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In any canonical Gaussian dynamic term structure ma@Bi{SM, the conditional fore-
casts of the pricing factors are invariant to the imposition of no-arbitrage restrictions. This
invariance is maintained even in the presence of a variety of restrictions on the factor
structure of bond yields. To establish these results, we develop a novel car®bBitaM

in which the pricing factors are observable portfolios of yields. For our normalization,
standard maximum likelihood algorithms converge to the global optimum almost instanta-
neously. We present empirical estimates and out-of-sample forecasts for $&&RdiaMs

using data on U.S. Treasury bond yields. (43, G12, C13)

Dynamicmodels of the term structure often posit a linear factor structure for a
collection of yields, with these yields related to underlying fac®rhrough

a no-arbitrage relationship. Does the imposition of no-arbitrage in a Gaussian
dynamic term structure modegbOTSM improve the out-of-sample forecasts

of yields relative to those from the unconstrained factor model, or sharpen
model-implied estimates of expected excess returns? In practice, the answers
to these questions are obscured by the imposition of over-identifying restric-
tions on the risk-neutral() or historical P) distributions of the risk factors,

or on their market prices of risk, in addition to the cross-maturity restrictions
implied by no-arbitragé.
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(2003), Christensen, Diebold, and Rudebug@b07), Chernov and Muellef2008), andlardet, Monfort, and
Pegorarq2009), among many others.
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We show thatwithin any canonical GDTSM and for any sample of bond
yields, imposing no-arbitrage does not affect the conditidhekpectation of
P, EP[P|P;_1]. GDTSMimplied forecasts ofP are thus identical to those
from the unrestricted vector-autoregressivV&\R) model forP. To establish
these results, we develop an all-encompassing canonical model in which the
pricing factorsP are linear combinations of the collection of yielggsuch
as the firstN principal componentsRCs)¥ andin which these “yield fac-
tors” follow an unrestricted/AR Within our canonicalGDTSM, as long as
P is measured without error, unconstrained ordinary least squates) (gives
the maximum likelihoodNIL) estimates oE”[P;|P;_1]. Therefore, enforcing
no-arbitrage has no effect on out-of-sample forecastB.ofhis result holds
for any other canonicaGDTSM, owing to observational equivalen&a{ and
Singleton 2000) and, as such, is a generic featufe@T SVs.

Heuristically, under the assumption that the yield factBrare observed
without error, these propositions follow from the factorization of the condi-
tional density ofy into the product of the condition® density of P times the
conditional density of measurement errdrshe density of P is determined
by parameters controlling its conditional mean and its innovation covariance
matrix. The measurement error density is determined by the “no-arbitrage”
cross-sectional relationship among the yields. We showGRAESMs can be
parameterized so that the parameters governingtferecasts ofP do not
appear in the measurement-error density. Given this separation, the only link
between the conditiond density and the measurement density is the covari-
ance of the innovations. However, a classic resuftaliner(1962) implies that
the ML estimates oE”[Py|P;_1] are independent of this covariance. Conse-
quently,OLSrecovers theViL estimates oEF[P;|P;_1] and the no-arbitrage
restriction is irrelevant for the condition&lforecast ofp.

Key to seeing this irrelevance is our choice of canonical foffor any N-
factor model with portfolios of yield® as factors, bond prices depend on the
N (N +1) parameters governing the risk-neutral conditional me&n and the
(N + 1) parameters linking the short rate7® for a total of(N + 1)? parame-
ters.Not all of these parameters are free, however, because internal consistency
requires that the model-implied yields reproduce the yield-fadgtoM/e show
that, given theN yield factors, the entire timeyield curve can be constructed
by specifying (a)ré%, the long-run mean of the short rate undgr (b) A2,
the speeds of mean reversion of the yield-factors uri@eland (c)Zp, the

Although standard formulations of affine term structure models use latent (unobservable) risk factoBa(e.g.,
and Singleton 200Muffee 2003, by Duffie and Kan(1996) we are free to normalize a model so that the factors
are portfolios of yields on bonds and we cho®%es.

See for example Chen and Scoi1993) andPearson and Sui1994).

To emphasize, our canonical form is keyseeingthe result; due to observational equivalence, the result holds
for anycanonical form.
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conditionalcovariance matrix of yields factors from thé&AR. That is, given
X p, the entire cross-section of bond yields infdrfactorGDTSMis fully de-

termined by only theN + 1 parametersg and A Q. Moreover,(r%, 1Q 1p)
canbe efficiently estimated independently of tReconditional mean of?;,
renderingno-arbitrage irrelevant for forecastifg

With these results in place, we proceed to show that the conditional fore-
castEP[P¢|P;_1] from a no-arbitrag&sDTSMremains identical to its coun-
terpart from an unrestricte®AR even in the presence of a large class of
over-identifying restrictions on the factor structureyofin particular,regard-
less of the constraints imposed on the risk-neutral distribution of the yield-
factors P, the GDTSM- and VAR-implied forecasts of these factors are
identical. Put differently, OLS recovers the conditional forecasts of the yield
factors even in the presence of further cross-sectional restrictions on the shape
of the yield curve beyond no-arbitrage.

When does the structure ofGDTSMimprove out-of-sample forecasts of
P? We show that if constraints are imposed directly onRhéstribution of P
within a no-arbitrag€g5DTSM, then th&/L estimate ofE’[P;|P;_1] is more
efficient than itsOLS counterpart from a/AR. Thus, our theoretical results,
as well as subsequent empirical illustrations, show that gains from forecast-
ing using aGDTSM, if any, must come from auxiliary constraints on khe
distribution of P, and not from the no-arbitrage restrictipar se®

An important example of such auxiliary constraints is the number of risk
factors that determine risk premiums. Motivated by the descriptive analysis of
Cochrane and Piazze@005,2008) andDuffee (2008), we develop methods
for restricting expected excess returns to lie in a space of dimedsjenN),
without restricting a priori which of the N factor®; represent priced risks
If £ < N, then there are necessarily restrictions linking the historical and
risk-neutral drifts ofP;. In this case, the forecasts of future yields implied by
aGDTSMare in principle different than those from an unrestricéééR and
we investigate the empirical relevance of these constraints within three-factor
(N = 3) GDTSMs.

Additionally, we show that our canonical form allows for the computa-
tionally efficient estimation oGDTSMs. The conditional density of observed
yields is fully characterized by;Qg)> and A2, as well as the parameters con-
trolling any measurement errors in yields. Importan(hg, 2Q) constitutes
alow-dimensional, rotation-invariant (and thus economically meaningful) pa-
rameter space. Using standard search algorithms, we obtain near-instantaneous
convergence to the global optimum of the likelihood function. Convergence is

Thoughone might conclude from reading the recent literature that enforcing no-arbitrage improves out-of-
sample forecasts of bond yields, our theorems show that this is not the case. What underlies any documented
forecast gains in these studies from us®OTSMs is the combined structure of no-arbitraayed the auxiliary
restrictions they impose on tfifedistribution ofy.
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fast regardless of the number of risk factors or bond yields used in estimation,
or whether the pricing factorB are measured with errér.

Therapid convergence to global optima using our canor@l SMmakes it
feasible to explore rolling out-of-sample forecasts. For a varieG/DT SMs—
with and without measurement error in yield factors, and with and without
constraints on the dimensionalify of risk premia—we compare the out-of-
sample forecasting performance relative to a benchmark unconstigiied
and confirm our theoretical predictions in the data.

. A Canonical GDTSM with ObservableRisk Factors

(<))

~

©

In this section, we develop our “JSZ” canonical representatioBDTSVs.
Toward this end, we start with a generic representation®@Da SM, in which
the discrete-time evolution of the risk factors (state vec¥are RN is gov-
erned by the following equatiorfs:

AXt = Koy + KiyXt—1 + Zxef » 1)
AXi = Kg( + KiQX Xi-1+ ZxétQ, )
re = pox + pix - Xt, (3)

wherer; is the one-period spot interest ratex L x/ is the conditional covari-
ance matrix ofXg, ande{P, e;@ ~ N(O, In). A canonicalGDTSMis one that

is maximally flexible in its parameterization of both t@eandP distributions

of X, subject only to normalizations that ensure econometric identification.
Before formally deriving our canonic&DTSM, we briefly outline the basic
idea. Variations of our canonical form, as well as some of its key implications
for model specification and analysis, are discussed subsequently.

Suppose thaN zero-coupon bond yields d¥ linear combinations of such
yields, P, are priced perfectly by the model (subsequently we relax this as-
sumption). By a slight abuse of nomenclature, we will refer to these linear
combinations of yields as portfolios of yields. Applying invariant transforma-
tions& we show that (i) the pricing factor¥; in (3) can be replaced by the

To put this computational advantage into perspective, one needs to read no furthBuffemand Stanton
(2007) andDuffee (2009), who highlight numerous computational challenges and multiple local optima associ-
ated with their likelihood functions. For example, Duffee reports that each optimization for his parametrization
of a three-factor model takes about two days. In contrast, foGb& SM3) models examined in this article,
convergence to the global optimum of the likelihood function was typically achieved in about ten seconds, even
though there are three times as many observations in our sample.

All of our results apply equally to a continuous-time Gaussian model. Also, we assume that the risk factors, and
hence the yield curvg, are first-order Markov. See the supplement to this artidgtesl{n, Singleton, and Zhu
2010) andJoslin, Le, and Singletof2010) for relaxations of this assumption.

Invariant transformsai and Singleton 20Q0nvolve rotating, scaling, and translating the state and parameter
vectors to keep the short rate and bond prices unchanged (invariant), usually by méppiXt + b, where
Alis an invertible matrix. The transformed parameters are outlined in Appendix B.
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obsenableP;; and (ii) theQ distribution of P; canbe fully characterized by

the parameter@Q = (ké%, 1Q, £5), wherei€ is the vector of eigenvalues of
Kg( andZpX’, is the covariance of innovations to the portfolios of yields.
Whenthe model is stationary undéy, kg is proportional to the risk-neutral
long-run mean of the short rat& anda GDTSMcan be equivalently param-
eterized in terms of either parameter (see below).

The prices of all coupon bonds (as well as interest rate derivatives) are de-
termined as functions of these observable pricing factors through no-arbitrage.
Importantly, though the pricing factors are now observable, the underlying pa-
rameter space of th® distribution of P is still fully characterized b)@%.
Moreover, the parameters of tHe distribution of the (newly rotated and ob-
servable) state vect@ are(K(])PP, Kfp) alongwith £p. The remainder of this
section fleshes out these ideas.

The model-implied yield on a zero-coupon bond of matumitys an affine
function of the stateX; (Duffie and Kan 1996):

Yem = An(©%) + Bn(©D) - Xt, 4)

where (Am, Bm) satisfy well-known Riccati difference equations (see
Appendix A for a summary), an®? = (KSQ;(, K%, Y x, pox, p1X) is the
vector of parameters fron2£3) relevant for pricing. We lémy, mp, ..., my)
bethe set of maturities (in years) of the bonds used in estimatiorG@asSM,
J > N, andy; = (Vt.my>---» Yem;) € RY bethe corresponding set of model-
implied yields.

In general, (4) may be violated in the data due to market effects (e.g., bid-ask

spreads or repo specials), violations of no-arbitrage, or measurement errors.

We will collectively refer to all of these possibilities simply as measurement or
pricing errors. To distinguish between model-implied and observed yields in
the presence of pricing errors, we yﬁm denotethe yields that are observed
with measurement erroifo be consistent with the data, we must impose aux-
iliary structure on &DTSM, beyond no-arbitrage, in the form of a parametric
distributional assumption for the measurement errors. V\/{aq@t}gmeem de-
notethe family of measures that describe the conditional distribution-efy’.

Duffie and Kan(1996) andCochrane and Piazze§l005) also propose to use an identification scheme where

the yields themselves are factofgirian and Moencl{2008) explore a setting where the pricing factors are the
portfolios themselves; however, they do not impose the internal consistency condition to make the factors equal
to their no-arbitrage equivalents and instead focus on the measurement errors. Our formulation offers an analytic
parametrization and additionally makes transparent our subsequent results.
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For any full-rank, portfolio matridv € RN*J, we letP; = Wy, denotethe
associated\N-dimensional set of portfolios of yields, where tHe portfolio
putsweightW j onthe yield for maturitym;. Applying (4), we obtain

P = Aw(©D) + Bw(©D)' X, (5)

where Aw = W[Am,, ..., Am;]’ and By = [Bm,, ..., Bm,]JW'. Note that
Bw(K%(,pl) dependsonly on the subse(K(l@X,pl) of @9 (see (A3) in
Appendix A).

