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Abstract

Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic
pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships to patient
survival. Using gene expression signatures, we devised an in silico strategy to map patterns of oncogenic pathway activation
in 301 primary gastric cancers, the second highest cause of global cancer mortality. We identified three oncogenic pathways
(proliferation/stem cell, NF-kB, and Wnt/b-catenin) deregulated in the majority (.70%) of gastric cancers. We functionally
validated these pathway predictions in a panel of gastric cancer cell lines. Patient stratification by oncogenic pathway
combinations showed reproducible and significant survival differences in multiple cohorts, suggesting that pathway
interactions may play an important role in influencing disease behavior. Individual GCs can be successfully taxonomized by
oncogenic pathway activity into biologically and clinically relevant subgroups. Predicting pathway activity by expression
signatures thus permits the study of multiple cancer-related pathways interacting simultaneously in primary cancers, at a
scale not currently achievable by other platforms.
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Introduction

Gastric cancer (GC) is the second leading cause of global cancer

mortality [1]. Particularly prevalent in Asia, most GC patients are

diagnosed with advanced stage disease [2]. Deregulation of

canonical oncogenic pathways such as E2F, K-RAS, p53, and

Wnt/b-catenin signaling are known to occur with varying

frequencies in GC [3–6], indicating that GC is a molecularly

heterogeneous disease. Previous studies describing GC diversity in

primary tumors have typically focused on single pathways,

measuring only one or a few biomarkers per experiment [4,6,7].

In contrast, experimental evidence indicates that most cancer

phenotypes (uncontrolled growth, resistance to apoptosis, etc) are

largely governed not just by single pathways, but complex

interactions between multiple pro- and anti-oncogenic signaling

circuits [8]. Narrowing this gap between the clinical and

experimental arenas will require strategies capable of measuring

and relating activity patterns of multiple oncogenic pathways

simultaneously in primary tumors.

Previous studies have proposed using gene expression signatures

to predict the activity of oncogenic pathways in cancers [9] – here,

we hypothesized that patterns of oncogenic pathway activation

could be used to develop a genomic taxonomy of GC.

Importantly, this pathway-centric strategy differs substantially

from previous microarray studies describing expression changes

associated with morphological and tissue type differences in GC

[10,11], as pathway signatures (rather than individual genes) are

used as the basis for cancer classification. We developed an in silico

method to map activation levels of different pathways in cohorts of

complex primary tumor profiles and validated this pathway-

directed classification approach using proof-of-concept examples

from breast cancer. We then applied this method to GC to
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evaluate eleven oncogenic pathways previously implicated in

gastric carcinogenesis [3–7,12–17]. In total, we analyzed over 300

primary GCs derived from three independent patient cohorts,

performing to the best of our knowledge the largest genomic

analysis of GC to date. We identified three oncogenic pathways

(nuclear factor-kB (NF-kB), Wnt/b-catenin, and proliferation/

stem cell) that were deregulated in the vast majority (.70%) of

GCs, and functionally validated the pathway predictions in vitro

using a panel of GC cell lines. Although patient stratification at the

level of individual pathways failed to consistently demonstrate

significant differences in clinical outcome, patient stratification by

oncogenic pathway combinations (e.g. high proliferation/high NF-

kB vs. low proliferation/low NF-kB) showed reproducible and

significant survival differences in multiple independent patient

cohorts, suggesting a critical role for pathway combinations in

influencing GC clinical behavior. Our results thus demonstrate

that GCs can be successfully taxonomized using oncogenic

pathway activity into biologically, functionally, and clinically

relevant subtypes.

Results

Predicting Pathway Activation in Cancer Gene Expression
Profiles

Our strategy for predicting levels of oncogenic pathway

activation in cancers involves four steps (Figure 1A). First, we

defined ‘pathway signatures’ - sets of genes exhibiting altered

expression after functional perturbation of a specific pathway in a

well-defined in vitro or in vivo experimental system. Second, we

mapped the pathway signatures onto gene expression profiles from

a heterogeneous series of cancers. Third, using a nonparametric,

rank-based pattern matching procedure, activation scores were

assigned to individual cancers based upon the strength of

association to the pathway signature. Finally, the individual

cancers were sorted based upon their pathway activation scores.

Before applying this approach to GC, we considered it

important to validate this in silico strategy in a series of proof-of-

principle experiments. We chose the example of breast cancer, a

malignancy for which there is ample evidence of pathway

heterogeneity and discrete ‘molecular subtypes’ [18]. To perform

this validation, we first asked if previously described pathway

signatures associated with impaired estrogen signaling could be

used to identify breast cancer cell lines exhibiting high levels of

estrogen receptor (ER) activity. We analyzed a gene expression

panel of 51 breast cancer cell lines originally described in Neve at

al. [18] with an 11-gene ‘tamoxifen sensitivity’ pathway signature

derived from a list of genes differentially expressed between MaCa

3366, a tamoxifen-sensitive human mammary carcinoma xeno-

graft, and MaCa 3366/TAM, a tamoxifen-resistant subline of the

same xenograft [19]. We found that breast cancer cell lines

positively associated with the tamoxifen sensitivity signature

exhibited significantly higher expression levels of ESR1, the

estrogen receptor and molecular target of tamoxifen, compared

to lines showing negative pathway activation scores

(p = 2.1261027, Accuracy 84.3%, Sensitivity 100%, Specificity

75%) (Figure 1B and Table S1).

Second, we tested if a pathway signature associated with

estrogen signaling but derived from non-breast tissue could also be

used to stratify the same panel of breast cancer cell lines. We

queried the breast cancer cell line panel with a 41-gene ‘estrogen

response’ signature derived from a list of genes upregulated by

estradiol in U2OS human osteosarcoma cells [20]. Despite the

signature originating from a different tissue type (e.g. osteosarco-

ma), we once again found that, when sorted based upon their

predicted estrogen responsiveness, breast cancer cell lines clustered

together by their level of ESR1 (estrogen receptor) expression

(p = 0.0035, Accuracy 62.7%, Sensitivity 94.7%, Specificity

43.8%) (Figure 1C and Table S1). These results demonstrate that

it is indeed feasible to predict patterns of pathway activation in a

particular cancer of interest (gastric cancer in our cases) using

expression signatures obtained from different experimental

conditions and even different tissue types.

