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LOWER BOUNDS FOR RANDOMIZED CONSENSUS
UNDER A WEAK ADVERSARY∗

HAGIT ATTIYA† AND KEREN CENSOR-HILLEL‡

Abstract. This paper studies the inherent trade-off between termination probability and total
step complexity of randomized consensus algorithms. It shows that for every integer k, the probability
that an f -resilient randomized consensus algorithm of n processes does not terminate with agreement
within k(n−f) steps is at least 1

ck
, for some constant c. A corresponding result is proved for Monte-

Carlo algorithms that may terminate in disagreement. The lower bound holds for asynchronous
systems, where processes communicate either by message passing or through shared memory, under
a very weak adversary that determines the schedule in advance, without observing the algorithm’s
actions. This complements algorithms of Kapron et al. [Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, SIAM, Philadelphia, 2008,
pp. 1038–1047] for message-passing systems, and of Aumann [Proceedings of the 16th Annual ACM
Symposium on Principles of Distributed Computing (PODC), ACM, New York, 1997, pp. 209–218]
and Aumann and Bender [Distrib. Comput., 17 (2005), pp. 191–207] for shared-memory systems.
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1. Introduction. At the heart of many coordination problems in distributed
systems lies the need to reach consensus among processes, despite the possibility of
process failures. A (binary) consensus algorithm allows processes starting with input
values in {0, 1} to agree on the same output value (agreement). To rule out triv-
ial solutions, this common output must be one of the inputs (validity), and every
process must eventually decide (termination). It is well known that no determinis-
tic algorithm can achieve consensus in an asynchronous system if one process may
fail [23, 25, 31]. One successful approach for circumventing this impossibility result
is to employ randomization and relax the termination property to hold with high
probability. In typical randomized algorithms for consensus, the probability of not
terminating in agreement decreases as the execution progresses, becoming smaller as
processes perform more steps.

This paper shows that this behavior is inherent, by proving lower bounds on the
probability of termination when the step complexity is bounded. In order to make the
lower bounds as strong as possible, we assume a very weak adversarial model, which
fixes the complete schedule in advance, without observing the steps of the algorithm.
In particular, the schedule is determined without knowing results of local coin-flips,
contents of messages sent, or memory locations accessed.

∗Received by the editors March 9, 2009; accepted for publication (in revised form) October 2,
2010; published electronically December 22, 2010. A preliminary version of this paper appeared in
Proceedings of the 27th Annual ACM Symposium on Principles of Distributed Computing, 2008,
pp. 315–324. This research was supported in part by the Israel Science Foundation (grant 953/06).

http://www.siam.org/journals/sicomp/39-8/75190.html
†Department of Computer Science, Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il).
‡Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139 (ckeren@

csail.mit.edu). This author’s research was supported by the Simons Postdoctoral Fellows Program.
This work was done while this author was a Ph.D. student at the Department of Computer Science,
Technion, Haifa 32000, Israel and supported in part by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities.

3885



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3886 HAGIT ATTIYA AND KEREN CENSOR-HILLEL

We prove that for every integer k, the probability that an f -resilient randomized
consensus algorithm of n processes does not terminate after k(n−f) steps is at least 1

ck ,
where c is a constant if �n

f � is a constant. The result holds for asynchronous message-

passing systems and asynchronous shared-memory systems (using reads and writes),
albeit with different constants. While the same general proof structure applies in both
cases, it is accomplished differently in the message-passing and the shared-memory
models; the latter case is further complicated due to the adversary’s weakness.

For the message-passing model, our proof extends and improves on a result of
Chor, Merritt, and Shmoys [20] for synchronous message-passing systems. They show
that the probability that a randomized consensus algorithm does not terminate after
k rounds (and k(n−f) steps) is at least 1

c·kk . (A similar result is attributed to Karlin
and Yao [28].) The proof rests on considering a specific chain of indistinguishable
executions and showing a correlation between the termination probability and the
length of this chain,1 which in turn depends on the number of rounds. The chain
is taken from the proof of the rounds’ lower bound for (deterministic) consensus
[21, 22] (cf. [6, Chapter 5]); since the chain is determined in advance, i.e., regardless
of the algorithm’s transitions, the lower bound is derived with a weak adversary. (An
overview of the proof strategy appears in section 2.2.)

Our first contribution, for the message-passing model, improves on this lower
bound by exploiting the fact that asynchrony allows us to construct “shorter” indis-
tinguishability chains. This shows that the probability that an asynchronous random-
ized consensus algorithm does not terminate after k(n−f) steps is at least 1

ck , where c
is a constant if �n

f � is a constant. (The lower bound for asynchronous message-passing

systems appears in section 3.)
Substituting specific values in our lower bound implies that any randomized con-

sensus algorithm has probability at least 1
polylog(n) for not terminating within log logn

(asynchronous) rounds, and probability at least 1
poly(n) for not terminating within

logn (asynchronous) rounds.
The lower bound can be extended to Monte-Carlo algorithms that always termi-

nate, at the cost of compromising the agreement property (section 5). If an asynchro-
nous message-passing algorithm always terminates within k(n − f) steps, then the
probability for disagreement is at least 1

ck , where c is a constant if �n
f � is a constant.

This lower bound can be compared to the recent consensus algorithms of Kapron
et al. [27] for the message-passing model. One algorithm always terminates within
polylog(n) asynchronous rounds, and has a probability 1

polylog(n) for disagreeing, while

the other terminates within 2Θ(log7 n) asynchronous rounds, and has a probability
1

poly(n) for disagreeing.

There is an extensive amount of literature on randomized agreement algorithms
for message-passing systems. Recent papers in this area provide algorithms for agree-
ment in the presence of Byzantine processes in full information models, where the
adversary is computationally unbounded. See [11, 24, 29] for a more detailed descrip-
tion and references.

In principle, the lower bound scheme can be extended to the shared-memory
model by focusing on layered executions [5, 32]. However, our severely handicapped
adversarial model poses a couple of technical challenges. First, while in the message-
passing model each step can be assumed to send messages to all processes, in a shared-
memory event a process chooses which register to access and whether to read from it

1The length of the chain is the number of executions in it.
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or write to it. A very weak adversary, as we use for our lower bounds, must find a way
to make its scheduling decisions in advance without even knowing what type of step
the process will take. Second, the proof scheme requires schedules to be determined
independently of the coin-flips. The latter difficulty cannot be alleviated even by
assuming a stronger adaptive adversary that may schedule the processes according to
the execution so far.

We manage to extend the lower bound scheme to the shared-memory model, by
first simplifying the model, assuming that processes either write to single-writer reg-
isters or perform a cheap-snapshot operation, reading all the registers at once. By
further assuming that an algorithm regularly alternates between writes and cheap
snapshots, we make processes’ steps predictable, allowing a weak adversary to con-
struct indistinguishability chains. The lower bound is extended to hold for multi-
writer registers by reduction; while ordinary simulations of multiwriter registers using
single-writer registers have O(n) overhead (which would nullify the lower bound),
cheap snapshots admit a simulation with constant overhead. (The results for the
shared-memory model appear in section 4.)

