(a) The origin of the anomaly should be in the

local part of the potential, since the heviest 3d states

are affected while the 4f states behave normally and it

is strongly dominated by the velocity—-dependent term.

(b) The anomalous nuclei have strong Coulomb bind-

ing of the pion (highZnumber)andthenelectromagnetic

binding effects on the strong interactions may be res-

oonsible.

(c) The isoscalar scattering length is accidenta-

lly small and the local interaction term of the poten-

tial is dominated by double-scattering contributions

from the Pauli-blocking effect. Any other effect that

would prevent the cancellations from being so accurate

might hence give large contributions, and must be con-

sidered in a careful way.

Ericson and Tauscher ‘29 propose that the energy

dependence of the § -wave pion-nucleon amplitude is

mainly responsible for the anomaly since it gives rise

to an energy-dependent potential. Another contribution

is the gauge condition, i.e., everywhere in the equa-

tions momenta Pi should be replaced by ( Pi - eA,

in terms of the vector potential A... In the case of
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an external Coulomb potential V(r) we should

everywhere replace the pion energy 4) by [ WW — V, (vr)

including the potential. This generates an additional

potential from the energy dependence of the strong

interaction potensial PY

-—

CV = _V(oy dV ~ YT V(r MeNLh(1-&gt;V ARR = 4, (0) (1+ Z0)p" pl ts)

n -

dh ~e VAR is given IY

Vo ur (14 If) Hoe)40) ( Mn A
(I-52)

where g(t) can be found through the following expan-

sion for the energy shift:

(55... /4)" = a® +047. (I-53)

and BC _. We Mp . The range of the potential given

by equation (I-51) is the nuclear range. If the energy

dependence of S$ -wave pion-nucleon amplitude is

attributed to a non-local interaction, to leading order

and with a non-locality of short range

2uV = —u Ii (1426) Jap) + 169 [vim] (1-54)
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The Coulomb field can be generated by using the

Laplacion term of pion wavefunction in the Klein-

Gordon equation and it is the same as equation (I-51).

At this point we may wonder if the new Coulomb contri-

bution to the potential or a non-local character of

the interaction are responsible for the results claim-

ed in reference (20). With a standard optical poten-

tial with an additional isospin term of the form

—q (Pu + fp) (Pn- Pp)

and the above mentioned Coulomb term, there is good

(20)

agreement with the energy shift experimental data.

With the widths the anomaly persists and Ericson and

Tauscher ‘29 were not able to provide a suggestion

about the problem. According to sek (21) the extra

Z (atomic number) dependence of this potential is

not a real one, since it is buried in the pion wave-

function through the Klein-Gordon equation as it is

also stated in the non-locality discussion around

aquation (I-54). This result can be written as

ol =u 15) {p67 pV + L050 (I-55)

and the third term of equation (I-55) has the same

form as the so-called angular transformation terms.
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This angular transformation terms arise when nucleon

recoil is taken into account in pion-nucleon relativis-

tic problems.!%?! Working with the same problem in a

non-relativistic approach (adequate for pionic atoms),

the result is the same, i.e., the Laplacion term of

2

the density appears. The coefficient of the Vol) term

is given by

. re) (+)( rr £ — ~.0.020 Mg
(L 20)-—

in the non-locality approach to the problem, while the

angular transformation coefficient has a somewhat

smaller magnitude, given by

7) c. = _ 0.013 M3
(1-57)

where Co, is the isoscalar velocity-dependent p -wave

potential parameter and Mg is the pion reduced mass.

In equation (I-56) the Pauli-blocking corrected pr)

was taken. Based on the same order of magnitude shown

in equations (I-56) and (I-57), seki (21) considered

the angular transformation studies for pionic atoms in

a previous work $23) and showed that the terms obtained

in this way can be replaced by a renormalization of the

effective potential parameters. sexi ¢2Y) looks into

rhe neutron density distributions and the sensitivity
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of the energy shifts and width of 2084; for the

pionic 3d level. The results are given in fig (I-I),

which is taken from valorense (21). The parameter C,

is the neutron radius, Cp is the proton radius and t

is the nuclear diffuseness. Although it is possible

to obtain the appropriate shift around C,. ~ 7.0 fm

there is no practical way to achieve the same thing

with the width and then the essential problem of the

anomaly remains.

“he

There are more reports about anomalous data (2%) in

23Na case for the 1S width, which joins the Helium

cases in the light nuclei group of problems.

Seki (21) questions the reliability of the experimental

cases and in the 235a case there is the claim that

sxperimental values have varied by a factor of about 2

in the past. Aside the cases mentioned here, in the

next chapter we are going to consider in detail the

hidden level problem in 11054 case and an anomaly

related to the width will be found, leading us to the

conclusion that the pion-nucleus optical potential

requires reexamination. Since the quantities related

to. the anomalies are the widths, it seems clear that

pion absorption is the center of the problem.
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CHAPTER T1

“OLLECTIVE EXCITATICNS AND THE

NUCLEAR POLARIZATION

The failure to explain the discrepancy between

the theoretical and experimental widths in pionic atoms for

several nuclei lead us to consider two possibilities: ei-

ther the pion-nucleus optical potential has to be reexamin-

ed or particular nuclear structure effects present in the

bound pion problem are playing a role. An important ef-

fect of this kind is dynamical nuclear polarization, where

nuclear collective excitations are taken into account. Re-

cently (1) some studies were performed in several nuclei,

considering nuclear excitations above the lowest collec -

tive quadrupole mode and all the studied cases except 11%pg

were understood. In this chapter the 11054 case is going

ro be examined again from the nuclear structure point of

view, taking into account collective excitations like vi-

brations with three surfon (phonon) states and Giant Res-

onances. All these cases are analyzed in detail leading

to negative results, i.e., it seems that nuclear structure

affects are not going to provide an explanation for the

11054 case, leaving the optical potential as the only one

possible source of the problem.
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(1) Two and Three surfon states and dynamical nuclear

polarization in pionic atoms: The 11054 case.

The main interest upon dynamical nuclear polar-

ization comes as a way to obtain information from "hidden"

pionic levels. These levels can not be observed directly

in experimental measurements due to pion absorption, which

is very strong for low angular momentum pionic states. The

presence of this absorption process is what makes them in-

teresting for the pion-nuclear structure and strong inter-

actions. With dynamical nuclear polarization (6) the idea

is to find pionic atoms in which a nuclear excitation of

appropiate multipolarity is nearly degenerate with a de-

axcitation of a pionic level and a mixing is produced.In

srder to clarify these ideas, the 11054 case can be offer-

od as a convenient example, since it is going to be studi-

ed in detail throughout this chapter. The level scheme is

depicted in fig. (II-1). There we see that there is anear

degeneracy in the energy differences between the nuclear

ground state and the first excited state (a 0 —&gt; 2" tran-

sition) and the pionic n=4 and n=3 states. These dynam -

ical polarization effects were studied for the first time

in muonic atoms wherethe relevant interaction to be consi-

dered is the very well known electromagnetic force, mak -

ing the extraction of the quadrupole moments of the excit-

ed states a simple task. In the 1055 case it is this
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quadrupole interaction which is going to give us the in-

. : _3 op +

teresting mixing between the 10; 4f) and 127; 3p)states,

giving the following admixture coefficient:

7. an
- 1 &lt;2 3blHalot 46&gt;

E (2+,3p) = E (ot, 4)
(II-1)

where H, is the electric quadrupole interaction

between the pion and the nucleus. The pionic 3p level is

hidden by the absorption effect. Due to the mixing the in-

duced width for the pionic 4f level is given by

ind rt le)” |e
yt

(II-2)

and in an approximate way the 3p width is one order

’ . 2.

of magnitude bigger than the 4f width and if |al is small (say,

two orders of magnitude less than unity), the induced width:could

he comparable to the radiative width of the 4f level andan

appreciable attenuation of the 4f —3 34 x-ray line should

be observed. This transition is represented by a dotted line

in fig. (II-1). The experiment is done by comparing the X-

ray intensities for 10854 (which has no degeneracy effect)

against those of 11054, through the ratio

S = R (He Pd )

R (790)

where the quantity R is defined as:

(L1-3)
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Sia nt It
(II-4)

where I represents the x-ray intensity of the

pionic transition and (N,2) are the neutron and proton num=

per of the particular isotope. Translating equation (II-4)

ro our example, we obtain

(ony - Ld]
I [59— #5]

(II-5)

and a similar expression for 2198p). The 5g

—&gt; 4f x-ray line is not affected by any mixing effect and

it is supposed tobe equal for both isotopes. The ratio R

removes many experimental uncertainties like detector ef-

fFiciencies, target absorption, etc. Since the isctcope

108.4 does not have the degeneracy, the x-ray attenuation

given bv

A= =D (II-6)

is going to be a direct measurement of the in-

duced pion absorption out of the pionic 4f level in ++%pa,

and then

A =
5 (II-7)
go

fot

where the total width of the pionic (n,1) level
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is given by

od = N [(v2) —-&gt; (n-1, 2-1)) + Tabs (ne) + Vind (II-8)

being ly the width related to the x-ray transi-

tion, I be denotes the hadronic width in the absence of

dynamical nuclear polarization and I", is the induced

width related to the mixing effect and given by equation

(II-2). In general this induced width can be rewritten

Qe

ed =2¥% &lt;3; Ha | 1,1 2
AE —4 §

(II -9)

where A€-i¥ is the energy dif-

ference between the admixed levels:

A 5 = &amp;(Tg,m)— E(L,,T;) (IXI-10)

and I(W) represents the appro-

piate nuclear (pionic) state. In the 110.4 case the ex-

periments yield the following values:

S = 5.041 + 0.027 (II-11)

and then:
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A= (11.4% 238)"

Ing energy difference is given by

AE = (E+ + Ean) so (E, -+- =
5

¥

f

(IT-12)

(II-13)

and

g = (Ny - Nig) (II-14)

for a fixed attenuation A, equation (II-9)gives

a circular contour in the (A€,¥) plane (7) he experi-

ment can not specify A€ and ¥ in a separated way. This

circular contour can be seen more clearly if we rewrite

equation (II-9) as:

(AE+Te-3(88)=[3(8) (II-15)

Whe Le

2

_ J&lt;T TH LT]
- I + Tbs

(II-16)

With equations (II-15) and (II-16) the plots of

Fig. (II-2) can be constructed (8) It is clear from fig.

'II-2) that there is a quantitative disagreement with the

optical potential prediction, resulting a somewhat larger
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level shift and a considerably smaller width. This dis-

crepancy needs an explanation. In a second approach to

the problem, in addition to the mixing of nuclear and

pionic states caused by electromagnetic multipole interac-

tions there is a second mechanism provided by the pion-nu-

cleus interaction. Aside this feature, there isa consid-

eration of nuclear excitations beyond the lowest quadru -

pole collective mode. This was done first by Dubach, Mo-

niz and Nixon 1). In the description of these collective

states they followed the standard correction which is to

mix the one and two quadrupole phonon states. It was pos-

sible then to understand cases like 48q, | 104p,, 112 cd

and 150gn, but the problem with 110p4 remains. The calcu-

lated attenuation for several parameter sets of the pion-

nucleus ootical potential gives a value whichis veryclose

to the one reported in reference (8). A strange feature

is that one of the successful cases, 104p,, has a nuclear

structure which is extremely close to 11054 and the mea-

sured attenuation is different by an approximate factor of

two.-The calculated attenuationintheabsence of strong

mixing with the Tauscher parameter set (8)is given by:

n(

J
AY =

04 Ru) =

11 0%

11.0%

(II-17a)

(I1-170)
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while in the presence of the strong mixing with

the same parameter set, the result is

n
~

)
3) = 11.20% (II-18a)

A
37

10450) = 11.53% 1[-=18Db)

With the Batty parameter set there is some im-

provement:

A

IR

a

3

110 pd) =

Jd Ru) =

12.99%

10.12%

(II-19a)

odde 19b)

Finally, based on results of high energy (p,p')

slastic scattering experimentswhich led to differences in

neutron and proton root-mean-square radii in semiquantita-

tive agreement with those calculated in mean field theory,

Negele's Hartree Fock calculations were used to shiain

ER = 0.15 fn for '%%Ru and 0.16 fm for “10pa, yielding

attenuations of 10.0% and 13.2%, respectively, for the

Tauscher parameter set. The only possibility (not relat-

ed to the optical potential problem) which is left is the

consideration of a third state in the mixing which is not

present in the 104g, case. In reference (1) there is a

suggestion that the state with energy 1470KeV with the
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pionic 2p level is nearly degenerate to the other two,

being the problem the unknown structure and spin-parityof

his state. The state has been observed in (p,p'¥%) ex-

periments (11) in (p,p') experiments and (n,n'¥) exper-

ments! and is completely absent in Coulomb excitation

tests (2) Deye, Robinson and Ford (11) made a tentative

spin-parity assignment based in three-—-quadrupole phonon

states, in a pure phonon picture, giving oF, 2", 37, at

nd 6% to the states 1401, 1472, 1576, 1713 and 1933 Kev

(we used the reported energies of that moment to identify

the states). Their analysis makes the 1470 XKeV statea of

based on the model of predictions and the experimental an-

gular distributions for (p,p'). The 3" and 4" assignments

were used for the 1401 and 1576 levels, based upon decay

results (12) The 1713 level was assigned 2" because of

the similarity between 115 Pd and 124 Te spectra and the

6+ assignment for the 1933 level consistent with (p,p') ,

leaving oF for the 1472 level. It is now clear that this

assignment can not be correct because gamma transitions

were observed between the 1470 KeV level and the 0%,2 lev-

els (3) Another kind of information that should be con-

siderad is the theoretical spectrum that can be calculat-

ed in the interacting boson model. This particular model

has been very succesful in reproducing both the spectra and

transitions rates. Using his model, Iachello provided the

assignments of 37, 47 and 67 to the 1212, 1398 and 1574
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eV levels. Energies predicted by the model in this case

are 1200, 1378 and 1630 KeV respectively. The predictions

for the 2" states are located at 383, 802 and 1360 XeV. If

we look at the first two at in nuclear spectrum of 110-4,

depicted in fig. (IT-3), we see that the agreement is quite

good. If we try to associate the 1470 KeV level to the

third one, it would mean that the model prediction would

be off by more than 100 KeV, which is a relatively large

error for the usual performance of the model. Based on

these considerations we will take an assignment of 2" for

the 1470 KeV state throughout this chapter. with the tran-

sition strengths predicted by the interacting boson model

rhere was no improvement in the attenuation calculated by

taking into account a mixing which includes the pionic 2p

level.

The first task in this chapter will be the study

of dynamical nuclear polarization effect in the particular

case of 140 Pd using a microscopic model which takes into

account three excited states described by

|y gy = SY 2,12 + ol33D

7 = 3, [11&gt; +8. 125 + A. 13

(II-20a)

(I1 20b)

14&gt; =% 11&gt; +¥ 12 1 G13) (11-200)
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Fig. (II-3) Nuclear Spectrum of 11054, The square brac-

kets assignments are from reference (11). The curly brackets

are the predictions from the interacting boson model, The

sign (2?) is used to indicate the association that we are ma-

cing between the predicted 1360 KeV level and the observed

1470 XeV level. The assignments on the left are in agree-

ment with all the references and the ones in angular brackets

are taken from reference (3). All the relevant transitions

for the 1470 level were taken from reference (3) also and are

shown on the right side of the figure. On the left we show

rhe transitions used in the determination of model parameters.
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the subcripts of the [&gt; indicate the appro-

piate excited state and [1D 129 and | 3)are, respectively,

states with one, two and three phonons. In a nucleus with

a ground state density characterized by a radius parameter

3g the vibrational surface waves (surfon) are introduc-

od by allowing the radius parameter to be angle dependent:

a (Q) = 0,{ 1 ty) Tom Sem @) — AY fom | (IT~2L)
 A MM fon

(222) (032)

where A is chosen to preserve the normalization

to order q, so that

 7 CIT 15 6) 175 = A +0(¢)  ar-22)

where [I%) is a nuclear eigenstate. If a Woods-

saxon shape for the ground state density is used the par-

ameter is very close to unity. The deformation parame-

rers are treated as guantum mechanical operators and can

be written in terms of creation and annihilation operators

S
be

Tr.
+) &lt;

A _ A wm ~+

Som = Xo [Boy + (0) G5,| (I1-23)

with commutation relations:



-58~

A At

I Rom &gt; Ct’ | = S20” Omm”

Opn ) Lym | = [Ze, ? om = ©

Then, the nuclear density as operator

written, up to order a2, as:

(II-24a)

(I1-24Db)

can be

b (0) = piR,&amp;) 4 fe) Lo. 1Z Tom m0)

2 L i” 2

£7 jl’Jr4@BEYGuin: x
the symbol : : denotes normal ordering, avoiding

in this way vacuum fluctuations. In general, the multi-

pole (collective) operator can be written as:

Qy, = € (de op Tl) 5, (5) (IT-26)

where HE) denotes the proton density. In or-

jer to determine the parameters o&lt;. Bir and ¥ of equa-

tions (II-20) and the parameter X, given in equation (II -

23) (which are the essential parameters of our nuclear mo-

del) measured experimental quantities are used. In an i-

nitial approach to this problem the experimental informa-

rion from the first two excited states plus orthonormali-

sation conditions which include the third excited state ,
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are going to give the necessary number of equations for a

quantitative determination of the model parameters and in

this way try to asses whether Or not the presenceofathird

oF can lead to an explanation of the 13 Pd problem. There

are reasonable good measurements of the transition proba-

bilities for the lines (2] —&gt; 0) , (2; —&gt;07)and(25 —&gt;27)

summarized in table (II-1). Unfortunely the measurements

for the quadrupole moment of the first excited state are not

very conclusive. . Robinson, Mc Gowan, Stelson, Milner (2)

and Sayer reported a value of 0(2])=(-83.0 : 0.19) barns

sbtained from Coulomb excitation and using a versionofthe

Winther and De Boer Program for the quantitative analysis.

The reduced matrix elements for the appropiate multipolar

sxcitation, given by equation (II-33) constitute the in-

out information for this program. Harper, Christy, Hall,

Nagib and Wakefield (13) considered the problem of the

phase for these matrix elements, i.e., the constructive

and destructive interference between the 2] and the 23

states, obtaining (-0.72 ¥ 0.12) barns and (-0.45 = 0.12)

barns. A previous determination due to Beyer, Scharen -

berg and Thomson (14) gives values of (-0.483 7% 0.049)barns

for the constructive interference case and (-0.266 = 0.049)

barns for the destructive one. Due tO this experimental

situation the variation of the quadrupole moment over a

wide range will be considered. Replacing equation (I1-25)

in equation (II-26) fcr the quadrupole case, we obtain the



TABLE (II-TI)

Experimental Transition Probabilities B(E2,I,—&gt; Ie)

Energy (KeV) Transition

373 +] J.3
+ +

2. —&gt; 0,

42 4 LY
_

) 7
+ +

2,—&gt; 24

Transition Probability (e2fm?)

1820 + 120

1640 + 160

1800 + 300

Reference
 OrpTDMPm

(2)

(13)

f

3)

1

313,/ + 0.5 2} &gt; ot
2 gq

25.6 + 2,2 (2)
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operator:
~ ~ +

Qu = A a. +8) (0 rere
2/m’
Zm

~G,
2) 2 2’ At A

(ow a ) (2 ‘ 2) Fem’ fom (II-27)

where [2] = VY2¢ +1 and

A= ea, [ de «4 of
Tab

v= Sa 4 | "i

(II-28)

(I1-29)

being a, the proton radius. Using equation

'II-27) the quadrupole moment for a excited state is given

Ye

Q = &lt;2t2 1g, 12t2&gt; (II-30)

and then, the relevant operator to be used, de-

rived from equation (II-27), is given by:

8, = AG 2 BY (2 2 2)m fw (TD
‘Yo

-ne ~ansition probak.lities are JL A by:

B(gL. I,—7T,) —_t m,n) (II-32)
LIq4+ 1
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where the index IL stands for the appropiate

multipolarity and MAI, I) is the reduced multipole ma-

trix element given by:

m(IL,,I) = &lt; I, ll Ql I&gt;

Using equations (II-30), (II-31) and (II-32),

axpressions related to experimental guatities are found :

(see appendix II-A)

—/ 60

Sy UE {a [417 0% + 1 |

1 2 2,0 oF yp 2 rp 12 Zu)BX, -tas Log 503 3 Zz 1773

(E2.: + +\ _ 42%) =z [Vs AX 4 +343 sid, |

(IT-33a)

(II -33b)

Coty atB (ge; 4 —03)= [6 Axe f PEs) (IT-33c)
+, y= L3 (£2.22) = 40% dy By + EVsps

+.
2% 34,8,| 8%;12 E 4p, + Vp+55VF 64

Z

i. | fio 4, t ay &lt;2 24/35 (af os 2) (I1-33d)
a

In order to solve this nonlinear set of egua-

-ions a computer program was developed, taking into ac-

count the experimental allowances for each of the quanti-
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ties described in equations (II-33). In the particular case

of the quadrupole moment the range of values to be consi-

dered is very wide due to the phase oroblem discussed al-

ready. In spite of that, the solutions were found around

two values: -50.0 and -70.0 barns. Due to the fact that

we are considering experimental errors, the number of so-

lutions for this problem is, in principle, infinite. Never-

theless the allowances can be tightened to reduce the so-

lution set to -the representative ones, i.e., the solution

set associated with the absence of allowances. It wasver-

ified that in a given neighborhood the parameters relat -

ed to every solution, change very little and they were

very close to the representative solution. Using the ex-

perimental values of table (II-I) and this tightening pro-

cedure lead us to a finite number of solutions. We note

in table (II-I) that the value for the transition probabi-

lity B(EZ2, 2] —&gt; 0) is given in a wide range ranking

from 1480 elem? to 1940 elim? being the average around

1710 e?fml. With the tightening procedure several points

can be explored throughout the range with the result that

below 1820 e? fm? only solutions with 0(27) = -50.0 barns

were found. Looking at the experimental data we see that,

in general, low values for the quadrupole moment of the

first 2% should be the adopted ones (10) Then, we are go-

ing to explore the value range for B(EZ, 2] —&gt; 0g) from

1480 o2fm? to 1820 e2fm® with fixed values for B(E2,2,—&gt;0)



-R~4d—

and B(E2,2) —&gt; 27) given in table (II-I) and Q(27) = -50

barns, but before this exploration, it is good to see how

the attenuation is going to be calculated. Following ref-

erence (1) the basic procedure is diagonalization of the

pion-nucleus Hamiltonian Hoy in the model basis given by

nearly degenerate states with total angular momentumJand

oarity T , i.e., the determinantal equation is given by:

Lot f&lt; [1%],weJ57|(E-Hyp)[15,257&gt;}=0 (II -34)

these nearly degenerate states, as it was men-

+ioned before, are direct products of nuclear and pionic

states coupled to total angular momentum J and parity TT ,

the 2 1

H,, ITT = E11, | TT (IT~-35)

ik + &lt;ot| Ha + H, Jot) | [ned = Ene [ned (IT-36)

where Hg is the nuclear Hamiltonian, ITT &gt; is

a nuclear state with spin (parity) I(T) and € op its en-

ergy, Hom and Hy represent the pion-nucleus electromagnet-

ic and strong interaction, respectively, and 10&gt; is the

nuclear ground state. In equation (II-36), the matrix el-

+ + : , .

ament &lt;0 | Ht H | 0 &gt; gives us the pion-nucleus 1interac-

tion when the nucleus is in its ground state. The elec -
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tromagnetic part of this interaction represents the Cou-

lomb potential and the strong interaction part represents

the pion optical potential

‘opt = of| u! [o&gt; (II-37)

which is non-Fermitian due to the presence of

a strong absorption channel, making Eq complex and the

meaning of the "tilde" over the pionic states in equation

'II-34) is that a bi-orthogonal basis |71)&gt; should be used.

These states can be obtained through the equation:

T nN Ar
(ke + Veo, + Vypt ) | ne &gt; = Ene  eS (ITI -38)

the matrix element for the pion-nucleus total

Hamiltonian can be written as:

&lt; [1's W213 T,’ 157 [Hg ( [10g ne 30

(€1m, * Ene) 517 ORT, Sn’ Sas

CT15) we! JIT | (BHey, + 085 ) | [IT ne)30&gt; (11-39)

Nou € re

pa Tm —

ASE = Hew — Cot THe 10%

wt

(II-40)



wl5=

I] T 7

AH, = Hy — &lt;ot 1H | ot&gt; (II-41)

ir
the operator AH

em
can be calculated, consider-

ing a multipole expansion of

Hy, = Z Aer

where the L~-th term is given by

(II-42)

 0h) = $AH be / 2/3 nt y y. 02Lt1 M=-—I J vb m2 6 ) (23-13

FOL To# 0, and

Alp) —_ e” [&amp; [ 56) - p 3 )) + (II1-44)

for IL =0. Replacing the density given by equa-

tion (II-25) in equation (II-43), we obtain:

TL) 2 oO oOo 2

AH,,. = = ay ApS, { Lede 2 ofir[e-£]
o Pp “-

Go[je 8 [fee - £2©). +fom bn = SE[eeBf-8) 2
™m.

» i a 2 exh. 1%) 4p ry LHYEN pan ) { Y® Lr | a
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* 20 2/1/22 LY.5 7
® / . : (II-45)

L hn) [0e1(2 (8 i 5) Lim Lm
br ™

om’ -p/k Y-

™ where: A, = 1 fof) 0 ( Tt € ) _
T 4° 422 Ne

Eo A
being t the radius diffus-=ness and @, the proton

radius. For the strong interaction part a prescription based

upon the collective model is going to be used, considering

variations in the nuclear radius parameter ‘a’ as it was done

for the nuclear density, being the pion-nucleus optical po-

tential the object of the expansion:

7 du AY:

AH = a (Ze) | _ AT fonen aL bo

 30d (Za) IT fon hn] + BO)
(IT-46)

A is described as the standard version of the

semiphenological Kiss linger pion-nucleus optical potential,

~onsidering just the first two partial waves:

V + V
(II-47)

where the S-wave contribution is given by:

6)- (3)4 EY b plo) + (1+) by [fo69- fol=—2L (1+ E .

