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Optimal SISO and MIMO Spectral Efficiency to
Minimize Hidden-Node Network Interference

D. W. Bliss, Member, IEEE

Abstract—In this letter, the optimal spectral efficiency for a
given message size that minimizes the probability of causing
disruptive interference for ad hoc wireless networks or cognitive
radios is investigated. Implicitly, the trade being optimized is
between longer transmit duration and wider bandwidth versus
higher transmit power. Both single-input single-output (SISO)
and multiple-input multiple-output (MIMO) links are considered.
Here, a link optimizes its spectral efficiency to be a “good
neighbor.” The probability of interference is characterized by
the probability that the signal power received by a hidden node
in a wireless network exceeds some threshold. The optimization is
a function of the transmitter-to-hidden-node channel exponent. It
is shown that for typical channel exponents a spectral efficiency
of slightly greater than 1 b/s/Hz per antenna is optimal.

Index Terms—Wireless LAN, local area networks, MIMO
systems, cooperative systems.

I. INTRODUCTION

THE hidden-node problem is a significant issue for ad hoc
wireless networks and cognitive radios. The problem is

characterized by two links and four nodes: a transmitter of
interest, a receiver of interest, a hidden transmitter, and hidden
receiver [1]. It is assumed that the existence of the hidden link
is not known by the link of interest and that the hidden link
cannot adapt to interference. The hidden receiver (denoted
the hidden node) may be near enough to the transmitter of
interest that the interference causes the hidden link to fail.
Being a good neighbor, the link of interest would like to
minimize the adverse effects of transmitting a message of
some finite number of bits. Both single-input single-output
(SISO) and multiple-input multiple-output (MIMO) wireless
communication links are considered.

As a specific example, imagine other links in an ad hoc
wireless network (or legacy network for the cognitive radio
problem) are communicating with random occupancy in fre-
quency and time, as seen in Fig. 1(a). The geometry of a
particular transmitter, receiver, and hidden node is depicted
in Fig. 1(b). The distance from the transmitter to the hidden
node is 𝑟, and the radius 𝑟𝑖 contains the region within which
the interference-to-noise ratio (INR), denoted 𝜂, is sufficient
to disrupt the hidden link.
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Fig. 1. (a) Displays a set of notional hidden links in time (𝑡) and frequency
(𝑓 ) in the presence of a signal of interest transmission. (b) Depicts a notional
geometry of transmitter, receiver, and hidden node. The distance from the
transmitter to the hidden node is given by 𝑟. The region of disruptive
interference is contained with radius 𝑟𝑖.

There are seven main assumptions used in this analysis.
First, the probability of interfering is relatively small, which
is equivalent to saying that the spatial, temporal, spectral
occupancy of the network is not particularly high near the
link of interest so that the probability of multiple collisions
can be ignored. Second, the effects of interference on the
hidden node can be factored into the probability of collision
and the probability that the INR (𝜂) at the hidden node exceeds
some critical threshold 𝜂𝑖. Third, the hidden node location is
sampled uniformly over some large area. Fourth, the average
channel attenuation from the transmitter to the hidden node
can be accurately modeled by using a power-law attenuation
model. Fifth, the link performance can be characterized with
reasonable accuracy by the channel capacity. Sixth, the hidden
node does not have some interference mitigation capabil-
ity that prefers a particular waveform structure. Finally, the
desired data rate of the link of interest is sufficiently low
that the link has the freedom to transmit in packets with
relatively low spectral-temporal occupancy. Consequently, the
optimization is developed for a single packet of a given
number of information bits.

For the transmitter of interest to cause disruptive interfer-
ence at the hidden node, the interfering signal must satisfy
two requirements. First, it must overlap with a hidden link
spectrally and temporally such that transmissions collide. The
probability of collision (sufficient overlap) is denoted 𝑝𝑐.
Second, the interfering signal must be of sufficient strength
at the hidden node to cause disruptive interference, assuming
sufficient overlap in time and frequency. The probability that
the distance from the transmitter to hidden node is within
sufficient range to cause disruptive interference is denoted 𝑝𝑟.
The probability of disruptive interference is denoted 𝑝𝑖 and is
given by the product of 𝑝𝑐 and 𝑝𝑟.

