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We present and use an algorithm based on convex conic optimization to design two-dimensional photonic
crystals with large absolute band gaps. Among several illustrations we show that it is possible to design photonic
crystals which exhibit multiple absolute band gaps for the combined transverse electric and magnetic modes. The
optimized crystals show complicated patterns which are far different from existing photonic crystal designs. We
employ subspace approximation and mesh adaptivity to enhance computational efficiency. For some examples
involving two band gaps, we demonstrate the tradeoff frontier between two different absolute band gaps.
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I. INTRODUCTION

Photonic crystals are periodic structures created from
the arrangement of low and high index materials. They
are designed to affect the motion of light by prohibiting
the propagation of electromagnetic waves in all directions
within certain frequency ranges known as absolute band gaps
(ABGs). A complete band gap (CBG) refers to the case when
the the ABG is independent of the polarization of the wave.
Photonic band gap structures have proven very important as
an enabling tool for the design and fabrication of many novel
devices including frequency filters, waveguides, switches, and
optical buffers [1–4]. Therefore the ability to design materials
which have prescribed band gap diagrams is very important
from a practical perspective.

It is well known that a low-index-hole (e.g., air-hole)
two-dimensional (2D) photonic crystal has larger ABGs in
transverse electric (TE) modes, while a high-index-hole 2D
photonic crystal has larger ABGs in transverse magnetic
(TM) modes. A detailed explanation for this behavior can
be found in [5]. This observation has been extensively used to
create a wide variety of photonic structures [6,7]. However,
the structures created using parametric studies combined
with physical reasoning are in general not optimal and
larger band gaps can often be obtained when using formal
topology optimization methods. Previous topology approaches
include gradient-based approaches [8–10] and evolutionary
methods [11,12]. Although these methods have been used to
produce useful designs, the band gap optimization problem
is a difficult nonconvex optimization problem, and first-order
(and other gradient-based) methods suffer from low regularity
and nondifferentiability due to the presence of eigenvalue
multiplicities.

Recently, the work of [13] has used extensive numerical
optimization to produce designs of photonic structures with
very large ABGs for the first 15 bands. In particular, the authors
therein propose a simple geometric scheme that provides
structures with very large gaps between any two bands. They
conjecture that the globally optimal structure for TM modes is
the triangular distribution of circular rods and that the globally
optimal structure for TE modes is a triangular distribution of

hexagonal (instead of the commonly used circular) holes, i.e.,
the honeycomb structure. Interestingly, corroborative evidence
for this line of conjecture can be found in the current paper’s
antecedent work [14], which used semidefinite programming
and subspace methods as the enabling tools for more general
(though still nonconvex) design optimization. However, it
should be noted that the geometric scheme in [13] is not
applicable to the combined TE and TM (CBG) gaps, and in
fact, using extensive optimization, no systematic approach to
CBG design was found in [13].

In this paper, we aim to optimally design photonic crystals
which possess ABGs in several frequency bands (i.e., multiple
ABGs) and in combined TE and TM modes (i.e., multiple
CBGs). A photonic crystal structure exhibiting multiple CBGs
is of considerable interest because it enables novel photonic
devices to operate with a wider range of forbidden frequencies
and in both TE and TM modes. For instance, a material
for which propagation is forbidden at integer multiples of a
fundamental frequency could prove useful for the design of
resonant cavities. Our optimization algorithm is an extension
of the work in [14], which uses convex conic (semidefinite) op-
timization as a subroutine in a broader nonconvex optimization
scheme that aims to compute optimal solutions. We consider
both square lattice and hexagonal lattice arrangements. Our
algorithm computes crystal design patterns which may be very
different from existing photonic crystals, yet many of which are
simple enough to be fabricated using current state-of-the-art
technology. Moreover, the relative efficiency of our algorithm
allows extra exploration of the design space and thus increases
the likelihood that larger local (and possibly global) optimal
solutions are computed. For some examples involving two
band gaps, we estimate the tradeoff frontier to demonstrate the
tradeoff in design between two different absolute band gaps.