Initially, we assume that there exist portfolios for which the no-arbitrage
pricing relations hold exactly:

Case P:There areN portfolios of bond yieldsP;, constructed with weights
W, that are priced perfectly by tt@DTSM PP = P.

We refer to the case where each portfolio consists of a single bond, 9 that
yields are priced perfectly, as CageWe defer until Sectiot® the case where
all bonds are measured with errors and estimation is accomplished by Kalman
filtering.

We now state our main result for CaBe

Theorem 1. Suppose that Cageholds for given fixed portfolio weightgV.
Then, any canonic&DTSMis observationally equivalent to a unigG®TSM
whose pricing factor$; arethe portfolios of yields\My = WyP. Moreover,
the Q distribution of P is uniquely determined biA@, k2, £5), where i Q is
ordered!® Thatis,

APy = Kip + KipPio1 + Zpel (6)
_kQ Q Q

AP = Ko + K Pio1 + Zpe @)

re=pop + p1p - Pt ®)

is a canonicaGDTSM, WhereKé,Qp, K(l@P, pop, andpyp areexplicit functions

of (12, kS, £p). Our canonical form is parametrized " = (12, k3,
P P
Kops Kips 2P)-

We refer to theGDTSMin Theoreml as the JSZ canonical form parame-
trized by©” . Before formally proving Theorerh, we outline the main steps.
First, we want to show that angDTSMis observationally equivalent to a
model where the states are the observed bond portfglige/ith correspond-

ing weightsW). Thus, forG = {(Kgg, KiQ, po, p1, K§, KT, D)}, the set of all

10 we fix an arbitrary ordering on the complex numbers such that 0 is the smallest number.
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possibleGDTSMs 1! we want to show that ever) e G is observationally
equivalent to som®p e GyY, where

g;’)" = {(KQ, KiQ, 00, P1, K(I)P, Kf, Y) : the factors are portfolios
with weightsW}.

This first step is easily established: For aBPTSMwith latent stateX;, P;
satisfies(5). Following Dai and Singletor{2000) (DS), we can, by applying
the change of variables outlined in Appendix B, compute the dynamics (under
bothP andQ) of Py andexpress; asan affine function ofP;. The parameters
after this change of variables give an observationally equivalent model where
the states are the portfolios of yields.

Second, we establish uniqueness by showing that naGRdSMs in g)’pv
are observationally equivalent. Clearly, if tWGDTSMs are observationally
equivalent and have the same observable factors, it must bektﬁaKP, Y)

arethe same. Intuitively, if the paramete(m‘.?, KP, po, p1) arenot the same,
the price of some bonds would depend differently on the factors, a contradic-
tion. In the second step, we formalize this intuition. Moreover, we show that

for given 22 and kﬁ%, there exists a uniun(é@, KiQ, p0, p1) consistentvith
no-arbitrage and the states being the portfolios of yigtdsin the third and

final step, we reparamatrig%",’ in terms of the free paramete(ﬂé%, ré%,  p).
In the second step of our proof of Theordmwe will use the following
analogue of the canonical form doslin(2007), proved in Appendix C.

Proposition 1. Every canonicaGDTSMis observationally equivalent to the
canonicalGDTSMwith ry =1 - X;,

AXi = K(%( + K(l@xxt—l + ZXGtQ, 9)
AXp = Koy + Ky Xt—1 4+ Zxel, (10)

where: is a vector of onesLy is lower triangular (with positive diagonal),
Kg( isin ordered real Jordan forrfgé@x’l =k and Ké)Qx,i =0fori # 1, and
e, P ~ N(O, In).

More formally, we think of the set o6DTSMs as a set of stochastic processes for the yield curve rather than

as a set of parameters governing the stochastic process of the yield curve. To see the correspondence, we define

on some probability spade2, F, P) (with associated filtratiofFt }) the processeg : @ x N — RN+, Here,

y{"(w) is the m-periodyield at timet whenthe state is» € Q. When our additional assumption thatis a
Gaussian Markov process and no-arbitrage is maintained (with risk premia at tdependingonly on Ft),
theseprocesses take the form di«3) and 4) for some parameters. In this way, we define a surjective map from
the set ofGDTSM parameters{Kg, K?, P05 P1» KE]P, Kip, Y) to the set ofGDTSMstochastic processes. With

this association, tw@&DTSMs are observationally equivalent when the corresponding stochastic processes have
the same finite-dimensional distributions.
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Here,we specify the Jordan form with each eigenvalue associated with a
single Jordan block (that is, each eigenvalue has a geometric multiplicity of

one). Thus, when the eigenvalues are all rK% takes the form

K2 =319 = diag@?, 32, ..., 39), whereeach

10
0 0
Q i
3= it
0 0o 29

andwhere the blocks are in order of the eigenvalues. (See Appendix C for
the real Jordan form when the eigenvalues are complex.) We refer to the set
of Jordan canonicaBDTSMsas G, and it is parametrized b@? = (1,

K2, K&y, Kix, Zx). The eigenvalues of? maynot be distinct and may be
complex. We explore these possibilities empirically in Section

Proof of Theoreni: Having already established that we can rotate any model
to one withP; asthe observed states, we proceed to prove the second step.
Suppose tha®1, 0, € g;é’ index two observationally equivalent canonical
models. By the existence result in Propositibneach@; is observationally
equivalent to &SDTSM,®;, which is in real ordered Jordan canonical form.
Since

P = Aw(©) + Bw(©)'X{, (11)
whereX;] is the latent state for mod@;’, it must be that
O = Aw(©) + Bw(9])'8]. (12)

Here, we use the notation that for @DTSM with parameter vecto® and
state X;, the observationajly equivale@DTSMwith latent stateX; = C +
D X; hasparameter vecta® = C + DO, as computed in Appendix B. Since
observational equivalence is transiti@l], is observationally equivalent ©3;
the uniqueness result in Propositidrimplies that®? = @%. The equality in
(12) then give®1 = O3, which establishes our second step.

To establish the reparametrization in the third step, we focuslipdnd
(12). The key is to show explicitly how giver?, kg) (from @i‘]) we can (i)
choose the paramete(&s;, K1, £3) to get any desiredKg,, KI5, Zp);
and (ii) construct the(KQ, KiQ, po, p1) consistenwith the factors beingP;.
Detailsare provided in Appendix D.
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For reference, we summarize the transformations computed in the last
step as follows.

Proposition 2. Any canonicalGDTSMwith Q parameterg$i@, kg, Yp) has
theJSZ representation in Theorehwith

Kip = BI0YB™ (13)
K& = K2 Bem, — K3, A (14)
p1p = (B (15)
pop = —A- p1p, (16)

whereen, is a vector with all zeros except in th1at1h entry, which is 1
is the multiplicity of /1(1@) andB = BW(J(/I@), ), A= AW(kOQoeml, J(A9Q),
B~12p, 0,1), where(Aw, Bw) aredefined in (5) andA2—A3).

Before proceeding, we discuss the interpretation of the paraki%tésr Xis
stationary unde®, thenkéQg andrg> (thelong-runQ mean of the short rate) are
related according to2 = k2 3™ (—12)~1, wherem, is the dimension of

the first Jordon block]i@ of K%(. Thus, ifi? is not a repeated rootr(; = 1),

ré% is simply—ké%//li2 in stationary models. This is the case in our subsequent

empirical illustrations, where we express our normalization in terms of the
parameterg owing to its natural economic interpretation.

Thatkﬁ% andrg arenot always interchangeable in defining a proper canon-
ical form for the set of allGDTSMs of form (1-3) can be seen as follows. In
proceeding to the normalization of Propositibra model with the factors nor-
malized so that; = pg + 1 - X; is further normalized by a level translation
(Xt = Xt —a). Such level translations can always be used to enfpgee 0,
but they can be used to enformé%( = Oonly in the case tha{% isinvertible
(i.e., there are no zero eigenvalug$Whenm; = 1 and there are no zero

eigenvalues, the following two normalizations((bﬁ((%), po) areequivalent:

0 &
0 _kQ 0
KSD =1. andpg = Tg’ or Kg2 =1 . andpp =0. (17)
: B :
0 0

Theoreml useshe form Withkf%, and always applies regardless of the eigen-
values ofKiQX.

Oneimplication of this observation is that setting bdx@, andré?ﬁ7 to zero in the presence of@ nonstationary
risk factor, as was done b@hristensen, Diebold, and Rudebug2807,2009) in defining their arbitrage-free
Nelson-Siegel model, amounts to imposing an over-identifying restriction on the dift;of
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. P Dynamicsand Maximum Likelihood Estimation

w

Rather than defining latent states indirectly through a normalization on param-
eters governing the dynamics (undeor Q) of latent states, the JSZ normal-
ization has instead prescribed observable yield portfdia@nd parametrized
their Q distribution in a maximally flexible way consistent with no-arbitrage.

A distinctive feature of our normalization is that, in estimation, there is an in-
herent separation between the parameters oPthrdQ distributions of ;.

In contrast, when the risk factors are latent, estimates of the parameters gov-
erning theP distribution necessarily depend on those of @distribution of

the state, since the pricing model is required to either invert the model for the
fitted states (wheN bonds are priced perfectly) or filter for the unobserved
states (when all bonds are measured with errors). This section formalizes this
“separation property” of the JSZ normalization.

By Theoreml, we can, without loss of generality, useportfolios of the
yields, Py = PP € RN, as observed factors. Suppose that the individual bond
yields, y;, are to be used in estimation and that their associated measurement
errors,y? — yt, have the conditional distributioR?™, for somety, € On. We
require only that, for anyP?m, these errors are conditionally independent of
lagged values of the measurement errors and satisfy the consistency condition
PWY = Pi|Pr) = 1.13 Then,the conditional likelihood function (undé)
of the observed datgy) is

fFOR1Y1: ©) = T (1P A% KE, Zp, Py x £ (PPi—1: Kip. Kgp, Zp).

(18)
Noticethe convenient separation of parameters in the likelihood function. The
conditional distribution of the yields measured with errors depends only on
(19, k2, 55, Pm) and not on (K§p. Kip). In contrast, the conditiond-
density of the pricing factor®; depend®nly on(Kf’P, Kg’P, Yp),and noton
1<, kﬁ%). Using the assumption th&; is conditionally Gaussian, the second
term in (18) can be expressed as

f(PtP—1; Kip, Kip, Zp) = 22) V2| 2p| 2

x exp (—%HZ;} (Pt — Et—1[P1]) ||2) . (19)

Implicit in this formulation is the possibility thaou(yP|Pt; 2Q, kg%, X p) is singular. This would be true in

CaseY, where some yields are measured without errors, or when certain portfoligsare priced perfectly,

as with the use of principal components as observable factors oiGiseimand Scoit1995), who use different
portfolios of yields as their factors. This setup also accommodates the case wherE both some of the
individual components off are priced perfectly by th&SDTSM. Furthermore, the errors may be correlated,
non-normal, or have time-varying conditional moments depending®anin practice, it has typically been
assumed that the pricing errors are normally distributed.

