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The physical modes of a recently proposed D-dimensional ‘‘critical gravity’’, linearized about its

anti-de Sitter vacuum, are investigated. All ‘‘log mode’’ solutions, which we categorize as ‘‘spin-2’’ or

‘‘Proca’’, arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Einstein

tensor of a spin-2 log mode is itself a ‘nongauge’ solution of the linearized Einstein equations whereas the

linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate trans-

formation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.

DOI: 10.1103/PhysRevD.83.104038 PACS numbers: 04.50.�h

I. INTRODUCTION

When considered as a theory of interacting massless
spin-2 particles in a 4-dimensional Minkowski back-
ground, Einstein’s theory of gravity is nonrenormalizable.
It can be made renormalizable by the addition to the
standard Einstein-Hilbert (EH) action of curvature-squared
terms, but the price is a loss of unitarity [1]. There are two
exceptional cases. First, by adding a Ricci-scalar squared
term (with an appropriate sign) one gets a theory equivalent
to a scalar coupled to gravity, which is unitary but not
renormalizable. Second, by adding a Weyl-tensor squared
term one gets a theory that is neither unitary nor renorma-
lizable. Renormalizability requires improved high-energy
behavior for both the spin 0 and spin-2 projections of the
graviton propagator, and this requires the presence of both
Ricci-scalar squared and Weyl-squared terms [1].

The situation is different in three spacetime dimensions
in the sense that one gets a unitary theory of gravitons,
albeit massive ones, by the addition to the standard EH
action of a particular curvature-squared term, obtained by
contracting the Einstein tensor with the Schouten tensor;
this has been dubbed ‘‘new massive gravity’’ (NMG) [2].
The extension to a ‘‘cosmological NMG’’ theory introdu-
ces a new dimensionless parameter �, and it has been
shown that a unitary theory of massive gravitons in an
anti-de Sitter background is thus obtained for a certain
range of � [3]. There are similarities here to
topologically-massive gravity [4], which involves the ad-
dition to the EH term of a Lorentz-Chern-Simons term, and
this may also be added to NMG to yield a ‘‘general massive
gravity’’ model. However such parity-violating terms have
no natural extension to higher dimensions and so will not
play a role here.

The properties of cosmological NMG are most easily
understood by using a formulation in which the curvature-
squared terms, of fourth order in derivatives, are replaced
by terms of at most second order by introducing a sym-
metric tensor auxiliary field.1 Linearizing about a maxi-
mally symmetric background one then finds a quadratic
action for the metric perturbation and the auxiliary tensor
field. For generic values of � this action can be diagonal-
ized to produce the sum of a linearized EH term, which
propagates no degrees of freedom in three dimensions, and
a Fierz-Pauli action for a massive spin-2 mode. The form of
the Fierz-Pauli mass term, which is crucial for unitarity, is
what requires the original curvature-squared term to be the
contraction of the Einstein and Schouten tensors, and for a
certain range of values of � the overall sign of the action is
also what is required for unitarity. The same analysis can
be carried out in a higher spacetime dimension [6] but then
the linearized EH term propagates a massless spin-2 mode,
and either it or the massive spin-2 mode (depending on the
overall sign of the action) is a ghost. This is why
the construction of NMG only yields a unitary theory in
three dimensions.
However, there is another feature of NMG, which works

for arbitrary spacetime dimension. It turns out that for a
critical2 value of �, at the boundary of the unitarity region,
the linearized gravitational field becomes a Lagrange mul-
tiplier imposing a constraint on the linearized auxiliary
field. This constraint implies (in three dimensions) that
the linearized auxiliary field takes the form of a field-
dependent general coordinate transformation. This does
not mean, however, that this field can be gauged away
and, indeed, it corresponds to an additional mode, the so-
called logarithmic mode. In higher dimensions the con-
straint becomes a dynamical equation that allows for a
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1This formulation is also useful for other applications, see [5].
2A similar critical value was found earlier for cosmological

topologically-massive gravity [7].
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wider class of solutions, which we analyze here. At the
critical point, the massive modes of the noncritical theory
coincide with the massless modes, and new logarithmic
modes appear to replace them. In three dimensions, these
logarithmic modes were discussed in e.g. [8] and their
existence led to the conjecture that three-dimensional criti-
cal gravity theories are dual to two-dimensional logarith-
mic CFT’s (see e.g. [8–12]).

