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The quantum versions of de Finetti’s theorem derived so far express the convergence of n-partite symmetric
states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of
independent and identically distributed �IID� states of the form ��n. Unfortunately, these theorems only hold
in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is
known to fail. Here, we address this problem by considering invariance under orthogonal transformations in
phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly
relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to
this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian
states �actually, n identical thermal states�.

DOI: 10.1103/PhysRevA.80.010102 PACS number�s�: 03.65.Ca, 03.70.�k, 42.50.�p

I. INTRODUCTION

There has been a renewed interest in de Finetti’s theorem
�1� over the recent years, especially in the context of quan-
tum information theory �see, e.g., �2��. In a classical setting,
de Finetti’s theorem addresses the statistics of large compos-
ite systems obeying some fundamental symmetry �e.g., in-
variance under permutations of its parts�, stating that its parts
can be well approximated by identical independent sub-
systems. In the language of probability theory, a
permutation-invariant joint probability distribution of n ran-
dom variables is shown to approach a probabilistic mixture
of independent and identically distributed �IID� variables. In
a quantum setting, the theorem makes the connection be-
tween two types of n-mode states in H�n: symmetric states,
i.e., states that are invariant under permutations of their sub-
systems �� such that �=���† for any permutation ��Sn�,
and mixtures of IID states of the form ��n for some state
��H. Whereas an IID state is obviously symmetric, the
converse is not true in general. This situation is rather frus-
trating as the symmetry of a state is often known or can be
easily enforced by application of a random permutation of
the subsystems, while it rather is the IID property that one
wishes to have as it considerably simplifies the analysis �an
IID state is fully described in H instead of H�n�. According
to the quantum de Finetti theorem �3,4�, a symmetric state
becomes increasingly close to a mixture of IID states as one
traces out more of its parts. Attempts at characterizing the
speed of convergence toward an IID state are more recent,
both in the classical case �5� and quantum case �6,7�: the
trace distance between the partial trace over �n−k� parties of
an n-partite symmetric state and a mixture of k-partite IID
states is bounded from above by 2d2k /n, where d is the
dimension of the Hilbert space.

Interestingly, a striking difference with the classical case
is that the trace distance in the quantum case necessarily
depends on the dimension of the Hilbert space. In particular,

this rules out the possibility of a direct generalization of the
theorem to an infinite-dimensional Hilbert space. This was
proven in Ref. �7�, where a counterexample was exhibited:
the n-dimensional generalization of the singlet state
1 /�n!��sgn������0� � �1� � ¯ � �n−1�� is symmetric but
any bipartite part, being a mixture of singlet states, cannot be
approximated by a mixture of IID states. Even if a general
quantum de Finetti theorem does not hold in infinite dimen-
sion, it is still possible to establish interesting versions of the
theorem by restricting the set of states considered. For in-
stance, such results can be obtained for coherent Schrödinger
cat �macroscopic quantum superposition� states �8� and
Gaussian states �9�.

In this Rapid Communication, we follow a rather different
approach by considering a symmetry group different from
the permutations over the n subsystems of a state in H�n. We
investigate the properties of orthogonally invariant states �,
i.e., states that are invariant under the action of any n-mode
Gaussian unitary operator corresponding to a real symplectic
orthogonal transformation in the 2n-dimensional phase space
of �. In �10�, we had touched this question in the asymptotic
limit n→� and exhibited the connection between orthogo-
nally invariant states and �probabilistic mixtures of� IID ther-
mal states. Here, we prove a finite version of this result,
which leads to a genuine quantum continuous-variable de
Finetti theorem in phase-space representation.

The outline of the Rapid Communication is as follows. In
Sec. II, we introduce the concept of orthogonally invariant
quantum states and give an alternative characterization of
these states in the Fock state representation. Then, in Sec. III,
we prove a quantum de Finetti theorem for orthogonally in-
variant n-mode states, which bounds the convergence speed
toward IID thermal states for finite n. Finally, in Sec. IV, we
discuss the perspectives of this continuous-variable quantum
de Finetti theorem and draw conclusions.

PHYSICAL REVIEW A 80, 010102�R� �2009�

RAPID COMMUNICATIONS

1050-2947/2009/80�1�/010102�4� ©2009 The American Physical Society010102-1

http://dx.doi.org/10.1103/PhysRevA.80.010102


II. ORTHOGONALLY INVARIANT STATES

The state � of an n-mode bosonic quantum system can be
completely characterized by its Wigner function W in the
2n-dimensional phase space parametrized by the quadratures
x1 , p1 , . . . ,xn , pn. The Wigner function is well known to be a
quasiprobability distribution, not a genuine probability distri-
bution as it can take negative values. However, by integrat-
ing it over one quadrature �x or p� for each mode, one ob-
tains the n-variate probability distribution characterizing the
outcomes of the n homodyne measurements �one performed
on each mode�.