10
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where E;_1[Pt] = K{5 + (I + K]»)Pi_1 andwhere for a vectox, ||x||?
denoteghe euclidean norm squareff, xiz. The parameterSKg’P, Kipp) that
maximizethe likelihood functionf (conditional ort = 0 information), namely

.
(Kgp» Kip) =amgmax>_ f(y21ye g; Kip, Kgp, Zp)
t=1
T
=agmin>_ L5 (P — Ec_1[P{]) |1%, (20)
t=1

are the sample ordinary least squar€3LS) estimates, independent b
(Zellner1962). Summarizing these observations:

Proposition 3. Under Cased®, theML estimates of th& parametergKt,,
KE”P) are given by the OLS estimates of the conditional mea#;of

Absentconstraints linking th& andQ dynamics, one can effectively sepa-
rate the time-series propertieB)(of P; from the cross-sectional constraints
imposed by no-arbitrage (QThe parameters governiriyy forecasts distri-
bution thus can be estimated from time series alone, regardless of the cross-
sectional restrictions. Furthermormdependenif (AQ,kéQé,Zp), the OLS
estimates of K, K1) areby construction globally optimal. WitliK 5,

KIp) athand, we use the sample conditional variancePaf 55/, com-
puted from theOLSinnovations as the starting value for the population vari-
ance IpI’,. Given (1<, kg), this starting value forZpZ/, is again by
construction close to the global optimum. Therefore, we have greatly reduced
the number of parameters to be estimated. For instanc& DiEM3) model,

the maximum number of parameters, excluding those goveifmgis 22 (3

for 1Q, 1 for k2, 6 for £p, 3 for Kgp and9 for K1,). With our normal-
ization, one can focus on only the 4 parame(df@, kﬁ%). This underlies the
substantial improvement in estimation speed for the JSZ normalization over
other canonical forms.

Key to our argument is the fact that we can parametrize of the conditional
distribution of the yields measured with error independently of the parameters
governing théP-conditional mean of° in the sense of the factorizatiofq).

For any(K{,, Kin, Zp, A€, k2), we have

f(Y2IP; A8 k2, Zp) x f(PtPi—1; Kip, Kips Zp)

s Noo o

< F (1P A% kS, Zp) x T (PUPt-1; Kip oL s Kop.oLs ZP)-
(21)
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wherewe suppress the dependenceRftr. This inequality follows from the
observations thatk 5, K{,) hasno effect onf (y?|P;) andthat, for anyZp,
replacing(K S, Kip) by its OLSestimate increases(Py|P;_1).4

It is instructive to comparel@) with the likelihood function that arises in
models with observable factors that parameterizePtlagstribution of P and
the market prices of these risks. In this case, the paramete(K%ge Kf}))
and(po, p1, 4o, A1, Zp), whereEF [Prya] = EC[Prra] + Ep (Ao + 41Py),
for state-dependent market prices of rigls + 41P;. These parameters are
subject to the internal consistency constraiitgg = 0 andBy = |y thaten-
sure that the model replicates the portfolios of yigRisMoreover, analogous
to (18), the factorization of the likelihood function takes the form

x f(PtPi-1; Kip, Kgp, Zp). (22)
Replacing(Kgp, Kip) with (Kgp, o, o, Kip o, o) agRin increases the second

term, but now the first term is affected as well. Thus, within this parameteriza-
tion, the fact thaDLSrecovers thdL estimates is completely obscurEd.

. On the Relevance of No-arbitrage for Forecasting

I

5

6

]

The decomposition of the conditional likelihood function of the datali®) (
leads immediately to several important insights about the potential roles of no-
arbitrage restrictions for out-of-sample forecasting. First, ProposRigives
a general striking property dbDTSMs under Cas®: The no-arbitrage fea-
ture of aGDTSMhas no effect on th¥lL estimates oKj,, andK . This,
in turn, implies that forecasts of future valuespfre identical to those from
an unconstrainedAR(1) model forP;.16 Thisresult sharpenBuffee’s(2009)
finding that the restrictions on ¥AR implied by an arbitrage-fre&DTSM
cannot be rejected against the alternative of an unrestNeA&d’ Whenfore-
casting theN portfolios of yieldsP;, Proposition3 showstheoreticallythat a
similar resultmusthold insofar as Cask is (approximately) valid.

Thelast step requires observable factors, another important element of our argument. See3%euti@3).

In fact, within @ macrcsDTSMwith a similar parametrization of internally consistent market prices of risk
and observable factorAng, Piazzesi, and WgR003) report thaOLSestimates OEP[’PHllPt] are(slightly)
different from theirML estimates. Our analysis generalizes to ma@@mFSMs (seeloslin, Le, and Singleton
2010) and so, in fact, th@LSestimatesre the (conditionalML estimates.

Notethat, in principle, enforcing no-arbitrage restrictions may be relevant for the construction of forecast confi-
dence intervals through the dependence_gn. However, empirically this effect is likely to be small.

Duffee(2009) also shows theoretically that no-arbitragerass-sectionallyrrelevant in any affine model under

the stochastically singular condition of no measurement errors. That is, if the model exactly fits the data without
measurement errors, the cross-sectional loadings (A,Bj)ddire determined without reference to solving the
Ricatti difference equation®\@—A3). Duffee does not theoretically explore the time-series implications of the
no measurement error assumption. In this case, not only would Propd3igipply (since CasP is a weaker
assumption) so that the OLS estimates areMeestimates o(K]gP, Kfp), but alsoXp could be inferred

from a sufficiently large cross-section of bond prices.
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The JSZ normalization makes these observations particularly transparent.
In contrast, in the (observationally equivalent) specification in (1-3), portfolio
yield forecasts are

EdlPia] — Pt = Bw(©) (B[ Xesal = Xo) = Bw(©) (Kb + KixX)

= Bw(©9) (Kgx + Kix(BwP@OD) ™ (P - Aw(©9)).
(23)

Thus,with latent states, the portfolio forecasts are expressed in terms of both
the P andQ parameters of the model. FrorR3), it is not obvious thaOLS
recovers theML estimates ofK{,, K15,). The JSZ normalization makes the
implicit cancellations inZ3) explicit.

Second, the structure of the likelihood function reveals that, in contrast to
the pricing factors, no-arbitrage restrictions are potentially relevant for fore-
casting individual yields that are measured with error. The conditional den-
sity of yP givenP; dependn the parameters of the risk-neutral distribution,
and these are revealed through the cross-maturity restrictions implied by no-
arbitrage. In addition, diffusion invariance implies tligt entersboth terms
of the likelihood function, so efficient estimation of these parameters comes
from imposing the structure of@DTSM.

Finally, the structure of the density(y?|P;) alsoreveals the natural alterna-
tive model for assessing gains in forecast precision from imposing no-arbitrage
restrictions. The state-space representation of this unconstrained model reflects
the presumption that bond yields have a low-dimensional factor structure, but it
does not impose the restrictions implied by a no-arbit2§&M. Specifically,
under Cas® whereP; is priced perfectly by th6&&DTSM, the state equation is

AXit1 = Kox + Kix Xt + €, € ~ N(0,Zx)i.i.d., (24)

andthe observation equation

Pt O o, ..
=C+ DX ~ PO jid. 25
(yt") + DXt + (emt)’ emt i (25)

The parameter set i®ss = {(Kox, Kix, Zx, C, D, P/m)}, where P/ is an
observation error distribution that is consistent with CRase

No-arbitrage requires that the observation equation param@ef3) must
be of the form 4); that is, the dynamics are Gaussian un@erAddition-
ally, no-arbitrage enforces a link between the possi{ileD) and Zx (dif-
fusioninvariance). Since the parameters are not identified, one also imposes
normalizations to achieve a just-identified model. Importantly, the choice of
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normalizationswill in general affect theviL estimates of the paramete&ss,
but will not affect the distribution of bond yields implied from the state space
model (either in the cross-section or time series). For example, one could im-
pose the identification schemeai and Singletorf2000) under either thE
or theQ measure. The estimates ox, K1x) and (C, D) will be choice-
specific, but these differences will be offset by changes in the latent states so
that the fits to bond yields will be identical.

Notably, the unconstrained state-space represent@®)A25) with param-
eter set@gss is not the unconstrained-dimensionalVAR representation of
V. The latter relaxes both the no-arbitrage (and any over-identifying restric-
tions) enforced in th&DTSM andhe assumed factor structure of bond yields
(the dimension ofX; is less than the dimension gf). Consequently, gains
in forecasting an individual yield using @DTSM, relative to the forecasts
from an unconstraineARmodel of y;, may be due to th& ARbeing over-
parametrized relative to the unconstrained factor model, the imposition of
no-arbitrage restrictions within tHteDTSM, or both. The role of no-arbitrage
restrictions is an empirical issue that can be addressed by comparing the
constrained and unconstrained version2df){(25).

. Irrelevance of Factor Structure for Forecasting

The DTSMaiterature considers a number of further constraints on the factor
structure of aGDTSM, beyond those implied by the absence of arbitrage. In
addition to making different identification assumptions, one can form a parsi-
monious model by restricting the distribution of certain variables (under either
P or Q) or by restricting the structure of risk premia. We first extend the re-
sults of SectiorB to characterize when this irrelevancy result does (and does
not) hold in more gener&DTSMs, and then we discuss the connection of our
results to specific over-identifigs@dDTSMs in the literature.

Within the state-space mode?4-25), the parametex€, D) control the
cross-sectional relationship among the yields, wRife controlsthe distribu-
tion of the measurement errors. The covariance matrix of the innovations of
the latent state& x is linked to Zp throughthe factor loadinggC, D). The
restriction of no-arbitrage, for example, says both that only certain types of
loadings(C, D) are feasible (those given b)) and that this feasible set de-
pends on the particular value &fx. Thus, no-arbitrage is a cross-parameter
restriction on the feasible set ¢€, D, Zx) in the general state-space model.
More generally, one might be interested in restrictions on a particular subset
of the parameters = (C, D, Pn%, Y x), examples of which we discuss in sub-
sequent subsections. The following theorem says that even if restrictions are
imposed ony, as long agKox, K1x) areunrestricted OLSwill recover the
ML estimates ofKgp, K1p). (Kox, K1x) will change in general with the re-
strictions imposed on, but only through an affine transformation of the latent
states.
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Theorem 2. Given the state-space mod2h25) and the portfolio matrivw/
determining the factor®;, let H be a subset of the admissible setjofhere,
for any (C, D, Zx, P%) € H, the N x N upper left block ofD is full rank.
Consider theML problem withy constrained to lie in the subspate

(k3 Kk n™) e agmax f(Pr yr..... P yilPo, yo.
Kox, Kax;neH

Then, (K&, K74, #*) aresuch that
Kop = DEKE — DEK (DF)~ICH, (26)
Kip = DEKIL(DIH™, (27)

whereC is the firstN elements o€?, DX is the upper lefiN x N block of
D™, and(Kop, K1p) arethe OLS estimates of the regression

APy = Kop + K1pPt + EZ).

The proof is similar, though notationally more abstract, to the proof of
Proposition3 and is presented in Appendix E.

Using this result, we first illustrate the estimation of the general state-space
model of 4—-25) when the possibility of arbitrage is not precluded. We next
explore the implications of restrictions on teandP distributions, as well as
on risk premia, for the conditional distribution &%.

4.1 Factor Structure in Arbitrage Models

The factor model (24-25) is not necessarily consistent with the absence of

arbitrage. This is because the loadingsZB)(may not come from the solution

of (4) for a given choice 069. Nevertheless, this model is still of interest as

it provides a baseline “factor structure” for the yield curve (@tiffee 2009.

Theorem?2 implies that, under Cask, the OLS estimates of the parameters

governing 24) are identical to their counterparts from systitn estimation

of (24-25) when the factorB; areobserved portfolios of bond yields.
Additionally, when, in addition to Case, the state-space model has tem-

porally i.i.d. normal pricing errors in26), and these errors are orthogonal to

the portfolio matrixW, the OLSregression of the observed yields onto the

factorsP give theML estimates of the unconstrained (“with arbitrage”) cross-

sectional loadingéC, D) in (25). In this case, th©LSregression estimates of

X mustalso correspond (through the invariant transformation given in Theo-

rem2) to theML estimates of_x for the factor model. Taken together, these

procedures provide a simple prescription for constructing alternative reference

models (to arbitrage-fre6DTSMs) that maintain the factor structure but do

not impose no-arbitrage. In the empirical analysis in Secliowe focus on
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comparison®f OLS forecasts ofPCs with their forecasts from a variety of
arbitrage-free models. These “with arbitrage” factor models provide a natural
reference model when one is interested in forecasting yields.