Logarithmic solutions in the context of the higher-
dimensional critical gravity models were recently found
in [13,14]. In this paper, we study the logarithmic modes in
more detail. We show that they are of two types, which we
dub ‘‘spin-2’’ and ‘‘Proca’’ log modes. The number of
independent spin-2 log modes is given by the number of
polarization states of a massless spin-2 field, while the
number of independent Proca log modes is given by
the number of polarization states of a massive spin-1 field.
We present explicitly the logarithmic solutions of the
linearized D ¼ 4 critical gravity. We will show that these
log modes have properties similar to those of the three-
dimensional log modes that were crucial in conjecturing
the logarithmic CFT duals of three-dimensional critical
gravities.

II. THE MODEL

We consider the followingD-dimensional gravity theory

S ¼ 1

�2

Z
dDx

ffiffiffiffiffiffiffi�g
p �

�R� 2�m2

þ 1

m2
G��S�� þ 1

m02 LGB

�
; (1)

where

LGB � ðR����R���� � 4R��R�� þ R2Þ; (2)

which is the Gauss-Bonnet combination. The parameter
� ¼ 0, �1 is a dimensionless constant, � is a dimension-
less cosmological parameter, and m2, m02 are arbitrary
parameters of dimension mass squared that may be positive
or negative. Furthermore, G�� is the Einstein tensor and

S�� is the D-dimensional Schouten tensor

S�� ¼ 1

D� 2

�
R�� � 1

2ðD� 1ÞRg��

�
: (3)

The reason that we have allowed, starting from higher than
four dimensions, for the Gauss-Bonnet [15] term LGB in
(1) is that the linearization of this term around a maximally
symmetric background only affects the coefficient of the
Einstein term in the quadratic action (see Eq. (12) below)
but does not lead to new fourth-order higher-derivative
terms.

For D ¼ 3 the term LGB vanishes identically and the
action (1) is that of cosmological NMG [2].3 ForD ¼ 4 the

term LGB reduces to a total derivative. At this point it is
convenient to use the identity [17]

R����R�����4R��R��þR2¼W����W����

�4ðD�3ÞG��S��; (4)

where W���� is the Weyl tensor. This identity is valid

for any D � 3, although both sides vanish identically for
D ¼ 3. For D ¼ 4 this identity shows that the Einstein
tensor times the Schouten tensor equals the square of the
Weyl tensor, up to a total derivative, and the action (1), for
� ¼ 1, reduces to the critical gravity theory considered in
[18]. For general D � 5 and � ¼ 1 the same action re-
duces to the two-parameter family of theories recently
considered in [19].
To discuss the quadratic approximation to the action (1)

it is convenient to lower the number of derivatives in the
action. For the G��S�� term this is achieved by introduc-

ing an auxiliary field f�� that is a symmetric two-tensor

[2]. For the Gauss-Bonnet combination a similar trick does
not work, at least not with a two-tensor auxiliary field, but
it is also not needed here since, as we already mentioned
above, this term does not lead to higher-derivative terms in
the quadratic action. In terms of f�� the action (1) reads

S ¼ 1

�2

Z
dDx

ffiffiffiffiffiffiffi�g
p �

�R� 2�m2 þ 1

ðD� 2Þ f
��G��

� m2

4ðD� 2Þ ðf
��f�� � f2Þ þ 1

m02 LGB

�
: (5)

Elimination of the auxiliary field leads one back to the
original formulation (1).
We now consider the linearization of the theory defined

by (5) around a maximally symmetric vacuum with back-
ground metric �g�� and cosmological constant �. For such

a background the Ricci tensor, Ricci scalar and Einstein
tensor are given by

�R�� ¼ 2�

ðD� 2Þ �g��;

�R ¼ 2D�

ðD� 2Þ ;
�G�� ¼ ���g��:

(6)

In general the cosmological constant � is not equal to the
parameter � [20]. The two are related by the relation

ðD� 4Þ
ðD� 1ÞðD� 2Þ

�
1

2m2
� 2

m02 ðD� 3Þ
�
�2 ���

þ �m2 ¼ 0: (7)

