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Abstract

Consider the case of a computer-animated movie. The individual frames of the movie
are less compact and modifiable than the database and script that produced them.
Ideally, when a movie is made of a real scene, the output of the camera should not be
frames but rather a three-dimensional database describing the objects in the scene and
their movements through time, as this would permit great data compression as well as
computer-graphics-style operations and interactive modification of the movie.

It is demonstrated that lighting, focus, viewpoint, and other changes can be made to
real scenes when they are captured by a camera capable of sensing range information.
A process is developed permitting the estimation of range by use of focus gradients.
This process is combined with a three-dimensional spatiotemporal gradient motion
estimator employing a parametric signal model, so that the motions of objects may be
tracked through time, and also to provide an additional, independent source of range
data. A complete volumetric database is built up of visible portions of a moving scene
over time so that it may be rendered from viewpoints other than that of the camera
without missing parts.

The work described in this thesis has been supported by CPW Technologies and
International Business Machines.

Thesis Supervisor: Andrew Lippman
Title: Lecturer, Media Technology; Associate Director, Media Laboratory
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Chapter 1

Introduction

Now if you will venture to go along with me and look down into the bottom
of this matter, it will be found that the cause of obscurity and confusion...is
threefold. Dull organs, dear sir, in the first place. Secondly, slight and
transient impressions made by objects when the said organs are not dull.
And, thirdly, a memory like unto a sieve, not able to retain what it has
received.

Laurence Sterne

The Life and Opinions of Tristram Shandy

1.1 The camera as model-maker

Movies - by which term is meant the whole spectrum of photographic and electronic

systems by which images of moving subject matter are captured, stored, and displayed -

are currently shot with cameras that take in a series of of two-dimensional projections of

three-dimensional reality. This series of snapshots, or frames, is more-or-less preserved

all the way from the camera to the viewer's eye and brain, where (fortuitously for



moviemakers) visual processing recreates the impression of continuous motion.

In the conceptually similar process of traditional animation, each frame must be

drawn by hand. Computer animation, though, permits the manipulation of a three-

dimensional database describing objects and surroundings, which are projected into

two-dimensional frames (as by a camera) only at the final stage of the process. This

method of operation, as Zeltzer has noted, can free the animator's energy from drawing

key frames and in-betweening, and allow a greater emphasis to be placed upon creating

environments and manipulating them [Zeltzer, 1985]. Computer graphics research has

long worked with models of physical reality, and now the artist has at his or her disposal

methods for modeling objects, rendering them from variable viewpoints with variable

lighting, segmenting synthetic scenes and rearranging the constituent parts, adding

and deleting objects, and so on. But a problem exists in obtaining interesting, realistic

imagery on which to apply these methods. The time saved on in-betweening now

goes toward converting the animator's visions into the mathematically-tractable object

representations used by most computer-graphics software. For some totally imaginary

objects this may be necessary, but for many real-world objects it would be useful for the

computer somehow to "look" at them and incorporate them into animation databases.

The traditional moviemaker' is also concerned with creating environments and ma-

nipulating them. Moviemakers know well, probably better than computer graphics

'The practitioner of cinema verite might disagree with the terms "creating" and "manipulating," but

the remainder of the comments below still apply.



artists, the effects careful lighting, depth-of-field and focal length selection, framing,

and scene composition can have, and may go to great lengths during a shoot to adjust

all these parameters to best effect. Ideally, the moviemaker would like to have the

freedom of the computer animator, and be able to control such image variations in

post-production. But movies, whether from a film camera or a video camera, are not

in a "language" that computers can understand. Thus what is sometimes called "elec-

tronic cinematography" generally involves operations at the frame level: superimposing

parts of frames, warping their shapes, and other such throwaway effects common to

television news broadcasts.

A current research area of the Movies of the Future project at the MIT Media

Laboratory is the use of adaptive vector coding to reduce the bandwidth of a moving,

color image sequence to the point that it may be played back at standard compact

disc data rates [Lippman, 1987]. The importance of this work is not merely in the

bandwidth reduction, however, but more significantly in that the "CD movies" are

not treated strictly as sequences of frames. Rather, treating a movie as a digital data

stream opens up the possibility of rapid, useful interaction with sequences via computer

and (given appropriate organization of the information) even within frames.

Just as the databases used to generate animated computer graphics are far more

compact than the frames of the resulting animation, it ought to be possible to pro-

ceed in the opposite direction, reducing the frames of a real movie to a set of objects

defined once and given three-dimensional trajectories. Such databases are also typi-



cally not tightly coupled to the spatiotemporal resolution (that is, number of pixels,

and frames per second) of the output device upon which the scene will be rendered,

rather, they are dependent upon the precision with which the underlying phenomena

are understood. Even if real image sequences cannot be reduced quite to the simplicity

and compactness of computer animation representations, a more flexible representation

of the objects in the scene will still permit many computer-graphics-style interactions

and variations to be performed. Traditional computer graphics, of course, is concerned

with manipulating synthetic objects in a synthetic environment, and creating a similar

degree of control over images of real objects would open up many new creative and

communicative possibilities. But the most exciting scenario involves total removal of

the distinction between real and synthetic subject matter. The line between computer

graphics and photography/cinematography would thus become blurred, and many hy-

brid applications would develop.

It must be noted that any technique useful to a moviemaker for post-production can

instead be used by the viewer - the developments described herein aim to change not

only the way in which movies are made, but also the way in which they are watched.

For instance, a shopper might take a new sofa from an electronic catalogue stored on a

compact disc and view it placed into a variable-viewpoint picture of his or her own living

room (real object into real scene). An architect could view in the context of its eventual

site a building designed using a computer-aided-design system (synthetic object into

real scene). Or a moviemaker could have human actors perform in a computer-graphics



set (real object into synthetic scene). The desirability of the latter possibility has

for a number of years been recognized by Hollywood cinematographers; Mathias and

Patterson specifically address this point in their book on cinematography:

"It is entirely conceivable, for example, that all the sets and locations for

a movie could be created electronically... The tools available for electronic

cinematography today may still be crude in comparison to the ultimate

potential, but the groundwork has been laid." [Mathias, 1985](p. 237)

Synthetic-object/synthetic-scene graphics would also benefit from stronger functional

ties to imaging of real objects - both because of the understanding of real-object rep-

resentations that would develop in such a research environment, and because in some

cases the "image" representation of a real object might serve as a starting point for

creation of synthetic scenes.

Taking a picture with a lens involves collapsing a three-dimensional world into a flat

array of intensity values, which may be imaged upon a piece of photographic film, an

electronic sensor, or the retina of an eye. Such a projection necessarily involves discard-

ing the distance coordinate of each intensity point imaged;2 3-D shape information is

lost, and mapping scenes to 2-D images is thus a many-to-one transformation. Perspec-

tive projection further confounds distance with planar extent: far-away objects occupy

less of the image plane than near ones of similar size. Any attempt at trying to recover

2 Unless the phase of the incoming light is recorded, as in holography.



"what's actually out there" from a planar projection will involve undoing perspective

effects caused by the imaging system, as well as filling out the volumetric shapes of ob-

jects. Both of these tasks require recovery of distance information for use alongside the

intensity information, something that the brain does quite well. The human visual sys-

tem has been shown to use a variety of distance cues, among them binocular disparity,

motion parallax, texture gradient, surface shading, size perspective, occlusion, aerial

perspective (atmospheric blurring with distance), focusing, and of course knowledge of

object structure based upon prior experience [JGibson, 1950] [Jarvis, 19831. While much

vision science and artificial intelligence research- aims toward allowing a computer to

interpret images as the human visual system does, this goal is far from achieved [Marr,

1982]. In order to render subsequent processing tasks more manageable, it may be

necessary for the camera to measure some additional scene information directly.

A good example of a movie camera that relies on non-pictorial information to en-

hance the usage of the image sequences is the Aspen Movie-Map, in which the camera

was linked to an odometer and took frames at precise distance intervals and directions

[Mohl, 1982]. This arrangement was central to the ability to locate the frames within a

geographical database, and to reassemble the frames to create an individualized viewing

experience. Still, since only one positional value was available per frame, the interac-

tions available within the Movie-Map were strictly at the frame level. The only views

available to the user were exactly those taken by the original camera, and there was no



way to step outside the street grid or the front/back/left/right/aerial choice of views.3

More recently, Chesnais has instrumented a medical arthroscope camera to return

position and heading information. The data returned is used to generate computer-

graphic "signposts" for combination with the live camera video [Chesnais, 19881. This

camera may be said to be "smarter" than the Aspen camera in that the system has

an internal model of what the camera is likely to encounter. But this model is static.

Apart from the computer graphics image additions, the camera's video is simply passed

through in analog form and not processed; the system's model does not change as a

result of what the camera actually sees.

1.2 Overview

A goal of this thesis is to have the range-sensing camera be as much as possible like

an ordinary film or video camera, and capable of simple operation under a variety of

real-world conditions. While it may not work exactly like the eye-brain combination,

it should - like biological vision systems - incorporate several different sources of range

information and over time build up as complete as possible a model of the objects it

sees. The camera and associated processing system will have no a priori knowledge

of scene contents, and will not recognize specific objects, but will make reasonable,

'A more interesting extension was explored in which frames were taken with a Volpi lens, which gives
panoramic views encompassing 360 degrees of rotation, and these images anamorphically processed to
synthesize any possible view direction [Yelick, 1980]. The analog manner in which Aspen frames were
stored limited the processing options, however, and the viewer's position was still restricted to that of
the actual camera.



general assumptions about lighting, reflectivity, optics, smoothness of object surfaces,

and dynamics.

The second chapter of this thesis discusses and demonstrates some of the unique

manipulations possible upon real scenes when range data is available to supplement

an ordinary camera image, and proposes a database format combining both range and

intensity information.

Chapter three examines various passive-camera techniques of rangefinding, and de-

velops in detail and analyzes the method of depth-from-focus.

Chapter four describes a method for extracting the motion of rigid objects from a

sequence of input images in conjunction with depth-from-focus, and - by virtue of the

overconstrained nature of the problem - using motion to refine the range information

as well.

Chapter five shows how a relatively complete model of scene objects may be built

up through time when range and motion are computed using the techniques developed

in the preceding chapters.

Chapter six considers the lessons learned through this thesis project, and proposes

further directions this work might take.

This document covers a significant amount of territory in the realms of computer

graphics, optics, dynamics, machine vision, and digital signal processing, and it has

been necessary to limit detailed technical discussion of common concepts and techniques

that are adequately described elsewhere in the literature pertaining to these fields. As



readers may not be conversant with all these areas, an attempt has been made to provide

background references which it is hoped will provide sufficient additional information.



Chapter 2

Combining intensity

and range

who dreamt and made incarnate gaps in Time 8 Space through images jux-
taposed, and trapped the archangel of the soul between 2 visual images and
joined the elemental verbs and set the noun and dash of consciousness to-
gether jumping with sensation...

Allan Ginsberg

"Howl"

2.1 Active rangefinding

In industrial and robotic applications biological vision is rarely mimicked. Commercial

machine vision systems which require measurements of distance have for a number of

years relied upon specialized, active range sensing hardware. The greatest success has

been enjoyed by laser rangefinding techniques, in which a spot or pattern of light is



LIGHT SOURCE CAMERA

Figure 2-1: A light-stripe rangefinder.

scanned across the scene and either triangulation [Agin, 19731 or time-of-flight [Nitzan,

1977] is used to compute distance to points from which the light reflects.

As a beginning part of the investigation into the use of range data describing real

scenes, a scanning light-stripe rangefinder was built. The light source consists of a

small semiconductor laser whose output is passed through a cylindrical lens to create a

vertical stripe of light, and reflected from a rotating mirror attached to a galvanometer

whose position is controlled by the computer. From the camera's viewpoint, this stripe

undergoes a shift to the left which increases as the surface it hits nears the camera

(Figures 2-1, 2-2).



Figure 2-2: View seen by the camera in a light-stripe rangefinder.

The trigonometry involved in finding distance given the position at which the beam

is placed and that at which the camera sees it is illustrated in Figure 2-3. Here the

system has been set up in a manner which simplifies calculation - the mirror and

camera have been placed at the left and right edges of the scene, respectively, and the

outside edges of their fields of view form right angles with the baseline between them.

Consider the case of some scene point P hit by the beam. The angle 6 mi,,, is known,

as the mirror's position is controlled by the computer, and 6 camera is easily found from

the position of the beam in the frame buffer, since each pixel may be thought of as



subtending a fraction of the lens' (known) field of view. Clearly,

a b
tan mirror = -, tan ecamea = -. (2.1)

C C

Here a and b are not known, but their sum is a known constant. Combining and

rearranging,

C ~a + b(2)
tan 6 mirror + tan ecamera

If the distance from the camera, not the perpendicular baseline distance, is desired,

z= c(c+tan Bam,,a). (2.3)

A triangulation-based rangefinder of this sort will characteristically suffer occlusion

problems, in that camera-visible points on the extreme right-hand sides of objects may

fail to be illuminated by the laser; also foreground objects cast shadows to the right

onto surfaces behind them, cutting off the light source.1 These occluded regions have

indeterminate range. Designing this type of system involves a tradeoff: a larger light-

to-camera offset increases accuracy (since a given change in distance will result in a

larger shift of the beam), but at the expense of larger occluded regions. The rangefinder

described here attempts to minimize the problem by extrapolating the surface at the

right of the occlusion into the "hole" - a process which works reasonably well on most

'It is also possible to scan the scene twice, using light sources on both sides of the camera.
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Figure 2-3: Triangulation is used to solve for distance z from the camera.

of the "shadow" occlusions described above but does not produce quite correct results

on the visible-but-not-illuminated occlusions. Generally, the laser range camera is set

up such that the camera-to-scene distance is much greater than the scene width, and

the occlusions are small enough that the simple hole-filling scheme is adequate for the

applications to be described below.