Patterns of Oncogenic Pathway Activation in GC
After validating this pathway prediction approach, we proceed-

ed to apply the strategy to primary GC. Rather than testing every

possible pathway, we selected eleven oncogenic and tumor

suppressor pathways previously implicated in gastric carcinogen-

esis, using in our analysis RAS [4], p53 [5], BRCA1 [12], p21

[13], Wnt/b-catenin [6], E2F [3], SRC [14], MYC [15], NF-kB

[21], histone deacetylation (HDAC) [16], and stem-cell related

signatures [17]. Whenever possible, we attempted to select

multiple signatures for each pathway, preferably from independent

published studies. For example, of the two E2F activation

signatures used in our approach, one signature was obtained by

inducing E2F1 activity in rat fibroblast cells [22] while the other

signature was obtained using an osteosarcoma-derived cell line

containing an inducible ER-E2F1 fusion protein [23]. Final

pathway predictions for further analyses were typically obtained by

combining individual signatures belonging to the same pathway

(see Materials and Methods).

We computed activation scores for the eleven pathways

represented by 20 pathway signatures across three independent

cohorts of primary GCs derived from Australia (Cohort 1–70

tumors), Singapore (Cohort 2–200 tumors), and the United

Kingdom (Cohort 3–31 tumors). To visualize patterns of pathway

activation, we depicted each cohort as a heatmap, where the

heatmap color represents the predicted strength of activation for

each pathway in the individual GCs. We observed considerable

heterogeneity of pathway activation between individual GC

patients (Figure 2A–2C). However, signatures derived from

independent studies representing similar pathways frequently

yielded similar prediction patterns (e.g. NF-kB (skin) and NF-kB

(cervix)), and a chi-square test confirmed a significant level of

Author Summary

Gastric cancer is the second leading cause of global cancer
mortality. With current treatments, less than a quarter of
patients survive longer than five years after surgery.
Individual gastric cancers are highly disparate in their
cellular characteristics and responses to standard chemo-
therapeutic drugs, making gastric cancer a complex
disease. Pathway based approaches, rather than single
gene studies, may help to unravel this complexity. Here,
we make use of a computational approach to identify
connections between molecular pathways and cancer
profiles. In a large scale study of more than 300 patients,
we identified subgroups of gastric cancers distinguishable
by their patterns of driving molecular pathways. We show
that these identified subgroups are clinically relevant in
predicting survival duration and may prove useful in
guiding the choice of targeted therapies designed to
interfere with these molecular pathways. We also identi-
fied specific gastric cancer cell lines mirroring these
pathway subgroups, which should facilitate the pre-clinical
assessment of responses to targeted therapies in each
subgroup.

Oncogenic Pathway Activity in Gastric Cancer
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similarity in the overall patterns of pathway activation between the

Australia and Singapore cohorts (p = 0.00038), and between the

Australia and UK cohorts (p = 0.00051, see Table S2) suggesting

that the GC pathway predictions are not tied to a specific patient

cohort. We identified two major clusters of co-activated pathways,

which were completely preserved in Cohorts 1 and 2 (Figure 2A

and 2B) and mostly preserved in Cohort 3 (Figure 2C). These

included (i) a ‘proliferation/stem cell’ pathway cluster (brown

vertical bar in Figure 2) encompassing pathways associated with

various cell cycle regulators (e.g. MYC, E2F, p21) and stem cell

signatures; and (ii) an ‘oncogenic signaling’ pathway cluster (grey

vertical bar in Figure 2) containing many different oncogenic

pathways (BRCA1, NF-kB, p53, Wnt/b-catenin, SRC, RAS, and

HDAC pathways).

Figure 1. Predicting pathway activation in cancers using gene expression signatures. (A) Schematic of the pathway prediction workflow. I)
Expression profiles of a set of cancer samples are pre-processed to identify differentially expressed genes (red and green) compared against a
common reference. II) A pathway signature is derived from an independent study concerning the cellular pathway of interest. III) The cancer profiles
are compared to the pathway signature using connectivity metrics [37], and subsequently sorted against one another according to the strength of
pathway association (pathway scoring). (B) Pathway predictions in breast cancers using a breast-derived tamoxifen sensitivity signature are
corroborated by ESR1 (estrogen receptor) expression, which was used to determine estrogen receptor (ER) status (ER-positive or ER-negative). The
cancer profiles are a collection of 51 breast cancer cell lines [18], and the pathway signature generated by comparing a tamoxifen-sensitive mammary
xenograft (MaCa 3366) to its tamoxifen-resistant subline (MaCa 3366/TAM) [19]. (C) Pathway predictions in breast cancers using an osteosarcoma-
derived estrogen response signature are corroborated by ESR1 (estrogen receptor) expression. The cancer profiles are a collection of 51 breast cancer
cell lines [18], and the pathway signature generated by identifying genes upregulated by estradiol in U2OS osteosarcoma cells [20]. P-values were
computed using Pearson’s chi-square test, under the null hypothesis that the pathway predictor delivers comparable performance to a random
predictor. The ESR1 gene is absent from both the 11-gene tamoxifen sensitivity signature and the 41-gene estrogen response signature. Only a two-
gene overlap exists between both signatures.
doi:10.1371/journal.pgen.1000676.g001

Oncogenic Pathway Activity in Gastric Cancer
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In Vitro Validation of Pathway Predictions
By analyzing the GC pathway heatmap in Figure 2, we selected

three oncogenic pathways (NF-kB, Wnt/b-catenin, and prolifer-

ation/stem cell) that were individually activated in a significant

proportion of GCs ($35%), and when combined provided

coverage of the majority (.70%) of GCs. Proliferation/stem cell

pathways were activated in 40% of GCs in each cohort (range: 38

to 43%), Wnt/b-catenin pathways were activated in 46% of GCs

(range: 43 to 48%), and the NF-kB pathway was activated in 39%

of GCs (range: 35 to 41%) (color bars below each heatmap in

Figure 2). These frequencies and other frequently deregulated

pathways (e.g. p53) are listed in Table S3.