II. OPTIMAL SISO SPECTRAL EFFICIENCY

For some 𝑛info information bits, the probability of interfer-
ence 𝑝𝑖 is a function of period of transmission 𝑇 and band-
width of transmission 𝐵, 𝑝𝑖 = 𝑝𝑖(𝑇,𝐵, 𝑛info). This functional
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dependence is developed by noting that the probability of
collisions 𝑝𝑐 is linearly related to the transmitted duration and
bandwidth

𝑝𝑐 ∝ 𝑇 𝐵 , (1)

because the fraction of the temporal and spectral space oc-
cupied the link [seen in Fig. 1(a)], and thus the probability
of collision is proportional to the area subtended by the link
in the temporal-spectral space, under the assumption that the
distribution of packet occupancy over frequency and time is
uniform.

If it is assumed that the hidden node is randomly located
with respect to the transmitter in a two-dimensional physical
space [Fig. 1(b)], then the probability that the hidden node
is within sufficient range, 𝑝𝑟, to cause disruptive interference
is proportional to the area, 𝐴, over which the signal has a
sufficient INR, 𝜂 > 𝜂𝑖, at the hidden node

𝑝𝑟 ∝ 𝐴(𝜂 > 𝜂𝑖) . (2)

Consequently, to a good approximation, the probability of
interference exceeding some threshold is given by

𝑝𝑖 ∝ 𝑇 𝐵 𝐴 . (3)

The area is a function of the transmit energy and propagation
loss to the hidden node.

For a SISO system, the information theoretic bound [2] on
the number of bits that can be transmitted within time 𝑇 and
bandwidth 𝐵 is given by

𝑛info ≤ 𝑇 𝐵 𝑐 (4)

𝑐 = log2(1 + 𝛾) ,

where 𝑐 is the information theoretic limit in bits/s/Hz on the
SISO spectral efficiency (assuming a complex modulation),
and 𝛾 is the signal-to-noise ratio (SNR) at the receiver. The
bound is not achievable for finite 𝑛info, but it is a reasonable
approximation to the limiting performance.

By assuming the link of interest is operating at the informa-
tion theoretic bound, the SNR at the receiver can be expressed
in terms of the number of bits transmitted and the spectral
efficiency

𝑛info ≈ 𝑇 𝐵 log2(1 + 𝛾) ,

𝛾 ≈ (2𝑐 − 1) . (5)

If the channel gain to the hidden node is denoted 𝑏2 and the
channel gain to the receiver of interest is denoted 𝑎2, then the
INR at the hidden node is

𝜂 =
𝑏2

𝑎2
𝛾 . (6)

By using a simple power-law model for loss, with the channel
gain to the hidden node proportional to 𝑟−𝛼, the radius 𝑟𝑖 at
the critical interference level (at which 𝜂 = 𝜂𝑖) is found by
observing

𝛾 =
𝑎2

𝑏2
𝜂 ∝ 𝑎2

𝑟−𝛼
𝜂 ⇒ 𝑎2

𝑟−𝛼
𝑖

𝜂𝑖

𝑟𝑖 ∝ 𝛾1/𝛼 = (2𝑐 − 1)1/𝛼 . (7)
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Fig. 2. Optimal SISO spectral efficiency, 𝑐, for ideal coding in a static en-
vironment as a function of transmitter-to-hidden-node channel gain exponent,
𝛼.