2.2 Representation of three-dimensional scenes

Marr called a representation that includes intensity and range information from one

viewpoint (such as that provided directly by a rangefinding camera, or as derived by the



brain from binocular images) a "2 1/2-D sketch," and differentiated it from a three-

dimensional model in that it is viewer-centered and contains only one z value for a

particular x and y [Marr, 1982] .2 Unlike a three-dimensional representation of a scene,

it appears continuous from only one viewpoint. Consider a cylindrical object: as it

curves away from the viewer its sides foreshorten, and equal areas on its surface are

represented by fewer and fewer range values on the range image's "surface," until its

back can't be seen at all. In effect, the range reading for each point represents the

first surface hit by each line of sight outward from the camera. When the information

representing the cylinder is fed through computer-graphic transformations to render it

rotated 45 degrees about its axis, two significant phenomena emerge. First, the points

which represented the foreshortened sides (and are now in the "front" relative to the

new viewpoint) are too sparse to present a continuous surface. Also, what was the back

of the cylinder relative to the camera is not represented at all, and if the object was

originally in front of a wall a rectangular hole is now visible therein.

Thus the initial 2 1/2-D sketch will be inadequate as a scene representation. The

sparseness problem mentioned above presents little trouble, for if local smoothness can

be assumed new points are easily interpolated, or a rougher surface's statistics can

be calculated and new points generated via the statistical model [Pentland, 1987a].

Reconstructing the back faces of objects and occluded portions of the background will

2 The question of exactly how distance is represented in biological vision systems is still open. Marr

discusses the possibility of a coarsely-quantized sense of absolute distance, along with a finer represen-

tation of local differences in depth (i.e. surface orientation). These different representations presumably

obtain their data from different processes, though they would perhaps be checked for consistency.

20



require additional information from another source.

It is possible to combine the views from several cameras to provide complete repre-

sentations of object surfaces if information about the camera positions is known [Lin-

hardt, 1988]. This process is more complicated than might first appear. Uncertainty

in measurement of camera location and orientation, as well as range data distortions

that may vary from camera to camera preclude combining the range points in a simple

manner; a data-driven correspondence process is necessary so that the points from dif-

ferent views coalesce to form coherent, undistorted objects. Many events and programs

are shot with more than one camera, and were these cameras capable of sensing range

it would be possible to synthesize images from intermediate camera positions.

When only one camera is used, reconstruction of occluded regions is possible, given

that they have been seen at some earlier point in the image sequence3 and given that

the motion of objects in the scene can be calculated. Reasonable assumptions must also

be made about objects, such as that they are totally rigid, or at least articulated from

rigid parts - this is so that the points that are not visible may be assumed to be moving

in a manner consistent with those seen by the camera. If this path is pursued, there

is always the possibility that the entire surface of an object is never seen throughout a

sequence. In this event, one of a number of assumptions may be in order: the software

may simply render the points the camera has seen, and leave it at that; if only a

'If the entire sequence is batch-processed, then the points merely have to be visible somewhere in the
sequence.



small gap exists in a surface description then points may be filled in from the edges; if

the object seems generally convex then rotational or front-to-back symmetry may be

assumed. The choice of assumption might be made on an object-by-object basis based

upon overall shape or local surface characteristics.

Irrespective of the number of camera views combined, or the amount of time that

moving objects are tracked, there will always be some portions of the scene for which

there are insufficient data to perform a complete reconstruction - the inside of a hollow

object with a small opening, for example. The point of this process is not to enable the

synthesis of absolutely any camera position, but rather to permit relatively accurate

rendering of a scene from a large number of useful viewpoints other than those of the

original camera or cameras.

Regardless of their source, once additional points have been generated for solving

the sparseness and occlusion problems, the data no longer fit into the original range-

image/intensity-image database. Now there will be more than one z and intensity value

for many values of x and y, necessitating something other than a two-dimensional array.

The three-dimensional analogue of pixels are called "voxels," or volume elements, which

span three-space.' Converting a 2 1/2-D image representation of an N-by-N-pixel image

to voxels will increase the array size from 2N 2 to N', though the vast majority of

voxel cells will be unoccupied, as they represent empty space. A storage optimization

'Some writers reserve the term "voxels" for true volumetric data, where the interior of an object
is filled, and refer to rangefinder data, which really only represents the outer surfaces of objects, as
"surfels".



sometimes applied is the "oct-tree," in which a cubic volume is divided into octants,

each of which is further divided into octants, and so on. This space is represented as

an 8-ary tree in which each node has either a label which serves to describe all its sub-

octants (full or empty), or eight leaves [Jackins, 1980]. Methods for efficient computer

graphics translation, rotation, scaling, and other operations have been developed for

use on objects stored in oct-trees [Meagher, 1982].

Rather than such a volume description, synthetic computer graphics rendering soft-

ware often applies surface representations, in which a particular (x, y, z) point cannot

be read directly from the database but must be calculated. A popular description

represents surfaces as assemblages of polygonal facets, recording the locations of the

vertices. More accurate and efficient representation of smoothly curved surfaces is pro-

vided by other means, among them parametric cubic surfaces [Foley, 1982] [Mortenson,

1985], and superquadrics [Pentland, 1987a].

When voxels are stored in a list format rather than in a 3-D array, they are com-

monly called particles, and attracted the interest of computer graphics researchers who

wished to model natural objects and phenomena difficult to describe via a polygonal

representation [Crow, 1982][Reeves, 19831. Rendering systems are in use which allow

both types of representations to co-exist. Particle representations as used by Reeves

are created and manipulated by stochastic processes, and as such can be operated so

as to provide "data amplification,"5 where additional particles can be automatically

5This term apparently was first used in a paper by Alvy Ray Smith [ASmith, 19841.



generated to increase the density of an already-existing set [Reeves, 1985]. The process

is simply a matter of interpolating new particles based on the statistics within the

vicinity of a point in three-space. This property seems to offer a solution to the range

data sparseness problem as described above, as well as permitting a real scene repre-

sentation to be "upconverted" for rendering on a display having higher resolution than

the camera system which provided the original data points. The stochastic property

implies the ability to upconvert temporally as well, provided the scene is temporally

sampled at a sufficiently high rate to avoid significant aliasing.

A simple and rapid, if memory-inefficient, method for increasing particle density is

to unpack the particle list into a 3-D array, and to generate new particles in empty cells

with a probability based upon the density of particles in surrounding cells. The color

of a new particle is determined by the colors of neighboring particles. When a large

number of new particles is generated in this manner (or when the process is performed

repeatedly), however, surfaces tend to become "fuzzy." A more satisfactory result is

obtained through applying the assumption of local surface smoothness: within a volume

of three-space, the least-squared-error method is used to fit a planar, biquadratic, or

higher-order surface to already-existing particles, and new ones are generated in empty

cells that lie on this surface.

In the case of real images, going from the 2 1/2-D representation to particles is a

simple process. Each particle in the list has x, y, and z values, a color, and perhaps



other context-specific attributes such as a surface normal vector,6 a description of

its specular and diffuse reflectivity characteristics, or a label describing the object to

which it belongs (the ways of generating this will be discussed in the next section).

Manipulation and rendering of the data will be made more efficient if a requirement

is placed that all particle-manipulation software produces object descriptions sorted in

scan and depth order, that is sorted by y, within y by x, and within x by z.

Two other important operations must be performed upon real scene data when

it is placed into a particle database. The first is perspective removal, or expanding

distant objects so that their (x, y) extent is not dependent upon their distance. The

expansion factor with distance will be determined by the view angle of the camera

which provided the original images, which is a function of the focal length of the lens

employed. Expansion of distant objects will cause the particles composing them to

be sparser throughout space, and provides an opportunity for the data amplification

feature of particle databases to be exploited.

If it will be desired to modify the lighting of a scene, a common rendering op-

eration from computer graphics, the unit surface normal vector to each point in the

original range image should be calculated by differentiating the range information, and

the components of these normal vectors stored with each data point in the particle

representation (new particles created by interpolation can have their normal vectors

6 The surface normal will, of course, be calculated on the surface of the original input range image.
Here, clearly, the particles are acting as surfels rather than voxels, inasmuch as a voxel has no surface
orientation.



interpolated as well). Finite differencing of range values across x and y can provide the

corresponding components of the surface normal vector, while the z component comes

from the fact that the vector is constrained to have unity magnitude. Since, however,

the range values from the laser rangefinder are given as integers, one-pixel differencing

will produce undesirable results on gently sloping surfaces, where the normal vector

will alternately point straight at the camera and then be sharply angled at the "steps"

in the range value (Figure 2-4).' The solution is to apply not a unit doublet (the first

difference of a unit impulse) as the differentiation operator, but rather the convolution

of a unit doublet with a smoothing filter such as a Gaussian. Legitimate sharp edges

in range can be preserved by making the filter adaptive, i.e. the filter window shrinks

on one side or the other so that it does not extend across large discontinuities in range.

Further, the "color" of each particle should really represent its reflectivity rather

than the product of its reflectivity and the ambient illumination. In a studio setting,

this requirement suggests the use of very diffuse, or "flat" lighting; in other cases the

surface normals calculated from the range data may be employed with some success

in un-doing the effects of strongly directional lighting if an estimate is available of the

position of the light source. This will involve running in reverse the lighting model

described in the next section.

7Another way of stating this problem is that the range information is not bandlimited; the "steps"

are the manifestation of unwanted high frequencies.
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Figure 2-4: Computing surface normals on a coarsely quantized surface via one-pixel
differencing will produce incorrect results (solid arrows). Dashed arrows show the
desired result.

2.3 Applications of range information

in image display

Given a particle description of a real scene, rendering from some viewpoint other than

that of the original camera is a matter of feeding the particles' coordinates through

a set of matrices which perform the necessary rotations, translations, and perspective

transformations [Newman, 1979]. The perspective transformation applied in rendering

need not be to the same view angle as the lens which originally imaged the scene, and

therefore the apparent focal length may be modified at this step (Figures 2-5, 2-6, 2-7).

Varying the lighting of a computer graphics scene is often done to set a particular

"mood," or to best illustrate surface features of objects. Real scenes have their lighting



Figure 2-5: Intensity image of a scene.

arrangements set up for similar reasons; but it may be faster and easier to modify

the lighting with a computer than by moving physical light sources around. It also

may be desirable to make quick changes in the lighting with a computer for illustrative

purposes (to see, for example, how a scene will look at different times of day) or simply

because it was not physically possible to set up lights in the desired locations while the

scene was imaged. In a commonly used illumination model, the intensity with which

a particular point is rendered is a function of the normal vector to the surface at that

point, the locations, colors, and and intensities of all light sources incident at that

point, and the reflectivity characteristics of the point, which are broken into specular



Figure 2-6: Range information for the scene in Figure 2-5 represented as a "range
picture," where closer points are lighter.

and diffuse components:

I = Iambientkambient + [*r'[kgue(I - n) + kspecular(r - v)"] (2.4)

where 1 -n is the cosine of the angle between the unit surface normal and the unit

vector to the light source, and r -v is the cosine of the angle between the unit vector

in the direction of reflection and the unit vector toward the viewpoint [Foley, 1982].

This is a strictly empirical approximation, though realistic results can be obtained with

appropriately selected values for the proportionality constants k and for the exponent



Figure 2-7: The data from Figures 2-5 and 2-6 rendered from a different viewpoint.
Note the "holes" resulting from the 2 1/2-D nature of the information.

n. For a color image this model must be applied three times to the red, green, and blue

components of the image, and for multiple light sources the contributions from each

source must be summed at each point. In Figures 2-8 and 2-9, purely diffuse reflectivity

is assumed; better renderings of real scenes would be available if the camera had some

way of estimating the actual reflectivity characteristics of points in an image. Sensing

reflectivity would require having multiple views of a scene illuminated from different,

known directions (see [Horn, 1986]). The simple illumination model presented here

permits rapid image calculation, but proper rendering of shadows and interreflections

requires more sophisticated ray-tracing techniques [Cook, 1984], in which directed rays



Figure 2-8: A scene with fairly diffuse illumination.

of light are followed from the light source toward object surfaces in the scene and

the final intensity of each point is the sum of the contributions of each ray incident

thereupon.

A gradient of focus creates a strong sense of depth in an image, and is an excellent

way of drawing a viewer's attention to one region or object in a complicated arrange-

ment of objects. Photographers and moviemakers (and even painters) have long taken

advantage of this knowledge, though the possibilities for applying focus to interactive

information systems have apparently been little explored. Potmesil and Chakravarty,

as well as others, have investigated applying realistic simulated defocusing to computer



Figure 2-9: The scene of Figure 2-8 with a computer-simulated light source on the
right.

graphics [Potmesil, 1981][Cook, 1984]. The mathematical details of focusing will be

explored in the beginning of the following chapter. At this point it will suffice to ob-

serve that if a scene is imaged with all regions in focus, then knowledge of range for

each pixel permits synthesizing the defocusing effect of a lens with a larger iris opening

(Figure 2-10).

The combination of elements from more than one source to create a scene is a process

known to filmmakers as matting and to television producers as keying. Keying is a

process by which a "hole" is cut into a video image and another image is shown through

the cut-away region. Perhaps the most common method is chroma-keying, which is used



Figure 2-10: The scene of Figure 2-5 with a computer-simulated lens focused on the
front row of blocks.

by local television stations to provide a changeable background for the weatherman. In

the studio, the weatherman stands before a very saturated blue (usually) wall, and the

keying hardware simply cuts the hole wherever it detects bright blue. The process is

quite effective, though the announcer cannot wear a bright blue necktie lest a necktie-

shaped piece of the background appear in the center of his shirt. A similar technique,

called bluescreen matting, is used in film, though some cinematic matting continues

to be done via frame-by-frame hand drawing of mattes or photography of miniature

models.

Such keying/matting methods are insufficient for many purposes, not only because



they require special preparation of backgrounds, but also because the process is anal-

ogous to cutting out a piece of one photograph and pasting it on top of another.

Occlusions are not handled properly, in that a person placed into a scene by matting

cannot walk behind elements of the scene into which he is placed (because, indeed, he

is not placed "into" the scene at all - merely onto it). When range information is added

to the process and all scene elements - foreground and background, actor and set - are

passed through computer-graphics-style rendering, the occlusions will work correctly.