To experimentally validate these primary GC pathway

predictions, we applied the pathway prediction algorithm to a

panel of 25 GC cell lines (GCCLs) (Figure 3). Similar to primary

GC, ‘proliferation/stem cell’ and ‘oncogenic signaling’ pathway

clusters were also observed in the GCCLs. Furthermore,

signatures representing the same pathway, but obtained from

different studies, such as the two independent MYC-derived

signatures [9,24] also clustered together in the GC cell lines after

Figure 2. Patterns of pathway activation in primary gastric cancers. Twenty gene expression signatures representing 11 cancer-related
pathways (MYC, p21-repression, E2F, NF-kB, RAS, Wnt/b-catenin, SRC, BRCA1, p53, HDAC inhibition, stem cell) were queried against 301 primary
gastric cancer gene expression profiles from three independent patient cohorts—(A) Australia, (B) Singapore, and (C) United Kingdom. Each heatmap
depicts the activation scores of pathways represented by the signatures (rows) in individual tumors (columns), with red squares denoting higher
activation scores. Both pathways and primary tumors were ordered using unsupervised hierarchical clustering. Pathways related to proliferation or
stem cell form a distinct cluster (brown) from other pathways (grey). Tumors with high predicted activation of NF-kB (purple), Wnt/b-catenin (yellow),
or proliferation/stem cell-related pathways (blue) are indicated by the relevant color bars at the bottom of the heatmaps. Individual signatures that
represent similar pathways are differentiated by the wordings within brackets. E.g. Stem cell (hESC): human embryonic stem cell vs. Stem cell (mESC):
mouse embryonic stem cell vs. Stem cell (mNSC): mouse neural stem cell; HDAC inhibition (TSA): trichostatin A vs. HDAC inhibition (BUT): butyrate.
doi:10.1371/journal.pgen.1000676.g002

Oncogenic Pathway Activity in Gastric Cancer
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unsupervised hierarchical clustering (purple brackets in Figure 3).

Guided by the pathway predictions, we identified specific GC cell

lines exhibiting patterns of oncogenic pathway activity mirroring

primary GCs. Confidence in the selection of specific cell lines as in

vitro models was also achieved by repeating the prediction

procedure seven times using a variety of reference profiles,

ranging from the median GCCL profile to independent profiles

such as non-malignant normal stomach profiles (see Materials and

Methods and Table S4). Pairwise comparisons confirmed that any

two reference profiles were more likely to produce concurring

pathway predictions than conflicting predictions (Text S1 and

Table S4). Some examples of representative lines include AZ521

and MKN28 cells, which exhibit activation of proliferation/stem

cell pathways, YCC3 and AGS cells for Wnt/b-catenin pathways,

and MKN1 and SNU5 cells for the NF-kB pathway.

First, we directly measured the proliferative rates of 22 GCCLs

and correlated the proliferation rate data with the mean activation

score from signatures in the proliferation/stem cell pathway

cluster. There was a significant association between the experi-

mentally determined proliferative rates and the pathway activation

scores (R = 0.4688, p = 0.0278) (Figure 4A). Supporting the notion

that oncogenic pathway signatures are superior predictors of

pathway activity compared to the expression of single key pathway

genes, no significant associations were observed for either MYC or

E2F1 expression (p = 0.48 and 0.38 for MYC and E2F1,

respectively) (Figure S1).

Second, in order to validate the Wnt/b-catenin pathway

predictions, we analyzed the expression of various Wnt pathway

components (b-catenin, TCF4) and relative levels of TCF/LEF

transcriptional activity in GC cell lines predicted to be Wnt/b-

catenin- activated or Wnt/b-catenin-nonactivated. Of seven cell

lines selected for their experimental tractability (e.g. ease of

transfection and convenient growth conditions), we found that both

b-catenin and the TCF/LEF transcription factor TCF4 (also known

as TCF7L2), major components of the Wnt signaling pathway, were

expressed in GC cell lines predicted by the pathway activation

analyses to have high Wnt/b-catenin activity (AGS, YCC3, Kato

III, and NCI-N87), but not expressed in two out of three lines

(SNU1 and SNU5) associated with inconsistent or low Wnt/b-

catenin activation scores (Figure 4B). Furthermore, in order to

directly assay Wnt pathway activity, we determined TCF/LEF

transcriptional activity in the GC cell lines using Topflash, a

luciferase expressing plasmid containing multimerized TCF binding

sites. The Topflash assay confirmed high TCF/LEF transcriptional

activity in three out of four GC cell lines predicted to have high

Wnt/b-catenin activity (AGS, YCC3, and Kato III), but minimal or

no Topflash activity in GC cell lines associated with inconsistent or

low Wnt/b-catenin activation scores (SNU1, SNU5, and SNU16).

Additionally, the b-catenin pathway activation scores were

significantly higher in GCCLs with more than two-fold TCF/

LEF transcriptional activity (AGS, YCC3, Kato III, and NCI-N87)

than in GCCLs with lower TCF/LEF transcriptional activity

(p = 0.007, Figure 4B). When compared against single genes,

superior associations to TCF/LEF transcriptional activity were

once again observed using the mean activation score from Wnt/b-

catenin signatures compared to either b-catenin or TCF4 (aka

TCF7L2) expression alone (p = 0.038 for signatures vs. p = 0.31 and

0.58 for b-catenin and TCF4, respectively) (Figure S1).

Third, to validate the NF-kB pathway predictions, we selected

11 GCCLs consistently predicted as either NF-kB-activated (‘NF-

Figure 3. Patterns of pathway activation in gastric cancer cell lines. Twenty gene expression signatures representing 11 cancer-related
pathways (previously described in Figure 2) were queried against a panel of 25 gastric cancer cell lines. The heatmap depicts the activation scores of
pathways represented by the signatures (rows) in individual cell lines (columns), with red squares denoting higher activation scores. Pathways and
cell lines were ordered using unsupervised hierarchical clustering. Similar to primary tumors, pathways related to proliferation or stem cell form a
distinct cluster (brown) from other pathways (grey). Cell lines with high predicted activation of NF-kB, Wnt/b-catenin, or proliferation/stem cell-
related pathways are indicated by relevant color bars at the bottom of the heatmap. For the proliferation/stem cell-related signatures, the cell lines
were mean-normalized relative to one another against the mean activation score, as all cell lines scored positive for proliferation/stem cell-related
pathways.
doi:10.1371/journal.pgen.1000676.g003

Oncogenic Pathway Activity in Gastric Cancer
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kB/on’, six GCCLs) or NF-kB-nonactivated (‘NF-kB/off’, five

GCCLs) (Figure S2). Increased gene expression of p50 and p65,

the NF-kB heterodimer subunits, were observed in NF-kB/on GC

cell lines compared to NF-kB/off GC cell lines (p = 0.0002 for

p50, p = 0.046 for p65, Figure 4C) and at the protein level p65

expression was observed largely in the NF-kB/on lines (Figure 4C).