Extensive analysis has generally revealed the dictum that
“the TM band gaps are favored in lattices of isolated high-ε
regions, and TE band gaps are favored in connected lattices”
[5], and indeed this has been validated in [10,13,14] for
single-gap photonic crystals. The computation of multiple
ABG designs herein further validates this statement for a large
number of examples except for the TE case where we obtain
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nonconnected structures supporting multiple band gaps. This
observation raises a dilemma for the polarization-independent
CBGs as it seems that both the isolation of high-ε and the
connectedness of the structure can be satisfied only in a
triangular lattice arrangement [5]. The recent work of [15]
has investigated both absolute and complete band gaps for
two-dimensional semiconductor-dielectric photonic crystals
as a function of the filling fraction. By considering photonic
crystals made up of doped-GaAs cylinders (εr = 12.8) em-
bedded in a vacuum background (εa = 1), the authors therein
found that the semiconductor-dielectric structure supports
multiple ABGs at the filling fraction of 47.5% for a square
lattice and at the filling fraction of 52.5% for a hexagonal
lattice. However, they could find only a single CBG for a
specific filling fraction and the magnitude of the gap-midgap
ratio of approximately 1% is very small. In this paper, we
demonstrate that for the same materials, our optimization
algorithm yields not one, but two complete band gaps with
significantly larger gap-midgap ratios, on the order of 6% or
more.

The paper is organized as follows. In Sec. II, we present the
photonic crystal design optimization problem and present our
algorithm for computing large band gap designs. In Sec. III, we
present a mesh adaptivity methodology as well as a summary
of our computational scheme. In Sec. IV, we present selected
results, including adaptive computational mesh, crystal design
with multiple band gaps in TE, TM, and combined TEM
polarizations, and in square as well as hexagonal lattices.

II. PHOTONIC CRYSTAL DESIGN VIA CONSTRAINED
OPTIMIZATION

We first review basic terminology, notation, and modeling
framework from [14]. A two-dimensional photonic crystal is
characterized by having a dielectric function ε(r) which is
periodic in the xy plane and constant in the z direction, i.e.,
ε(r) = ε(r + Rd ), where Rd , (d = 1,2), are primitive lattice
vectors depending on the periodicity length a of the lattice. The
electromagnetic modes of a two-dimensional crystal can be
classified into two different polarizations: transverse magnetic
(TM) (electric field in the z direction) and transverse electric
(TE) (magnetic field in the z direction). These two types of
modes can be described by two scalar wave equations [14].
Assuming periodicity of the solution in the xy plane, the
Floquet-Bloch theory shows that the scalar fields satisfy a
Hermitian eigenvalue equation in a unit cell of the form

Au = λMu in �. (1)

For the TE mode, we have u ≡ Hz(r), λ ≡ ω2/c2, and

A(ε,k) ≡ −(∇ + ik) · [ε−1(r)(∇ + ik)], M ≡ I,

where c is the speed of light, I denotes the identity operator,
and the wave vector k lies in the irreducible Brillouin zone B.
For the TM mode, we have u ≡ Ez(r), λ ≡ ω2/c2, and

A(k) ≡ −(∇ + ik) · (∇ + ik), M(ε) ≡ ε(r)I.

The unit cell � and the irreducible Brillouin zone B depend
on the lattice type [5]. We denote by (um,λm) the mth
eigenfunction-eigenvalue pair of Eq. (1) and assume that these

eigenpairs are numbered in ascending order: 0 < λ1 � λ2 �
. . . � λ∞.