At this point the process is no longer really keying (though a user may continue to think

of it as such) but more properly the assembly of scene elements in a three-dimensional

space (Figure 2-11).

An early mention of using distance for keying purposes appears in a 1981 patent

[Rose, 1981], for making a longer effective depth of field than is possible with lenses

typically used for video production. Rose's idea is to take an image from a lens focused

at a distance and another from a lens focused on the foreground, and to combine the

sharpest regions (by which Rose means those having more high-frequency content in

the video signal) of each. No mention is made of the fact that as a lens changes its focus

position its magnification changes significantly, nor does the system proposed appear

to compensate.

When it is desired to pick out a particular object from a scene (and even more

in a later chapter, when the three-dimensional motion of individual objects will be

tracked), the input images will have to be segmented into regions representing in-
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Figure 2-11: Using range information to generate correct occlusions when combining
elements from different scenes.

dividual objects. Segmenting intensity images is a difficult process [Fu, 1987], and

the introduction of range information, while providing an independent, robust, and

illumination-insensitive set of cues, does not (as was apparently hoped by some early

artificial intelligence researchers) automatically solve the problem. Range images are

in general so much "better-behaved" than intensity images that when rangefinding

equipment first became available the corresponding intensity images were essentially

ignored and the problem of scene segmentation changed to one of segmenting only range

images. Various scene-segmentation methods have been applied to rangefinder data,

from drawing object boundaries at large jumps in distance [Nitzan, 1977] to calculating



surface orientation and curvature and classifying objects based upon these characteris-

tics [Inokuchi, 1983] [DSmith, 1985] [Archibald, 19861. Less-investigated but presumably

more promising is the process of looking for object boundaries in both range and inten-

sity images of the same scene [Gil, 1983]. Rough surfaces will not necessarily respond

well to such simple schemes, but it has been suggested that they be modeled as fractal

proceses, and that they be segmented based upon their surface statistics [Pentland,

1987a]. The more elaborate schemes take advantage of the typical high quality of

active rangefinder images, which commonly provide spatial resolution nearly equal to

that of an intensity image from an ordinary video camera. Passive ranging methods

(as described in the next chapter) will provide smoother surfaces with less x, y, and z

resolution, so texture-based segmentation is not as likely to work here, but Pentland

also notes that the fractal dimension of the intensity function is in many cases related

in a known way to the fractal dimension of the three-dimensional surface, and therefore

fractal segmentation of the intensity image might be employed to confirm the object

edges produced through other processing of the intensity and range images. Such seg-

mentation can be done by computing the ratios of power in several one-octave-wide

bands in the frequency domain, constructing a histogram of the ratios across the image,

and adaptively quantizing the resulting distribution.

The image segmentation issue is clouded by the fact that there is no generally-

agreed-upon notion of just what defines an object. The method of image segmentation

that has been employed in this project is somewhat empirical in nature, but provides



relatively good segmentations of scenes in which objects do not interocclude in compli-

cated ways (beyond some level of complexity, it probably becomes almost mandatory to

add knowledge of object models to the process). A large change in z is almost certainly

an object boundary, while a smaller change might be due to an object boundary but

might simply be the result of surface texture or range data noise. The likelihood that

such a "weak" edge defines an object is increased in the presence at the same location

of an edge in intensity, in hue (if a color image is available), in surface orientation, or in

texture. In logical terms, the decision is made to construct a boundary through points

at which there is a

((large change in depth) or

((smaller change in depth) and

((large change in intensity) or

(large change in hue) or

(large change in surface normal) or

(large change in texture))))

where parameters like intensity are averaged over a small window to increase the noise

immunity of the algorithm. Closed contours are constructed through the points which

the boundary detector labels, and the regions inside each contour are given a unique

label when the enclosed points are put into particle form. An obvious improvement

to this algorithm is individually weighting contributions from edge detectors operating



in various domains (intensity, depth, et cetera), and thresholding their sum to decide

whether or not there is an object boundary. The range-intensity pair of Figures 2-5

and 2-6 is segmented in Figure 2-12. It is significant to note that the rabbit's ears

have been segmented as separate from the body, apparently due to changes in intensity

and surface orientation at the boundary. Also, the blocks have for the most part

not been segmented one from another - which is really not a problem unless they

start moving independently. In the absence of detailed internalized knowledge about

objects the camera is likely to encounter, the system can really only make a likely

segmentation which a human operator may wish to modify, or which may be changed

by later observations of the scene. A segmentation method that would work particularly

well in an interactive environment is the application of energy-minimizing splines, or

"snakes" [Terzopoulos, 19871, which typically are placed by a user in the rough vicinity

of a desired contour, and their affinity for a particular feature (such as an intensity

edge) draws them toward the correct position.

When some region segmentation method, however good, is applied to individual

frames of a movie, there is no guarantee that the same regions will be given corre-

sponding labels in each frame, or even that the same number of segments will be

identified on each frame. A technique which works better is segmentation of one frame

followed by transformation of the object regions so that they match the range and

intensity information of successive frames of the scene, with occasional resegmentation

in the event of unresolvable problems (such as objects entering or leaving the scene).
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Figure 2-12: Segmentation of a scene by examination of edge cues in multiple domains.

The esthetically-controversial Colorization(R) technique, by which old black-and-

white motion pictures are made into color video tapes by overlaying a synthetically-

generated hue component, works as follows: a hue overlay map is drawn by an artist for

the first frame of a scene, and (by use of autocorrelation for motion detection and logic

which attempts to keep the hue overlays coherent) the system automatically makes the

hue patches track intensity regions through the following frames of the input images.

Of course, problems which cannot be resolved automatically, such as a new character

entering mid-scene, require operator intervention [Markle, 1984].

An experiment was done in which Markle's simple object-label tracking method



was attempted on a sequence of moving images segmented as described above. The

algorithm appears to perform quite well given both range and intensity information

as input to assist in the tracking. Kass, Witkin, and Terzopoulos have shown that

"snakes" may be used to follow edges from frame to frame in a movie, once they have

been locked on to a feature [Kass, 1987]. But when real motion estimation information

is available (as will be the case in later chapters of this thesis), the proper solution to

the problem is to assume that inertia will limit the rate of change of object motion,

which means that the motion detected up to the current frame may be extrapolated to

the next frame time to give an estimate of where the object will have moved. This can

then be checked for consistency with a re-segmentation of the next frame.

2.4 Chapter summary

A database format has been introduced for use in representing real images for which

both range and intensity information are available in either 2 1/2-D or volumetric 3-

D form. Using this representation it is possible to perform computer-graphics-style

manipulations upon real scenes, including variable-viewpoint rendering, focus simula-

tion, lighting variation, scene segmentation into objects, and assembly of objects from

different scenes.



Chapter 3

Depth-from-focus

This is the short and the long of it.

William Shakespeare

The Merry Wives of Windsor

3.1 Passive rangefinding methods

While light-beam rangefinding hardware can be very rapid, in general it is too slow to

use on moving images1 and current methods are somewhat sensitive to the reflectivity

of imaged objects and the presence of large amounts of ambient light. The need for

high-powered light sources to overcome ambient illumination restricts the use of these

methods to relatively small, indoor scenes. These considerations suggest an investiga-

'Boyer and Kak have demonstrated a non-scanning technique in which a single colored pattern
projected onto a scene provides enough information to derive range values for all visible, non-occluded
points, thus potentially allowing range to be measured at video rates [Boyer, 1987]. The rapid flashing
of such a pattern by, e.g. a xenon flash tube may be envisioned.



tion of rangefinding techniques which inherently offer greater speed and which do not

require the camera to project energy onto the scene.

Virtually any of the distance cues exploited by biological vision should be possible

for computational vision, and ideally (as none of them works well for all imagery or all

viewing conditions) range should be calculated via integration of constraint data from

multiple processes, as has been noted by Terzopoulos [Terzopoulos, 1986]. The shape-

from-shading technique [Horn, 1986], for example, which within a smooth region of

constant reflectivity can estimate relative changes in depth of a surface (but not its ab-

solute distance from the camera), is not too useful as a primary method of rangefinding

but could be used to refine distance estimates from another source. Structure-from-

motion, which will be discussed in a later chapter, is (obviously) applicable only for

moving objects, but again could complement some other method.

The passive-camera technique which has been the most thoroughly investigated is

stereopsis, in which distance is measured by evaluating binocular disparity between

two views of a scene. Disparity is the phenomenon by which the images of points at

different distances shift by different amounts as a camera moves perpendicularly to

the distance axis. In order to measure disparity, it is necessary to establish a cor-

respondence between points in each view, after which the distance is found through

mathematics identical to those employed in triangulation-based laser rangefinders. The

task of assigning a correspondence between views is made difficult at uniform regions

where unique matching cannot be done, as well as at occluded regions where some



part of the scene appears in only one of the cameras' views (the "missing parts" prob-

lem) [Levine, 1973] [Yakimovsky, 1978]. Problems correlating intensity patches between

views led to feature-based stereopsis techniques, most notably the Marr-Poggio algo-

rithm [Marr, 1982]. Marr and Poggio propose matching zero-crossings of bandpass

copies of the images, based upon the observation that these zero-crossings correspond

to physically significant phenomena such as changes in reflectance, surface orienta-

tion, or distance, and also based upon evidence that biological systems perform various

bandpass operations as part of low-level vision.

The sparse range data resulting from feature-based stereopsis must be subjected to

an interpolation operation to construct surfaces across the gaps between the features

that are matched. Grimson has proposed applying a smoothness constraint in order to

construct a plausible surface that could have given rise to the detected zero-crossings

[Grimson, 1981]. Grimson suggests that the "best" surface is that which minimizes the

quadratic variation in the gradient of the surface:

fr 82z 02 z 82z
(z) + 2+ dxdy. (3.1)

\ 9X2 (Bay By2)

Clearly any surface which minimizes O(z) also minimizes E2(z), and a discrete ap-

proximation to this functional is what is ultimately minimized by an iterative process.

This computation assumes that the z values known at the beginning of the process are

exact, and provides values only for the "holes" in the range image. If, on the other



hand, the original z values are noisy, then a smoother surface can be constructed by

minimizing

O(z) - +(Z + + 2 dxdy + # (z(x, y) - Zorigina (X, Y)) 2 , (3.2)

where # is a factor which can be adjusted to balance between fidelity to original points

and surface smoothness, depending upon the known degree of error in the input points.

The summation is carried out over all points for which the rangefinding process pro-

vided estimates for z. Similar minimization processes to those used to construct these

surfaces have more recently been used by Gennert to develop minimum-error affine

transformations for direct intensity-based matching [Gennert, 1986a]. Harris has pro-

posed a method which reconstructs surfaces by employing sparse constraints on both

depth and orientation, as might be provided by a combination of several different pas-

sive rangefinding processes [Harris, 1986].

The farther apart the two viewing positions used for stereopsis, the more accurate

the resulting distance calculations. At the same time, though, the occluded regions

increase in size, and correspondence between views requires searching over larger picture

areas - thus increasing computational requirements.



3.2 Depth-of-field

Depth-from-focus is a passive-camera method for measuring distance which eliminates

two of the major problems of stereopsis, namely correspondence and missing parts. 2 It

has the additional virtue of being almost completely a signal-estimation problem, with

no significant reliance on machine intelligence, and thus could feasibly be implemented

entirely in hardware. The basic idea is that a lens and aperture used to image a

scene will result in a gradient of focus; points will be increasingly blurred as they

move away from the distance at which the lens is focused. Photographers refer to the

distance range over which a scene is in sharp focus as depth-of-field, and the larger the

lens aperture the shorter the depth-of-field (the more rapid the increase in blur with

distance). Mathematically, this process may be modeled as the spreading of energy from

image points into overlapping regions, called "circles of confusion" in photography.3

Circles of confusion per se are rarely observed in normal vision, and their discovery

followed the development of the camera. The camera obscura had been in use as an

artist's aid for perhaps five hundred years before the invention of photography - in-

deed, the image-forming properties of a small aperture were discussed by Aristotle in

his Problemata [Ross, 19271 - but the pinholes used in the early devices had essentially

infinite depth-of-field and did not exhibit the focus gradient effect. It was not until

2 Actually, there is a certain "missing parts" phenomenon associated with depth-from-focus, but it is
relatively insignificant in comparison with that from typical implementations of stereopsis. See section
3.7.

3 This is not to be confused with the circle of least confusion, a term used in optics to describe the
position at which a lens exhibits minimal aberration.
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the sixteenth and seventeenth centuries, when lenses were used to replace pinholes to

increase the light-gathering power of the camera obscura, that focusing and circles of

confusion were noted [Hammond, 1981]. Circles of confusion may clearly be seen in cer-

tain paintings by Johannes Vermeer from the 1600's, particularly Maidservant Pouring

Milk (c. 1658-1660) and View of Delft (c. 1660-1661). In the latter, specular highlights

in the distance dissolve into diffuse discs of white paint (Figures 3-1, 3-2). Girl with

a Red Hat (c. 1666-1667) (Figure 3-3) exhibits a gradient of blur consistent with a

lens focused on the wall behind the subject. It has been a matter of dispute among

art historians whether these works were literally recording camera obscura images, or

whether they were painted in a style imitating optical effects which were apparently

fairly well known by that period [Wheelock, 1977].

3.3 Geometrical approximation

An approximation which, though not strictly correct, is useful for understanding how

defocusing varies with distance is to neglect diffraction effects. Derivation of the circle

of confusion then becomes a straightforward geometrical problem.4 The lens equation

says that the reciprocal of the object-to-lens distance and the reciprocal of the lens-

to-focus distance sum to a constant, which is the reciprocal of the focal length of the

4 See [Boucher, 1968] for a different geometrical approach from that below.



Figure 3-1: View of Delft, Johannes Vermeer, c. 1660-1661.



Figure 3-2: Detail from View of Delft.



