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TRANSDICHOTOMOUS RESULTS IN COMPUTATIONAL
GEOMETRY, I: POINT LOCATION IN SUBLOGARITHMIC TIME∗

TIMOTHY M. CHAN† AND MIHAI PǍTRAŞCU‡

Abstract. Given a planar subdivision whose coordinates are integers bounded by U ≤ 2w , we
present a linear-space data structure that can answer point-location queries in O(min{lg n/ lg lg n,√

lg U/ lg lg U}) time on the unit-cost random access machine (RAM) with word size w. This is the
first result to beat the standard Θ(lg n) bound for infinite precision models. As a consequence, we
obtain the first o(n lg n) (randomized) algorithms for many fundamental problems in computational
geometry for arbitrary integer input on the word RAM, including: constructing the convex hull
of a three-dimensional (3D) point set, computing the Voronoi diagram or the Euclidean minimum
spanning tree of a planar point set, triangulating a polygon with holes, and finding intersections
among a set of line segments. Higher-dimensional extensions and applications are also discussed.
Though computational geometry with bounded precision input has been investigated for a long time,
improvements have been limited largely to problems of an orthogonal flavor. Our results surpass this
long-standing limitation, answering, for example, a question of Willard (SODA’92).

Key words. computational geometry, word-RAM algorithms, data structures, sorting, search-
ing, convex hulls, Voronoi diagrams, segment intersection
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1. Introduction. The sorting problem requires Ω(n lg n) time for comparison-
based algorithms, yet this lower bound can be beaten if the n input elements are
integers in a restricted range [0, U). For example, if U = nO(1), radix-sort runs in
linear time. Van Emde Boas trees [66, 67] can sort in O(n lg lg U) time. Fredman
and Willard [35] showed that o(n lg n) time is possible regardless of how U relates
to n: their fusion tree yields a deterministic O(n lg n/ lg lg n)-time and a randomized
O(n

√
lg n)-time sorting algorithm. Many subsequent improvements have been given

(see section 2).
In all of the above, the underlying model of computation is a random access

machine (RAM) that supports standard operations on w-bit words with unit cost,
under the reasonable assumptions that w ≥ lg n, i.e., that an index or pointer fits
in a word and that U ≤ 2w, i.e., that each input number fits in a word.1 The
adjective “transdichotomous” is often associated with this model of computation.
These assumptions fit the reality of common programming languages such as C, as
well as standard programming practice (see section 2.1).

Applications of these bounded-precision techniques have also been considered for
geometric problems, but up until now, all known results are limited essentially exclu-
sively to problems about axis-parallel objects or metrics (or those that involve a fixed
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Science, 2006: pages 333–342 (by the first author) and pages 325–332 (by the second author).

http://www.siam.org/journals/sicomp/39-2/68669.html
†School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(tmchan@uwaterloo.ca). This author’s work was supported by an NSERC grant.
‡MIT Computer Science and Artificial Intelligence Laboratory, MIT, 32 Vassar St., Cambridge,

MA 02139 (mip@mit.edu).
1Following standard practice, we will actually assume throughout the paper that U = 2w, i.e.,

that the machine does not have more precision than it reasonably needs to.
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704 TIMOTHY M. CHAN AND MIHAI PǍTRAŞCU

number of directions). The bulk of computational geometry deals with nonorthogo-
nal objects (lines of arbitrary slopes, the Euclidean metric, etc.) and thus has largely
remained unaffected by the breakthroughs on sorting and searching.

For example, it is not even known how to improve the O(n lg n) running time for
constructing a Voronoi diagram when the input points come from an integer grid of
polynomial size U = nO(1), in sharp contrast to the trivial radix-sort in one dimension.
Obtaining an o(n lg n) algorithm for Voronoi diagrams is a problem that has been
posed at least since SODA’92 [68].

Our results. We show, for the first time, that the known Ω(n lg n) lower bounds
for algebraic computational trees can be broken for many of the core problems in com-
putational geometry, when the input coordinates are integers in [0, U) with U ≤ 2w.
We list our results for some of these problems below, all of which are major topics
of textbooks—see [12, 32, 51, 52, 55] on the extensive history and on the previously
“optimal” algorithms. (See section 7 for more applications.)

• We obtain O(n lg n/ lg lg n)-time randomized algorithms for the three-
dimensional (3D) convex hull, two-dimensional (2D) Voronoi diagram, 2D
Delaunay triangulation, 2D Euclidean minimum spanning tree, and 2D trian-
gulation of a polygon with holes.

• We obtain an O(n lg n/ lg lg n+k)-time randomized algorithm for the 2D line
segment intersection problem, where k denotes the output size.

• We obtain a data structure for the 2D point location problem with O(n)
preprocessing time, O(n) space, and O(lg n/ lg lg n) query time. The same
space and query bound hold for 2D nearest neighbor queries (also known as
the static “post office” problem).

If the universe size U is not too large, we can get even better results: all the
lg n/ lg lg n factors can be replaced by

√
lg U/ lg lg U . For example, we can con-

struct the Voronoi diagram in O(n
√

lg n/ lg lg n) expected time for 2D points from a
polynomial-size grid (U = nO(1)).

Our algorithms use only standard operations on w-bit words that are commonly
supported by most programming languages, namely, comparison, addition, subtrac-
tion, multiplication, integer division, bitwise-and, and left and right shifts; a few
constants depending only on the value of w are assumed to be available (a standard
assumption made explicit since Fredman and Willard’s paper [35]).

A new direction. Our results open a whole new playing field, where we attempt
to elucidate the fundamental ways in which bounded information about geometric ob-
jects such as points and lines can be decomposed in algorithmically useful ways. In
computational geometry, this may lead to a finer distinction of the relative com-
plexities of well-studied geometric problems. In the world of RAM algorithms, this
direction requires an expansion of existing techniques on one-dimensional (1D) sorting
and searching and may perhaps lead to an equally rich theory for multidimensional
problems.

Since the publication of the conference version of this paper, two follow-up works
have furthered this direction of research, refining techniques from the present paper.
In [22], we show how to solve the offline point-location problem faster, which is
sufficient to lead to faster algorithms for 2D Voronoi diagrams, 3D convex hulls,
and other static problems. (The difference between online and offline versions of the
problems is analogous to the difference between sorting and predecessor search in one
dimension.) In [29], the authors construct a dynamic 2D convex hull data structure,
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(Cor. 7.1(f))

3-d convex hull
(Thm. 6.1)

3-d output-sensitive
convex hull (Cor. 7.1(h))

2-d Voronoi
diagram/Delaunay
triangulation
(Cor. 7.1(a))

2-d EMST
(Cor. 7.1(b))

2-d largest empty
circle (Cor. 7.1(c))

point location
in a slab
(Thm. 3.5)

2-d nearest neighbor
search (Cor. 7.1(d))

polygons with holes

general 2-d
point location
(Thm. 4.3)

decomposition
intersection/trapezoidal
2-d segment

(Thm. 5.1)

triangulation of

Fig. 1.1. Dependency of results in sections 3–7.

with O(lg n/ lg lg n) query time and polylogarithmic update time.

Organization. The rest of the paper is organized as follows. Section 2 provides
more background by briefly reviewing some relevant previous work. Section 3 repre-
sents the heart of the paper and explores point location among disjoint line segments
spanning a slab, which turns out to be the key subproblem. To introduce the structure
of our search strategy, we first describe a simple alternative to Fredman and Willard’s
original fusion tree, which achieves sublogarithmic bounds. Even after incorporating
nontrivial new ideas for extending this strategy to two dimensions, the resulting data
structure remains simple and self-contained: its description (section 3.2) is about two
pages long. In section 4, we show how to reduce the general 2D point-location prob-
lem to the slab subproblem; in fact, we give three different ways to accomplish this
reduction (each with its advantages and disadvantages). In sections 5–7, we apply our
point-location data structures to derive new results for other well-known geometric
problems. (See Figure 1.1.) Extensions and applications in higher dimensions are also
described in section 8. We conclude with comments in section 9.

2. Background.

2.1. The model versus practice. Traditionally, computational geometry has
seen the negative side of the contrast between finite and infinite precision. Algorithms
are typically designed and analyzed in the real RAM, which makes the theoretical
side easier. However, practitioners must eventually deal with finite precision, making
theoretical algorithms notoriously difficult to implement.

In the applied literature, there has been considerable attention on robustness
issues in geometric computation; for instance, much work is focused on examining
the predicates used by comparison-based algorithms that were originally designed for
the real RAM, and implementing these operations in a safe and effective way under
finite precision. Here, we take a different perspective. By assuming that actual input
data have bounded precision in the first place, we show that one can actually design
asymptotically better algorithms.

A common theoretical fallacy is that it is irrelevant to study algorithms in a
bounded universe because “only comparison-based algorithms are ever implemented.”
However, this thesis has been attacked forcefully in one dimension; see, e.g., [39].
It is well known, for instance, that the fastest solutions to sorting are based on
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bounded precision (radix-sort). Furthermore, when search speed matters, such as
for forwarding packets in Internet routers, search is certainly not implemented by
comparisons [28].

Even for the geometric problems we are studying, there are examples showing the
benefit of using bounded precision. A survey by Snoeyink [62] indicates that the most
efficient and popular approaches for planar point location use pruning heuristics on
the grid. These heuristics are similar in spirit to the algorithms we develop in this
paper, so, to some extent, our work justifies engineering practice.

As another example, we note that there is considerable interest in approximate
nearest neighbor search, even in two dimensions. This is hard to understand when
viewed through the real-RAM abstraction, because both the approximate and ex-
act nearest neighbor problem have the same logarithmic complexity. However, for
approximate nearest neighbor one can give better (and simpler) solutions based on
bounded precision [3, 20].