Let J = {mj | j = 1,2, . . . ,J } denote a set of J bands for
which we seek to achieve absolute gaps. For instance, J =
{1,3,5} indicates the set of the first, third, and fifth band gaps
corresponding to m1 = 1,m2 = 3, and m3 = 5. We define the
eigenvalue gap-midgap ratio between bands mj and mj + 1
as

Rj (ε(r)) = 2

inf
k∈B

λmj +1(ε(r),k) − sup
k∈B

λmj (ε(r),k)

inf
k∈B

λmj +1(ε(r),k) + sup
k∈B

λmj (ε(r),k)
.

We therefore consider the following optimization problem:

sup
ε(r)∈Q

inf
1�j�J

αj Rj (ε(r)) . (2)

Here Q ≡ {ε(r) : ε(r) ∈ [εL,εH ], ∀r ∈ �} is the admissible
domain, where εL and εH are dielectric constants of a low-
index material and a high-index material, respectively. The
αj are prescribed weights for each band gap (though in our
computation we typically set αj = 1, j = 1, . . . ,J ). Thus the
objective in Eq. (2) is to find an optimal material distribution
that maximizes the (weighted) smallest gap among J chosen
bands.

In practice, we discretize the optimization problem (2) as
follows. First, we consider only nk wave vectors in the set

Ph = {kk ∈ ∂B, 1 � k � nk}, (3)

where ∂B represents the boundary of the irreducible Brillouin
zone. Second, the unit cell � is discretized into N × N

elements on which the dielectric function takes a piecewise
constant value between εL and εH on each element; moreover,
if the symmetry of the prescribed lattice is taken into
consideration, the dielectric function only needs to be defined
in 1/8 of the unit cell in a square lattice, or in 1/12 of the unit
cell in a hexagonal lattice, namely,

Qh ≡ {ε : ε ∈ [εL,εH ]nε }, (4)

where nε < N2 ≡ N . Third, we use a Galerkin finite element
method with piecewise linear polynomials to approximate the
system (1) as

Ah(ε,k)u
mj

h = λ
mj

h Mh(ε)u
mj

h , ε ∈ Qh,k ∈ Ph, (5)

where Ah(ε,k) ∈ CN×N is a Hermitian matrix and Mh(ε) ∈
RN×N is a symmetric positive definite matrix. Since ε(r) is
piecewise constant on �, the ε-dependent matrices can be
expressed as

ATE
h (ε,k) =

nε∑
i=1

ε−1
i ATE

h,i(k), MTM
h (ε) =

nε∑
i=1

εiM
TM
h,i (6)

while ATM
h (k) and MTE

h are independent of ε. Here and below,
superscripts TM and TE are used to indicate TM polarization
and TE polarization, respectively.
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For the TE case, we define the discrete eigenvalue gap-
midgap ratio between eigenvalues mj and mj + 1 as

R
TE,j

h (ε) = 2
min
k∈Ph

λ
TE,mj +1
h (ε,k) − max

k∈Ph

λ
TE,mj

h (ε,k)

min
k∈Ph

λ
TE,mj +1
h (ε,k) + max

k∈Ph

λ
TE,mj

h (ε,k)
.

For the TM case the discrete eigenvalue gap-midgap ratio
R

TM,j

h (ε) is defined in a similar manner. For the complete band
gaps we define the discrete eigenvalue gap ratio between bands
mj and mj + 1 as

R
j

h(ε) = min
[
R

TE,j

h (ε), R
TM,j

h (ε)
]
.

To design the photonic crystal structure that supports multiple
combined band gaps we propose to solve the following
optimization problem:

max
ε∈Qh

min
1�j�J

αj R
j

h(ε), s.t.

ATE
h (ε,k)u

TE,mj

h = λ
TE,mj

h MTE
h (ε)u

TE,mj

h ,

ATM
h (ε,k)u

TM,mj

h = λ
TM,mj

h MTM
h (ε)u

TM,nj

h , (7)

for j = 1, . . . ,J,k ∈ Ph.

To model only TE or TM polarization, one can simply omit the
nonrelevant equations in the above formulation. Note further
that the formulation (7) can be generalized to treat more
general cases in which the number and location of TE band
gaps are allowed to differ from those of TM band gaps.