One is of course not restricted to measuring quadratures
xk or pk but can also measure rotated quadratures with any
angle �k in phase space. Thus, from a Wigner function, one
can always construct a genuine probability distribution
p�r1 , . . . ,rn�, where rk corresponds to a particular rotated
quadrature of the kth mode. In addition, one can also mix
several modes with the help of a passive linear interferom-
eter before performing the homodyne measurements, which
means that the variables rk become �normalized� linear com-
binations of the quadratures x1 , p1 , . . . ,xn , pn. In summary,
starting with an arbitrary Wigner function, one can always
construct a family of n-variate probability distributions
p�r1 , . . . ,rn� using the following procedure: first, one pro-
cesses the n modes through a passive linear interferometer �a
network of beam splitters and phase shifters�, and then one
measures one fixed quadrature for each output mode.

Let us now consider possible symmetries of the joint
probability distribution characterizing the n random variables
rk. A first symmetry, which is standard in the context of de
Finetti’s theorem, is the invariance under permutations of the
variables. This means that p�r1 , . . . ,rn�= p�r��1� , . . . ,r��n�� for
any permutation ��Sn, where Sn denotes the group of per-
mutations on 	1, . . . ,n
. Another symmetry, which has not
been explored so far in the quantum context, emerges natu-
rally for the real-valued random vector r= �r1 , . . . ,rn��Rn.
Note that the previous permutation symmetry simply means
that the distribution probability is not affected by reordering
the coordinates. As we work in Rn, however, it seems more
appropriate to substitute a discrete symmetry group such as
Sn with a continuous symmetry group. A natural choice in
this respect is the orthogonal group O�n�, that is, the group of
orthogonal transformations �or isometries� acting on vector
r. Note that applying an orthogonal transformation on r pre-
cisely corresponds to inserting an n-mode passive linear in-
terferometer before performing the n homodyne measure-
ments.

In classical probability theory, distributions that are in-
variant under orthogonal transformations are referred to as
orthogonally invariant distributions. It has long been known
that such probability distributions tend to mixtures of IID
Gaussian distributions in the limit n→�, or, more formally,
that the first k coordinates of a random point that is uni-
formly distributed on the n-dimensional sphere are asymp-
totically normal. �An historical perspective of this property,
going back to Poincaré, Borel, and Maxwell, can be found in
Ref. �11�, where the authors also derive a sharp bound for the
theorem�. In what follows, we consider the natural quantum
counterpart of these distributions, namely, n-mode states �

for which the probability distribution p�r1 , . . . ,rn� that results
from measuring n quadratures of � is unaffected by an
n-mode passive interferometer preceding the measurement.
This is equivalent to the condition that the state � is itself
invariant under passive symplectic transformations, or, more
physically, that � remains unchanged after being processed
via any n-mode passive linear interferometer. In what fol-
lows, we will refer to these states as orthogonally invariant in
phase space.

This orthogonal invariance in phase space clearly encom-
passes the permutation invariance in state space since per-
muting the coordinates in phase space is just a special case of
an orthogonal transformation. Since we are considering a
continuous instead of a discrete symmetry group, this invari-
ance in phase space might appear quite restrictive, and
we may question whether there exist interesting orthogonally
invariant states. This is fortunately the case as, for example,
any multimode thermal state is orthogonally invariant. This
can be readily checked by considering its Wigner function
which is given by a 2n-partite Gaussian distribution

with variance �2, Wth�x1 , p1 , . . . ,xn , pn��e−�x1
2+p1

2+¯+xn
2+pn

2�/2�2

which is clearly invariant under orthogonal transformations
of the coordinates. Note that such a multimode thermal state
is nothing but a product of identical thermal states, which, in
fact, plays the same role for the invariance under orthogonal
transformations as IID states for the usual invariance under
permutations. Another class of orthogonally invariant states
is the multimode extension of Fock states that we will con-
sider in the following.

