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We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in
recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length
scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening
and dissipation in the loading and unloading response of micro- and nanopillars subject to compression
tests. The information provided by the model suggests that the size dependence observed in the dissipation
is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic

phases during the loading cycle.
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The so-called superelastic effect in shape memory alloys
(SMAs) is widely established and has been extensively
studied both theoretically and experimentally [1-3]. The
superelastic effect is attributed to the stress-induced revers-
ible austenitic-martensitic phase transformation and char-
acterized by the development of significant strains during
the transformation which are fully recoverable upon un-
loading. The hysteresis obtained during a loading cycle
corresponds to the energy dissipated during the forward
and reverse transformations. Recently, San Juan et al. have
reported experimental observations of the superelastic ef-
fect in Cu-13.7A1-5Ni (wt%) [4] micro- and nanopillars
subjected to compressive loading. Their observations ex-
hibit a clear size dependence in damping capacity upon
unloading [5,6]. More specifically, their uniaxial compres-
sion tests on [001]-oriented Cu-Al-Ni single crystals show
that the hysteresis loop in the stress-strain curve for a
nanopillar is significantly larger than that for a bulk single
crystal. The same size effect is observed in polycrystalline
microwire tension experiments for the same alloy [7]. This
property makes Cu-Al-Ni SMAs appealing for use in
damping applications in microscale and nanoscale devices,
or even for integration in fibers and textiles for uses in
flexible armor.

In this Letter, we develop a model aimed at describing
the mechanical response of this material to help understand
the origin of the size-dependent effects. Significant effort
has been devoted to developing models for superelastic
stress-strain response of SMAs. A comprehensive review
may be found in [3]. However, few incorporate size-
dependent effects. In [8], the grain-size dependence of
the superelastic stress-strain response in bulk polycrystal-
line Ni-Ti SMAs is modeled via a strain gradient model
based on the introduction of an energetic length scale.
Other models of SMAs have included nonlocal strain or
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martensitic volume fraction terms to put a lower bound to
the variant size, and avoid numerical problems associated
with the nonconvexity of the strain energy function [9,10].
A different phase-field approach has involved a similar
consideration [11-13].

In the model presented in this Letter, two internal length
scales, an energetic length scale /,, and a dissipative length
scale [, are introduced in the free energy and the dissipation
rate, respectively, leading to gradient terms on the martens-
itic volume fraction and its rate of change. The formulation
leads to a coupled set of partial differential equations of
macroscopic equilibrium and micro-force balance [14—16],
whose unknowns are the spatial distribution of the displace-
ment and the martensitic volume fraction. Both equations
result from a variational statement of the stationarity of an
incremental potential involving the free energy and the
dissipation.

Consider a pillar with height # subject to the stress-
induced martensitic phase transformation under isothermal
condition at temperature §. The martensitic volume frac-
tion is represented by £. For small strains, #, = ¢ = & +
&e' where u is the displacement, ¢ is the total strain, ¢ is
the elastic strain, and &’ is the maximum transformation
strain, which is a material constant.

The free energy per unit volume comprises an elastic, a
chemical, and a nonlocal term

b= E@)e — E6)7+ (0= 0)E +ISBES, (D)
0

E_E
where E(§) = g5,

lus [17,18], E, and E,, are the Young’s moduli in the pure
austenite and martensite, respectively, 6 is the equilibrium
temperature between the two phases in the stress-free state,
and A is the latent heat. The nonlocal term can be viewed as
the interface energy between the two phases. S is a model

is the effective Young’s modu-

© 2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.106.085504

PRL 106, 085504 (2011)

PHYSICAL REVIEW LETTERS

week ending
25 FEBRUARY 2011

parameter with the dimension of stress and /, is an internal
(energetic) length scale.