In the previous work [14], we showed how to use semidef-
inite inclusions combined with subspace methods to locally
approximate the single ABG problem [only one band gap and
either TE or TM polarization, which is simpler than Eq. (7)]
as a convex semidefinite program; see Sec. 3.3.1 of [14]. We
now indicate how extensions of these ideas can be used to
develop a tractable (i.e., conic and convex) local approximation
of Eq. (7). It will be convenient to consider the change of
variables defined by γj = 1/εj , j = 1, . . . ,nε . Let ε̂ be a given
parameter vector satisfying ε̂ ∈ Qh and define γ̂j = 1/ε̂j ,
j = 1, . . . ,nε . Then the following optimization problem is
an extension of approximations (16) and (17) developed
in [14]:

max
y

F

s.t. 	TE∗
mj

(γ̂ ,k)
[
ATE

h (γ ,k) − bjM
TE
h

]
	TE

mj
(γ̂ ,k) � 0,


TE∗
mj

(γ̂ ,k)
[
ATE

h (γ ,k) − ajM
TE
h

]

TE

mj
(γ̂ ,k) � 0,

	TM∗
mj

(ε̂,k)
[
djA

TM
h (k) − MTM

h (ε)
]
	TM

mj
(ε̂,k) � 0,


TM∗
mj

(ε̂,k)
[
cjA

TM
h (k) − MTM

h (ε)
]

TM

mj
(ε̂,k) � 0,

F � αj

(
2 aj −bj

aj +bj

)
,

F � αj

(
2 dj −cj

dj +cj

)
,

εiγi = 1,

aj � 0, bj � 0, cj � 0, dj � 0,

ε ∈ Qh,γ ∈ Sh,k ∈ Ph, and j ∈ {1, . . . ,J },
i = 1, . . . ,nε,

(8)

where y = [ε,γ ,a,b,c,d,F ] and Sh ≡ {γ : γ ∈
[1/εH ,1/εL]nε }.

As developed in [14], the matrices 	TE
mj

(γ̂ ,k) and 
TE
mj

(γ̂ ,k),

[respectively, 	TM
mj

(ε̂,k) and 
TM
mj

(ε̂,k)] ideally are comprised
columnwise of the lower mj eigenvectors and the upper
N − mj eigenvectors of Eq. (5) for the TE case (respectively,
the TM case). As developed in [14], we instead work with
a small “important” subset of these eigenvectors to keep the
computation efficient; see [14] for details. The semidefinite
inclusions [the first four sets of constraints in Eq. (8)] are linear
in the design variables y. The bilinear constraints [the fifth
through seventh set of constraints in Eq. (8)] can be linearized
around the previous solution to obtain a linear semidefinite
program. For instance, the constraint εiγi = 1 is linearized as
ε̂i γ̂i + ε̂i(γi − γ̂i) + γ̂i(εi − ε̂i) = 1. The resulting linearized
semidefinite program can be efficiently solved using modern
interior point methods such as the SDPT3 software [16].

III. MESH ADAPTIVITY AND COMPUTATIONAL
PROCEDURE

We develop an adaptive mesh refinement algorithm in
order to improve the efficiency and accuracy of discretization.
Rather than using a uniform computational mesh, we employ
a discretization adapted to the particular material distribution
that is being computed. Given any initial coarse representation
of the optimal configuration, we choose and subdivide ele-
ments that meet the refinement criteria. In particular, elements
are refined when they are on the material interface, i.e.,
when there is a jump in the value of the design variables
between the element under consideration and at least one of
its neighbors. When an element is refined, hanging nodes
are generated if the neighboring elements are of different
sizes after refinement. In order to simplify the computational
procedure, we impose a 2:1 rule to restrict the refinement level
difference between neighboring elements: if the refinement
level difference exceeds 2, the larger element is further refined
such that at most one hanging node exists on any element edge.
In order to ensure a continuous finite element interpolation,
the degree of freedom corresponding to the hanging node is
constrained to the interpolated value from the two corner nodes
and can therefore be locally eliminated from the global system.