A question that we wish to touch on briefly is whether an integer universe is the
right model for bounded precision. In certain cases, the input is on an integer grid by
definition (e.g., objects are on a computer screen). One might worry, however, about
the input being a floating point number. We believe that in most cases this is an ar-
tifact of representation, and numbers should be treated as integers after appropriate
scaling. One reason is that the “floating point plane” is simply a union of bounded
integer grids (the size depending on the number of bits of the mantissa) at different
scale factors around the origin. Since the kinds of problems we are considering are
translation-independent, there is no reason the origin should be special, and having
more detail around the origin is not particularly meaningful. Another reason is that
certain aspects of the problems are not well defined when inputs are floating point
numbers. For example, the slope of a line between two points of very different expo-
nents is not representable by floating point numbers anywhere close to the original
precision.

2.2. RAM algorithms in one dimension. In addition to the work already
mentioned, many integer-sorting results have been published (e.g., [5, 47, 57, 63, 65]).
Currently, the best linear-space deterministic and randomized algorithms (indepen-
dent of U and w) have running time O(n lg lg n) and O(n

√
lg lg n), respectively, due

to Han [38] and Han and Thorup [39]. A linear randomized time bound [5] is known
for the case when w ≥ lg2+ε n for any fixed ε > 0. Thorup [64] showed a black-box
transformation from sorting to priority queues, which makes the above bounds carry
over to this dynamic problem.

For the problem of maintaining a data structure for successor search (finding
the smallest element greater than a query value), van Emde Boas trees [66, 67]
yield O(lg lg U) = O(lg w) query time with linear space, and Fredman and Willard’s
fusion trees yield an O(logw n) query time with linear space. (This is certainly
O(lg n/ lg lg n), and by balancing with the van Emde Boas bound, O(

√
lg n).) For

polynomial space, some improvements are possible [11]. Pǎtraşcu and Thorup [54]
show optimal upper and lower bounds for this problem, giving an exact understanding
of the time-space tradeoffs.

Most importantly, their lower bounds show that for near linear space (say, space
n lgO(1) n), the optimal query time is Θ(min{logw n, lg w/ lg lg w

lg lg n}). The first branch
is achieved by fusion trees, while the second branch is a slight improvement to van
Emde Boas, which is relevant only for rather large precision. We note that point
location is harder than successor search, so the lower bounds apply to our problems
as well.
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Other 1D data structure problems for integer input have also been studied. The
classic problem of designing a dictionary to answer membership queries , typically
addressed by hashing, can be solved in O(1) deterministic query time with linear
space, while updates are randomized and take O(1) time with high probability (see
e.g., [30, 34]). Range queries in one dimension (reporting any element inside a query
interval) can be solved with O(1) query time by a linear-space data structure [2].
Even for the dynamic problem, exponential improvements over successor search are
known [50].

2.3. (Almost) orthogonal problems. As mentioned, known algorithms from
the computational geometry literature that exploit the power of the word RAM mostly
deal with orthogonal-type special cases, such as orthogonal range searching, finding
intersections among axis-parallel line segments, and nearest neighbor search under
the L1- or L∞-metric. Most of these works (see [13, 43, 44, 45, 53] for a sample) are
about van Emde Boas–type results, with only a few exceptions (e.g., [49, 68]). For
instance, Karlsson [44] obtained an O(n lg lg U)-time algorithm for the L∞-Voronoi
diagram in two dimensions. Chew and Fortune [25] later showed how to construct
the Voronoi diagram under any fixed convex polygonal metric in two dimensions in
O(n lg lg n) time after sorting the points along a fixed number of directions. De Berg,
van Kreveld, and Snoeyink [13] gave O((lg lg U)O(1)) results for point location in an
axis-parallel rectangular subdivision in two and three dimensions. They also noted
that certain subdivisions built from fat objects can be “rectangularized,” though this
is not true for general objects.

There are also approximation results (not surprisingly, since arbitrary directions
can be approximated by a fixed number of directions); for example, see [14] for an
O(n lg lg n)-time 2D approximate Euclidean minimum spanning tree algorithm.

There is one notable nonorthogonal problem where faster exact transdichotomous
algorithms are known: finding the closest pair of n points in a constant-dimensional
Euclidean space. (This is also not too surprising if one realizes that the complexity of
the exact closest pair problem is linked to that of the approximate closest pair problem,
due to packing arguments.) Rabin’s classic paper on randomized algorithms [56]
solved the problem in O(n) expected time, using hashing. Deterministically, Chan [20]
has given a reduction from closest pair to sorting (using one nonstandard but AC0

operation on the RAM). This implies an O(n lg lg n) deterministic time bound by
Han’s result [38], and for the special case of points from a polynomial-size grid, an O(n)
deterministic bound by radix-sorting (with standard operations only). Similarly, the
dynamic closest pair problem and (static or dynamic) approximate nearest neighbor
queries reduce to successor search [20] (see also [3, 16] for previous work). Rabin’s
original approach itself has been generalized to obtain an O(n + k)-time randomized
algorithm for finding k closest pairs [19] and an O(nk)-time randomized algorithm for
finding the smallest circle enclosing k points in two dimensions [40].

The 2D convex hull problem is another exception, due to its simplicity: Graham’s
scan [12, 55] takes linear time after sorting the x-coordinates. In particular, computing
the diameter and width of a 2D point set can be reduced to 1D sorting. (In contrast,
sorting along a fixed number of directions does not help in the computation of the 3D
convex hull [60].)

Chazelle [24] studied the problem of deciding whether a query point lies inside
a convex polygon with w-bit integer or rational coordinates. This problem can be
easily reduced to a 1D successor search, so the study was really about lower bounds.
(Un)fortunately, he did not address upper bounds for more challenging variants like
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intersecting a convex polygon with a query line (see Corollary 7.1(g)).
For the asymptotically tightest possible grid, i.e., U = O(n1/d), the discrete

Voronoi diagram [15, 21] can be constructed in linear time and can be used to solve
static nearest neighbor problems.

2.4. Nonorthogonal problems. The quest for faster word-RAM algorithms
for the core geometric problems dates back at least to 1992, when Willard [68] asked
for an o(n lg n) algorithm for Voronoi diagrams. Interest in this question has only
grown stronger in recent years. For example, Jonathan Shewchuk (2005) in a blog
comment wondered about the possibility of computing Delaunay triangulations in
O(n) time. Demaine and Iacono (2003) in lecture notes, as well as Baran, Demaine,
and Pǎtraşcu [10], asked for an o(lg n) method for 2D point location.

Explicit attempts at the point-location problem have been made by the works of
Amir et al. [3] and Iacono and Langerman [43]. These papers achieve an O(lg lg U)
query time, but unfortunately their space complexity is bounded only by measures
such as the quad-tree complexity or the fatness. This leads to prohibitive exponential
space bounds for difficult input instances.

There has also been much interest in obtaining adaptive sublogarithmic bounds
in the decision-tree model. The setup assumes queries are chosen from a biased
distribution of entropy H , and one tries to relate the query time to H . Following
some initial work on the subject, SODA’01 saw no less than three results in this
direction: Arya, Malamatos, and Mount [8] and Iacono [42] independently achieved
expected O(H) comparisons with O(n) space, while Arya et al. [9] achieved H +o(H)
comparisons. We note that a similar direction of research has also been pursued
intensively for searching in one dimension (e.g., static and dynamic optimality) but
has lost popularity, with integer search rising to prominence.

3. Point location in a slab. In this section, we study a special case of the
2D point-location problem: given a static set S of n disjoint closed (nonvertical) line
segments inside a vertical slab, where the endpoints all lie on the boundary of the slab
and have integer coordinates in the range [0, 2w), preprocess S so that given a query
point q with integer coordinates, we can quickly find the segment that is immediately
above q. We begin with a few words to explain (vaguely) the difficulty of the problem.

The most obvious way to get sublogarithmic query time is to store a subloga-
rithmic data structure for 1D successor search along each possible vertical grid line.
However, the space required by this approach would be prohibitively large (O(n2w)),
since unlike the standard comparison-based approaches, these 1D data structures
heavily depend on the values of the input elements, which change from one vertical
line to the next.

So, to obtain sublogarithmic query time with a reasonable space bound, we need
to directly generalize a 1D data structure to two dimensions. The common approach to
speed up binary search is a multiway search, i.e., a “b-ary search” for some nonconstant
parameter b. The hope is that locating a query point q among b given elements
s1, . . . , sb could be done in constant time. In our 2D problem, this seems possible, at
least for certain selected segments s1, . . . , sb, because of the following “input rounding”
idea: locating q among s1, . . . , sb reduces to locating q among any set of segments
s̃1, . . . , s̃b that satisfy s1 ≺ s̃1 ≺ s2 ≺ s̃2 ≺ · · · , where ≺ denotes the (strict) belowness
relation (see Figure 3.1(a)). Because the coordinates of the s̃i’s are flexible, we might
be able to find some set of segments s̃1, . . . , s̃b, which can be encoded in a sufficiently
small number of bits, so that locating among the s̃i’s can be done quickly by table



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POINT LOCATION IN SUBLOGARITHMIC TIME 709

(a) (c)

s1

s0

s2

s3

s4

(b)

Fig. 3.1. (a) The rounding idea: Locating among the solid segments reduces to locating among
the dotted segments. (b) Proof of Observation 3.1: Elements of B are shown as dots. (c) Proof of
Observation 3.2: Segments of B are shown, together with the constructed sequence s0, s1, . . . .

lookup or operations on words. (After the si’s have been “rounded,” we will see that
the query point q can be rounded as well.)

Unfortunately, previous 1D data structures do not seem compatible with this
idea. Van Emde Boas trees [66, 67] and Andersson’s exponential search trees [4]
require hashing of the rounded input numbers and query point—it is unclear what it
means to hash line segments in our context. Fredman and Willard’s original fusion
tree [35] relies on “compression” of the input numbers and query point (i.e., extraction
of some carefully chosen bits)—the compressed keys bear no geometric relationship
to the original.