The introduction of a gradient term on the volume
fraction in the free energy results in a separate (microforce)
equilibrium equation where the volume fraction is the
primary unknown. Consider any segment of the pillar {x €
[x;, x,]10 = x; < x, =< h}. The internal power in this seg-
ment is defined as

pint(ge, &) = [ P ot + ké+ KE dn, 2)

where X is the rate of variable X, o is the stress, k and k™
are the work conjugates to the volume fraction ¢ and its
gradient & ,, respectively. The external power expended on
this segment is defined as

P, §) = (i +k &I, (3)
where 7 and k are, respectively, the applied boundary
traction and volume fraction force conjugate. At any fixed
time 7, the principle of virtual power requires

P3¢, &) = PG, €) “)

for any generalized virtual velocity (ii, £¢, £) satisfying the
kinematic requirement i, = &° + £¢'. Integration by
parts leads to the variational statement

0= — fxz o idx + IXQ(k —og’ — kf}}){?dx

+ (o = Dalle + [ = DEIR,
which yields
o,=0, %)

k—oe — k¥ =0, (6)

for x € (x;,x,), and o(x;, 1) =f(x;, 7), k"(x;,7) =
k(x; 7), i = 1, 2. Equations (5) and (6), are valid for any
X1, X, in the admissible range, and, in particular, for the
whole pillar (x; = 0, x, = h).

Thermodynamic restrictions require that the temporal
increase in the free energy should not be greater than the
external power expended on the material, i.e.,

f 2 pdx = P, €). (7)

From Eq. (4) it then follows that
J— o —kE—k"EL =0 ®)

for x € (0, h). By applying the temporal derivative to the
free energy density in Eq. (1) and assuming the elastic
response

o = E(§)(e — &), ©)
Eq. (8) is reduced to

1 0E AT,
0= [k—ia—é:(s ~ g 0 00)]§
TR = S2€ )é, = D, (10)

where D is the rate of energy dissipated per unit volume.
Inspired by the strain gradient plasticity theories [14—16], k
and k" are defined as follows:

1 9E A Yé
k==—(e— &N +—(0— 0p) + ———,
3 ag(‘g &eh) 00( 0) TR
(1)
.
k= Sol2¢, + L (12)
(6)* + I3(€,)?

where Y is a model parameter with dimension of stress, and
1,18 an internal (dissipative) length scale, which defines the
influence of the nonuniform distribution of & on the dis-
sipation. Indeed, it has been shown in [7] that in small
samples of SMA, the surfaces are likely pinning points for
the transformation, which tend to suppress the rate of
transformation near them, relative to bulk regions away
from the surfaces. This provides a possible underlying
mechanism for a gradient in &, which in turn gives rise to
the dissipative length scale ;. The dissipation function (per
unit volume) then takes the form

D =Yy (€) + (€)% (13)

which is nonnegative as required by Eq. (10). It is clear that
a nonuniform distribution of & and larger /, leads to more
dissipation.

The martensitic phase transformation occurs when
the thermodynamic driving force associated with the vol-
ume fraction reaches some critical value and stays at that
value until the transformation is complete [3,19,20].
Inserting Egs. (11) and (12), in Eq. (6), we obtain

1 0F A
asf—ig—g(s—fsfv—e—o(e—00)+Sol%§,xx
_ ve _ 9 [ Y€ ] (14
@2+ B(é,)? L2 + (€,

which governs the evolution of the volume fraction £. It
should be noted that Eq. (14) degenerates to g’ — HAO X
(60 — 6,) = sgn(é)Y, for & # 0, which are the constraints
during phase transformation in the local model [20], if &
and & are uniform or both internal length scales [, and I,
are zeros, and % = 0. It is interesting to note from the free
energy, Eq. (1), the dissipation, Eq. (13), and the elastic
response, Eq. (9), that Eq. (14) can be rewritten as

e G556

which is the Euler-Lagrange equation of the functional
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FIG. 1. Stress o vs macroscopic strain #(z)/h for 1,/h = 0,

0.01, 0.02, 0.03, [, = 0.

J(¢) = foh  + Ddx. (16)

Replacing the stress o from Eq. (9) in Egs. (5) and (14)
leads to two coupled partial differential equations govern-
ing the displacement u(x,7) and the volume fraction
distribution £(x, r) with suitable initial and boundary con-
ditions. In our experimental tests, the pillars are assumed to
be initially in a stress-free austenitic phase, i.e., u(x, 0) =
0, £(x,0) = 0 for x € [0, ]. On the boundary, (0, t) = 0,
u(h, t) = i(t), where (r) is the prescribed displacement,
while £(0, 1) = £(h, t) = 0 which assumes that the ends of
the pillar are obstacles to the martensitic phase transfor-
mation. This fully specifies the initial boundary value
problem. The resulting equations are solved using a finite
element discretization.