Using immunocytochemistry on formalin fixed paraffin embedded

GC cell lines, p65 protein expression was more frequently

observed in NF-kB/on GC cell lines compared to NF-kB/off

GC cell lines in terms of nuclear sublocalization, percentages of

cells with staining (either nuclear or cytoplasmic), and staining

intensity (Table S5, Figure S3). To determine if NF-kB/on GC

cell lines also exhibited differential expression of p65-regulated

genes compared to NF-kB/off GC cell lines, we combined the list

Figure 4. Experimental validation of pathway predictions in gastric cancer cell lines. (A) Experimental validation of proliferation/stem cell
pathway predictions. The graph depicts the experimentally measured proliferative capacities of 22 cell lines (y-axis) against the mean proliferation/
stem cell activation scores derived from signatures belonging to the proliferation/stem cell cluster. (B) Experimental validation of Wnt/b-catenin
pathway predictions. The bottom graph shows the predicted activation levels of the Wnt (grey bars) and b-catenin (blue bars) pathways across seven
cell lines. Lines predicted to be active exhibit expression of canonical Wnt pathway components b-catenin and TCF4 (aka TCF7L2) (middle
immunoblot), and higher TCF4 transcriptional activity (top graph) compared to lines associated with inconsistent or low Wnt/b-catenin activation
scores. Immunoblots were normalized using a b-actin antibody. Parts of this figure were previously presented [50] for a different purpose. (C,D)
Experimental validation of NF-kB pathway predictions. (C) The bottom graph shows predicted NF-kB activation levels across 11 cell lines. Lines
predicted to be active (‘NF-kB/on’) exhibit significantly higher p65 and p50 mRNA expression levels (topmost graph) and p65 protein expression
(immunoblot) relative to lines predicted to be nonactivated (‘NF-kB/off’). All lines exhibit comparable p50 protein expression. Immunoblots were
normalized using a GAPDH antibody. Whether p65 target genes are over- or under-expressed in ‘NF-kB/on’ lines compared to ‘NF-kB/off’ lines
depends on whether they were up- or downregulated by TNF-a [26], an inducer of NF-kB activation (bottom heatmap). (D) NF-kB activity in cell lines.
‘NF-kB/on’ lines exhibit significantly higher NF-kB transcriptional activity compared to ‘NF-kB/off’ lines.
doi:10.1371/journal.pgen.1000676.g004

Oncogenic Pathway Activity in Gastric Cancer
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of genes directly bound by the p65 transcription factor [25] with

lists of genes regulated at the mRNA level by TNF-a [26], a

known inducer of NF-kB activation. Using Gene Set Enrichment

Analysis (GSEA, [27]), we found that p65 target genes upregulated

by TNF-a treatment were significantly overexpressed in NF-kB/

on GC cell lines compared to NF-kB/off GC cell lines (normalized

enrichment score, NES = 1.86; false discovery rate, FDR,0.001,

bottom most panel, Figure 4C). Conversely, p65 target genes

downregulated by TNF-a were significantly underexpressed in

NF-kB/on GC cell lines compared to NF-kB/off GC cell lines

(NES = 21.56, FDR = 0.019, bottom most panel, Figure 4C).

Finally, to directly confirm the presence of elevated NF-kB

activity, we transfected three NF-kB/on GC cell lines and two NF-

kB/off GC cell lines with a luciferase reporter containing a NF-kB

reporter gene. As shown in Figure 4D, the three NF-kB/on GC

cell lines exhibited elevated NF-kB transcriptional activity

compared to the two NF-kB/off GC cell lines (p = 0.0084).

Taken collectively, these results support the concept that in silico

pathway predictions using gene expression profiles are associated

with activation of the relevant pathway in vitro.

Pathway Combinations Predict Gastric Cancer Patient
Survival

To assess the clinical relevance of the identified pathway

subgroups, we investigated if patterns of pathway co-activation as

illustrated in the heatmaps of the different cohorts might be related

to patient survival. We used overall survival data from Cohort 1

and Cohort 2 and stratified patients by their predicted patterns of

pathway activation. A primary GC profile was defined as showing

high activation level of a pathway when the activation score was

above zero – i.e. being positively associated with the pathway

signature. Patient groups stratified by either the proliferation/stem

cell pathway activation score alone or the NF-kB pathway

activation score alone did not differ significantly regarding their

overall survival (p.0.05 for proliferation/stem cell and NF-kB in

both cohorts, Figure 5A and 5B). However, when the pathway

activation scores were combined, patients with high activation

levels of both NF-kB and proliferation/stem cell pathways had

significantly shorter survival compared to patients with low

activation levels of both NF-kB and proliferation/stem cell

pathways (p = 0.0399 and p = 0.0109 for Cohorts 1 and 2

respectively, Figure 5D).

Activation of the Wnt/b-catenin pathway was significantly

associated with patient survival in Cohort 1, (p = 0.0056,

Figure 5C) but not in Cohort 2 (p = 0.0693, Figure 5C). However,

patients in Cohorts 1 and 2 with high activation levels of both

Wnt/b-catenin and proliferation/stem cell pathways had signifi-

cantly worse survival compared to patients with low activation

levels of both pathways (p = 0.0073 and p = 0.0086, Figure 5E). To

benchmark the contributions of the pathway combinations against

known histopathologic criteria, we performed a multivariate

analysis including combined pathway predictions and pathological

tumor stage (TNM classification: stages 1–4), the most important

prognostic factor in GC [28]. In both cohorts, combined

activation of proliferation/stem cell and NF-kB pathways proved

to be a prognostic factor independent from tumor stage (p = 0.003

and 0.048 for Cohorts 1 and 2, respectively) (Table S6). Likewise,

combined activation of proliferation/stem cell and Wnt/b-catenin

pathways was an independent prognostic factor in Cohort 1 and

achieved borderline significance in Cohort 2 (p,0.001 and

p = 0.058, Table S7). These results demonstrate that the

assessment of the combined pathway activation status is clinically

relevant and moreover can provide additional prognostic infor-

mation over and above the current gold standard of patient

prognosis prediction, the TNM based tumor staging.

Discussion

In this study, we sought to subdivide GCs into molecularly

homogenous subgroups as a first step to individualizing patient

treatments and improving outcomes. Importantly, unlike previous

GC microarray studies relating gene expression patterns to

histology or anatomical type [10,11], we chose to base our GC

subdivisions on patterns of oncogenic pathway activity. After

developing and validating this novel classification approach, we

were able to describe, for the first time, a genomic taxonomy of

GC based on patterns of oncogenic pathway activity. Our

approach is particularly suited for gene expression microarrays,

since these platforms interrogate thousands of mRNA transcripts

in each sample, thereby permitting the assessment of multiple

pathways simultaneously in a single experiment. In contrast, such

an approach is not currently possible at the protein level due to

lack of appropriate platforms. Using this strategy, we identified

three dominant pathways showing activation in the majority

(.70%) of GCs: proliferation/stem cell, Wnt/b-catenin, and NF-

kB signaling.