We end up basing our data structure on a version of the fusion tree that appears
new, to the best of the authors’ knowledge, and avoids the complication of compressed
keys. This is described in section 3.1 (which is perhaps of independent interest but
may be skipped by the impatient reader). The actual data structure for point location
in a slab is presented in section 3.2, with further variants described in section 3.3.

3.1. Warm-up: A simpler 1D fusion tree. We first re-solve the standard 1D
problem of performing successor search in a static set of n numbers in sublogarithmic
time, where the numbers are assumed to be integers in [0, 2w). Although faster
solutions are known, our solution is very simple. Our main idea is encapsulated in
the observation below—roughly speaking, in divide-and-conquer, allow progress to be
made not only by reducing the number of elements, n, but alternatively by reducing
the length of the enclosing interval, i.e., reducing the number of required bits, which
we denote by �. Initially, � = w. (Beame and Fich [11] adopted a similar philosophy
in the design of their data structure, though in a much more intricate way, as they
aimed for better query time.)

Observation 3.1. Fix b and h. Given a set S of n numbers in an interval I of
length 2�, we can divide I into O(b) subintervals such that

(1) each subinterval contains at most n/b elements of S or has length 2�−h; and
(2) the subinterval lengths are all multiples of 2�−h.
Proof. Form a grid over I consisting of 2h subintervals of length 2�−h. Let B

contain the (�in/b�)th smallest element of S for i = 1, . . . , b. Consider the grid subin-
tervals that contain elements of B. Use these O(b) grid subintervals to subdivide I (see
Figure 3.1(b)). Note that any “gap” between two such consecutive grid subintervals
does not contain elements of B and so can contain at most n/b elements.
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The data structure. The observation suggests a simple tree structure for 1D
successor search. Because of (2) (by dividing by 2�−h), we can represent each endpoint
of the subintervals by an integer in [0, 2h), with h bits. We can thus encode all O(b)
subintervals in O(bh) bits, which can be packed (or “fused”) into a single word if we
set h = �εw/b� for a sufficiently small constant ε > 0. We recursively build the tree
structure for the subset of all elements inside each subinterval. We stop the recursion
when n ≤ 1 (in particular, when � < 0). Because of (1), in each subproblem, n is
decreased by a factor of b or � is decreased by h. Thus, the height of the tree is at
most logb n + w/h = O(logb n + b).

To search for a query point q, we first find the subinterval containing q by a word
operation (see the next paragraph for more details). We then recursively search inside
this subinterval. (If the sucessor is not there, it must be the first element to the right
of the subinterval; this element can be stored during preprocessing.) By choosing
b =

⌊√
lg n

⌋
, for instance, we get a query time of O(logb n + b) = O(lg n/ lg lg n).

Implementing the word operation. We have assumed above that the sub-
interval containing q can be found in constant time, given O(b) subintervals satis-
fying (2), all packed into one word. We now show that this nonstandard operation
can be implemented using more familiar operations like multiplications, shifts, and
bitwise-ands (&’s).

First, because of (2), we may assume that the endpoints of the subintervals are
integers in [0, 2h). We can thus round q to an integer q̃ in [0, 2h) without changing
the answer. The operation then reduces to computing the rank of an h-bit number q̃
among an increasing sequence of O(b) h-bit numbers ã1, ã2, . . . , with bh ≤ εw.

This subproblem was considered before [35, 6], and we quickly review one solution.
Let 〈z1 | z2 | · · · 〉 denote the word formed by O(b) blocks each of exactly h + 1 bits,
where the ith block holds the value zi. We precompute the word 〈ã1 | ã2 | · · · 〉 during
preprocessing by repeated shifts and additions. Given q̃, we first multiply it with the
constant 〈1 | 1 | · · · 〉 to get the word 〈q̃ | q̃ | · · · 〉. Now, ãi < q̃ iff (2h+ãi−q̃) & 2h is zero.
With one addition, one subtraction, and one & operation, we can obtain the word
〈(2h + ã1 − q̃) & 2h | (2h + ã2 − q̃) & 2h | · · · 〉. The rank of q̃ can then be determined
by finding the most significant 1-bit (msb) position of this word. This msb operation
is supported in most programming languages (for example, by converting into floating
point and extracting the exponent, or by taking the floor of the binary logarithm);
alternatively, it can be reduced to standard operations as shown by Fredman and
Willard [35].

3.2. A solution for two dimensions. We now present the data structure for
point location in a slab. The idea is to allow progress to be made either combinatorially
(in reducing n) or geometrically (in reducing the length of the enclosing interval for
either the left or the right endpoints).

Observation 3.2. Fix b and h. Let S be a set of n sorted disjoint line segments,
where all left endpoints lie on an interval IL of length 2�L on a vertical line, and all
right endpoints lie on an interval IR of length 2�R on another vertical line. In O(b)
time, we can find O(b) segments s0, s1, . . . ∈ S in sorted order, including the lowest
and highest segments of S, such that the following hold.

(1) For each i, at least one of the following holds:
(1a) there are at most n/b line segments of S between si and si+1;
(1b) the left endpoints of si and si+1 lie on a subinterval of length 2�L−h;
(1c) the right endpoints of si and si+1 lie on a subinterval of length 2�R−h.
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(2) There exist O(b) line segments s̃0, s̃2, . . . cutting across the slab, satisfying all
of the following:
(2a) s0 ≺ s̃0 ≺ s2 ≺ s̃2 ≺ · · · ;
(2b) distances between the left endpoints of the s̃i’s are all multiples of 2�L−h;
(2c) distances between right endpoints are all multiples of 2�R−h.

Proof. Let B contain every �n/b�th segment of S, starting with the lowest seg-
ments s0. Impose a grid over IL consisting of 2h subintervals of length 2�L−h and a
grid over IR consisting of 2h subintervals of length 2�R−h. We define si+1 inductively
based on si, until the highest segment is reached. We let si+1 be the highest segment
of B such that either the left or the right endpoints of si and si+1 are in the same
grid subinterval. This will satisfy (1b) or (1c). If no such segment above si exists, we
simply let si+1 be the successor of si in B, satisfying (1a). (See Figure 3.1(c) for an
example.)

Let s̃i be obtained from si by rounding each endpoint to the grid point immedi-
ately above (ensuring (2b) and (2c)). By construction of the si’s, both the left and
right endpoints of si and si+2 are in different grid subintervals. Thus, s̃i ≺ si+2,
ensuring (2a).

The data structure. With Observation 3.2 replacing Observation 3.1, we can
now proceed as in the previous section. Because of (2b) and (2c), we can represent
each endpoint of the s̃i’s as an integer in [0, 2h), with h bits. We can thus encode
all O(b) segments s̃0, s̃2, . . . in O(bh) bits, which can be packed into a single word
if we set h = �εw/b� for a sufficiently small constant ε > 0. We recursively build
the tree structure for the subset of all segments strictly between si and si+1. We
stop the recursion when n ≤ 1 (in particular, when �L < 0 or �R < 0). Initially,
�L = �R = w. Because of (1), in each subproblem, n is decreased by a factor of b, or
�L is decreased by h, or �R is decreased by h. Thus, the height of the tree is at most
logb n + 2w/h = O(logb n + b).

Given a query point q, we first locate q among the s̃i’s by a word operation. With
one extra comparison we can then locate q among s0, s2, s4 . . . , and with one more
comparison we can locate q among all the si’s and answer the query by recursively
searching in one subset. By choosing b =

⌊√
lg n

⌋
, for instance, we get a query time

of O(logb n + b) = O(lg n/ lg lg n).
The data structure clearly requires O(n) space. Since the segments si’s and s̃i’s

can be found in linear time for presorted input, the preprocessing time after the initial
sorting can be bounded naively by O(n) times the tree height, i.e., O(n lg n/ lg lg n)
(which can easily be improved to O(n), as we will observe in the next subsection).
Sorting naively takes O(n lg n) time, which can be improved by known results.

Implementing the word operation. We have assumed above that we can
locate q among the s̃i’s in constant time, given O(b) segments s̃0, s̃2 . . . , satisfying (2),
all packed into one word. We now show that this nonstandard operation can be
implemented using more familiar operations like multiplications, divisions, shifts, and
bitwise-ands.

First, by a projective transformation, we may assume that the left endpoint of s̃i is
(0, ãi) and the right endpoint is (2h, b̃i), where the ãi’s and b̃i’s are increasing sequences
of integers in [0, 2h). Specifically, the mapping below transforms two intervals I =
{A} × [B, B + 2�) and J = {C} × [D, D + 2m) into {0} × [0, 2h) and {2h} × [0, 2h),
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respectively:

(x, y) �→
(

2h+m(x − A)
2�(C − x) + 2m(x − A)

,
2h[(C − A)(y − B) − (D − B)(x − A)]

2�(C − x) + 2m(x − A)

)
.

The line segments s̃i’s are mapped to line segments, and the belowness relation is
preserved.

We round the query point q, after the transformation, to a point q̃ with integer
coordinates in [0, 2h). (Note that q̃ can be computed exactly by using integer division
in the above formula.) Observe that a unit grid square can intersect at most two of
the s̃i’s, because the vertical separation between two segments (after transformation)
is at least 1, and consequently so is the horizontal separation (as slopes are in the
range [−1, 1]). This observation implies that after locating q̃, we can locate q with
O(1) additional comparisons.