This is a quadratic equation in� which, for given values of
the parameters, has 0, 1, or 2 solutions, except for D ¼ 4
and � � 0 where � is uniquely fixed.
We next expand the metric g�� and the auxiliary field

f�� around their background values:3The special case of D ¼ 3, � ¼ � ¼ 0 was discussed in [16].
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g�� ¼ �g�� þ �h��;

f�� ¼ 2

m2ðD� 1Þ ½�ð �g�� þ �h��Þ þ �k���:
(8)

The linearized Ricci tensor is given by

R�� ¼ �R�� þ �Rð1Þ
�� þ �2Rð2Þ

�� þOð�3Þ; (9)

where

Rð1Þ
�� ¼ � 1

2
ðhh�� �r�r�h�� �r�r�h�� þr�r�hÞ;

(10)

and

�g ��Rð2Þ
�� ¼ 1

2
h��

�
Rð1Þ
�� � 1

2
�g�� �g

��Rð1Þ
��

�

þ total derivatives: (11)

Linearizing (5) one finds that the terms linear in 1=� cancel
as a consequence of (7). The quadratic �-independent
terms lead to the following linearized Lagrangian

L2 ¼ � 1

2
��h��G��ðhÞ þ 2

m2ðD� 1ÞðD� 2Þ k
��G��ðhÞ

� 1

m2ðD� 2ÞðD� 1Þ2 ðk
��k�� � k2Þ; (12)

where

��ð�Þ��� �

m2

1

D�1
þ4

�

m02
ðD�3ÞðD�4Þ
ðD�1ÞðD�2Þ (13)

and where we have defined the Einstein operator

G��ðhÞ ¼ Rð1Þ
�� � 1

2
�g�� �g

��Rð1Þ
�� � 2�

ðD� 2Þ h��

þ �

ðD� 2Þ �g��h: (14)

The linearized Lagrangian (12) is invariant under the lin-
earized diffeomorphisms

�h�� ¼ r��� þr���: (15)

This may be verified using the relation

½r�;r��V�¼ 2�

ðD�1ÞðD�2Þð �g��V�� �g��V�Þ (16)

for any vector V�. The expansion of f�� in (8) is defined

such that k�� is gauge invariant. Note also that the Einstein

operator (14) is gauge invariant. For D ¼ 3 the above
result agrees with the one given in [3].

For general values of the parameters the first term in (12)
corresponds to a linearized Einstein-Hilbert term, the sec-
ond term provides a coupling between the k- and
h-fluctuation, while the last term provides a Fierz-Pauli
mass term for the k-fluctuation. After a diagonalization of
the second term, one deduces that the theory describes one

massless graviton, described by the linearized Einstein
term and one massive graviton, described by a Fierz-
Pauli Lagrangian [21] with mass given by

M2 ¼ �m2ðD� 2Þ ��: (17)

The kinetic terms of the massless and massive gravitons
have opposite signs and therefore the theory is plagued
with ghosts.
Following [18,19] we now observe that at the critical

point defined by the following special value of the cosmo-
logical constant

��ð�critÞ ¼ 0 (18)

the first term in (12), i.e. the linearized Einstein-Hilbert
term, drops out. The resulting critical Lagrangian is given
by

m2ðD� 1ÞðD� 2ÞLcrit ¼ 2h��G��ðkÞ � 1

ðD� 1Þ
� ðk��k�� � k2Þ: (19)

The field equation for h�� is therefore

G��ðkÞ ¼ 0; (20)

while the k-equation of motion reads

G��ðhÞ � 1

ðD� 1Þ ðk�� � �g��kÞ ¼ 0: (21)

By acting on (21) with r� and using the Bianchi identity
r�G��ðhÞ ¼ 0, we find

r�k�� �r�k ¼ 0: (22)

Next, by taking the trace of (20) and using (22) one finds
that �critk ¼ 0 and hence that

k ¼ 0; (23)

provided that �crit � 0, which we will assume to be the
case from now on. Substituting k ¼ 0 into Eq. (21) it
follows that

k�� ¼ ðD� 1ÞG��ðhÞ: (24)

Finally, substituting (24) into (20), one finds that h obeys
the following fourth-order equation

G��ðGðhÞÞ ¼ 0; (25)

together with the constraint

�g ��G��ðhÞ ¼ 0: (26)

The equations of motion (25) which state that the square
of the Einstein operator annihilates h��, can be further

simplified by imposing the gauge condition

r�h�� �r�h ¼ 0: (27)
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Substituting this gauge condition into the constraint (26)
one finds that