M B, p(x)(1+ D0)
1

(TT-48)

vith Ms My and ww standing for the pion, nuclear
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and reduced mass, respectively. The reduced mass was taken as:

Me — _MaMa
My+Mj

being Ma the nuclear

TL -49)

mass. The p-wave contri-

pution is given bv:

f= HLF. 2G
20 1 + pet)

(II-50)

where

Co

 =X (x) = Ti
Mn

Co pe
1+ Hg

iIN

1

Cq

pr) + 1 + Mr
Mu

[ to-f fo)

(1+t -51)

and fx) = Px) Fp is the total nuclear den-

sity. The relevant parameters for the optical potential were

already discussed in Chapter I. The Tauscher parameter set

is going to be used throughout this chapter. Up to now we

were discussing all the elements presented in equation

(IT-34) and models to be used in the calculation of attenua-

rion. The matrix elements used in actual calculation are

given in appendix (II-B). At the begining of this

section we used the induced width and total
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width to find the attenuation and now, in order to find

the width in the absence of dynamical nuclear polariza-

tion, equation (II-36) is solved using a version of the

PIATOM computer program provided by Nixon {123 A small

nodification allowed the calculation of all the necessary

overlap integrals related to pionic wavefunctions. The to-

tal width is calculated through equation (II-34). The o-

riginal program which gives us the nuclear model parame-

ters was extended to include the attenuation calculation

and all the relevant quadrupole matrix elements for a ve-

rification with Coulomb excitation. The discussionofthe

results for pionic 4f level in 110 Pd, including this ve-

rification is the subject of the next section.

(2) Predicted Attenuations for the (4f —&gt; 3d) line

and Coulomb excitation tests for the three surfon

state model:

As it was said in the previous section we are

joing to explore a range of values for the B(E2,2; —&gt; 0g)

from 1480 etm? to 1820 e2fm? with fixed values for B(E2,

2) EN 0g) and B(E2, 2) — 2]) given in table (II-I) and

taking -50 barns as the quadrupole moment value for the

first excited state with 2%. For the B(E2, 2] —&gt; 0g) =

1820 oem? case several solutions were found,but only four

fall within the experimental allowances for the attenua-

tion as it is summarized in table (II-III). Using experi-

mental information about excitation probabilities for the
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first g* in 110p4 (13) we can test the parameter sets (1)

and (II) related to a quadrupole moment value closer to the

adopted one (10) The results are given in table (II-III).

sets I and II are taken from table (II-III). The set I* is

obtained from set I cancelling all the contributions from

the 23 and set I** is also obtained from set I, making this

time Q(23) - 0. From these results it is clear that the

choice of the relative phases is sensitive and a better a-

greement is obtained with the set II. Looking at the set

I*, it seems the role played by the 2; state is an insig-

nificant one and in that sense is in agreement with the

general experimental observation that the 1470 KeV state

is not present in Coulomb excitation (2) Also taking in-

to account results from the set I**, we can see that the

particular structure of the 2 state seems to be not very

relevant when the Coulomb excitation process 1s studied.

The set II corresponds to the destructive interference case

between the one phonon and two phonon states in the 2 .

The required matrix elements for the calculationoftheat-

renuationaregivenintable(II-IIA)andthereduced quad-

rupole matrix elements needed in the Coulomb excitation a-

nalysis in table (IT-IIB). The atomic level information

is provided in table (II-IIC). The induced width in ref-

srence (1) is 1.84 eV and in this work the result was 3.067

eV for the set II. In order to test the sensitivity of

these results in terms of the B(E2,2] ip 0g) value, it was
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TABLE (II-III)

Calculated Model Nuclear Parameters for

B(z2,2] —&gt; 07) = 1820 alent

Attenuation: 17.28%

Set I Set II

-0.9747

3
-0.2963

-0.0861

-0.1057

+0.2063

-0.0861

3, +0.1057

A, +0.7648 +0.7648

+0.63553

g.

-0.6355

+0.1969 +0.1969

&lt;, -0.6104 +0.6104

™ ~0.7673 -0.7673

-0 3143 +0) 0948

0 27) -50 barns -50 barns

Attenuation: 21.54%

Set III Set IV

+0.9402 +0.9402

-0.2841 +0.2841

+0.1880 +0.1880

-0.1012

-0.7599

-0.6421

+0.3253

+0.5847 -0.5847

-0.7432 -0.7432

+0.0948 -0.0948

70 barns -=70 barns
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TABLE (II-IIA)

Matrix Elements related to Dynamical Polarization in

L10p4 for the set II.

We define |1) = [4a£,07&gt;,12&gt; = 3p,2"~, 13, =[2p,233

114

AH = AH__ + AH -
—

(energy units:KeV)

&lt;1lad, 12&gt;= -0.1292 - 10.0116 &lt;11AH_) 27=-0.0299+10.0068

{1)AH__ 13&gt; = -0.1237 - 10.0011 &lt;1lan_| &gt;= 0.0101-10.0029

&lt;2lae__13% = -1.8150 - 10.5577 &lt;2lAH_[3&gt;= 2.1187-10.3483

 alam 12&gt; = -0.7617 - 10.2372 L21a8_[2&gt;= 0.9213-10.1456

&lt;3]8F__ 13% = -1.4635 - 10.3979 &lt;3lan_l = 1.3857-10.2409

TABLE (II-IIB)

Reduced Quadrupole Matrix elements used in the Coulomb

mxcitation Analysis for the set II (in barns). We define

[1&gt;=10"&gt;,12&gt;=[27,[3&gt;=]20Yand la&gt;=12]&gt;
&lt;1llofl2&gt; = -0.954 &lt;1llali3d&gt; = 0.113 &lt;1lloll4d&gt; = 0.201

C2002 = -0.660  &lt;200l3)&gt; = -0.948 &lt;2f0lf4d&gt; =-0.898

Z3ol3d&gt; = 0.971 &lt;3Jlollsd = 0.161

TABLE (II-IIC)

Atomic level inforation for pionic 11054 (1)

Level Energy (KeV)

if -493.27

In -873.62

~1962.40

[x (4f—&gt; 3d) = 12.8 eV

AS
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TABLE (II-III)

Excitation Probabilities for the First 2" in 1053 for a

5s = 162° (2(2]) x 10%),

proj. E(Mev) Exp, *&gt;) SET I

‘be 7.00 48,5 + 5.3 53.5 53,6

‘he 8.00 87,3 + 9,3 97.8 98,1

165 27.96 454.0 + 47 557 562

165 31,96  819,0 + 86 994

165 35,97 1310,0 + 140 1551 1583

165 39.98 1810,0 + 194 2191 2256

TABLE (II-IV)

Tauscher Parameter Set used for the pion-nucleus optical

cotential.

by = (=0,0293 # 0,0005)r; by = (-0,078+0,007)My"
sanan ° : if

B, = (0.0428 % 0,0015)iMg Co = (0.076 + 0,013)% My ©

sg = (0.227 + 0,008) Mg® c, = (0,18 + 0,03) 17°

= 1,0 + 0,1
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increaseduntil we reached 1480 e?fm? (the lowest possi-

ble suporinental value according to the allowances) and

the results are summarized in table (II-V). For certain

values of transition probabilities there is only one solu-

tion and it is denoted in the table by (U), i.e., "unique.

In the rest of cases the closest attenuation theoretical

value to the experimental one was chosen. We can see that

the overall agreement is good, specially for the first

three values - of the B(E2,2] —&gt; 0g) in table (II-V), which

are associated to unique solutions. The entry "Reference

(2)" in this table is related to a calculation of the Ex-

sitation Probabilities for the first 2" with the parame -

ters given in reference (2) in order to verify the agree-

ment between the reported experimental values (2,13) and

then we can say that they are consistent , at least from

the Coulomb Excitation point of view. To proceed further

with our test, the Yields and total Cross sections can be

calculated for the attenuation cases 21.17%, 20.93% and

20.26%. The Calculated Yields can be compared with the

measured ones (2) in table (II-VIA) for the 23 state ,which

provides an independent verification.ThecalculatedCross

Sections constitute a prediction of the model. All "the

~oulomb Excitation calculations were carried out using a

computer code named COULEX and provided by Steadman {1% .

This program is an Updated and expanded version of the

Jinther- De Boer program for Coulomb Excitation calcula -



TABLE (II-V)

Excitation Probabilities for the First 2% in 11054 (13) for a OLas= 162°

( p2¥) x 10%

Projectile

Energy (MeV)

Exp. value

Reference (2)

Attenuations:

21,17% (0)

20,93% (U)

20,26% (U)

17.81%

22.74%

16 ,31%

28.10%

the Ye 16,

7,00 8,00 27,96

48,5 87,3 454

+5,3 +9.3 +47

51.4 93.9 480

43,8 80,2 464

45,0 82,2 476

45,7 83.6 480

46,2 84.5 484

85,8 49246,9

48,3 88.3 504

50.9 93.5 543

16,

31,96

819

+86

852

332

851

861

868

884

903

98380

15,

35.97

1310

+140

1325

1306

1331

1355

1365

1391

1414

1548

16

39,98

1810 B(E2,2]—&gt; 0)
+194 (e2fm? units)

1868 1820

1854

1884

1934

1945

1984

2006

1480

1520

1550

1570

1590

1640

2215 1720

E

Jn
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tions, developed by the MIT Heavy Ion Group. Another in-

. ; +

teresting test is to predict the vields for the 25 and

try to estimate if this state can be ohserved in a Coulomb

oxcitation experiment. In order to do that, calculated

yields and Total Cross Sections are provided for the 2!

and 2) states in tables (II-VIB)and (I1I-VIC).

In reference (2) there is no report of a 1470

KeV state and a 30 em’ Ge (Li) detector was used. We are

going to estimate the heights of the observed peaks in

the 20.26% attenuation case, which has the lowest yields

and then is closer to the experimental fact of absenceof

peaks. The behavior of the experimental peak height to

total ratio versus gamma ray energy is given in fig (II-

4) (17) for a detector like the one used in reference (2).

In table (II- vIl) this ratio is given for the relevant

transitions in 11054 In table (II-VIII) the experimen-

tal information of the (27 — 0g) and (25 —&gt; 0) lines

(2) is considered in order to obtain the total number of

~ounts which lead to the estimation of the relative ef -

ficiency, given by the functional form:

log FE =1 + &amp; log (E/E)
(IT-52)

where o = =1.1580 and Eg — 373.8 KeV. Now we

can estimate the peak height of the (23 —&gt;&gt; 0g) line tak-

ing into account the information from the (2, _&gt; 0.)line,
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TABLE (II-VIA)

Yields¥* fuCoul.onb per ote ions) and Total Cross Sections (mb) for the 2, state in

11054

Energy (MeV)

42.0

45.5

«9
a

13 a

-

Z % )

1A

] py 1

8.72

12.07

15.47

13.2

22.53

16

y

A

8.58

11.72

15.37

a

Up
8.9713.8

21EF 12.36

38.4 16,3606

S— ——

Exp, y (2)

13,8

+1,4

22.7

+2.5

37.0

+4.0

~J

foe

I

”
ME

Attenuation:

k YY W 104

21 17% J) 03% 20 25%



TABLE (II-VIB)

Yields* ( uCoulomb per ote ions) and Total Cross Sections (mb) for the 23 state in

110,54

Energy (MeV)

12.0

2 5.9

“9|

Attenuation:

oe
.

6,0 38,92

6 r 7  $4] 3

50,1 21,32

 NSamis—

21.17%

———

J
T

12.3 8,31

5 ge?
-~

YY
~~ 3

45.0 19.16

S— —

JU 932

’
T

C13. 5.23

7
, 7

3

a

{ R » 7”

27.6 11,77

 aa Wim ——

20 26%

-4
*xV «x 10



TABLE (II-VIC)

Yields* ( Coulomb per até ions) and Total Cross Sections (mb) for the 2) state in

110545

Energy (MeV)

142.0

15 5

111
4
-

Attenuation:

XY ¥ yn—4

479.7

1262.0

B50 _0

ns

0.
311 .35

662 , 35

 365.80

D3

7

17%

315.49

’)

45¢c.1

1235 . 2 6 74d 50

879.0 374,16

20.93%

 TT———
a

Ug
324,42£50.,0

1327.2 596.55

910.5 387,58
SN——— ame

20.26%

2.
&lt;

|
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TABLE (II-VII)

Transition

+ +

2 | ———&gt;&gt; 0
L g

+ L

2 y—&gt; 0
2 Cc

)—&gt; ofa
+ +

+ +

2, —&gt; 24

Peak/Total
0.1332

0.0711

0,0500

0,0918

0.0550

TABLE (II-VIII)*

Estimated Experimental information from reference (2).

Transition
+

2f—s 03) (2) 2 07)
g

Measured Peak

‘including Background)

(in counts)

316000 + 20000 473 + 27

Background

(in counts)

Peak

'without Background)

(in counts)

2700 i

—

«3 240 + 40

313300 + 20000 232 + 68

Total Counts

(after Peak/Total

~orrection)

Yields (uC per oto ions) 1327 ,2*%* 22 ,7%***

Total Count/Yield Ratio 1540 626

Relative efficiency 0,4062

gnergy (KeV) 373.8 (3) g13,7 (2)

2045000 + 130000 3270 + 960

 == a——
ETE. —————————ES—

+ For 45 MeV Oxygen Ions, ** From table (II-VIC), ***Taken

from reference (2), (x0.,23 from branching ratio)
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hranching ratios (3), the predicted vield given in table

(II-VIB) and the relative efficiency given by equation (II-

43). This estimation gives a peak which is approximately

the same size of the one for the (27 —&gt; 0g) line, above

rhe background level. In the energy region intended for

the (23 —&gt; 0 ) transition this means a peak of about three

times the background level and the conclusion is that it

should be observable. Since this result is in direct con-

tradiction with the experimental measurement of reference

(2) there is the necessary motivation for a repetition of

the experiment. Taking into account this experimentalin-

formation in a rigourous way, the propo sal is that the 27

state of the microscopic theory developed in the previous

section is not the 1470 KeV state and unfortunely there is

no candidate to replace it, In order to test this propo-

sal the experimental information from reference (3) was

taken into account, particularly the reduced transition

probabilities ratios. From the branching ratios given in

rable (II-IX) the following relaticns can be extracted:

(2,25 — 23) / B(£2,25 —&gt; 27) = 8.84 (II-53a)

B(E2,2) —_— 03) / B(E2,23 —&gt;27) =19419 (II-53Db)

— 07) / B(E2,25 — oy =0.026 (II-53c)“+

B(E2,24

with 20% error, Using equations (II=53), the

sarticular features of the 1470 XeV are incorporated 1in
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TABLE (II-IX) (3)

sranching Ratios for (1470 KeV—=—&gt; T.)* transitions

(20 $ error)

Transition

+- +

23&gt; 2,

25 =&gt; 2}
+

23—&gt; Og
+ - +

2,—&gt;0,

Fraction

0,458

0,325

0.1490

Energy

1096,3

(KeV)

656.4

1470.1

0.077 298.8

4 Assuming the 1470,1 KeV state a ot state,



-24-

rhe determination of the nuclear model parameters. For

that purpose a new computer program was developed and only

negative results were found, i.e., there was no solution

for the nonlinear system of equations, which is obtained

with the inclusion of equations (I1I-44a) and (II-44c) re-

placing equations (II-33a) and (II-33b) as conditions for

this determination. A solution was foundbyrelaxingthe

orthogonality conditions through small allowances on the

grounds that, in principle, the three states considered do

not span the whole space. The predicted attenuation 1s

~lose to 12%, a value already obtained in reference(1)and

using Coulcmb Fxcitation as a test, the intensity of the

(23 — 0g) line is so small that observation is impossi-

ple. All the quantities related to this calculation are

given in table (II-X). Then, it seems that collective ex-

citations like vibrations are not going to provide the ex-

planation for the 11054 problem and the only c¢ollective

phenomena which are left are going to be considered in the

next section

(3) Estimation of the Giant resonance role:

In order to estimate the importance of Giant

Resonances, the starting point is the isoscalar sum rule,

Jiv oil ry

Sor = y B (EL, 0—&gt;&lt;) (E.-Eo)
-

.

am
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_L(esr) RT Zor,
4 2M A °°

(II-54)

where 7 is the proton number, A is the nuclear

mass number, My is the nuclear mass and &lt; 200 means that

the average is taken over the nuclear ground state. In the

11054 case, we can list these sum rules up to the hexade-

capole as:

, 22

"m=

23

Sm=n

. E4

“T=

= 318 .89&lt; r? &gt; 00 eZMev Em”

= 669.68&lt; =,
nH

a Mev £m?

= 1148.02&lt;%&gt; e2MevEn®

(II-55a)

(II-55Db)

(ITI-55¢)

In order to estimate the sum rule in equation

(II-55a), we make the association

Y
10

tar
[IMS

(IT-56)

in 11054 the roms experimental value is 5.75 fm

and the sum rule for the quadrupole isoscalar resonance

-akes the 90% of the sum rule as the highest percentage .

He are going to follow this assumption and write:

JI=0
4 r -

B(E2,0 —
E2

G2,T=0) = (0.90) SZ,
-

(II-57)
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where Eo" is giving the effective locationof

the resonance and B(22,07 —&gt; G2,T=0) is the effective

transition probability. If perturbation theory is used

for the calculation of the energy shift, the quadrupole

interaction makes a contribution in the second order term

as the lowest possible. For the estimation intended in

this section our attention is going to be concentrated

in this term. This contribution in second order will be

maximum if we take the maximum percentage (already taken)

. : T= i

with the minimum possible energy B.SC. For the isoscalar

£2 we have

-~
.

LJ
Leone

1/3
p

(ITI-59)

which describes the position of the resonance

in terms of the energies as a function of the mass number

A. The quantity k is a constant ranking between 63 and

£5 MeV and we take the energy in equation (II-59) as the

Flo

affective location po0 for the resonance:

fg

Vm

Re 9" - 13.1% MaV/ (II-60)

and then the effective transition probability is given by

+.
-~ m=0) = 721.60 e fm?  (II-61)
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The purpose now is to compare the second order

~ontribution from this resonance with the contribution from

rhe nearly degenerate states which up to this point was

~he leading one.

Nefining:

_ 7 2

&gt; = &lt;4 0&lt;4fof3]Mem 3p 27351275%]
Eut — Ea - Ef

(I1-62)

‘nd

~ 72) T=o Zz

oo 1&lt;4 ot 3| AHem 3b Gp 37]
3 = — TT — - — —————————————————

E _ £ _ T=xo
wf 3b Eg,

where the relevant quantities used in equations

'II-62) and (II-63) are given in table (II-XI) and the ge-

neral form of the matrix elements is given by:

oy ~ T(z) /

S2I3] AH, | We'IT?

- Tre'te+I

4 e® (-1) (2041) (2141) Kk2 EL
 Le

2

| Ih rea 2 2 2 2 2 (II-64)

g (€2,1&gt;1)] ( © o ) Ly I 512

The numerical evaluation of +he absolute ratio

I.Sac

| 2 , Shanti a (11-65)
3S Eup ~ Eyp — EC B (g2,0'—27)
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and defining:

~

 dD, =
 -—Swen

_ TT —- Z

Et - Cop = Ec,

(II-66)

anA

_ T(

 PY ot 3 | Alem |2b 23&gt;]
D, = — ] TT

Eup = Ep - Eg

(II-67)
—

Alth
an absolute ratio in +his case given by

S

he] = 0.1
S-

(IZ-68)

|

Then the possibility of any role for the isos-

calar quadrupole resonance is eliminated since the contri-

bution is at most one order of magnitude less phan the

leading one . The next case to study is the octupsole res-

~nance and we have to consider matrix elements of the form:

~ = 7 (3) Jol!

Kz IT! AH, Ine 173%

~~ T+2'+0+1

HE e* (-1)

ls
8(es, 11]3

*q)

~ 0

{
2 Rone Rowe! av

(20+1)(2I+1)

2 eh) 2 23“0 7’ I 3

"2¢41]
[2T +1]

Y,

(11-69)
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TABLE (II-X)

Results for the three phonon model in 11054 taking into

account experimental information from the 1470 KeV state.

R = («. KX) B= A TC = )
Define: A = ( 17 2? ~) B= (B11F20f3) LL = (X71 ¥5.%5

xX. = 0,9965 Ai = 0,1220 vy = 0.0622
x

*, ==-0.1600 £32 = 0,9635

wa ==0,1600 3 = 0.1300 ¥., = 0,975

X, = 0,0835

Z| = 1.0442 IB] = 0,9601 IT] = 0.9644

— =&gt; -— &gt;
A.B = -0,0534 A.C = =-0.0780

-&gt; =

B,C = 00,0380

(in e2fm? units)

» +. _

B(E2,2]—&gt; 0) = 1480

+ +
B(E2,2,—&gt; 2.) = 2100

B(E2,25—&gt; 0g) = 26,4
| + +

B(E2,25—&gt; 07) = 5.58

B(E2,25—&gt; 27) = 99.72

B(E2,25—&gt; 27) = 878.8

Ratios

B(E2,25—&gt; 27) /B(E2,25—&gt; 2])=8,813
+ + + +

‘in barns units)

Qy470 = —10.34

Predicted Attenuation: 12 2
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TABLE (II-XI)

Fnergies:

£,5 =(-493,27-1 0,94x107°) KeV

E3p =(-873,62-1 16,25) KeV
£
£2p=(-1962,40-1 47.28) KeV

Cb= 373.8 KeV Et= 1470.1 xev

Transition Probabilities:

B(E2,0"—&gt; 23) = 28.5 2m?

B(E2,0"— 21) = 8600 osm?

8(E2,0—&gt;3%)=85402 e2fm®

Overlap Integrals:

b ( «5g 5 4x1 | )
.

)

~

} L Ry Rys dv = (0  8 LI
} 210

-6
+1 0. 1r010” 7) fm

om

| 1 RisRey dv = (0.456% 10 3+3 0 3602x102) em

po
LRme ap Kab dy = (1 .13556x10 0 4 +i

)
2 £36x107°) fm°

‘the Overlap Integrals were calculated with the PIATOM code)
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All the relevant quantities related to the cal-

culation of the matrix elements are given in table (II-XI)

and the results are:

{4Ff 0 34 pueh (2) | 3p 2T3&gt; = 0.1248 + 10.0112 Kev

(II-70a)

7

“ 4 073 Atem 3] 15 3 53&gt; =-0.0677+10.0068 KeV

I'1L -7 0b)

and finally if we consider the ratio:

403 |Abe [3p43) TTCd- Esesot — ap 2

2

Then even in this case the contribution from

-he isoscalar resonance is two orders of magnitude less

~han the leading contribution.

The conclusionatthispoint is that nuclear

structure is not going to offer a possible explanation,

for the phenomenon observed with attenuation (and then

the widths) in 11044, In consequence our strategyhasto

run to the issue of the optical potential, as it seems

that the cause of the problem is located there.
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CHAPTER III

DOORWAY STATE APPROCH TO BOUND STATE

PERTURBATION THEORY

The Doorway State Approach to optical potential

scattering developed in reference (1) is going to give

us an alternative treatment of the energy shifts and

widths in pionic atoms, putting the strong interaction

dynamics and the rescattering process on the same foot-

ing. With this method the essential physics of the

problem can be obtained with few doorway states and

sometimes with just the first one. The original forma-

lism was applied to problems with asymtotic boundary

conditions for the energy and it should be modified and

axtended in order to treat bound state problems, like

the pionic atom case. This modification is going

to be considered in this chapter and in order to test

and demonstrate the power of the method, some simple

examples will be studied at the end.

(1) A different approach to bound state

perturbation theory

It is useful at this point to review perturbation

theory and the first step is the consideration of the

~rigenvalue problem:
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(III-1)

where HH is the Hamiltonian operator given by

I H,+ (III-2)

where A is a perturbation and

1.
—

— 1 4 \/ (ITI-3)

is the unperturbed or model Hamiltonian related to the

eigenvalue problem that can be solved exactly, beingT

the kinetic energy operator and Vi the basic inter-

action. The eigenvalue problem

1, 1T&gt; = Er IT &gt; (11-4)

is known and V, is taken in such a way that there is

a one-to-one correspondence between the states [T7&gt; and

the states [&gt; . For the moment, degenerate cases are

set aside. From equation (III-1l) the energy shift can be

obtained, with the result

TV, de&gt;
Abe — Rg

(LIL~-5)



 5

In order to provide an expression for this energy

shift in terms of the information from the unperturbed

system and the exact energy, a formal solution for &gt;

has to be given. Using the closure relation for the

unperturbed states, [&gt; can be written as

r

YW &gt; = TIED 1154) mdm:
 wm £T

from equation (IIl-1) it can be seen -hat

. ws mV, 1S

Eo -€

(III-6)

(III-7)

“nd

L Iw ml =) m&gt;_ 1 mV, [ED (III-8)
n# mT By=Em

= Go(Er) Qn Vv, |
where (, projects out the eigenstate IY and the

Green's Function G (E) is given by

Gy (Er) =) mom] —_—
wo Ev— 6m  E.-H

(III-9)

Replacing (III-8) in (III-6) and assuming that

inverses exist, | ¥ocan be written as

©. rea TOS TID (III-10)
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Now equation (III-10) can be replaced in (III-5)

with the result

AE. = &lt;7]Vs &gt;
1 - G, (Ev) Qy Vv,

(ITI-11)

and it should be noted that the quantity &lt;7 &gt;

cancels exactly. The state [&gt; is not normalized and

equation (III-10) can be written as

&gt; = N-. 71 - G. (EQV, &gt;
(ITII-12)

is the normalization constant to be determined,

provided the formal problem given by equation (ITII-12)

can be solved.