The ability to perform such ‘‘high-throughput pathway

profiling’’ opens many interesting avenues. For example, several

studies have previously reported inconsistent results regarding the

prognostic impact of different oncogenic pathways in GC - the

prognostic implications of proliferation-related antigens such as

Ki-67 in GC are not firmly established [29], and high NF-kB

activation in GC has been associated with both good and bad GC

patient outcome in different studies [7,30]. It is quite possible that

some of this inconsistency may have been due to a historical focus

on using conventional methods and analyzing either single

pathways or individual pathway components (genes/proteins).

Our observation that pathway combinations are predictive of

patient outcome suggests that pathway combinations, rather than

single pathways alone, may play a critical role in influencing tumor

behavior.

Another benefit of high-throughput pathway profiling is the

ability to define higher order relationships between distinct

oncogenic pathways. In the current study, we consistently

observed concomitant activation of E2F, MYC, p21(-repression),

and stem cell pathways in tumors (the ‘proliferation/stem cell’

pathway cluster). This is most likely due to increased cellular

proliferation in tumor cells, as E2F is important in cell

proliferation control and MYC is both a p21-repressor and

inducer of cyclin D2 and cyclin-dependent kinase binding protein

CksHs2 [31]. Furthermore, stem cells, particularly embryonic

stem cells (ESCs), are also known to exhibit high cell proliferation

rates [32]. More intriguingly, we also observed close associations

between apparently functionally different pathways, such as b-

catenin and SRC, as well as HDAC inhibition and BRCA1. Such

pathway co-activation patterns may suggest functional interactions

between these pathways, which deserve to be studied further. For

example, it is possible that activated c-SRC may enhance the

expression of the Wnt signaling pathway [33]. Exploring the

relationships between pathways showing co-activation may thus

provide valuable information regarding the ability of the cancer

cell to coordinate the activity of multiple pathways.

A third benefit of the pathway profiling approach is that it

facilitates identification of major disease-related pathways. Of the

pathways analyzed in this study, the finding that NF-kB signaling

may be elevated in a significant proportion of GCs deserves some

attention as this pathway has been relatively less explored in GC.

Oncogenic Pathway Activity in Gastric Cancer
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Interestingly, while we observed a significant difference in both

p50 and p65 (the NF-kB subunits) gene expression between NF-

kB/on and NF-kB/off GCCLs, we did not observe overt

differential p50 protein expression in these lines, in contrast to

p65 (Figure 4C). This may be due to a combination of three

reasons. First, the absolute range of p65 gene expression across the

cell lines is markedly greater than the absolute range of p50 gene

expression (.36, Figure S4). Second, the Western blotting assay

used to perform these protein measurements is known to be highly

non-quantitative, which may mask subtle differences in expression.

Third, beyond gene expression, p50 expression is also subject to a

variety of post-transcriptional regulatory mechanisms such as

precursor cleavage that might affect the final level of p50 protein,

while p65 is not generated from a precursor protein [34]. NF-kB

has been shown to be activated by H. pylori [35], a known GC

carcinogen, and aberrant NF-kB signaling has also been

implicated in multiple inflammation-linked cancers such as GC

[36]. NF-kB has been suggested to be constitutively activated in

primary gastric cancers in a few studies [7]. Targeted NF-kB-

inhibitors are currently being actively developed in many

Figure 5. Pathway interactions influence patient survival in gastric cancer. Kaplan-Meier survival analysis of Australia and Singapore cohorts
(Heatmaps A and B in Figure 2) between patient groups stratified by predicted pathway activation status. Cohort 3 was not included in the survival
analysis as it is much smaller than Cohorts 1 and 2 (31 tumors compared to 70 and 200), making it unreliable for statistical analysis. (A–C) Effects of
individual pathways. Patients were stratified by (A) proliferation/stem cell signatures alone, (B) NF-kB signatures alone, and (C) Wnt/b-catenin
signatures alone. (D) and (E) Effects of pathway interactions. Patients were stratified by (D) NF-kB and proliferation/stem cell signatures, and (E) Wnt/
b-catenin and proliferation/stem cell signatures. For both the NF-kB and Wnt/b-catenin signatures, the significance of the survival difference or death
hazard was markedly enhanced by the addition of pathway prediction information from the proliferation/stem cell signatures. The outcome metric
was duration of overall survival. H: death hazard indicating the ratio of the mortality rate of patients showing high activation level of single pathway
(or both of two pathways) to the mortality rate of patients showing low activation level of single pathway (or both of two pathways). All death hazard
ratios are significant at p,0.01. CI0.95: 95% confidence intervals for death hazard ratio.
doi:10.1371/journal.pgen.1000676.g005
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anticancer drug development programs and a subset of GC

patients (i.e. those with elevated NF-kB activity) may represent a

suitable subclass for evaluating the efficacy of these compounds.

The in silico method used in our study is conceptually similar to

the work of Bild et al, which used a binary regression model to

classify tumors based on the predicted activity of five oncogenic

pathways [9]. Unlike binary regression, our approach, which

makes use of a rank-based connectivity metric [37], requires no

elaborate training process on each pathway signature and also

does not require the availability of raw expression data, facilitating

the use of the many publicly available pathway signatures in the

literature [27]. However, the gene expression-based approach

does have limitations. First, because our pathway predictions are

based on gene expression rather than proteins, such predictions

are admittedly molecular surrogates of true pathway signaling

activity. Second, we are currently limited to analyzing known

oncogenic pathways previously identified in the literature. Third,

although we were able to use pathway signatures from very

different tissue contexts to predict pathway activation status, an

examination of the initial proof-of-principle breast cancer

examples revealed that the association of ER status to estrogen

responsiveness as predicted using the osteosarcoma signature,

although significant, was markedly weaker compared to the

association of ER status to tamoxifen sensitivity predicted using a

signature derived from the same tissue type (i.e. breast). This result

implies that there may also exist tissue-specific differences in

pathway signatures that may affect prediction accuracy. Fourth,

compared to our study which focused on pathways of known

biological relevance in GC, it is unclear if this method can be

applied to diseases where prior knowledge of involved pathways

may not be available. However, it should be noted that a wealth of

pathway signatures (.1000) associated with diverse biochemical

and signaling pathways already exists in the literature, which can

be accessed from public databases such as MSigDB (http://www.

broad.mit.edu/gsea/msigdb/genesets.jsp?collection = CGP). Since

our approach can be applied to virtually any disease dataset for

which gene expression information is available, testing every

signature in a high-throughput manner for evidence of pathway

deregulation is both conceivable and feasible. In such cases,

pathway exhibiting high frequencies of deregulation would then

represent candidate pathways involved in the disease in question,

which can then be targeted for focused investigation and

experimentation. Addressing these issues will form the ground for

much future research.