To locate q̃ = (x̃, ỹ) for h-bit integers x̃ and ỹ, we proceed as follows. Let
〈z1 | z2 | · · · 〉 denote the word formed by O(b) blocks each of exactly 2(h+1) bits, where
the ith block holds the value zi (recall that bh ≤ εw). We precompute 〈ã0 | ã2 | · · · 〉 and
〈b̃0 | b̃2 | · · · 〉 during preprocessing by repeated shifts and additions. The y-coordinate
of s̃i at x̃ is given by [ãi(2h−x̃)+b̃ix̃]/2h. With two multiplications and some additions
and subtractions, we can compute the word 〈ã0(2h− x̃)+ b̃0x̃ | ã2(2h− x̃)+ b̃2x̃ | · · · 〉.
We want to compute the rank of 2hỹ among the values encoded in the blocks of this
word. As we have reviewed in section 3.1, this subproblem can be solved using a
constant number of standard operations [35].

Remarks. The above data structures can be extended to deal with O(w)-bit ra-
tional coordinates, i.e., coordinates that are ratios of integers in the range [−2cw, 2cw]
for some constant c. (This extension will be important in subsequent applications.)
The main reason is that the coordinates have bounded “spread”: namely, the differ-
ence of any two such distinct rationals must be at least 1/22cw. Thus, when � or m
reaches below −2cw, we have n ≤ 1. The point-segment comparisons and projective
transformations can still be done in constant time, since O(w)-bit arithmetic can be
simulated by O(1) w-bit arithmetic operations.

The data structures can also be adapted for disjoint open segments that may
share endpoints: We just consider an additional base case, when all segments pass
through one endpoint p, say, on IL. To locate a query point q among these segments,
we can compute the intersection of

−→
pq with IR (which has rational coordinates) and

perform a 1D search on IR.
Proposition 3.3. Given a sorted list of n disjoint line segments spanning a

vertical slab in the plane where the endpoints have O(w)-bit rational coordinates, we
can build a data structure with space O(n) in time o(n lg n) so that point-location
queries can be answered in time O(lg n/ lg lg n).

3.3. Alternative bounds. We now describe some alternative bounds which
depend on the universe size and the space.

Proposition 3.4. Consider a sorted list of n disjoint line segments spanning a
vertical slab in the plane where the endpoints have O(w)-bit rational coordinates. For
any h ≥ 1, we can build a data structure with space O(n ·4h) in time O(n ·(w/h+4h))
so that point-location queries can be answered in time O(w/h).

Proof. This is a simple variant of our previous data structure, relying on table
lookup instead of word packing. We apply Observation 3.2 recursively, this time
with b = 2h. The height of the resulting tree is now at most O(w/h + logb n) =
O((w + lg n)/h) = O(w/h).
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Because the segments s̃0, s̃2, . . . can no longer be packed into a word, we need
to describe how to locate a query point q among the s̃i’s in constant time. By the
projective transformation and rounding as described in section 3.2, it suffices to locate
a point q̃ whose x- and y-coordinates are h-bit integers. Thus, we can precompute the
answers for all 22h such points during preprocessing. This takes time O(22h) time:
trace each segment horizontally in O(b · 2h) time, and fill in the rest of the table by
2h scans along each vertical grid line.

The total extra cost for the table precomputation is O(n · 4h). We immediately
obtain preprocessing time O(n · (w/h + 4h)) starting with sorted segments, space
O(n · 4h), and query time O(w/h) for any given parameter h.

Now we can obtain a linear-space data structure whose running time depends on
w, by a standard space reduction as follows.

Let R contain the �in/r�-lowest segment for i = 1, . . . , r, and apply the data
structure of Proposition 3.4 only for these segments of R. To locate a query point q
among S, we first locate q among R and then finish by binary search in a subset of
O(n/r) elements between two consecutive segments in R.

The preprocessing time starting with sorted segments is O(n+r · (w/h+4h)), the
space requirement is O(n + r · 4h), and the query time is O(w/h + lg(n/r)). Setting
r =

⌊
n/(w/h + 4h)

⌋
leads to O(n) preprocessing time and space and O(w/h + h)

query time. Setting h = �√w� yields O(
√

w) query time.
We can reduce the query time further by replacing the binary search with a

point-location query using Proposition 3.3 to store each subset of O(n/r) elements.
The query time becomes O(w/h + lg(n/r)/ lg lg(n/r)) = O(w/h + h/ lg h). Setting
h =

⌊√
w lg w

⌋
instead yields a query time of O(

√
w/ lg w).

Incidentally, the preprocessing time in Proposition 3.3 can be improved to O(n)
using the same trick, for example, by choosing r = �n/ logn�. The preprocessing time
in Proposition 3.4 can be reduced to O(n · 4h) as well, by choosing r = �n/(w/h)�.

Our results for the slab problem are summarized by the following theorem.
Theorem 3.5. Consider a sorted list of n disjoint (open) line segments spanning

a vertical slab in the plane where the endpoints have O(w)-bit rational coordinates. For
any h ≥ 1, we can build a data structure with space and preprocessing time O(n · 4h),
so that point-location queries take time O(min{lg n/ lg lg n,

√
w/ lg w, w/h}).

4. General 2D point location. We now tackle the 2D point location problem
in the general setting: given a static planar subdivision formed by a set S of n disjoint
(open) line segments with O(w)-bit integer or rational coordinates, preprocess S so
that given a query point q with integer or rational coordinates, we can quickly identify
(a label of) the face containing q. By associating each segment with an incident face,
it suffices to find the segment that is immediately above q.

Assuming a solution for the slab problem with O(n) space and preprocessing time
and t(n) query time, we can immediately obtain a data structure with O(n2) space
and preprocessing time, which supports queries in O(t(n)) time: Divide the plane into
O(n) slabs through the x-coordinates of the endpoints and build our 2D fusion tree
inside each slab (note that the endpoints of the segments clipped to the slab indeed
are rationals with O(w)-bit numerators and denominators). Given a query point q,
we can first locate the slab containing q by a 1D successor search on the x-coordinates
and then search in this slab. (Since point location among horizontal segments solves
successor search, we know that successor search takes at most t(n) time.)

We can improve the preprocessing time and space by applying known compu-
tational-geometric techniques for point location; for example, we could attempt a
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b-ary version of the segment tree or the trapezoid method [12, 55, 62], though the
resulting structure would not have linear space. We describe three different linear-
space, O(t(n))-time solutions by adapting the following techniques:

• Planar separators [48]. This method has the best theoretical properties, in-
cluding determinstic bounds and linear-time construction. However, it is
probably the least practical because of large hidden constants.

• Random sampling [51]. This method is the simplest, but the construction
algorithm is randomized and takes time O(n · t(n)).

• Persistent search trees [59]. This is the least obvious to adapt and requires
some interesting use of ideas from exponential search trees but results in a de-
terministic construction time of O(sort(n)), where sort(n) denotes the time
to sort n numbers on the word RAM. This result shows how our subloga-
rithmic results can be used in sweep-line algorithms, which is important for
some applications (see, e.g., Corollary 7.1(f)).

Our results can be stated as black-box reductions that make minimal assumptions
about the solution to the slab problem. In general, the query time increases by an
O(lg lg n) factor. However, for many natural cases for t(n), we get just a constant-
factor slow-down. By the slab result of the previous section, we obtain O(t(n)) =
O(lg n/ lg lg n) query time. With some additional effort, we can recover the alternative
O(

√
w/ lg w) query time bound as well, using any of the three reductions. In the first

reduction (planar separators), we discuss all these implications formally. For the other
two, which are not achieving asymptotically better bounds, we omit the w-sensitive
results and concentrate only on the most natural case for t(n).

4.1. Method 1: Planar separators. We describe our first method for reducing
general 2D point location to point location in a slab. We assume that the given
subdivision is a triangulation. If the input is an arbitrary connected subdivision, we
can first triangulate it in linear deterministic time by Chazelle’s algorithm [23] (in
principle).

Our deterministic method is based on the planar graph separator theorem by
Lipton and Tarjan [48] (who also noted its possible application to the point-location
problem). We use the following version, which can be obtained by applying the
original theorem recursively (to get the linear running time, see [1, 36]).

Lemma 4.1. Given a planar graph G with n vertices and a parameter r, we can
find a subset R of O(

√
rn) vertices in O(n) time, such that each connected component

of G \ R has at most n/r vertices.

Deterministic divide-and-conquer. Let n denote the number of triangles in
the given triangulation T . We apply the separator theorem to the dual of T to
get a subset R of O(

√
rn) triangles, such that the removal of these triangles yields

subregions each comprising at most n/r triangles. We store the subdivision induced
by R (the number of edges is O(|R|)) using a point-location data structure with
O(P0(

√
rn)) preprocessing time and O(Q0(

√
rn)) query time. For each subregion

with ni triangles, we build a point-location data structure with P1(ni) preprocessing
time and Q1(ni) query time.

As a result, we get a new method with the following bounds for the preprocessing
time P (n) and query time Q(n) for some ni’s with

∑
i ni ≤ n and ni ≤ n/r:

P (n) =
∑

i

P1(ni) + O(n + P0(
√

rn)),

Q(n) = max
i

Q1(ni) + O(Q0(
√

rn)).
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Calculations. To get started, we use the naive method with P0(n) = P1(n) =
O(n2) and Q0(n) = Q1(n) = O(t(n)). Setting r = �√n� then yields P (n) = O(n3/2)
and Q(n) = O(t(n)).

To reduce preprocessing time further, we bootstrap using the new bound P0(n) =
O(n3/2) and Q0(n) = O(t(n)) and apply recursion to handle each subregion. By
setting r =

⌊
n1/4

⌋
, the recurrences

P (n) =
∑

i

P (ni) + O(n + P0(
√

rn)) =
∑

i

P (ni) + O(n),

Q(n) = max
i

Q(ni) + O(Q0(
√

rn)) = max
i

Q(ni) + O(t(n))

have depth O(lg lg n). Thus, P (n) = O(n lg lg n). If t(n)/ lgδ n is monotone increasing
for some constant δ > 0, the query time is Q(n) = O(t(n)), because the assumption
implies that t(n) ≥ (4/3)δt(n3/4), and so Q(·) expands to a geometric series. (If the
assumption fails, the upper bound Q(n) = O(t(n) log log n) still holds.)