Equations (III-10) and (III-12) give us, in a compact

form, the Brillouin-Wigner perturbation theory results

(2,3) The energy shift is usually expressed in terms

of a perturbation series, which can be obtained by

axpanding equation (III-11) in

AE. = IV, 11&gt; + LTV, G6 (Br) QV, [TO +... (TII-13)

At the same time equation (III-11) has a structure

that can be treated adequately using the Doorway State

cormalism't) | since it can be written as
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AE, =&lt;TlYY, _ -

LV Cotes oT /V. |T&gt; (III-14)
1

and we can speak about doorway states in the same sense

as in refervenge td! , being the main difference the

rescattering operator given by

N = Vv, G, (Er) VV, (IITI-15)

where the Green's Function was replaced by the Reduced

Green's Function:

BD (E,) =G, (5) Q = G (Er)-pos (III-16)

The starting vectors in the doorway basis are

naturally given pv (1)

D&gt; =NTY I&gt;

and the biorthogonal basis

—~ ~ T

D&gt; = N, v, )ir&gt; (III-17)

is constructed in the

following way (3)

n-1

3. = Win, &gt;=) &lt;FIwin &gt;If aire
1=o
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3,&gt; =N, wt D&gt; -) &lt; wt PID IT
fe )

This construction is also known as the Lanczos

construction or Lanczos method (4) for matrix diagonaliz-

ation. The W operator is tridiagonal in this basis, i.e.,

&lt;DIWID,DS#0 if In-m [$1 (111-19)

and this property allows us to write the energy shift as

a continued fraction:

AE. == (RIN,) 65, = |(NY
1 - Wo — Woy Wo ..

L=W,,=
(ITI-20)

where the following definitions were used:

Ny, = &lt;TD. IW ID &gt;

5. = &lt;P |—t—

(ITI-21)

(I.1-22)

The first order perturbation theory term is related

to the first doorway state normalization through the

equation:
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To YIV, [7(NAN) _ (IITI-23)

In this representation the perturbed wavefunction

has a simple structure when it is calculated in the

interaction region. Using equation (III-12), the result

Ls

NES = NoN, VY,
Sev

e

Ny N, ——L WID=N) Ip) (111-24)TT Ber r2

Up to now, we were working under the assumption

that the perturbation V, can be factorized as a product

of two square roots. In the case of non-local inter-

actions this kind of factorization may be difficult

since the solution of a nonlinear integral equation is

recquired-

(7,7) = [ F'9 @ 7 77) (111-25)

this problem can be solved (1) by noting that the

square root is not needed and a simple product

representation can be taken for the same purpose:
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pe

V.=4 3

In this case, the doorway basis and its dual

built from two different starting vectors

~ pn

,&gt; = N,MITY&gt; ID,&gt;= No) 17&gt;

Ni&lt;h the rescattering operator

A
—

on—— 4 T(E)

(III-26)

can

(ITI-27)

(III-28)

The method developed so far in this section for the

calculations of the energy shifts and wavefunctions

assumes that E , the exact energy, is known. In

standard problems this is not the case and all the

previous formalism can be useful if a self-consistent

calculation is practical in terms of computer time.

This is possible when the convergence is very strong and

with few doorways the required accuracy is achieved. If

the convergence is such that many doorways have to be

used to achieve the required accuracy then the calcula-

tion turns to be inpractical and a different approach

should be called for. This approach can be based on the

Rayleigh-Schroedinger perturbation theory where the
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anergy shift and wavefunction can be obtained from

information coming only from the unperturbed system.

This will be the topic of the next section.

(2) Rayleigh-Schroedinger perturbation

theory and the Doorway State Approach

The Rayleigh-Schroedinger perturbation theory can

be obtained in a compact form by noting that equation

(III-7) can be rewritten as

mf = he Cui&gt; = te nl (ma) (TTE29)

which 1s essentially a shift in the energies. Using

equation (III-29) in (III-6), the perturbed wavefunction

is given by

&gt; =&gt; Ly
' 1- Yer) (v= 2&amp;)

(ITI-30)

where

Bey =) md &lt;n
) ele. = GG, (&amp;) Qr

is the reduced Green's Function. Replacing

(ITII-31)

(III-30) in

(III-5), the result is
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AE =&lt;T IV) eT
1 = Ter) (v,- 2Ey)

and we an rewrite (III-30) as

t  o&gt; = Ny

1 - B(er) (v,-46;)
[7 &gt;

(III-32)

(ITI-33)

Equations (III-32) and (III-33) give us the

Rayleigh-Schroedinger perturbation theory. It should

be noted that the self-consistency in the calculation

of the energy shift AE. is still present. An expansion

in powers of Af, can be performed on the right hand

side of equations (III-32) and (III-33) and the co-

efficients of such expansion are going to be functions

of the information related to the unperturbed system

and they can be found once, making the self-consistent

calculation trivial. The expansion of equation (III-32)

in powers of Ab, is completely equivalent to the expan-

sion of equation (III-14) around €+ and evaluated for

the energy E..

 3 = " 7

AE.=(NIN,){6(&amp;)+) 3 250 | 2E (III-34)
n=t oo £ £= €

DY for better convergence:



-103~

(VEN) 6 (60)
~y vie "6 (E 1

(N2 N, ) ) +Abd | AE, (III-35)
n=" &amp; E = €E-~

AE,=-

Lt 5 (€) is given by

J
on

LE) = £3 — |]

= ATE ve &gt;
(III-36)

It 1s convenient to introduce the definitions:

Je) =, FEeyvy = wie) (III-37)

Yow
A Rey = VV, FREY, (III-38)

7
 451) =

1 = w(€)

[TI T I-39)

afl
JH (IITI-40)

and from equation (I11-38) we obtain

Tul) no (nit)

So (-1) Ww (6y) (III-41)

Using equations (III-36) through (III-41) we can

see that higher derivatives of I (¢) can be found by

means of recursion relations. For example, the first

derivative is obtained from:
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sO _ = cM, Bem __ XE (III-42)

and in the same way:

(3)
5 = L sc” — gc wr (@ sc ® we cM 3s

(2) g(2 x st &lt;3) 111-43)

~ (4

s()_ L cs" _ (e® 1@6 ® oy(2§1)pC) e(1)

1) 5p (3) (2) ~01) (1), (2) &lt;1) (3) ~(1) (1), (® ~(1)Diy eh) Rett) gt),Belt) Bey wPe® |1

-

sam

»
3) ~ 2) 4. 2) (3) _ go(1) - III-44)

-~

)
Si__g®® s®c_g@ Wy 6® 8) (111-444)

and in general

NJ = 1 MWe (eo)

(N-1)! ~y EN

ha

«J | (ITI-45)

be = eg.

N

5 (~)™! c (NHt-1) aM) (III-46)

Equation (III-35) can be rewritten as:
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As,=
CL @N een

~~ -1 oO - —

 T'S ef ae
Nn=2

(III-47)

In the construction of the doorway basis the

matrix elements wt are found and SI can be calcul-

ated as a continued fraction''). To obtain all the cL

the following recursion relation has to be aged ’y

5
1) —= 1+ ww - — — 1+ we (III-48)

| = Wr 1-wW

If we have the doorway basis, the calculation of

the matrix elements:

) wy = &lt;D. | A | Don &gt; (III-49)

4)
is necessary to obtain the Sin matrix elements. At

this point the calculation could be expensive in terms

of computer time, and it is therefore important to keep

the A&amp;, powers to a minimum. Fortunately in most

practical applications very high powers in the energy

4.)
shifts are not needed. Once the Sh matrix elements

are calculated, equation (III-46) can be used to gener-

ate all the necessary gh) . As a byproduct, the

wavefunction in the interaction region can be found

through a similar expansion:
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/ = = m- ™

N, WW, 12&gt; = NZ) &gt; AE, 6! (6) 1D,&gt; (111-50)
N=0 m=1

in terms of both powers of the energy shift and the

doorway basis ! D&gt;) . The only one quantity that

has to be determined a posteriori is the normalization No

and this can be done through equation (III-50), giving

NT = z 8, e0 | (T1
+

51)

and

So cen = YT ag" 6,0 (en)
w=4{

(ITI-52)

Standard perturbation theory fails in providing

a good representation for the perturbed wavefunction

and it will be interesting to study what equation

(ITI-50) has to offer in that respect. This will be

done at the end of this chapter with simple examples

where the exact solution is known.

Another interesting byproduct is the perturbed

Green's Function in the interaction region. To see

this we consider the equation for the full Green's

Function:
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GE) = GG, (&amp;) + G,(E)v, G(¢&amp;) (ITII-53)

Multiplying from the left by Qy= I - Yo 1 (P-

srojects onto the state JT» , eigenstate of HgJ

*S = €-~ | 1 (III-54)

and

G, (&amp;) = lo
£ - H,

(III-55)

Ne obtain

~here

A. GE) = De) + 86) V, GE)

Be) is the Reduced Green's Function:

Fe) =@. G(€) =) Im&gt;&lt;m)
mer EE —=Em

Solving equation (III-56) from the formal

(III-56)

(ITII-57)

volint of

view we get

JE) =
1

1 - Y. = Oe),

Oe) (III-58)
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Expanding ((€) in terms of Pot DEV, we see

Ll.
wink WC

J lc) = — + Ge)

1-9),
(III-59)

As in the case of the energy shift and the wave-

function, we can expand (III-59) around €, and evaluate

it for arbitrary &amp; such that

AE = £-€,

and

 5 (€) = 1

1-9 (er) Vs
Vl) - —L Ue) —L Dac

1- Den) V, Fel DEV, :

fo —d Be) De) — ST
1- UCer)V, Se r) i- Br(er) V, Oar) A+

(III-60)

In the interaction region we have two alternative

axpressions:

Vv, G (¢) =Y 6M cen at™ Vy 0 (er) (ITII-061)
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VV =

I, GEV, = » cre y AEM
w=1 '

=

1} (ITII-62)

We are going to explore equation (III-62) in a

simple example where the full Green's Function is well

known: Harmonic oscillator with a harmonic perturba-

tion. This will be done at the end of this chapter.

(3) Representations of the Reduced Green's

Function and methods for its calculation in applications

rhe Reduced Green's Function is defined by

OU (€) =) Iommi G, (£)— 22! (111-63)
mer EE €Em £- €&amp;y

Equation (III-63) is the form used in Brillouin-

Wigner Theory for the self-consistent calculations.

When we follow the approach based on the Schroedinger-

Rayleigh Theory, equation (III-63) becomes a limit:

5 Cer) = Lorn $ G (¢) — frzxly (ITI-64)
Fae. [0° Eooy

From the operational point of view, equation

'TII-64) can be rewritten in a more convenient form as

5 (¢y) = fo 2 }(e- €) G, (6) (III-65)
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to the equation (III-65) we give the special name of

differential representation. It is also possible to

obtain an Integral representation:

ep = 4d G.(6) |2TL E -€ -
Co T

(LLI-66)

where the closed contour contains the point &amp; = E;.

Jur choice of the particular representation will depend

on the particular problem at hand.

An alternative method to the previous two, which

is going to be used in the next chapters, is based on

the fact that once we have the unperturbed state and

the corresponding eigenvalue Er , we have all the

necessary information required in the calculation of

the Reduced Green's Function. This feature can be

shown by looking at the simple case of a spherical

local potential. There the differential equation for

the radial part of the Reduced Green's Function is

given by

Ltd 5 = ’ -67

ne + 2 - 4) $V, (0) | By Cre = (ry y (III )

3, (+) Bop
Ia
I
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At the same time the Schroedinger equation gives

1S

1 4° L001) _

FEne Tin Zavt FV (orb,, 00 = 0

In equation (III-67) and (III-68) we will

(IIT-68)

write

the radial parts in the following way:

Fe (he) = Une SA
a

5 (v) = Ans (r)_

(ITI-69)

1 70)

Now the Reduced Green's Function is factorized in

“he following way:

5, (e,¥) = 4, OM, (x) $ (¢') v/ (ITI-71)

Replacing equation (III-71) in equation (III-67)

and using equation (III-68) we get:

id (cg) 4 m,, (6e/) J., (e/) v’
fo dn de

&gt; (III-72)

borg, d My, (or) gy (ev! = Slee) xg,(0 8 (vv
«

If we multiply equation (III-72) on the left by

i (¢) , the factor  ,( vv’ can be cancelled

due to the presence of the Dirac's Delta Function and
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CCL? | N= Slee!)= 242) (III-73)

Ld {rao dma] Sev) = ¥*9;

fquation (III-73) can be decomposed in two

squations that can be solved in sequence:

2 hy, (oe) = 2S Cee) = 7 3 (c)  (III-74)

(ryr’)X;, ’) = h,, )ih (0) 4M, Gor
(ITI-75)

Equation (III-74) has the following boundary

~ondition:

and solving for

| /Y

Vg (vv) —

Lp) (0, v")
w—

—  OD (III-76)

ho, (
oY

bo +’)  the result is:

pI

¥

B (v=)=2m [ £242 (1) dt (x11-77)

from equation (III-75) we obtain:

(

3 m,, (oe) = tas Bre) - Be [Poled (ITI-78)
Po\Y x DY 0J

We introduce the following definitions
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[Ys
~

7

“ap (ve, 07) 14 ror or

Mr) =

m., (ev!) LH
/

(ZII-79)

and from equation (III-78) by integrating between

and and conversely, we get

» &gt;

WM., Cee) -~ m.,(x, v’)

“| _dt — 2 [= [4 (+) dt (III-80)
Ltn CTL

Moy Ce)=MLS (0%)
* ¢ 2/2

[rh [gin i
Ypi 22) OC

From the continuity condition for the Reduced

Green's Function, i.e.,

3, Coe’ 5
“9 ! ) == &amp; (« v') |

v — ov! ne —r

(III-82)

where ¥/'o ¢’_¢'+§ and ~v/=v-$S with 3-0 Equation (ITI-82)

is eguivalent +0

mM, (Yi) = © =
Y —-wa ) ) wi, Ca ) C.(¢)) (ITI-83)

Jsing the normalization condition for ?, (+)
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|
3 PO

p2 J /

A (5)dt =1 — £242 (5)dt (TII-84)

and equation (III-83) in equation (III-0), we Obtain:

Y oO ’
: | EMOL ”, Ee t 4Mo (5 | va I,

(III-85)

&lt; 4

Me Cov’) = wg] 2 tg (¢) dt
Y A 0

(ILI-86)

Finally using the projection condition:

&gt;, ng &gt; = 0 (III-87)

which can be translated as:

vt 82 (e) ",, (0!) = 0

"a

J

che function CC, (+) can be obtained through

\ x

Cale) = = Jol | 242 (5d’ | x2, (x) 7 tu ) v
- 0 x oo

x2d x herb) | £2 (4) dt
 Bey)

(ITI-88)

(III-89)
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The complete radial contribution to the Reduced

Green's Function will be given by

ou lox!) = 0, (¥) ",, (+ *’) 2, (v7) (IL1I-90)

Equations (III-85), (III-86), (III-89) and (III-

90) will be applied to the study of pionic atoms in the

forthcoming chapters. This set of equations gives us

he possibility of immediate numerical applications for

realistic cases. It should be noted that the input

information is coming in its entirety from the state [nd

4° Degenerate Cases:

One natural question is what to do in case of

Jegeneracy. In such a case we see that:

1 5 &gt; ge €. 1D =
rr

=a J J

where D is a set of states with the feature:

—

 ey
a

Te

—_— £
for any [39&gt; in D

(III-91)

(III-92)

being €y a constant. The set forms a degenerate set

of states. This property makes the application of our

formalism impossible. In this section, a method is
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going to be developed in order to solve this problem

and it will be based on standard projection techniques.

The use of these techniques to consider degenerate

cases 1n perturbation theory is not newts}, being the

essential difference between previous approaches an

ours, the use of the Doorway State Formalism. The

first step is the introduction of projectors:

Po which projects onto the space

(III-93)

Q=1-T which is just the complement

Using equations (III-78) the perturbation can be

rewritten

3 /

and the

as:

BV + HVE, +a +,Q,

following definitions are L111 sduced

L=VY,-Pp,Pp

Hy = H, + BLE

G (6) = (e-H.)

(III -94)

(ITII-95)

(III-96)

(III-97)

the eigenvalue problem for the Hamiltonian H, can be

solved using standard diagonalization techniques and
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in practice it is a simple problem, since usually a

few states should be considered. Once this 1s done, a

new set of states D is generated with the result

4 1TY=6,17&gt; 17&gt;
~
 nd 1. (III-98)

where the degeneracy is removed. If in a given case

the degeneracy is not removed then the prescription is

to apply projection techniques a second time or n. times

until it is achieved.

Assuming that in the first step the remotion is

achieved, which is the common case, the state [TY is a

linear combination of the states (sD éD and

Dv =
SITS =

ny
~~
T) =

TD
i)

Vx

D~- { oo

4 T JS

OJ

(III-99)

(III-100)

Now, equation (III-1l) can be written as:

(4 + PVP + WEY=(su)[hy =E, [4 (FTI-10D)

and then the energy shift is given by:
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of KTV,Qy[YD
&lt;rlUlwvey&gt;y ar Lead Tg

(ITI-102)

agquations (III-94) and (III-95) were used in order to

obtain the right hand side of (III-102). Following a

similar procedure to the one outlined by equations

(III-6), (III-7), (III-8) and (III-9), we get:

 &gt; =&lt;ik&gt; — jr
1-G, (eg) QU

replacing equation (III-103) in (III-102), the

(ITI-103)

energy

shift can be written as:

17&gt; (III-104)
AE. = &lt;1 Ry 1 - G~GyCE.)QU

iL

by expanding equation (III-104) and using equations

(ITII-99) and (III-100) in addition to

Dy Qn oy Qn = G5 (III-105)

the energy shift can be rewritten as:

-106)Abr =&lt;TIV 5YS=Ly,IY)(III-106
v= &lt;The G,(E+)Q5 Y, :

and taking into account the important result:
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G (8) &amp;z = G(EQ (III-107)

which essentially is a consequence of the diagonaliza-

tion procedure and allows us to simplify even further

equation (III-106) to give

Abr = KTV, ———2|T&gt;—rly,Ty (T1I7108)
‘ {- G, (84) QV, z

This equation has a convenient structure for the

application of the Doorway State Formalism and the

interesting feature is that, aside the state [T&gt;

(obtained through the first order diagonalization) and

the dtperturhed energy Er , all the required information

comes from the original unperturbed problem. The new

object here is a Reduced Green's Function given by

(ge) =6,(EnQ, = G, (Ey) = |m&gt; &lt;m|
mEeED Er = €m

(ITI-109)

ana che as.:oclated rescattering operator is given by

 WN (EX) = Vv, oF; (ED VV, (I11-110)

At this point, the approach based on the Brillouin-

Aigner Perturbation Theory outlined in section (1) can
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be applied without difficulties. In this Rayleigh-

Schroedinger case, equation (III-108) is expanded in

terms of the energy shift AE, and the structure is

formally the same as the one outlined in section (2),

being the difference a Reduced Green's Function given

Im

% (6) = G, (&amp;) Rp = G, (6) -) [n&gt; &lt;m)
mED Ey — €m

i ©
 (6 = |

&gt;, (1) eT D
(ITI-111)

where €, # €3 and the expansion is done around the

energy value €;. In an alternative way the expansion

can be done around €x and in this case a differential

representation for the Reduced Green's. Function

~an be obtained:

= D — Ln, 1 m m

F (ey) = G, (60) Q Fr 16.(- rl | &gt;&lt; |

Lr 2 (6-6) G,(0)]
(1 v1 112)

From the formal point of view there is no difference

between the calculation of this Reduced Green's

Function and the standard Reduced Green's Function

applicable to the nondegenerate case and that is the
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essential advantage of this alternative approach.

Up to now, the guidelines for a general structure

in the Doorway State Approach to Bound State Peturba-

tion Theory were given and the task to be continued is

the application of this theory to simple cases (which

can be solved exactly) in order to examine and to test

its features, in particular convergence as the most

important one.

(5) Simple Cases to study:

In this section the approach outlined in section

(2) based on the Rayleigh-Schroedinger Theory is going

to be studied through simple cases that can be consider-

ed analytically and with detail. Our attention is going

to be concentrated in energy shifts, wavefunctions and

Green's Functions. The functions are found in the

perturbation region with relatively few doorway states,

being this a success of the method. We are going to see

that usually less doorways are needed for a good approx-

imation to the energy shifts. In standard perturbation

theory a good representation of the wavefunctions is, in

general, not possible due to the fact that the trunca-

tion is done in terms of the perturbation higher orders.

In the Doorway State Approach, the contribution from

higher order terms in the perturbation is kept at every

level of truncation, which is the origin of strong



-122-

convergence that leads to a good representation of the

wavefunction and a good approximation to the energy

shift. Next, we are going to consider the examples:

(a) One dimensional Harmonic Oscillator and a

Harmonic Perturbation:

In this case the unperturbed Hamiltonian is

~onsidered to be:

,
2 4 2 2

2 + — Hwx
? MA 2

and the perturbation has a harmonic form also:

 bh = 1

2 fA Th

(III-113)

LII-114)

where (W is the natural oscillator frequency and is a

size parameter for the perturbation. The combination of

squations (III-113) and (III-114) gives us a new

Hamiltonian which is a new Harmonic Oscillator with a

natural frequency given by:

Wo= Vii W (III-115)

At this point it is useful to introduce second

quantization language in order to make the handling of

problem simpler and then, the position and momentum
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operators can be defined as:

py Cy (a-a)

X = (d+ a)
V2 Mu

using the commutation rule for the

(ITI-116)

i LL ve)

position and momentum

operators

the commutation rule

Lx, bb] =

for
tT .

A and a is found to

25I|

(ITI-118)

be

(III-119)

and then

alnS =n [n-1D&gt;

nS = pt [ned

(ITII-120)

(TT1 -121)

and the unperturbed Hamiltonian can be written in normal

form as:

LA = [ofa + lw (III-122)
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To find the rescattering operator, we use the

square root of the perturbation given by

//, (a*+a= 2 a0

and the Reduced Green's function 5

»

(ITI-123)

Je) = mom Ly dm&gt;&lt;m| (ITI-124)

with the result-

Al

’ *

%) Av, FeeVv, = £ (dra) en (tra) (ITI-125)
mzs (5-4)

where [$Y is the unperturbed state to be considered,

such that

H sy = E lsD (III-126)

and

€ =(s+ 1) (III-127)

To proceed with the construction of the Doorway

basis it is convenient to write the rescattering operator

WH) and the starting vectors 12, and |D,&gt; in the
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Harmonic Oscillator basis:

 1 Ch) — 7

Wim oe 2 |foun) | (n+1) (ns2) Dur oe + (m1) Son
( -$ n-1 {

GS) [5 +77 Sa] (ITI-128)

VAL = No’ D&gt; =JEG) ISHLS + gs. [S-1&gt; (III-129)

and

(WEN) = 8 (2541) (III-130)

The rest of this basis can be constructed with

equations (III-18). Equations (III-128) and (III-129)

are particularly convenient for computer calculations.

We begin our numerical studies with p= {1 (the original

interaction and the perturbation have the same size) and

the state to be considered in detail will be the

ground state. The results for energy shifts calculated

through equation(III-47) and the wavefunction coeffici-

ants in the Doorway Basis given by equation (III-52) are

summarized in table (III-I). In that table Ny represents

the number of Doorway States used and M is the maximum

order in the energy shift expansion, to be considered

for truncation, which gives stable numerical values with

seven figures. The first observation is that conver-

(n) |

gence for the energy shift AE" is very good. At the
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TABLE (III-I)

Results for the Harmonic Oscillator With a

Harmonic Perturbation With R= 1 for the Ground State

AE (Exact) = 0.,2071068 Ww

Af (First Order Perturbation Theory) = 0.

Np M

5

h

5

A

5
co

3

4

4

h~N

Np M

|

2

3
3

4

4

4

Np

Fq

0.7830095
J.9040504

0.8307469

J.8285029

0.8284296

0.8284272

0.8284274
0.8284274

N0.8284274

$
a

J

)

J

J

0.0026419

0.0011744
0.0011277

J.0011262

0.0011262

M

1

 ey

J
1

J

0.4601959

0.1829259

0.1743676

0.1740891

J.1740802

0.1740797

0.1740797

0.1740797

3

)

J

0.0004722

0.0002111

0.0002029

0.0002027

J,

)

/

J

0.0000026

nN

J

0

0.0809657

0.0349413

0.0334427

0.0333943

0.0333927

0.0333927

0,0333927

&gt;
)

J

0

0.0000839

0.0000377

0.0000362

AO) (units)
02

0.2277580

0.2105047

0.2100259
0.2100112

0.2100108

0.,2100108
0.2100108

0.2100108

¥,
0

J

J

0.0146797

0.0064620

0.0061917

0.0061886

0.0061883

0.0061883

0.
J

-

)

)

J

J

J

Q

0.0000149

0.0000067

(M) ;

At (vunits)

0.1957524

0.2260126

0.2076867

0.2071257

0.2071074

0.2071068

0.2071068

0.2071068

J2071068
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second Doorway level of truncation there is a ~ 10%

deviation from the exact value. The exact shift can

be reproduced up to third figure at the third Doorway

State level and up to the seventh figure at the sixth

Doorway State level for an "intermediate" size pertur-

bation. By intermediate size we mean that the perturb-

ation is about the same size as the original interac-

tion, like the one that we are considering. With the

first Doorway and H=5 we see a 6% deviation while in

the same case with M=o0 (the simplest truncation) there

is a 3.5% deviation. This behaviour is what makes the

truncation at the first Doorway level interesting in

physical applications. The second observation is that

a relatively low order in the energy shift expansion is

required for accurate results. If we are interested in

few percent is probable that there is no need in going

beyond the zeroth order in the energy shift. In the

sxample that we are considering for seven figures, the

saturation value 1s reached within the fourth and fifth

orders. Of course, this is an extreme case which is

unusual in practical cases. In the case of a Third

Doorway truncation to obtain the energy shift up to the

third figure is possible at the first order in the

energy shift as it is shown in table (III-II). In that

table the sixth Doorway truncation is also shown in
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TABLE (III-II)

Convergence according to the energy shift order for

rhe third and sixth Doorway truncations in the ground

state case with f? = 1.

Third Doorway Truncation:

45 () units)

0.2105047

0.2078735

0.2076993

0.2076876

0.2076868

0.2076867

0.2076867

Sixth Doorway Truncation:

M (s .

J 0.2100108

0.2073029

0.2071203

0.20710771

4 0.2071069

0.2071068

\ 0.2071068

TABLE (ITII-III)

Results for the Harmonic Oscillator with a Harmonic

perturbation with A= 0.1 for the Ground State.