Figure 3-3: Girl with a Red Hat, c. 1666-1667.



lens:

1 1 1
+ (3.3)

U V f*

In Figure 3-4, a camera lens is focused such that a point X produces a sharp point

image on the film or image sensor at F. Point Y, which is farther away, focuses in front

of the focal plane at point C; on the film the light energy from that point is distributed

over a larger region of diameter c. Since triangles ABC and DEC are similar,

V - Vc = d V ". (3.4)
V,

But lens diameter d can also be expressed in terms of the focal length f and the

numerical aperture (or f-number) n:

fd =-, (3.5)
n

and since a similar geometrical construction is valid for points Y closer than X (which

will focus behind the focal plane),

fc - IV, - V I. (3.6)
nV,
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Figure 3-4: Geometrical approximation: point X focuses at F. Out-of-focus point Y
images there as a blur of diameter c.

Substituting for V, and V. from the lens equation yields a less elegant but more useful

result in terms of the object distances:

f U - fI U, U,
nU, U, - f U,-f (3.7)

The circle-of-confusion function is plotted in Figures 3-5, 3-6, and 3-7. This function

is asymmetrical about the plane of best focus. As point Y moves toward infinity, the

diameter approaches a limit (V,/n - f/n), while it increases much more rapidly for

points closer to the lens than point X. At Uy = f the circle of confusion is the same

as the effective diameter of the stopped-down lens (here the lens is behaving as a

collimator). As the function rises on both sides of the plane of best focus, an inherent



Mm. f/4. focasxSOOOmm

Figure 3-5: The geometrical circle-of-confusion function is very asymmetrical about the
plane of best focus.

ambiguity exists if it is desired to recover distance by evaluating focus, as a given

degree of defocusing could have resulted from the point in question being at one of two

possible distances. Thus, depth-from-focus will require the camera to be focused closer

than the closest object in a scene.'

50r, in the case of very distant objects, it may be better to focus the lens at infinity. This issue will
arise in a later section.
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Figure 3-6: Closing the aperture lowers the asymptote of the function in the preceding
figure.

3.4 Diffraction model

A more accurate description of the effects of defocusing requires taking diffraction into

account. The scene must be modeled as a collection of point sources of light; for each it

is necessary to solve the Huygens-Fresnel integral for the case of Fraunhofer diffraction

of a point source of light by a circular aperture. The integral cannot be evaluated in

closed form, but its value may be calculated as a series of functions U., first derived
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Figure 3-7: Asymptote of the circle-of-confusion function is also lowered by focusing at
a greater distance.

by E. Lommel in 1885 [Born, 1970]:

Un(u,v) = E(-
s=O

n+2s

1)'

where Jn are the Bessel functions of order n. The dimensionless variables u and v

specify the position of a point within this distribution:

27r
A

(d 2

2f ' Z (3.9)

Jn+2, (v), (3.8)
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Here r is radial distance on a plane away from the optic axis, while z is the distance

by which the point source is out of focus. d and f are the aperture diameter and focal

length, as before. The intensity distribution itself is

I(u, v) = U2(u,v) + U2(u,v)] 10. (3.11)

The Lommel Un functions, and thus this solution, converge quickly only for locations

where lu/vi < 1, that is points closer to the focal plane than to the optic axis. For

|u/v| > 1, it is computationally easier to use the equivalent expression in terms of the

V, functions:

oc n+2.

Vn(u,v) = Z(-1)' - Jn+2,(v), (3.12)
3=0

I(u, v) 1+V2(u,v) + V12(u,v)

- Vouv cs +-2V1(u, v) sin (u + v) Io(3.13)

This set of equations describes the distribution only for light of a particular wave-

length A, as illustrated in Figure 3-8. In white light, the maxima of one frequency

may fall upon the minima of another frequency, with the result that the distribution

becomes more uniform across v for a particular value of u (Figure 3-9). Further, real



Figure 3-8: Intensity distribution around focus of a converging spherical wave diffracted
through a circular aperture.
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Figure 3-9: Intensity distribution of preceding figure integrated over wavelengths from
400 to 700nm. Image sensor characteristics will further reduce ripples in this distribu-
tion.

imaging systems typically have a resolution much coarser than the size of the ripples in

this distribution,6 and also tend to be light-sensitive through some significant volume

(e.g. the emulsion coating on film or the thickness of a vidicon target). The result of

these considerations is that the light distribution calculated above must be integrated

across a range of wavelengths, as well as convolved with a three-dimensional point-

spread function. A computer simulation of this process yielded a distribution which is

largely uniform across some circular region and quickly rolls off to an almost-fiat low

'For example, the maxima and minima in the v direction occur for v at multiples of 7r, or distances
at multiples of An. For the range of numerical aperture n commonly encountered in cameras (say f/1.4
to f/32) the ripples will be several orders of magnitude smaller than a pixel on a typical video camera.
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level outside, very similar to the photographer's no-diffraction approximation. Except

in the immediate vicinity of focus, the boundary of the central bright region is roughly

identical with the edge of the "geometrical shadow" cast by the aperture, and thus for

most real imaging situations the geometrical solution for the diameter of the circle of

confusion should suffice.7 A completely uniform circular distribution will be assumed

throughout the remainder of the analysis.8

3.5 Evaluating degree of defocusing

The defocusing process may be defined as the convolution of image intensities i(x, y)

with a point-spread function f(z) which is a function of distance to each point:

idefocued(X, Y) = i(X, y) * f(z). (3.14)

This convolution with circles of increasing spatial extent corresponds in the frequency

domain to multiplication by successively narrower low-pass filters [Herriott, 1958]. Horn

was apparently the first to explore computer evaluation of focusing to infer distance

'Stokseth has done focusing analysis for monochromatic light and even in this situation concludes
that, for defocus distances greater than 2A, "...the shape of the two transfer functions is quite similar for
low frequencies, and the geometrical [function] is a satisfactory fit to the exact [function] for frequencies
inside the first positive sideband." [Stokseth, 1969](p. 1317) The difference occurs mostly at higher
spatial frequencies (the "ripples" in the diffraction distribution which are smoothed out by the image
sensor and the multiple frequencies of light).

8 [Pentland, 1987b] chooses instead to use a Gaussian model of the light distribution. The sole change
that this different assumption would make in the method to be described would be a modification to
the series approximation used in the regression solution. This change has a minimal effect on the range
values computed therefrom.



[Horn, 19681; his idea was to use a discrete Fourier transform (DFT) to measure the

degree of defocusing of a small patch of an image, and to use a servo-controlled lens

to search for the optimal focus for that patch, at which point the high-frequency com-

ponents of the power spectrum will be at a maximum. Lens magnification changes

slightly with focus position, and processing software needs to take this effect into ac-

count when images from differing focus positions are compared. Jarvis has identified

several easier-to-compute functions of pixel intensity which will maximize at best focus:

entropy, variance, and sum-modulus-difference (the sum of the absolute values of dif-

ferences among adjacent pixels) [Jarvis, 19831. Similar measures, not DFT's, are used

by automatic-focusing photographic and video cameras; since these measures are more

easily confounded by image noise it is necessary to evaluate them over a very large im-

age region for accuracy, and they are therefore not useful for deriving a large number

of distance readings for a single image. Pentland explored using the high-frequency

content of edges in a single picture of known focus distance for estimating the distance

to the edges [Pentland, 1982], an approach which has more recently been expanded

upon by Garibotto and Storace [Garibotto, 1987].

Another way of computing depth-from-focus is to vary the lens aperture rather

than the focus distance. If a camera's nominal focus distance is at the front of a

scene and a small lens aperture is used (say f/22) all points will be essentially in

focus regardless of distance. If the lens is then opened up to a larger aperture (with



the addition of a neutral density filter to equalize the exposure9 ), comparative blur

beyond the plane of best focus will be a monotonic function of distance from the

camera. The short-depth-of-field image is modeled as the result of applying a distance-

dependent blur function to the long-depth-of-field image, and corresponding regions in

the two images are compared to measure the degree of blur and estimate the distance.

Pentland proposed estimating the point-spread function by a linear regression technique

[Pentland, 1987b] (though he actually implemented only a simplified algorithm which

locally compared power in bandpass filtered versions of the images); a higher-order

regression solution which gives greatly improved results will be developed, analyzed,

and implemented below. 10

3.6 Implementing a regression solution

Recall. from above that

idefocued(X, Y) = i(X, y) * f(z). (3.15)

The goal is to recover f(z), and knowing its form, to calculate z. The recovery be-

comes practical if carried out in the frequency domain, where convolution transforms

'The density of this filter is calculated as follows. Since the density of optical filters is commonly
expressed as the base-10 logarithm of the reciprocal of the transmittance, and since each opening of
the aperture by one stop (dividing the f-number by v/Z, as from f/32 to f/22) doubles the light coming
through the lens, the density of the filter must be 0.3 (or log(2)) per stop of compensation.

0See also [Bove, 19881. Subbarao has performed an analysis of point-spread function variation in the
event of incremental changes in focal length, focus distance, and aperture, but presents only limited
experimental results through application of this method [Subbarao, 19881.



to multiplication. Therefore

F(w., wy) = Idef ocu.ed(W, wy)/I(w,,, wy). (3.16)

The preceding derivations show that f(z) images a point source as a disk whose

diameter increases as the point becomes increasingly defocused. Since this point-spread

function is circularly symmetric, its transform should be circularly symmetric as well,

and the problem may be solved in one dimension (that of radial distance) rather than

two. The Fourier transform of a cylinder of height 1 and radius c is

F(w) = 2 7r2 J(Wc) (3.17)
we

where J1 is a Bessel function of the first order." Thus, for a cylinder of radius c and

height 1/7rc 2,

F(w) = 2 (3.18)
we

Qualitatively, this function has a similar appearance to sin(x)/(x), consisting of a

central peak with surrounding maxima and minima. Ji may be expressed as a series

expansion:

Ji(x) =- - + 57 + -- (3.19)
2 23 -1! -2! 25-2! -3! 27 -3! -4! 29-4! -5!

"See [Hecht, 1974] for a method of deriving this transform.



J1(X) x2  x 4  6
2 =+ ---. (3.20)

x 8 192 9216 737,280

Regression techniques will allow the estimation of blur circle diameter c by fitting a

polynomial to the observed sample points of F(w).12 In order to make the calculations

practical, the polynomial may be restricted to the first three terms of the series above.

That is, for small x

J1(z) x2  x4
2 1 - - + . (3.21)

x 8 192

This may be rewritten in the form

(1 - y) = box 2 + bix 4, (3.22)

in which case, if y, are the sample points observed, while Y are the "true" values of

the desired function, free of error, the errors may be defined as

e = Y-y = Yi - boz - bizX. (3.23)

The sum of squares of the errors is

S = E(Y - boX2 - biX) 2 . (3.24)

"See [Gerald, 1984] for a general discussion of polynomial regression.



In order to mimimize S with respect to bo it is necessary to solve BS/8bo = 0:

as - 0 = -2(E(1 - yi) + bo 2 + bi (3.25)

The errors could likewise be minimized with respect to bi and the two resulting equa-

tions solved simultaneously, but since the desired form of the resulting polymomial is

known, a substitution may be made: b1 = -b/24. As a result,

b 2 X4-bo X2 + E(1 -y,) =0. (3.26)

Solving this using the quadratic equation,

bo =l. (3.27)

12

The smaller of these two roots proves to produce the correct approximation for F(w).

Recasting back to the original variables,

2) of, - /(E of)2 _ 6 ( - F(wi)) (.8c = 2 .-W (3.28)

6

Of course, c will be here obtained in pixels (since the spatial frequencies are expressed

in pixels/cycle), and a scale factor must be employed to convert the solution to a more

useful measure of distance.



What must be done, then, is to take two-dimensional discrete Fourier transforms

(DFT's) of corresponding small blocks of the short- and long-depth-of-field images, to

collapse the two-dimensional spectra down to one dimension (that of radial frequency)

by averaging all terms at given Cartesian distances from (w., w,) = (0,0), to divide

the short-depth-of-field spectrum by the long-depth-of-field spectrum, and to use the

regression equation to fit a curve to the resulting values (which represent the spectrum

for the point spread function)." The parameters of the regression curve then give the

distance to the image block according to the relation above (Figures 3-10, 3-11, 3-12,

3-13).

The DFT assumes that the input signal is periodic, a situation which does not hold

for a patch of an arbitrary image. In effect, the transform that is obtained is that of an

endless sheet of identical image blocks, arranged like postage stamps. As the left and

right (and likewise top and bottom) edges of the block may not connect in a smooth

manner, a discontinuity will appear which will introduce spurious high frequencies into

the signal. The presence of this discontinuity may introduce undesirable artifacts into

the range-estimation process.

One solution to the problem would be to mirror the image region both left-to-right

and top-to-bottom. The resulting even symmetry would cause the DFT to contain

"It may have occurred to readers that the recovered spectrum is actually the absolute value of the
function for which the regression solution was developed. As the fourth-degree polynomial approximation
is a good fit only to roughly the point at which the curve first goes to zero, the regression fit is carried
out only to the first minimum of the ratio. When experiments were done using higher-order curve fits
(whose only-slightly-improved results failed to justify the greatly increased computation), the absolute
value was taken into account in the process.



Figure 3-10: Long depth-of-field view of a scene.

only cosine terms, and the outcome would really be a discrete cosine transform, or

DCT [Pratt, 1978]. Another method is the multiplication of the input block by a

"window," a radially symmetrical function which peaks in the center of the block and

goes to zero at the edges.