The basic model response to compressive loading and
unloading cycles is explored for the following parameter
values: E, = 10 GPa, E,, = 15 GPa, ¢’ = —0.04, %(0 —
0y) =4 MPa, S, =0.1GPa, Y=1MPa, h=1m
Figure 1 shows a stress-strain cycle fixing /; = 0 and vary-
ing% . The solid line corresponds to% = 0 (local model) and
exhibits the typical superelastic response of bulk single
crystal SMAs. For increasing %", the phase transformation
stage exhibits increased hardening, while the critical stress
for the forward transformation and the energy dissipation are
not affected. During unloading, the reverse transformation
starts earlier but ends at the same point. The evolution
of the martensitic volume fraction is plotted in Fig. 2 for
the case %= 0.03. Because of the boundary constraints,
the distribution of the martensitic volume fraction along
the pillar is nonuniform during the phase transformation.
This nonuniformity is responsible for the smooth transition
in the stress-strain curve at the end of the forward trans-
formation and at the beginning of the reverse transformation,
in contrast with the sharp changes exhibited by the case of
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FIG. 2. Evolution of the martensitic volume fraction for
l,/h =0.03, 1; =0 case. Solid lines are used for loading,
dashed for unloading.

Le
h
scale [, fixing [, = 0. As % increases, the gap between the
critical stresses for the forward and the reverse transforma-
tion also increases, resulting in increased energy dissipation.
Figure 4 demonstrates the evolution of the martensitic vol-
ume fraction for the case %" = 0.5. It differs significantly
from Fig. 2, specifically during the unloading part, where at
first the reverse transformation occurs everywhere in the
pillar, which leads to a sharp change in slope in the stress-
strain curve as in the case of %" = 0. Close to the end of the
reverse transformation, a pure austenitic domain first ap-
pears in the center of the pillar and then gradually expands
toward the specimen edges, leading to a smooth segment in
the stress-strain curve. Subsequently, we explore the model’s
ability to describe the experimentally observed response of
single crystals for three different specimen sizes: (i) bulk
single crystal (A = 9 mm), (ii) micropillar (A = 5.1 pum,

= 0. Figure 3 compares the role of the dissipative length
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FIG. 3. Stress o vs macroscopic strain i(r)/h for 1;/h =0,
0.1,0.2, 05,1, = 0.
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FIG. 4. Evolution of the martensitic volume fraction for the
l;/h = 0.5, 1, = 0 case. Solid lines are used for loading, dashed
for unloading.

diameter 1.7 wm), and (iii) nanopillar (A = 3.8 um,
diameter 0.9 um) [5,6]. The Young’s modulus of the
austenitic phase, E, = 22.1 GPa, was obtained from
the measurement in [6], E,, = 23.5 GPa is extracted from
the slope of the initial unloading part of the stress-strain
curve in case (ii), ¢’ = —0.05 is obtained from the calcu-
lation in [21]. Other model parameters are calibrated
to case (ii), which furnishes the following values:
(0 — 69) = 7.6 MPa, Sy = 0.22 GPa, Y = 1 MPa, [, =
0.1 um, and [; = 3.5 um. Figure 5 shows the computed
(solid) and experimental (circles) stress-strain curves. The
model captures a number of features of the response, includ-
ing the elastic loading and unloading in the two phases, the
hardening during the forward and reverse transformation,
and the size of the hysteresis loop (dissipation). Considering
that temperature changes associated with the transformation
were not experimentally available, the thermal stress was
held fixed at the calibrated value. This explains the discrep-
ancy in the stress levels predicted for the remaining cases.
Regarding the negative slope in the experiment in case (iii),
we note that there are explanations available in the literature
for some superelastic materials [17], and in the present case
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FIG. 5. Simulation of single crystal Cu-Al-Ni compression
tests in comparison with experimental results [5,6].

we believe this is an artifact of the mechanical test apparatus,
which operates in a condition that is neither exactly load- nor
displacement-controlled.

In summary, we presented a nonlocal superelastic model
for single crystal SMAs including both an energetic and a
dissipative length scales. The agreement with experimental
observations suggests that the size-dependent effects in the
hardening and energy dissipation of single crystal Cu-Al-
Ni SMAs can be attributed to the nonuniform evolution of
the martensitic phase arising during the deformation.
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