AE (Exact) = 0.024404424) Af(First Order Perturbation
Theory) = 0.025 WW

Np M

1 3

2

Ay

)
AEC ( wW units)

0.02439024

0.02441397

0.02441127

0.02441127

H) :

nel (LD units)

0.02438290

0.02440718

0.02440443

0.02440442
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detail and we see that it is not necessary to go beyond

the first order to obtain a result with three figures.

So with little effort reasonably accurate numbers can be

obtained for the energy shifts in the presence of

perturbations of intermediate size. For small perturba-

tions is clear that the demands are much less as it is

avidenced in table (III-III) and for most physical

applications this is a very interesting case. If we

try a truncation at the first Doorway level in that

particular example we get good results up to the third

figure and just keeping the zeroth order term in the

anergy shift expansion. A comparison of the relevant

numerical values in table (III-III) shows that the

approximation is very good and performs much better than

the first order perturbation theory. The real effort

has to be done when the perturbation 1s a large one as

it is shown in table (III-IV) where a value with three

figures can be obtained at the 8-th Doorway truncation

level. The calculated M values are for saturationwith

seven figures and the three figure accuracy can be kept

with four orders in the energy shift. A few percent

accuracy can be achieved at the fourth Doorway level with

zeroth order in the energy shift, which is remarkable if

we realize that the perturbation has a strength five

times than the one of the original interaction.
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TABLE (III-IV)

Results for the Harmonic Oscillator with a

Harmonic Perturbation with 3 = 5 for the Ground State.

Af éxact) = 0.7247449 W,AE(First
= 1

bm AE ( 0 units)

-

0.5555556

-0.2685097

0.4229153

0.7100424

3

"i

1

23 0.7741272

~ 17 0.7862582

12 0.78894938

0.7889031

0.7889777

0.7889913

0.7889937

4 J

2

0 Q

(1 Q

Order

25)

Perturbation Theory

AE ( Ww units)

0.4738284

-0,09032234

0.2276600

0.5193817

0.6766929

0.7164256

0.7233197

0.7244950

0.7247004

0.7247369

0.7247434
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Although there is more effort, we can see that results

are guaranteed. Another important item presented in

table (III-I) is the wavefunction coefficients in the

Doorway basis, denoted by Vv, . They are calculated

jointly to the energy shifts to show a general feature

of any perturbation theory: Convergence for energy

shifts is faster than convergence for wavefunctions.

In this example when the energy shift is stable within

seven figures at the sixth Doorway truncation, the first

coefficient stabilizes at the seventh Doorway trunca-

tion. This is also the case with the second and the

third coefficients. Looking at these coefficients the

suggestion is that a good representation of the wave-

function in the‘ perturbation region (same as the

interaction region in this case) is possible. In order

to answer that question, table (III-V) was prepared. In

that table the comparison is made using the normalized

perturbed state given in equation (III-50) with the

state in the perturbation region, given by

NeV, [ey and the unperturbed state in the region,

No VV, |4&gt; , which is the first Doorway State. The

normalization constant for the exact state



TABLE (III-V)

Unperturbed, Perturbed and Exact wavefunctions for the Harmonic Oscillator with a

Harmonic Perturbation with = 1 for the Ground State in oth Doorway truncation,

YIN ¢3IZY
p.25 0.2573925 0.3664322

3.50 0.4687170 0.6347283

0.75 ©0.6013724 0.7447589

1.00 0.6442884 0.6935005

1.25 0.6079180 0.5276924

1.50 0.3172941 0.3172990

1.73 0.4,20%42 0.1256053

2,00 0.28752033  -0,100103

2.25 0.1901525 -0.0814552

1.50 0.1166802 -0.1013039

2.73 0.0665862 -0.0901822

3.00 0.0354017 -0.06679€5

3.25 0.0175587 -0.0432922

3.50 0.0081328 -0.0251355

3.75 0.0035207 -0.0132447

4.00 0.0014254 -0.0063852

4.25 0.0005400 -0.0028315

1.50 0.0001915 -0.00115%

4.75 0.0000636 ~0.0004396

5.00 0.0000198 -0.0001546

&lt;KXI3&gt; &lt;5i4
0.3455604 0,3329042

0.5996579 0.58130359

0.7098957 0.6957187

0.6771193 0.6769788

0.5502862 0.56358687

0.3914789 0.4173289

0,2506816 0.2762262

0.1514028 0.1660472

0.0932142 0.0910036

0.0632405 0.0647044

0.0474606 0,0182049

0.0366965 0.0041678

0.0272287 -0.0023357

0.0186710 -0.0044683)

0.116727 -0.0043224

0.0066378 -0.0032707

0.0034400 ~0,0021125

1.0016297 -0.0012032

0.0007080 ~0.0006142

0.0002829 -0.0002836

{Ty
(nw)

w&gt; = Lgl |y&gt;

&lt;I8&gt;  &lt;XIT&gt; &lt;517&gt;Ssi5&gt; &lt;Ble&gt; &lt;S5i172

0.3301382 0.3296178 0.3295238

0.5778223 0.5772719 0.577291S

0.6941401 06940834  0.6941090

0.6786062 0.6791118 0.6792164

0.5692309 0.570348 0.5704151

2.4208615 0.,4240322 0.4209858

0.2770580 0.2766179 0.2765059

0.1635807 0.1628949 0.,1628357

0.08567081 0.0863457 0.0864033

0.0410727 0.0413390 0.05414607

0.172513 0.0129749 0.0180474

0.0064840 0.0071848 0.0071408

0.0024521 0.0026903 0.0025615

0.0013154 0.000939%0 0.0008193

0.0010981 0.00023529 0.0002243

9.00099407 ~0.0000304 0.0000530

0.0008048 -0.0001385 5.0000217

0.0005655 -0.00015:3 0.0000252

3,0003479 -0.0001273 0.0000291

0.0001897 -0.0000863 0.0000263

ExAcT = &lt;§IWel¥eracr&gt;

SERS &lt;xIgY Exact
0.3295072  0.3295039  0.3295039

0.57718051 0.5771792 0.5771792

0.6941185 0.6941215 0.6941215

0.6792340 0.6792368 0.6792368

0.5704176 0.5704159  0.5704159

0.4209695 0,4209657  0.4209657

0.2764914  0.2764909 0.2764909

0.1628414 0.1628446  0.1628446

0.0864230 0.0864252 0.0864252

0.0414713  0.0414692  0.0414692

0.0180364 0.0180326 0.0180326

0.0017793 0.0071187 0.0071187

0.0025514 0.0025547 0.0025547

0.0008309 0.0008343  0.0008343

0.0002482 0.0002481 0.0002481

0.0000708 0.0000673  ©.0000673

0.0000206 0.0000166 0.0000166

0.0000049 0.000037 ©0.0000037

-0.0000015 0.0000008 0.0000008

-0.0000044 0.0000001 0.0000001

J

0)
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is given by

Ne | =
AE FopPT

einer | Vy to &gt;

(ITI-131)

whe

~ X =

AVI = (X; N, ) (ITI-132)

is just the first order perturbation theory energy

shift. In the Harmonic Oscillator case we obtain:

then

&lt; 4
{n) (nm)

EXACT |, | Verner &gt; = ire (nt 3)W
2y1+p

the normalization constant is given by

-1

Ne = 2 N, (148 )
A (2nt1)

(IIT-133)

(ITI-134)

and the normalized exact wavefunction in the perturba-

tion region is given by

up

Wi.

&lt;I, | Yr |ar 2 = Ng [IW &amp; f

 (2)
CH, (yimc)e THES rn RD (III-135)

a = “
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S = hwX

and the unperturbed wavefunction (First Doorway

(III-136)

wave-

function) can be written as:

_1r2

&lt;S 1 PES =, (Yip 5 H (5)e 25° rro137)

since we are working with the ground state n=o is

taken. In the construction of table (III-V) the mass

M and frequency&amp;)were taken as unity. If we examine

the convergence process closely, the immediate observed

feature is that the representation of the wavefunction

is getting poorer as we go farther from the origin

where oscillations appear. With the increasing number

of Doorway States the oscillation region is pulled away

from the origin region where the representation is good.

Within few percent accuracy and for a region close to the

origin , a good representation can be obtained at the

third Doorway truncation. At the level of the nineth

Doorway truncation there is no distinction between the

perturbed and exact wavefunctions within seven signifi-

cant figures. Another interesting point to examine is

the Green's Function representation and in order to do

that, table (III-VIA) was prepared. In this table the



TABLE" (III-VIA)

Green's Function in the Perturbation Region Evaluated at E = Ej + AE for

the Harmonic Oscillator with a Harmonic Perturbation Up to the Nineth Doorway Trun

cation and A = 1, The Symbol (i,j) stands for the i-th Doorway and j-th Doorway

Coefficient

ip (1,1) (2,1)

+0.1979627 o

-0,08711197 0.4308044

0.139363 0.1678514

-0.1569223 0.1601230

-0.1569850 0.1598788

-0.1569870 2.1598711

~0.1569671 0.1598709
-0.1569871 0.1598709

) -0.1569871 0.1598709%

exact -0.1569871 0.1598709

i
™

(3,3) (5,8)

0.0520619 0.289415)

0.0230069 0.1278969

0.0220963 0.1228349

0.0220680 0.12261223

y 0.02206721 0.1226725

rxsct 0.0220671 0.3226725

(7.4) 1,5)

0.0090524 0.0506708

0.0040479  0.0226582

) 0.0038930 0.021791%

Exact 0.0033881 0.0217638

ig (3.1) (9,2)

3 0.0000023 0.0000092

rxact 0.00000 0.0000040

(2,2)

-0.9725796

&lt;0.2936387

-0.3250252

-0,3260169

-0.3260482

-0.3260492

-0.3260492

~0.3260492

-0.3260492

(5,5)

-0.7914290

~0.2737404

~0.3020752

«0.309572

-0.3029844

-0.302984%44

(7,6)

9.2852930

0.1275129

D.1226924

0.122537

(9.3)

0,0000503

0.0000217

(3.1) (3,2) 3,3)

0. 3

0.073792  0.2991220

0.0314632  .1275410

0.0301258 ©0.1219486

0.0300836  0.1219432

3.0300822 0.1219430

5.0300822 0.1219430

0.0300822. 0.1219430

0.0300822 ©0.1219430

-0.8652418

-0.28304238

'-0.3127861

-0.3137248

-0.3137542

-0.3137552

-0.3137552

-0.3137552

(6,1)

0 0 0

0.0041481 0.0016815 0.00652247

0.0001846 0.0007484 0.0041056

7.0001774 0.0007193 0.0039462

0.0601772 0.0007184% 0.003341)
0.0001772 0.0007184 0.0039411

(6,2) (6,3)

7,1) (8,1)

-0.7716220 0 : 0

-0.27103072 0.1275129 0.0000522

-0,2986357 0.0000058 0.0000234

-0.2995126 0.0000056 0.00002235

(8,2)

(9.4) 9,3) (9,6)

0.0002796 0.0015652 0.0088125

0.0001209 0.0006768 0.0038104

(4,1)

0.013157?

0.0052460

0.0055121

0.0055047

0.0055045

0.0055045

£xact 0.0055043

(3,1)

0 0

-0,2767047 0,2341060

-0.3056224 0.0103455

-0,3065287 0.0009936

-0.3065569 0.0009923

~0.3065578 0.0009923

-0.3065578 0.0009923

(5,2)

0

0.0094899

0.0041937

0.00402772

0.0040226

0.0040224

0.000992

a (4,2)

0.053337

0.023292)

0.0223441

0.022314)

0.0223134

0.0223134

0.0223134

(4,3)

-0.8114672

0.1277826

0.1225807

0,1224177

0.1224126

0.2224124

0.122412¢

5

(6,5)

0 0 0

0.0512806 0.2870434  -0.7795151

0.0228231 0.1277526  -0.2720822

0.0219373  0.1227945  ~0.2999982

0.0219099 0.1226411 ~0.3008620

Exact 0.0219091 0.1226362 -0.3008895

(6.6) 1,1)

0

(7,2)

n

(7,3

f

°

0.0000732

0.0000327

0.0000315

0.0000315

[} 0

0.0002968 0.001628¢4

0.0001327 0.0007282

0.0001227 0.000700)

0.00012175 0.0006994

(8.3) (8,4)

0 0

0.0002866 0.0015930

0.0001286 0.0007147

(8,5) (8,7) (8,7) (8,8)

0 0

0.0089170 0.0502056

0.040007) 0.0225254

0 ©

0.2839711 -0.7660093

0.127407223 -0.2703076

Exact 0.0001236 0.0006868 0.0384456 0.0216461 0.1224338 -0.2985391

X (9,7) (9,8) (9,9)

’ 0.0498450 0.2829425 -0,7618093

Exact 0.0215522 0.1223399 -0,2978115

A

CF
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Green's Functioninthe perturbation region is given in

rerms of the Doorway basis, i.e., the coefficients of

such expansion are the tabulated quantities. It can be

~bserved that the convergence properties are quite

similar to the wavefunction ones. It can be shown that

these convergence properties are not altered by the

particular energy where the Green's Function is

evaluated and that is the purpose of tables (III-vIB)and

(III-VIC) where the evaluation is done at ¢&amp; = &amp;, + AE,

and &amp; + AE,. The results for a very large perturbation

A= to , are given in table (III-VII) where a good result

for the energy shift can be obtained within three sign-

ificant figures at the nineth Doorway truncation. It

should be noted that after an apparent breakdown at the

second Doorway truncation, the sequence recovers its

way towards the correct values. In this case it is

clear that a big effort has to be done in order to ob-

tain the adequate information, although considering

perturbation theory in its standard form this will be

merely impossible. Then we can conclude that in the

Harmonic Oscillator case with a Harmonic Perturbation

the Approach outlined in this chapter works in a very

adequate fashion and in what follows the main features

are going to be verified for other simple examples.



TABLE (III-VIB)

screen's Function in the Perturbation Region Evaluated at E = E, + = AR, for

10

the Harmonic Oscillator with a Harmonic Perturbation Up to the Nineth Doorway Trun-

cation and f = 1, The Symbol (i,j) stands for the i-th Doorway and j-th Doorway

roefficient

«a. (2.1) ’ 2.2)

~0.1996034 9

-0.0886079 0.4487%92

-0.1373883 0.1708208

~0.1593174 0.163018?

-0.1593770 0.1627780

~0.,15%3788 0.1627733

~0.139373% © 0.162770)

~0.1593739 0.162720)

-0.1393789 0.31627703

Paact -0.1393789 0.14627103

(3.13 },2)

3

€3.3) (4.1) L482) (em
ta 13)

v

=1.0087664

-0.2983022

-0.3103168

~0.3312782

~0.3313286

0.3313296

-0.331329%

-0.331329¢

-0.331329¢

0 0

aN0

0.0747006

0.0315424

9.0302111

0.0301697

0.0321685

5.001684

0.0301684

0.0301664

? 0

0.304497)  -0.863242

0.1285746 -0.2850357

0.123179  ~0.3130834

9.122979  -0,3360173

0.122924) © -0.3160462

0.1229741  -0.3160470

0.1229731  -0,3160470

0.1229741  -0.3180471

0.0331429

0.0057034

0.0054228

9.003465¢4

0.003¢652

0.005¢632

0.003566%2

0.0335236

0.0232486

0.0223076

0.0222785

0.0222776

0.0221773

0.0222225%

0.2964602 -0.819736%

0.1286508  ~0.27805C)

0.123443)  -0.307168)

0.1232822 -0.3080690

0.123217)  -0.3080%68

0.1232771  ~0.208097%

0.1232271 -0.3080972

(3.3) (5,4)

0.0522222 0.2922852

0.0239916 0.1285393

8.0220859 0.12249350

0,0220580 0.1233390

) 0.0220572 0.1333343

luact 0.02203571 0.123334)

(3.9%)

+D.7924176)

«0,2747558

-0.,3032442

-0.3041221

~3.,335179%0

«G.3041798

(6.1)

0

0.0004078

0.0001308

0.0001738

0.000126

5.0001236

6,2)

6 .

0.001662) 0.0091984

0.0002373 0.0040786

0.,000708% 0.0039209

0.0602073 0.0019161

0.000707¢&amp; 0.003913%9

(6,4) 6.3) ‘6 6) 2.1)

e

0.031433¢%

0.022805¢

8.0219239

0.0218969

0.0218961

-v

0.289324 -0.7852811

0.12828357 -0.1728271

0.12)3268 -0.30093a8

0.1231743 -0.30172987

0.1231692 «0.018238

0

0.0000716

1 0.0000319

0.0000307

0.0000307

2,4) 7,3)

9.0093270 0.¢507900

2.0040249 0.C226408

0.0038234 0.0212774

*gxact 0.0738666 0.0217502

(7,6) 7.7)

9.2871859 -0.7755320

7.1230188 -0.2717113

3.1231378 -0.29942253

0.1229840 -0.3)0029537

(8,1) ‘(8.3

¢ ° ° 0

0.0000311 0.0002828 0.0013815 0.008896) 0.0503030

0.0000229 0.0001266 0.000707? 0.0039808 0.0223087

a.0000220 0.0001216 0.0606801 0.0038259 0.02316329

(8.4)

0

0.0000125

0.0000036

0.0000054

““ (9.1) (9,2)

? 0.0000022 0.0000089

gxact 0.0060009 6.,0300039

(9,3) (3.4) (9,3) (9,6) (9.7)

0.0000494 0.00027265 0.001533) 0.0087941 0.0499273

0.030021) 0.000119) 0.0006710 0.0037940 0.021539

(?.8) (3.9)

0.2843348 -0.7647292

0.12267672 -0.2984010

5.1) (5,2)

»

0 ¢

9

0

0.00231737  0.0094462

0.0010193 p.0d41548

0.2009791 0.0039912

0.0009719 0.00)9861
0.0009779 0.0033860

0.009729 0.0037860

(1,1) (1.3)

{i
i$

° 0

0.0002918 - 0.0016348

0.0001301 . 0.0007178

0.0001231 G.0006924

0.0001250 0.0006919%

(8,7) (8.8)

Q.2853887

0.1277903

0.122817¢8

-0.7693812

-0.2708919

-0.2992121

i

 |

»N



TABLE (III-VIC)

Green's Function in the Perturbation Region Evaluated at E = Eq + Eq for the

Harmonic Oscillator with a Harmonic Perturbation Up to the Nineth Doorway Trun-

cation and = 1, The Symbol (i,j) stands for the i-th Doorway and the j-th

Doorway Coefficient

(1,1) (2,1)

~0.1957524 0

-0.0851070 0.,.081912

-0.1516373 0.163930)

~0.15327368 0.1563099

-0.,1538037 0.1560616

-0.1538059 0.1560536

-0.1538061  0.1560534

~0,1538061 0.1560534

-0.1538061 0.1563534

Pract ~0.1538059 0.156053)

(2,2)

0

-0.92715%38

~d.2872470

~0.3180910

-0.3190955

-0.3191279

-0.3191291

~-0,3191291

~0.3191291

-0.3139290

(3,1)

n

(3.2) (3,3 (4.1) (4.7
0 SE

0 0

-0.8352402 0

-0.2804755 ©0.0131595

-0.3098510 0.0057928

-0.3107981 0.0055553

.0.3108283 0.0055478

0.310829) ©0.0035675

-0.3108293 0.0035473

-0.3108293 6.0055475

! §

0

0,0725579

0.0313228

0.0299796

0.02991362

0.0299349

0.1206755

0.0299349

0.0299348

0

0.2925936

0.,1262705

0.1208559

0.1206813

0.1206757

0.1206755

0.1206755

0.1206756

jy!

0.0530493

0.02335235

0.0223951

0.0223646

0.02236136

0.0223636

0.0223636

0.2877866

0.1266851

0.,1214911

0.1213256

0.1213204

0.1213202

0.1213202

(5.3) (5,4) (5,3)

0.0517934 0.2858227 -0.783840)

0.0230244 0.1270604 ~0.2724565

0.0221078 0.122002) -0.30059¢61

0.0220788 0.,1218425 -0.3014839

0.0220729 0.1218375 -0.3015116

Exact 0.0220279 0.121837) -0.3015125

(6,1) (6,2) (6.3) (6.4) (6,5) (6,6)

0 0

0.0004233 0.0017064

0.000189) 0.00074631

0.0001819 0.000733)

0.0001817 0.0007324

0.0001817 0.0007323

0 0

0.0092571 0.0510855

0.00413395 0.0228440

0.0039781 0.0219531

0.0039730 0.0219252

0.00397229 0.021924

0 0

-0.7133317

-0.,2710339

-0.298111

~-0,2926799

~0.2997077

0.2841870

0.1270805

0.1221241

0.1219690

0.1219640

v (7,4) (7,5)

, 0.0090814 0.050519)

0.0050769 0.0226795

0.0039202 0.0218081

rxact 0.0033152 0.0217802

(7,6) (2,7)

0.2829227 -0.2666888

0.1270115 -0,27011732

0.1221318 -0.2976443

0.1219752 ~-0.2985258

(8,1)

0

0.0000133

0.0000060

0.0000058

(8.2) (e,3) (8,4) (8,3)

0

0.0089428

0.0040258

0.0038680

. 0 0

0.000053? 0.0002913

0.0000242 0.000131}

0.0000232 0©0.0001260

0

0.0016076

0.0007237

0.0006953

“® : (9,1)

9 0.0000023

Zxact 0.0000010

(9,2)

0.0000095

0.00000412

9,3)

0.000054

0.0000223

(9,4)

0.00028136

0.0001230

(9,5)

0.C015777

0.000684)

(9,6) 9.7

0.0088355 0.0497408

0.0038310 0.0215625

(9.8) (9,9

0.2811746 -0.7581503

0.1219167 -0.2970697

1&amp;4 re re ="

 Nn

0

-0.8010575

-0.274997

-0,3036611

~0,3045744

-0.3046032

-0.3046041

=0.304L6041

fy

0.,0023683

0.0010528

0.0010109

0.0010096

0.0010095

0.0010095S

0.0095473

0.00424542

0.0040752

0.0050700

0.0040697

0.0040697

(7,1) (7.2) (7,3)

0

0.0000752

0.0000838

0.0000325%

0.0000324

0 0

0.0003033 0.0016456

0.0001361 0.0007388

0.0001309 0.0007104

0.0001308 0.0007098

0

(8.7) (8,8)

0 0 0

0.0500821 0.2819458 -0.7618085

0.022548 0.1269254 -0.2695772

0.0216622 0.1219510 ~-0,2976919

1

—t

 Ww
"TN
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TABLE (III-VII)

Results for the Harmonic Oscillator With a Harmonic

Perturbation With B= 10 for the Ground State

AS (Exact) = 1.158312 W

AE (First Order Perturbation Theory = 2.5

MNp J J

QA Q
2

Q
‘

)

7 042236945

4 -0.0091527

10 0.1549323
14 0.3083534

12 0.,4052915

10 0.4453037

0.4580210
0.,4617709
0.4628680

0

-0.3408318

-0.0960450
0.1129463

0.2350880
0.2832662

0.2983051

0.3027147

0.3040027

3 0

0

0

-0.4035197

-0.,0729190
0.0518822

0.0901557
0.1013158

0.1045699

0

-0.4513739
-0.1110140

0.0784918

0.1510896

0.1734846
0.1800267

0.1819354

D

;

3
n

8

8

Np M 0, ¥s %.
Qa

~
y

L 0 J

4 ) J

10 ) )

14 0 S

12 -0.2610387 0

10 -0.0365490 -0.1418721

-0.0320615 -0,0172838

-0.05206461 0.0189756

-0.0578714 0.0295422

0

0

0

S

0

)

nh

4

x

-
i

n
0

-0.0742780
-0.0082730

0.0109577

7 8

3 8

3 8

J

-0.0390871
=0.0040451

Np 4 Ts
(0 .

Af" ) Wunits) As (0 units)

i r) 0.7142857

0.6737387
1.115731

1.272837
1.320414
1.334325
1.338371

1.339548

0.5592363

-0.0228818
0.0387331
0.7708834
1.013229
1.113259

1.145035
1.154427

1.157170

a

10

L4

2

1.0
2

0

+)

J

0

-0.0207601

™

]
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(b) One dimensional infinite square well with

a delta function perturbation:

Now we are going to consider an unperturbed

Hamiltonian given bv

H. p + Vx) (III-138)

where

0 =—-4aAs¢xsa (III-139)

V(x) =

oO otherwise

and a perturbation given by

V, (x)=AY,a50x) (III-140)

where V, has energy units and jointly to 4 , which has

units of length, plays the role of the potential

strength. The quantity fis just a dimensionless size

parameter for the perturbation. For the unperturbed

problem a purely discrete spectrum is going to be found,

with states of well defined parity as it is the case for

Harmonic Oscillator also. The new ingredient is a high-

ly singular and localized perturbation represented by the
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delta function interaction. As it was done for the

previous case, our concentation will rest upon the

ground state, described by the wavefunction:

Fox) = 1 cea IL x
= a

(III-141)

the delta function can be replaced by any representation

in a limit form (i.e., gaussions, heavyside functions,

otc.) and we can take the square root of it. Once all

the operations necessary for the construction of the

Doorway basis and related quantities are performed, the

proper limit can be taken. Another possible approach

to this problem is an asymmetrical choice in the factor-

ization of the perturbation. For example, the following

starting vectors can be taken:

D&gt; =N, [¥S 3S = N,V, 1S (III-142)

and the result for the normalization of the states will-

VED@

CHANINDY = LAV, ES= AV0 =7A3V, (III-143)

as it will be the case if the limit procedure would be

followed. The rescattering operator is defined in this
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case by

w=,

where TY is the Reduced Green's

Or; =) n&gt; &lt;n)
Nn+¥o Ey = En

Operator, given

(III-144)

bv

(111-145)

With equations (III-144) and (III-145) it is

possible to find the first Doorway expectation value

for the rescattering operator: (the result is the same

in the limit procedure)

re 210 a2
Ay, = &lt;DIwWIDS = - te 3V, (III-146)

where specific use of the Reduced Green's Function,

avaluated at the origin, was made-

(00) = — 2 “Tt — _ 2a

£5) n(n+l) =- In
(III-147)

The second Doorway state is given by

vd
LX Ho = 3 IBV, (x0) + a [aco Tx} (III-148)

in expression for the Reduced Green's function can be
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found by solving the appropriate differential equation,

as it was done in section (3), with the result:

0, (tc ’ So r5 L$) = — MA
wren —n L3 g T

Le! 7 T E 2 enl gle 2
2 C+ "J |

AA aa I (Se S )&gt;
(L1I-149)

wh- ~~

 = X
&gt; =

(III-150)

and S¢ ($5) means that the lesser (greater) between

/

S and S has to be taken. An interesting feature of

equation (III-148) is the discontinuity of the origin

of the first term with 0, (%,0) , when equation

(III-149) is used, and it is a natural consequence of

using a singular and localized perturbation. When it

is attempted to proceed further with the construction

of the Doorway basis, the following results:

Noa = W,
SA.