The lower bounds we obtain for the shared-memory model are the same as for the
message-passing model, though with different constants. (More detailed calculations
and comparison with related work appear in section 6.)

To the best of our knowledge, there are no other lower bounds on randomized
consensus in shared-memory systems under a weak adversary. There are several al-
gorithms assuming a value-oblivious adversary, which may determine the schedule
adaptively based on the functional description of past and pending operations, but
cannot observe any value of any register or results of local coin-flips. This model is
clearly stronger than the adversary we employ, and hence our lower bounds apply to
it as well.

The algorithms differ by the type of shared registers they use [7, 8, 9, 15]. For
single-writer multireader registers, Aumann and Bender [8] give a consensus algorithm
that has probability of at most 1

nc of not terminating within O(n log2 n) steps. For
multiwriter multireader registers, Aumann [7] shows a consensus algorithm in which
the probability of not terminating in k iterations (and O(k ·n) steps) is at most (3/4)k.

Chandra [15] gives an algorithm with O(log2 n) individual step complexity, as-
suming an intermediate adversary that cannot see the outcome of a coin-flip until
it is read by some process. Aumann and Kapah-Levy [9] give an algorithm with
O(n log n exp(2

√
polylogn)) total step complexity, using single-writer single-reader

registers, and assuming a value-oblivious adversary.

An algorithm with O(n log logn) total step complexity against a weak adversary
was given by Cheung [18], which considers a model with a stronger assumption that
a write operation occurs atomically after a local coin-flip. It improves upon earlier
work by Chor, Israeli, and Li [19], who provide an algorithm with O(n2) total step
complexity using a slightly different atomicity assumption.

Other related work on randomized consensus assumes strong adversaries, which
adapt to the computation, scheduling processes dynamically, after observing the re-
sults of their local coin-flips. A great deal of study was invested, yielding numerous
algorithms (see the survey in [2]). Lower bounds were given on the expected number
of coin-flips [1], on the expected number of rounds in synchronous systems [10], and
a tight Θ(n2) bound on the total step complexity in asynchronous systems [5].
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2. The lower bound strategy.

2.1. The model in brief. We consider a standard model of an asynchronous
system with a set of n ≥ 3 processes P = {p1, . . . , pn}. Each step of a process consists
of some local computation, including an arbitrary number of coin-flips (possibly bi-
ased), and a communication operation, which depends on the communication model.

In a message-passing system processes communicate by sending and receiving
messages: the communication operation of a process is sending messages to some
subset of the processes and receiving messages from some subset of them. For the
lower bounds, we assume that a process sends a message to all the processes in each
step. In a shared memory system, processes communicate by reading and writing to
shared registers; each step of a process is either a read or a write to some register.

The local coin-flips of a process pi are modeled as a random string of coin-flip
results ci, which can be accessed by pi but are unavailable to any other process.
All of the randomization of the algorithm is encompassed within n coin-flip strings
�c = (c1, . . . , cn).

Additional nondeterminism is introduced by the scheduling choices made by an
adversary. We assume a weak adversary that is nonadaptive and decides on the
scheduling in advance. The adversary does not observe the results of any local coins
a process flips or any operation a process performs.

A schedule σ, together with an initial configuration I and n coin-flip strings
�c = (c1, . . . , cn), determines an execution α(σ,�c, I).

2.2. The lower bound approach. Let A be an f -resilient asynchronous ran-
domized consensus algorithm. Let qk denote the maximum probability, over all weak
adversaries and over all initial configurations, that A does not terminate after a total
of k(n− f) steps are taken.

In order to prove a lower bound on qk, we consider a restricted set of schedules
that proceed in layers [5, 32]. An f -layer is a sequence of at least n − f distinct
process id’s. When executing a layer L, each process p ∈ L takes a step, in the order
specified by the layer.

We will consider only schedules that are f -schedules. A schedule σ = L1, L2, . . . , Lk

is an f -schedule if it is a finite sequence of f -layers. A process pi is nonfaulty in layer
r if it appears in the layer. A process pi crashes in layer r if it does not take a step
in any layer � ≥ r. A process is skipped in layer r if it does not appear in layer r but
appears in one of the following layers.

Definition 2.1. For a schedule σ, let crash(σ, p, r) be the schedule that is the
same as σ, except that p crashes in layer r, i.e., does not take a step in any layer
� ≥ r. For a set P of processes, crash(σ, P, r) is defined similarly.

As mentioned in the introduction, our proof will make use of indistinguishable
executions. Intuitively, two finite executions α and α′ are indistinguishable to a
process p if it cannot tell the difference between them. This implies that p terminates
in α with a decision value v if and only if it terminates in α′ with a decision value
v. The formal definition of indistinguishability is model-dependent and will be given
separately in sections 3 and 4, but we proceed formally to define indistinguishability
chains as follows.

Given two executions α1 and α2 with the same n coin-flip strings �c = (c1, . . . , cn),

we denote α1
pi∼ α2 if process pi does not distinguish between α1 and α2, and does

not crash in them. In this case, pi decides on the same value in α1 and in α2. We



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED CONSENSUS UNDER A WEAK ADVERSARY 3889

β1 = α(σfull,�c, C0)

β2

βm+1 = α(σfull,�c, CS)

decision is 0

decision is 1

terminates with probability
at least 1− qk

βm
terminates with probability

at least 1− qk

pi1∼

pim∼

Fig. 2.1. Illustration for the proof of Theorem 2.2.

denote α1 ≈m α2 if there is a chain of executions β1, . . . , βm+1 such that

α1 = β1

pi1∼ β2 · · · pim∼ βm+1 = α2.

We call such a chain an indistinguishability chain. Clearly, if α ≈m β ≈m′ γ, then
α ≈m+m′ γ for every pair of integers m and m′. Moreover, notice that this relation
is commutative; i.e., if α1 ≈m α2, then α2 ≈m α1.

For every pair of consecutive executions in the chain, there is a process that decides
on the same value in both executions. By the agreement condition, the decision in α1

and in α2 must be the same. This is the main idea of the lower bound proof, which is
captured in Theorem 2.2: we take two executions that must have different agreement
values and construct an indistinguishability chain between them, which bounds the
probability of terminating in terms of the length of the chain. Two such executions
exist by the validity condition, as we formalize next.

We partition the processes into S = max{3, �n
f �} sets P1, . . . , PS , each with at

most f processes. For example, if n > 2f , Pi = {p(i−1)f+1, . . . , pi·f} for every i,
1 ≤ i < S, and PS = {p(S−1)f+1, . . . , pn}.

Consider initial configurations C0, . . . , CS , such that in C0 all the inputs are 0,
and in Ci, 1 ≤ i ≤ S, all processes in P1, . . . , Pi have input 1 and all other processes
have input 0; in particular, in CS all processes have input 1.

Let σfull be the full synchronous schedule with k layers, in which no process fails.
The next theorem is the main tool for bounding qk as a function of m, the length of an
indistinguishability chain. This theorem distills the technique we borrow from [20].
At the end of section 3 we discuss how asynchrony allows us to construct shorter
chains.