Our computational procedure incorporating mesh adaptiv-
ity in conjunction with the local optimization problem (8) is
as follows:

(1) Start with a coarse mesh 8 × 8 and a random initial
distribution ε̂, and an error tolerance εtol;

(2) if necessary, use interpolation to adapt the current
distribution ε̂ to correspond to the current refined mesh;

(3) for each wave vector k ∈ Ph, compute the subspaces
	TE

mj
(ε̂,k), 
TE

mj
(ε̂,k), 	TM

mj
(γ̂ ,k), and 
TM

mj
(γ̂ ,k), and form the

linearized version of the semidefinite program (8);
(4) solve the linearized version of Eq. (8) for an optimal

solution ε∗;
(5) if ‖ε∗ − ε̂‖ � εtol, and current refinement level <

maximum refinement level, then refine elements adaptively,
extrapolate ε∗ → ε̂ of the new mesh, and go to 1;

(6) else if ‖ε∗ − ε̂‖ > εtol, and current refinement level �
maximum refinement level, then update ε̂ ← ε∗, and go to 2;

(7) else if ‖ε∗ − ε̂‖ � εtol, and current refinement level �
maximum refinement level, then stop and return optimal ε∗.
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IV. RESULTS AND DISCUSSION

We present computational results for the design of photonic
crystals made up of doped GaAs (εr = 12.8) and vacuum
air (εa = 1) [10,15]. We computed a wide variety of opti-
mized pairs and triplets of multiple band gaps in TE, TM,
and complete TEM modes, for both square and hexagonal
lattices. In the results presented herein, the eigenvalues are
plotted in the dimensionless unit (ωa/2πc)2, where a is the
lattice constant for both square and hexagonal lattices. For
comparison between our results and other previous results, we
also describe our results in terms of the frequency gap-midgap
ratio between bands mj and mj + 1, defined as

Q
j

h ≡ �ω
mj

h

ω
mj

h

= 2
min
k∈Ph

ω
mj +1
h (ε,k) − max

k∈Ph

ω
mj

h (ε,k)

min
k∈Ph

ω
mj +1
h (ε,k) + max

k∈Ph

ω
mj

h (ε,k)
.

The frequency gap-midgap ratio is used as the objective
function in some published research (see, e.g., [10,15]), while
the eigenvalue gap-midgap ratio is used in other published
research (e.g., [9,13,14]). Despite the obvious difference
between the eigenvalue and frequency (the former being the
square of the latter divided by the speed of light), the optimal
crystal structures have been observed to be astonishingly
consistent when either is used in the gap objective function in
single band gap optimization problems [10,13,14]. While it is
intuitive that the frequency relative gap-midgap ratio should be
monotone in the eigenvalue gap-midgap ratio, one can create
pathological counterexamples. Herein we choose to optimize
the eigenvalue gap-midgap ratio because the first four sets
of constraints of our optimization model (8) are linear in the
eigenvalues and so require no extra linearization themselves,
and the fifth and sixth constraints are only modestly nonlinear
in the eigenvalues. Of course, should one wish to optimize the
frequency gap-midgap ratio, the resulting nonlinear constraints
[the fifth and sixth set of constraints in Eq. (8)] could be
linearized as discussed earlier when constructing the linear
semidefinite program.