-  J) (III-151)

As it can be verified from equations (III-148)

and (III-142), using as intermediate result:

| D @ Me x,
0 yi 2 S (III-152)
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gf

in that case the energy shift in zeroth order is given

LE ¥ Oo

1

1 ” A+ 2 nat
 2 Vo (ITI-153)

and interesting test for this number is provided by

the limit fe, where our initial problem of one

dimensional box is converted in two adjacent boxes.

The ground state energy in the one box problem is given

 WwW

7°
£, (one Box) = DYE

(II1I-154)

and when this box of length 2a is splitted in two boxes

of length &amp; , the new ground state energy is given by

ar&amp;

5 (Two BoxES) = _U
2a?

(ITII-155)

and consequently the shift will be

3 Te
= — PLAE, = 2 y

(ITII-156)

raking the limit B— oo in equation (III-153) the result

LQ
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Lo 4e® - _T

R—&gt; 00 - 2a
(III-157)

Although i is close to 7 ;, is clear that higher

order terms in the energy shift expansion are needed to

provide a better accuracy. Considering the first order

term in the energy shift, the result is (for arbitrary

A)

AE.

r

1) (o) (0)~ 2 2 (1)

= AE” _ [ag] ee S, AS,

which is derived from (III-34) and “here

(ITI-158)

5, = &gt; = 0.2398681336%... (III-159)
wer NF(nat)?

to obtain equation (III-158) the square of the

Reduced Green's Function evaluated at the origin was

also required:

2 2 3
—

U, (0) = pas,
I

(ITII-160)

squation (III-158) can be rewritten as

A AES

p [AEP7" duao je17 eats,
 4

(III-161)



-146-

Taking the limit A— oo

4BR oo ag,” &gt; nT$3,) za?

(III-162)

where

1 _

Tr = 0.3%576365...
(III-163)

up to seven significant figures, which compares good

with the exact value of 0.375. So, even if the prema-

ture Doorway truncation is taken into account, the

procedure has its way towards the correct value

through higher order terms in the energy shift expan-

sion. We can examine also if for finite values of the

size parameter 3 the behaviour is the same. The exact

snergies in the perturbed case are given by the solut-

ions of the following trascendental equation

Syda a a.%
(I1I-164)

f

which are summerized in table (III-VIII). Using

equation (III-153) the energy shifts in zeroth order

are given by:

AES Caer 1) = 4,555363 MeV AECsEr T)=25.3028 St MTT T-165)
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and we see that equations (III-165) are giving to us a

good representation of the energy shift that can be

improved in a considerably way when the first order term

in the energy shift is considered using equation

(III-161) :

AES (567 T) = 4.555295 ny 26 Ver I)=23.631580 flV  (III-166)

so it is clear that for arbitrary A the behaviour of

the procedure is the same, i.e., there is convergence

towards the correct energy shift value. The particular

choice of the starting vectors is not going to affect

the energy shift values but it is very sensitive in

regards to the wavefunction. In this particular

axample, the choice described by equation (III-142) is

given a wavefunction proportional to the unperturbed

one as the perturbed wavefunction and this is obvious-

ly not correct. Working with the limit procedure

TABLE (III-VIII)

Exact results for the Infinite Square Well with a

Delta Function perturbation with  =150MeV., V, = 50

VieV and &amp; = 5 fm.

5

 1

 AR,4,

1.8283829

2.64018301

E (MeV) AE (MeV) SET

17.351110 4.544543 I
36.179370 23.372800 II
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outlined at the beginning, the energy shift results can

be kept in their entirety, the premature truncation

is still observed when the limit is taken and the

wavefunction is going tc be obtained in the interaction

region. The odd feature of the interaction region in

this case is that it is given by a single point:Xx=o.

Then contributions from higher Doorway states are still

possible through a complicated limit procedure that we

are not going to consider here and in that sense this

example has been useful to show the importance of the

proper choice for our Doorway basis. Next, we are

going to consider a simple case which is closer to the

kind of applications intended in forthcoming chapters.

(c) Three - dimensional square well with a

square barrier as a perturbation:

The unperturbed Hamiltonian is considered to be:

H, = +V, (0

where V, (v) is a square well potential given

4 (+e) = - V, &amp; [a- Y)

L111 -167)

by:

(III-168)

being V, the well depth and a the well radius. The

perturbation to be considered in this case is a square

barrier:
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V, (v) = V; 6 (R-v) (III-169)

where Ve is the barrier height and R is the barrier

radius. All the numerical treatment in this subsection

will be done for the ground state case where the

orbital angular momentum £ is taken as zero, i.e.,

S -wave problem. The ground state wavefunction to be

pertubed is given by:

fe) = A, pa RY (ITII-170)

where:

with

AF== 2 MM (V,-|E  1)

E&lt;o and

A
go -Y,

=38_ 4 ui2he + alhe|
L 2 4b. 2c

(III-171)

(ITI-172)

The starting wavefunccions are given by

&lt;xID&gt; = N,V, 8 (o-v)(eo) (ITI-173)

and
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pt =1

(NIN) = V, R
7.

i ann 2hR2 4he

yA - addy 4 glheLT Yoo 2k ao
(ITII-174)

the Reduced Green's Function can be found using the

methods described in section (3) (see appendix (III-A) )

with the result

Ble) = 4

\
_—

w= {con 8, ate hur +R, ain Box in Fy’
Ty 1

Po (+ en Av an Bd v/ pin bv em dot’)

2 | 0Y arn ’WY

3 Le =Feo. ain bon?  pr (A (III-175)

Tr

{a

and

Le 1% ~- kx’¢ ; . ~~3 5 Yr ran Ay + Kq Ye St de Y

Oe, x) =

\

J Pe koe! ft br (({ gn

~ Kk (Y5=Y%) —~
2a le + Re ©

c. 2

3 (ere) ROP]

a  Ga

—- x (erv?)

“Ysa (ITI-176)

where:



-151-

A = 2 (Vv \&amp;1) © = 2 1€| (III-177)

being &amp; the ground state energy for the unperturbed

problem, obtained through the transcendental equation:

zroh, ©
5

Yu

SRA OO (Lo -178)

the coefficients Ry are given by

R = _ 5
= W-

3 Ww.
R, =

R, = uk ofa
Zh.

=~ b

boke”
_ ak

2

R,= » -
rd A

3

a

(III-179)

(I11-180)

(II1-181)

(III-182)

(I1.-183)

Fn

Rg = Sn 5% Je 2 bWi Bill
2%. ©K, 25°

Re " Wh a&gt;
2% Ka

ad other quantities are:

(II 184)

(ILI-185)
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W, =enhya + Koonin doa

Nzhbaah—KkEnh,a

A, — Ko ain doa ~ AyCoode a

LE bondi }- - ICT tha]- 2

(III-186)

(+11 — 187)

(I1I-188)

(III-189)

b= -&amp;, [4 fo hus + i - (24%) a nin Hoo

2 ha poboot onda | — pe em Ze pun ba

C, -
dW.

« W. + dE fue

dw. = &amp;

2 = A rhe + fe [(1hepicka+heerdoa

Cy=“ Wh + Iw|de ‘E=6

(III-190)

(I1.I-191)

III-192)

111 -193)

lw, | _ ) ido nha) eso pode (ITI=194)

Hh| = Alenend Ee
and the full radial Reduced Green's Function is given

DY
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Bee) = Dla)
vv!

(ITI-195)

The radius R of the barrier is always considered

0 be less than the well radius aq . For v&lt;R the momen-

tum is given by

 Ur

y = 2 jn (v,-V.-E) (ITI-196)

and a transcendental equation for the energy eigenvalues

in the full problem is obtained:

Shar la W wn bo Ro — a W _tnkR|

1 © ChaR [auanhR + aW, enkR] =o
L

(ITII-197)

Using equations (III-178) and (III-197) the results

are summarized in tables (III-IX) and (ITII-X). In the

~ase of the set I we have a relatively weak perturbation

and still there the standard perturbation theory has

problems to obtain a good answer. The results for the

energy shifts are summarized in table (III-XI). There,

‘he First order Perturbation Theory result is off by an

approximated factor of two while with our perturbation

theory, the result is within 0.4% the correct one with

-he simplest product of this approach, i.e., the first
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TABLE (III-IX)

Parameters for the Exact and unperturbed cases for

the Finite Square Well with a Square Barrier as

perturbation.

Wn (MeV) Ve (MeV) A(fm) Vs (Mev) R (fm)

SET I 140

SET IT 940
nN

J

-

-

 |

nr

- LG

2()fJ

TABLE (III-X)

Results for the Exact and unperturbed energies for

the Finite Square Well with a Square Barrier as

Perturbation.

SET I

SET IT

&amp;, (Unperturbed, MeV) £ (Exact,MeV) AE (Exact,MeV)

-4.5522039984 ~4.5227800415 0.029423957

-24.0509337249
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TABLE (III-XI)

Energy shift results for the Finite Square Well

with a Square Barrier as a perturbation in the set I

ca“ . a

Af (First Order Perturbation) = 0.04756713 MeV

AE (Exact) = 0.029423957 MeV

mM
1

“

AEM (Mev)

0.02932351

0.02932125

0.02932128

AE (0) (MeV)

0.02931341

0.02932128

)
/

0.02944480

0.02944250

0.02943524

0.02944253

0.02944252

0.02944252

0.02942742 0.02941778

0.02942513

0.02942516

0.02942515

0.02942515
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Doorway truncation and the zeroth order in the energy

shift expansion. Of course, 1f more effort is done

results with four correct significant figures can be

obtained at the third Doorway truncation. In this

axample the features of the potentials involved are

entirely different from the previous ones and in spite

of that, the convergence properties of the Doorway-

State-based Perturbation Theory behaves in a similar

fashion. For the square well potential the spectrum

can be separated in a continuum and a discrete part

with finite number of bound states. The role of all

these states is taken into account through the Reduced

Green's Function that we can provide in a close form.

The parameters selected for the Set I try to resemble

in a very crude way the essential characteristics of the

potentials related to the pionic atom problem, which is

our aim in forthcoming chapters. The well is shallow

and long ranged in an attempt to stimulate the Coulomb

potential role and the height and radius of the square

barrier were inspired by the repulsive part of the

pion-nucleon S -wave interaction. Accordingtothe

results in table (III-XI) it seems that with little

offort in the Doorway State Calculation is possible to

obtain good numbers with two or three significant

figures (that is the limit of accuracy for any of the
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experimental numbers available in the literature) using

the most simple tools of the approach in the pionic

atom case and probably in any physical problem where the

perturbation is relatively weak. In order to examine

the situation with the wavefunctions the table (III-XII)

was prepared. The first Doorway truncation is Just the

unperturbed wavefunction multiplied by the square root

of the perturbation. As it was observed in the Harmonic

Oscillator case the quality of the approximation gets

poorer as we go away from the origin, although if we

compare with the unperturbed wavefunction the improve-

ment is remarkable in that region. Now the set II can

be considered and for that purpose table (III-XIII)was

constructed. In that table the energy shift values are

obtained for different Doorway truncations for a fixed

expansion in the energy shift up to the first order

until saturation and afterwards the energy shift order

is increased. We can see a repetition of the features

already learned in the Harmonic Oscillator case, speci-

ally the breakdown the second Doorway level for a large

perturbation.

The conclusion at this point is that the Doorway

State Approach to bound state perturbation theory is a

powerful tool in a wide range of problems which allows

in a cheap way (from the calculations point of view) to

get the relevant information from the physical system
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TABLE (III-XII)

Wavefunction Results for the Square Well Case

With a Square Barrier as a Perturbation

for the Set I. The Wavefunctions are Normalized

to 1 for the First Point of this Table

r(fm)

0,01203

0.06318

0.15431

0.28396

0.45000

0.64969

0.87977

1.13645

1.41552

1.71239

2.02220

2.33986

2066014

2.97779

3.28761

3.58448

3.86355

4.12023

4,35031

4.55001

4.71604

4,84569

4.93682

4.98797

2 Doorway

Truncation

i

5.251042

12.828820

23.625720

37.506130

54.326250

73.951150

96.265700

121.117620
148.60090

178.44860

210.58860

244 ,81440

280.80750

318,10710

356.09050

393,97130

430.81460

465.57390

497 .14370

524,42650

546 440610

562.22030

571.22960

1 Doorway

Truncation

ag

2.250893

12.825158

23,599575

37.395945

53.984796

73.088768
94.386914

117 .519954

142.096596

167.700721

193.899319

220.250967

246,314418

271,657109

295.863218

318.540950

339.328862

357.901105

373,971503

387.296583

397.677623

404.962062

409.045493

Exact

1

5.251135

12.828797

23.622353

37.486731

54.258312

73.768814
95.855340

120.364280

147.147573

176 .050785
206.893788

239.445818

273.397866

308.336296

343.722042

378.880101

413.,003574

445.175104

474.406964

499.697821

520,101876

534,802914

543.,186566
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TABLE (III-XIII)

Energy Shift Results for the Finite Square

dell With a Square Barrier as a Perturbation

in the Set II Case

Af(First Order Petu

AE(Exact) = 12.9661 Me"

rya+ion Theory) = 103.5592 MeV

a Aq AEM) (Mev)

11.40463

2.233632

20,30162

12.05307

11.98220

11.98057

11.98054

11.98.53

13.72197

AEC) (Mev)

14,88294

-5.230289

26.40256

17 .94561

17.84205

i L.

%

1
17 .83972

17.83968

17 .83968

!
i

12.,66118

13.17334

12.87392

13.03043:

12.94175

3 12.98953

12.96292
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under study. This information is given in the form of

energy shifts as the essential products and wavefunc-

tions and Green's Functions as byproducts. In the

forthcoming chapters the detailed analysis of pionic

atoms will be based entirely in this formalism using

just the information from the energy shifts and hoping

in a future to exploit in a full scale the possibilties

now open with the "byproducts".
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CHAPTER IV

PION-NUCLEON FORCES AND PIONIC

1YDROGEN.

In the models that are going to be used in the

next chapter, in order to study the energy shifts and

widths, the forces involved have parameters which should

be determined as reliably as possible for the low energy

range. From the phase shift information, these parame-

ters can be extracted in a very simple fashion for the

511 and P54 channels of the pion-nucleon interaction us -

ing the standard Yamaguchi vertex functions. Due to the

behavior of the phase shift for the S55; channel, the same

parameters are going to be determined from available da-

ta for pionic hydrogen. The importance of Coulomb inter-

action in the rescattering process will be demonstrated.

These parameters are used in the calculation of the phase

shifts for the comparison with experimental data showing

good agreement in the low energy region.

(1) The S11 and Pas channels in the pion-nucleon

interaction:

The pion-nucleon interaction is described in a

separable form with vertex functions:

O(
2

K') =
EINE)+ KZ

1

(Lv=-1)
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where oX is the cut off parameter related to the

interaction range. In phase shift analysis for a separa-

~rle interaction problem the relevant quantity is the

rredholm Determinant:

ee) — bee) oA S(e)

which in a relativig-ic treatment of this

(IV-2)

pro-

hlem is given bv:

_ 2 2 2 12

D(E)=E rf Ee 5 (4)- cEayJ;: (IV-3)

where £(q%) contains the vertex functionsofthe

particular channel and Mg is the bare mass for the reso -

nance. The energies €4 and We are, respectively, the nu-

clear and the pion energies given by:

=F +

We=/§ + Me

(IV-4)

(IV=-5)

Now we follow the semi-relativistic treatment

} A - 1 . .

Sf this problem by Moniz and Sevgen ), introducing:

= E — My (IV=-6)



 I 7
31%

£1

EL y

g 2 .

and ignoring terms of order 1/Mgr a simple form

for equation (IV-3) can be obtained:

pE)= Er Ce [HVME : [5 £ (3)
1+£ JQ ¢ ~ 9£ a =. on (IV-7)

orl Caf =~

2 2

K” = _E-My
1+ I

Ma

(IV-8)

the quantity K&gt; in equation (IV-8) behaves like

the squared relative momentum and it can be approximated

in that way up to § an. In the next chapter when the

S-wave pion-nucleon channels will be considered, a renor-

malization procedure will be required in order to elimi-

nate the dependence of our model on the resonance masses.

The reason for this is given by the fact that these res-

onances are located in an energy region where particle

formation processes may occur and should be taken into

account in the bare mass determination. This complica -

rion is not necessary for low energy range and can be a-

voided by factoring out (E212) in equation (IV-7) and

renormalizing the coupling constant G2 in the following

 "a av
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=2 Go Ceo
= — S —— ((IV=9)

GCE) E2- M. (E+M)(E-Mg)

and taking the low energy limit, the result is:

lien. GE) = GG =
E-&gt;M

— Eee xg (IV-10)
(M+Mg) AMg,

where = +1 accordingly to the attractive QL

repulsive character of the interaction and

M = M+ Mo

AM,= MM

(IV-11)

- 12)

this procedure yields the following Fredholm De-

-erminant for the channels of the S-wave pion-nucleon in-

teraction:

1+ 3 (ry K*— §E+im oY

Equation (IV-13) can be applied to the Sy1 chan-

1el case, where the vertex form factor is taken to be:

o_ 6 _T-9
@ = = aye

(IV-14)

~~

where T° is the nucleon isospin operator and ®



~]BB

is the pion isospin wavefunction given by:

1 0

 ,
1

, B= 0 (IV-15)

~- he coupling constant G is rewritten in terms

~f

6G = —  oO

¢
(IV-16)

where A= -1 was taken for the S,,, due to its

attractive nature and

Cr = 3 (IV~17)

rhe Fredholm Determinant is given by

D(E)=1 -
———EE (IV-18)1 =

= STK (ek ~4
{+ 5

J

where K is given by equation (IV-8) and g by

saquation (IV-6). From equation (IV-18) the phase shift

~an be obtained:

 500 =e I
3 AT (14 5) (Er oY 3 («=x

(IV-19)
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and the scattering length:

| 2

a&gt; ~ Dim ty20) __  2Bd (IV-20)
1" k=o K 3TX = 8, 9%ot

where 8, = My/M and M is given by equation

(IV-11). In our problem we have essentially two parame-

ters to be determined, the coupling constant 9°ana the

cut off parameter eo . Since we are primarily interested

in very low energies, a way to assure the proper behav-

ior in that limit is to replace 9° as a parameter by the

scattering length a using equation (IV-20):

d

1 ye’ Ay-

0% 8 Ti Se
(IV-21)

S

then the experimental value for Ay can be used,

reducing our problem to one parameter. This experimental

: : (2)

value is given bv

al, = (0.170% 0.004) M (IV=-22)

the results of our fit are shown in table (IV-

I). The R.M.S. deviation for the fit was 0.35 degrees

and the experimental standard deviation was 0.78 degrees,

for the phase shifts. Under -these conditions the parame-

ters are:



~ 5, AR! -

a" (Sy) = // 735.46 $m &gt; =108.86 M2 (IV=23)

and

5 -1
Ay = 9.25m =1/815.16 MeV/c

the scattering length is bound within

(IV-24)

the exX-—-

perimental allowances:

- 1 ly

(IV=-25)

and we can see that the fit is quite good. The

axperimental values given in table (IV-I) are taken from

references (2,3). Since our main interest lies in the

low enerqy region, from now on in this work we will consi-

der the low energy limit for equation (IV-18), with the

result

2

1 — B20 1 (IV-26)
BT X (ox —4R)?

D(E) =

and the coupling constant is conveniently re-

defined once more as:

GG = 22- 29
 ™M

(IV-27)

the factor of 2Mais introduced in equation
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TABLE (IV-I)

Phase Shifts fit for the Sq1 channel. Pion mo-

mentum measured in the Center of Mass System.

Pion Momentum

Me V/c)

146.90

173.80

193.70

207.10

228.70

247.60

259.50

275.90

292.90

Experimental Phase Calculated Phase

Shift (degrees) Shift (degrees)

7.33 * 0.40

8.59 = 0.34

7.32

8.88

9.68 = 0.29

9.91 * 0.34

10.31 £ 0.69

11.34 * 0.52

13.35 = 1.60

9.50

9.87

10.42

10.83

11.07

11.3611.69 = 1.89

13.87 £ 0.92 11.64

(IV-27) to obtain the proper factors in equation (IV-26) .

The same form for the coupling constant will be usedinthe

S31 channel case, which will be considered later in this

chapter.

fOr the Pas
channel the analysis is already
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one 1 and our requirement is to translate the result to

rhe very low energy case. In this channel the Fredholm

Determinant is given by:

pe) = BM [ho
+d] ei)” (M+ 47) (K-41) ( 28)

where the semi-relativistic treatment is fol -

lowed and X and g are given by equations (IV-6) and

'IV=-8) and the vertex form factor are taken to be

hE) = o SF T:#
x= +g"

(IV-29)

 ~~
where S is the spin transition operator be -

-ween spin 1/2 and spin 3/2 defined by the matrices (6):

&gt;,=

So =4

ygp—

47 O

1470

0AZ

o 43]
"

0“1

i
146 0

pe

(IV=-30)

(IV-31)

0  1HNZ



S,=

~ ™

\23 0

0 12
(IV-32)

0 Oo

An useful relation is the product:

fe_2C _ Lie.
(IV=-33)

and it behaves like a J = 3/2 projection operator.

This formalism is identical for the isospin transition operator

~~

T given in equation (IV-29).

he

In the non-relativirtic limit equation iv 28) can

NL1“man 3m

} 2 F__¥ : (IV-34)
D(E) = (e-em [2 — 9%) (E-%)

ro

There MW is the vion-nucleon reduced mass given by

w = Mgr Mn

Me+My
(IV=-35)

and in order to obtain equation (IV-34) the follow-

ing replacement was taken:

1 M— rn My Mu -_

{45 New- RELATIVISTIC fe TM ee
Ma lg” Me

the coupling constant can be renormalized to:
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9e - Lime __¢ = —Y = (IV-37)

&amp;E—&gt;HM E+ My, M+ My

and we consider the Fredholm Determinant in the

non-relativistic limit to be:

_ 1 z gr (IV-38)

Dl) = E-Mum 2 Sh

71th

66 = —

2M (M+ My)

7)
(IV-39)

In order to werify these results with experi -

mental information at low energies, the scattering volume

27 is calculated using equation (IV-39)-

P
Qa =

26, %°
24T (M+ M,) = AM-g, XS

(IV-40)

where:

AM = Mya—-M (IvV-41)

and according to reference (1) the parameters

~btained in the semi-relativistic treatment are:

My = 1370 MeV = 6.94 fo! (IV-42a)
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A 32 =300 MeV/c =1.52 fo
=

-3

9" (By) = /1.38M3=1226.75 5m

(IV=-42b)

(IV=-42c)

with this set of parameters a phase shift is

calculated and compared in table (IV-II) in ordertoshow

the quality of the fit. Using these quantities in equa-

+ion (IV-37) the result is:

P -3
Qo = 0.589 fm&gt;=0.209 M, (IV-43)

In reference’) the value 0.2133 M3 is obtain-

ed from the model and the experimental value is (0.215 :

0.005) M3 . So we can see that the renormalization pro-

cedure presented in this section for the treatmentofthe

very low energies case is consistent with the low energy

information. In this point, our discussion about the pa-

rameters for the forces in the 5,1 and P45 channel cases

is completed and in order to consider the S31 channel case,

the pionic hydrogen information is studied first in the

next section
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TABLE (IV-II)

Phase Shifts fit for the P33 channel

E (MeV)

1089

1099

1110

112

1148

1172

1186

1202

1221

1235

1253

1275

1202

1320

1337

1362

1390

1416

Calculated Phase Shift

(Degrees)

3.5

1.6

3.3

7.3

14.6

27.7

38.4

53.6

74.2

89.0

105.1

119.7

128.0

138.0

142.5

147.9

152.6

156.1

Experimental Phase

Shift (Degrees)

J.6

1.8

3.5

7.8

15.2

28.3

38.3

53.6

74.6

89.4

105.1

119.6

126.8

135.6

139.5

144.7

149.3

153.4
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(2) Energy Shift for pionic hydrogen

The pionic hydrogen is the simplest pionic at-

~m that can be considered. First, we have a two body

system in which the orbital angular momentum is equal to

the relative angular momentum between the pion and the

nucleon, allowing us to look directly on particular chan-

nels of pion-nucleon interaction. For instance, the 1S

level has contributions only from the S11 and S45; channels.

unfortunately the available experimental data is not going

beyond this pionic level so far, but this will be enough

for our purposes. Second, the absorption phenomenonisnot

present due to the fact that a nucleon can not absorb a

pion with conservation of energy and momentum. Then, pion-

ic hydrogen is an excellent testing ground for 5 wave

pion-nucleon interaction studies in the low energy limit.

Now we are going to develop a formalism to calculate the

energy shift using separable interactions. This model will

be fully justified and developed in the next chapter. Then,

for the particular channel of interest the interaction can

be described in the following form:

 = 99 (IV-36)

In chapter III it was shown that for cases like



~~

: OO

the pionic atom problem perturbation theory in the Door-

way State Approach can be applied without going beyond the

zeroth order in the energy shift and the approximation is

very good, i.e., for practical purposes we are going to

replace the exact energy by the unperturbed value Z, in

aquation (III- 14), giving the following energy shift:

5 — + i IV-47

ALy = &lt;1 TYE3 18) (xv-am)

Y

AE -=  NvNv
1 - R(&amp;)

(IV-48)

 17 -

Ale LD

2 (1/2 {jo IN VN PR

Ny = [2 Ker = [&amp;# MOTTE (IV-49)

hom

[—— -

R(&amp;) = [ te) DE, Fr) hey do #7 (IV-50)

/

the function UJ (&amp;; 2, 7) is the Reduced Green's

Function calculated for the pionic state S and the h(g?)