Let us now give two alternative characterizations of the
set of orthogonally invariant states. The most natural one
relies on phase-space representation since this is how the
symmetry is expressed. In order to be invariant under or-
thogonal transformations in phase space, these states must
simply have a Wigner function that only depends on one
single parameter, namely, the modulus �r�= �x1

2+ p1
2+ ¯+xn

2

+ pn
2�1/2. The characterization of this set of states in the Fock

state representation is slightly more involved. We note that
this set is convex as any mixture of orthogonally invariant
states remains invariant under orthogonal transformations. It
is, therefore, completely characterized by its extremal points,
which can be shown to be the states

�p
n =

1

ap
n �

p1¯pn

st �ipi=p

�p1 ¯ pn��p1 ¯ pn� , �1�

with ap
n = � n+p−1

n−1 �. These extremal states are the multimode
generalization of number states �p�, that is, they correspond
to the �normalized� projectors onto the various eigenspaces
of the total number operator n̂= n̂1+ ¯+n̂n. For instance, �p

n,
which is proportional to the projector onto the eigenspace of
n̂ with eigenvalue p, physically corresponds to a state with p
photons distributed over n modes. The normalization factor
ap

n simply coincides with the number of ways of distributing
p photons over n modes. These extremal states �p

n form a
discrete infinite set of mixed states parametrized by p �or
pure states for n=1 as �p

1 = �p��p��. Importantly, any pure
eigenstate chosen in the eigenspace corresponding to a given
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total photon number p is generally not orthogonally invari-
ant; only the uniform mixture of them fulfills this invariance
�Schur’s lemma�, which is why the extremal states �p

n are
mixed for n	1.

III. QUANTUM DE FINETTI THEOREM FOR
ORTHOGONALLY INVARIANT STATES

As mentioned above, a classical de Finetti theorem exists
for classical orthogonally invariant probability distributions.
The theorem states that, in the limit of infinite sequences
X1 , . . . ,Xn with n→�, the first k variables are exactly mix-
tures of IID Gaussian distributions. This result only holds
approximately for finite sequences �11�: if the distribution of
X1 , . . . ,Xn is invariant under orthogonal transformations in
Rn, then the marginal distribution of the first k coordinates
X1 , . . . ,Xk is close to a mixture of IID Gaussian distributions.
Here, the “closeness” is measured in the sense that the varia-
tion distance is bounded from above by 2�k+3� / �n−k−3�
for 1
k
n−3.

Let us now formulate our main result, which is the quan-
tum counterpart of the previous result.

Theorem 1. If �n is an n-mode orthogonally invariant
quantum state, its partial trace over any �n−k� modes
trn−k��n� can be approximated by a mixture of k-mode ther-
mal states �th

k �x�, that is,

trn−k��n� −� �th
k �x���dx�

1

 2� n2

�n − k − 1��n − k − 2�
− 1� ,

where �th
k �x� is the tensor product of k thermal states with a

mean number of x photons per mode, and � is a probability
measure.

The idea of our proof is inspired from that of the classical
version of the theorem for geometric probability distribu-
tions, as described in �11�. If X1 , . . . ,Xn are integer classical
random variables whose joint distribution is invariant under
transformations that keep the sum X1+ ¯+Xn constant, then
the marginal law of the first k coordinates X1 , . . . ,Xk is close,
in the sense of the variation distance, to a mixture of IID
geometric distributions. The link with our quantum problem
comes from the fact that in the Fock basis, any passive linear
interferometer redistributes the photons among the modes in
such a way that the total photon number is kept constant
since the energy is conserved. The invariance under orthogo-
nal transformations in phase space therefore translates into
the invariance under transformations that keep the total pho-
ton number constant in the Fock basis. As a consequence, the
asymptotic state in our theorem is characterized by a geomet-
ric distribution in the Fock basis, which precisely is the sig-
nature of a thermal state. Our proof will thus consist in
bounding the convergence of an n-mode state that is invari-
ant under a redistribution of photons among the n modes
�with a constant total photon number� toward a mixture of
thermal states.

Proof. We start from the fact that any n-mode orthogo-
nally invariant state �n can be written as a convex mixture of
the multimode number states �p

n as defined in Eq. �1�,
namely, �n=�p=0

� cp�p
n with arbitrary weights cp satisfying 0


cp
1 and �pcp=1. Now, using the convexity of the trace-
norm distance �trn−k��n�−��th

k �x���dx��1
�p=0
� cp�trn−k��p

n�
−��th

k �x���dx��1, we see that it is sufficient to prove the theo-
rem for the extremal states �p

n. More precisely, we will upper
bound the quantity �trn−k��p

n�−�th
k �p /n��1.

The reduced state trn−k��p
n� is obviously orthogonally in-

variant in the remaining space of k modes, which implies that
it can be written as a mixture of k-mode number states,
trn−k��p

n�=�l=0
p f�l��l

k where a simple combinatorial argument
shows that f�l�=al

kap−l
n−k /ap

n. The k-mode thermal state �th
k �x�

is defined as the product of k single-mode thermal states with
x photons per mode, namely, �th

k �x�=�th�x��k, with �th�x�
=�l=0

� xl

�1+x�l+1 �l��l�. A straightforward calculation shows that

�th
k �x�=�l=0

� g�l��l
k, with g�l�=al

k xl

�1+x�l+k which confirms that it
is also orthogonally invariant.