Consequently, the probability of interference for the SISO
system is given by

𝑝𝑖 ∝ 𝑇 𝐵 𝐴

≈ 𝑛info

𝑐
𝐴 ∝ 𝑛info

𝑐
𝑟2𝑖

∝ (2𝑐 − 1)2/𝛼

𝑐
. (8)

The optimal spectral efficiency for some 𝛼 is given by

∂𝑝𝑖
∂𝑐

∝ 2𝑐+1 (−1 + 2𝑐)
2
𝛼−1

log(2)

𝑐𝛼
− (−1 + 2𝑐)

2/𝛼

𝑐2
= 0

𝑐𝑜𝑝𝑡 =
𝛼+ 2𝑊0

(− 1
2𝑒

−𝛼/2𝛼
)

2 log(2)

≈ 1.355(𝛼−2)− 0.118(𝛼−2)2 + 0.008(𝛼−2)3 , (9)

where log(⋅) indicates the natural logarithm, and 𝑊0(𝑥) is the
product log or principal value of the Lambert W-function1 [3].
It is remarkable that optimal spectral efficiency is dependent
upon the channel exponent exclusively.

In Fig. 2, the optimal spectral efficiency for a given channel
exponent, under the assumption of ideal coding in a static
channel, is displayed. In the absence of multipath scattering,
the line-of-sight exponent is 𝛼 = 2 (an anechoic chamber
for example). For 𝛼 = 2, the optimal spectral efficiency
approaches zero. For most scattering environments, 𝛼 = 3
to 4 [4] is a more reasonable characterization, suggesting a
spectral efficiency around 2 b/s/Hz.

III. OPTIMAL MIMO SPECTRAL EFFICIENCY

The analysis for a MIMO link is similar to the SISO link.
It is assumed that the MIMO link has an uninformed trans-
mitter (without channel state information), and the number of
transmitters by number of receivers, 𝑛𝑡 × 𝑛𝑟, MIMO channel
is not frequency selective. The received signal is given by
Z = HS + N, where Z ∈ ℂ𝑛𝑟×𝑛𝑠 is the received signal,
S ∈ ℂ

𝑛𝑡×𝑛𝑠 is the transmitted signal, H ∈ ℂ
𝑛𝑟×𝑛𝑡 is the

channel matrix, and N ∈ ℂ𝑛𝑟×𝑛𝑠 is the noise. The number of
transmitted symbols is 𝑛𝑠.

For a MIMO system with an uninformed transmitter (a
transmitter without channel state information), the information

1The Lambert W-function is the inverse function of 𝑓(𝑊 ) = 𝑊𝑒𝑊 . The
solution of this function is multiply valued.
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theoretic bound on the number of bits transmitted is given by

𝑛info ≤ 𝑇 𝐵 𝑐

𝑐 = log2

∣∣∣∣I+
𝑃0

𝑛𝑡
HH†

∣∣∣∣ (10)

where 𝑐 is the information theoretic limit on the MIMO spec-
tral efficiency (assuming a complex modulation), and 𝑃0 is the
total thermal-noise-normalized transmit power. The notation ∣⋅∣
indicates the determinant. Implicit in this formulation is the
assumption that the interference-plus-noise covariance matrix
is proportional to the identity matrix which is a reasonable
model for most interference avoiding protocols.

Because the capacity is a function of a random SNR matrix,
there is not a single solution as there is in the SISO analysis.
However, by assuming that the channel matrix is proportional
to a matrix sampled from an i.i.d. zero-mean element-unit-
norm-variance complex Gaussian matrix, H = 𝑎G, an asymp-
totic analysis, in the limit of a large number of antennas, a
solution can be found. Surprisingly, the asymptotic model is a
reasonable approximation for even small numbers of antennas.
[5] With this model, the term 𝑎2𝑃0 is the the average SNR
per receive antenna at the receiver of interest. To simplify
the analysis, it is assumed that 𝑛𝑟 = 𝑛𝑡 ≡ 𝑛. The optimal
spectral efficiency under the assumption of other ratios of
number transmitters to receivers can be found following a
similar analysis. The asymptotic capacity [5] is given by

𝑐

𝑛
≈ 𝑎2𝑃0

log 2
3𝐹2([1, 1, 3/2], [2, 3],−4 𝑎2𝑃0) ≡ 𝑓(𝑎2𝑃0)

=
4 log

(√
4𝑎2𝑃0 + 1 + 1

)
log(4)

+

√
4𝑎2𝑃0 + 1

𝑎2𝑃0 log(4)

− 1

𝑎2𝑃0 log(4)
− 2− 2

log(4)
, (11)

where 𝑝𝐹𝑞 is the generalized hypergeometric function [6], and
the function 𝑓(𝑥) is used for notational convenience.