There is a space-frequency uncertainty associated with estimation of a space-varying

spectrum (Gabor, 1946]. If the spatial resolution of a space-varying spectrum estimate

from K samples of some signal S(x, w) is denoted by Ax" and the frequency resolution

by Aw*,

Ax" = K, (3.29)



Figure 3-11: Short depth-of-field view of same scene as Figure 3-10.

and

1. (3.30)

Thus their product is constrained to be on the order of unity, the actual value de-

pending upon the particular window employed, and the exact mathematical definition

of Ax and Aw" used. It is common to define Ax" and Aw* as the second central

moments of the spatial and spectral windows (the latter of which is the transform of

the former and is effectively convolved with the spectrum of the actual signal to yield

the estimate). It can be shown that the minimum uncertainty product is obtained for

a Gaussian window [Gardner, 1988], though numerous other windows are commonly



Figure 3-12: Illustration of the operation of the regression algorithm.

used either because they are easier to implement computationally or because they

have various useful characteristics. A particular window shape will impart a statistical

bias and variance to the spectrum estimate obtained, with a narrower spectral win-

dow reducing the bias at the expense of increased variance; making the best possible

compromise depends upon knowing something about the statistics of the spectrum to

be estimated. Full statistical analysis of optimal "window carpentry" is quite com-

plex [Jenkins, 1968][Papoulis, 19771, but a Parzen window (which has significantly less

variance - though somewhat more bias - than most other commonly used windows)

has yielded good results for depth-from-focus purposes. This window is described as a



Figure 3-13: Range image computed from Figures 3-10, 3-11.

bell-shaped polynomial curve; if R is half the width of the image block to be windowed

and r radial distance from the center:

1 -6 (L'+6 (), r < }

Warzen (r) = 2 (1 -. ,3 9 < r < R -(3.31)

0, r > R

This uncertainty phenomenon suggests that depth-from-focus necessarily produces

a range image of somewhat lower spatial (x, y) resolution than that of the images input

to the process. Also, the spatial frequency components used to evaluate focus have a



wavelength of several pixels, leading to further uncertainty irrespective of the window

size. These considerations suggest that it will be necessary to start with original images

of higher resolution than the output range image desired. As an experiment, input film

images taken with a 35mm still camera were scanned into the computer at a resolution

of 1500-by-1500 pixels, and resulted in range images with significantly more resolution

in x and y than those produced from the 525-line video images used in the rest of this

work.

The size of the blocks transformed involves a tradeoff between obtaining enough

regression terms to assure a good curve fit (and to estimate large blur circles), and

localization of range detail. As the extent of the region being transformed decreases

several changes result. The (x, y) resolution of the range image increases (since when

using a large window, energy from an edge will affect patches near the edge, softening

the z transition), but the z values become somewhat noisier (both because they are

based on fewer pixels and contain greater uncertainty due to noise or misalignment and

because the regression is being performed upon fewer spatial frequency components).

The images illustrated in this thesis have been produced using either 32-by-32 or 64-

by-64 pixel blocks. The computational requirements for the latter are fairly significant

on a general-purpose computer, with most of the processing time spent performing the

transforms, but hardware optimized for this sort of computation can process depth-

from-focus images fairly quickly. A Sun TAAC-1 application accelerator computes a

depth-from-focus image using 64-by-64 blocks in under five minutes, and a hardware



implementation of the algorithm would be faster still.

The regression solution developed above may also be employed with other bandpass

image representations that are faster to calculate than DFT's, such as Laplacian or

quadrature mirror filter pyramids [Burt, 1983] [Adelson, 19871. The power ratio in each

level of a Laplacian-pyramid representation of the short- and long-depth-of-field images

has been used to solve the regression equations, with useful results (Figures 3-14, 3-

15). The major problem here is that there are fewer points available to the regression

solution, and that they are less localized in frequency, leading to greater estimation

error than for DFT's.1

3.7 Error analysis

There are a number of different sources of inaccuracy in the range images produced by

the method of depth-from-focus outlined here. These may be divided into those due to

the characteristics of the scene itself, those caused by the imaging system, and those

resulting from the processing algorithm.

Image regions with no high-frequency content present a particular problem for all

depth-from-focus techniques, in that little change occurs in these regions as a result of

defocusing. If the lens is focused in front of the scene being imaged, these uniform areas

14Darrell and Wohn [Darrell, 1988] have also employed Laplacian pyramids for depth-from-focus, but
they are simply searching among a group of images to find the one in which a particular image patch is
best focused, in a manner similar to Horn's method.



Figure 3-14: Laplacian pyramid representation of long- and short-depth-of-field views

of a scene (magnified so that all levels are the same size for clarity).

71



Figure 3-15: Depth-from-focus computed by applying regression solution to pyramid
representation of images.

will be interpreted as being closer to the camera than is correct. As the power spectrum

of the long-depth-of-field image block is available to the software, these regions may

be identified and labeled in advance. After the entire image has been processed, the

holes may be filled in via the earlier-mentioned iterative methods originally developed

for use on much sparser stereopsis images.

The imaging process introduces several significant sources of error as well. As the

scene itself is not bandlimited in spatial frequency, the long-depth-of-field image may

contain some degree of aliasing in highly-detailed regions. The defocused versions of

these regions will contain no aliasing, and the results from dividing the power spectra



may not accurately reflect the point-spread function. Misalignment between the long-

depth-of-field and short-depth-of-field images will also produce incorrect range values,

especially if small image blocks are being transformed. The assumption that the long-

depth-of-field image contains no blur whatever is not entirely true; points very far

from focus may be defocused enough to affect the estimate of the blur circle. Noise

in the image sensor is also a problem. At low spatial frequencies this is much less

than image detail, but for most real images the image energy rapidly decreases with

increasing frequency. At the same time, in a typical video camera the amount of noise

power rises sharply at higher frequencies [Schreiber, 1986]. As the noise energy at

various frequencies is more or less the same for the short-depth-of-field and long-depth-

of-field images, examination of experimental results typically shows that that the ratio

of the highest-frequency components in the two images is close to unity. That is, the

recovered F(w) looks like 2J 1 (wc)/(wc) only up to the first few minima, above which

it rises back to 1. This phenomenon implies either that curve-fitting to estimate the

width of the point-spread function should be carried out only in the lower portion of

the spectrum or that a noise model should be incorporated into the estimator (in any

case, the fourth-degree polynomial approximation to the transform of the point-spread

function holds only up to the first minimum). Noise is especially troublesome in dark

regions with little detail, where it may overwhelm the legitimate image content. As the

noise is unaffected by defocusing, dark areas may be assigned a range value too close

to the focus distance of the lens. Like the uniform regions discussed in the preceding
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Figure 3-16: The "missing parts" problem for depth-from-focus. When the lens aper-
ture (dotted lines) is fully open, point P images at P'. When the aperture closes down,
surface S occludes P from the point of view of the lens. Typically the lens diameter
will be many times smaller than the object distances, however, and this effect will be
minimal.

paragraph, these locations may be identified and corrected through relaxation.

A small "missing parts" phenomenon, similar in principle to that in stereopsis, is

illustrated in Figure 3-16. When the lens aperture is fully open, point P focuses at

P'. When, however, the iris (dotted lines) is closed down surface S occludes P from

the point of view of the lens. Thus the points imaged vary to some degree with the

aperture, providing a further theoretical limit to this sort of depth-from-focus process.

That this is a minimal problem at object distances much greater than lens diameter is

easily seen from the diagram, however.

Additional inaccuracy is computational. The effects on resolution of using a fairly

large window have already been discussed. The lens-and-aperture model employed



may not be strictly correct for a given lens, and the polynomial approximation to

the transform of the point-spread function adds yet more inaccuracy to the regression

process.

By making a few assumptions it is possible to approach the accuracy problem in

an analytical manner, leading to a better understanding of the effects of inaccuracy in

the blur-circle estimation process. The results can then be compared with actual error

measured under experimental conditions.

The calculus of errors says that if a function f of n variables f(Xi,..., X) is calcu-

lated with the approximate values (a1,... , anI), where each a; = x + e;, then the exact

error Ef of f (assuming the error terms are statistically independent) is given as

Ef = fE1 + + a En. (3.32)

Gauss' law of propagation of errors further states that if the standard deviations of the

individual error terms are known then the standard deviation of the function is

of = ao + . -+ 2 2  (3.33)\ Bzi 49Xn

[Gellert, 1975}.

Rearranging the geometrical circle-of-confusion expression to give the recovered



range U, in terms of the diameter c, in the region past the focus distance V.

Uf V (3.34)
*V, - f - nec

Since f, V., and n are constants, all the error in this expression comes from the error

in c. Replacing c by (c + Ee),

eu, = Ce, (3.35)
ac

so

e 1 = cnfVE = u . (3.36)
EU1 (V, - f - n(c + Ee))2 f y

By a similar process

ny2
O-, = U 4. (3.37)

That is, as distance from the camera increases, the error in U, increases as the

square of the distance. The error plot as a function of distance for a constant error in

blur circle estimation is shown in Figure 3-17.15

Given a model for computing error in z from error in c, the next step is to relate

error in c to image content. A useful bound on the variance of an estimate of this sort is

the Cramer-Rao inequality [Van Trees, 19681. Given additive noise, the observed short

"In [Pentland, 1987b] an analysis is done for the case of constant percentage error, as suggested

by the results of experiments on human vision. This assumption leads to the unlikely result that as

U -- U2 the error in Uy due to the error in the diameter estimate goes to zero, a conclusion which is

not necessarily appropriate for analyzing a regression estimator.
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Figure 3-17: Predicted error in z for a constant error in estimating
in meters.

c. Both scales are

depth-of-field spectrum r(w) will be modeled as the sum of some s(w, c) and white,

zero-mean Gaussian noise n(w) with standard deviation oan:16

r(w) = s(w, c) + n(w), 0 < w < K. (3.38)

The Cramer-Rao lower bound on minimum mean-square error of an estimate of the

16As noted above, the assumption of white, Gaussian noise is probably not strictly correct. If the
actual spectral distribution of noise were known, it would be here regarded as the product of white
noise and some transfer function H(w). Whiteness is also technically violated by the collapse of two-
dimensional spectra to radial frequency, as not all radial frequency terms result from the same number
of terms in the original spectrum, and thus variance is a function of w.

e0mm. f /4.



random variable c is

var[c - c] ; [-E (8a ln(pr8c(ro co))) (3.39)

where r is the vector of observations of r, in this case the observations of the ratios of

spectral terms, and ^ is the estimate of c. The expression for s(w, c) may be split:

s(w, c) = s(w)F(w, c). (3.40)

Since r and c are independent, their joint probability density function may be rewritten:

Pr,c(ro, co) = pr (ro)pc(co). (3.41)

Proceeding further requires some knowledge of the scene and camera parameters.

It might be assumed that all c are equiprobable between some minimum and some

maximum value determined by the imaging situation.' 7 Thus the probability density

function for c is

. , emin < c <cma
Pc(CO) = CmazCmin (3.42)

0, otherwise

1
7 More correctly, one might assume that all z are equiprobable, and compute the PDF for c based

upon this knowledge and the shape of the c(z) curve for the particular lens parameters employed. For

a scene in which the range of c is fairly limited, assuming a uniform PDF for c is not too unreasonable

given a uniform PDF for z.



The probability density function for the noise component n is

1 /n
pn(no) = exp 2 (3.43)

If s(w) is assumed to be known, then the PDF for the observation vector may be

expressed:

1 K K

pr(ro) = ( ) exp ( 1
2 Z (r(w;) - F(w, c)s(w1 ))2 . (3.44)

After multiple substitutions and simplifications, the Cramer-Rao bound becomes

varc - c > s (w c) ,(3.45)

an expression which allows computing the lower bound for the variance in the estimate

of c given a particular s(w), a measure of noise content, and a presumed-correct model

for the blur function F(w, c). That this bound is very optimistic and will not likely

be approached by an actual implementation is due to several causes, in particular:

F(w, c) is not a perfect model, the noise model assumed is not a perfect model, s(w)

is not actually known - instead there is only a long-depth-of-field spectrum which

itself contains some amount of blur, noise, and aliasing,18 and (as observed earlier) the

' 8 Aliasing content can be included in the expression for r(w) as an additional term s(W - w) where

W is the sampling frequency.
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Figure 3-18: Results of an experiment in which mean and standard deviation were
computed across equidistant regions of a depth-from-focus range image for a sloping
surface. Horizontal axis is actual distance, vertical is estimated. Solid line represents
the position of the test surface. 60mm lens, apertures f/5.6 and f/22, focus 1.3m.

spectrum estimates result from a windowing process that introduces bias, variance, and

spatial uncertainty.

In Figure 3-18, an experiment has been done where depth-from-focus was computed

for a sloping, patterned plane, and mean and standard deviation were calculated across

equal regions of the range image known to be at the same distance from the camera.

In this plot, the standard deviation clearly increases for points in the foreground, a

phenomenon that might be explained by the fact that the differences between the long-

and short-depth-of-field spectra for small degrees of defocusing occur in the high spatial



frequencies, where the signal-to-noise ratio is typically lowest. Some other observations

about this graph are in order: in the extreme foreground, where the blur is small, the

software seems to err on the low side, while in the distance the blur circle is approaching

its asymptote and again the regression software has trouble determining the correct

range. This is also the region in which the long-depth-of-field image starts becoming

perceptibly blurred, and the estimated blur circle may be a little too small here (a

problem which could have been reduced by using a smaller aperture). In the central

region, however, the accuracy is surprisingly good; it appears that at least three bits of

range resolution are available within this area (of course, by proper adjustment of focus

and apertures the location and extent of this area may be varied). The nonlinearity

in the central region is possibly the product of an incorrect match of the software

defocusing model and the actual point-spread function of the lens employed, and could

be corrected quickly via a look-up table or more properly by careful measurements on

the lens and construction of a more appropriate regression polynomial.

The preceding discussion suggests that there is some range of blur circle diameters

that this software is capable of estimating accurately for a given transform size, window,

regression model, et cetera. Recalling the circle-of-confusion function derived at the

beginning of this chapter, it should be noted that the asymptotic shape of the far-field

part of the function and the fact that the asymptote drops as a lens' focus moves farther

away make the far-field part of this curve less than ideal for estimating range accurately

at large distances. In applications where it is desirable to distinguish objects at, say, 50
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Figure 3-19: Experiment of preceding figure repeated for near-field part of blur function.
Same parameters, except focus is 2.5m.

meters from those at 75 meters employing the near-field part of this curve will prove

to be more productive (recall Figures 3-5, 3-6, 3-7).