(or h ( 2 )) is the vertex function for the interaction.

The pion wavefunction in the state S is symbolized by (3).

The quantity R(&amp;), given by equation (IV=50), is givento
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us a measure of the rescattering effect and in particular

for the pionic 1S state we have:

R (&amp;) - £ry W (IV-51)

where:

=GCf=2
2

ofc = Ag
2 Hg

(IV=-52)

ind:

3 7 — -———
=5 &amp; Zo (IV-53)

anA

W = = (order 790| dv? Fle £
/

i” TFoie

(IV-54)

The Reduced Green's Function is given by

— Ky (r+)

B, (vr, ¢') = — 4p Bolg € te (IV=55)

"5 _ p 1 KY { py
2 2 ¥ K, (rer ) + G. ( 1 + 3 log 2S

where Z is the atomic number, «oo = 1/137 is

-he fine structure constant and



G(x) =) 2x"
= n (nti)!

4
m2.

3

(IV-56)

i

In order to obtain Or) the results of sec-

tion (III-3) were used and the details of the

tion are given in appendix (IV-A). The calculation of W

is very lengthy,

Here we offer the final result:

35 2%-2 la 2~ lo (14%)
bf - = 44 Zot { (kK, +e)4

Ry

1

13 Ki - 2? _ 1
4 (k+e)® 4K (Ket)3d 20¢ (Kk tot)3

/ gy 1%% }
Jou,(1+ 4) | ro: &lt; (Ka) ara] 57)

where L in acgquaty ams {IV=-54) and (IV=56) is

given by

Ky Mel

and then:

R(&amp;) =

2

 LYSEW
32% Mg

The vertex functions are given by

(IV-58)

(IV-59)



-,7G-=

co

Ny = [#2 Wb) = 474 Cs [re (xria)e

rm

Sg
47 Cis
(24k)?

(IV-60)

where Cie is the normalization constant for the
—

srionic wavefunction given bv:

2 3

[Cs| = Ko
 mT

(IV-61)

-he energy shift is finally given by:

2.3

AE = ak 1
20 My (L+ KK) 1 = R(&amp;)

(IV-62)

Equation (IV-62) is the energy shift for a par-

ticular channel and the total one is obtained by adding

the contributions from the 511 and S31 channels. In:order

to combine them, we have to take into account:

(TF 6_)|5 My = 1 3 wo (IV-63)
: ge ih »

for the S21 channel, and:

4 Ad
2 ( ®

= YE = a’ (
MPT. 1T 5 m - 12m) |5,- me (IV-6so” 4)

y 1 : .

for the S11 channel. The ket | 5 My) 1s just

rhe nucleon isospin state and the kets on the rigth re -
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present the isospin states of the particular channels.

Using equations (IV-62), (IV-63) and (IV-64), the com-

bined (total) energy shift is given by:

A€, = un 35
 Mg (c+ kK)? 1 =

¢ 4 oe

3My (ott KY — (&amp;n (és)

(IV-65)

Equation (IV-65) is going to be used to find

the parameters for the S31 channel and to test the ef -

fect of the rescattering process in the energy shift in

the next section. This will be possible thanks to a re-

borted experimental value for the 1S energy shift in

pionic hydrogen, given bv:

AE, =(5.5 %1.5)eV (IV-66)

(3) Force parameters for the S31 channel.

In the simplest possible approach to the prob-

lem the Saq channel interacion can be described through

sertex functions of simple structure like the ones for the

S14 and Pas channels:

WZ) = GT®_ IT
gee

(IV=-67)



~~

where | 1s the transition isospin operator

used in the Pai channel, then-

- FT _ 1 (IV-68)

and the coupling constant is given by:

s

3
2M

(IV=-69)

following the non-relativistic treatment alread-

y outlined in this chapter. The Fredholm Determinant is

given by:

-he

2

D(k) = 1+ Lad 1
§Tet (xX -ik)?

(IV=70)

and then the phase shift can be extracted from

lS(k)=—
4B2 Co K?)* +

 (1-71)
2 2 2

A (&lt;% KF)

snd the scattering length is obtained through

limit:

f= Kk 44, 9%
82 5

(IV=-72)

Using equations (IV=-71) and (IV-=72) a fit sim-

ilar to the one obtained for the S11 channel can be at-
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tempted, but difficulties appear at intermediate energies

Jue to the curvature of Sw. It is possible to under-

stand the problem looking at the expansion of:

Cel 5k) = £ 4 TY K +.
(IV=-73)

where A is the scattering length and r is the

sffective range. For the S-wave interaction the experi-

mental measurements of quantities related to the effective

range are given in the table (IV-III) and defined through

the following equation:

Ei . = —2 (ay + far
sr

(IV-74)

all the quantities reported here are given in

sion Compton wavelengths. In equation (IV=-74) the index

I is the isospin channel with values 1/2 and 3/2 . From refer-

PASTE (IV=-1ITI

Effective range parameters for the S-wave

interaction

Bi + 2/53

3.15 + 0.06

3.133 ¥ 0.02

B=fa

0.027 + 0.015

0.040 + 0.018

References
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(This values are taken from "Compilation of

coupling Constants and low Energy Parameters" (1978- e-

jition), reference (5) which leads us to references (7)

and (8) ]

~

ayeui
7) the effective ranges are given by

= (1.91% 137) HM; Y=, = (12.025 ;6) Ng (1V-75)

Sis

is

fy = (0.92 +

INU oom

].00)

raferencc

He
~}

, = (1.8323. 1DMg (1-76)

Then we can see that the effective ranges are

positive as they are extracted from the experimental da-

ta, giving a positive curvature to XK cotg Sx). with

+he simple vertex function given by (IV-67) the curvature

has opposite sign for reasonable values of the parameters,

degrading in this way the quality of the fit at low and

intermediate energies. It is easy to prove this by look-

ing at the explicit form of Kcotg x), according to e-

quation (IV-71):

K GC 2 00K) = — 22, (040) 52 («k= $Ge)  (zv-77)

naking the expansion given by (IV-73), we get:
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result

A — =. -_— Sir at

| al . 2 35°

”~ A Tt
* ,4°

~ombining equations (IV=-78) and (IV=79)

ig:

- {
Lf

3 = IIa

(IV=-78)

(IV=-79)

the

(Iv-80)

positive effective ranges can be obtained for:

od
’

Ld

3 al
SRY -81)

and then this sets a lower bound around 10£m~t

For the cut-off constant &amp;£ , which is very high value for

a realistic description of the S31 interaction. On the

~ther hand the error allowances for the reported values

of the effective ranges are too wide to give us any rea-

sonable value for the interaction parameters. Our only

choice in this point is to consider the information ob-

tained from pionic hydrogen, which can be extracted us-

ing the expressions derived in the previous section and

after that, try to verify our results by looking at the

behavior of phase shifts at low energies. The inter -

action parameters of the 5,4 Channel are supposed to be

known and by just fitting equation (IV-65) to the expe-
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rimental value given by equation (IV-66), using equation

(IV-72) to remove one parameter (the coupling constant in

this case) the result for the cut-off parameter can be

~btained to give:

~~
&gt; 3 482 5m” = £37 MeV/c

3, =

(IV-82)

and in equation (IV-72) for the scattering length,

we use the experimental value:

a.
wb

-1
— — (0.100 0.020) Mz (IV=-33)

during the fitting procedure we allowed the

scattering length to vary within the experimental allow-

ances, in order to meet the 1S energy shift value and the

proper behavior for the phase shifts in the low energy

limit. In this sense the scattering length that we have

to report is

9 -

(IV-84)

-he corresponding coupling constant is given by

G2(S,,) = 463.34 Fn=4301

The calculated phase shift is shown in

(IV-85)

table
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(IV-IV) for purposes of comparison. In spite of the i-

nitial problem, we can see that the fit at low energies

ap to 50 MeV (or 126 MeV/c for the pion momentum) is fair-

ly good. In this way we have a reliable tool that can

re used in the study of low energy phenomena.

—

_LE CIV=-IV)

Phase shift fit for the S31 channel. Pion

nomentum is measured in the Center of Mass System.

Pion Momentum

(MeV/c)

57 .60

82.60

94.70

109.20

126.40

140.50

152.40

Experimental Phase Calculated Phase

Shifts (Degrees) Shifts (Degrees)

-2.92 + 0.17

-3.55 £ 0.23

~4.41 £0.29

-4.76 * 0.17

-5.84 © 0.34

-7.62 ¥ 0.46

-3.07

-3.73

-4.25

-4.86

-5.57

-65.13

 a. 48 ¥ 0.34 -6.59

(4) Rescattering process and Coulomb interaction

offects:

The pionic hydrogen system is a very goodplay-
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jround to study the effects of the Coulomb interaction

~f rescattering process in isolation from many effects

oresent in heavier systems. In order to consider this

problem, we can rewrite equation (IV-65) in the follow-

ing wavy:

- ¥ 1 X 1
AZ = (NIN) 2 (NEN), ——

S vV V 31 1= Ray ( Vv oh 1 — R11

 o%: ere

3 2

¥ Ky 931 :
(Ny Ny), = cin (tur ” )

(IV-86)

(IV=-87)

and

¥ 3g?

(N, Ny ), = — © ot
3THy (oly + Ke)

(IV-88)

In order to see the effect of the Coulomb inter-

action, we just consider the energy shift in the absence

~f it, i.e., the denominators in equation (IV-86) are go-

ing to be replaced by a Fredholm Determinant of the form:

D(&amp;) = 1 - §*4 [de de! G(r 8
 ope !

Ar

(IV-89)

equation (IV-89) is the analogous to equation

'IV-50), where the Reduced Green's Function has been re-

olaced by the Green's Function for a free particle, re-
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presented by Gy (r,xt). The quantities (MN *N_) represent

the energy shift in first order perturbation thery and in

-he particular case of the pionic 1S state for hydrogen,

-hey are given by:

-90)AE. (Sy JF0.P.T) a (NyN), = — 4.3945 eV (IV

and

AEs (Sg JF. 0.7.7.) = (NSN), = 4.21% eV (IV=-91)

Ras ==

oe 111

3 {a

rescatter.Lng

-

vg Ra,

~ontributions

RR
—— 0 a 14

are

(IV~-92)

and the Fredholm Determinants in the absence of

~“oulomb interaction are:

D,. = 0.4784 D,, = 1.379¢ (IV-93)

If we define the combined energy shift in the

absence of Coulomb interaction as:

-1 -1

(AEs), = (NN), D,, + (Ng Nu, Diy (IV-94)

Then the final results for our comparison are:

(8&amp;5); = — 0b. 13 eV AE. = 5. Soe\/
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then, the elimination of the Coulomb interac -

rion in the rescattering term has a violent effect and

can not be neglected. Based on these results, we should

include Coulomb interaction in our studies of more com-

olex systems in the next chapter. This will be done us-

ing the Doorway State Formalism to bound state perturba-

tion theory already developed in chapter III. There the

inclusion of this effect will come through the exact cal-

~ulation of the Reduced Green's Function, using the pro-

~edures of section (III-3), making the whole analysis pos-

sible quantitatively.
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CHAPTER V

PTON-NUCLEUS OPTICAL POTENTIAL IN THE PIONIC

ATOM PROBLEM

The [ DO (A-1), N¥ (a-1) , A¥ (a -1) 1 model will

be developed as an extension of the A (A-1) model for

the pionic atom problem. The natural separable structure

of the model allows an immediate application of the Door-

way State Method to the bound state problem already con-

sidered in Chapter III. The non-local properties of the

sffective potential can be treated adequately from the

quantitative point of view in contrast with the difficul-

ties encountered‘bystandardmethods used to date. The

convergence of the procedure allows the study of the

essential physical effects using just the first doorway

expectation value. At the same time the study of the

resultant pion-nucleus optical potential can be done

with the same tools as it is outlined in section (2).

Being our main interest to study the role of the pion-

nucleon S-wave interaction, the 1S levels of Yue and

16, will be considered quantitatively in order to obtain

the strengths of the spreading potentials for the S11

and S31 channels. This spreading potential is the new

ingredient related to pion absorption in the optical

potential. Due to the renormalization considered for
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* *

the N and A , the imaginary part of these strengths is

*

given in terms of a ratio w,/ AM , which turns out to be

the same as the ratio W, / AM, for the A-isobar. In

the Ye case the new parameters allow to obtain good

agreement with the data in contrast with similar two

parameter fitting attempted to date.

(1) The [ ACA -1), N¥ (A-1) A h-D] model

For p-wave absorption a A(A-1) model (1) was already

considered and an extension of this model in order to

include the S-wave pion-nucleon interaction is required

for the treatment of the pionic atom problem due to the

fundamental role of this partial wave at very low ener-

gies. In parallel to the formation of the A -isobar

( spin 2, isospin 2 ) related to the P3s channel, the

"intermediate particles” NT (spin %, isospin %) and A

(spin %, isospin 2) related to the S11 and S31 channels,

respectively, should be considered. Within the framework

of this model, the Hilbert Space can be spanned through

states with A nucleons and one pion, a A and A-1 nuc-

leons, a(A"orNYand A-1 nucleons and finally, A nucleons

to include the possibility of absorption. This statement

can be written in the form of a closure relation:

A (v 1)
v

where P. is a projector onto the i-th space. The remain-
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ing p-wave channels can be ignored due to our interest

in very low energy phenomena where the Pi; channel 1is

clearly the dominant one. This low energy region allows

the use of non-relatvistic quantum mechanics throughout

all the formalism, including the pion case where rela-

tivistic effects can be treated as corrections.

The Hamiltonian for the whole system is given by

H = Ke 4 Ky +t Kx t
or

rn?

A

i VNR UNF) + V (NBs Nak)|

3 V (NN—nn) + V (NA NA)

\ XJ—2)

where Ks is the kinetic energy of the i-th particle and

V. is the pion-nucleus Coulomb interaction when the

nucleus is in its ground state. The symbols V(NN-&gt;NN)

and V(NA-— NA ) denote fundamental processes described

by the diagrams in fig. (V-1). In these diagrams the

"wiggled" line means that the specific exchange is

anknown and a phenomenological approach is going to be

followed to describe these interactions. Similar

* *

considerations can be applied to the N and A cases.

The remaining V term can be represented by

J
—

— Y, Ven Q, + QV, 7 + Q, Ven Q,

VEN ND + VIN 85) + VIN=A) (v 3)
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FV (Na2aN) + VINE Ze) V (Ne2WS,

The first three terms in V represent the pion-nuc-

leus electromagnetic interactions when the nucleus is

excited or a transition takes place. These terms take

into account all the nuclear gulacization effects. The

next three terms represent the creation and decay for

the NC A and A particle described by means of dia-

grams in fig. (V-2). The absorption process 1s repres-

anted in the last line of equation (V-3) and is grap-

hically described by the diagrams of fig. (V-3). Again,

a wiggled line symbolizes our lack of knowledge about

the relevant exchanges.

N -

A
-

-

-—

—N

N

Vv (NN = NN)

A ==
he

V (NA=&gt; NA)

aN

Fig. (V-1)
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In order to find an effective interaction for the

pion-nucleus problem, a T matrix projection onto the

one pion and A nucleons subspace of the Hilbert Space

is needed. Our starting point is the Lippmann - Sch-

winger equation:

HE (EN=V+VG(E) T(E) (v-4)

where V is the interaction described by equation (V-3)

and G (&amp;) is the Green's Function related to the rest

of the Hamiltonian H. Defining:

FSR (Ven Qu + QV D+ Qe, QD Pr

[AS Q, t QVe, 7 + Q, Ven Q, 1TL,)
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and using the projectors given in equation (V-1), the

A == _N N A

\

; |

Fi. (V=-3)

A.

Following set of coupled equations is obtained

_ £M EM.

rp = Ur +0 Grr * Fma Ga Tap

JTF Gy Tox TTi Jak Gp TAFT

+ + - —-

Tag = ONT 1 Oar Gy lg + Via Gy lag

(V-6a)

(V-6Db)

(V-6C)

- + Me Gr Tor + Vara Gy Tac

T — | &gt; T \ \ ss

(V-64d)

(V-6¢e)

where the following notation is used:
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Ty = LTE G. = PGP (V-7)

x

The i and j indices stand for 7, A, A , N and

*

A . In the interaction case the projectors are the

following:

/

(

*
a

i = A NF, AF 4-0
yi

an
"

fb

: * LX

£ ~-T 3 = ANTE

w)
. ACNE AFA
“Hr =

rw

Av
a 3)

*

vhere the first line involves creation of A, N or

*

A, the second line gives the decay of some particles

and Vis denotes the absorption process. The next task

is the formal solution of the system of equations given

by (V=-6). Defining:

(V-%a)

and

— A

Li; =Vih Gy Vi, (v 5b)

equation (V-6e) can be replaced in equations (V-6b),
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(V-6c) and (V-6d), and using equations (V-9) we get

1
Tyg = ————

T

+ A A (V-10)

|Ser Sp + Ly Ga Tag +2, GTi |

. + A ~ | (v-11)

lr = {yA | Serr FL Gli +L -
- &gt; NEN Gur

_ { + A — A _~ ]at = rtEL GT FL, 4Cu Teq
1-2..G,

(V=-12)

But due to the pion-nucleon S and p-wave spin-iso-

spin channels projectors involved, there are cancella-

tions of

lL
-

—— 0D i f {,
(V=-13)

”

and then, a simplified version of equations (V-10),

(V=11) and (V-12) can be obtained:

ama

| pk —,

 41 —

- A TT

7 oC

Se

Yaer Yor
(v ~14)
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5 +

t= Y nt Gp

i +

Tar = - A Satdr
: ~L Ca

(V-15)

(V—16)

Equations (V-14), (V-15) and (V-16) can be replaced

Be (V-6a) to give:

_ En t+ L +

Tor = ) + On TE Ia gitGar gE do

~~

i. fro gg Be § (41 Con”Gar “Te Qa¥T (1 T Si i)
(V=17)

In equation (V-17), the "intermediate particles”

* * .

NN, A and A are treated on the same footing. Following

the renormalization procedure outlined in Chapter IV,

* * }

vhere N and A are taken as static resonances and 1t

yields the result:

ar = 19 + Goer —= Fr
1 - ah

(V-18)

FO —=1— Ser tm So ‘ 14 GoTo15h AFT Ar Gi oth Har ( i)

where the tilde means that these quantities have been
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renormalized. Then in equation (V-18), separable

interactions for the 511 and S31 channels are provided

in a natural way. This was already done in Chapter IV,

where the parameters of the forces were determined.

From equation (V-18) the isolation of an effective

interaction V is possible and the result is:

i -_—
1 _T AL gy ey (V 19)

;
~ 1

JTA¥ ~ A
1 = 3 in

+

— 9~ _

[By * ms Gs! —2,.

The Shift Matrix for the combined nuclear and pionic

states is given by

 5s 18

Ne =U + VG; Op Mir (V-20a)

there S is the pionic state and I is the nuclear state.

The energy shift is given by

Ac
£ (V ZUDb)

Equation (V-20b) can be expressed in a convenient

way using the formalism developed in chapter III and

exploiting the separable nature of the effective inter-

action given in equation (V-19), with the exception of
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the electromagnetic term Y= In the calculation

of the energy shifts, the nuclear ground state is

combined with the pionic state of interest and a project-

ion of mo onto this ground state is adequate, yielding

the following system of coupled equations:

I N° P
nr

= PUR +7 PQ GP, y 0= 1

i Y, (% + Ven) Q, Gy Q, mm: T. (V-21)

08

QM 1, = RVen ¥ T Q (+ Ven ) QR GP WT

1 Q, (F+Ven) Qu GrGQ,Myy B+ QUT, (V=22)

where Uv, gathers all the contributions related to the

strong interaction part. From equations (V-21) and (V=-22)

03

an equation for 7, Mer P can be obtained:

0d 068

PMP, = UH UCR (7, Mar Ph (V 23)

where U is the full optical potential (electromagnetic and

strong interaction), given by:

 UW =P%? +7 (%tVen) Q GrGQ
1Q(T4+Ven)BG

 MN
y Q, (V + Ve,,) 7, (V-24)
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Nuclear polarization is considered through the

alectromagnetic contributions in equation (V-24).

These contributions are not going to be studied through-

out this work under the grounds that they constitute a

second order effect in comparison with the strong inter-

action contribution and the optical potential to be

considered in this chapter is given by:

1 7“TARA G GQ ———— QU"
A PUT +7 3 GrQ, I~ QY Q, Gp Q,

(v °5)-

the structureofvsis fully separable and the formalism

of Chapter III is completely applicable. To do the same

separation with the ad interaction, appropriate fac-

torizations have to be found and linear combinations of

electromagnetic and strong interactions terms will appear

in the construction of the Doorway basis. At this point

only strong interactions are considered and it makes the

choice for the vectors in the Doorway basis a direct and

unambigious one, due to its natural separable structure.

To show explicitly the details of this construction in

the next section the optical potential in the Doorway

State approach will be considered.

(2) Pion-Nucleus Optical Potential in the

Doorway State Approach

The optical potential of equation (V=-25) can be
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written more explicitly using equation (V-19). The

result is:

 LL =  Fr —
&gt; 1 dm = 5 =

1 - Yon pn GrQ, Jn

~ t

Fer

PATS TT eA 4 Foums

U- Lior = Far Gr, Gyan

~ f

Dov

4d nr ST-1 A ) “

Gy — 2 = oT Gr Q, Mi do i or

In spite of all the simplifications considered so

far equation (V-26) gives a potential which is hard to

use in actual calculations. The hope in this case is

the standard one, i.e., the first order effect can be

calculated almost exactly and higher order terms, where

many-body effects are present, can be studied in a semi-

phenomenological way. In consequence it is important

to have an adequate description of the first order term

in order to do meaningful phenomenology with higher order

terms. The pion absorption process is given in terms of

the form yo and the lowest order diagram related to

“3
them is given in fig. (V-IV). The contribution of this

diagram is hard to evaluate and there is no successful

attempt to date. The wiggled lines indicate our ignor-

ance about the relevant exchanges to be considered. A
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possible approach to this problem is the introduction

of A , Nanda A” spreading potentials as it is done in

references (3), (4) and (5). The essential idea is to

replace the process depicted in fig. (V-V,a) and higher

order contributions, by an effective interaction repres-

ented in fig. (V-V,b). Then the "bubble" of fig. (V-1IV)

can be replaced by the "tadpole" of fig. (V-V,c). The

result is the density dependent spreading potential

given by

\

A —=

AN
2 Es A

\ ol

Fig. (V-IV)

W, (E,¥) _— We(E)
5 pO

(V=-27)

The strength w_(E) incorporates the many-body reac-

tive content of the T -nuclear T-matrix through a com-

plex quantity given

Ne

bv

~ (20—- L400) MeV (Vv-28)

This value has been tested for pion energies between
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7

)

100 MeV and 250 MeV and it is almost independent of the

snergy. This strength for the spreading potential is

consistent with the widths obtained from the p-wave

interaction contribution in the pion-nucleus optical

potential in pionic atoms. In the latest version a spin-

orbit part has to be included {°)

So —- 2

100) = 24-3, V (0) (V=-23)

—y —

where L, and IN are the orbital angular momentum

and the spin 3/2 of the propagating A(1232). Non-local-

ities enter through this term and the following functional
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form was used:

/
—

0 2 J

by the authors of reference (5) and for

parameters are essentially the same 3),

a = 0 2 AA

|g wr (-10 —L4) MeV
/

{?

(V=30)

16, and 124 the

(V-31)

(Vv 32)

These parameters independent of the pion energy. The

inclusion of the spin-orbit part is necessary to improve

in a considerable way the pion - 16) differential cross

sections at pion energies of 114 MeV and 240 Mev 2) In

the absence of the spin orbit term, the strength of the

central term for the spreading potential is strongly

energy dependent and in pion - 16, scattering case, it

was found that Ww = (2 - i55) MeV at 114 MeV and

W_ = (-12-135) MeV at 240 Mev. (°)

In this chapter we are going to consider a "spread-

ing potential" for the S-wave interaction in the same

way that it is done for the p-wave i.e., a parametriza-

tion of higher order effects through a mean field for

the center of mass of the interacting pion-nucleon sys-

tem. This potential has the form given in equation
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(V-27). The strengths of these potentials can be

obtained from fits to the energy shifts and widths in

pionic atoms and details of this fitting will be stud-

ied in the next section. The spin-orbit contribution

to the spreading potential will not be taken into

account in this work for the S-wave interaction case.

Now we can examine the problem of the construction

of the pion-nucleus optical potential, using the Door-

way State Approach. For a particular channel in equation

(V-26) we can write:

A

UE5)=) &lt;Gol pie —% Pe 2
wT {OED 2%, G Q, 9 % he

by ' 4

1

whore:

(for the Sq and ©1a1
channels)

’

1 _ We 2

an |
2) =

(%/ 34)

{

{ We,E-Hy-Wy p
(for the P13 channel)

being R, a projector that projects out the nuclear ground

state and PF the nuclear density operator, normalized to

l in the origin.’ In the coordinate representation this

density operator gives a function of the center of mass

of the interacting pair, i.e., pion-nucleon center of

mass. The indices i and j label the nucleons. The
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parameter W, gives the strength of the spreading poten-

* *

tial in the N and A cases and Wy does the same in

the A particle case. The mass difference AM* 1s

defined as

AM*=MNEM = MF (Vv-35)

* * *

where M represents the A and N bare mass and the

ratio in equation (V-34) is a consequence of the renor-

malization procedure outlined in section (1). The natur-

al starting vectors in the Doorway basis are given by

NID, G0 = NTIS =) 7 |
i.

i 50&gt; (V 6)

The rescattering operators for the S and p-wave are

Jiwven be

W. = We 5 4 Gr Q
&gt; Ane) Loh Or 2

(V~37)

Ww. = 1 51 hh

PE IT t Vat Wot Wi, + Hay

1 L 93 Cr 0% |
2

(V-38)

where € is the total energy without the relevant
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masses, which are given in AM, . The last term of

equations (V-37) and (V-38) includes the Pauli-Blocking

and nucleon binding effects. For a given channel the

contribution to the optical potential can be written as:

A

U(T,3) =U) &lt;7,0] ter F1370&gt;| ca=1 0 1 - W % k

Nr 2 I -

in the s-wave case

(V-329)

(V-40)

U, =

1
= in the p-wave

£4 AM,\
case

— -

Treating the momenta 1 ’ 9 as parameters, a door-

way basis can be constructed for both waves using the

A ~

rescattering operators We and W,- Making the insertion

of a complete set of doorway states between 9; and

(1-m)"L, we obtain:

WU (7,3) =U N, (3) 41)(V-7)&gt; 6.47(7 1D,o} Ye&gt;. &lt;3
J

tf A 7 7’ ) is the n-th doorway momentum space

range function defined by:
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/ “40 « &amp; la. 1D, Z')&gt; (V-42)

A (3,3) =N, TL ~ goo 14, 7

At the first doorway truncation the optical

potential is given by

A 16&amp;=T
To

a

U(E,3) = U, A330) 6, (30

&gt; 5 Tm

(V-&lt;3)

(V-44)

If we are interested in a coordinate representation

for the pion-nucleus optical potential the construction

procedure 1s identical and the starting vectors of

aquation (V-36) are replaced by

N
—/ ~-1 7% —f — + -—/

1D, FO = N, RICOEIN 1x 0&gt;

In this case the range function

(V-45)

AN,(3%) = N.Y &lt;x,019, IDF) (v-46)

has a direct physical meaning associated with the range

rf the effective interaction in the n-th doorway, i.e.,
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after n rescatterings.