4.2 Irrelevance of Constraints on theQQ Distribution of Yields

The JSZ normalization characterizes the state in terms of an observable port-
folio of zero coupon yields. The condition@l distribution of P, (asa func-

tion of P) is expressed in7), which we have shown can be parametrized by
1<, kﬁ% Y p). Within the model (that is, without measurement errgfsis in-
formative about the entire yield curve. Thus, one type of restriction a researcher
may be interested in imposing is on the conditio@adistribution of P, (or

Yi+7) @s a function ofP; (or y;).1® Suchconstraints further restrict (beyond

the no-arbitrage restrictions) the cross-sectional load{@y®D) in the gen-

eral state-space model as well as which innovation covariances are possible.

Theorem?2 shows that restrictions on tt@ distribution ofy; ., as a function
of y, are irrelevant for forecasting;. Put differently, in the JSZ-normalized
GDTSM, restrictions that affect only the parameters ofdlukstribution of P
(1<, kg, as well asXp) are irrelevant for forecasting the portfolios of yields
P:. Though latent-factor representations lilg3) suggest that th® parame-
ters enter intcE%P’ [Pi+1], in fact absent restrictiorscrossthe P andQ param-
eters of the model, an restrictions must affeat< 5y, K1y) in a manner that
“cancels” their impact orEtP [Pr41].

Oneexample of such a constraint in the literature is the arbitrage-free Nelson-
Siegel (AFNS) model ofchristensen, Diebold, and Rudebug@®07). The
AFNS model allows for a dynamically consistaBDTSMwhere, except for
a convexity-induced intercept, the factor loadings correspond to those of
Nelson and Siegg1987). Since the AFNS model is the constrained special
case of the JSZ normalization wifi2 = (0, 4, A) and K2 — 0,19 animme-
diate implication of this observation is thfatrecasts ofP using an arbitrage-
free Nelson-Siegel (AFNS) model are equivalent to forecasts based on an
unconstrained VAR(1) representation Bf Proposition3 implies that these
restrictions do not affect theIL estimates ng’P and Kipp and,hence, they
cannotimprove the forecasts @ relative to an unconstrained VAR(1). Thus,
the forecast gains th&hristensen, Diebold, and Rudebug2007) attribute
to the structure of their AFNS pricing model are, instead, a consequence of the
joint imposition of no-arbitrage and their constraints on Ehdistribution of
bond yields.

More precisely, under, yi+:|Ft ~ N(uf,Z"). If we expressuf = u'(yt), restrictions onZ’® or the
functional formu® areirrelevant. More generally, sincEfF[st] e Ft = o(y), restrictions of the form
EP[ytJr,] = g(El [yt+]) mayaffect forecasts.

We show this formally inJoslin, Singleton, and Zh{2010).
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4.3 Conditions for Irrelevance of Constraints on Latent Factors

A conclusion of Sectiod.2is that restrictions on the parameters goverriing
distribution of yield factors are irrelevant for forecasts. In this section, we ad-
dress the question if, more generally, a parameter constraifp patameters”
within an identifiedGDTSMwith latent factors affects forecasts. For example,
aresearcher may consider the following procedure. They begin VBIDESM
model with the normalizations ddai and Singletor{2000) (DS) applied un-
derQ: (KE , KE ) arefree whilesx = 1, K& = 0,andK is (ordered)
lower triangular (or real Schur to accommodate complex eigenvalues). After
estimation, a more parsimonious model is obtained by taking any coefficients

in K(& thatare insignificantly different from zero and setting them to zero (or
using an iterative AIC or BIC type procedure). A similar procedure is followed
in, for exampleDai and Singletor{2002).

When K&, and K{, are unconstrained, constraints such as theseQen
identified parameters are joint constraints on the cross-sectional properties of
the yield curve and the covariance of innovations. To see this, one can invert the
latent factors into the observable factors and observe that non-linear constraints
within the JSZ normalization om‘@, kﬁ% ~p) will hold. However, Theorem
2 directly shows that the resulting forecasts f@rwill be identical whether
the constraints are imposed or not. The constraints in gemdtalhangethe
estimateoKE)F’X and Kllpx, but they will also change the loadings and the latent
states so that the forecasts/afwill not change.

Alternatively, one could first apply a normalization undeaind then restrict
the parameters governing tlzconditional distribution of the implied latent

states. For example, as above, one could apply the DS normalizationinder

where (K, K5y will be restricted Whi|E{Ké)QX, KiQX) arerestricted Duffee

and Stantor{2007), for example, apply such a normalization. With this type
of P identification, Theoren2 no longer applies and it is easy to see that in
general restrictions on thi@ parameters (i.e., th@-conditional distribution of

the latent factors as a function of the latent factors) will affect the forecasts
of P;.

4.4 Relevance of Constraints on the Structure of Excess Returns

Central to the preceding irrelevance results is the absence of restrictions across
the parameters of tHeandQ distributions ofP;. Such constraints would arise

in practice if, for instance, th&DTSMimplied expected excess returns on
bonds of different maturities lie in a space of dimensioless than dintP;) =

N. Put another way, some risks in the economy may have either zero or con-
stant risk premia. Whed < N, it also follows that time variation in risk pre-
mia depends only on ai-dimensional state variabl€ochrane and Piazzesi
(2005,2008) conclude thaf = 1 when conditioning risk premiums only on
yield curve informationJoslin, Priebsch, and Singlet¢2010) find that( is

at least two when expected excess returns are conditione® ,cimflation,

17

1T0Z ‘2 @un uo saLreiq LI e B10's[euInolpiogxo sy woly papeojumoq


http://rfs.oxfordjournals.org/

20

TheReview of Financial Studies /v 00 n 0 2010

and output growth. We explore the relevance for forecasting bond yields of
imposing the constrainf within GDTSMs that condition risk premiums on
the pricing factors?. When this constraint is (approximately) valid, improved
forecasts ofy; may arise from the associated reduction in the dimensionality
of the parameter space.

To interpret this constraint, note fro@ox and Huang1989) andJoslin,
Priebsch, and Singletof2010) that one-period, expected excess returns on
portfolios of bonds with payoffs that track the pricing fact®ks sayxrP;, are
given by the components of

XIPy = Kip — K&, + (Kip — KS)Pr. (28)

Thatis, thei " componenof (Kip73 — K;@P)Pt is the source of the risk premium
for pure exposures to th& componenof P;. Therefore, the constraint that the
one-period expected excess returns on bond portfolios are drivénlingar
combinations of the pricing facto® amounts to the constraint that the rank
of Arrp = K:il_pp — K;_Q,P is 5_20

Thereduced rank risk premiuDTSMs can be estimated through a con-
centration of the likelihood in the same spirit d8). Given (12, ké%,  p,
Pfm), the ML estimates of( KL Kfp) canbe computed as follows. First,

oP:>
compute(a, £) from the regression

Pt — (Koo + KSP) = a + P + €, (29)

wherewe fix the volatility matrixZp of errorse]” andimpose the constraint
that # has rankZ. We show in Appendix F how one can compute e
estimates of this constrained regression in closed form. For a gjﬁ%rkg
Yp, P/m), the ML estimates of th@® parameters are then given by

P Q A P Q )
Kop = Kgp t @, Kip=Kip+ 5. (30)

In comparison to the setting underlying Propositidrand Theorem?2,
reduced-rank risk premia enforce constraints across the parametersif the
andQ distributions. Consequently, thdL estimates of th& parameters are
no longer given by theiOLS counterparts. This, in turn, means that the im-
plications of Propositiol3 discussed in Sectiofh.2will, in general, no longer
apply. Under the reduced-rank restrictions, any further assumptions @ the
parameters (such as the constraints of the AFNS model) will directly affect
the estimated® parameters as there is a link between the cross-section and

Alternatively, we could restrict the rank c[)f((“; - Ké%), Kipp - K%,] to £. This would enforce the stronger
restriction that onlyC linear combination of the factors has non-zero expected excess return.
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time-seriegroperties of yields. We explore the empirical implications of these
observations in Sectidb

4.5 Relevance of Constraints on th& Distribution of Yields
So far, we have demonstrated that neither the imposition of no-arbitrage nor
restrictions on th&) dynamics have any effect on tihdL estimates oiKg”P

and Kipp. However, restrictions on risk premia, such as the reduced-rank as-
sumption, linkP and@Q and interact with no-arbitrage to affect estimates of
Kgp andKY,. We now complete this discussion by examining whether no-
arbitrage affects the distribution of bond yields when one also imposes stand-
alone restrictions on the distribution of yields that do not impinge on tig
distribution, either directly or indirectly through risk premiums. Examples of
such restrictions are that the yield portfolios are cointegrated or that the con-
ditional mean of each portfolio yield does not depend on the other portfolio
yields2! Onecan impose such restrictions without reference to a no-arbitrage
model.

In these examplesDLS no longer recovers th®IL estimates of the pa-
rameters; rather, to obtain efficient estimates gi¥en one must implement
generalized least squareSL(S). Let(K§*(Zp), K*(£p)) denotethe GLS
estimates ofK,, K1) givenLp:

.
(K§*(Zp), K§*(Zp)) = agmax > F (PP y; Kip, Kip. Zp),  (31)

P kP
Kop-Kip t=1

wherethe arg max is taken ove(rKgPP, Kfp) satisfyingthe appropriate re-
striction on thelP dynamics. In the presence of such restrictions, there is a
non-degenerate dependence(Kf*, K$*) on Zp. This dependence means
that no-arbitrage (which link&p acrossP andQ) affects theML estimates

of (Kp. Kip).

We explore the empirical implications of two types of restrictions onfthe
distribution of yields in Sectio®: (1) a model WithKIlPP constrainedo be
diagonal; and (2) a model in which tf# arecointegrated (with one unit root
and no trend).

4.6 Comparing the JSZ Normalization to Other Canonical Models

The normalizations adopted by DS aaklin(2007) preserve the latent factor
structure in 9—10), in contrast to the rotation to observable pricing factors in
the JSZ normalization. To our knowledge, the only other normalization that has
an “observable” state vector is the one explore€bylin-Dufresne, Goldstein,

SeeCampbelland Shiller(1991) (among others) for empirical evidence on cointegration among bond yields.
Diebold and Li(2006) adopt an assumption very similar to the second example.
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andJoneg2008) (CGJ). All three of these canonical models—DS, Joslin, and
CGJ—are observationally equivalet.

In the constant volatility subcase of the CGJ setup, the state v¥gtr
completelydefined byr; andits first N — 1 moments undeQ:

Xt = (e, {1ty £2ts « s UN=1,1) s (32)

where

1 1
fiy = aE@(drt), Hkglt = aEQ(dﬂkt), k=1,...,N—-2. (33)

Under@Q, X; follows
dX; = (KgCGJ + KSCGJXt)dt + XxdZ;, (34)

whereXy is lower triangular,Ké@CGJ = (0,0,...,0,y),andZ; is the stan-
dard Brownian motion. By construction, the matl(>&eJ is the companion

matrix factorization of the feedback matﬂi§<8< in (9).

The sense in whichX; is observable in the CGJ normalization is quite
different than in the JSZ normalization, and these differences may have prac-
tical relevance. First, it will not always be convenient to assume that the one-
period short-rate; is observableDuffee (1996) highlights various liquidity
and “money-market” effects that might distort yields on short-term bond rela-
tive to what is implied by &DTSM. Therue short rate—the one that implic-
itly underlies the pricing of long-term bonds—uwiill not literally be observable
absent an explicit model of these money-market effects. Second, actions by
monetary authorities might necessitate the inclusion of additional risk factors
or jumps in these factors when explicitly including short rates in the analysis
of aDTSM(Piazzesi 2005). Within the JSZ normalization, one is free to define
the portfolio matrixXW so as to focus on segments of the yield curve away from
the very short end, while preserving fully observaBle

Different choices of normalizations, associated with different, unique matrix factorizations of the feedback ma-

trix KiQx, give rise to observationally equivalent models, through models with different structure to their param-
eter sets. The JSZ normalization is based on the real Jordan factorization used in Propo€ifiGnadopt the

companion factorization. For any monic polynompak) = x" — yn,lx"*l — .-+ — u1X — ug, the companion
matrix is
0O 1 0 - 0
0o 0 1
C(p = )
o 0 0 - 1
Mo M1 M2 -t Hn-1

Given any matrix< , its monic characteristic polynomial is unique, and the mariés similar to its companion
matrix C(p(K)).
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More subtly, the construction of the state vector in the CGJ normalization re-
quires the parameters of tigedistribution. Therefore, any change in the imple-
mentation of &i5DTSMthat changes the implig@d parameters will necessarily
change the observed pricing factors under the CGJ normalization. Fitting the
same model to two overlapping sample periods could, for example, give rise to
different values of the observed state variables during the overlapping period.
In contrast, under the JSZ normalization, we are led to identical valu@s of
for all overlapping sample periods.