The experiment of Figure 3-18 has been repeated using the near-field part of the

circle-of-confusion curve, focusing the lens just beyond the farthest point visible in the

scene. As the regression software apparently tends toward estimating small blur circles

as too small, it may be predicted that in this case points near the far end of the plane

will be estimated as being too far away. This prediction is borne out by the observed

data (Figure 3-19). Again, the standard deviation of the data seems to increase as

points approach focus.



3.8 Camera hardware

Gathering the range information for a moving scene requires taking the long- and short-

depth-of-field images at the same time. One simple solution is to have two cameras,

identical except in iris openings and neutral-density filters, looking at a scene through a

half-silvered mirror. In practice, problems are encountered with assuring that the focus

of both lenses always remains the same. An easier-to-use arrangement might involve

only one front lens element with a beamsplitter behind it, imaging upon two different

sensors through different apertures.

In order to create a very compact camera apparatus whose output could be recorded

on a single videotape recorder or film frame, a lens assembly was built in which the

long- and short-depth-of-field views are simultaneously imaged side-by-side (Figures

3-20, 3-21). As the diagrams show, there are actually two front elements with a small

horizontal offset, which results in a slight stereopsis effect. The offset is so small (9mm),

however, that for scenes at reasonable distances from the camera there is no significant

parallax disparity between the views. This unit focuses by sliding rather than rotating,

so the two images remain aligned in the same way regardless of the focus position.

The assembly results in images with a somewhat unusual aspect ratio (2 units wide

by 3 high), though an anamorphic 2:1 squeeze could be incorporated into the optics

(and undone in the processing software) to correct the aspect ratio objection. Also,

as this unit employs only a cemented doublet on each side its images are not as sharp
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Figure 3-20: Two-element lens images both views of a scene simultaneously.

(nor the depth-from-focus results quite as accurate) as those resulting from the Nikon

35-millimeter-camera lenses employed earlier in this chapter. Still, this lens assembly

is quite rugged and compact, and provides depth-from-focus data more than adequate

for many purposes.

If an object is moving rapidly, the motion blur at the camera may impair the

evaluation of defocusing. In such cases, a camera with a high-speed electronic or

mechanical shutter will improve the accuracy. This issue will assume more importance

in the discussion of motion estimation.



Figure 3-21: Image from two-element lens.

3.9 Chapter summary

The principles behind the phenomenon of focusing have been explained, and a method

of estimating range by evaluating degree of blur has been developed and analyzed. A

lens assembly has been designed allowing range data to be gathered for moving subjects

in real time using an ordinary film or video camera.



Chapter 4

Motion and structure

In the midst of chaos there was shape; this eternal passing and flowing (she
looked at the clouds going and the leaves shaking) was struck into stability.

Virginia Woolf

To the Lighthouse

4.1 Approaches

If two views are taken of a scene with a displacement in time, motion (either of the cam-

era or of objects in the scene) permits the recovery of range. Helmholtz over a century

ago recognized that the different velocities of two-dimensional projections of moving

points carry depth information [Helmholtz, 1924]. Gibson and Gibson later coined the

term "optical flow" to describe the image projection of three-dimensional motion vec-

tors [EGibson, 1959]. While optical flow fields in general contain information about

both structure and kinematics of scenes [Prazdny, 1983], a much easier-to-solve problem



is recovering structure when motion is known in advance. Depth-from-camera-motion

involves taking a series of views of a still scene at small, known increments of camera

displacement, and has been extensively studied [Moravec, 1979] [Rives, 1986] [Matthies,

1987]. The advantage of this technique over stereopsis is that the small displacements

employed simplify the finding of correspondence between views. Commonly the camera

motion is strictly along only one image axis, further simplifying the computation, as

correspondence searching can be done in only one dimension.

Techniques for calculating the motion of an image point across multiple frames of

a motion sequence fall into three classes: region-matching methods, transform-domain

methods, and spatiotemporal constraint methods. Region-matching methods, which

are computationally similar to those used in stereopsis, likewise seek correspondence

of either image patches [Ninomiya, 1982] or features such as edges at various scales

[Hildreth, 1984] between frames. Sub-pixel accuracy in correlation-based methods is

sometimes created by interpolating additional points within a sample block.

A spatial displacement of a region between frames will appear as a phase shift of

spatial frequencies if a Fourier transform is applied to the images. Lo and Parikh

[Lo, 1973] and Haskell [Haskell, 1974] did some early work with detecting these phase

shifts to evaluate the corresponding motion. An improved method is phase correlation

[Kuglin, 1975] [Pearson, 1977]. The phase correlation function is computed by perform-

ing a discrete Fourier transform of each image, forming the cross-power spectrum by

multiplying the real part of each component of the first by the imaginary part of the



corresponding component in the second, and then taking the inverse transform of the

result. Ideally, the resulting array of numbers (the "correlation surface") will have a

strong peak at the location corresponding to the displacement between the two im-

ages. The sharpness of this peak can be improved by normalizing the amplitudes of

all the frequency components before computing the inverse transform, and filtering

and interpolation can be performed upon the phase correlation surface to increase the

accuracy with which the center of the peak can be located. Frequency-domain-based

methods seem to have found their greatest use in very accurate registration of entire

images which differ only in global displacements, but Girod has obtained promising

motion-estimation results using a similar operation locally [Girod, 1989].

Spatiotemporal constraint methods assume that the intensity of an object point does

not change with time1 and solve a set of linear equations in the spatial and temporal

gradients of image intensity in order to determine optical flow. Essentially, if image

intensity is I,

aIdz dIdy dI
+ a + = 0. (4.1)

ax dt ay dt at

These techniques can be quite computationally efficient, but require very good estimates

of the image gradients, and may require application at multiple spatial scales in order

to achieve accurate estimates for large motions [Martinez, 1986].

The converse of depth-from-camera-motion is estimating three-dimensional object

'Or, equivalently, that it changes slowly relative to the change in local image intensities due to object

motion. See [Gennert, 1986b] for a discussion of relaxing this requirement.



motion for a stationary camera and moving scene. In the case where the scene consists

of only one object's surface, of course, the mathematics is the same. But even for a

scene containing a single moving object in a stationary environment, some segmentation

of elements is needed so that their motions may be calculated separately. If an optical

flow field is to be used to recover the motions of objects, an additional assumption

is usually added to simplify calculation. A rigid object's motion may be uniquely

specified in terms of translational and rotational components [Halfman, 19621, and if the

scene may be segmented into pieces for which rigid-body motion approximately holds,

then the translation and rotation may be recovered for each rigid piece [Horn, 1986].

Information from another source (such as depth-from-focus data) might be used for this

segmentation, or the optical flow fields may themselves be partitioned with some success

if noise is small [Adiv, 1985]. Indeed, if a parametric description of a rigid object's

surface shape is available, its motion may be estimated directly from the gradients and

surface normal vectors without intermediate optical flow calculations [Negahdaripour,

1987]. An idea which does not appear to have been investigated in detail by other

researchers is the use of range data from a process like depth-from-focus along with

spatiotemporal gradients to estimate rigid-body motion of scene elements, and in turn

the application of structure-from-motion to refine the initial range estimates. Such a

process will be developed in the following sections.



( X,Y,Z)

image plane

Z = F

optical axis

Figure 4-1: The pinhole camera model. A point at (X, Y, Z) is projected onto the image
plane at (x, y, F).

4.2 Camera model and optical flow

A camera model will be necessary in order to develop motion equations for real images.

If the distance to the scene is significantly greater than the focal length of the lens and

lens distortions are not significant, a pinhole camera model [Sobel, 1974] will simplify

derivations (Figure 4-1). Let the origin of a Cartesian coordinate system be at the

center of projection of the viewing pyramid, with the optical axis collinear with the z

axis. Several different units of measurement are available: either absolute distance such

as millimeters, or camera-relative measures such as focal lengths of the lens or pixels on



the camera's image sensor. If the latter is assumed, then an image of the scene will be

formed on the plane z = F, where F is the focal length of the lens expressed in sensor

pixels (this number is equal to the focal length in millimeters multiplied by the ratio

of the number of pixels across the sensor to the width in millimeters of the sensor's

active area). A scene point R = (X, Y, Z) is then imaged on the sensor at r = (x, y, F),

where x and y are image coordinates, and are calculated from the scene coordinates as

follows:

F
r = R. (4.2)

R - ZA

When a point R moves in space, the camera sees a two-dimensional projection of

its motion, known as its optical flow. The velocity of the point r is

dr d FR. (3)
dt dt R - ^

This derivative

dr F dR F dR (4.4)

dt ~R -Z- dt (R-z A)2 dt

may be rewritten with the substitution r = (F/R -Z)R and rearranged: 2

dr _ 1 / dR '
dR = 1 X dx r)). (4.5)
dt R - z^ dt

2 The cross-product notation here and in the following two sections follows that of Negahdaripour and

Horn [Negahdaripour, 19871, with the exception of a non-unity focal length.



The disappearance of the leading F factor seems rather a curious result, in that this

expression appears to imply that the velocity of the projected image point is indepen-

dent of the focal length. An examination of the elements of r (which themselves depend

upon F), however, clears up the apparent paradox.

4.3 The rigid body assumption

In order to reduce the number of parameters describing the motions of points in a scene,

many researchers suggest collecting points into groups which will move together in a

more-or-less rigid manner [Webb, 1982][Ballard, 1983][Netravali, 1985][Broida, 19861.

Under this assumption, non-rigid objects, such as a human arm, are considered as

jointed sets of rigid pieces.3

By Chasles' theorem [Whittaker, 1937], the most general displacement of a rigid

body is a translation plus a rotation. The translation may of course be expressed

as a three-dimensional vector, but a finite rotation cannot properly be represented as

a vector, as the result of two rotations is the product of two matrices, and matrix

multiplication is not commutative. However, if infinitesimal rotations (such as might

occur between two frames taken by a video camera 4) are considered, the change in

'Other possible assumptions include what Ullman calls incremental rigidity [Ullman, 1983], and

totally-deformable objects. These will be discussed later as potential extensions to this process. What

is important is to have some assumption that reduces the number of unknowns, overconstraining the

solution for robustness in the presence of noise. Later, when points seen at different times are assembled

into object models, the rigid-body assumption will enable calculating the motion of points not seen by

the camera based upon that of visible points.
'Here it is assumed that the motion is slow compared with the camera's frame rate.
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Figure 4-2: A general small motion (here, a rotation about a body axis) is equal to
the sum of a rotation and translation relative to the space axes. If the motion is
infinitesimal it may be represented as a pair of vectors.

coordinates is sufficiently small that a vector representation is possible [Goldstein,

1950] (Figure 4-2).

In the case of a rigid body moving relative to the space set of axes with rotational

component fl and translational component T, all points on the body have a motion

given by

dR - x R - T. (4.6)
dt

With substitution for R, this may be rewritten as

dR R -__
d- - n x r- T. (4.7)
dt F



The equation for optical flow of a rigid body may be obtained by substituting this

expression for dR/dt into the formula derived earlier for dr/dt:

dr -

dt
(4.8)

Recovering (3 and T will not

as will be shown below.

require explicit calculation of the optical flow, however,

4.4 The brightness constancy constraint

Another constraint to be placed upon the problem formulation involves image bright-

ness. In an environment with shadow regions or strongly directional lighting, brightness

may be very dependent upon position or orientation. With fairly diffuse lighting that

varies only slowly with time, and for small motions, the brightness of an image patch

remains approximately constant as the patch moves:

dI-= 0
dt

HI dr I 0
or dt at

(4.9)

(4.10)

1 1
zX rx -rxfl- T)))

(F R -z^



Here the image brightness gradient is

a'
ar

8z
ai )
ax
8i

0

Substituting the rigid body expression for dr/dt gives the constraint equation

BI ai
at ar Sx (r x

(1
-r X - . ) T =0. (4.12)

This may be simplified by defining two vectors: v = -(1/F)((dI/dr x Z) x r) x r, and

s = (dI/dr x i) x r:
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1-fl + s - T = 0,R -I
(4.13)

which is the final constraint equation, expressed in terms of the spatiotemporal image

gradients and z values. The elements of the s and v vectors are

-Fa-'az

--Fa,
(9y

ay OzX;

(4.14)

8z 8y

In the following section the estimation of the gradients necessary to solve the con-

straint equation will be discussed.

(4.11)

(F + vE}& + zu a1F ay F Oz



4.5 Signal estimation to compute

spatiotemporal gradients

A significant problem with spatiotemporal constraint methods is the requirement for

accurate estimates of spatiotemporal image gradients. The gradients of a pair of input

images can be approximated by finite difference methods if the signal is bandlimited

and noiseless, and if the images are spatially and temporally sampled at high enough

rates. Real images, though, contain significant additive noise, which is enhanced by

simple differentiation schemes [Horn, 1986]; also, there is often aliasing, particularly in

the temporal direction, which can produce incorrect results with local finite-difference

methods. An approach suggested by Martinez and Krause [Martinez, 1986][Krause,

1987]' involves parametric signal estimation of the form

N

I(X, y, t) ~ I(X, y, t) = Si4 (, y, t). (4.15)
1=

Sample intensity values from the input images are used to estimate the model parame-

ters Si, and the gradients obtained through partial differentiation of I(x, y, t) in terms

of x, y, and t. The signal model itself is specified through appropriate choice of the

'Only Martinez's signal model - not his motion estimator - will be employed in this work.



basis functions 44. Martinez proposes a basis set of three-dimensional polynomials:

41= 1 2= X 43= y

04 = t 05 = X 2 2 (4.16)

47=y 4= Xt 49= yt

The one-dimensional matrix of coefficients S is calculated by minimizing the error

between the intensity values observed and those predicted by the model, specifically

min (I(Xi, yi, ti) - SD(Xi, yi, ti))2. (4.17)

Typically a small spatiotemporal region will be modeled (say 5-by-5 pixels from two

adjacent frames - a larger spatial region will permit more accurate measurement of

larger motions, but at the expense of additional computation), resulting in an overcon-

strained set of linear equations: 50 samples to estimate 9 parameters. The parameter

vector S may be expressed as

S = QI, (4.18)

where

~i, ti)

I = : (4.19)

I(X5o, Yso, t50 )



and Q is the 9 x 50 pseudoinverse of a 50 x 9 matrix A

Q = (ATA)-AT. (4.20)

More detail on solving large systems of linear equations of this sort may be found in

numerical methods references such as [Constantinides, 1987] or [Kohn, 1987].