In an initial approach to the problem a shell

model may represent the nuclear system and the pion-

nucleon interaction is described through the models

developed in chapter IV, i.e., we use vertex form

factors. Then, the Doorway State can be written as:

2,60 = No) Uy BB hy led (V 47)

odin

where 7 was replaced in equation (V-38)

5 =L AL (hy ty)

by

(Vv £3)

The notation used is such that A represents

* *

N , A or the same A . Here the quantized language is

introduced for convenience. The operators in equation

(V-48) are defined in the following way:

+
AY (A) creates (destroys) a Delta (N* 4% ,D) (V-49a)

and

 (5) creates (destroys) a varticle

 (he) creates (destroys) a Ole

for all these rermions we have the following

(V-49b)

(V-49c¢)
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conmutation relations:

+)

{ 7,3 j= 2 and
C+ 041 _ Sccl

157 j= PEALE (V-50)
Fa

The operator 7 acts on pion states only and

in the coordinate representation we can write:

Jo 18&gt; = Uo (7) &lt;% 3.

being ¥ the pion coordinate and

i (7) =| dz &lt;LPY (3- PI&lt;B-93&gt; a% Gn (5-4 i13
—l, 3

oY

(V=-51)

(V-52)

where 53) is the interaction form factor and i ( 3 )

labels the delta (hole) states. The parameter Eh is due

to nucleon recoil as it is given by the ratio

_ Mr

&amp; Ma+My
(V=53)

which is the non-relativistic one. The first doorway

normalization can be written as:

AN =Y $e dw
B ) 5 ) y () (V-54)

y

[n the S14 channel case we have
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oy LB

(WN, Vo = — : [4 Flp-31)¥ (7 Jgl)z (V=55)) A) YH RB-I0E §e 5s

(see appendix V-A)vhere

= (3-3!) =~ 1
CT Tn

1-8 (2¢~p-31) t+ % oh LE (V-56)oe)

and

~

A,  Ww

(V=57)

B(x)=
\ 3 A

~~

LE

The range function for the first doorway is given

hy

+ Lpr-33011 2 i
AN FY) =-2 EUR of &amp;fCF) =- BT [EER EY

(V-58)

The sum runs over proton states. In the S11

channel the range function separates the contribution

from protons and neutrons:



~~ hy

-— =

1

34 fon

A, (+,%)

3° x
J. 11 DYN Clr)

on ] 3 [4 (b) E53) cf
3¢F

Cf it - ~ /

fn Apr oY1) J
bi op do

(iy 3

{
n¥

% [mR EER 7-570 1rs J | (V-59)

In equations (V-58) and (V-59) the highly non-

local character of the effective potential can be apprec-

iated in detail. From the complexity of the expressions

already found for the first doorway normalization, it

is clear that to obtain analytical expressions even for

the first doorway expectation value of the rescattering

operator is going to be difficult. For the time being

we are going to postpone the analysis of the considered

effects, from the optical potential point of view,for a

future project and at this time all the efforts will be

concentrated in the 1S energy shifts and widths for

light nuclei where the Doorway State Approach will be

very useful and will open the possibility of numerical

applications with highly non-local potentials as the one

we considered in this section. Up to now zero-ranged

potentials were used in a variety of numerical calcula-

tions and the use of non-local potentials with standard

methods 1s rather difficult.
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(3) Energy Shifts and Widths in the Doorway

State Approach

Jsing equations (V-20a), (V-20b) and

energy shift can be obtained as:

(V- J 3] the

AE, =) &lt;o,819; — . — [3-60
= &lt; _ y + + 7

) L000"13uCrQRYe
where $ is defined by equation (V-34) and more

specificly the rescattering terms are given by:

1 QR, deLe TAC Tshe

7 1 Fol °

R=) $6QR% =) gq, 102 Qs&lt;ol2Lg,
tb 2 yy) Er Tq ™ V,

(V-61)

(V-32)

A

The &gt; term represents pion rescattering while the
~~

nucleus is in an excited state and the R term gives the

contribution of Coulomb forces to the rescattering process

while the nucleus is in its ground state. The nuclear

polarization effects related to collective excitations

of the nucleus are not going to be considered in this

initial stage of the problem since in comparison with

the phenomena that we already studied, they constitute

+

second order effects. The vertex interaction 2 is



-2718~

defined by equation (V-48). The starting vectors are

given by:

1 uti + _ Q A t .

No 1D, = N, a 3 15&gt; "L A hy &gt; (v-63)

and the first doorway normalization is

(No Ns) =) |v, |
Ad /

}
/

(V-€4)

_ yt. * to = al s wiT [rar o7 47’ J

1 [Gr-pROIGIGP&lt;ET 2 $42
For the S-wave case, which is the one that we are

going to consider in detail, the total rescattering

operator relevant to the construction of the doorway

basis 1s given by"

W = We 50S R
=o prs R

(V-25)

where

P ge 2 [Pee A]252 (V-25)

The density given in equation (V-66) is related

to the center of mass of the interacting pair as we

stated earlier. The application of every piece of the

rescattering operator to the first doorway state, gives
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the following results:

a xX
— , rd A /z S 1s &gt; ;

2 12.&gt; = N) [BapZR) = 4,0 hy hslo&gt;
hyiys bm? Ej = 4 = Em 7 Gi ?

(hj) To boo

+ GW) / ver (4% Py £5, HiHv-s7
“ga3d, Ro Z - § - Ek Dap

Gel hE) &lt;F
n n ¥

10&gt; = NY Bh gd ati ey
 ET_ gl )

hv gv . S n

| SAR Te

01D,» = NY [he %, Af kj
ny.
(4€F)

(V-58)

(V-€9)

In equation (V-69) we have the linear combination

of A -hole and A -particle-2hole states. So as early

as the second doorway state, we obtain contributions

from orders in the optical potential higher than the

first one. The first doorway expectation value of the

same quantities are:

~ 2 ~ *

515 1m TN) [£8 Bp 4 de
, 2 E-&amp;- 4 “ 7
ayy A J &lt;p

(F,2dF)



-,1"
—

/
-

¥S fos

FAR = WN) Vik 5 V4
4m, y4)Y &amp;’ = En
hs

Chef 16 F)

SS&lt;Dppn = Ny ). N

pt
(ef)

S* S

(V=-71)

(V=72)

NF
with the normalization N, No given by equation (V-64).

The ground state energy for the nucleus is taken as

A
a reference, sO &amp;, = o. Regrouping factors in equa-

rion (V-70) we obtain:

313 D&gt; = ! JF 44 JF * &lt;5 P-9&gt;
7 to 1 | BT % 1) &lt;G1o-3

2
Cre 2 bok wt rn] = = 7 in

Ar DL FSG &lt;EFT RG) bw

~~

where the self-energy &gt; is given by:

Qr 5Y G8) = [8 SE) &lt;F Lo 3

). (3,3) = [4 5(3 p E45 - gn - yy,

RK ; (7-5,8) (V=-74)

The operator Q., projects out the Fermi Sea states
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and Vy is. the mean-field which confines the nucleons.

In equation (V-73) Pauli-Blocking and nucleon binding

effects are taken into account in this way. Since our

interest lies in light and closed shell nuclei and spin-

orbit effects are not going to be taken into account,

then a choice of a local potential for Uy 1s a reason-

able one. The energy - &amp; is associated to the hole
Pal

state 14&gt; and the operator 5 can be redefined such

hat:

BIT 13&gt;
(V-75)

= ES HRARDstag
we mw Eth Ch

where Hy, is the Hamiltonian for a (A-1) nucleons. If

the self-energy operator of equation (V-71) replaces the

full &gt; given by equation (V-61), we are keeping just

the contribution of A -hole states and neglecting any

contribution that is coming from /\ -particle - 2hole

states and more complicated combinations. The general

assumption (based on our studies of the convergence of

this method in Chapter II) is that with a first doorway

truncation will suffice to obtain all the essential

physics of the pionic atom problem. At the first door-

way level there are no contributions from higher excita-

tions like A -particle-2hole states as it was shown in

sgquations (V-67), (V-68), (v-69) and specially (V-70).
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Then the suggested replacement will not change the

first order physics in which we are interested in. All

the published work in pion-nucleus interactions. that

make use of A -hole models and the Doorway State

Approach for the scattering case reach the same kind

of conclusion about the first doorway truncation role.

Usually the treatment of the Pauli-Blocking effect in

equations like (V-71) is rather cumbersome due to the

number of states that could be involvedif the system is

appreciable large. To make the calculation of terms

related to equation (V-71) possible, a complement of

the Heavyside function like the one given in equation

(V=57) is inserted in equation (V-71) to give:

ADEN;
(V-76)

47 Cr &gt; &lt;P-31k&gt; &lt;AIG-5D ts. 0 (&amp;-€
2 J #56 3 eehoeai-p0) Oc (&amp;-&amp;)

The complement of the Heavyside function in

equation (V-76) eliminates any contribution from the

states in the Fermi Sea, since En is the Fermi Energy.

The complement of the Heavyside functionisgivenby

J. (x) = 7

| O  Yv Zz

A C3

0

{'v -77)

Equation (V-70) can be rewritten as:
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HITED -[ 4 £z_a7) &lt;P | —— , A IY ~
s Gp? 170 4-4 8-3)

amy &amp; Hi 3 £3 nh

5 6, [Gh - | 18&gt; 573-5)

wk=i E

FI0IB&gt; =GiY Po (3-Q)

(V-78)

(V-79)

and now the complement of the Heavyside function works

as an operator. This operator can be written in terms

of the Heavyside function as:

o. [ 6-9, 3 c. =T-06]e- ky (V-80)
2H.

“he

The second term of equation (V-80)

Pauli-Blocking effect. We note that:

tL GA raps OF
at = 2 2 iE

accounts for

(\v 31)

In non-relativistic terms equation (V-8l) is making

2 transformation from the pion-nucleon set of coordina-

tes in the left-hand side to the relative-center-of-mass

coordinates in the right hand side. The masses A and M

are respectively the reduced and total mass. Aside this
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we also note that Uy is a local potential and then:

&lt;
2 1918-3 =, 7-3) Ly 2)

The interaction vy will act on the center of

nass of the interacting pair. With equations (V-81)

and (V-82) the self-energy is given now by

~ 7 §(3-07) &lt;P)|—— NY
&lt;FILIE&gt; =] 4 5643) Pm Lp

— A H2 A 2 — to ~

56 [an (Tp) £5&amp;-JIEF580)

Equation (V-83) can now be expanded in the recoil

parameter (3: The zero order term is given by

oe)
ITI = [dary —— 2 gl dhe) w-ssa)

% JERE ) TT 7 he | v

and

Gg?) = 55)5[) (V-84b)

+ * * a

where again A represents ( N , A , A) and in the

particular case of the /\ we can make the standard
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association:

A, AN

Roc —h, (V-£5)

Fa

being h, the Hamiltonian:

hy, = [+ V, (v 86)P

and Va is a confining mean-field which is taken to

be proportional to the nuclear mean-field. In the re-

coil parameter expansion the first order term cancels

exactly and the next non-zero term is in the second ord-

er in 31: The contribution of this last term is

exceedingly small and in the calculations to be present-

ed in the next section, it will be neglected. To see

how the cancellation of the first order occurs we use

aquation (V-80) and the following representation of the

Heavyside function:

x

9 (x=) = Lon $ | llr (V-37)
€=o0 Tr J _ EX +(5-4)°

defining:

7 1 a 2 A 2 ~ 2

= 37 3,7) + 9g _
A= pT) 1 2 uy 3 (V=-58)
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From Equation (V-80) we can obtain:

—

-

2 45 Ma A

5% [R-¢.] =~ Z a [e-2)
é

y/o € { F dt » A, 2 1goo TT — 2 (tA )) 5—— —5 (V790)
TJ) € + (6-R0)) 9 f 4 (tA) *

(V 29)

——

and then:

2 glh-¢ J] = _ bo £ (db 3i0g 0;
, Flame €0 AT J €3(t-Ae)® .

— (V=91)

8 5——

€%24 (t- Alo))?
—

When equation (V-91) is inserted in an integral

2

which contains even powers ¥ , the total result cancels
— ~~

due to the presence of the 1 7 factor. Then the self-

anergy operator can be written as:

¢ 1) 2 ©w ( C) (Vv £2)

The first term of equation (V-86) is diagonal in

A -hole states:

onl SOS od ory 8 :

J GG eaft&amp;Ea
(V=-33)

2 Spa? Op
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It is clear that, in general, higher order terms

are not going to exhibit this property. Below threshold

this quantity should be naturally real (by "naturally"

we mean that the expansion is not going to alter this

real character of the self-energy below threshold).

Expansions of the self-energy in the absence of the

Pauli-Blocking effect may have terms with imaginary

contributions that should cancel when they are summed up.

It can be shown that the self-energy given by equation

(V-93) has no imaginary contribution since the denomina-

tor in the integrand of (V-93) never cancels, i.e., does

not have poles. The denominator in question is given

oN roe

y

ing

A (42 = —- Ep
A

5 &amp;

4

et

—— ~
i 2 2

+. ~£ ~-&amp; 4 Eo —~ - Z -

(- we) (é £, EEE) 94)

Since El is a hole state energy, the correspond-

particle energy is given by - &amp;€|, and

-&amp;) — Ee &lt; 0 (V-95a)

by just looking at the argument of the function 0. in

equation (V-93), there are non-vanishing contributions

, of

Aumer
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Eg, -4°

= bs
&lt; © (V-95Db)

Ne note that:

ER =- i &lt;o
2MN 2p 2M

(V-95c¢)

and finally, since the pion is bound

=

(V-954)

Equations (V-95) lead to the conclusion that

ANE §°) &lt; o for every value of 7° and the integrand in

equation (V-93) does not have poles. In this way the

artifical appearance of imaginary parts is avoided. We

can rewrite equation (V-93) as:

&lt; Ah 5 aw &gt; 4 [ 2 §&gt; 21? $4 T bly) ; On Sg 7
Ze &amp; = &amp;p~ Em i He or

whooTa

9, = Van(e-£) 6(&amp;-&amp;) (V=97)

and in the S-wave case, using the form factors of
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chapter IV we get:

= 1

Gig)= Mf 1
21g (A%4 3%) 2

where A = tl depending on the channel. In order to check

(V-98)

that the procedure outlined here is actually taking into

account that Pauli-Blocking effect in the next section a

specific calculation will be done with Ye.

A

The matrix elements of the R operator can be rewrit-

Fen A&gt;

FIR = [4 &amp;' {23 &lt;3-718&gt; 0. G7)Le oa 7 pp) &lt;P sd

8 &lt;318-9&gt; 17(3-42) (V-99)

where Dela,q") is the Reduced Green's Function in the mo-

nentum representation for the pionic state labeled by S.

This Reduced Green's Function is an object described in

detail in chapter III and for the Coulomb case in chapter

IV also. Equation (V-99) gives the Coulomb contribution to

the rescattering process. The methods shown in chapter III

are used to calculate the Reduced Green's Function and for

the 1S level, which is the one that is going to be studied

in the next section,the Reduced Green's Function is given

in appendix (IV-A)
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(4) Energy Shifts and Widths for the 1S