�crith ¼ 0: (28)

Since we already assumed that �crit � 0 we deduce that
h ¼ 0 and hence we find that

r�h�� ¼ h ¼ 0: (29)

Using this, the linearized Einstein tensor reduces to

G��ðhÞ ¼ � 1

2

�
h� 4�

ðD� 1ÞðD� 2Þ
�
h��: (30)

It follows that the fourth-order operator appearing in the
equation of motion (25) factorizes into two identical
second-order operators [18,19]

�
h� 4�

ðD� 1ÞðD� 2Þ
�
2
h�� ¼ 0: (31)

III. MASSIVE, MASSLESS AND LOG MODES

We wish to analyze the solutions to the equations
of motion (31) assuming that we have an AdSD vacuum
solution with�crit < 0 and isometry algebra SOð2; D� 1Þ.
The case of D ¼ 4 is of particular interest because of the
improved short-distance behavior of curvature-squared
theories in this dimension, as discussed in the introduction.
We therefore focus on this case, for which we infer from
(13) that

�critðD ¼ 4Þ ¼ 3m2�: (32)

The generalization to D> 4 will be apparent while the
D ¼ 3 case has been discussed in [3]. Since away from the
critical point there are both massless and massive gravitons
it is convenient to consider both types of solutions since
this will facilitate the construction of the so-called log
solutions at the critical point. To determine the massive
solutions we follow the presentation of [7]. Next, the
massless modes are obtained by taking the massless limit
of the massive ones and the log modes, which are valid
solutions at the critical point only, are obtained by applying
the limiting procedure of [8]. These log modes are solu-
tions to the equations of motion (31) that are not annihi-
lated by the separate second-order Einstein operators.

In general, we expect for D> 3 three classes of solu-
tions at the critical point.

(1) The first class of solutions are the massless gravi-
tons, which correspond to solutions of the homoge-
neous equation

k�� ¼ 3G��ðhÞ ¼ 0: (33)

(2) The second class of solutions will be called Proca
log modes and solve the inhomogeneous equation

k�� ¼ 3G��ðhÞ ¼ 2rð�A�Þ; (34)

for some vector field A�. Written in terms of k��

they are solutions of the massless Einstein equations
G��ðkÞ ¼ 0 that take the form of a field-dependent

general coordinate transformation.4 By substituting
(34) into (22), one finds that A� satisfies the equa-

tions of motion that follow from the following Proca
Lagrangian [3]:

LProca ¼ � 1

4m2
F��F�� þ 3�A�A�;

F�� ¼ 2@½�A��;
(35)

which is why we dubbed the corresponding modes
Proca modes.

(3) The third class of solutions will be denoted as spin-2
log modes and correspond to solutions of the inho-
mogeneous equation

G��ðhÞ ¼ k?��; k?�� � rð�A�Þ: (36)

In terms of k?�� they correspond to nontrivial

solutions of the massless Einstein equations
G��ðk?Þ ¼ 0. Strictly speaking, Eq. (36) defines

an equivalence class of solutions since to every
spin-2 log mode one can add a Proca mode.

We now study the solutions of the linearized equations
of motion away from the critical point, following the group
theoretical approach of [7]. Our starting point is the AdS4
metric which in global coordinates ð	; �; 
;�Þ is given by:

ds2 ¼ L2ð�d	2 coshð�Þ2 þ d�2

þ sinhð�Þ2ðd
2 þ d�2 sinð
Þ2ÞÞ: (37)

Here L is related to the cosmological constant � by

� ¼ � 3

L2
: (38)

The isometry group of AdS4 is given by SO(2, 3) which is
generated by 10 Killing vectors. These Killing vectors can
be grouped into Cartan generators and positive and nega-
tive root generators of SO(2, 3). The Killing vectors cor-
responding to the two Cartan generators are given by

H1 ¼ i@	; H2 ¼ �i@�: (39)

The Killing vectors corresponding to the four positive roots
will be taken to be

4This does not mean that k�� can be gauged away since k�� is
gauge invariant.
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E�1 ¼1