Theorem 2.2. Assume there is an integer m such that for any sequences of coins
�c, α(σfull,�c, C0) ≈m α(σfull ,�c, CS). Then the probability that A does not terminate
after k(n− f) steps is qk ≥ 1

m+1 .
Proof. Assume, by way of contradiction, that qk(m+1) < 1. Since α(σfull,�c, C0)

≈m α(σfull,�c, CS), there is a chain of m+ 1 executions,

α(σfull,�c, C0) = β1

pi1∼ β2 · · · pim∼ βm+1 = α(σfull,�c, CS).

(See Figure 2.1.) The probability that A does not terminate in at least one of these
m + 1 executions is at most qk(m + 1). By assumption, qk(m + 1) < 1, and hence
the set B of sequences of coins �c such that A terminates in all m+ 1 executions has
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C1 = (1, 0, . . . , 0)

C0 = (0, 0, . . . , 0)

C0 = (0, 0, . . . , 0)

C1 = (1, 0, . . . , 0)

Cs = (1, 1, . . . , 1)

σfull

crash(σfull, P0, 1)

crash(σfull, P0, 1)

σfull

σfull

≈m

≈1

≈m

≈m

Fig. 2.2. Illustration for the proof of Lemma 2.3.

probability Pr[�c ∈ B] > 0. Since α(σfull,�c, C0) ≈m α(σfull,�c, CS), the agreement
condition implies that the decision in all m+ 1 executions is the same. However, the
validity condition implies that the decision in α(σfull,�c, C0) is 0, and the decision in
α(σfull,�c, CS) is 1, which is a contradiction.

A slight extension of the above theorem handles Monte-Carlo algorithms, where
processes may terminate without agreement with some small probability ε. This
extension is presented in section 5.

The statement of Theorem 2.2 indicates that our goal is to show the existence
of an integer m such that α(σfull,�c, C0) ≈m α(σfull ,�c, CS); clearly, the smaller the
m, the higher the lower bound. The next lemma comes in handy when we construct
these chains.

Lemma 2.3. Assume there is an integer m such that for every schedule σ, initial
configuration I, sequence of coins �c, and set Pi, α(σ,�c, I) ≈m α(crash(σ, Pi, 1),�c, I).
Then α(σfull ,�c, C0) ≈S(2m+1) α(σfull,�c, CS) for all sequences of coins �c.

Proof. Consider the schedules σ0 = σfull and σi = crash(σ0, Pi, 1) for every i,
1 ≤ i ≤ S, and the corresponding executions αi,j = α(σi,�c, Cj) for every i and j,
1 ≤ i ≤ S, and 0 ≤ j ≤ S (the execution αi,j starts from the initial configuration
Cj with a schedule which is almost full, except that processes in Pi never take any
steps).

By assumption, α0,j ≈m αi,j for every i, 1 ≤ i ≤ S, and every j, 0 ≤ j ≤ S. (See
Figure 2.2.) Since processes in Pi are crashed in σi for every i, 1 ≤ i ≤ S, we have

that αi,i−1
p∼ αi,i for every process p ∈ P \ Pi. This implies that αi,i−1 ≈1 αi,i for

every i, 1 ≤ i ≤ S. Thus,

α(σfull,�c, C0) = α0,0 ≈m α1,0 ≈1 α1,1 ≈m α0,1 ≈m α2,1 ≈1 α2,2 · · ·αS,S ≈m α0,S ,

where α0,S is exactly α(σfull,�c, CS). Therefore, we have α(σfull,�c, C0) ≈S(2m+1)

α(σfull,�c, CS).

3. Tradeoff for the message-passing model. In this section we derive the
lower bound for the message-passing model. Notice that in the message-passing model,
since a step consists of both sending and receiving messages, a layer L is not only a
sequence of processes, but also specifies for each process p ∈ L the set of processes
from which it receives a message (recall that we assumed that it sends messages to
all processes). The reception of messages in a certain layer is done after all messages
of that layer are sent, and therefore the order of processes in a layer is insignificant.
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Formally, an f -layer is a sequence pi1 , . . . , pim of distinct process id’s, followed by
a sequence Mi1 , . . . ,Mim of subsets of process id’s, where Mij is the set of process
id’s from which pij receives a message in this layer. In the executions we construct, a
message is either delivered in the same layer, or it is delayed and delivered after the
last layer, and is effectively omitted in the execution.

Recall that the processes are partitioned into S = max{3, �n
f �} sets P1, . . . , PS ,

each with at most f processes. We manipulate schedules in order to delay messages
as follows.

Definition 3.1. Let σ be a finite schedule. Let delay(σ, Pi, Pj , r) be the schedule
that is the same as σ, except that the messages sent by processes in Pi in layer r are
received by processes in Pj only after the last layer. More formally, if Mp is the subset
of processes from which a process p receives a message in layer r in σ, then for every
process p ∈ Pj the subset of processes from which it receives a message in layer r in
delay(σ, Pi, Pj , r) is Mp \ Pi.

We define indistinguishability of executions in the message-passing model as fol-
lows: two executions are indistinguishable to process p if it goes through the same
local states throughout both executions. More specifically, in both executions p sends
and receives the same messages, in the same order.

Clearly, at the end of layer r, any process not in Pj does not distinguish between
the execution so far of a schedule σ and an execution so far of delay(σ, Pi, Pj , r).
Therefore, we have the following lemma.

Lemma 3.2. Let σ be a schedule with k layers. For any sequences of coins �c and
initial configuration I, at the end of layer r only processes in Pj distinguish between
α(σ,�c, I) and α(delay(σ, Pi, Pj , r),�c, I).

Recall that S = max{3, �n
f �} is the number of sets Pi. We define the following

recursive function for every r and k, 1 ≤ r ≤ k:

mr,k =

{
S if r = k,
(2(S − 1) + 1)mr+1,k + S if 1 ≤ r < k.

A simple induction shows that mr,k ≤ (2S)k−r+1.
The following lemma proves that m1,k is the integer required in Lemma 2.3 for

the message-passing model, by inductively constructing indistinguishability chains
between executions in which a set of processes may crash from a certain layer r.

Lemma 3.3. Let σ be a schedule with k layers such that for some r, 1 ≤ r ≤ k, no
process is skipped in layers r, r+1, . . . , k. Then α(σ,�c, I) ≈mr,k

α(crash(σ, Pi, r),�c, I)
for every sequence of coins �c, every initial configuration I, and every i ∈ {1, . . . , S}.

Proof. Let σ = σ0. Throughout this proof we denote αi = α(σi,�c, I) for any
schedule σi. The proof is by backwards induction on r.

Base case r = k. We construct the following schedules. Let σ1 be the same as
σ0, except that the messages sent by processes in Pi in the kth layer are received by
processes in P(i+1) mod S only after the kth layer, i.e., σ1 = delay(σ, Pi, P(i+1) mod S , k).