We initialize our procedure with a very coarse grid 8 × 8
and adaptively refine it up to 128 × 128 in resolution. We
initialize with a random distribution ε̂ on this coarse grid,
and then obtain an optimal solution on the coarse grid 8 × 8;
this optimal solution is used as the basis to refine the grid
and is then adapted to the refined grid by interpolation as
discussed in Sec. III. (A detailed discussion on the choice of
some other simulation parameters can be found in our previous
work [14]). We found that the grid refinement procedure
significantly reduces both the number of degrees of freedom
in the finite element procedure and the number of decision
variables in the optimization procedure, thereby leading to a
significant reduction in computation time, with a speedup in
overall computation in the range 40% –500%, but typically
around 250%. All computations were performed on a Linux
PC with Dual Core AMD Opteron 270, 2.0 GHz, and each run
of our procedure was obtained in 1–10 min. The relatively low
computation times enabled us to study the inherent tradeoffs
between optimizing two different band gaps (namely, the
tradeoff frontier), which provides very useful information
for choosing the most appropriate design. Below we present

representative results to illustrate various aspects of solutions
to the multiple and combined band gap optimization problem.

A. TM band gaps

We illustrate a typical sequence of optimal solutions using
our mesh adaptivity procedure on the problem of optimizing
the second and fifth band gaps [with identical weights, i.e.,
(α1,α2) = (1,1)] in the hexagonal lattice. Our results are
shown in Fig. 1. It is important to note that grid resolution
affects the obtained results. In particular, relatively coarse
resolutions (hmin = a/8,a/16) produce optimal solutions with
some mixed features (i.e., εL < εi < εH for some cell elements
i), while finer resolutions (hmin = a/32,a/64,a/128) yield
optimal structures which involve only pure concentrations
(εi = εL or εH for all cell elements i). Moreover, the shape
of the circular inclusions is much more visible on the finer
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FIG. 1. Mesh adaptivity results show the computational grids
overlaid on the crystal structures (left), optimal crystal structures
(middle), and frequency bands (right) for the second and fifth TM
band gaps in the hexagonal lattice. Grid resolution varies from
hmin = a/8 (top panel), hmin = a/16 (second panel), hmin = a/32
(third panel), hmin = a/64 (four panel), to hmin = a/128 (bottom
panel). The letters , M , and K in this figure and some figures
below represent the vertices of the irreducible Brillouin zone of the
hexagonal lattice.
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FIG. 2. (Color online) Optimization results show the final compu-
tational grid (left), optimal crystal structure (middle), and frequency
bands (right) for the first, second, and fourth TM band gaps in the
square lattice. The letters , X, and M in this figure and some figures
below represent the vertices of the irreducible Brillouin zone of the
square lattice.

grids. Our optimized structure differs from existing single-gap
photonic crystals [10,13,14] in the sense that it has both
small inclusions (of radius rs/a = 0.06) and large inclusions
(of radius rl/a = 0.12), while single-gap photonic crystals
typically consist of inclusions of the same radius. It is
interesting to observe that the unit cell of the optimized
structure consists of two large circular disks and three small
disks as we optimize the second and fifth band gaps.

A typical triplet of optimized band gaps is shown in Fig. 2,
which presents the optimized structures for optimizing the first,
second, and fourth band gaps (with identical weights α1 =
α2 = α3 = 1) in the square lattice. In this case, the optimized
structure also consists of circular disks of different sizes
(rl/a = 0.17,rs/a = 0.08). Similar to the previous results,
the relative eigenvalue gaps are the same for all three bands
since we chose the same weights for all bands. One notable
feature of this photonic structure is that the midgap frequency
of the third band is approximately twice that of the first band.

In optimizing a weighted pair of band gaps, there is an
intuitive tradeoff between the size of one band gap versus the
other band gap that can be computed by varying the weights
associated with each band to yield a tradeoff frontier between
the two band gaps. Such a tradeoff frontier is illustrated in
Fig. 3 for the problem of optimizing the weighted first and third

0.8

1.0

A

B

C

D

0.6

1.00.80.6

0.4

0.2

0
0 0.2 0.4

Branch 1
Branch 2

R
h2

Rh
1

FIG. 3. The tradeoff frontier for the first (horizontal axis) and
third (vertical axis) TM band gaps in the hexagonal lattice. The
frontiers are traced by varying the weights corresponding to each band
gap. Multiple frontiers can be attributed to multiple local optima.