2
eið	þ�Þ sinð
Þtanhð�Þ@	�1

2
ieið	þ�Þ sinð
Þ@�

�1

2
ieið	þ�Þcosð
Þcothð�Þ@
þ1

2
eið	þ�Þ

�cothð�Þcscð
Þ@�;
E�2 ¼�iei�@
þei�cotð
Þ@�;
E�3 ¼1

2
eið	��Þ sinð
Þtanhð�Þ@	�1

2
ieið	��Þ sinð
Þ@�;

�1

2
ieið	��Þcosð
Þcothð�Þ@
�1

2
eið	��Þ

�cothð�Þcscð
Þ@�;
E�4 ¼ei	cosð
Þtanhð�Þ@	� iei	cosð
Þ@�

þ iei	cothð�Þsinð
Þ@
: (40)

The Killing vectors corresponding to the four negative
roots are proportional to the complex conjugates of the
above four Killing vectors:

E��1 ¼ ðE�1Þ�; E��2 ¼ �ðE�2Þ�;
E��3 ¼ ðE�3Þ�; E��4 ¼ ðE�4Þ�: (41)

The root vectors corresponding to the above positive roots
are given by

�1 ¼ ð�1; 1Þ; �2 ¼ ð0; 1Þ;
�3 ¼ ð�1;�1Þ; �4 ¼ ð�1; 0Þ:

(42)

The above Killing vectors are normalized in the Cartan-
Weyl fashion, i.e. the following commutation relations
hold

½Hi;Hj� ¼ 0; i ¼ 1; 2;

½Hi; E
�x� ¼ �i

xE
�x ; x ¼ 1; � � � ; 4;

½E�x; E��x� ¼ 2

j�xj2
�x �H;

(43)

where

j�xj2 ¼
X2
i¼1

ð�i
xÞ2: (44)

The Casimir operator C can then be constructed as follows

C ¼X2
i¼1

HiHiþ
X4
x¼1

j�xj2
2

ðE�xE��x þE��xE�xÞ: (45)

When acting on a scalar field Sð	; �; 
;�Þ the Casimir
operator is given by

C S ¼ L2r2S: (46)

Similarly, when acting on a metric perturbation h�� the

Casimir operator is given by

ðC� 8Þh�� ¼ L2r2h��: (47)

We now consider the D ¼ 4 linearized equations of
motion away from the critical point

�
r2 þ 2

L2
�M2

��
r2 þ 2

L2

�
h�� ¼ 0; (48)

where M2 ¼ �m2 �� is the mass of the graviton, see
Eq. (17). These equations can be rewritten in terms of the
Casimir operator as follows:

ðC� 6� L2M2ÞðC� 6Þh�� ¼ 0: (49)

We now look for a metric perturbation c �� that forms a

highest weight state, with M2 � 0, of the SO(2, 3) isome-
try algebra. This state is an eigenstate ofH1 andH2 (acting
as Lie derivatives) with eigenvalues E0 and s

H1c �� ¼ E0c ��; H2c �� ¼ sc ��; (50)

while it is annihilated by all positive roots E�x

E�xc �� ¼ 0; x ¼ 1; � � � ; 4: (51)

Using the conditions (29), i.e.

r�c �� ¼ 0; �g��c �� ¼ 0; (52)

we find that a solution for the highest weight state can be
found for

s ¼ 2: (53)

The explicit expression of the solution reads5

c 		 ¼ �c 	� ¼ c ��

¼ e�iE0	þ2i� sinð
Þ2 sinhð2�Þð2�E0Þ=2 tanhð�Þ1þðE0=2Þ;

c 	� ¼ �c �� ¼ i cschð�Þsechð�Þc 		;

c 	
 ¼ �c 
� ¼ i cotð
Þc 		

c �� ¼ �4 cschð2�Þ2c 		;

c �
 ¼ �2 cotð
Þcschð2�Þc 		;

c 

 ¼ � cotð
Þ2c 		:

(54)

Using that on a highest weight state

C c �� ¼ ðE0ðE0 � 3Þ þ sðsþ 1ÞÞc ��; (55)

we find from the equation of motion (49) that E0 has to
obey

ðE0ðE0 � 3Þ � L2M2ÞE0ðE0 � 3Þ ¼ 0: (56)

The descendant states of (54) can be obtained by acting
with Killing vectors corresponding to the negative roots.
There is an infinite number of descendant states, but they
can be organized in representations of SO(3). Indeed, the
negative root E��2 only lowers the s-eigenvalue, while it
leaves E0 untouched. H2, E