Full separation of th@® andQ sides of the unrestricted model appears to be
a unique feature of the JSZ normalization. It is this separation that clarifies the
role of no-arbitrage restrictions IBDTSMs, and gives rise to the enormous
computational advantages of our normalization relative to the DS, Joslin, and
CGJ canonical models.

. Empirical Results

We estimate the three-fact@DTSMs summarized in Tablé by ML using

the JSZ canonical form and the methods outlined in Se@iGhAs all of

our estimated models are stationary un@erwe report our results in terms

of rg insteadof kéQg The data are end-of-month, Constant Maturity Treasury
(CMT) yields from release Fed H.15 over the period from January 1990 to
December 2007 (216 observations). The maturities considered are 6 months,
and 1, 2, 3, 5, 7, and 10 years. From these coupon yields we bootstrap a
Zero-coupon curve assuming constant forward rates between maturities. Within
CaseP, we consider several subcases. With distinct real eigenvalues, we as-
sume the first three principal componen®CE) are measured without error
(RPC); or the 0.5-, 2-, and 10-year zero coupon yields are measured without
error (RY). Additionally, we estimate models that price the first tH?P€s of

Table 1

Summary of Model Specifications

ModelName Specification

RPC Real? = (12, zg, 1%), PC1,PC2,PC3priced exactly

RY Real ¥ = (21 Aﬁ, iﬁ), 0.5-, 2-, and 10-year zeros priced exactly
cPC Complex? = (2, a@, 19, pc1, PC2, PC3 priced exactly
JPC Real repeate‘c@’ = (/11 ,,12 ,/1(2@), PC1, PC2, PC3 priced exactly
RPG RPCand rank 1 risk premia

RY1 RY and rank 1 risk premia

RCMTy RCMT and rank 1 risk premia

JPG JPCand rank 1 risk premia

RKF Real distincm@, and all yields are measured with error

RCMT Real ¥ = (2?, Ag, ig), 0.5-, 2-, and 10-year CMTSs pricedactly

23 ;:@ denoteghe complex conjugate of thé elemeniof 1. Also, we defer discussion of case RKF, in which all
ylelds are measured with error and Kalman filtering is applied, until Se6tion
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thezero curve exactly under the constraints of repeated eigenvalues (JPC) and
complex eigenvalues (CPC). Model JPC imposes the eigenvalue constraint of
the AFNS model examined b@hristensen, Diebold, and Rudebug2b09).
Finally, a subscript of “1” indicates the case of reduced-rank risk premiums
(£ = 1) with the one-period expected excess returns being perfectly correlated
across bonds. In all cases, except as noted, the component of measurement er-
rors orthogonal taV are assumed to be normally distributédAlthoughwe
derive portfolios from the principal components, one could also use portfo-
lio loadings from various parametric splines for yields such as Nelson-Siegel
loadings or polynomial loadings.

An alternative measurement error structure arises when one supposes that
coupon bonds are measured without error. In this case, portfolios of zero bond
yields will necessarily incorporate measurement error. To that end, we consider

Case C: N coupon bonds are priced exactly, add- N coupon bonds are
measured with normally distributed errors in BBTSM.

In implementing Cas€ with coupon-bond data, one can still seléctport-

folios of zero coupon yields and construct the rotation where these portfolios
comprise the state vector. Even though such yields may not be observed, this
rotation is still valuable because the portfolios of model-implied zero yig{ds
canbe approximated from the observed data. For example, one could bootstrap
or spline an approximate zero coupon yield curve from the observed coupon
bond prices and, from an approximationff call it P2. Importantly, the pro-
jection of P2 ontoits own lag will recover reliable starting values fKrg;)

and KE”P. However, because coupon bond yields are nonlinear functio®s of
the irrelevance propositions discussed in Sec8aio not apply to Cas€.

In our empirical implementation, we consider the case of the 0.5-, 2-, and
10-year CMT yields measured without error, and the 1-, 3-, 5-, 7-year par
coupon yields measured with errors (RCMT). Throughout, we report asymp-
totic standard errors for the maximum likelihood estimates that are computed
using the outer product of the first derivative of the likelihood function to
estimate the information matrix (s&erndt et al. 1974).

In CaseY, this assumption amounts to yield measurement errors being distributecdNi(Odz 2). When W
comesfrom the principal components, the assumption is equivalent to the higherf@efh > N) being
distributedN(O,ag). In both of these cases, we can concentsgidrom the likelihood (conditional o = 1

information)through&,% = ZLZ m(y{fm - ylﬁm)z/ ((T = 1) x (3 = N)), whereyt, m arethe model yields that

depend on all the other parameters. To be more precise about the error assumptignglé(J—N)xJ peg

basis for the orthogonal complement of the row spawoT hen, sincaV hasorthonormal rows, we can express

yP in terms of its projection ontdV andthe orthogonal complement W asyP = WWy? + (W, )W, y© =

WPt + (W)W yP. We assumeg — y¢|Pt hasthe degenerate distributidd(W' P, n'%(WL)/Wl) (which

is rotation invariant in the sense that the likelihood is the same for alternative choices of base for the orthogonal
complement taw). Equivalently, the projection of ontoW, expressed in the coordinat®, isi.id. normal:

W1 YP ~ N(0,031 3_N)- This distribution satisfieB(Wyp = Pt|Pr) = 1.
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Table 2
ML estimates of the risk-neutral parameters of the model-implied principalcomponents

ParameteEstimate

Model W2 i3 12 /imGR) rQ
RPC —0.0024 —0.0481 —0.0713 861
(0.000566) (0.0083) (0.0133) (0.73)
RY ~0.00196 -0.0404 —0.0897 937
(0.000378) (0.00274) (0.0073) (0.789)
RKF —0.00245 —0.0472 —0.0739 8.45
(0.000567) (0.00724) (0.0125) (0.678)
RCMT —0.00178 —0.0372 —0.103 112
(7e-005) (0.000819) (0.0029) (0346
JPC —0.00225 —0.0582 —0.0582 8.87
(0.000409) (0.00123) (0.00123) (0.536)
cPC ~0.00225 —0.0582 —0.0582 8.87
(0.000409) (0.00123) (0.00123) (0536
RPG, —0.00241 —0.0477 —0.0721 861
(0.000559) (0.00766) (0.0126) (0.715)
RY, ~0.00197 ~0.0403 ~0.0902 937
(0.000373) (0.00269) (0.00723) 0.775)
RCMT, —0.00178 —0.0371 —0.103 112
(6.92e-005) 0.000828) (0.003) (0.345)
PG —0.00224 —0.0583 —0.0583 89
(0.000405) (0.00122) (0.00122) (0.54)

ré@o is normalized to percent per annum (by multiplying i x 100). Asymptotic standard errors are given in

parentheses.

In order to facilitate comparison of the estimates across models with dif-
ferent pricing factors, all of our results are presented in terms of the implied
PP distribution of the first thred°Cs of the zero yield%® Table 2 shows that
these parameters are largely invariant to (i) assumptions about the distribution
of measurement errors; (i) restrictions on @&ynamics through restrictions
on 2Q; and (iii) restrictions on the relation between teand P dynamics
through the reduced-rank assumption. The only mild exception is that model
RCMT has a higher%, which is compensated for by slightly Iowé? and

/19 The close alignment of results shows that the cross-section of bond yields
provides a rich information set from which to extract the four relev@uma-
rameterst 2 and Q.

Anothernotable feature of these estimates is that the results for model CPC
are the same as those for model JPC. This is because, in the limit, as the com-
plex part of the eigenvalues approaches zero, the complex model approaches
the Jordan model (see Appendix C). Thus we see that, for our dataset, complex
eigenvalues are not preferred over real eigenvalues.

Tables3 and4 present the parameters of thalistribution of P. The final
row presents parameters fromVAR (with no pricing involved) of thePCs.

Thatis, under Cas¥ or when the CMT yields are priced perfectly by tB®TSM, after estimation, we impose
the JSZ normalization based on tREs of zero yields as the state variables.
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Table 4 reveals that initializing—p using OLSresidualsleads to very accu-
rate starting values. By way of contrast, if we had instead used#ieand
Singleton(2000) (DS) canonical form, an accurate initialization gf would
require a reliable initial value foKiQ. The JSZ canonical form allows us to
avoid this interplay between the valuesgf and KiQ by applying no-arbitrage

constraints to determinléiQ;D independenthpf Zp.

Acrossall specifications, the parameters are very comparable. Partly thisis a
consequence of Propositi@n whetheri@ comprisedlistinct real eigenvalues
(RPC), complex eigenvalues (CPC), or repeated eigenvalues (JPC), the esti-
mates Oﬂ'(fip and Kg;) areequal to each other and to tfoé Sestimates. How-
ever, stepping beyond this proposition, when we change whetheP&ssor
individual yields (e.g., RPC versus RY) that are priced perfectly byaibé SM
under Cas®, the parameters of the correspondihdistributions remain very
similar. Imposing the reduced-rank risk premium constrdint 1 leads to
generally similar results, although for some parameters there are measurable
differences in estimates across corresponding models, particularly for some of
the elements oK ;.

Regarding the computational efficiency obtained using the JSZ normaliza-
tion, we stress that the only parameters that need to be estimatér&aﬂ@,

Zp) since,as discussed in Sectid (Kgp, Kfp) are determined by con-

centrating the likelihood an(Ké%D, K%D) aredetermined by no-arbitrag&.

The models were estimated using sequential quadratic programming, as im-
plemented in Matlab’émincon. Estimation under CaseP using an informed
guess of theQ eigenvalues took approximately 1.2 secofti§urthermore,
99%-+-of the searches converged to the same likelihood value (to within the tol-
erance) with very similar parameter estimaté3hesecomputational advan-
tages become even more important in the case where all yields are
measured with error, which we consider in Section

5.1 Statistical Inference Within the JSZ Canonical Form

There are two null hypotheses that are of particular interest given our observa-
tions in SectiorB. The first test addresses the algebraic multiplicity of eigen-
values in theGDTSM3) model. As previously stated, the AFNS model of
Christensen, Diebold, and Rudebu$2807) is equivalent to the JSZ canonical

26 Thestandard deviation of the pricing €ITObSyicing, Can be concentrated out as well, both wieaquals 1 and
when it equals 3.

27 Thecomputations were performed using a single-threaded application on a 2.4GHZ Intel Q6600 processor.

28 An exception here is the Jordan form, where typically there were two local extrema with either the smaller
or the larger eigenvalue repeated. Another general consideration is that one must either optirﬂk& over
alternatvely imposeQ stationarity on the model if one desires to m% in estimation. In fact, for estimation
purposes, the issue of usihB3 versusg is largely obviated by results idoslin, Le, and Singletof2010), who
show how one can concentrate dl& underCase P.
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form with three extra constraints, including a repeated eigenvaILIélQ)fTo
assess the validity of the null hypotheég = /19, under the JSZ normaliza-
tion, we perform a Likelihood Ratio (LR) test against the alternative tf¥at
is unconstrained. With this one linear constraint, the LR test statistic has an
asymptoticy 2 distribution with one degree of freedom?(1).

The second test of interest is the dimensionality of the one-period risk pre-
mium which, as discussed in Sectiért, is captured by the rank &rrp =
Kfp — K?P. To impose the constraint thdt = 1, we start with the singular
value decomposition oArrp, UDV', whereU andV areunitary matrices and
D is diagonal with the diagonal sorted in decreasing order. The null hypothesis
of interest—thatArrp hasrank 1—is therefore imposed by settimp, and
D33 to zero. To translate this representation into constraints on the parameter
space, note that, for ad-factorGDTSMwith £ = 1,

N
DV'Pt = D11 ) Vj1Pjt. (35)
j=1

Thereforethe expected excess retuntr®; (seeSectiond.4) are given by
N
XrP = (K(I)Pp - Ké@p) +Ua - [ D11 > Vi1Pje | . (36)
j=1

whereU,1 is the first column ofU. The second term on the right-hand side
of (36) expresses the time-varying componentsr@ in terms of a common
linear combinationV/, P; of the pricing factors. All of the parameters i86)
are econometrically identified by virtue of the facts tNgfV,1 = 1 (which
identifiesD11) andU/;U,1 (which identifies the weights o1V, Pt). Fur-
thermore, giveriN, (36) implies(N — 1)? cross-equatiomestrictions on the
parameters of the conditional expectatiaf®;. In our caseN = 3, so there
are 4 cross-equation restrictions.