By Lemma 3.2, we have α0
p∼ α1 for every process p ∈ P \ P(i+1) mod S . We continue

inductively to define schedules as above in the following way for every h, 0 ≤ h ≤ S−1:
σh+1 is the same as σh except that the messages sent by processes in Pi in the
kth layer are received by processes in P(i+h+1) mod S only after the kth layer, i.e.,

σh+1 = delay(σh, Pi, P(i+h+1) mod S , k). By Lemma 3.2, we have αh
p∼ αh+1 for every

process p ∈ P \ P(i+h+1) mod S .
Since in σS no messages sent by processes in Pi in layer k are ever received, then,

except for local states of the processes in Pi, this is the same as if the processes in Pi
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Pi

Pi+1

Pi

Pi+1

��� Pi

Pi+1

Pi

��� Pi

Pi+1

Pi

��� Pi

Pi+1

Pi

Pi+1

���

layer r layer r layer r layer r

≈1≈mr+1,k
≈mr+1,k

α0 α1 α2 α3

Fig. 3.1. How messages from Pi to Pi+1 are removed in the induction step of Lemma 3.3.

are crashed in layer k:

αS = α(crash(σ, Pi, k),�c, I),

which implies that

α(σ,�c, I) = α0 ≈1 α1 ≈1 · · · ≈1 αS = α(crash(σ, Pi, k),�c, I).

Therefore, α(σ,�c, I) ≈S α(crash(σ, Pi, k),�c, I).
Induction step. Informally, this is similar to the base case, except that we crash

Pj in layer r + 1 before “erasing” messages from Pi to Pj in layer r, and afterwards
revive Pj in layer r + 1.

Formally, we assume that the lemma holds for layer r + 1, 1 ≤ r < k, and prove
that it holds for layer r. Let σ1 = crash(σ0, P(i+1) mod S , r + 1); by the induction
hypothesis, α0 ≈mr+1,k

α1.
Let σ2 be the same as σ1, except that the messages received by processes in

P(i+1) mod S from processes in Pi in layer r are received only after the kth layer, i.e.,
σ2 = delay(σ1, Pi, P(i+1) mod S , r). By Lemma 3.2, at the end of layer r only processes
in P(i+1) mod S distinguish between the executions, but since they are crashed in layer

r+1 we have α1
p∼ α2, for every process p ∈ P \P(i+1) mod S , implying that α1 ≈1 α2.

Let σ3 be the same as σ2, except that the processes in P(i+1) mod S do not crash
in layer r + 1. This implies that

σ2 = crash(σ3, P(i+1) mod S , r + 1).

By the induction hypothesis, we have α2 ≈mr+1,k
α3. (See Figure 3.1.)

We continue inductively to define schedules as above in the following way for every
h, 0 ≤ h ≤ S−1. We define σ3h+1 = crash(σ3h, P(i+h+1) mod S , r+1), and therefore by
the induction hypothesis α3h ≈mr+1,k

α3h+1. Let σ3h+2 be the same as σ3h+1, except
that the messages received by processes in P(i+h+1) mod S from processes in Pi in layer
r are received only after the kth layer, i.e., σ3h+2 = delay(σ3h+1, Pi, P(i+h+1) mod S , r).
By Lemma 3.2, at the end of layer r only processes in P(i+h+1) mod S distinguish

between the executions, but since they are crashed in layer r + 1 we have α3h+1
p∼

α3h+2, for every process p ∈ P \ P(i+h+1) mod S , implying that α3h+1 ≈1 α3h+2.
Finally, we define σ3h+3 to be the same as σ3h+2, except that processes in

P(i+h+1) mod S do not crash. This implies that σ3h+2 = crash(σ3h+3, P(i+h+1) mod S ,
r + 1). By the induction hypothesis we have α3h+2 ≈mr+1,k

α3h+3.
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The construction implies that in σ3(S−1)+2 no messages are sent by the processes
in Pi in layer r, and they are crashed from layer r + 1. Except for local states of the
processes in Pi, this is the same as if the processes in Pi are crashed from layer r.
Therefore

α(σ3(S−1)+2,�c, I) = α(crash(σ0, Pi, r),�c, I),

and hence

α0 ≈mr+1,k
α1 ≈1 α2 ≈mr+1,k

α3 ≈mr+1,k
· · · ≈mr+1,k

α3(S−1)+1 ≈1 α3(S−1)+2.

Since mr,k = (2(S−1)+1)mr+1,k+S, we have α0 ≈mr,k
α(crash(σ0, Pi, r),�c, I).

Note that in all executions constructed in the proof, at most one set of processes
Pi does not appear in a layer; since |Pi| ≤ f , this implies that at least n− f processes
take a step in every layer, and hence every execution in the construction contains at
least k(n− f) steps.

Lemmas 2.3 and 3.3 imply that for any sequence of coins �c, α(σfull,�c, C0) ≈S(2m1,k+1)

α(σfull,�c, CS). Since m1,k ≤ (2S)k, substituting S(2m1,k + 1) in the parameter m of
Theorem 2.2 yields that qk ≥ 1

(2S)k+1+S+1 . Recall that S = max{3, �n
f �}. Taking �n

f �
to be a constant, we obtain the main result of this section.

Theorem 3.4. Let A be a randomized consensus algorithm in the asynchronous
message-passing model. There is a weak adversary and an initial configuration, such
that the probability that A does not terminate after k(n−f) steps is at least 1

ck
, where

c is a constant if �n
f � is a constant.

In the original construction for the synchronous model ( [21, 22]; see also [6,
Chapter 5]), a process that does not appear in a round r must be crashed in that
round, and therefore must be counted within the f failures allowed. Hence, in order
to change all the inputs from 0 to 1, we must crash and revive fewer processes at a
time at each round. For example, in order to continue k ≤ f rounds only one process
may be crashed at each round. This adds a factor of k to the base of the power in
the denominator of the bound on qk, which results in a lower bound of 1

c·kk for the
synchronous message-passing model [20].

4. Trade-off for the shared-memory model. We now derive a similar lower
bound for two shared-memory models, where processes communicate through shared
read/write registers. The first model consists of single-writer registers and a snapshot
operation that costs one step, described formally in subsection 4.1. In subsection 4.2
we consider multiwriter registers. The lower bounds clearly hold for the more re-
stricted model, where processes read only a single register in each memory access.

In the shared-memory model, the definition of indistinguishability is slightly dif-
ferent than in the message-passing model. For two executions α and α′ to be in-
distinguishable to a process p, we not only require p to have the same local states
throughout both executions, but also that the values of the shared registers are the
same throughout both; otherwise, for example, having p perform a read operation af-
ter α and α′ might result in different executions. This implies that in both executions
p performs the same shared-memory operations, including reading the same values
from registers. However, we allow the value of a shared register to be different at the
end of α and α′ if it is no longer accessed by any process. This slight modification still
captures the requirement that if a process p decides v in α and does not distinguish
between α and α′, then it also decides in α′ on the same value v.
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4.1. Single-writer cheap-snapshot. We first consider a shared-memory model
where processes communicate through single-writer registers. The lower bound is
proved under a simplifying assumption that each read step accesses the registers of
all processes. We call this the single-writer cheap-snapshot model, since each register
is written to by one specific process, and all registers are read by any process in a
single snapshot. This snapshot is charged one step, hence the term “cheap.”