Last, we bootstap one more time, using P0(n) = O(n lg lg n) and Q0(n) = O(t(n)),
and by Kirkpatrick’s point-location method [46], P1(n) = O(n) and Q1(n) = O(lg n).
We obtain the following bounds, where

∑
ni ≤ n and ni ≤ n/r:

P (n) =
∑

i

P1(ni) + O(n + P0(
√

rn)) = O(n +
√

rn lg lg n),

Q(n) = max
i

Q1(ni) + O(Q0(
√

rn)) = O(lg(n/r) + t(n)).

Setting r = �n/ lg n� then yields the final bounds of P (n) = O(n) and Q(n) = O(t(n))
(as t(n) exceeds lg lg n under the above assumption). The space used is bounded by
the preprocessing cost and is thus linear as well.

(Note that it is possible to avoid the last bootstrapping step by observing that
the total cost of the recursive separator computations is linear [36]. The first boot-
strapping step could also be replaced by a more naive method that divides the plane
into

√
n slabs.)

Proposition 4.2. Suppose there is a data structure with O(n) preprocessing
time and space that can answer point-location queries in t(n) time for n disjoint line
segments spanning a vertical slab in the plane where the endpoints have O(w)-bit
rational coordinates.

Then, given any planar connected subdivision defined by n disjoint line segments
whose endpoints have O(w)-bit rational coordinates, we can build a data structure in
O(n) time and space so that point location queries can be answered in O(t(n)) time,
assuming that t(n)/ lgδ n is monotone increasing for some constant δ > 0. (If the
assumption fails, the query time is still bounded by O(t(n) lg lg n).)

Alternative bounds. By Theorem 3.5, we can set t(n) = O(lg n/ lg lg n) in
Proposition 4.2 and get O(lg n/ lg lg n) query time. To get the alternative O(

√
w/ lg w)

query time bound, we need to modify the above calculations in order to avoid increas-
ing the query time by a lg lg n factor. Using the h-sensitive bounds from Theorem 3.5,
we start with P0(n) = P1(n) = O(n2 · 4h) and Q0(n) = Q1(n) = O(w/h). The first
bootstrapping step with r = �√n� yields P (n) = O(n3/2 · 4h) and Q(n) = O(w/h).

In the next step, we use P0(n) = O(n3/2 · 4h) and Q0(n) = O(w/h) and apply re-
cursion to handle each subregion. We set r =

⌊
n1/4

⌋
and h = �ε lg n� for a sufficiently
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small constant ε > 0 (so that (
√

rn)3/2 · 4h = o(n)). The recurrences become

P (n) =
∑

i

P (ni) + O(n),

Q(n) = max
i

Q(ni) + O(w/ lg n),

where
∑

i ni ≤ n and ni = O(n3/4). We stop the recursion when n ≤ n0 and handle
the base case using Proposition 4.2 (and Theorem 3.5) with O(n0) preprocessing time
and O(t(n0)) = O(lg n0/ lg lg n0) query time. As a result, the recurrences solve to
P (n) = O(n lg lg n) and Q(n) = O(w/ lg n0 + lg n0/ lg lg n0), because Q(·) expands to
a geometric series. Setting n0 = 2�

√
w lg w� yields Q(n) = O(

√
w/ lg w).

In the last bootstrapping step, we use P0(n) = O(n lg lg n) and Q0(n) =
O(

√
w/ lg w), and P1(n) = O(n) and Q1(n) = O(lg n). Setting r = �n/ lg n� yields

O(n) preprocessing time and O(
√

w/ lg w) query time.
Our results for planar point location are summarized by the following.
Theorem 4.3. Consider a planar connected subdivision defined by n disjoint line

segments whose endpoints have O(w)-bit rational coordinates. We can build a data
structure with space and preprocessing time O(n) so that point-location queries take
time

t(n, w) := O
(
min

{
lg n/ lg lg n,

√
w/ lg w

})
.

4.2. Method 2: Random sampling. Again, we assume a solution for the slab
problem using O(n) space and construction time, and supporting queries in t(n) time,
where t(n)/ lgδ n is monotone increasing for some constant δ > 0. We now describe
a different data structure for general point location using O(n) space, which can be
constructed in expected O(n · t(n)) time, and supporting queries in O(t(n)) query
time. Although this method is randomized and has a slower preprocessing time, it is
simpler, and the idea itself has further applications, as we will see later in sections
5–6. The method is based on random sampling. (The idea of using sampling-based
divide-and-conquer, or cuttings, to reduce space in point-location data structures has
appeared before; see, e.g., [9, 37, 61].)

Randomized divide-and-conquer. Take a random sample R ⊆ S of size r.
We first compute the trapezoidal decomposition T (R): the subdivision of the plane
into trapezoids formed by the segments of R and vertical upward and downward rays
from each endpoint of R. This decomposition has O(r) trapezoids and is known to
be constructable in O(r lg r) time. We store T (R) in a point-location data structure,
with P0(r) preprocessing time, S0(r) space, and QO(r) query time.

For each segment s ∈ S, we first find the trapezoid of T (R) containing the left
endpoint of s in Q0(r) time. By a walk in T (R), we can then find all trapezoids of
T (R) that intersect s in time linear in the number of such trapezoids (note that s does
not intersect any segment of R and can cross only vertical walls of T (R)). As a result,
for each trapezoid Δ ∈ T (R), we obtain the subset SΔ of all segments of S intersecting
Δ (the so-called conflict list of Δ). The time required is O(nQ0(r) +

∑
Δ∈T (R) |SΔ|).

By a standard analysis of Clarkson and Shor [27, 51], the probability that

∑
Δ∈T (R)

|SΔ| = O(n) and max
Δ∈T (R)

|SΔ| = O((n/r) lg r)
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is greater than a constant. As soon as we discover that these bounds are violated, we
stop the process and restart with a different sample; the expected number of trials is
constant. We then recursively build a point-location data structure inside Δ for each
subset SΔ.

To locate a query point q, we first find the trapezoid Δ ∈ T (R) containing q in
Q0(r) time and then recursively search inside Δ.

The expected preprocessing time P (n), worst-case space S(n), and worst-case
query time Q(n) satisfy the following recurrences for some ni’s with

∑
i ni = O(n)

and ni = O((n/r) lg r):

P (n) =
∑

i

P (ni) + O(P0(r) + nQ0(r)),

S(n) =
∑

i

S(ni) + O(S0(r)),

Q(n) = max
i

Q(ni) + O(Q0(r)).

Calculations. To get started, we use the naive method with P0(r) = S0(r) =
O(r2) and Q0(r) = O(t(r)). By setting r = �√n�, the above recurrence has depth
O(lg lg n) and solves to P (n), S(n) = O(n · 2O(lg lg n)) = O(n lgO(1) n) and Q(n) =
O(t(n)), because Q(·) expands to a geometric series under our assumption.

To reduce space further, we bootstrap using the new bounds P0(r), S0(r) =
O(r lgc r) and Q0(r) = O(t(r)) for some constant c. This time, we replace recur-
sion by directly invoking some known planar point-location method [62] with P1(n) =
O(n lg n) preprocessing time, S1(n) = O(n) space, and Q1(n) = O(lg n) query time.
We then obtain the following bounds, where

∑
i ni = O(n) and ni = O((n/r) lg r):

P (n) =
∑

i

P1(ni) + O(P0(r) + nQ0(r)) = O(n lg(n/r) + r lgc r + n · t(r)),

S(n) =
∑

i

S1(ni) + O(S0(r)) = O(n + r lgc r),

Q(n) = max
i

Q1(ni) + O(Q0(r)) = O(lg(n/r) + t(r)).

Remember that t(n) exceeds lg lg n under our assumption. Setting r = �n/ lgc n�
yields O(n · t(n)) expected preprocessing time, O(n) space, and O(t(n)) query time.

4.3. Method 3: Persistence and exponential search trees. We now show
how to use the classic approach of persistence: perform a sweep with a vertical line,
inserting and deleting segments into a dynamic structure for the slab problem. The
structure is the same as in the naive solution with quadratic space: what used to
be separate slab structures are now snapshots of the dynamic structure at different
moments in time. The space can be reduced if the dynamic structure can be made
persistent with a small amortized cost in space.

Segment successor. We define the segment-successor problem as a dynamic
version of the slab problem, in a changing (implicit) slab. Formally, the task is to
maintain a set S of segments, subject to the following.
query(p) : Locate point p among the segments in S. It is guaranteed that the seg-

ments of S are intersected by some vertical line, and that p is inside the
maximal vertical slab which does not contain any endpoint from S.
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insert(s, s+) : Insert a segment s into S, given a pointer to the segment s+ ∈ S
which is immediately above s. (This ordering is strict in the maximal vertical
slab.)

delete(s) : Delete a segment from S, given by a pointer.
If S does not change, the slab is fixed and we have, by assumption, a solution

with O(n) space and t(n) query time. However, for the dynamic problem we have a
different challenge: as segments are inserted or deleted, the vertical slab from which
the queries come can change significantly. This seems to make the problem hard and
we do not know a general solution comparable to the static case.

However, we can solve the semionline version of the problem, where insert is
replaced by the following.
insert(s, s+, t) : Insert a segment s as above. Additionally, it is guaranteed that the

segment will be deleted at time t in the future.
Note that our application will be based on a sweep-line algorithm, which guaran-

tees that the left endpoint of every inserted segment and the right endpoint of every
deleted segment appear in order. Thus, by sorting all x-coordinates, we can predict
the deletion time when the segment is inserted.

Exponential trees. We will use exponential trees [4, 7], a remarkable idea com-
ing from the world of integer search. This is a technique for converting a black-box
static successor structure into a dynamic one, while maintaining (near) optimal run-
ning times. The approach is based on the following key ideas:

• Construction: Pick B splitters, which separate the set S into subsets of size
n/B. Build a static data structure for the splitters (the top structure), and
then recursively construct a structure for each subset (bottom structures).