picnic state in Yue and 16,

The specific forms of the starting vectors in the

S-wave channels are given bv

for

For

\
La

1 ~ 4. d

05 =N7E 13&gt; =) J, INR
N¥h,

the O91 ~hannel and

~~~ S

DY = NUTS =) af, 164A
Arh

the S *hannel, where

a
+

hd = AT, h, [o&gt;

A&gt; = ATL WL 10

(V=100a)

(V-100Db)

(V=-101a)

(V- 101Db)

For the particular models that we are using the

coefficients V an are given by (see appendix V-B)

So, == 12 G Sy,3Srtp,-1 Fi (hs)

Je, = — =

V2 (1+My)
Dry Mp1 fs (x hs)

(V=-102a)

(V=102Db)
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~S1tl

‘ 2

Go = AY

2Hy

(V-103)

and where

= (4hs) = (ttt m+ 3% m¥
= [ 1LAT[eY [3%]

(52“2 (T;
 Xx

Ya)3

b%) [5 (NLL | &lt;A¥ |x) hr GO fx) dx (V-104)

* x *

being (N,L,J ,M ) the quantum number set for the N org

* «

A , (Vv, A r po) the pion quantum number set and

(n, 1,j,m) the hole quantum number set. The functions

h 1
v7 (x) and Ys(x) are respectively the nucleon and the

pion wavefunctions and

-~ oo= AN Ten) = [onde 7 |
J (24829 2)™ NL ) 4.07%) (V=105)

/ Lo
wih WV, (P) = (-1) YY (p)
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* x

where Yop (P) is the N or A wavefunction in the

nwomentum representation. To obtain (V-99), the origin-

al denominator was expanded in the pion momentum and we

approximate by just keeping the leading order term which

is the one shown in equation (V-105). This approxima-

tion is justified on the grounds of the small scale of

pion momentum.

The matrix element of the rescattering associated

vith Coulomb is given by (see appendix V-B)

rd
~

~ 2

N¥ TRIN RS = 2§
ane M3 bund, 4 Sm, Ot omy

~~

rR
 ™» Yo (¥ho¥ h) (V=-106a)

for the S14 channel and

”

~~ A WIR A¥WS —

Ve A: (xh, %"h")

for the San channel, where

2
1

V(1eme)(13m2)
Bry Sm {

V-106Db)
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0 Cehow'n) = (24) [3 [3100 [21 [39 [3 0Le)
1617

(Ca) (0Ne

&gt;

~ ~¥ ! —k/ v oY

CY | 3? yg ( LiL mam+TH3ntop¥
1 2 L 3 0’ L’ 3 -1)2,

? (rd Faq (NLL JotA¥IX)oh(x)[x2 "Ohy (x, %7)

4 wr (x) Fy (NUL Tedn¥ |) V -107)

where oy(x, x') is the Coulomb Reduced Green's
\

Function. The matrix elements for the self-energy 2

are already described by equation (V-96). Finally the

natrix elements of the spreading term are simply given by:

’ | WS = W, /S &gt;.
Fn | Wn \ * &gt; re! Shui bps Mp

(V=108)

8 [xd Yi (¢) Pu (x) He ()

With the coefficients and matrix elements already

jefined we can study the 1S level for two cases: te

and 16,

The nuclear model to be used is a shell model with

harmonic oscillator wavefunctions. The same kind of
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x *

basis 1s going to be used for N -hole and A -hole

4

states. In the "He case there are two experimental

quantities which are important for the model, the

separation energy

S(%4,) = — 12.516 MeV

and Root-Mean-Square rad 11149

J? = 4.63 Fw

(V-1009)

(V-110)

With these parameters and assuming a gaussian

density the estimated potential strength is Vv, = 85.0 MeV.

Other parameters of interest are the oscillator

frequency

Wy = 23.381 MV (V=-111)

and the cut-off parameter

Ap = 0.751 fm" (V-112)

The oscillator frequency agrees at least with the

sxperimental observation of a first excitation at

20 MeV. The cut-off parameter is extracted from
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information coming from form factors obtained through

electron scattering, i.e., through the R.M.S. radius.

*

In table (V-I) the relative strengths for the N -hole

*

and A -hole are shown. We see that the state with

N=0 and L = 0 exhausts almost all the sum rule:

Sn =) [Apne .
AN

[vy 2 J 3)

where Ayn are the coefficients of the Doorway State

* *

sxpansion in N -hole and /\ -hole states. Then as a very

good approximation we can keep only the contribution

from N = 0 and L = 0 in Ye . If N is different from

n the cancellation is enormous due to the fact that the

number of nodes is also different. So in actual calcula-

tions we impose the condition N = n, in order to keep a

particular N -hole or AX hole state. With these rules

the number of coefficients to be calculated is complete-

ly determined. At this point we can offer a verification

for equation (V-96), i.e., the consideration of the

Pauli-Blocking effect. This check can be done easily in

the te case. A direct calculation of the Pauli-Blocking

term gives:

&lt;&lt; m |

2

8 (0) Z

L m&gt; = _ 4G'G My | AA |
ta LAAT

§°
- 2 | PE:

/ p pe

Lo (+g &lt;

(V-1142)
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re Ay = 0.2505 t, A = 0.73 fm! angi B

3
= orp 16 + &amp;7 (V~114b)

For comparison we offer the following table:

Channel

211

S41

() 2:30)

ml; Im&gt; nil; mS

0.522387 +0.021105

~-0.382356 -0.0422092

0

Difference &lt;ml Ys Im &gt;

0.501282 0.499449

-0.340146 -0.336391

In the first column we have the contribution of the

self-energy in the absence of Pauli-Blocking effect, the

next column has the Pauli-Blocking contribution described

by equation (V-114a) and in the last column we obtain the

quantity calculated with equation (V-96). The comparison

between this last column and the difference column is a

very favorable one. The small observed deviation should

be mainly due to the different way in which the expan-

sions are done. Equation (V-11l4a) is the direct

Pauli-Blocking term with 1 = 0 just in the vertex

functions and the dependence of the nucleon wavefunctions

and binding energies,aswellasthedependenceofthe

pion kinetic energy on this parameter pq is ignored.

From the table it is clear that this last contribution
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should be a small one.

In table (V-II) the values obtained from the Doorway

State Approach calculation are listed. The contribution

of the pion-nucleon p-wave interaction to the picnic 1%

level should be small and then the experimental values

given in table (V-III) are going to be used to find the

strenghts for the spreading potential in the S11 and

S31 channels. The expression for the energy shift in

this case is given by:

For) AE, (Ss), For) (V-115)AE. = _By (Suyforr) + he
 WW WEG) | 1- Wa SG) WEG,)

where w= gives all the rescattering contributions,

including Coulomb, and w SF is the contribution from the

spreading potential. If there is no restriction about

the proper signs for the contribution of the imaginary

part, a direct fit gives the wrong signs. If the proper

signs are imposed as a condition, the experimental num-

bers are not reproduced exactly but the result is remark-

able close to the experimental one as it is shown in

table (V-III). The contribution from the p-wave inter-

action is attractive and absorptive so if it were includ-

od the result would be a decrease in both real and imag-
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inary parts of the already computed energy shifts.

This is an indication that we are moving in the right

direction since in that case the calculated values will

be even closer to the experimental number. Previous

fittings of the parameter b, (as it was commented in

Chapter I) for ‘He, where bg is real and Re B= 0

(actually two parameter fit), were not able to provide

a number close enough to the experimental value and

when the energy shift was perfectly adjusted, the width

was off by a rough factor of two. Interestingly enough

the ratio W_/ AM, in the case of the A -isobar is

0.14 also. Based on these results a systematic

study of the entire periodic table will be considered

after this work, using the new optical potential obtain-

* *

ed through the N , A , A -hole model.
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TABLE (V-I)

. 2

Relative Strengths | Agno | /S ph) for the Doorway

States for the 1% level in pionic tne. (n=0, = L =0)

\N

»

{

S11 channel

Strengths

0.9981894

0.0001808

0.0000027

0.0000000

\

3

)

3

S31 channel

Strengths

0.998119

0.0001878

0.0000029

0.0000000

TABLE (V-III)

Extracted Spreading Potential Strengths and experi-

nental values for the energy Shifts and Widths in “He

and
i A

~

NE ‘4e, Experimental ) = (75.7£2.0-122.5:1.0)eV

AE, ( *%0, Experimental ) = (15.6440.1-i3.97+0.15)KeV

Result of the fit:

N11 = - 0.45 + i 0.14 Woe = 0.45 - 1 0.14

Recalculated Shifts and Widths values:

A&amp; (*He) = (77.815 - i 22.411) eV

Al. (100). = (18.749 - i 3.01) Rev
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TABLE (V-II)

and

Results of the Doorway State Calculation for “He

16, in the pionic 1S state case.

S11 Channel:

AEs (‘ue, First Order Perturbation Theory)
= - 92.707 eV

AE. (18g, First Order Perturbation Theory)
= - 21.776 KeV

Woo (Yue, Total Rescattering Contribution) = 0.58735

Woo (+0, Total Rescattering Contribution) = 0.54875

Wo (“He Spreading Contribution) = 0.37208

Hues (16g Spreading Contribution) = 0.180075

531 Channel:

A LS (de, First Order Perturbation Theory)

= 356.403 eV

AEC ¢ 284, First Order Perturbation
= 83.741 KeV

Theorv)

Woo (“He, Total Rescattering Contribution) = - 0.67357

oy, Total Rescattering Contribution) = - 0.48720W
00

W
00

(re, Spreading Contribution) = 0.37208

N
NO

(16g. Spreading Contribution) = 0.18075
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CONCLUSIONS

(1) With the Doorway State Approach to

Perturbation Theory, a wider range of problems not

solved by standard perturbation theory can be treated.

In particular it does well with the combination of

strong interaction coupling and non-local forces, which

is the case in pion-nucleus studies. Other methods fail

to offer a solution, even from the numerical point of

view. One remarkable feature is that the essential

physics of the problem can be obtained within the first

doorway truncation due to the strong convergence of the

method. This makes the interpretation of the physics

casier, because we can read directly in the first door-

vay expectation value each phenomenon under study.

(2) Nuclear structure effects can not explain

the anomaly observed in 11054 Dynamical Nuclear Polar-

ization. The standard pion-nucleus optical potentials

also fail in explaining the widths of the 3d levels in

heavy elements and this problem remains without explana-

-i0n.

* *

(3) The [A(a-1), N (A-1), A (A-1)] model is

used to determine a new optical potential. This poten-

tial is characterized by a phenomenology of higher orders

different from the standard forms used to date. Effects

like Pauli-Blocking, nucleon recoil, nucleon binding and



-240-

finite range of the interactions are included in order

to make a correct description of the first order term

and the physical interpretation of the higher order terms

becomes easier. There is a "spreading potential" for

the S-wave contribution to the optical potential which

is related directly to the pion absorption problem. In

this way the absorption process is treated phenomeno-

logically in a first step and our intention is to pursue

a detailed microscopic description of this process in the

future using the parametrization developed in this work

as a reference. In this way the energy shifts and widths

of ‘He and 16, can be explained in a simultaneous way for

the first time, according to the discussion of Chapter I

in regards to the ‘he case. The "strengths" for the

spreading potential are

Wi = - 0.45 + 1 0.14

W3q = 0.45 - 1 0.14

which is the result of the best fitting if the condition

for the signs in the imaginary parts is imposed to

produce the absorption effect. At the same time the

recalculated shifts and widths are consistent with the

experimental observations. The absolute value of

imaginary part of these strengths is given by:

ne | 0.14| AM
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Interestingly enough for the A -isobar this ratio

is the same

Ne - 0.14AM,
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APPENDIX (II-A)

REDUCED TRANSITION PROBABILITIES AND QUADRUPOLE MOMENTS IN

tHE THREE SURFON MODEL,

a) Quadrupole Matrix Elements:

In order to calculate the quadrupole moment, we have

to work with the operator:

ood z 2\o 7

Azo = A$2, 2B). &amp; : oo) bm ta, (T17A71)

 Ww  La Vg
- -

A =e, [dr v# 90
hb] or

B=gy2 4 Jz Voy 4 [ det 2
J Ja?

(IT-A-2a)

{IL A=-2b)

and

. %

No 1)oo

A

Lom =X, |a,,, + (-1)™ ag] (II-A-3)

Foot
[ Ln Cyt) = [ dp, , Lying] =0 (II-A-4a)

[ a t =wm , Gy! ] = S007 0 mm’ (II-A-4b)

In equations (II-A-2) Pp is the proton density and
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is the proton radius, Now we consider the product:

A 2 + &amp;

t2-m Tom = *2 {a ,, Gm t op A2-m

i

m + t
(1) EK t “2 -m A wm t Gam Gym | (IT-A-5)

~1t

. (2 : 2) =0 (II-A-6)

Then, we have:

2, - Af EY) (2, : 0 { @ ny,

+ L wm t+ -2-
t Ag 45 om, F(-1) [afm Rp mT Arm Gp 1 (I1-2-7)

Ne define the coupling in each term of equation (II-A-7)

AS

[ a, a 1a, =) (2 : 2) Asm Am
mn.

ul,

imi

Ld) am mm
(II-A-8a)

[af af) — 2 2 2 +
L Z “20 =) (2, 0 2) Lyn Gy pn

nas

jr T(L2 0) Gon Ge/. \m =

(TTI-A=-8Db)
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+ — sy M/S 2 ZN LT

La; Gz 1, = &gt; (-1) - o y Ag om, Lm
YL

=L) Cn) tom
(II-A-8cC)

The equation (II-A-8c) applies also to the last term

&gt;f equation (II-A-7), Now we apply the Wigner-Eckard Theorem to

equations (II-A-8) to obtain:

ra IGE) = (TT 42 2 2
TY bad n

ve Ii NanI"&gt; LT Nan, &gt; (II-A-9a)

a a / Ta —— ( 1) r/ | I, I. I

Be) LT NanI"&gt; &lt;I" af NID (II-A-9Db)

&lt;TIN[afa1,IT.= (- Tu-In "(2 2 22 2 (-1) L (-1) bz I "
i

cna &lt;I nant? (11 -D\-9c)

where I labels the nuclear spin, Equation (Li1=A=7)

can be written as:

~ ~ + r +

3, = Ady -L2 BX, {La al, + [4 a; 1,,t

iL J [a a1, | (II-A-1Q)
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Jsing the following notation for one, two and three

surfon states:

Ne

&lt;1

[11&gt;=14,22) (II-A-1la)

2. ? 22&gt; 3LL A=-11b)

3°) 3 22° [11 -A-11c)

sbtain:

Qpl1&gt; = — [22 2 8x2 &lt;tIL a} ag, 11D

Ee (2 2) 152 Plaids)” areata)

rei
£20 Gio&gt;= As |

&lt;1] Q, 11&gt; = — 4 px?
= 2

N
- -

“VN@
a

+hen:

(IT-A-13)

18,125 = A &lt;11qn12&gt; = AX, &lt;1la, 25

anaes

—— AX, (2 : 2) Lalla liz

“aa. od

I

vee LT ay 1I,=2&gt; = [2 (2T,+9]%, 50

(II-A-14)
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 1 61G, 12&gt; = &lt;21 Gy 11&gt; = £ AX
vi

(II-A-15)

~,
|

2 2 ~

Q,, [13&gt; = ~te BX: (, : ) ) &lt;4, ay) 22

2 2 2)

Z BX; i | 200,112, 2, 14,12,
4 2 2 2

—

6 2 ax? G
£2 8X; = &lt;3] Q,l11&gt;

II-A-16)

21Q,12&gt; = = Bx;
 | -A -16a)

I) 2135 = A &lt;2 E51 = Z AX, &lt;2, 1 4112

_

ke

[2 —; ’¥ PN, = &lt;3] Q,, 12&gt; (II -A-17)

11d finally:

{ 3
yz =

(II-A-18)

+here the following table was used:

1

3
sa

2
3

)
\

 3!

20/712

va| +

|

‘93 /71%

(36/7)

-4 ly

90/7)"
{

Co
%
 ~~
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This table was taken from A. Bohr and B. Mottelson,

vol, II, p. 691, 1975,

NDther important matrix elements

&lt; oll @,112,&gt; = V5 AX,

Le

(II-A-19a)

and

lollQ,N2,&gt; = -yk BX,
3 2

NEJ

oll [a,a,], 12&gt;

(II-A-19Db)

since

2 Z 2

&lt;oll[a,6,),112,&gt; = f yz Loll &amp;G,l2,&gt; (11-A-19¢c)

® &lt;2 1a,lla,&gt;

With the matrix elements given in this section, we are

going to find expressions for the relevant reduced transition

orobabilities and quadrupole moments in the next section of this

appendix.

(b) Reduced Transition Probabilities and Quadrupole Moments

related to the problem:

The state 27 with energy 373.8 XeV above the ground

state level can be written in our model as:

tie0=4[1D+H oa&gt;4ds13
(II-2-20)
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and then the quadrupole moment is given by:

Dig = BTJ 4 x2 12 gx ull + 24 8x2}
3 I= l Z B Z VTE BX, 2 3a BX, «3

ical,

1
5

Xo Kod 12402 px 3dA 2 XK X5 + 4 = BX, oy + 2pxoll fTT-B21)

The reduced +ransition probabilities are Ji Ten by:

2 (EL, =I) = ——| &lt;TUQ IT.
IT +1

\
A 22)

And in the aT state case, we have:

&lt; oll QI 33&gt; =vV5 AX, 4 +212 BX,4, (II-A-23)

and for the 27 state, a similar expression can be

found with the results:

we also

2 2

B(E2.334—&gt;0) = [95 Axes +342 BX, |

B 52,

2

s19—0) =L[{5A%8+34ZBf.)

+ 1d with the matrix elements calculated

hava

3(E2. PY — 3FY) = 4 | {33%11Q,1§I4&gt;©

(II-A-24a)

(II-A-24Db)

previously,

(ITI-A-25)

and
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__ 4 ‘35 2 5

3H QU HYD 273 BX, hy Fs [£ 1x45,

:
1%

 GC
15BxF Xyfy + 12438 BX]olf fs + ES BX

h flo A%y fy +275 AX, eff;

i

r

ET RC py +205 AXy 8,

i
24

3 VE BX; 3s
(II-A-26)
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APPENDIX (II-B)

MATRIX ELEMENTS RELATED TO THE NUCLEAR POLARIZATION PROBLEM.

the form

In actual calculations we assed

PO = [5 0 (a-v)

sguare LS 188s

(IT-B-1)

of

to simplify the calculations and based on the low sen-

sitivity of the results on the detailed form of the nuclear den-

sity in previous work, Powers of the density will have the same

form, In such conditions, the contribution of the electromagnetic

part is given by:

(v2 IT | AHe, IME T'S &gt;

T+o'te+ IT 22[ro (-1) (28+4)(2L +1) |
17

—

! 2

® (es, 1-1/)]"% (? 22)fz22

2 | L Rog Rutp? dv
(II-B-2)

where the overlap integral is calculated numerically

using radial wavefunctions of the pion, generated by the com-

puter code PIATOM, and from the s-wave interaction contribution

ro the optical potential:

7 T+£42+T

Sve ITIAHIn2'177&gt;=1227(~4) (24+, [ ei)
 20+



~

. RR

o(2T+1) a,Ms [¢ 2 2
Ee [. ° {EYE Re iy |2: J 4 —

R ] 9 (€2, T—-1") ] V2 (II-B-3)

The proton and neutron radius is taken to be the

same, any and the essential form of this potential is given by

A (OEY SERS ad 2-4)

(0) : (1

where Vi includes the isoscalar amplitude and Ve )

contains the absorption coefficients and it is proportional to

the square of the density in the interior of the nucleus, In

the p~wave interaction case the optical potential is given by

— (

 aN

—
\/ \ do ude

~ 5)

vithin the square density approximation, and

2% ov, (22 Sn? + = p 1-2 (a-v) + % (av)

o [L 2 (2)- £0] (II-B-6)

and then, the corresponding matrix element is given

hy



592.

~ (22's )i041 #1) 7 || TH+ fat)Yop £4)HY nigTHA p17 2veJ
i

J 2TH) Vp &amp; 2 e'\ [2 2: IE RakZe VO © 14 Ee | B(£2,I=T)]"

3 {1-2 (fu er) 1, (ITI-B-7)

bt 2 (v* 2 Ruta) = AyKone Ru |,
YE oY
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APPENDIX (III-A)

FINITE SQUARE WELL REDUCED GREENS FUNCTION FOR THE GROUND

STATE.

In this appendix we are going to use the differen-

tial representation of the Reduced Green's Function to treat

the finite square well case, The first step is to find the ra-

dial part of the Green's Function given by

PAARE vr Gy (60) (III-A-1)

where Gy (x,x") is the full radial Green's Function

for a given partial wave. To the differential equation problem:

Lae + £5-280v0} Teor) = Sant]  1 LL -—L -2)

Ne add the boundarv conditions:

4(o,¥') =" (oo. v') = 0 (III-A-3a)

&amp; (v, / oreFO=Fee] (IT1 -3=3b)

d wily — dlrSen) me or 7IL (III-A-3C)

and the potential in this case can be written as:

/(¢) = =V_ © (a-r) (ITI-A-4)
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The solution for 1=0 is given by:

/

2 hn ,” cri a) a

Al.

5
* vw

va

A (en) =

\

~ - / 7 TTT wl)

He | 24, K (ery 2a), SH vl, II-A-5a)
1

and

LL 2% Comheywine+ Wei de wi hoe! Op
3 Wa

400) YY) = ‘

- 2 Kir){ on
J on (IIT-A-5Db)

whe re

AF== 2i (v,- | E  1)

K, = 2u | E

(ITI-A-6a)

(IIT-A-6D)

and

Ny (he) =A coda + K ninha

 ou cfN LE) = fe At = Co Ba

(III-A-7a)

(ITI-A-7Db)
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ro) )

W, (2, kK) = IC am Aa ~ 4 er 4, (III-A-7C)

Ne note that

WN, (he) =o (III-A-8)

is the eigenvalue equation for 1=0,

The next step is the direct application of the di-

fferential formula:

Oe, ¢') wo 2 4 F(-e)300]
(III-A-9)

where &amp;, is the ground state energy for 1=0, which

will be the studied case in Chapter III, The momenta k and K are

functions of the energy and equation (III-A-8) is satisfied

, 1. €4, has a pole there, It is convenient then

to consider the expansion:

N, (he) = ZCE-6)+T (=e) + DL(-€°)  ar1-a-10)

There 1s no order zeroth term in equation (ea il=A-10)

3ii...e

J (&amp;) =o 'TII-A-11)

due to the eigenvalue condition, Next, we are going

to consider the limit process of equation (ITI-2-9) for all the
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sensitive terms of equations (III-A-5a) and (III-A-5b)., Then,

the first term to be treated is:

a od £-£, Wi in pr AN ¢££, dE {ce Fok

sms

_— 2 47 Wo indexasfr?|
EE Te LU [%+TF (e-¢)s OLE-E))

A W } | 5 , A hy -A-12)

a Jd€ 4 £=¢&amp; “tlh &amp;=¢,

rhere

ri Zt =e {Ls I Dhar [6 (rica)
(III-A-13a)

Zz

2

Le Latha)sahut+hoeeres|mEon hos.
(III-A-13Db)

 ale de
and

W_| Amdo + Jo, 0 a 4,
| = A lee boas bya endo] tA enka

the rest of the derivatives are elementary,

(ITI-A-14)

The se-

~ond sensitive term 1s given by:



~257~

-kfe-a) go )

Lm 4 | e $ pan bv (6-8)
F—=¢ dé wl

Saran

— Ld - Kea) of _% ~k(ea)x dg L® mk c=e 52 L© as ko.

he14 Last sensitive term is written as:

(III-A-15)

Lon, 43 _ W. -K(v+c-2a)E-&gt;€, d¢ (¢ &amp;) rod )

a

— 1 J Wh g Klerman] _ TL Wh —kéewl za)zr H1x¢ zt Le©
£=C £=&amp;

‘81+

(ITI-A-16)

IW | = (kat) hoa +4 a wakga)~ Via Ping O (III-A-17)
dE Exf hb. ew

Cn=

If

A

+

- he £ 2llowing afi

No
E=f£

} aw. |
de le=¢

AW pa¢ 1 =

-3+i0ons are introduced:

C1 LL ~-A-18)

(ITI-A-19)

rhe result for the radial Reduced Green's Function

is given by:
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2h Ap pA‘ ' nA ¢

i |cob 2st ad pha to

L Ly (¥Cob pin hove”4!nAedo’) ro La

Ot v) =

? Li 3d

~ —KY 5 ere"

R, € « Aad’ LR, ve Croat’
1

LR. - fy |eV in Ar’ a. (III-A-20a)

and

~Kx'0 0 4gv +8, ve—kr
2/4, 1 Re

i ALL bo rs
-

4
'»

Fer)= {

JN

/

jeie(nV)3 = eC)

 Lt Be (eevee ko (ete!) » fA

where the coefficients KR; are defined as:

2.=5-k=~ bl.
a

Uo Won
n= Sok

(ITI-A-20Db)

(III-A-21a)

(III-A-21Db)
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R, = hog
/ 7

Zk

RB, = wR, - ok , 6

&gt;t

Cs = er S - fa -bH§ = 2% ak. 22

20 Le

J 7a

The full radial Reduced Green's Function

J(vv) = Ole)
wr!

(ITII-A-21cC)

(III-A-214d)

1..~-A=2le)
a

T ITA -21f)

Je | or -A-21Q)

ig

(III-A-22)
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APPENDIX (IV-A)

REDUCED GREENS FUNCTION IN THE COULOMB CASE FOR THE 1S

PIONIC STATE,

The Reduced Green's Function in the Coulomb case can

be found using equations (III-85), (III-86) and (III-89)., The

functions Gx") and Gfr,c") are defined as:

~ak Y J 0 2/2 J
gy (OT) = a —. t (t) dt' J. nd Pre

Ge (07) EB : d t* 4, (t) dt
Sof hs [F:

(IV=-A-1)

"Iv ~A-2)

’'n the case of the state ls, the radial wavefunction

is given by

0), (0) = Ce

4,  Ht gp
- oon

(IV-A-3)

(IV-A-4)

where i is the pion-nucleus reduced mass, ote is the

fine structure constant and

40

“—

— ul (IV=-A=5)

The integration in equations (IV-A-1) and (IV-A-2)

is almost inmediate and the result is:
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oO

LL, n-1 t= IV-A=-6)
Ga (rh =-L (ex) L} 2 (x x ) (

Hic? 2K waz nt (4-1)

A 15 /\ 1 i / A 4 ] OW = —_ dxX Ir X — i.og (01) JL? POY 3 Tix Fax)

and we introduce the definit.on:

~ = n n

5, (x) =) 2 Xx
n=4 Nn (n+) |

CIV -D-

(IV-2a-8)

7)

Then:

7 XX 4 A

WM, (re) = Cv) = Px-x'- Gl + Glen (IV-A-10)

With the definitions of equations (IV-A-1) and

IV-A-2) we can write C,(r') as:

aly)=

oO

1

&gt;» Gato [idx $5 (x) Gg (x,¢") (IV-A-11)

Jsing the tables of I, S., Gradsteyn and I. M, Ryzhik,

rhe integral

o-
Ll

dx e””Drs x = 3- 72% (IV-A-12}
A

ol

which is a particular case of:

 po
|

y wo. - xX

xX e 74 dos x dx = n!rom [ted lbv ou] (IV-A=-13)
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being ¥ the Mascherioni Constant, and 38fo? 0

Using equation (IV-A-12) in equation (IV-A-11l) we

obtain:

(IV=-A-14)Sex]xLL -G,(x)-3
/ ax. 4

xs dry pyCem

and

Replacing equation (IV-A-14) in equations

(IV-A-10) we get:

(IV-A-9)

fp ped / {

MM, (rv ) = = § 3-9-x-x ” Ory 2% to + G, (3) (IV-A-15]}

and the radial part of + He Reduced Green's Function

is given bv:

Y- Goer) = 8. (e) My Gee i Ce)

ls

— /

aC. e SIG / { Soy. (ert )= dg 2,6, + A
26.5

L iy (kv) | (IV=A-16)

Equation (IV-A-16) will be used for pionic lu, ‘me

and 164 calculations. It is interesting to note that equation

‘Iv-A-16) includes contributions from the continuum of states,

which is not taken into account in most of the estimates done

1D to date in perturbation theory
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APPENDIX (V-A)

FORM FACTOR INTEGRAL F_(Q) FOR THE PION-NUCLEON S-WAVE

INTERACTION.

In Chapter V the first doorway normalization for the S11

~hannel and S14 channel is given by

-

(NN,)
—

 GRY
 oN [dB fd rer) My 3) (V-A-1)
Lh ’ EROS FOI :

whe re M. is an isospin weight factor defined by

-

-

(V-A-la)

"1 (Ss,) ProToNS (V-A-1Db)

M —

| po (S34) NEuTEoS (V-A-1cC)

Ba 21

LT wm 4 for the S11 channel (V-A=-2a)

and

r

A 0
gue. —

Poo yA
LeA

—

— for the S24 channel (V-A=-2Db)
n

The form factor integral is defined by:
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. 3 | wy67) =| Torr Bont) [4 (07)

and it is part of the integrand of equation

(V-A-3)

(V-A-1)

if the following shift is done:

)

3

—l

-
ts

followed by the 1nve

7747

rsions

(V-A-4)

(V-A-5)

vith the result:

~4

NoNo)- /

_ cf Jo lr g¥ =i LL

Co) [EE LRRD iP AED (V-2-6)

Defining:

K=5%-7 (V-A=7)

aquation (V=-A-3) can be rewritten as:

 Gi =R®)=4[47Bad (py} [24 (%K+] ]



SREB—

Tn

a ==&gt; | =oi / Pd / ?i 3, o Lop? “Y ; (keh) |K =&lt; + (k-P)2 J
(V-A-8)

The fundamental integral to be found is given by

oO , 2 2

I. =f 2 dp fo, [C2 Cit)
es Pe «&lt;% 4 (k- P)? -

 \ -2=9)

and using the known results:

can

/
re

we Sha gx =  fF
IR

(V-A-10)

vith p &gt; o0
TF

-~

1wea

&gt; &gt;

/
ro

Loo Cops x’(x-p)%4 ¥2 |

3
] in bx dx =2m 0 ab (V-A-11)

with Re ¥ &gt;oo AImal $ Re and =

 Ww  »&gt; 0 I'd the integral Ir

be found:

oo oO

te = [dee dp pe fy [len
5 -

matt

bolls

WL.

ee we phXC

or | LnKX pe da
x

oY

—2 _— GolK
IT™ + Ti we fa TT

V2

(V-A-12)

(V-A-13)
 J
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Then F(X) can be rewritten as:

=fRm ee 1B loat-R) +L _ Get] (V-A-14)
mr 5. J+ Lae By a)

1.

Tiare

&lt;= [F-71 (V=-A-15)
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APPENDIX (V-B)

MATRIX ELEMENTS FOR THE COULOMB RESCATTERING OPERATOR IN

THE N*-HOLE, *-HOLE APPROACH.

The vertex function for the
~y

Do 1

LT) = G T
 { V3 LP 4 §°

4

wh.e Le

ole =~ 4°

2H;

channel ls given OY

(V-B-1)

(V-B=-2)

The Coulomb Rescattring matrix element reads:

CNYRgIRS=[dF37d Bb nid fa&amp;s EX Leh &lt;n &gt; % f-p7)

J FURY, 3,7) 1E-T&gt; 5H ELe1) &lt;I (V=-E=-3)

Before any further development of this matrix element,

we consider the coefficient of the Doorway State in a N*-hole

basis

= ds cep TT BIS ELE
Fn hs) =[4 3 NFP 2 aa?) J Ag

=/2 G S WNV5 _ LS U (N*h S)
(V-B-4)

~vhere we used
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I — (V=B=-5)

To Em = = (tramp) [4 My

Ne define the different set of Juantum numbers rela-

red to the problem as:

N== (NLL T*n¥)

T= (ne= ( eda -m)

J (vAu

(V-B-6a)

(V-B-6Db)

(V-=B--6C)

Then we can write:

STs)=[£3 cid owl) 31RD

ey

——

- +mTLL Pt1 [Vide [M231 4-m

Jsing the Wigner-Eckart Theorem:

(V ~-B-=7)

. ¥ LW ¥

CNL TR* Vy, In2d jom&gt; = (07 La")

x -— J J(Seo 2) KNLET NIDlIned&gt; (V-B-8)

where ll =| 25%+1 ,and

Aa

CALETA ed 35 = 0 F290 100)

.,

4 A

2 J Ld NLIVyY Ind &gt; (v=-E=-9)
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Using the Wigner-Eckard Theorem again, we find:

1) [vv] \ 5 0

A 7
_ ) INL IV ling

 JS

o~

mea

a

I

| BE 4m) WME 4 a)
= Gh Boo (7) = 4530)’ Bes qJ

(V-B-10)

The scale of q is fixed by (0) and in the pionic

atom case it is a very small quantity. So, if the following

axpansion is considered:

er = mr AL Bo
&lt;4(oP) FTHAIPT (SAP)

The approximation of keeping just the first term of

equation (V-B-11) is more than justified since the second term

is 1072 times smaller than the leading one, If this approxi-

mation is done, the reduced matrix element is given by:

INLIVpy line = 4, [Ae] ( ’ : )

 yp? I hn T

[RAP a) [ride gtr de) hao2)

,

(V=-B-=12)

Introducing the definition:

Fo (ve [etal x) £ “prerts pO™ 4.00 ) A(x)
ot

(V=-B=13)

ve can write the matrix element given by equation

'Vv-B-9) as:



cy"

or.

oS =234LTE, ned{NL3 DEA
= [5 [LT IX1[2]

9
~ . ox

{kL 2 7 [ed FE, (NLL [AX |x)
vo oo) Le [ 1] 2

D ud x) YA (x)
n

(V-B-14)

Then, we define:

i (% h $Y) = VAtdHL +m + TEM
C310 L) [XN [2]] 7*)

Vaan ileo (52) (3h 1 2

2 in om AY rh T| 21 (NLL | oA x) x2. (x) (x) dx

and the full coefficient is given pV

Fh) = 2 6 Gy Suey Flrhs)

(V-b-15)

(V=B=16)

~o

In equation (V-b-13) the function Vv (7) is related

ro the N* wavefunction in momentum space through

bo) =), (P) (V=B=-17)

Once the coefficients VO* hs) are found the cal-

~ulation of the matrix element given by equation (V-B-3) is in-

mediate if we make the replacement:
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Ys (4) — Oa (4,4) (V-B-18)

The result is:

a NF RNY RS = ‘

: 2 Cm m1 — Si

Q 3 (xh, %'h') (V=-B-19)

whe ce:

Ts eh ¥h) = (2244) 0 3%) [57007 [4 [5% [V1 Le]
&gt; 16T

/ £ / / TF 2 4 \

® $ ) ‘) (: ) . ) (cow 23) (2 od

% TGA] [I] mer
£ 1) 2 1 )

h pe n
2 | xt dx fF, (NLL [LA% |X) Ys (x) [ Bn (x, x’) Yip (0)

-

Q = (NUL ak x) x dx (V=B=-20)

The vertex function for the S21 channel is given by:

f(3 ~) G Z9°

(Vv © .21)

wheoo

Ge = 3
2H

(V=-B=22)



 V7 Va

and

Tm==[4,mm1&gt;(v-B-23)
2 (1+my) -

So, formally speaking is not different from the S11

channel, aside the isospin factors and we can write down in-

mediatly

Vis*hs)=—_G__§roy _— F(x hs)
(V-B=-24)

and

~ 2

7 A¥h | &amp;, WN = ~- 9

rg

2 Ag (ehh)

 Sn et nm
[Gem (14m)
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