As in a standard shared-memory model, a step of a process consists of accessing
the shared memory and performing local computations. We further assume that in the
algorithm the steps of every process alternate between a write and a cheap-snapshot,
starting with a write. Any algorithm can be transformed to satisfy this requirement
by having a process rewrite the same value to its register if it is forced to take a write
operation, or read all of the registers and ignore some of (or all) their values if it is
forced to take a cheap-snapshot operation. This only doubles the step complexity.

Recall that the processes are partitioned into S = max{3, �n
f �} sets P1, . . . , PS ,

each with at most f processes. We consider a restricted set of layered schedules.
Definition 4.1. A schedule σ is regular if for every layer L and every i, 1 ≤

i ≤ S, either all processes p ∈ Pi take a step in L consecutively (one after the other,
without steps of processes not in Pi in between), or none of the processes p ∈ Pi takes
a step in L. We denote by π the permutation of the sets Pi that take steps in L; i.e.,
if processes p ∈ Pi take a step in L, then π−1(i) is their index in the layer. We denote
by |π| the number of sets Pi that take steps in the layer.

Note that, in contrast to the message-passing model, in a shared-memory model
the order of the processes in a layer L is significant, since different orderings result in
different executions.

Regular schedules are useful in our proofs since in every layer all the processes
in some set Pi perform the same operation, as argued in the next lemma. Since
processes in the same set Pi either all write to different registers (recall that registers
are single-writer) or read all registers, this means that in a regular execution the order
of processes in the set Pi does not matter.

Lemma 4.2. Let σ be a regular schedule with k layers. Then in every layer L
in σ, for every i, 1 ≤ i ≤ S, either all process p ∈ Pi do not take a step in L, or all
processes p ∈ Pi perform a write operation in L, or all processes p ∈ Pi perform a
cheap-snapshot operation in L.

Proof. The proof is by induction on the layer number r.
Base case. Let r = 1; i.e., L is the first layer of σ. Since σ is regular, either all

process p ∈ Pi take a step in L, or none of the processes p ∈ Pi takes a step in L.
If all take a step, then by our assumption on the algorithm, it is a write operation.
Otherwise, none takes a step, which proves the base case.

Induction step. Assume the lemma holds for layer �, 1 ≤ � ≤ r. We prove the
lemma for layer r + 1. By the induction hypothesis, in every layer �, 1 ≤ � ≤ r,
either all processes p ∈ Pi perform a cheap-snapshot operation, or all perform a write
operation, or none performs an operation. If none preforms any operation in any
layer � ≤ r, then at the beginning of layer r+1 the pending operation of all processes
p ∈ Pi is a write operation by our assumption on the algorithm. Otherwise, let �
be the maximal layer in which all processes p ∈ Pi took a step. If they are cheap-
snapshot operations, then at the beginning of layer r + 1 the pending operation of
all processes p ∈ Pi is a write operation by our assumption on the algorithm. If they
are write operations, then at the beginning of layer r+1 the pending operation of all
processes p ∈ Pi is a cheap-snapshot operation by our assumption on the algorithm.
In any case, at the beginning of layer r+1, either all processes p ∈ Pi have a pending
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cheap-snapshot operation, or all have a pending write operation. Since σ is regular,
either none of the processes p ∈ Pi takes a step in layer r+1, or all take a step in layer
r + 1, in which case it would either be a cheap-snapshot operation for all processes,
or a write operation for all processes.

In the proof, we apply certain manipulations to regular schedules, allowing us to
delay and crash sets of processes as follows.

Definition 4.3. Let σ be a schedule such that every p ∈ Pi is nonfaulty in layer
r, and such that Pi is not the last set of processes in the layer. Let swap(σ, Pi, r) be
the schedule that is the same as σ, except that the steps of processes in Pi are swapped
with steps of the next set of processes in that layer. Formally, if π is the permutation
of layer r in σ and π′ is the permutation of layer r in swap(σ, Pi, r), and if j = π−1(i),
then we have π′(j) = π(j + 1) and π′(j + 1) = π(j).

Inductively, we define

swapj(σ, Pi, r) = swap(swapj−1(σ, Pi, r), Pi, r);

that is, Pi is swapped j times and moved j sets later in the layer.
Definition 4.4. Let σ be a schedule and r be a layer such that no process is

skipped in any layer � > r. Let delay(σ, Pi, r) be the schedule that is the same as σ,
except that the steps of Pi starting from layer r are delayed by one layer. Thus, there
is no step of p ∈ Pi in layer r, the step of p ∈ Pi in layer r + 1 is the step that was
in layer r, and so on. The permutations of the layers � ≥ r + 1 do not change.

Note that this definition assumes a schedule σ in which no process is skipped in
any layer � > r. Specifically, this implies that Pi appears in every layer � ≥ r+1, which
allows us to keep the permutations in layers � ≥ r + 1 unchanged in delay(σ, Pi, r).

Delaying a set Pi from layer r can be seen as delaying Pi from layer r+1, swapping
Pi in layer r until it reaches the end of the layer, accounting for Pi as the first set in
layer r+1 instead of the last set in layer r, and then swapping Pi in layer r+ 1 until
it reaches its original place in the layer.

Although accounting for Pi as the first set in layer r+1 instead of the last set in
layer r does not change the order of steps taken, it is technically a different schedule
(recall that the schedules are defined as sequences of layers, which in this case are
different in layers r and r + 1). Therefore we define the following definition.

Definition 4.5. Let σ be a schedule where the last set of processes in layer r is
Pi, and this set does not appear in layer r + 1. Let rollover(σ, Pi, r) be the schedule
that is the same as σ, except that Pi is the first set in layer r + 1 instead of the last
set in layer r.

Effectively, such two schedules σ and rollover(σ, Pi, r) have the same order of
steps, which implies that the executions of these schedules is the same:

α(σ,�c, I) = α(rollover(σ, Pi , r),�c, I).

Definitions 4.3, 4.4, and 4.5 imply the following corollary.
Corollary 4.6. Let σ be a regular schedule with k layers. For every r, 1 ≤ r ≤

k, and πr the permutation of layer r in σ,

delay(σ, Pi, r)

= swapπ
−1
r+1(i)−1(rollover(swap|πr |−π−1

r (i)(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1).

Figure 4.1 depicts the schedules used when delaying a set Pi in layer r of a schedule
σ, according to this corollary.
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σ · · · . . . Pi . . .
︸ ︷︷ ︸

layer r

. . . Pi . . .
︸ ︷︷ ︸

layer r + 1

· · ·

delay(σ, Pi, r + 1) · · · . . . Pi . . .
︸ ︷︷ ︸

layer r

. . . . . .
︸ ︷︷ ︸

layer r + 1

· · ·

swap(delay(σ, Pi, r + 1), Pi, r) · · · . . . . . . Pi
︸ ︷︷ ︸

layer r

. . . . . .
︸ ︷︷ ︸

layer r + 1

· · ·

rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r) · · · . . . . . .
︸ ︷︷ ︸

layer r

Pi . . . . . .
︸ ︷︷ ︸

layer r + 1

· · ·

swap(rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1) · · · . . . . . .
︸ ︷︷ ︸

layer r

. . . Pi . . .
︸ ︷︷ ︸

layer r + 1

· · ·

= delay(σ, Pi, r) · · · . . . . . .
︸ ︷︷ ︸

layer r

. . . Pi . . .
︸ ︷︷ ︸

layer r + 1

· · ·

Fig. 4.1. An example showing how swap operators are applied to delay a set of processes Pi;
assume Pi is the penultimate set in layer r and the third set in layer r + 1. Note that the third
transition does not modify the execution and only accounts for the steps of Pi to layer r+1 instead
of layer r; the last transition just notes that we have obtained delay(σ, Pi, r).