Since both trn−k��p
n� and �th

k �x� are diagonal in the basis of
k-mode number states, their trace-norm distance is given by
the variation distance between the classical probability dis-
tributions f and g, that is, �trn−k��p

n�−�th
k �p /n��1=�l=0

� �f�l�
−g�l��=2�l=0

� � f�l�
g�l� −1�+g�l� where the function �x�+

=max�x ,0�. It follows that

�trn−k��p
n� − �th

k �p/n��1 
 2�sup
l

h�l� − 1� , �2�

where h�l�� f�l�
g�l� =

ap−l
n−k�1+p/n�l+k

ap
n�p/n�l . Expanding the binomials in

ap−l
n−k and ap

n, one gets h�l�=�t=1
k �1− t

n ��t=1
l−1�1− t

p � /�t=1
k+l

�1− t
n+p �. The logarithm of h�l� can be expressed as

ln h�l� = − S�n,k� − S�p,l − 1� + S�n + p,k + l� , �3�

where S�n ,k��−�t=0
k ln�1− t

n �. For the function x�−ln�1
−x� being monotonically increasing on �0,1�, one has

nJ� k

n
� 
 S�n,k� 
 nJ� k + 1

n
� , �4�

where J�x��−�0
xln�1− t�dt=x+ �1−x�ln�1−x�. Let us intro-

duce the two reduced variables u=k /n and v= l / p, which
both belong to the interval �0,1�. Since the function J�x�
is convex on �0,1�, we have J��u+ �1−��v�
�J�u�
+ �1−��J�v�, where 0
�
1. If we choose �=n / �n+ p�,
this equation translates into �n+ p�J� k+l

n+p �
nJ� k
n �+ pJ� l

p �
whose left-�right-�hand side term can be lower �upper�
bounded thanks to Eq. �4�. This yields S�n+ p ,k+ l−1�

S�n ,k�+S�p , l�. Substituting k with k+2 and l with l−1,
we get the equivalent inequality S�n+ p ,k+ l�
S�n ,k+2�
+S�p , l−1�, which, together with Eq. �3�, gives ln h�l�

S�n ,k+2�−S�n ,k�. Hence, h�l�


n2

�n−k−1��n−k−2� which, us-
ing Eq. �2�, concludes the proof of our theorem. �

IV. CONCLUSION

We have investigated the invariance under orthogonal
transformations in phase-space representation in the context
of quantum de Finetti theorems. This approach seems to be
particularly relevant to study the properties of continuous-
variable systems, going beyond the standard approach based
on permutation invariance in state space representation. Just
like orthogonally invariant n-partite probability distributions
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are known to tend to IID. Gaussian distributions, we have
shown that orthogonally invariant n-mode states tend to IID
thermal states. More precisely, we have derived a finite ver-
sion of a quantum de Finetti theorem for this class of states,
which puts an upper bound on the distance between the par-
tial trace of orthogonally invariant states and mixtures of
multimode thermal states. Physically, the invariance under
orthogonal transformations in phase space corresponds to the
fact that the state is unchanged by a passive linear interfer-
ometer. Since this operation amounts to redistributing pho-
tons while keeping their number constant, our quantum de
Finetti theorem is connected to the classical de Finetti theo-
rem for geometric distributions �11�.

Let us conclude by suggesting two potentially interesting
extensions of this de Finetti theorem, which arise in the con-
text of continuous-variable quantum key distribution �12�.
First, one would like to generalize our results to bipartite
states, i.e., states �AB that are invariant under �conjugate�
orthogonal transformations applied to systems A and B, re-
spectively. As we explained in Ref. �10�, the legitimate par-
ties �Alice and Bob� can always enforce such symmetry in
phase space. Their global state �AB can therefore be assumed

to be a bipartite orthogonally invariant state in phase space.
In other words, �AB is invariant if both parts �A=trB �AB and
�B=trA �AB are processed via �conjugate� passive linear in-
terferometers. Note that the resulting local states held by
each party, �A and �B, are then another example of orthogo-
nally invariant states. The second question one might want to
answer is whether the theorem presented here has an expo-
nential version in analogy to Ref. �2�, that is, such that only
a small number of modes needs to be traced out in order to
get a reduced state that is well approximated by �almost� a
mixture of thermal states.
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