band gaps in the hexagonal lattice. The points in the figure
were produced by varying the weights (α1,α2) associated
with two band gaps (first and third bands, respectively) for
a variety of values of (α1,α2) ∈ [0,1]2. More specifically, we
start by computing a solution for (α1,α2) = (0.5,0.5) on a
uniform mesh 64 × 64. We then modify the weights (α1,α2) ∈
[0,1]2 slightly and use the previously obtained solution as
the initiating distribution for computing the solution for the
problem with modified weights. This step is repeated in order
to track various local optimal branches. Figure 3 illustrates the
tradeoff frontiers A-B and C-D, where A, B, C, and D cor-
respond to the optimized structures for (α1,α2) = (0.99,0.01),
(0.01,0.99), (0.99,0.01), and (0.01,0.99), respectively. The
figure shows two different frontiers A-B and C-D. The
multiple branches of the frontiers represent multiple significant
local optima corresponding to identical weights. Structure A

favors the third band gap, whereas structure B favors the first
band gap. Structure C exhibits a good compromise between
the two band gaps since both are relatively large in this case.
Structure C is particularly interesting in that it resembles D in
overall design, but has larger disks with an air hole. Frontier
A-B consists of structures having disks of two different radii
but otherwise similar topology, while frontier C-D consists of
structures having disks of different radii and different topology.

B. TE band gaps

We now turn to TE band gaps. Figures 4 and 5 show typical
results for optimizing pairs (first and second band gaps) and
triplets (second, fourth, and sixth band gaps) in the square
lattice, respectively, where all bands have equal weights. We
observe that the optimized structure in Fig. 4 is connected and
relatively simple, whereas the optimized structure in Fig. 5
is nonconnected and far more complicated. Although TE
polarization typically favors connected lattices, these results
show that it is possible to obtain nonconnected TE structures
with multiple band gaps.

Figure 6 shows solutions for optimizing the first and fourth
TE band gaps for both the square and hexagonal lattices
(with equal weights for the two bands). We observe that the
optimized structure in the square lattice is not connected, while
the optimized structure in the hexagonal lattice is connected.
Moreover, we see for both band structures that the midgap
frequency of the fourth band is roughly twice that of the first
band. Therefore similar to the structure shown in Fig. 2, these
designs can prohibit electromagnetic waves at both frequencies
ω and 2ω.

We also studied the tradeoff frontier for the first and
third TE band gap in the hexagonal lattice; see Fig. 7. This
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FIG. 4. Optimization results show the final computational grid
(left), optimal crystal structure (middle), and frequency bands (right)
for the first and second TE band gaps in the square lattice.
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FIG. 5. Optimization results show the final computational grid
(left), optimal crystal structure (middle), and frequency bands (right)
for the second, fourth, and sixth TE band gaps in the square lattice.

frontier has proven to be more complicated than its TM
mode counterpart shown previously in Fig. 3. In fact, no
distinctive frontier can be observed, which is undoubtedly
due to numerous local optima in this case. We employed a
similar computational strategy to that used to produce Fig. 3 as
described in the previous subsection. In Fig. 7 we display four
(locally) optimized structures along the envelope A-B-C-D
of the apparent frontier, where A, B, C, and D correspond to
solutions for (α1,α2) = (0.99,0.01), (0.5,0.5), (0.5,0.5), and
(0.01,0.99), respectively. Structure A favors the third band,
whereas structure D favors the first band. Structures B and
C offer a compromise between the two bands. Note further
that the two structures B and C are very different despite the
fact that they have similar objective values. (We also observed
many local optimal solutions in our previous work on the
optimal design of photonic crystals with single band gap [14].)