Tests for the equality of two eigenvalues are reported in the top panel of
Table 5, where a leadingl means that the model was estimated under the
constraint thaﬂgP = 29 (consistentvith the specifications of AFNS models).

In the PC-based models, this null hypothesis is not rejected, while for the
yield-based models it is rejected at conventional significant levels. To interpret
this difference across choices of risk factors, we note from Talleat the
estimatedMg - /19| is larger in model RY than in model RPC, with most
of this difference being attributable to the larger valuq}(% in model RY.

The eigenvaluéfé2 governs the relatively high-frequen€y variation in yields

and, thus, is particularly relevant for the behavior of the short end of the yield
curve. Introducing the six-month yield directly as a pricing factor overweights
the short end of the yield curve relative to having B@s as pricing factors, as
the latter are portfolios of yields along the entire maturity spectrum.
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Table 5
Likelihood ratio tests
Ho: i3 = 13
Ho logLo Ha logLa LR statsy2(1) p-value
JPC 38.3912 RPC 38.3921 0.375 0.540
JPG 38.3865 RPG 38.3876 0.463 0.496
JY 38.1679 RY 38.1863 7.906 0.005
JY, 38.1638 RY1 38.183 8.266 0.004
JRCMT 39.0123 RCMT 39.0414 12.513 0.000
Ho rank(KiFP - K?P) =1

Ho logLg Ha logLa LR statsy2(4) p-value
RPCG 38.3876 RPC 38.3921 1.9475 0.745
JPG 38.3865 JPC 38.3912 2.0358 0.729
RY 38.1863 RY 38.1830 1.4217 0.840
JY 38.1679 Y 38.1638 1.7819 0.776
RCMTy 39.0387 RCMT 39.0414 1.161 0.884

Thetop panel reports tests for equality of two eigenvalues, and the bottom panel reports tests for rank-1 risk
premium. The likelihood-ratio statistics are computed.Bs= —2(T — 1)(logLg — logLa), whereT = 216

is sample size antbgLg andlogLa arethe log-likelihoods under the null and alternative, respectively. All
log-likelihoods are conditional on= 1 andare time-series averages acrossTthe 1 obsenations.

In the bottom panel, we report tests of the reduced-rank, risk premium hy-
pothesis thall = 1. Under all model specifications, this hypothesis cannot be
rejected. This finding is consistent with the conclusions reacheddayrane
and Piazzegj2005), though they effectively considered models with= 5 as
they examinedPC1 throughPC5.

5.2 Empirical Relevance of Constraints or? Distribution of Yields
In Sectiord.5, we demonstrated that imposing no-arbitrage in addition to con-
straints onP distribution of yields affects the forecasts of yields. We now em-
pirically explore the magnitude of the effect of the interaction of no-arbitrage
with (i) imposing Kfp to be diagonal; and (ii) imposing th&; are cointe-
grated (with one unit root and no trend). In both cases, we assume risk premia
have full rank and th& distribution of yields is unconstrained.

Table6 presents the estimation results with the constraintlﬂféj is diag-
onal in both the referencéAR as well as asymptotic standard errors. When
the constraint of diagon&(fp is imposed, no-arbitrage has almost no effect
on the parameter®. Additionally, the differences not only are small in magni-
tude, but are also very small with respect to the standard errors.

Table 7 presents the estimation results for &R and no-arbitrage mod-
els when cointegration (without a trend) is imposed. Here, we present standard

The average log-likelihood (acrogy for the unconstrained no-arbitrage model was 38.392, while for the
diagonal-constrained model it was 38.291. The corresponding likelihood ratio test statistic is 44.0, far exceeding
the 99% rejection region of 16.8, indicating a very strong rejection of this constraint.
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Table 6
The conditional mean parameters for the model withKfp constrainedto be diagonal
With No Arbitrage Without NoArbitrage
P P P P
Kop Kip Kop Kip
—0.0129 —0.151 —0.0129 —0.151
(0.0193) (0.135) (0.0188) (0.131)
0.00754 —0.286 0.00761 —0.289
(0.00636) (0.202) (0.00635) (0.201)
0.013 -1.97 0.0129 -1.95
(0.00292) (0.423) (0.00292) (0.421)

Kfp is annualized by multiplying by 12. The left panel imposed no-arbitrage and uses yield data for all matu-

rities. The right panel does not use no-arbitrage and simply computes the estimaiéaRbdaP: with KiPP
constrainedo be diagonal througBLS.

Table 7
The conditional mean parameters for the model with cointegration with no trend and one unit root
imposed

With No Arbitrage Without NArbitrage
P P P P
Kop Kip Kop Kip
—0.0644 —0.258 0.113 522 —0.0668 —-0.24 0266 529
(0.0602) (0.336) (0.733) @8.17) 0.218) 0.225) 0.792) @.67)
—0.0189 0.0495 —0.112 4.32 —0.0172 00519 —0.168 432
(0.0236) (0.124) (0.288) 1.28) 0.0827)  00824) 0.31) 1.03)
0.007 —0.0241 0.0482 —-1.73 000713 —0.0184 00632 -171
(0.0105) (00562)  (0.117) 0.565) 0.0326)  0.0362)  0.126) 0471

The left panel imposed no-arbitrage and uses yield data for all maturities. The right panel does not use no-

arbitrage and simply computes the estimates WAR of PPy with cointegration imposed so thmgp, Kfp]
hasrank 2.

errorscomputed by a parametric bootstrap due to the well-known non-standard
asymptotics and small-sample bias associated with unit roots. The method that
we used to bootstrap the standard errors is as follows: We randomly choose
a datat € {1,2,...216} and initialize the state as the value Bfon this

date. Then, using the maximum likelihood estimate of the parameters, we
simulate a path of the term structure for the sample size of 216 months and
estimate the model based on these simulated data. These steps are repeated
1000 times. Although the no-arbitrage assumption has a somewhat larger ef-
fect than the diagonal case, the differences are again generally small. Taken to-
gether, these results suggest that although theoretically the no-arbitrage model
may offer improved inference over the simpf&R model when stand-alone

P constraints are imposed, such differences may, evidently, be small in
practice.

5.3 Small-sample standard errors
Another feature of our normalization is that it facilitates the computation of
small-sample standard errors that can be compared to the asymptotic standard
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Table 8
The standard errors of the parameter estimates computed both by the asymptotic method and using a
bootstrap method

Parameter Estimate Asymptotic S.E. Bootst&ap.
kP, —-0.2543 (0.1551) (0.2733)
KP 1o 0.1595 (0.5428) (0.8277)
Ki 13 5235 (2.761) (3.1)

Ko 0.03235 (0.05425) (0.1057)

K} s -0.3153 (0.2359) (0.3187)
Kf 23 4.239 (1.212) (1.233)
KFo; —0.03047 (0.02263) (0.04143)
kP, —0.02772 (0.08759) (0.1314)
Ki 33 —-1.755 (0.4638) (05337

or -0.1109 (0.02762) (0.02496)
oF 0.02539 (0.007469) (0.00731)
3 0.00631 (0.0003512) (0.0003163
,1‘19 —0.002403 (0.0005662) (0.0006167)
Ag@ -0.04813 (0.008296) (0.007395)
19 -007127 (0.0133) (0.01162)
rQ 0.08606 (0.007302) (0.01067%
o1 0.02205 (0.00126) (0.001337)
oo 0.008838 (0.0004084) (0.001508)
03 0.003735 (0.0001643) (0.0002803)
P21 —-0.5694 (0.04155) (0.2268)
P31 05842 (0.0485) (0.1161)
P32 04218 (0.06114) (0.156)

Here,0" = —(K])~1KJ andy;j is the conditional correlation between tHE andjt" componentsf 7.

errorsusing the outer product of the first derivative of the likelihood function.
We compare these results to bootstrapped standard errors computed with the
procedure given in Sectidn2.

Table 8 presents the results for the model RPC. The asymptotic standard
errors tend to overstate the precision with which we measure the effect of the
level PC on the conditional means of tlRCs (K7 1, K 5y, K{ 57) by a factor

of about two. These effects on standard errorsl«fﬁ’randep arenecessarily

due to the small sample properties@ES estimates in th& ARfor P since,

by Propositior3, the full informationML estimates in th6&DTSMagree with

the OLSestimates. Additionally, the precision with which we estimate@he
parameters is overstated by the asymptotic method by a factor of about 50%.
Overall, though, the asymptotic standard errors line up rather well with the
bootsrapped standard errors.
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5.4 Out-of-sample Forecasting Results

An interesting question at this juncture is whether differences in parameter es-
timates translate into differences in the out-of-sample forecasting performance
of theseGDTSMs. We compute rolling re-estimation of each model using data
from monthst = 1,..., T (T = 61,...,215) and use the model to predict,
out of sample, the changes in the principal components over the next 1-, 3-,
6-, and 12-month periods. As a benchmark, we use the corresponding fore-
casts from an unconstrained VAR. As we noted in Secligheoreticallythe
forecasts ofP; arethe same across all models that assume tR€seare mea-
sured without error and that differ only in the constraints they impose o the
distribution of P;. In particular, withL = 3, whether we assume distinct real
eigenvalues, complex eigenvalues, or repeated eigenvalues (as in the AFNS
model), the forecasts d?; areall exactlythe same as those from an uncon-
strained VAR. This explains the rows of zeros in Table

Under the constrainf = 1 (constrained risk premiums), there is an implicit
constraint orKf’P and,hence, enforcing the no-arbitrage constraints may im-
prove forecasts. From Tab# we see that there is a moderate improvement
in forecasts folPC1 andPC2, particularly at longer horizons. Models RPC
andJPQ have different predictions (though only slightly). This is because the
differences unde@ implied by the repeated root assumption now propagate to
theP dynamics through the restriction relating thandQ drifts.

As further evidence on the empirical relevance of constraints of thstri-
bution of P for forecasting, we pursue the examples of Sechigh constrain-
ing KIlPP to be diagonal (Tabl®) or constrainingP; to have a common unit
root (the cointegration example of Tabl¢3° The last four rows of Table&
present the relative forecasting accuracy¥ARmodels with these constraints
imposed, as well as their no-arbitrage counterparts with RPC being the uncon-
strainedGDTSM. The constrained modéAR + diag(Kf}D) shavs notable
improvements in out-of-sample forecast accuracy for the first and sl
particularly over longer horizons, but interestingly there is a deterioration in
the forecast quality foPC2. This suggests that feedback frofiC1, PC3) to
PC2 is consequential for forecasting the slope of the yield curve. Imposing the
cointegration constraint improves the forecast®6fL and, unlike in the prior
example, also the forecastsC2.

Of most interest for our analysis is the finding that starting from either of the
constrained/ARs and then imposing the no-arbitrage restrictions has virtually
no incremental effect on forecast performance. Even though no-arbitrage re-
strictions can improve out-of-sample forecasts in these cases, in practice they
have virtually no effect on the results in our data. The improvements in fore-
casting with either model RPC diag(K ) or RPC + 1UR K&, KI] are
entirely a consequence of imposing restrictions onA&model forP.

30 For the cointegration example, we enforce the constrain[!(@;, Kfp] hasa zero eigenvalue or, equivalently,
there is a common unit root and no trend.
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It is instructive to place the findings &@hristensen, Diebold, and Rude-
busch(2007) for the AFNS model in the context of these results. They com-
pare the forecast performance of an AFNS model with bofh andXZy in
(1) constrained to be diagonal Ruffee€s (2002) canonicaGDTSMbased on
the DS normalization (which is equivalent to our RPC modkis with our
examples, forcing(f’x to be diagonal is a direct constraint on tAalistribu-
tion of P and, as such, may lead to more reliable forecasts than those from
an unconstraineARmodel forP. In fact, they report that their constrained
AFNS model does outperform Duffee’s model in forecasting bond yields, also
with larger improvements over longer horizons. However, the results in $able
suggest that this improvement comes from the restrictions they imposed on the
VARmodel forP and not to the use of an AFNS pricing model.