�2 and E��2 thus form the

5Similar anti-de Sitter wave solutions for the full nonlinear
theory have recently been considered in [13].
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algebra of the compact SO(3) subgroup of SO(2, 3) and the
descendant states organize themselves in representations of
this SO(3) subgroup. By acting with E��2 on (54) one thus
obtains five solutions of the equations of motion (49), that
form a spin-2 SO(3) multiplet, with s ¼ þ2, þ1, 0, �1
and �2, respectively. In principle we can now determine
all descendant solutions. In practice, it is often enough to
restrict to the highest weight state and the above SO(3)
descendants. This finishes our discussion of the massive
solutions.

The massless solutions are obtained by taking the limit
M ! 0 of the massive ones. The resulting massless solu-
tions solve the equations

�
r2 þ 2

L2

�
h�� ¼ 0: (57)

In the massless limit we must have E0 ¼ 0 or E0 ¼ 3.
From the first line in (54) we see that for E0 ¼ 0 the
solution blows up for � ! þ1, while for E0 ¼ 3 the
solution is well-behaved in this limit. In the following we
will mainly concentrate on solutions that fall off to zero in
the � ! þ1 limit. In the massless limit, with E0 ¼ 3, the
five massive solutions, with s ¼ þ2; � � � , s ¼ �2, all
become nonzero solutions of the Einstein Eq. (57). This
happens for the s ¼ þ2 and s ¼ �2 solutions, in particu-
lar, but also for the s ¼ þ1, 0 and �1 solutions. As the
massless Einstein equations describe only two helicity-2
modes, it is to be expected that only two linear combina-
tions of the above modes correspond to physical modes,
belonging to the first class of solutions at the critical point
described in (33). Three other linear combinations are then
expected to correspond to infinitesimal general coordinate
transformations.

Having discussed the massive and massless modes we
now consider the log modes. As in the three-dimensional
case, one expects logarithmic modes to show up that are
solutions of the fourth-order equation of motion, but that
do not solve (57). Applying the limiting procedure of [8]
on the highest weight state, we find the following logarith-
mic mode:6

c log
��ðs ¼ 2Þ ¼ fð	; �Þc ð2Þ

��ðE0 ¼ 3Þ; (58)

with

fð	; �Þ ¼ 1

2
ð�2i	� logðsinhð2�ÞÞ þ logðtanhð�ÞÞÞ;

(59)

and where c ð2Þ
��ðE0 ¼ 3Þ denotes the s ¼ 2 solution (54)

taken at the massless pointE0 ¼ 3. One can check that (58)
is traceless and has zero divergence. The Einstein tensor of
this log mode can thus be calculated via (30) and we find
that it is given by

G ��ðc logðs ¼ 2ÞÞ ¼ � 3

2L2
c ð2Þ

��ðE0 ¼ 3Þ: (60)

The above features of the s ¼ 2 log state persist for all
five spin-2 states. In all cases the log mode solution is given
by

c log
��ðsÞ ¼ fð	; �Þc ðsÞ

��ðE0 ¼ 3Þ; (61)

with fð	; �Þ given by (59) and where c ðsÞ
��ðE0 ¼ 3Þ is the

helicity s solution of the massless Einstein Eq. (57). These
five log modes form a 5-plet under SO(3) and are related to
each other by the raising and lowering operators of SO(3).
We have checked that in all cases the Einstein tensor of

c log
��ðsÞ is proportional to the helicity s solution of the

massless Einstein equation:

G��ðc logðsÞÞ ¼ � 3

2L2
c ðsÞ

��ðE0 ¼ 3Þ: (62)

One thus expects that linear combinations of the log modes
can be divided in two classes. Two linear combinations are
such that their Einstein tensor gives rise to nontrivial
solutions of the Einstein equations. These are the so-called
spin-2 log modes that belong to the third class of solutions,
defined in (36). Three linear combinations are then ex-
pected to have an Einstein tensor that takes the form of an
infinitesimal general coordinate transformation. These
three log modes are therefore Proca log modes and belong
to the second class of solutions described in (34).
Finally, we mention some properties of the logarithmic

modes that we have found. The mode c log
��ðs ¼ 2Þ is

annihilated by all four positive root generators:

E�xc log
��ðs ¼ 2Þ ¼ 0; x ¼ 1; � � � ; 4: (63)

The other log modes in the 5-plet are obtained by acting
with the SO(3) lowering operator E��2 . All log modes
correspond to eigenstates of H2

H2c
log
��ðsÞ ¼ sc log

��ðsÞ; (64)

but they do not correspond to eigenstates of H1

H1c
log
��ðsÞ ¼ 3c log

��ðsÞ þ c ðsÞ
��ðE0 ¼ 3Þ: (65)

This structure is reminiscent of the three-dimensional case
[8–11]. In that case, the analogue of the properties (64) and
(65) led to the conjecture that the dual CFT is a logarithmic
one.

IV. CONCLUSIONS

We have studied the recently proposed D-dimensional
critical gravity theories of [18,19]. The family of models
considered contains, besides a dimensionless cosmological
parameter � and two mass parameters m2, m02, an addi-
tional dimensionless parameter � ¼ 0,�1multiplying the
Einstein-Hilbert term. After linearization about a maxi-
mally symmetric background, � is replaced by an effective

6An alternative expression for such a log mode has recently
been given in [14].
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EH coefficient ��. The critical theory is defined by �� ¼ 0,
which condition determines the cosmological constant �,
which we assumed to be negative. The quadratic critical
Lagrangian (19) depends only on the mass parameter m2.
This allows for different choices of �. In particular, one
could take a ‘‘wrong sign’’ Einstein-Hilbert term in the
starting action or even no Einstein-Hilbert term at all.7

At the critical point, the linearized equation of motion is
essentially given by the Einstein tensor of the Einstein
tensor of the metric perturbation; in others words, one
acts twice on the perturbation with the ‘‘Einstein operator’’
(defined by linearization of the Einstein tensor). Any solu-
tion of the linearized Einstein equations is therefore a
solution, and these are the massless spin-2 modes. In
addition, there are logarithmic solutions that are not anni-
hilated by a single action of the Einstein operator. We
subdivided these logarithmic solutions into two classes:
the spin-2 and Proca modes. For D ¼ 4, we used the
SO(2, 3) isometry group of AdS4 to explicitly calculate
the massive and massless modes away from the critical
point. We have shown how, at the critical point, the massive
modes are replaced by spin-2 and Proca log modes.

So far, our analysis has been done without a careful
consideration of the boundary conditions. As an example
of how important boundary conditions can be, it is inter-
esting to consider, for D ¼ 3, the relation between the
Proca modes, propagated by the Lagrangian (35) and the
Proca log modes. This relationship is not one-to-one. It
turns out that the highest weight state of the Proca log
mode corresponds to a non-normalizable solution of the
equations of motion that follow from (35). Its descendants,
however, do give rise to normalizable solutions.8

The boundary conditions, when logarithmic modes are
included, have been well-studied for the special case of

D ¼ 3: it has been established [8] that the logarithmic bulk
modes require weaker boundary conditions than the
Brown-Henneaux ones [25]. These weaker boundary con-
ditions were dubbed ‘‘logarithmic boundary conditions’’
and they play an essential role in the search for the two-
dimensional CFT duals of the various three-dimensional
massive gravities. The logarithmic modes for D ¼ 4 criti-
cal gravity studied here exhibit an analogous group theo-
retical structure. In the D ¼ 3 case, the existence and
structure of these logarithmic modes lends support for
the conjecture that the CFT dual of three-dimensional
critical gravity theories is of the logarithmic type (see
e.g. [9–11]). It would be of interest to see whether one
could similarly define a consistent set of logarithmic
boundary conditions in the higher-dimensional case and,
if so, to see what one could say about the CFT duals of
critical gravities in arbitrary dimensions.
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Note added:—Following submission of the original ver-

sion of this paper to the arxiv, a revised version of Ref. [18]
appeared in which the log modes of 4D critical gravity
presented here were found to have positive energy (the
massless Einstein modes have zero energy). Although this
is encouraging, it appears likely that the log modes are not
orthogonal to the Einstein modes, which would imply the
existence of linear combinations of negative norm, as
happens in critical topologically-massive gravity (see,
e.g., sec. 4.1.2 of [26]).9 This would imply nonunitarity,
as is to be expected from the nonunitarity of the dual
logarithmic CFT.
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