The elements of A are the basis functions evaluated at each sample point:

1 X1  y1 ti X2 y2  xiyi xiti y1t1

A = :: :. (4.21)

1 X50 Y5o t 50 X50 Y50 X50y50 X50t5O y50t5o

Computation is reduced by re-origining the center of each 5-by-5 image window

to (0,0) and declaring the t values of the two frames to be 0 and 1. Thus the very

expensive calculation of Q need be carried out only once, as it is independent of the

observed intensity values, and only the multiplication of Q and I must be performed

for each pair of sample windows. Once the resulting S is found, the gradients at the

center of the spatiotemporal sample block (x, y, t) = (0,0, 1/2) are straightforwardly

computed:

BI 9 BOi
=1 Sa * =S2+-S8. (4.22)

ax = x (z=Oy=Qt= 2



In a like fashion

BI 1
- = S3 + -S9 (4.23)

By 2

and

BIt= S4 (4.24)
at

It is important to note that the final solutions are not functions of a number of

elements of S, specifically S1, S5 , S6, and S7 . This does not mean that the corresponding

basis polynomials could be eliminated from the signal model. Doing so would cause

the values of the desired Si to change in an attempt to account for the additional error

that would result from the omission of these model parameters. Thus the full system of

equations must be solved in order that the derivatives will take on the correct values for

this model. The partial derivatives of intensity with respect to time, x, and y computed

for a pair of images of a moving scene are shown in Figures 4-3, 4-4, 4-5, and 4-6.

4.6 Least-squares solution

of the constraint equation

While it should be possible to recover the six unknowns fl, ,, Tx, T, and T, by

using the range data and intensity gradients at just a few image points, more accurate

and robust velocity estimates will result from using a least-squares error minimization

over an entire rigid object. The method presented here is similar to that proposed by
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Figure 4-3: A pair of frames of a rotating object.
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Figure 4-4: Partial derivative of intensity with respect to x for Figure 4-3.

Negahdaripour and Horn [Negahdaripour, 1987] (though the referenced paper solves

only for the case of a planar surface); a more complete discussion of least-squares

minimization for motion recovery may be found in [Horn, 1986].

It is desired to compute the motion components 0 and T which minimize the

integral

/f f (.+v l+ s -T)' dx dy (4.25)at R - i

over some region representing a rigid object. Differentiating f with respect to fl and
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Figure 4-5: Partial derivative of intensity with respect to y for Figure 4-3.

T and setting the results to zero yields a pair of equations

(I l

( 1
ST) v dx dy = 0

1
-+R -is^

. T)

(4.26)

(4.27)R1 s dx dy = 0.

These equations may be rearranged

f f(vvT) dx dy + Tf R1 (vsT) dx dy = -f y dx dy (4.28)
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Figure 4-6: Partial derivative of intensity with respect to t for Figure 4-3.

R (sv) dx dy + T ff (R i)2 (s) dzdy -J fsaI 1 dx dy, (4.29)

which suggests the following grouping:

M1 M2 f] di
= -,(4.30)

Ms M4j Tj d2

where

M1 = f J(vvT) dx dy (4.31)

M2 = ff (vsT) ddy (4.32)
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M 3 = . (svT) d dy = MT (4.33)
ffR -z

M4 = jj )2 (ssT) dz dy (4.34)
ff(R.- 2 ssdd

di = ff v dx dy (4.35)

d2 = 1s dx dy. (4.36)
at R -ZA

The solutions to this system may be expressed in numerous ways; one expression is

given by

T = (M 4 - MM- 1M 2)' (MTM-'di - d 2) (4.37)

0 = -Mj1(di + M 2T). (4.38)

If this technique is being employed throughout an extended sequence, an additional

assumption may be applied in order to increase the accuracy of the recovered motions.

Inasmuch as the objects in the scene should have significant inertia, the magnitudes

and directions of their motions should not change drastically from one increment of

time to the next - in other words, the motion should be locally smooth in the temporal

domain. An easy way to exploit this phenomenon is to apply a smoothing filter across

sequences of motion estimates. A Gaussian filter with a a of four frames has been

used for this purpose in the research described herein, but there has been no in-depth

investigation as to what the characteristics of an optimal temporal smoothing filter

should be.
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It was noted in the preceding chapter that depth-from-focus will perform better

given images which represent the state of the scene at a particular instant rather than

integrated over a frame time. Eliminating motion blur will, on the other hand, open up

the possibility of significant temporal aliasing leading to incorrect motion estimation.

Were motion estimation computed locally, this would be a major concern, but here

the equations are being integrated over a fairly large region representing one rigid

scene element and local errors should not greatly affect the outcome. It is additionally

desirable that the surface of the object model to be built up be as unblurred as possible.

On balance, therefore, a shuttered video camera will probably produce better results

overall within the context of the requirements of this project.

Most interlaced video cameras with shutters open the shutter at the beginning

of each field, not each frame. When such a camera is used, it is possible - if the

scene does not contain too much vertical detail - to pretend that the camera is really

progressively-scanned with half the number of lines. In this case, the motion will be

measured between adjacent fields rather than frames, effectively doubling the fastest

motion that may be accurately estimated for a given size of spatiotemporal sampling

block in the signal estimator.
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4.7 Improving range estimates

with the constraint equation

An interesting extension to the motion recovery process is the use of the constraint

equation and the motion solutions derived above to improve the range data once motion

has been estimated. The range, of course, varies from point to point across a rigid

object, so error minimization with respect to range over some region is not useful here.

A more fruitful approach involves surface orientation. If the object is assumed to be

locally smooth, small surface patches may be approximated as planes. Mathematically,

R - n = 1, (4.39)

where n is an "inward directed" normal vector to the plane. Since R = r(R -z)/F this

may be rewritten:

F
r-n= .. (4.40)

Now it is desired to minimize over some small patch of an object

f = fJ( v -[ + 1 (r -n)(s - T) d dy. (4.41)
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Differentiating with respect to n and setting equal to zero provides the system of linear

equations

J i+v- O+ 1(r -n)(s - T) (s -T)r dx dy = 0. (4.42)

Rearranging,

ff(rr) d dy f + (v -) r dx dy. (4.43)
F2  at F

The solution is simply

-(f (s.-T)> -~d1 (I B~I+(~) (s - T)d) (.4
F2 (ri zd t+( ) F r dzdy ,(4.44)

from which

F
RZ = F (4.45)

Direct application of the above method produces range data containing a small

amount of noise in the form of grossly incorrect (approaching zero or infinity) distance

values. These turn out to correspond to surface normals which lie entirely in the image

plane or point toward the camera, owing to occasional areas where noise or modeling

error causes local intensity gradients inconsistent with the motion of the body as a

whole. As the vector n has been defined to be inward-pointing, there should be no

visible regions with normals toward the camera. Again assuming smoothness, range

values for locations with obviously misdirected normals may be assigned by a weighted
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average of neighboring points.

A good minimization region size has proven to be 5-by-5 or 7-by-7 pixels, larger

patches over-smoothing the object surface in addition to being more computationally

expensive.

The "new" set of range values computed in this manner will presumably be com-

bined with the depth-from-focus range estimates rather than used to replace them. A

simple way to do this is a weighted average, but a better and smoother surface re-

sults from a minimization solution of the sort discussed in Section 3.1, though here

there will be two sets of original z values for which the surface must minimize mean-

squared error. Even starting from a fairly blocky depth-from-focus range image, the

result (Figure 4-7) begins to approach the quality of the laser rangefinder data from

Chapter 2. More careful analysis suggests that the process should operate in a way

that exploits the particular characteristics of each rangefinding process. Specifically, as

depth-from-focus is known to give reasonably accurate absolute range values but lim-

ited (X, y) resolution, while structure-from-motion gives better local detail, the former's

low-spatial-frequency components and the latter's high-spatial-frequency components

should be given more priority.
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Figure 4-7: Blocky depth-from-focus image (top) is improved through struc-
ture-from-motion (bottom).
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4.8 Range sensitivity as a

function of motion direction

It should be apparent that the quality of the range estimates from the motion estimator

will vary with the characteristics of the scene motion. In general, larger motions (as

long as they are not so large that they overwhelm the gradient estimator) would be

supposed to produce better range detail, owing to the increased variation in the two-

dimensional projection of the motion as a function of three-dimensional position. But

an examination of the optical flow equations from sections 4.2 and 4.3 will show that

not all directions of motion produce equal flow for a given displacement.

It will be recalled that for a rigid body

- z x r x (-r x - 1 T)).-(4.46)
dt F zx rx F xR J]I^

Expanding this expression and recasting it in terms of the world coordinates of a point

R yields a less neat but more illuminating result:

dr F XY (X 2 +F y T X
dt Z Z Z Z

F(IY 2 \ XY Y \
+ - (Y -_XO - T - -T). (4.47)

A number of inferences may be made from this equation; one of particular interest
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concerns translatory motion. Considering just the x component for a moment (y being

analogous), the flow from a translation in the x direction is greater than that from

an equal translation in the z direction by the factor Z/X. Thus for points less than

45 degrees away from the optical axis, translation in x or y is better for structure-

from-motion purposes than z translation.' Indeed, making effective use of motions

which consist largely of translations in z would require a fairly wide-angle lens. Also

by inspection, rotation about z will not give good range information for points close to

the optical axis.

As in Section 3.7, the calculus of errors may be applied to this expression. For clarity

and compactness, only the x component of flow for a strictly translational motion will

be considered in this analysis. Therefore,

Z2 dr
- - ZT - XT= 0 (4.48)
F dt

and

F I 4XTzdr (449)
Z 2!k T X j F dt '9

dt

Replacing dr/dt by (dr/dt + Ed), the error in Z as a function of the error in measuring

6 Matthies, et al. reach the same conclusion, via somewhat different reasoning [Matthies, 1987].
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optical flow on the image plane is

EZZ ±
Ez = -i)

(gk + Ed)'

XT,

(d + Ed) T - T (k + ed)

an expression which suggests that the error actually decreases at a faster than linear

rate as the optical flow increases.

4.9 Chapter summary

To review, the following assumptions have been made regarding the scene elements and

the imaging process:

* The lens distortion is insignificant, and a pinhole camera model will suffice.

e Object motions are infinitesimal, and may be expressed as vectors.

o It is possible to segment the scene into rigid pieces.

o Object surfaces are locally smooth.

o Objects are diffusely reflecting.

o Scene lighting is diffuse, and varies slowly as a function of position and time.

o Inertia will limit changes in object motions, implying that motion will be locally

smooth temporally.
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It has been shown that application of these assumptions permits computing incre-

mental frame-time-to-frame-time motion for each rigid piece. Depth-from-focus data

is used along with spatiotemporal image gradients from a parametric signal model to

drive a three-dimensional motion estimator; assuming the motions thus calculated and

running the process essentially in reverse gives structure-from-motion range constraints

which refine the input range data. The information thus obtained will be put to use in

the next chapter.
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Chapter 5

Building object models

Di quest'onda che rifluisce dai recordi la cittd s'imbeve come una spugna e
si dilata. Una descrizione di Zaira quale i oggi dovrebbe contenere tutto il
passato di Zaira.

As this wave flows in from memory, the city soaks it up like a sponge and
expands. A description of Zaira as it is today should contain all Zaira's
past.

Italo Calvino

Le citta' invisibili

5.1 Goals

At this point in the processing of an input image sequence, the following information

has been extracted:- motion-improved range information for each input frame (which

can be combined with the intensity information and placed into particle form), object

segmentation for each frame, and incremental motion estimates describing the transla-

tion and rotation of each object from one frame time to the next. It is readily apparent
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that this representation of a moving scene is highly redundant and should allow for

much data compresssion - given the motions which transform the scene as observed at

one instant to that at the next instant, storing a description of the scene at the sec-

ond instant seems unnecessary. The only obstacle to implementing this scheme is the

2 1/2-D nature of each frame's description. As an object moves, it also uncovers new

points, and these will be missing if a 2 1/2-D description is translated and rotated. A

more useful representation will result if each input frame contributes its "new" points

to the building up of a volumetric 3-D scene description. Reconstructing the original

movie from this database will enable re-rendering from different viewpoints without

missing parts, as long as the parts in question were seen by the camera at some point

in the sequence.

5.2 Related work

As noted earlier, computer graphics commonly employs object descriptions such as

meshes of polygons which simplify calculation, and - with the exception of fractal

curves [Mandelbrot, 1983] - no claim is generally made of the "naturalness" of such

descriptions. Polygons are attractive for some industrial vision applications as well,

since (once the observed scene has been "polygonalized") they permit computations

to be performed only at vertex points; also in many situations in which such systems

are applicable the objects to be recognized are easily described in polygonal form.
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Researchers interested in modeling biological vision systems, on the other hand, prefer

object descriptions which are more conceptually understandable, and which make clear

the articulation of objects into parts. The idea of the "generalized cylinder"1 was

introduced by Binford, and represents volumetric shapes as the result of moving a

size-but-not-shape-varying cross-section along a (possibly curved) axis [Binford, 1971].

This concept was later employed by Marr and Nishihara in a hierarchical system for

creating a part-based conceptual description of objects [Marr, 1982]. Pentland used the

superquadric - a modification of the equation for the sphere - and created a process-

oriented object editor in which object models were created by deformation of "balls

of clay," as well as a method for fitting superquadric models to range data [Pentland,

1987a]. Terzopoulos, et al. extended the energy-minimizing splines called "snakes" to

three dimensions, such that a quasi-symmetrical volume, not just a 2-D curve, is fitted

to image contours [Terzopoulos, 1987].