In conclusion, we have shown in this work that pathways

signatures can be successfully used to predict the activation status

of cellular signaling pathways, even in biological entities as

complex as a human GC. One obvious immediate application of

such pathway-based taxonomies may relate to the use of targeted

therapies. Initial trials assessing the role of targeted therapies in

GC have demonstrated only modest results [38]; however, most of

these studies have been performed without pre-stratifying patients

using molecular or histopathologic criteria. Pathway-based

taxonomies may prove very useful in developing personalized

treatment regimens for different subgroups of GC, since such

oncogenic pathway activation patterns can be readily linked to

potential pathway inhibitors and targeted therapies.

Materials and Methods

Primary Gastric Cancer Samples
Three cohorts of gastric cancer were profiled: Cohort 1–70

tumors (Peter MacCallum Cancer Centre, Australia), Cohort 2–200

tumors (National Cancer Centre, Singapore), and Cohort 3–31

tumors (Leeds Institute of Molecular Medicine, United Kingdom).

All GCs were collected with approvals from the respective

institutions, Research Ethics Review Committee, and signed patient

informed consent. Histopathological data of all GC cohorts are

provided in Table S8, S9, S10. The median follow-up period was

16.89 months for Cohort 1 and 13.47 months for Cohort 2. 43

patients from Cohort 1 and 91 from Cohort 2 were dead at the end

of the study period.

Gastric Cancer Cell Lines
A total of 25 unique GC cell lines were profiled. GC cell lines

AGS, Kato III, SNU1, SNU5, SNU16, NCI-N87, and Hs746T

were obtained from the American Type Culture Collection and

AZ521, Ist1, TMK1, MKN1, MKN7, MKN28, MKN45,

MKN74, Fu97, and IM95 cells were obtained from the Japanese

Collection of Research Bioresources/Japan Health Science

Research Resource Bank and cultured as recommended. SCH

cells were a gift from Yoshiaki Ito (Institute of Molecular and Cell

Biology, Singapore) and were grown in RPMI media. YCC1,

YCC3, YCC6, YCC7, YCC10, YCC11, and YCC16 cells were a

gift from Sun-Young Rha (Yonsei Cancer Center, South Korea)

and were grown in MEM supplemented with 10% fetal bovine

serum (FBS), 100 units/mL penicillin, 100 units/mL streptomycin,

and 2 mmol/L L-glutamine (Invitrogen).

RNA Extraction and Gene Expression Profiling
Total RNA was extracted from cell lines and primary tumors using

Qiagen RNA extraction reagents (Qiagen) according to the

instructions of the manufacturer. Cell line and primary tumor

mRNAs from Cohort 1 and Cohort 2 were hybridized to Affymetrix

Human Genome U133 plus Genechips (HG-U133 Plus 2.0,

Affymetrix), while primary tumor mRNAs from Cohort 3 were

profiled using U133A Genechips (HG-U133A, Affymetrix). All

protocols were performed according to the instructions of the

manufacturer. Raw data obtained after chip-scanning was further

processed using the MAS5 algorithm (Affymetrix) available in the

Bioconductor package simpleaffy. The microarray data sets are

available at http://www.ncbi.nlm.nih.gov/projects/geo/ (Accession:

GSE15460).

Signatures of Pathway Activation
All signatures used in this study were previously generated

[9,19,20,22–24,39–49], and obtained from either the MSigDB

database [27] (http://www.broad.mit.edu/gsea/msigdb/genesets.

jsp?collection = CGP) or original references [9,39]. Detailed

descriptions of the signatures and their sources are available in

Table S11 and Table S12. Each signature is represented by a

geneset, termed a query signature (QS). Depending on the

signature, a QS may consist of only up- (or down-)regulated

genes, i.e. genes up- (or down-)regulated during the activation of

the pathway. It may also consist of both up- and down-regulated

genes. Our approach is capable of handling all of the

aforementioned types of QS. QSs were mapped to the probeset

domain of the cancer profiles (HG-U133A or HG-U133 Plus 2.0)

before computing the pathway activation scores for the cancer

profiles. Mapping of QSs were performed using the probe

mapping (‘.chip’) files available from ftp://gseaftp.broad.mit.

edu/pub/gsea/annotations [27].

For each pathway, we used whenever possible multiple

signatures from independent studies, to minimize the possibility

of laboratory-specific effects. For further analyses (e.g. survival

comparisons), we used the mean of activation scores across

independent signatures belonging to the same pathway or group of
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pathways in order to determine the final activation status of the

pathway or group of pathways.

Mapping Pathway Prediction Signatures in Breast
Cancers

Two pathway activation signatures [19,20] (Table S11) related

to the estrogen signaling pathway were analyzed. The breast

cancer cell line dataset [18] was obtained from http://www.ebi.ac.

uk/microarray-as/ae/download/E-TABM-157.raw.zip. Activa-

tion scores for breast cancer cell lines were computed by

comparing each individual line against the median profile of the

collection of 51 breast cancer cell lines. P-values for the validation

of our predictions against ER status were computed using

Pearson’s chi-square test, under the null hypothesis that the

pathway predictor delivers comparable performance to a random

predictor.

Mapping Pathway Prediction Signatures in Gastric
Cancers

20 signatures [9,19,20,22–24,39–49] (Table S12) representing

the activation of 11 pathways related to gastric carcinogenesis were

analyzed. Activation scores for primary GCs were computed by

comparing each individual GC against the median profile of the

patient cohort being analyzed. For the analysis of GC cell lines,

final activation scores were obtained by computing the mean

activation scores across the seven reference profiles (Table S4).

Unsupervised hierarchical clustering (average linkage with cen-

tered Pearson correlation metric) was applied to establish patterns

of co-activation between different pathways using BRB-Array-

Tools.

Pathway Activation Scores
Pathway activation scores were computed using two inputs: 1)

cancer profiles, comprising lists of probesets sorted by differential

gene expression between individual cancer gene expression

profiles and a reference profile (see Text S1), where n is defined

as the total number of probesets in each cancer profile i, and 2) a

query signature QS (pathway activation signature). Probesets

representing either up- (or down-) regulated genes in the QS are

defined as ‘tags’, and t the number of tags in the up- (or down-)

regulated portion of the QS. Raw enrichment scores ki
direction were

computed using a Kolmogorov-Smirnov metric previously de-

scribed in [37]. Here, ‘direction’ in ki
direction may be considered as

‘up’ or ‘down’, depending on whether the set of tags in question

represents the up-regulated (ki
up) or the down-regulated (ki

down)

portion of the QS. For a cancer profile i and a set of t QS tags, the

position of tag j in the cancer profile i is defined as V(j), forming the

vector V.