Recall that crash(σ, Pi, r) is the schedule that is the same as σ, except that
processes in Pi crash in layer r. Crashing a set Pi in layer r can be seen as delaying
it from layer r and then crashing it from layer r + 1. Definitions 2.1 and 4.4 imply
the following corollary.

Corollary 4.7. For every regular schedule σ,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

An important property of regular schedules is that swapping, delaying, or crashing
a set of processes Pi yields a regular schedule as well, because the sets are manipulated
together.

Lemma 4.8. Let σ be a regular schedule with k layers. Then for every i,
1 ≤ i ≤ S, and every r, 1 ≤ r ≤ k, the schedules swap(σ, Pi, r), delay(σ, Pi, r),
rollover(σ, Pi, r), and crash(σ, Pi, r) are regular.

Proof. Every layer � 
= r in swap(σ, Pi, r) is the same as in σ and therefore
satisfies the requirement of a regular schedule. In layer r, all processes that took steps
in σ also take steps in swap(σ, Pi, r), and each set remains consecutive. Therefore,
swap(σ, Pi, r) is regular. It is also easy to see that rollover(σ, Pi, r) is regular.

The proof for delay(σ, Pi, r) and crash(σ, Pi, r) is by backwards induction on the
layer number r.

Base case. For r = k, delaying a set Pi in the last layer is the same as crashing
Pi. Denote σ′ = delay(σ, Pi, k) = crash(σ, Pi, k). Every layer � < k in σ′ is the same
as in σ, and the last layer k is the same in σ′, except that the processes in Pi do not
take a step. Hence, σ′ is also regular.

Induction step. We assume the statement holds for layer �, r + 1 ≤ � ≤ k, and
prove it for layer r. By Corollary 4.6 and the induction hypothesis, and since swapping
results in a regular schedule, delay(σ, Pi, r) is regular. By Corollary 4.7 and the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED CONSENSUS UNDER A WEAK ADVERSARY 3897

induction hypothesis, and since delaying results in a regular schedule, crash(σ, Pi, r)
is regular.

We next construct an indistinguishability chain of schedules between any regular
schedule and a schedule in which some set of processes is delayed or crashed. The
construction relies on Corollaries 4.6 and 4.7 to delay or crash a set of processes
through a sequence of swaps. The elementary step in this construction, where a set
is swapped with the following one, is provided by the next lemma.

Lemma 4.9. Let σ be a regular schedule with k layers. For any sequences of coins
�c and initial configuration I, if Pi is not the last set of processes in layer r, 1 ≤ r ≤ k,
then there is a set Pj such that at the end of layer r only processes in Pj (at most)
distinguish between α(σ,�c, I) and α(swap(σ, Pi, r),�c, I).

Proof. Consider swap(σ, Pi, r) and let π be the permutation corresponding to layer
r. Since Pi is not the last set in the layer, we have π−1(i) 
= |π|. Let i′ = π(π−1(i)+1);
i.e., Pi is swapped with Pi′ . By Lemma 4.2, either all the processes in Pi perform a
cheap-snapshot operation or all processes in Pi perform a write operation. The same
applies for Pi′ .

If both types of operations are cheap-snapshot operations or both types are write

operations (necessarily to different registers), then α(σ,�c, I)
p∼ α(swap(σ, Pi, r),�c, I)

for every process p in the layer.
If one type of operation is cheap-snapshot and the other is writing, then only the

processes in the set performing cheap-snapshot observe a difference. Denote this set
by Pj (where j is either i or i′).

Notice that the set Pj (the value of the index j) depends only on the types of
operations performed, i.e, only on σ, and not on the sequences of coins �c or the initial
configuration I. This is necessary for claiming that the adversary is nonadaptive.

For every r and k, 1 ≤ r ≤ k, we define

sr,k =

{
1 if r = k,
2 · cr+1,k + 1 if 1 ≤ r < k,

dr,k =

{
S if r = k,
dr+1,k + S · sr,k + S · sr+1,k if 1 ≤ r < k,

cr,k =

{
S if r = k,
dr,k + cr+1,k if 1 ≤ r < k,

where S = max{3, �n
f �} is the number of sets Pi. These recursive functions will be

used for bounding the lengths of the indistinguishability chains in our construction.
The next proposition shows a bound on these functions; its proof appears in [14].
Proposition 4.10. cr,k ≤ (2S + 4)k−r+1.
The main technical result of this section is the following lemma, which will be

used to show an indistinguishability chain between the executions that result from
schedules σ and crash(σ, Pi, 1) in order to apply Lemma 2.3. Additional claims,
regarding swap and delay, are proved in order to carry through with the proof.

Lemma 4.11. Let σ be a regular schedule with k layers such that no process is
skipped at any layer � ≥ r for some r, 1 ≤ r ≤ k. For any sequences of coins �c and
initial configuration I, and for every i, 1 ≤ i ≤ S, the following hold:

α(σ,�c, I) ≈sr,k α(swap(σ, Pi, r),�c, I),

α(σ,�c, I) ≈dr,k
α(delay(σ, Pi, r),�c, I),

α(σ,�c, I) ≈cr,k α(crash(σ, Pi, r),�c, I).
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Proof. Let σ0 = σ. Throughout the proof, we denote αi = α(σi,�c, I) for every
schedule σi, and α′

i = α(σ′
i,�c, I) for every schedule σ′

i.
The proof is by backwards induction on r.
Base case r = k. Consider swap(σ, Pi, k), where Pi is not the last set in the layer

(otherwise swapping is undefined). By Lemma 4.9, there is a set Pj , which does not

depend on �c or I, such that α(σ,�c, I)
p∼ α(swap(σ, Pi, r),�c, I) for every process p 
∈ Pj .

Therefore, α(σ,�c, I) ≈sk,k
α(swap(σ, Pi, k),�c, I).

Delaying Pi in the last layer is equivalent to failing it; therefore delay(σ, Pi, k) =
crash(σ, Pi, k). Denote this schedule by σ′. We crash Pi by swapping it until it reaches
the end of the layer and then removing it. In more detail, let π be the permutation
of the last layer of σ, and define

σ′′ = swap|π|−π−1(i)(σ, Pi, k).