. Observable Factors with Measurement Errors

=

Up to this point we have assumed thdtportfolios of yields are priced per-
fectly by theGDTSM. We turn next to the case where all of the zero-coupon
yields used in estimation equal th@DTSMimplied values plus measurement
errors. Under the assumption that the measurement errors are jointly normal,
this is a Kalman filtering problem.

Case F:Theyields on]J(> N) zero-coupon bonds equal th&DTSMimplied
values plus mean zero, normally distributed errgfs;- y;.

A number of researchers (see, e.fuffee and Stanton 200%And
Duffee 2009 have emphasized the computational challenges of estimation
under Casd-. Under the normalization dbai and Singletor(2000) (DS), a
researcher must estima(tﬁ%(, KE,PX, Kg(, 00, P1)s whereK(l@X is lower trian-
gular. In this parametrization, a researcher would likely have a diffuse prior on
all of the parameters. Moreover, the states of the model depend on the param-
eters, so they too are unknown. We now show that our JSZ canonical repre-
sentation extends to the setting of C&sand demonstrate its benefits both for
interpretation and estimation &DTSMs.

Theoreml shows that anGDTSMis observationally equivalent to a model
where the latent states are a given set of portfolios of yields, purged of measure-
ment errors. In Cade, when the portfolios are assumed to be observed without

measurement errors, this means the states are simply these portfolios of yields.

In CaseF, we can maintain the interpretation that the latent states are portfo-
lios of yields with known portfolio matri¥V, though now constructed with the
model-implied (measurement-error free) yieldsEquivalently, under Cade,

ChristensenDPiebold, and Rudebusct2007) assume that all yields are measured with additive measurement
errors, the case we turn to in SectibnHowever, three-factor models price bonds quite accurately over the
maturity range that they and we consider, so Theaeould be informative about their findings.
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onecan viewP; = Wy, asthe “true” values of the pricing factors and view
PP = WyP asits observed counterpatt.

To set up the Kalman filtering problem for CaBgwe start with a given
set of portfolio weight&V e R¥*N. FromW and (22, r2, ), we construct
(K(()@, KiQ, po, p1) asprescribed in Propositiod. From the no-arbitrage rela-
tion (A2—A3) we then construch € RY andB € R?*N with yy = A+ BP;
andthus the relations

APy = Kip + KipPt + Zpe (37)
Yo = A+ BP; + Zye", (38)

wheree{P> ~ N(O, In) ande™ ~ N(O, Iy) arethe measurement errors. Re-
searchers have considered several parameterizations of the volatility matrix
Yy for €. In our subsequent empirical examples, we examine the cases of
independent (diagonaly) errors with distinct or common volatilities. These
relations give the usual observation and state equations of the Kalman filter,
and they fully characterize the conditional distribution of the yield curve in
terms of rotation-invariant parameters.

The computational benefits from using the JSZ normalization in Ease
arise, in part, from the observation that the least-squares projectigh afito

°_, will nearly recover thé/lL estimates oKy, andK ], to the extent that
PP ~ P (andwe can choose portfolios, such as the principal components, to
make these errors smaffj.Additionally, although not exact, we have nearly
concentrated the likelihood in that the optinfgbarameters will typically have
weak dependence on tfgparameters owing to the fact that, as h@aram-
eters vary, the filtered states largely do not chatfge.

With the JSZ normalization, the parameter estimates are directly compara-
ble across distributional assumptions on the measurement errors. That is, in
analogy to Sectior3, by fixing the yield portfolios, both measured with and
without error, theP parameters are now directly comparatdgardless of the
Q structure. The parameters are also directly comparable across sample peri-
ods. When thé@ parameters are defined indirectly throug® aormalization,
such comparisons will in general not be possible.

6.1 Empirical Implication
To illustrate Casé&, we estimate model RKF in which allzero-coupon bonds

used in estimation are measured with errors, and the eigenvalll{el@ afeall

In fact, an equivalent characterization of the JSZ normalization is that, for a given portfolio rigfrix

Aw(©Q) = 0andBy (@Q) = Iy.
This approximation can be verified empirically by compar[ﬁﬁ to E{P[Pt] or Ele[Pt].

Thisis in contrast to, for example, the rotation of DS where, as the lower trianglii’ais changed, the latent
states vary as well. Thus, necessarily, so do the opfihpaErameters given the specifi@dparameters.
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real. From Table2, it is seen that the estimates of t@eparameters for model
RKF are similar to those for models RPC and RY that fit withportfolios

of yields priced exactly by th&DTSM3). Similarly, from Table3 and Table

4, we see that th® parameters also generally match up across the models
with and without filtering. An exception is th distribution of PC3: When
filtering, the volatility of PC3 is reduced by about 10%, aR€3 has a larger
effect on the conditional mean of PC1 and PC2 (high€s, 5, KT ,5). That s,

PC3 both becomes a bit smoother and the model attributes a slightly greater
affect of PC3 on forecasts of changes in the level and slope of the yield curve.
For out-of-sample forecasts using model RKF, T&ddows thaPC1 is better
predicted by a simple VAR, whilPC2 is predicted better than a VAR (though
the differences are modest).

Also of interest in the presence of filtering are comparisons of the model-
implied PCs with their corresponding sample estimates that, by assumption,
are contaminated by measurement errors. Fidpits the time series of the
PCs computed from data against those from models RCMT, RY, and RKF.

For model RKF, we plot the model-implied filterc‘e‘htitf = E¢{[PCi]. For all
three models, thECi° arenearly identical to their model-implied counterparts.
This is not surprising: If the model is accurately pricing the cross-section of
bonds, then it is almost a necessity that it will accurately match level, slope,
and curvaturePC3' deviates slightly fromPC3, and this is the source of the
small differences seen in Figute

A quite different picture emerges when we increase the number of pric-
ing factors to four or five using the JSZ normalization under Gasé&or
i = 1,2,3, PCif lines up well with PCi°, as before. However, from Fig-
ure 2, it is seen tha{PC4f, PC5") appearsto be a smoothed version of
(PC4°, PC5°), with the differences being substantial during some periods.
To interpret these patterns, we note that the likelihood function, through the
Kalman filter, attempts to match both the cross-sectional pricing relationships
and the time-series variation in excess returns. The higher-BdérandPC5
have only small impacts on pricing since a three-factor model already prices
the cross-section of bonds well, but they do contain information about time
variation in expected returrs.

Furtherinsight into howML addresses this dual objective is revealed by the
estimated half-lives of the pricing factors undgr(computed from the esti-
mated/Q). In the five-factorGDTSM, theQ half-lives of P; are (in years)
(15,8.4,2.4,0.13,0.08), whereas they aré24,1.2,0.78) in the three-factor
model. The presence of a factor with a very low half-life induces large move-
ments in the short rate (the one-month rate in our discrete time formulation).

35 Cochraneand Piazzeg{2005,2008) find that a portfolio of smoothed forward rates, that is correlatedR@th
predictsbond returnsJoslin, Priebsch, and Singlet¢2010) find that smoothed growth in industrial production,
which is also correlated witRC4, is an important determinant of excess returns for level and slope portfolios.
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This figure plots thePCs implied by models RCMT, RY, and RKF against the estim@&€d from the data.
All three models implyPC1 andPC2 that are almost indistinguishable from the data and from each other. The
models imply slightly differenPC3, but the difference is very small.

Moreover, the sample average short rate is 23%, which also results in large,
wildly oscillating Sharpe ratios.

It is not the need to filteper sethat gives rise to these fitting problems with
a 5-factor model. When the first fiveCs are priced perfectly by tHeDTSM
(Model RPC), the properties of the short rate are now more plausible (see
Table10). However, the model-implied yields on bonds with maturities beyond
those included in estimation are now wildly implausible. Furthermore, impos-
ing the reduced rank restriction (Model RP@oes not materially improve the
fit with five factors. For all of these error specifications with five factors, the
Sharpe ratios for the higher-ord@€s show substantial variatiGfln contrast,

SeeDuffee (2010) for a more extensive empirical evaluation of the properties of Sharpe rat@BTiSMs.
Joslin, Priebsch, and Singlet¢@010) also investigate maximal Sharpe ratio variation within the context of
macro-GDTSM.

36

1T0Z ‘2 @un uo saLreiq LI e B10's[euInolpiogxo sy woly papeojumoq


http://rfs.oxfordjournals.org/

A New Perspective on Gaussian Dynamic Term Structure Models

10
g or 1/ I‘\‘/ ’u” A
o A LY, PR | LR O A
g ~10fk . AN WY A o '} A e
$ 44 ady| /;.\ .1\‘..’" h"'\_\‘\'"-f,.l,,-ﬁ b Ak -F II"\,
g -20 LN 8
o (A S PC data
e 4-Factor
-30} — — — 5-Factor
1 1 1 1 L L 1 1
1992 1994 1996 1998 2000 2002 2004 2006
Date
5 e
U -
i
g 5h M 4 f ‘\\\ Twa
o ' ~Jrasg " T
e_10_\"1 Ve \/\‘ !,\\'Jﬁ ’ « l\ Vi N
3] A M~
n —-15} ~ \J
8
a -20
_25 -
_30 1 1 1 L 1 1 1
1992 1994 1996 1998 2000 2002 2004 2006
Date
Figure 2

This figure plots the model implied and sample principal components for the fourth aneld@fthvhen alPCs
are assumed to be measured with normally distributed errors. High#®@keimplied by the models are visibly
different from the data.

Table 10
Sample moments for three-factor and five-factoitGDTSMs
3 Factor Models 5 FactorModels

RPC RPG RKF RPC RPG RKF
mean 1-month rate 4.2% 42% 42% 4.3% 4.3% 23%
mean 30-year rate 5.8% 58% 59% —31% —39% 0.63%
PC4 Sharpe ratio mean 0.096 0095 0032 0.031 0.076 30
PC4 Sharpe ratio volatility 0.086 0018 0088 0.31 0.2 25
PC5 Sharpe ratio mean 0.096 0095 0032 0.031 0.076 30
PC5 Sharpe ratio volatility 0.086 0018 0088 0.31 0.2 25

the 3-factor specifications produce plausible values for these moments. We in-
terpret this evidence as being symptomatic of over-fitting, of having too many
pricing factors.

Does the accommodation of filtering substantially increase the computa-
tional complexity of estimation using the JSZ normalization? The parameters
(KEZP, Kf;)) and opricing are now included as part of the parameter search.
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As we argued forZp in CaseRP, we obtain very accurate starting points
for (KEP, KIp) irrespective of any inaccuracies in<, 29). The additional

cost of computing the Kalman filter as well as the lack of concentration of the
likelihood function results in estimation times of approximately 10.4 seconds
and, as without filtering, virtually all local optima are identical to within-set
tolerances. Using the results of the CRBsestimation as a starting point for the
CaséF estimation decreased the estimation time to approximately 8.7 seconds.
Thus, under the JSZ normalization, the estimation remains very fast even when
all yields are measured with errors.

. Conclusion

We derive a new canonical form for Gaussian dynamic term structure models.
This canonical form allows for (essentially) arbitrary observable portfolios of
zero-coupon yields to serve as the state variable. This allows us to characterize
the properties of &DTSMin terms of salient observables rather than latent
states. Additionally, the risk-neutral distribution is parsimoniously character-
ized by the eigenvalued@, of the drift matrix and a constant that, und@r
stationarity, is proportional to the long-run mean of the short na%,Our
canonical form reveals that simp@LSregression gives the maximum likeli-
hood estimates of the parameters governing the physical distribution of bond
yields. This result remains true even if additional restrictions of several types,
such as restrictions on the risk-neutral condtional distribution of yields, are
imposed. An immediate implication of this result is that constraints such as im-
posing the arbitrage-free Nelson Siegel model or imposing confpleigen-
values are irrelevant for forecasting bond yields. However, when one imposes
structure on risk premia, such as the reduced-rank risk premium, a wedge from
the unconstraine@LSestimates arises. Our canonical form allows us to eas-
ily overcome the challenge of empirical estimation@DTSMs in the case

of filtering. The empirical results suggest that either some caution should be
exercised in interpreting a higher-dimensional model or, alternatively (perhaps
preferably), care should be taken to avoid highly overparametrized models with
implausible implications for either pricing or bond risk premia. Taken together,
our results shed new light on estimation and interpretatio®DBT SMs, and

the effects of different specifications of the risk premiums and the risk-neutral
distribution of bond yields on the observed dynamics of the yield curve.