V~ V 1ð Þ V 2ð Þ . . . V tð Þ½ � ð1Þ

The elements of V are then sorted in ascending order of V(j) such

that V 1ð ÞƒV 2ð Þƒ . . . ƒV t{1ð ÞƒV tð Þ. In this manner, the

tags indexed by j are ordered based on their position in the cancer

profile (e.g. tag 1 is the probeset with the highest rank in the cancer

profile among all t tags in the up- (or down-) regulated portion of

the QS). Using the sorted elements of V, two parameters are

computed:

a~ max
t

j~1

j

t
{

V jð Þ
n

� �
ð2Þ

b~ max
t

j~1

V jð Þ
n

{
j{1ð Þ

t

� �
ð3Þ

If awb, ki
direction is set to a. Otherwise, (if bwa), ki

direction is set to

2b.

To compute the pathway activation score Si, if ki
up and ki

down

have the same signs then Si for cancer profile i is set to zero.

Otherwise, the raw activation score siis obtained.

si~ki
up{ki

down ð4Þ

The maximum and minimum of si across all cancer profiles in the

cohort are defined as p and q, respectively. The activation score Si

is the normalized form of si, where

Si~
si

p
if si

w0 ð5Þ

and

Si~{
si

q
if si

v0 ð6Þ

In cases where more than one profile exists for a sample, the final

activation score represents the mean activation score across the

replicate profiles.

Reference profiles. For primary gastric tumor and breast

cancer profiles, activation scores were computed using the median

profile of the cohort as the reference profile. The median profile

was obtained by computing the median of expression values across

all members of the cohort. For GCCL profiles, we used seven

distinct reference profiles: the median GC cell line profile, a

normal skin fibroblast profile, and five normal stomach profiles

(Table S4). Besides the median GCCL profile, the other reference

profiles were obtained from different cohorts (i.e. different

expression datasets). Details regarding the seven reference

profiles are available in Table S4 and Text S1. Final activation

scores for the GCCLs were obtained by computing the mean

activation scores across the seven reference profiles.

Cell Proliferation Assay
Cell proliferation assays were performed on 22 lines (except

SNU1, SNU5, and SNU16) using a CellTiter96 Aqueous

Nonradioactive Cell Proliferation Assay kit (Promega) following

the manufacturer’s instructions. Briefly, cell lines were plated at

concentrations of 16103 to 56103 cells per well in 96-well plates.

Growth rates, representing proliferative activity, were analyzed

after 48 hours.

Western Blotting Assays and Immunocytochemistry
Western blotting was performed as previously described [50]

using the following antibodies and dilutions: 1:500 b-catenin

(catalogue number 06-734, Upstate), 1:500 TCF7L2 (05-511,

Upstate), 1:1,000 b-actin (sc-8432, Santa Cruz), 1:500 p65 (sc-372,

Santa Cruz), 1:500 p50 (sc-1191, Santa Cruz), and 1:1,000

GAPDH (ab9483, Abcam). Processing of cell line TMAs (tissue

microarrays), blocking, and antigen retrieval was performed as

previously described [51]. p65 antibodies were incubated at a

dilution of 1:50 for 2 hours at 37uC. Signal detection was

performed using the REAL system (DAKO) at 37uC for

30 minutes, using the DAB chromogen (1:50 dilution), and

Oncogenic Pathway Activity in Gastric Cancer

PLoS Genetics | www.plosgenetics.org 10 October 2009 | Volume 5 | Issue 10 | e1000676



Mayer’s haematoxylin counterstain. The slides were scored by an

experienced histopathologist (H.G.) and the percentage of positive

nuclei, percentage of cells with cytoplasmic staining, and staining

intensity were assessed.

Luciferase Reporter Assays
TOPFLASH assays for validation of Wnt/b-catenin activation

were performed as previously described [50]. For validation of NF-

kB activation, MKN1, MKN7, Hs746T, AGS, and SCH cells

were transfected with a pNFkB-Luc reporter (Clontech, Cat.

No. 631904) using FuGENE 6 Transfection Reagent (Roche) in

96-well plates. pNFkB-Luc contains the Photinus pyralis luciferase

gene and multiple copies of the NF-kB consensus sequence fused

to a TATA-like promoter region from the Herpes simplex virus

thymidine kinase promoter. The same cells were also transfected

with pGL4.73[hRluc/SV40] vector (Promega) as a normalization

control. Cells were collected 48 hours after transfection and

luciferase activity was measured using a dual-luciferase reporter

assay system (Promega). All experiments were repeated three

independent times.

Statistical Methods
Kaplan-Meier analysis (SPSS, Chicago) was used for survival

comparisons of patient cohorts where clinical follow-up and

mortality information were available. P-values representing the

significance of the differences in survival outcome (metric: overall

survival) were calculated using the Log Rank (Mantel-Cox) test,

with p-values of ,0.05 being considered significant. Cox

regression models were used for computing hazard ratios and

implementing multivariate analyses including combined status of

two pathways and overall tumor stage (TNM classification: 1–4) as

variables. Patients from Cohorts 1 and 2 analyzed in survival

comparisons exhibit a significant relationship between overall

survival and overall tumor stage, suggesting that patient selection is

likely non-biased (data not shown). P-values denoting the

significance of a correlation coefficient R between two N-element

vectors were estimated from the Student t-distribution, against the

null hypothesis that the observed value of t = R/![(12R2)/(N22)]

comes from a population in which the true correlation coefficient

is zero. Unless otherwise specified, all other p-values (used in

comparisons of two groups) were computed using Student’s t-test.

All p-values are two-tailed. Gene Set Enrichment Analysis (GSEA)

was performed as described in Subramanian et al. [27].