Besides being more or less restricted in the imagery which can be represented easily, 2

the parametric descriptions of the preceding paragraph substitute an assumption of

symmetry (or quasi-symmetry) or regularity for explicit knowledge of unseen portions

of the object. While this assumption may be a desirable property in many cases, it does

not necessarily provide for easy refinement of the model when additional information

in the form of different views of an object becomes available. Apart from Linhardt's

'This term is used interchangeably with "generalized cone."
2 Pentland expanded the possible objects which could be represented in his system by allowing surface

properties and Boolean operations (most importantly, NOT) to take part in the descriptions.
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earlier-cited work, which employed the same particle descriptions outlined in Chap-

ter 2, research upon building up object models from multiple range views of a scene

has generally employed polygons. Polygon models permit relatively simple addition of

newly-seen points, as the inclusion of new information will have mostly local effects and

should not require total recomputation of the object model. Boissonat and Faugeras

describe a technique for representing objects by constructing a polyhedral representa-

tion from range points, and suggest that these may come from more than one view of

an object [Boissonat, 1981]. An extension to their work is provided by Bhanu, who

takes 3-D points from several range views of an object and segments the object into

planar faces; he, like Linhardt, assumes that the rotation angle of the object relative

to the camera is known for each view, but once the full model has been built up the

position of a new, unknown view is found by comparing it with the object description

[Bhanu, 1984].

A completely different approach to the model-building problem, and one much closer

to the spirit of this thesis, is found in the work of Kappei and Liedtke [Kappei, 1987],

though they employ only intensity images to drive their process. They begin with a

polygonal approximation to an object model based upon a priori knowledge or upon

rotating a silhouette around an axis. Iterative motion estimation is performed upon the

image regions corresponding to the neighborhoods of the vertex points and the vertices

are allowed to move along the line of sight from the camera to minimize error in the

motion estimator, thus improving the model.
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5.3 Approach

A reasonable approach to this reconstruction task would involve using the first instance

of an object to define a set of body coordinate axes coincident with the global (likely

camera-centered) axes.' Range and intensity values from later observations of the

object would be rotated and translated back into the coordinate system of these original

axes - according to the product of incremental estimated motions up till that later time

- and assembled into a particle database with redundant particles eliminated to keep

the object description as compact as possible. The final outcome of processing an

input motion sequence in this manner is a three-dimensional description of the surfaces

of objects, and of their motions through time. Obviously, these motion vectors can

be interpolated, and the locations, orientations, and appearances of objects can be

reconstructed for instants other than those at which the camera sampled the scene.

A schematic of this process is shown in Figure 5-1. In practice, adding an additional

degree of intelligence to the database building software greatly improves the accuracy

of the resulting databases and keeps their size within reasonable bounds even for long

input sequences. While the motion estimator error for any particular pair of input

frames may be small, after many dozens of frames the product of incremental errors

builds up to the point where it may affect the addition of new points to the database.

'If an object is known - or observed - to have a "natural" set of three-dimensional body axes the use

of which would simplify subsequent calculations, these could be applied instead with no loss of generality.
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Figure 5-1: Schematic representation of the model-building process.
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For an object with a significant rotational component about the x or y axes, 4 the

database building software attempts to line up the silhouette of the "trailing" edge

of an input view with the corresponding region of the database, as well as making

sure that the intensities of the points already existing in the database match fairly

well those that the input view places in the same locations.' The position error term

is retained so as to assist in the incremental-motion-to-absolute-position conversion

of later input frames. Also, new points are added only in regions of space that are

relatively unpopulated (which for the rotating object above would be the "leading"

edge, while in the case of a background object would be those portions that a moving

foreground object had previously occluded).

An additional optimization should be mentioned at this point. Readers who have

been following the discussion for the past several chapters may be wondering how, given

an admittedly imperfect scene segmentation algorithm and occasionally erroneous range

information, "foreground" particles can be kept out of the "background" database and

vice versa. The answer to the dilemma lies in making the segmenter very conservative;

ambiguous image regions in a given input frame which might be assigned to one object

or another are actually assigned to neither in the database building process. At some

later time in the input sequence, these points will be presumably be seen again (with

less ambiguity) and may then be incorporated into the database.

4Apart from the effects of perspective, z-axis rotation of an object not partially occluded by another

closer to the lens generally does not uncover a large number of new points.
5This foreshadows the possibility of matching a pre-existing object model with the input views as a

check on the motion estimator, an extension which will be suggested in the following chapter.

120



5.4 Evaluation

Two different image sequences have been recorded on 1" videotape, digitized frame-by-

frame, and processed in this manner. In the first, the motion of a rotating pendulum

with patterned surface (actually a rubber ball suspended by a wire) was tracked, and

the new particles from each frame time were added to a particle database. Figures 5-2

and 5-3 illustrate how the model of the object builds up throughout the sequence.

In a second sequence (Figure 5-4), the author of this thesis moved across the cam-

era's field of view, made a roughly 270-degree turn, turned back, and bent forward

at the waist, with the camera viewing the figure from the waist upwards. Arms and

head were not moved independently of the torso. The range data from the scene, and

thus the resulting database, were segmented into two objects: the figure and the wall

behind him. As all parts of the wall were at some time unoccluded from the camera's

viewpoint, it is possible to build up a complete model of the wall by processing the

entire sequence; likewise a relatively complete model of the figure should be possible

given that the majority of the figure's surface faced the camera at some point, and that

every portion was within 45 degrees of the line of sight.

Because of the length of this sequence (some 900 video frames) and the slowness of

the motion, calculation was speeded up by skipping many of the frames in the database-

building process (though motion estimation must be performed for every frame time to

enable calculating absolute position). This is in contrast to the spinning ball sequence,

121



Figure 5-2: A database builds up over time as the camera observes new parts of an
object.
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Figure 5-3: Continuation of the process in preceding figure.
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Figure 5-4: Frames from input image sequence used to generate following figures.
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Figure 5-5: Low resolution depth-from-focus for one frame of input sequence.

in which every frame time's particles were used.

An animated videotape was produced consisting of the original sequence, the results

of the depth-from-focus process (Figure 5-5), the range information from the motion

estimator along with a graphical representation of the motion estimator's running es-

timate of the person's position and heading relative to the camera6 (Figures 5-6 and

5-7), a variable-viewpoint rendering of the database built up over time (Figures 5-8 and

5-9), and the original movie reconstructed from the database and motion estimates, but

viewed from a different viewpoint from that of the camera and with simulated lighting

'To produce this display, the system had to be told the figure's absolute position and heading at the
time of the first frame.
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Figure 5-6: Range information after structure-from-motion (left), and estimate of fig-
ure's (x, z) position and heading relative to camera (right).

(Figure 5-10). In this reconstruction, the back wall may be seen to be complete.

The actual position and heading of the person at each frame time in the input movie

were not measured, and thus the performance of the motion estimator must be eval-

uated visually. The graphical representation of the position and heading of the figure

seems to track the input movie quite well; there is some error in the temporal vicinity

of rapid changes of motion (such as the point at which the figure reverses direction)

which is probably due to an overly wide motion smoothing filter. There appears to be

an absolute heading error of roughly 15 degrees of y-axis rotation by the end of the

sequence, though the database has been filled in long before this point. Ideally, the
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Figure 5-7: Frames showing motion estimator's estimate of position and heading of
figure (compare with Figure 5-4).
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Figure 5-8: Two views of the database built up from sequence shown in Figure 5-4.
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Figure 5-9: Two more views of database.
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Figure 5-10: Frame of original movie reconstructed from a new viewpoint, and with
simulated light source at upper left.

position and heading information should not be calculated in incremental form over

such a long time period; absolute position and heading must be established (via some

other technique) from time to time during an image sequence so that the incremen-

tal error does not build up to objectionable levels. Another way in which the system

performance may be evaluated is to compare original frames with reconstructions from

the database (Figures 5-11 and 5-12).

The database itself exhibits distortions and errors of three types: errors due to

incorrect range information, errors due to incorrect estimation of absolute position of

the figure, and errors arising from the building process. There are a few regions of the
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Figure 5-11: Two frames of original movie (left), and re-creations from the database.

131



Figure 5-12: Frames of original movie (left), and re-creations from the database.
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database that are slightly sparse, particularly on the figure's right side; this region did

not face the camera for an appreciable time and during the period when it was near

the line of sight the rotation of the figure was reversing direction (with the associated

errors as discussed above).

Numerous material causes of error in both of these sequences may be identified.

As observed in Chapter 4, the dual-aperture lens is not the most precise of optical in-

struments. Videotape noise reduces the accuracy of the depth-from-focus and motion

estimation processes, while the lower bandwidth of the videotape (compared with dig-

itizing video direct from the camera) prevents depth-from-focus from measuring very

small degrees of defocusing. Additionally, the videotape recorder used was found to

have slight scanner servo misadjustments - the video timing errors remaining after the

time-base corrector were occasionally large enough to affect the motion estimates.

It would be unwise to attach too much importance to the data size figures or to make

claims of coding efficiency based upon this limited experiment, but the following figures

are given for the benefit of those who must see numerical results: for the "person"

sequence, the input frames (long-depth-of-field side only) are 900 x 200 kilobytes, or

180,000 kilobytes, while the particle database came to just over 4000 kilobytes and the

file of motion estimates in human-readable-and-editable form was approximately 30

kilobytes.

When considering the process described herein in signal coding terms rather than

computer-graphics terms, it is important to realize that numerical comparison of a
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reconstructed frame to the original may not yield a completely meaningful number.

For example, a small error in position or orientation of an object might be completely

unnoticeable to a viewer who does not have the original frame available, but would yield

a large signal-to-noise ratio. An equal SNR might result from much worse (perhaps

unacceptably so) database errors. A consideration of coding methods does suggest one

interesting insight into the process, namely that of comparing the reconstruction with

the original frame and intelligently using this "feedback" to improve the database.

5.5 Chapter Summary

A method has been proposed for employing range and motion information so as to

combine views of objects and surroundings seen at different times in a movie in order

to build a volumetric model of the scene contents. The resulting compact database

has been used to reconstruct the original movie with computer graphics manipulations

such as variable viewpoint and lighting.
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Chapter 6

Conclusion

We'll not stop two moments, my dear Sir,-only, as we have got through

these five volumes, (do, Sir, sit down upon a set-they are better than noth-

ing) let us just look back upon the country we have passed through.-

Laurence Sterne

The Life and Opinions of Tristram Shandy

6.1 Summary and further investigations

The goal of this thesis project - a passive range- and motion-sensing camera capable

of building a computer-graphics-like description of scenes before it - has been reached

with a fair degree of success. To this end, several contributions to knowledge have

been made. First, manipulations possible upon computer-graphics-like descriptions of

real scenes have been demonstrated. A particular depth-from-focus algorithm which

provides better results than have been reported elsewhere in the literature has been
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developed and analyzed. It has been shown that the output of this process may be used

to drive a spatiotemporal gradient motion estimator adapted to employ a parametric

signal model, and the motions thus calculated used to solve for a new set of range

constraints - an approach which provides greatly improved range data, and points

toward the integration of still more sources of range information, as is done by biological

vision. At the intersection of this range and motion information lies the demonstrated

ability to build up models of objects by watching them as they move, as well as the

compression of image sequences to a compact and modifiable set of object models and

trajectories, where the receiver is not merely a display but takes on a computational

character.

The author has learned a number of valuable lessons in the pursuit of this objective,

but he hopes that he is not alone in having done so, and that the reader of this document

has along with him gained an appreciation for the possibilities inherent in considering

the camera as model-builder. The development of such a camera has, of course, merely

begun and a great deal of research remains to be done in this exciting field. Some

particularly important issues:

* Inasmuch as no one range-sensing modality performs well under all circumstances,

more independent sources of range information should be added to the system

in a cooperative manner. Methods that are already well-understood and could

improve the overall accuracy of the system are shape-from-shading and stereopsis

(whose computational requirements might be lessened markedly by using the
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depth-from-focus information to guide correspondence searching).

" As Fourier transforms are already being taken of regions of every input frame,

they might be employed in a transform-based motion estimator either in lieu of

or in cooperation with the gradient-based motion estimator.

" Assumptions other than that of objects articulated of totally rigid parts are pos-

sible. The most general case is that of totally-deformable objects, but the com-

putational and database complexity involved may preclude this model. A good

compromise may be Ullman's incremental rigidity assumption [Ullman, 1983] [Ull-

man, 1987], in which rigidity accounts for as much as possible of the motion of

points on an object, with the remaining error interpreted as deformation. In any

case, a means such as a hierarchical part tree is needed to express the articula-

tion of multi-part objects, and constraints should be introduced so that the parts

remain connected even given errors in motion estimation.

" A priori object knowledge, where a particular instance of an object seen by the

camera is checked against an internal model - as in [Van Hove, 1987] - would

improve scene segmentation and be nearly essential to part segmentation. It

would also provide a check of the motion estimator by allowing the periodic

estimation of absolute object orientation. The object knowledge possessed by the

system might be specific, as in a Hollywood camera having a good model of a

particular actor, or it might be generic, as in a camera which knows about the
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ways in which human bodies are jointed and can apply this general knowldege to

the specific person before it.

9 Much investigation remains in the segmentation of dynamic scenes, including

the use of segmentation by motion and the correct handling of objects which

interocclude in complex ways.

* A parametric object description offers some advantages over a particle database,

especially in compactness and rapid manipulation. In order to employ such a de-

scription, though, it will be necessary to develop an equally compact and efficient

means of storing surface color information.

* An additional check on database and motion accuracy can be made by attempting

to reconstruct the original frames from the database, and using the error to correct

database and motion errors.

* Methods of employing data from multiple cameras over time should be explored.

* Finally, having developed a camera capable of building modifiable models of real

scenes, the researcher is confronted with the challenge of coming up with appli-

cations and systems which will take advantage of its creative and communicative

potential.

Tomorrow promises to be a busy day.
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