• Query: First search in the top structure (using the search for the static data
structure), and then recurse in the relevant bottom structure.

• Update: First search among splitters to see which bottom structure is changed.
As long as the bottom structure still has between n

2B and 2n
B elements, update

it recursively. Otherwise, split the bottom structure in two, or merge with
an adjacent sibling. Rebuild the top structure from scratch, and recursively
construct the modified bottom structure(s).

An important point is that this scheme cannot guarantee splitters are actually
in S. Indeed, an element chosen as a splitter can be deleted before we have enough
credit to amortize away the rebuilding of the top structure. However, this creates
significant issues for the segment-predecessor problem, due to the changing domain of
queries. If some splitters are deleted from S, the vertical slab defining the queries may
now extend beyond the endpoints of these splitters. Then, the support lines of the
splitters may intersect in this extended slab, which means splitters no longer separate
the space of queries.

Our contribution is a variant of exponential trees which ensures splitters are
always members of the current set S given semionline knowledge. Since splitters
are in the set, we do not have to worry about the vertical slab extending beyond
the domain where the splitters actually decompose the search problem. Thus, we
construct exponential trees which respect the geometric structure of the point location
problem.

Construction and queries. We maintain two invariants at each node of the
exponential tree: the number of splitters B is Θ(n1/3); and there are Θ(n2/3) elements
between every two consecutive splitters. Later, we will describe how to pick the
splitters at construction time in O(n) time, satisfying some additional properties.
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Once splitters are chosen, the top structure can be constructed in O(B) = o(n) time
and we can recurse for the bottom structures. Given this, the construction and query
times satisfy the following recurrences for

∑
i ni = n and ni = O(n2/3):

P (n) = O(n) +
∑

i

P (ni) = O(n lg lg n),

Q(n) = O(t(B)) + max
i

Q(ni) ≤ O(t(n1/3)) + Q(O(n2/3)).

The query satisfies the same type of recurrence as in the other methods, so Q(n) =
O(t(n)) assuming t(n)/ lgδ n is increasing for some δ > 0.

Handling updates. Let ñ be the number of segments and B̃ the number of
splitters when the segment-successor structure was created. As before, n and B denote
the corresponding values at the present time. We make the following modifications
to standard exponential trees, which leads to splitters always being part of the set:

• Choose splitters wisely: Let an ideal splitter be the splitter we would choose if
we cared only about splitters being uniformly distributed. (During construc-
tion, this means ñ/B̃ elements apart; during updates, the rule is specified
below.) We will look at 1

10 (ñ/B̃) segments above and below an ideal splitter
and choose as the actual splitter the segment which will be deleted farthest
into the future. This is the crucial place where we make use of semionline
information. Though it is possible to replace this with randomization, we are
interested in a deterministic solution.

• Rebuild often: Normally, one rebuilds a bottom structure (merging or split-
ting) when the number of elements inside it changes by a constant factor.
Instead, we will rebuild after any 1

10 (ñ/B̃) updates in that bottom structure,
regardless of how the number of segments changed.

• Rebuild aggressively: When we decide to rebuild a bottom structure, we al-
ways include in the rebuild its two adjacent siblings. We merge the three
lists of segments, decide whether to break them into 2, 3, or 4 subsets (by
the balance rule below), and choose splitters between these subsets. Ideal
splitters are defined as the (1, 2, or 3) segments which divide uniformly the
list of segments participating in the rebuild.

Lemma 4.4. No segment is ever deleted while it is a splitter.
Proof. Say a segment s is chosen as a splitter. In one of the two adjacent substruc-

tures, there are at least 1
10 (ñ/B̃) segments which get deleted before s. This means

one of the two adjacent structures gets rebuilt before the splitter is deleted. But the
splitter is included in the rebuild. Hence, a splitter is never deleted between the time
it becomes a splitter and the next rebuild which includes it.

Lemma 4.5. There exists a balance rule ensuring all bottom structures have
Θ(ñ/B̃) elements at all times.

Proof. This is standard. We ensure inductively that each bottom structure has
between 0.6(ñ/B̃) and 2(ñ/B̃) elements. During construction, ideal splitters gener-
ate bottom structures of exactly (ñ/B̃) elements. When merging three siblings, the
number of elements is between 1.8(ñ/B̃) and 6(ñ/B̃). If it is at most 3(ñ/B̃), we
split into two ideally equal subsets. If it is at most 3.6(ñ/B̃), we split into three sub-
sets. Otherwise, we split into four. These guarantee that the ideal sizes are between
0.9(ñ/B̃) and 1.5(ñ/B̃). The ideal size may be modified due to the fuzzy choice of
splitters (by 0.1(ñ/B̃) on each side) and by 0.1(ñ/B̃) updates that we tolerate to a
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substructure before rebuilding. Then, the number of elements stays within bounds
until the structure is rebuilt.

We can use this result to ensure the number of splitters is always B = O(B̃). For
a structure other than the root, this follows immediately: the lemma applied to the
parent shows n for the current structure can change only by constant factors before
we rebuild, i.e., n = Θ(ñ). For the root, we enforce this through global rebuilding
when the number of elements changes by a constant factor. Thus, we have ensured
that the number of splitters and the size of each child are within constant factors of
the ideal splitter scenario.

Let us finally look at the time for an insert or delete. These operations first
update the appropriate leaf of the exponential tree; we know the appropriate leaf
since we are given a point of the segment (for deletion) or its neighbor (for insertion).
Then, the operations walk up the tree, triggering rebuilds where necessary.

For each of the O(lg lg n) levels, an operation stores O(lg lg n) units of potential,
making for a total cost of O((lg lg n)2) per update. The potential accumulates in each
node of the tree until that node causes a rebuild of itself and some siblings. At that
point, the potential of the node causing the rebuild is reset to zero. We now show that
this potential is enough to pay for the rebuilds. Rebuilding a bottom structure (includ-
ing the siblings involved in the rebuild) takes time O(1) ·P (O(n/B)) = O( n

B lg lg n
B ).

Furthermore, there is a cost of O(B) = O(n1/3) = o(n/B) for rebuilding the top
structure. However, these costs are incurred after Ω(ñ/B̃) = Ω(n/B) updates to that
bottom structure, so there is enough potential to cover the cost.

Bucketing. We now show how to reduce the update time to a constant. We
use the decomposition idea from above, but now with B = O(n/(lg lg n)2) splitters.
The splitters are maintained in the previous data structure, which supports updates
in O((lg lg n)2) time. The bottom structures have Θ((lg lg n)2) elements, and we can
simply use a linked list to maintain them in order. The query time is increased by
O((lg lg n)2) because we have to search through a bottom list, but that is a lower
order term. Updating a bottom list now takes constant time, given a pointer to a
neighbor. An update to the top structure occurs only after Ω((lg lg n)2) updates to a
bottom structure, so the updates in the top structure cost O(1) amortized.

Sweep-line construction. We first sort the x-coordinates corresponding to the
endpoints, taking sort(2n) time. To know which of the O(n) slabs a query point
lies in, we construct an integer successor structure for the x-coordinates. The optimal
complexity of successor search cannot exceed the optimal complexity of point location,
so this data structure is negligible.

We now run the sweep-line algorithm, inserting and deleting segments in the seg-
ment successor structure, in order of the x-coordinates. For each insert, we also need
to perform a query for the left endpoint, which determines where the inserted segment
goes (i.e., an adjacent segment in the linear order). Thus the overall construction time
is O(n · t(n)).

We can reduce the construction time to O(sort(n)) if we know where each insert
should go and can avoid the queries at construction time. Finding the line segment
immediately above/below each endpoint is equivalent to constructing the trapezoidal
decomposition of the line segments [12]. For any connected subdivision, it is known
that we can compute the decomposition in deterministic linear time by Chazelle’s
algorithm [23]. If the input is a triangulation or a convex subdivision, we can easily
compute the decomposition directly.
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Persistence. It remains to make the segment successor structure persistent,
leading to a data structure with linear space. Making exponential trees persistent
is a standard exercise. We augment each pointer to a child node with a 1D successor
structure (the dimension is time). Whenever the child is rebuilt, we store a pointer
to the new version and the time when the new version was created. To handle global
rebuilding at the root, the successor structure for the x-coordinates stores a pointer
to the current root when each slab is considered. The leaves of the tree are linked
lists of O((lg lg n)2) elements, which can be made persistent by standard results for
the pointer machine [31].

Given k numbers in {1, . . . , 2n} (our time universe), a van Emde Boas data struc-
ture for an integer successor can be constructed in O(k) time deterministically [58],
supporting queries in O(lg lg n) time. Thus, our point-location query incurs an addi-
tional O(lg lg n) cost on each of the O(lg lg n) levels, which is a lower order term.

The space cost for persistence is of course bounded by the update time in the
segment successor structure. Since we have 2n updates with constant cost for each
one, the space is linear. The additional space due to the van Emde Boas structures
for child pointers is also linear, as it is above.

5. Segment intersection. In this section, we consider the problem of com-
puting all k intersections among a set S of n line segments in the plane, where all
coordinates are O(w)-bit integers or, more generally, O(w)-bit rationals. We actually
solve a more general problem: constructing the trapezoidal decomposition T (S), de-
fined as the subdivision of the plane into trapezoids formed by the segments of S and
vertical upward and downward rays from each endpoint and intersection. Notice that
the intersection points have O(w)-bit rational coordinates.

We use a random sampling approach, as in the previous section. Take a random
sample R ⊆ S of size r. Compute its trapezoidal decomposition T (R) by a known al-
gorithm [51] in O(r lg r+|T (R)|) time. Store T (R) in the point-location data structure
from Theorem 4.3.