C. Complete band gaps

We are able to compute complete band gaps for both the
hexagonal and square lattices; the band gaps in the hexagonal
lattice lie in the first and third bands for the TE polarization,
yet in the third and sixth bands for the TM polarization.
Figure 8 illustrates the geometry and band structures for the
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FIG. 6. Optimization results show optimal crystal structure (left),
and frequency bands (right) for the first and fourth TE band gaps in
the square lattice (top) and the hexagonal lattice (bottom).
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FIG. 7. The tradeoff frontier for the first (horizontal axis) and
third (vertical axis) TE band gaps in the hexagonal lattice. The
frontiers are traced by varying the weights corresponding to each band
gap. Multiple frontiers can be attributed to multiple local optima.

hexagonal lattice. The corresponding frequency gap-midgap
ratios of 5.76% and 6.94% are quite sizable—and are the first
multiple and complete band gaps ever reported for photonic
crystals in the hexagonal lattice. This photonic crystal structure
has both connected and nonconnected features. Moreover, it
has a more complicated geometry than the previous structures
shown herein.

For the square lattice, complete band gaps lie in the third
band for the TE polarization, yet in the sixth and ninth bands
for the TM polarization. Figure 9 illustrates our results. The
corresponding frequency gap-midgap ratios of 7.59% and
13.5% are also large. We emphasize again that no other
multiple and complete gaps have previously been found for
photonic crystals in the square lattice. In general, the complete
band gaps are smaller than either of the corresponding TE and
TM band gaps because it is rather difficult to simultaneously
achieve both the TE and TM band gaps. Of course, one can also
widen the gap size for one band at the expense of narrowing
the gap size of the other band by choosing appropriate weights
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FIG. 8. Optimization results for the multiple complete band gaps
in the hexagonal lattice. The optimal crystal structure is shown in the
left-hand picture; while the frequency bands are shown in the right-
hand picture, with solid lines representing TM bands, and broken
lines representing TE bands. The first complete band gap is formed
by the overlapping of the first TE and third TM band gaps, while the
second complete band gap is formed by the third TE and sixth TM
band gaps.
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FIG. 9. Optimization results for the multiple complete band gaps
in the square lattice. The optimal crystal structure is shown in the
left-hand picture; while the frequency bands are shown in the right-
hand picture, with solid lines representing TM bands, and broken
lines representing TE bands. The first complete band gap is formed
by the overlapping of the third TE and sixth TM band gaps, while the
second complete band gap is formed by the third TE and ninth TM
band gaps.

in the optimization problem (8). Finally, it is interesting to note
in this case that although the photonic crystal structure has a
complicated geometry, it is nevertheless connected.

V. CONCLUSIONS

In conclusion, we have demonstrated the usefulness of a
computational scheme based on conic (semidefinite) convex
optimization to design photonic crystals with multiple and
complete band gaps in both square and hexagonal lattices.
Our photonic crystal patterns are different from existing
photonic crystal designs [10,13,14] with a single band gap.

In particular, we observe from our results that unlike optimal
photonic crystals discovered in [13], photonic crystals with
multiple band gaps do not follow some simple geometric
properties. Therefore numerical optimization is crucial to
the design of photonic crystals that support several band
gaps. These photonic crystals may prove useful for the
suppression of resonance at harmonic frequencies, as they
prohibit the propagation of electromagnetic waves at several
different frequencies. In addition, we have computed photonic
structures with large complete band gaps. Our results hopefully
open up a new arena for the design of photonic crystals.

We note that many of the optimized crystal designs
shown herein involve intricate patterns of materials at the
nano-level, and may be too expensive or even impossible
to fabricate. Simply incorporating “fabrication constraints”
such as connectedness of materials or bounds on the curva-
ture of boundaries easily yields combinatorially intractable
optimization models. Instead, we propose to modify the basic
optimization problem so that a resulting solution is “robust”
for fabrication, somewhat in the spirit of robust convex
optimization [17]. This is the subject of ongoing research.
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