The SNR at the receiver can be expressed in terms of the
number of bits transmitted and the spectral efficiency

𝑛info = 𝑇 𝐵 𝑛 𝑓(𝑎2𝑃0) ,

𝑎2𝑃0 = 𝑓−1
( 𝑐

𝑛

)
. (12)

Unfortunately, a simple formulation of the functional inverse
of 𝑓(𝑥) [denoted 𝑓−1(𝑦)] is not available; however, it is
tractable numerically. By using a model similar to the link
of interest, if the channel to the hidden node is given by
Hℎ𝑛 = 𝑏2Gℎ𝑛, then the average INR per receive antenna
at the hidden node is given by

𝜂 = 𝑏2𝑃0 . (13)

By using a similar analysis to the SISO case and power-law
model for the average channel gain 𝑏, the radius of disruptive
interference is found by observing

𝑎2𝑃0 =
𝑎2

𝑏2
𝜂 ∝ 𝑎2

𝑟−𝛼
𝜂 ⇒ 𝑎2

𝑟−𝛼
𝑖

𝜂𝑖

𝑟𝑖 ∝ (𝑎2𝑃0)
1/𝛼 =

[
𝑓−1

( 𝑐

𝑛

)]1/𝛼
. (14)
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Fig. 3. Optimal MIMO spectral efficiency for ideal coding in a static
environment as a function of the transmitter-to-hidden-node channel gain
exponent.

Consequently, the probability of interference for the MIMO
system is given by

𝑝𝑖 ∝ 𝑇 𝐵 𝐴 =
𝑛info

𝑐
𝐴 ∝ 𝑛info

𝑐
𝑟2𝑖

∝
[
𝑓−1(𝛽)

]2/𝛼
𝛽

, (15)

where the number-of-antenna-normalized spectral efficiency is
given by 𝛽 ≡ 𝑐/𝑛. The optimal spectral efficiency for a given
𝛼 is given by

𝛽𝑜𝑝𝑡 = argmin𝛽

[
𝑓−1(𝛽)

]2/𝛼
𝛽

≈ 0.795(𝛼−2) + 0.028(𝛼−2)2 − 0.003(𝛼−2)3 . (16)

In Fig. 3, the optimal spectral efficiency per antenna for
a given channel exponent, under the assumption of ideal
coding in a static channel, is displayed. For most scattering
environments, 𝛼 = 3 to 4 [4] is a reasonable characterization,
suggesting a spectral efficiency per antenna of a little more
than 1 b/s/Hz.

IV. CONCLUSION

The optimal spectral efficiency was calculated to minimize
the probability of causing disruptive interference in a wireless
network. The optimization trades the time-bandwidth product
versus the power of a transmission. Using this information,
optimal per antenna spectral efficiency falls between 0.5 and
2 for typical channel exponents.

ACKNOWLEDGMENTS

The author would like to thank Paul Fiore, Peter Parker,
Siddhartan Govindasamy and Dorothy Ryan for their com-
ments.

REFERENCES

[1] B. A. Fette, Cognitive Radio Technology, 2nd edition. Burlington, MA:
Elsevier, 2009.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, 1991.

[3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D.
E. Knuth, “On the Lambert W function, Advances in Computational
Mathematics, vol. 5, pp. 329359, 1996.

[4] M. Hata, “Empirical formula for propagation loss in land mobile radio
services,” IEEE Trans. Veh. Technol., vol. 17, no. 7, pp. 317325, Aug.
1980.

[5] D. W. Bliss, K. W. Forsythe, A. O. Hero, and A. F. Yegulalp, “Environ-
mental issues for MIMO capacity,” IEEE Trans. Signal Process., vol. 50,
no. 9, pp. 21282142, Sep. 2002.

[6] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products. New York: Academic Press, 1994.