For each segment s ∈ S, we first find the trapezoid of T (R) containing the left
endpoint of s by a point-location query. By a walk in T (R), we can then find all
trapezoids of T (R) that intersect s in time linear in the total face length of such
trapezoids, where the face length �Δ of a trapezoid Δ refers to the number of edges of
T (R) on the boundary of Δ. As a result, for each trapezoid Δ ∈ T (R), we obtain the
subset SΔ of all segments of S intersecting Δ (the so-called conflict list of Δ). The
time required thus far is O(n · t(r, w) +

∑
Δ∈T (R) |SΔ|�Δ), where t(n, w) is as defined

in Theorem 4.3. We then construct T (SΔ) inside Δ by using a known algorithm in
O(|SΔ| lg |SΔ| + kΔ) time, where kΔ denotes the number of intersections within Δ
(with

∑
Δ kΔ = k). We finally stitch these trapezoidal decompositions together to

obtain the trapezoidal decomposition of the entire set S.

By a standard analysis of Clarkson and Shor [27, 51],

E[|T (R)|] = O(r + kr2/n2) and

E

⎡
⎣ ∑

Δ∈T (R)

|SΔ| lg |SΔ|
⎤
⎦ = O((r + kr2/n2) · (n/r) lg(n/r)).
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Clarkson and Shor had also specifically shown [27, Lemma 4.2] that

E

⎡
⎣ ∑

Δ∈T (R)

|SΔ|�Δ

⎤
⎦ = O((r + kr2/n2) · (n/r)) = O(n · (1 + kr/n2)).

The total expected running time is O(r lg r + n · t(r, w) + n lg(n/r) + k). Setting
r = �n/ lg n� yields the following result, since t(n, w) exceeds lg lg n.

Theorem 5.1. Let t(n, w) be as in Theorem 4.3. Given n line segments in the
plane whose endpoints have O(w)-bit rational coordinates, we can find all k inter-
sections, and compute the trapezoidal decomposition, in O(n · t(n, w) + k) expected
time.

6. 3D convex hulls. We next tackle the well-known problem of constructing
the convex hull of a set S of n points in three dimensions, under the assumption that
the coordinates are w-bit integers, or, more generally, O(w)-bit rationals.

We again use a random sampling approach. First it suffices to construct the
upper hull (the portion of the hull visible from above), since the lower hull can be
constructed similarly. Take a random sample R ⊆ S of size r. Compute the upper
hull of R in O(r lg r) time by a known algorithm [12, 55]. The xy-projection of the
faces of the upper hull is a triangulation; store the triangulation in the point-location
data structure from Theorem 4.3.

For each point s ∈ S, consider the dual plane s∗ [12, 32, 51]. Constructing the
upper hull is equivalent to constructing the lower envelope of the dual planes. Let
T (R) denote a canonical triangulation [26, 51] of the lower envelope LE(R) of the dual
planes of R, which can be computed in O(r) time given LE(R). For each s ∈ S, we first
find a vertex of the LE(R) that is above s∗, say, the extreme vertex along the normal
of s∗; in primal space, this is equivalent to finding the facet of the upper hull that
contains s when projected onto the xy-plane—a point-location query. By a walk in
T (R), we can then find all cells of T (R) that intersect s∗ in time linear in the number
of such cells. As a result, for each cell Δ ∈ T (R), we obtain the subset S∗

Δ of all
planes s∗ intersecting Δ. The time required thus far is O(n · t(r, w)+

∑
Δ∈T (R) |S∗

Δ|).
We then construct LE(S∗

Δ) inside S∗
Δ by using a known O(|S∗

Δ| lg |S∗
Δ|)-time convex-

hull/lower-envelope algorithm. We finally stitch these lower envelopes together to
obtain the lower envelope/convex hull of the entire set.

By a standard analysis of Clarkson and Shor [27, 51],

E

⎡
⎣ ∑

Δ∈T (R)

|S∗
Δ|

⎤
⎦ = O(n) and E

⎡
⎣ ∑

Δ∈T (R)

|S∗
Δ| lg |S∗

Δ|
⎤
⎦ = O(r ·(n/r) lg(n/r)).

The total expected running time is O(r lg r + n · t(r, w) + n lg(n/r)). Setting r =
�n/ lg n� yields the following result, since t(n, w) exceeds lg lg n.

Theorem 6.1. Let t(n, w) be as in Theorem 4.3. Given n points in three
dimensions with O(w)-bit rational coordinates, we can compute the convex hull in
O(n · t(n, w)) expected time.

7. Other consequences. To demonstrate the impact of the preceding results,
we list a sample of improved algorithms and data structures that can be derived from
our work. (See Figure 1.1.)

Corollary 7.1. Let t(n, w) be as in Theorem 4.3. Given n points in the plane
with O(w)-bit rational coordinates,
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(a) we can construct the Voronoi diagram, or, equivalently, the Delaunay trian-
gulation, in O(n · t(n, w)) expected time;

(b) we can construct the Euclidean minimum spanning tree in O(n · t(n, w)) ex-
pected time;

(c) we can find the largest empty circle that has its center inside the convex hull
in O(n · t(n, w)) expected time;

(d) we can build a data structure in O(n · t(n, w)) expected time and O(n) space
so that nearest/farthest neighbor queries under the Euclidean metric can be
answered in O(t(n, w)) time;

(e) we can build an O(n lg lg n)-space data structure so that circular range queries
(reporting all k points inside a query circle) and “k nearest neighbors” queries
(reporting the k nearest neighbors to a query point) can be answered in O(t(n, w)
+ k) time.

Furthermore,
(f) we can triangulate a polygon with holes, having n vertices with O(w)-bit

rational coordinates, in O(n · t(n, w)) deterministic time;
(g) we can preprocess a convex polygon P , having n vertices with O(w)-bit rational

coordinates, in O(n) space, so that gift wrapping queries (finding the two
tangents of P through an exterior point) and ray shooting queries (intersecting
P with a line) can be answered in O(t(n, w)) time;

(h) we can compute the convex hull of n points in three dimensions with O(w)-
bit rational coordinates in O(n · t(H1+o(1), w)) expected time, where H is the
number of hull vertices.

Proof.
(a) By a lifting transformation [12, 32, 52], the 2D Delaunay triangulation can

be obtained from the convex hull of a 3D point set (whose coordinates still
have O(w) bits). The result follows from Theorem 6.1.

(b) The minimum spanning tree (MST) is contained in the Delaunay triangu-
lation. We can compute the MST of the Delaunay triangulation, a planar
graph, in linear time, for example, by Bor̊uvka’s algorithm. The result thus
follows from (a).

(c) We can determine the optimal circle from the Voronoi diagram (whose coor-
dinates still have O(w)-bit numerators and denominators) in linear time [55].
Again the result follows from (a). (Curiously, the 1D version of the problem
admits an O(n)-time RAM algorithm of Gonzalez; see [55].)

(d) Nearest neighbor queries reduce to point location in the Voronoi diagram, so
the result follows from (a) and Theorem 4.3. Farthest neighbor queries are
similar.

(e) The result is obtained by adopting the range reporting data structure from
[18], using Theorem 4.3 to handle the necessary point-location queries.

(f) It is known [33] that a triangulation can be constructed from the trape-
zoidal decomposition of the edges in linear time. The result follows from
Theorem 5.1 if randomization is allowed. Deterministically, we can instead
compute the trapezoidal decomposition by running the algorithm from sec-
tion 4.3, since that algorithm explicitly maintains a sorted list of segments
that intersect the vertical sweep line at any given time.

(g) For wrapping queries, it suffices to compute the tangent from a query point q
with P to the left, say, of this directed line. Decompose the plane into regions
where two points are in the same region iff they have the same answer; the
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regions are wedges. The result follows by performing a point-location query
(Theorem 4.3).
Ray shooting queries reduce to gift wrapping queries in the dual convex poly-
gon (whose coordinates are still O(w)-bit rationals).

(h) The result is obtained by adopting the output-sensitive convex hull algorithm
from [17], using Theorem 6.1 to compute the subhull of each group. For
readers familiar with [17], we note that the running time for a group size m
is now O(n · t(m, w)+H(n/m) lg m); we can choose m = �H lg H� and apply
the same “guessing” trick.

8. Higher dimensions. The first approach for point location from section 3
can be generalized to any constant dimension d. The following main observation is
very similar to Observation 3.2.

Observation 8.1. Let S be a set of n disjoint (d − 1)-dimensional simplices in
R

d, whose vertices lie on d vertical segments I0, . . . , Id−1 of length 2�0 , . . . , 2�d−1 . We
can find O(b) simplices s0, s1, . . . ∈ S in sorted order, which include the lowest and
highest simplex of S, such that

(1) for each i, there are at most n/b simplices of S between si and si+1, or the
endpoints of si and si+1 lie on a subinterval of Ij of length 2�j−h for some j;
and

(2) there exist O(b) simplices s̃0, s̃2, . . . , with s0 ≺ s̃0 ≺ s2 ≺ s̃2 ≺ · · · and
vertices on I1, . . . , Id such that distances between endpoints of the s̃i’s on Ij

are all multiples of 2�j−h.
Applying this observation recursively in the same manner as in section 3.2, we

can get an O(lg n/ lg lg n)-time query algorithm for point location among n disjoint
(d−1)-simplices spanning a vertical prism, with O(n) space, for any fixed constant d.

In the implementation of the special word operation, we first apply a projective
transformation to make I0 = {(0, . . . , 0)} × [0, 2h), I1 = {(2h, 0, . . . , 0)} × [0, 2h), . . . ,
Id−1 = {(0, , . . . , 0, 2h)} × [0, 2h). This can be accomplished in three steps. First,
by an affine transformation, we can make the first d − 1 coordinates of I0, . . . , Id−1

to be (0, . . . , 0), (1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1), while leaving the dth coordinate
unchanged. Then by a shear transformation, we can make the bottom vertices of
I0, . . . , Id−1 lie on xd = 0, while leaving the lengths of the intervals unchanged. Finally,
we map (x1, . . . , xd) to

1
2�0(1 − x1 − · · · − xd−1) + 2�1x1 + · · · + 2�d−1xd−1

(
2h+�1x1, . . . , 2h+�d−1xd−1, 2hxd

)
.