The proof of the base case for swap(σ, Pi, k) implies that there is a chain of length
sk,k · (|πr| − π−1

r (i)) ≤ (S − 1) · sk,k = S − 1 between the executions, i.e., α0 ≈S−1

α(σ′′,�c, I). Clearly, α(σ′′,�c, I)
p∼ α(σ′,�c, I) for every process p 
∈ Pi, and therefore

α(σ,�c, I) ≈dk,k
α(delay(σ, Pi, r),�c, I) and α(σ,�c, I) ≈ck,k

α(crash(σ, Pi, r),�c, I).
Induction step. Assume the statement holds for layer r + 1 ≤ k. We prove that

it holds for layer r.
We first deal with swapping. Assume that Pi is not the last set in the layer and

consider swap(σ, Pi, r). By Lemma 4.9, there is a set Pj , which does not depend
on �c or I, such that at the end of layer r only processes in Pj distinguish between
α(σ,�c, I) and α(swap(σ, Pi, r),�c, I). We define σ1 to be the same as σ, except that
processes in Pj are crashed in layer r + 1, i.e., σ1 = crash(σ, Pj , r + 1). By the
induction hypothesis, α0 ≈cr+1,k

α1. Let σ2 be the same as σ1, except that Pi and Pj

are swapped in layer r, i.e., σ2 = swap(σ1, Pi, r). Since only processes in Pj observe

the swapping, but are all crashed in the next layer, we have that α1
p∼ α2 for every

process p 
∈ Pj . Finally, let σ3 be the same as σ2, except that processes in Pj are not
crashed in layer r + 1, i.e., σ2 = crash(σ3, Pj , r + 1). By the induction hypothesis,
α2 ≈cr+1,k

α3. Notice that σ3 = swap(σ, Pi, r), and 2cr+1,k + 1 = sr,k, which implies
that α(σ,�c, I) ≈sr,k α(swap(σ, Pi, r),�c, I).

Next, we consider the case of delaying a process, i.e., delay(σ, Pi, r). (Recall
Figure 4.1.) By Corollary 4.6,

delay(σ, Pi, r)

= swapπ
−1
r+1(i)−1(rollover(swap|πr |−π−1

r (i)(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1).

Recall that applying rollover does not change the execution. Hence, by the proof for
swapping and the induction hypothesis, and since

dr+1,k+sr,k ·(|πr|−π−1
r (i))+sr+1,k ·(π−1

r+1(i)−1) ≤ dr+1,k+S ·sr,k+S ·sr+1,k = dr,k,

it follows that α(σ,�c, I) ≈dr,k
α(delay(σ, Pi, r),�c, I).

Finally, we consider the case of crashing a process, i.e., crash(σ, Pi, r). By Corol-
lary 4.7,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

By the proof for delaying and the induction hypothesis, and since dr,k + cr+1,k = cr,k,
it follows that

α(σ,�c, I) ≈cr,k α(crash(σ, Pi, r),�c, I).
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Algorithm 1. Simulating a multiwriter register R from single-writer registers

Process pi has a shared register RR[1], each consisting of the pair 〈v, t〉;
initially, each register holds 〈0, init〉, where init is the desired initial value

1: read(R):
2: snapshot RR array into local (t, v) array
3: return v[j] such that t[j] is maximal

4: write(R, v) by pw:
5: snapshot RR array into local (t, v) array
6: let lts be the maximum of t[1], . . . , t[n]
7: write the pair (v, lts+ 1) to RR[w]
8: return

Note that in all executions constructed in the proof, at most one set of processes
Pi does not appear in a layer; since |Pi| ≤ f , this implies that at least n− f processes
take a step in every layer, and hence every execution in the construction contains at
least k(n− f) steps.

Lemmas 2.3 and 4.11 imply that for every sequence of coins �c, α(σfull,�c, C0)
≈S(2c1,k+1)+1 α(σfull,�c, CS), since c1,k ≤ (2S + 4)k, we have that S(2c1,k + 1) + 1 ≤
(2S + 4)k+1. Substituting in Theorem 2.2 yields that qk ≥ 1

(2S+4)k+1+1
. Since S can

be taken to be a constant when �n
f � is a constant, we get the following theorem.

Theorem 4.12. Let A be a randomized consensus algorithm in the asynchronous
shared-memory model, with single-writer registers and cheap-snapshots. There is a
weak adversary and an initial configuration, such that the probability that A does not
terminate after k(n−f) steps is at least 1

ck
, where c is a constant if �n

f � is a constant.

4.2. Multiwriter cheap-snapshot. When multiwriter registers are considered,
the above approach cannot be directly used. This is because swapping two sets of
processes which perform write operations may change the value of a register and
hence may lead other processes, which later read (or perform a cheap-snapshot), to
distinguish this from before the swap. This cannot happen when registers are single-
writer, since no two processes write to the same register, and therefore swapping two
write operations is indistinguishable to all processes.

Instead, we derive the lower bound for multiwriter registers by reduction to single-
writer registers. In a simple simulation of a multiwriter register from single-writer reg-
isters (e.g., [33]), performing a high-level read or write operation (to the multiwriter
register) involves n low-level read operations (of all single-writer registers) and pos-
sibly one low-level write operation (to the process’ own single-writer register). This
multiplies the total step complexity by O(n).

However, with cheap-snapshots, we can read all single-writer registers in one
step, yielding a simulation that only doubles the total step complexity (since writing
includes a cheap-snapshot operation). The pseudocode of the simulation appears in
Algorithm 1, which uses an array RR of single-writer variables. RR[i] is the last value
written by pi, together with a timestamp. The correctness of this algorithm follows
along the lines of the proof of Algorithm 10.3 from [6].

Since in the single-writer cheap-snapshot model each snapshot operation accounts
for one access to the shared memory, every algorithm in the multiwriter model can be
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transformed to an algorithm in the single-writer cheap-snapshot model, where the step
complexity is multiplied only by a constant factor. Combining this with Theorem 4.12
yields the following theorem.

Theorem 4.13. Let A be a randomized consensus algorithm in the asynchronous
shared-memory model, with multiwriter registers and cheap-snapshots. There is a
weak adversary and an initial configuration, such that the probability that A does not
terminate after k(n−f) steps is at least 1

ck
, where c is a constant if �n

f � is a constant.

5. Monte-Carlo algorithms. Another way to overcome the impossibility of
asynchronous consensus is to allow Monte-Carlo algorithms. This requires us to relax
the agreement property and allow the algorithm to decide on conflicting values, with
small probability. Let εk be the maximum probability, over all weak adversaries and
over all initial configurations, that processes decide on conflicting values after k(n−f)
steps. The next theorem is the analogue of Theorem 2.2, for bounding the probability
of terminating after k(n− f) steps.

Theorem 5.1. Assume there is an integer m such that for any sequences of coins

�c, α(σfull,�c, C0) ≈m α(σfull,�c, CS). Then qk ≥ 1−(m+1)εk
m+1 .

Proof. Assume, by way of contradiction, that (m+1)qk < 1−(m+1)εk. Consider
the m + 1 executions in the sequence implied by the fact that α(σfull,�c, C0) ≈m

α(σfull,�c, CS). The probability that A does not terminate in at least one of these
m+1 executions is at most (m+1)qk. By assumption, qk(m+1) < 1− (m+1)εk, and
hence the set B of sequences of coins �c such that A terminates in all m+1 executions
has probability Pr[�c ∈ B] > (m+ 1)εk.