Appendices

A. Bond Pricing in GDTSMs

Under(1-3), the price of am-year zero-coupon bond is given by

m-1 )
Dtm = Efe” Zizo 4] = eAmtBmXt, (A1)
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where(Am, Bm) solve the first-order difference equations
Q 1.
Ami1— Am = Ky Bm + EBm HoBm — po (A2)

By — Bm = K¥ B — p1 (A3)

subjectto the initial conditions4g = 0, By = 0. See, for exampleéhai and Singletorf2003). The
loadings for the corresponding bond yield #&@ = —Am/m andBm = —Bm/m.

B. Invariant Transformations of GDTSMs

Asin DS, given theGDTSMwith parameters as irl{3) and latent stat¥t, if we may apply the
invariant transformatioiXt = C+ D X, we then have an observationally equival&mTSMwith
latent stateX; andparameters given by

K(%( — DK - DKZ D C, (A4)
K5 = DK} D%, (AS)
Pox = Pox — PixDTIC, (A6)
pig = (O™H p1x. (A7)
Koz = DKox — DKixD™'C, (A8)
Klg = DKixD™, (A9)
Hog = DHox D'. (A10)

Given a parameter vect@®, we denote the parameter vectortfasC + DO.

C. Proof of Proposition 1

We require a slight variation of the standard Jordan canonical form of a square matrix that main-
tains all real entries and bears a similar relation to the real Schur decomposition and the Schur
decomposition.

Definition 1. We refer to thereal ordered Jordan form of a square matrixA € R"™" with
eigervalues(11, 42, ..., Am) with corresponding algebriac multipliciti€my, my, ..., mm) as

A=J() =diagly, J2, ..., Im),

whereif 1; isreal, J; isthe(m; x m;) matrix

A1 0
0 4 0
J = ,
1
0 0 A
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andif [imag(4)| > 0, J; isthe(2m; x 2m;) matrix
R I, .-~ 0

0 R .-~ O .
o withR:( real(4) —||magm|)

b= limagl(4)] real(4)

I2
0 .- 0 R

andotherwise the block is empty. Additionally, we apply an arbitrary ordering do order the
blocks by their eigenvalues. In case there exist eigenvalues with a geometric multiplicity greater
than one, we also order the blocks by size.

Proof of PropositiorL: We first prove the existence by showing that a latent faxtowith
arbitraryQ dynamics

AXt =K +KE Xe_q +Exel

canbe transformed to our desired form. By standard linear algebra, there exists bhawixhat

U KiQXU ~1isin the standard Jordan normal form. By Lemma 1 of the supplement to this article
(seeJoslin, Singleton, and Zhu 2010), we can further transform to have the real ordered form of
Definition 1. Note that by Joslin (2007), each eigenvalue has a geometric multiplicity one and thus
is associated with only one block due to the Markovian assumption. Now we separately consider

the cases of real and imaginary Jordan blocks and show that we may transform the latent state to
havepy = 1.

1. A Jordan blockJ; correspondgo real eigenvalues with algebraic multiplicitg; (m;
couldbe 1). ThenJ; ism; x mj matrix

i1 - 0
0 4 -~ O
J =
1
0 -+ 0 4
Letpyj = (piil), e pi'f)) bethe components gf; thatcorrespond to the Jordan block

Ji. We observe thapiil) # 0, for otherwise we can do without state variabﬁ-{\ll),

contradictingour assumption of aiN-factor model. One can check thBg J; Bi‘l =
if and only if B; hasthe form

bi(l) bi(2) L bi(mi)
o b ... p™mP
B = . ) . . (A11)
@)
0 o - b;
In particular, we can verify that the matrix
€5} 2 @) (m;) (mj —1)
PI PI T PL Py Py
0 ] (m=1) _ (m—=2)
B Pii P P
(i . i . .
o 0P

satisfiesB; Jj Bi_1 =J and(Bi_l)’pli =1
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2. A Jordan blockJ; correspondso complex eigenvalues with multiplicityy . Then, J; is
the2my x 2m; matrix defined by

R I - 0
0O R - 0 o
= with R:( real(i) —Ilmag(/q)l).
S P limagl(%)l  real(j)

0o - 0 R

The proof is analogous to the real case, as the individual steps are the same but require
lemmas to verify the intuitive steps hold witBx 2) block matrices replacing scalars. The
details of the proof and subsequent steps for this case are availalwslim, Singleton,

and Zhu(2010).

We obtain the correct form dKé)QX asfollows. We can demean the componentsxotor-

N -1
responding to non-singular Jordan blocks by transformifig= XP + (K%b) K%b_ There
can be at most one block corresponding to a zero eigenvector (which by our ordering would be
the first), and the firstn; — 1 entries ofKé)QX canthen be set to zero by translating i(f’ =
b Qb Qb Q,b /e .
X¢ = (Kox,z’ Kox,s’ s KOX,ml—l’ ,0). Finally, pg canthen be set to zero by the translation

>A(m1,t = Xml,t — PO-
Theuniqueness of the canonidaDTSM stated in Propositiof follows from the uniqueness
of an ordered Jordan decomposition and the fact that (i) the Jordan decomposition is maintained
only by a block matrix wher® has form A11); and (ii) the only suctB that satisifieB’s =1 is
B = |. Furthermore, fof € © 35z andany vector of parametees## 0, either the translating by

violates the form oKé)QX (whichhappens if any state besides the last zero eigenvalue state (if one
exists) is translated) or the translating violgtgs= 0 (which happens if there is a zero eigenvalue

and only the last such state is translated). This establishes the uniqueness and completes the proof
of PropositionLl.

D. Details of Step 3 in the Proof of TheoremL

We have established that evé3{ TSMis observationally equivalent to a Jordan normalized model
and the transformation relating the two models is found by computing the associated portfolio
loadings:

G5 = (Aw(@”) + Bw(©7)0” 107 € G;). (A12)

Obsere that sincep; = 1, By(©”) dependsonly on 22; let us denoteB,g = By (©7)'.
Similarly, let us denoteA)Q,/)o,z = AW(®J). Since, for anyi@, the maps,; @ (%) = B;&Z isa
bijection3” we can reparametrize the conditional volatility by

GP = (Agy + Bgi©®” : @7 = (emy. 309),0,1, K5 Ky, 5,0 (Ep))).  (AL3)

Here,we useXp to denote the parameterization since, @' = (kf%eml, J(i@),o,z, Kg”J,

KP , Bflz7>), the transformed model,; + B ;09 (whichhasP; asthe factors since itis in
13> ©,Q (] ©

Gp) has innovation volatility oB; g B;Q}Zp =1lp.

37 For simplicity, we denote the Cholesky factorizatidh,but we have in mind the covarianger’.
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Definethe bijective magk onRN x RN*N py

— _ -1 -1
kAQ,kg,zp(KO’ Kq) = (Bi@ Ko—B,o KlB/IQ AAQ,kg,zp’ Bo KlBA@) . (A14)
Thefunctionk maps(Kg, K1) underthe change of variables; — Aﬂ@ Qs Tt B, Xt. Using
sKoo, =P :
k, we further reparametri@% by

P _ J.nd _ 4 Q -1
Gp = (Ags +Bga@” : @7 = (kcemy. 369, 0.1, k77 o

»Ro0»

. (Kgp- Kip). s;0(Zp))).
P
(A15)

This gives our desired reparameterizatiorgg by®;57z = e, kg, Ip, Kg’P, Kipp). This is
J_ (L0 , -1
because, fo®* = (kooeml, J(AQ), 0,1, ki‘@ @

200

K. KP), 5,0(EZp) ),
ZP( op: Kip): S0 (Zp)

@P = A@J + B@J@J

g 0 P P (Al6)
= (40s2.2, @6 140 - 080, Kip K. Zp ).
WhereriQ’kg’zp maps(pg, p1) underthe change of variables; — AAQ,kﬁ,Qg,zp + B Xt:
_ /p—1 -1y’
04y, (04D = (po ~rBd A0 x - (B3) m) : (A17)

E. Proof of Theorem 2
We first prove thatZ6—27) holds whe(® = {7 = (C°, D°, )Z())(, Pgr%)}. Let

(K% K%)= agmax f(Pr,yr, ..., P1 y1lPo. Yo: 10).
Kox,K1x

whichwe subsequently show is uniquely maximized.
Let (C0 , D%) denotethe firstN-element ofC® andupper-leftN x N block of DO, respec-

tively. By our assumption of invertibility oD%, we have thatXy = (D%)_l(Pt — C%). Thus,
by our assumptions on the measurement errors,

f(P1,¥75---5P1, Y1lPos Yo; 10, Kox»> Kix) = f(Pr, ..., P1lPo; 10, Kox, K1x)

T

x [ femtP; no).
t=1

andso
(Kox> Ki%) = agmax £ (Pr, ..., P1IPo; n0)- (A18)
Kox,K1x

Furthermoresubstituting into 24) we have
— -1 0 -1
APt = Do,pKix Dy Pt + (DO,’P Kox — D K1x (Do, p) CO,P) + Det, et ~ Ix.

It follows that the maximum value iPAQ8) is at most equal to the value of the likelihood corre-
sponding to theOLSestimate. Note that although the value of the maximum likelihood depends
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on D, the argument that maximizes the value does not deperidl loythe classi@ellner (1962)
result. TheOLSlikelihood value is achieved by choosiiffgx, K1x) to satisfy (26—27), which
is feasible by the assumption thdtgx, K1x) is unconstrained anD% is full rank.

This proves our result sino J&. K7%) = (K%, K{%) for someng andwe have shown
that (26—27) hold for anyjg. Note that in the case that the parameters are under-identified, there
will not be a unique maximum likelihood estimate in the sense that seygraby give the same
likelihood, but @6-27) will hold for all possible choices. For sorfi¢ there may not exist a
maximizer, in which case the result holds vacuously. However, standard conditions and arguments,
such as compactness, provide for the existence of a maximizer.

F. ML Estimation of Reduced-rank Regressions

Considerthe regression as i29) of the general fornY; = a + Xt + et subjectto the constraint
that # has rankr and whereet ~ N(O, X) i.i.d. with £ known. That is, we wish to solve the
program
(@.f) = argmin > (Yt — (@ + fX)Z7H(¥t — (o + SX0)).
rank(g)=r "¢
It is easy to verify that by first de-meaing the variables we may assume without loss of generality
thata = 0. Furthermore, by transforming the variables, we may assume again without loss of

generality thal = | and>’; Xt X{ = |. Under these assumptions, we wish to solve
B = argmin trace((Y — Xg") (Y — XB'Y)
rank(g)=r
= argl]((r/gin trace((Y — XBo L o)(Y — XBoLs)) — 2trace(X (Y — XBo L s) (B — BoLs))
ran =r

+ trace((X'X (8" — BoLs)(B — foLs))

= agmin |f - BoLslF,
rank(g)=r

whereY and X are (T x N) and (T x M) matriceswith the time series stacked vertically,
BoLs = (X’X)~1X’Y, and F denotes the Frobenius norfA|2 = Zi’j IA |2. The above
equalities repeatedly use the identity trea8) = traceB A). As in Keller (1962), this minimiza-

tion problem has solutioi* = U D;V’, whereU DV’ gives the singular value decomposition of
BoLs and Dy is the same aP except setting all of the singular values for- r to 0. This same
proof applies again in the case wherés not square, which would be the case where one assumes
that only a single risk is priced (i.e.l,<[]§7, Kip] - [Kgg, KiQ] has reduced rank) rather than only a
single risk hagime-varyingprice of risk, as we do here.
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