Supporting Information

Figure S1 Predictions using pathway signatures or key pathway

genes. (A–C) Cell proliferation predictions. Experimentally

determined proliferative capacities of GC cell lines were compared

against predictions by (A) Myc gene expression, (B) E2F1 gene

expression, and (C) the mean activation score from proliferation/

stem cell pathway signatures. Both Myc and E2F1 are key

proliferation pathway genes. The y-axis represents true prolifer-

ative capacity, and the x-axis represents the predictions. While

there is no significant correlation using E2F1 or Myc as predictors

(p.0.05 in both cases) (A and B), the mean proliferation/stem cell

signature score is significantly correlated with proliferative

capacity (p = 0.0278) (C) and Figure 4A in Main Text. (D–F)

Wnt pathway predictions. Wnt pathway activity was determined in

GC cell lines using a TCF4 (aka TCF7L2)-luciferase reporter assay

(see Materials and Methods), and compared against predictions by

(D) TCF4 gene expression, (E) b-catenin gene expression, and (F)

the mean activation score from Wnt/b-catenin signatures. Both

TCF4 and b-catenin are key Wnt pathway genes. The y-axis

represents true Wnt activity, while the x-axis represents the

predictions. While there is no significant correlation using TCF4

or b-catenin as predictors (p.0.05 in both cases) (D and E), the

mean Wnt/b-catenin signature activation score is significantly

correlated with Wnt activity (p = 0.0380) (F).

Found at: doi:10.1371/journal.pgen.1000676.s001 (0.05 MB

DOC)

Figure S2 Using multiple references to obtain high-confidence

prediction of the activation status of the NF-kB pathway. GCCLs

ranked top (or bottom) five via at least one of the two NF-kB

signatures and at least seven times across all references and

signatures were chosen as GCCLs in which the NF-kB pathway is

called as activated (‘NF-kB/on’) (or nonactive (‘NF-kB/off’)). Only

GCCLs consistently predicted as NF-kB-activated (or NF-kB-

nonactive) were chosen for further dry lab and wet bench analyses.

Found at: doi:10.1371/journal.pgen.1000676.s002 (0.10 MB

DOC)

Figure S3 NF-kB immunocytochemistry in gastric cancer cell

lines. (A) MKN1 cells show strong cytoplasmic staining in most

cells, and nuclear expression of NF-kB in a subset of cells (blue

arrow). (B) Hs746T cells show strong cytoplasmic staining in all

cells. No nuclear expression of NF-kB. (C) AGS cells show weak

cytoplasmic staining in all cells. No nuclear expression of NF-kB.

(D) SCH cells show weak cytoplasmic staining in all cells. No

nuclear expression of NF-kB. (Chromogen used: DAB (brown),

Mayer’s haemalaun counterstain (blue), Scale bar = 30 mm)

Found at: doi:10.1371/journal.pgen.1000676.s003 (7.22 MB

DOC)

Figure S4 p50 and p65 gene expression in GCCLs. Gene

expression values for p50 and p65 (log10 transformed) across 11

GCCLs were compared. p50 values are plotted as yellow columns,

while p65 values are in black. The y-axis represents expression

values, while individual GCCLs are on the x-axis sorted by

expression level. The range in p50 gene expression is 0.54 or 3.49-

fold (100.54 = 3.49), while the range in p65 expression is 1.04 or

10.94-fold. Thus, there is a 3.136 greater degree of range in p65

expression than in p50 expression.

Found at: doi:10.1371/journal.pgen.1000676.s004 (0.03 MB

DOC)

Table S1 Prediction accuracies of estrogen signaling related

signatures. (A) Predictions using the breast-derived ‘tamoxifen

sensitivity’ signature. (B) Predictions using the osteosarcoma-

derived ‘estrogen response’ signature.

Found at: doi:10.1371/journal.pgen.1000676.s005 (0.03 MB

DOC)

Table S2 Membership of the signatures, determined using

unsupervised hierarchical clustering in each of the three GC

cohorts.

Found at: doi:10.1371/journal.pgen.1000676.s006 (0.04 MB

DOC)

Table S3 Pathway activation frequencies in GC.

Found at: doi:10.1371/journal.pgen.1000676.s007 (0.03 MB

DOC)

Table S4 Reference profiles for gastric cancer cell lines

(GCCLs). (A) Descriptions of reference profiles. (B) Pearson

correlation values between activation scores from seven different

reference profiles used to generate GCCL activation profiles.

Found at: doi:10.1371/journal.pgen.1000676.s008 (0.04 MB

DOC)

Table S5 Summary of results from IHC assay.
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Found at: doi:10.1371/journal.pgen.1000676.s009 (0.03 MB

DOC)

Table S6 Multivariate analysis for tumor stage (TNM classifi-

cation) and combined activation levels of proliferation/stem cell

and NF-kB pathways in primary tumors.

Found at: doi:10.1371/journal.pgen.1000676.s010 (0.04 MB

DOC)

Table S7 Multivariate analysis for tumor stage (TNM classifi-

cation) and combined activation levels of proliferation/stem cell

and Wnt/b-catenin pathways in primary tumors.

Found at: doi:10.1371/journal.pgen.1000676.s011 (0.04 MB

DOC)

Table S8 Histopathological data for Cohort 1 of 70 tumors from

Australia.

Found at: doi:10.1371/journal.pgen.1000676.s012 (0.14 MB

DOC)

Table S9 Histopathological data for Cohort 2 of 200 tumors

from Singapore.

Found at: doi:10.1371/journal.pgen.1000676.s013 (0.36 MB

DOC)

Table S10 Histopathological data for Cohort 3 of 31 tumors

from the United Kingdom.

Found at: doi:10.1371/journal.pgen.1000676.s014 (0.07 MB

DOC)

Table S11 Signatures associated with perturbed estrogen

signaling.

Found at: doi:10.1371/journal.pgen.1000676.s015 (0.03 MB

DOC)

Table S12 Signatures associated with 11 oncogenic pathways

implicated in gastric carcinogenesis.

Found at: doi:10.1371/journal.pgen.1000676.s016 (0.07 MB

DOC)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000676.s017 (0.05 MB

DOC)

Acknowledgments

We thank Yoshiaki Ito (Institute of Molecular and Cell Biology, Singapore)

for the gift of the SCH cells and Sun-Young Rha (Yonsei Cancer Center,

South Korea) for the gift of YCC cells. We thank Ken Hillan of Genentech

for supporting the expression profiling of UK gastric tumors. Analyses were

performed using BRB-ArrayTools developed by Dr. Richard Simon and

BRB-ArrayTools Development Team.

Author Contributions

Conceived and designed the experiments: CHO PT. Performed the

experiments: CHO TI JW ML JT LW LLC KG HG. Analyzed the data:

CHO TI HG. Contributed reagents/materials/analysis tools: TI JW ML

IBT JHK VG YZ JL SYR HCC KG JS KCS DL WHC WKW DB KGY

HG AB. Wrote the paper: CHO PT.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA

Cancer J Clin 55: 74–108.
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