If the agreement property is satisfied in all m+1 executions, then by the validity
condition, as in the proof of Theorem 2.2, we get that the decision in α(σfull,�c, C0) is
the same as the decision in α(σfull,�c, CS), which is a contradiction. Hence, for every
�c ∈ B, the agreement condition does not hold in at least one of these executions.

Since we have m + 1 schedules in the chain, there exists a schedule for which
the agreement condition does not hold with probability greater than εk. But this
means that A satisfies agreement with probability smaller than 1 − εk, which is a
contradiction.

Substituting with Lemmas 2.3 and 3.3 yields the lower bound for the message-
passing model.

Theorem 5.2. Let A be a randomized consensus algorithm in the asynchronous
message-passing model. There is a weak adversary and an initial configuration, such

that the probability that A does not terminate after k(n− f) steps is at least 1−ckεk
ck

,
where c is a constant if �n

f � is a constant, and εk is a bound on the probability for
disagreement.

Substituting with Lemma 2.3 and the proof of Theorem 4.13 yields the lower
bound for the shared-memory model.

Theorem 5.3. Let A be a randomized consensus algorithm in the asynchronous
shared-memory model with multiwriter registers and cheap-snapshots. There is a weak
adversary and an initial configuration, such that the probability that A does not termi-

nate after k(n−f) steps is at least 1−ckεk
ck

, where c is a constant if �n
f � is a constant,

and εk is a bound on the probability for disagreement.
The bound we obtain in Theorem 5.1 on the probability qk of not terminating in-

creases as the allowed probability εk of terminating without agreement decreases, and
coincides with Theorem 2.2 in case the agreement property must always be satisfied
(i.e., εk = 0). In case an algorithm always terminates in k(n− f) steps (i.e., qk = 0),
we can restate Theorem 5.1 as a bound on εk.
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Corollary 5.4. Assume there is an integer m such that for any sequences
of coins �c, α(σfull,�c, C0) ≈m α(σfull ,�c, CS). Moreover, assume that the algorithm
always terminates after k(n− f) steps, i.e., qk = 0. Then εk ≥ 1

m+1 .
For example, the algorithms for the message-passing model given by Kapron

et al. [27] are Monte-Carlo; i.e., they have a small probability for terminating with-
out agreement. They present an algorithm that always terminates within polylog(n)
asynchronous rounds and has a probability 1

polylog(n) for disagreeing. For comparison,

our lower bound of Corollary 5.4 for disagreeing when k = polylog(n) and qk = 0 is
εk ≥ 1

cpolylog(n) , where c is a constant if �n
f � is a constant. Their second algorithm

always terminates within 2Θ(log7 n) asynchronous rounds and has a probability 1
poly(n)

for disagreeing, while our lower bound is εk ≥ 1

c2
Θ(log7 n)

.

6. Discussion. We presented lower bounds for the termination probability
achievable by randomized consensus algorithms with bounded running time, under
a very weak adversary. Our results are particularly relevant in light of the recent
surge of interest in providing Byzantine fault-tolerance in practical, asynchronous dis-
tributed systems (e.g., [13, 30]). The adversarial behavior in these applications is
better captured by nonadaptive adversaries as used in our lower bounds, rather than
the adaptive adversary, which can observe the results of local coin-flips used in most
previous lower bounds [1, 5, 10].

For all models, when agreement is required to always hold, we have shown that
the probability qk that the algorithm fails to complete in k(n − f) steps is at least
1
ck for a model-dependent value c which is a constant if �n

f � is a constant. Table 6.1
shows the bounds for specific values of k.

Table 6.1

Bounds on qk in different models, when agreement is required to always hold. MP is the
message-passing model, while SW/MW stands for single/multiwriter registers, SR/MR for sin-
gle/multireader registers, and CS for cheap-snapshots.

Model k = logn k = log2 n

Lower bound asynchronous MP, SWCS, MWCS 1
nΩ(1)

1
nΩ(log n)

synchronous MP [20] 1
nΩ(log log n)

Upper bound SWMR [8] 1
nO(1)

MWMR [7] 1
nO(1)

The previous lower bound for the synchronous message-passing model [20] is
qk ≥ 1

(ck)k for some constant c. From the perspective of the expected total step

complexity, given a nontermination probability δ, the lower bound of [20] implies

Ω
(
(n − f) log 1/δ

log log 1/δ

)
steps, which is improved by our bound to Ω ((n − f) log 1/δ)

steps.
In the shared-memory model with single-writer multireader registers, Aumann

and Bender [8] show a consensus algorithm with probability 1− 1
nO(1) for terminating

in O(n log2 n) steps. For multiwriter multireader registers, Aumann [7] presents an
iterative consensus algorithm, with constant probability to terminate at each itera-
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tion, independently of the previous iterations. This implies that the probability of
terminating after k iterations is 1− 1

ck for some constant c.

When agreement is required to hold only with high probability, Kapron et al. [27]
give an algorithm for the asynchronous message-passing model that always terminates
within polylog(n) asynchronous rounds and has a probability 1

polylog(n) for disagreeing,

and an algorithm that always terminates within 2Θ(log7 n) asynchronous rounds and
has a probability 1

poly(n) for disagreeing.

An interesting open question is to close the gap between the values of the prob-
ability εk for disagreement achieved in the algorithms of [27] and the lower bounds
obtained in this paper on that probability. It is also interesting to tighten the bounds
in the synchronous model and for large values of k.

Our lower bounds can be used to estimate the error distribution and bound the
variance of the running time of randomized consensus algorithms. They do not yield
significant lower bounds for the expected step complexity—there is still a large gap
between the (trivial) lower bounds and upper bounds for the shared-memory model,
with a weak adversary.

Another broader research direction is to explore complexity bounds on random-
ized algorithms for other coordination problems, most notably, renaming [4] and set
consensus [16].

An alternative approach for deriving a lower bound on randomized consensus
under a weak adversary, suggested by Eli Gafni, is the following. First, derive a
lower bound for two processes in a message-passing system. Then, use the ABD
simulation [3] to simulate shared memory in a message-passing system, generalizing
the bound to hold for shared memory as well. Finally, use the BG simulation [12] to
extend the bound to n processes. In this paper, we choose not to take this direction
for the following reasons. Proving the lower bound for two processes by showing an
indistinguishability chain with a certain size would be similar to section 3. Other
approaches, such as using topological arguments [26], require introducing a whole
different setting, which may not be simpler than the setting used in this paper. In
addition, the BG and ABD simulations incur a cost in the number of steps taken,
which may lead to a weaker bound than the one presented in this paper (recall from
section 4.2 the subtle considerations that allow using the reduction of single-writer
registers to multiwriter registers). However, we note that pursuing this approach is
appealing in the context of extending the lower bound to the set consensus problem
[16], as direct connectivity arguments [17] seem more involved than a topological
approach. We leave this for future research.
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