The coordinates of the s̃i’s become h-bit integers. We round the query point q to a
point q̃ with h-bit integer coordinates, and by the same reasoning as in section 3.2, it
suffices to locate q̃ among the s̃i’s (since every two (d−1)-simplices have separation at
least 1 along all the axis-parallel directions). The location of q̃ can be accomplished as
in section 3.2, by performing the required arithmetic operations on O(h)-bit integers
in parallel, using a constant number of arithmetic operations on w-bit integers.

The alternative bounds in section 3.3 also follow in a similar manner.
Theorem 8.2. Consider a sorted list of n disjoint (open) (d− 1)-simplices span-

ning a vertical prism in R
d where the vertices have O(w)-bit rational coordinates. For

any h ≥ 1, we can build a data structure with space and preprocessing time O(n · 2dh)
so that point-location queries take time O

(
min

{
lg n/ lg lg n,

√
w/ lg w, w/h

})
.

We can solve the point-location problem for any subdivision of R
d into polyhedral

cells, where vertices have O(w)-bit integer or rational coordinates. For a naive solution
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with polynomial preprocessing time and space, we project all (d−2)-faces vertically to
R

d−1, triangulate the resulting arrangement in R
d−1, lift each cell to form a vertical

prism, and build the data structure from Theorem 8.2 inside each prism. Given a
point q, we first locate the prism containing q by a (d− 1)-dimensional point-location
query (which can be handled by induction on d) and then search inside this prism.
The overall query time is asymptotically the same for any constant d.

As many geometric search problems can be reduced to point location in higher-
dimensional space, our result leads to many more applications. We mention the
following.

Corollary 8.3. Let t(n, w) be as in Theorem 4.3.
(a) We can preprocess n points in R

d with O(w)-bit rational coordinates, in nO(1)

time and space, so that exact nearest/farthest neighbor queries under the Eu-
clidean metric can be answered in O(t(n, w)) time.

(b) We can preprocess a fixed polyhedral robot and a polyhedral environment of
size n in R

d whose vertices have O(w)-bit rational coordinates, in nO(1) time
and space, so that we can decide whether two given placements of the robot
are reachable by translation in O(t(n, w)) time.

(c) Given an arrangement of n semialgebraic sets of the form {x ∈ R
d | pi(x) ≥

0} where each pi is a fixed-degree polynomial with O(w)-bit rational coeffi-
cients, put two points in the same region iff they belong to exactly the same
sets. (Regions may be disconnected.) We can build a data structure in nO(1)

time and space so that (a label of) the region containing a query point can be
identified in O(t(n, w)) time.

(d) Given n disjoint x-monotone curve segments in R
2 that are graphs of fixed-

degree univariate polynomials with O(w)-bit rational coefficients, we can build
a data structure in nO(1) time and space so that the curve segment immediately
above a query point can be found in O(t(n, w)) time.

(e) Part (a) also holds under the Lp metric for any constant integer p > 2.
(f) We can preprocess an arrangement of n hyperplanes in R

d with O(w)-bit
rational coefficients, in nO(1) time and space, so that ray shooting queries
(finding the first hyperplane hit by a ray) can be answered in O(t(n, w)) time.

(g) We can preprocess a convex polytope with n facets in R
d whose vertices have

O(w)-bit rational coordinates, in nO(1) time and space, so that linear pro-
gramming queries (finding the extreme point in the polytope along a given
direction) can be answered in O(t(n, w)) time.

Proof.
(a) This follows by point location in the Voronoi diagram.
(b) This reduces to point location in the arrangement formed by the Minkowski

difference [12, 52] of the environment with the robot.
(c) By linearization (i.e., by creating a new variable for each monomial), the

problem is reduced to point location in an arrangement of n hyperplanes in
a sufficiently large but constant dimension.

(d) This is just a special 2D case of (c), after adding vertical lines.
(e) This follows by applying (c) to the O(n2) semialgebraic sets {x ∈ R

d |
‖x − ai‖p ≤ ‖x − aj‖p} over all pairs of points ai and aj .

(f) Parametrize the query ray {x + ty | t ≥ 0} with 2d variables x, y ∈ R
d.

Suppose that the ith hyperplane is {x ∈ R
d | ai · x = 1}. The “time” the ray

hits this hyperplane (i.e., when ai·(x+ty) = 1) is given by t = (1−ai·x)/(ai·y).
We apply (c) to the O(n2) semialgebraic sets {(x, y) ∈ R

2d | (1−ai·x)/(ai·y) ≤
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(1 − aj · x)/(aj · y)} over all i, j and {(x, y) ∈ R
2d | ai · x ≤ 1} over all i. It

is not difficult to see that all rays whose parameterizations lie in the same
region in this arrangement of semialgebraic sets have the same answer.

(g) Linear programming queries reduce to ray shooting inside the dual convex
polytope, which has nO(1) facets, so the result follows from (f).

Remarks. Actually, allowing nO(1) space, we can also get query time O(w/ log n)
in Corollary 8.3 by setting h = Θ(log n).

Alternatively, the preprocessing time and space in Corollary 8.3 can be reduced
by applying random sampling techniques [26, 27] as in section 4.2. For example,
for (a), we can achieve O(t(n, w)) query time with O(n�d/2	 lgO(1) n) space. For (d),
we can achieve O(t(n, w)) query time with O(n) space; by the same techniques as
in section 5, we can also obtain an O(n · t(n, w) + k)-time randomized algorithm for
segment intersection for such curve segments.

9. Conclusions. We have hardly exhausted all the implications of our results.
What we have shown is that the complexity of many previously “solved” problems
in computational geometry may have to be revised, at least for researchers who are
willing to embrace the transdichotomous RAM model. The most popular model for
computational geometers is the unit-cost real RAM. While we do not intend to change
this default, the transdichotomous model for integer or rational input also deserves
to be studied. If one considers the example of 1D achievements, it is reasonable to
expect a rich theory, leading to a fascinating understanding of fundamental problems.

One possible complaint about our algorithms is their use of w-bit integer multi-
plication and division, which are not AC0 operations and in reality take more than
constant time as w grows. However, the previous real-RAM algorithms all need multi-
plication as well, and our algorithms use comparatively fewer multiplications. Notice
that when the input is from a polynomial-size grid (w = O(lg n)), multiplication and
division on εw-bit words can be simulated by table lookup, so there is no dispute
about the model used in this case.

If it has not been made clear already, our study here is primarily theoretical. As
noted above, however, our work can also be seen as explaining a common engineering
practice of using grid “heuristics” for solving point location. One can thus hope that
mathematically founded ideas for grid search could lead to better practical algorithms.
The greatest obstacle to this seems to be the reduction to the slab subproblem, which
incurs a constant but practically significant overhead.

The main theoretical question is to determine the precise complexity of the sub-
problem of 2D point location in a slab. As the 1D successor search problem has
essentially been completely solved, the 2D problem is all the more pressing. In sub-
sequent work, we have shown how to solve the offline problem of answering a batch
of n queries more efficiently [22]. But for online point-location or nearest neighbor
queries we do not know any improvement to the bounds of this paper, even for the
special case w = O(lg n). A lower bound strictly stronger than that for 1D successor
search would also be exciting.

Finally, it would be interesting to see if our improvements help for dynamic pla-
nar point location. We note that Husfeldt, Rauhe, and Skyum [41] have shown an
Ω(lg n/ lg lg n) lower bound for dynamic planar point location in monotone subdi-
visions. However, the hardness seems to stem from nongeometric issues, namely,
identifying (a label of) the face incident to a given edge and not locating which edge
is immediately above a given point.
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[10] I. Baran, E. D. Demaine, and M. Pǎtraşcu, Subquadratic algorithms for 3SUM, Algorith-
mica, 50 (2008), pp. 584–596.

[11] P. Beame and F. Fich, Optimal bounds for the predecessor problem and related problems, J.
Comput. System Sci., 65 (2002), pp. 38–72.

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-
etry: Algorithms and Applications, Springer-Verlag, Berlin, 2000.

[13] M. de Berg, M. van Kreveld, and J. Snoeyink, Two-dimensional and three-dimensional
point location in rectangular subdivisions, J. Algorithms, 18 (1995), pp. 256–277.

[14] M. W. Bern, H. J. Karloff, P. Raghavan, and B. Schieber, Fast geometric approximation
techniques and geometric embedding problems, Theoret. Comput. Sci., 106 (1992), pp.
265–281.

[15] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, Linear time Euclidean distance transform
algorithms, IEEE Trans. Pattern Analysis and Machine Intelligence, 17 (1995), pp. 529–
533.

[16] M. Cary, Towards optimal ε-approximate nearest neighbor algorithms, J. Algorithms, 41
(2001), pp. 417–428.

[17] T. M. Chan, Optimal output-sensitive convex hull algorithms in two and three dimensions,
Discrete Comput. Geom., 16 (1996), pp. 361–368.

[18] T. M. Chan, Random sampling, halfspace range reporting, and construction of (≤ k)-levels in
three dimensions, SIAM J. Comput., 30 (2000), pp. 561–575.

[19] T. M. Chan, On enumerating and selecting distances, Internat. J. Comput. Geom. Appl., 11
(2001), pp. 291–304.

[20] T. M. Chan, Closest-point problems simplified on the RAM, in Proceedings of the 13th ACM-
SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2002,
pp. 472–473.

[21] T. M. Chan, Faster core-set constructions and data stream algorithms in fixed dimensions,
Comput. Geom., 35 (2006), pp. 20–35.
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