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Cascade dynamics on networks are usually analyzed statically to determine existence criteria for cascades.
Here, the Watts model of threshold dynamics on random Erdds-Rényi networks is analyzed to determine the
dynamic time evolution of cascades. The network is assumed to have a specific finite number of nodes n and
is not assumed to be treelike. All combinations of threshold ¢, network average nodal degree z, and seed sizes
|S| from a single node up are included. The analysis permits study of network size effects and increased
clustering coefficient. Several size effects not found by infinite network theory are predicted by the analysis
and confirmed by simulations. In the region of ¢ and z where a single node can start a cascade, cascades are
expanding, in the sense that each step flips a larger group than the previous step did. We show that this region
extends to larger values of z than predicted by infinite network analyses. In the region where larger seeds are
needed (size proportional to n), cascades begin by contracting: at the outset, each step flips fewer nodes than
the previous step, but eventually the process reverses and becomes expanding. A critical mass that grows

during the cascade beyond an easily-calculated threshold is identified as the cause of this reversal.

DOI: 10.1103/PhysRevE.82.066110

I. INTRODUCTION

Percolation phenomena have been used to analyze cas-
cades on networks for several situations: bond and site per-
colation on regular networks [1,2] and bond percolation on
random networks [3]. Callaway et al. [4] assumed that the
network was infinite and treelike so that generating functions
could be used to derive a static condition under which the
probability of a giant connected cluster approaches unity.
This method was used by Newman, Strogatz, and Watts [5]
to rederive the Molloy-Reed [6] criterion for percolation.
These phenomena are studied as representative of the spread
of rumors or disease, damage to or attack on networks, the
diffusion of innovations, effectiveness of viral marketing
campaigns, and other similar propagation processes.

Threshold models seek to capture differences in the resis-
tance of a node to change state. The cascade problem with a
threshold is defined as follows. A random network is formed
having some degree distribution p;, and average nodal degree
z. Nodes are initially in an “off” state. They change to the
“on” state (“flip”) and stay on if a fraction ¢ of their neigh-
bors has flipped. We adopt Watts’ notation K*=|1/¢]. The
network can be divided into k-classes defined by
(i-1)K*<k=iK" called vulnerable if i=1, first-order stable
if i=2, second-order stable if i=3, etc., corresponding to
their flipping if i of their neighbors have flipped. A seed node
(or nodes) is flipped arbitrarily and the dynamic process is
allowed to evolve until equilibrium is achieved. If the equi-
librium fraction of flipped nodes is of order 1 then we say a
cascade has occurred.

Watts [ 7] extended the method in [5] to the threshold case.
He used generating function theory to model cascades as
starting from a “small” seed in an infinite network and being
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confined to a cluster or clusters of vulnerable nodes. His
finite network simulations used a single-node seed. He ex-
pressed his findings in a z— K™ parameter space and showed
that a small seed would flip the giant vulnerable cluster for
values' 1 <z2<Zpax and K*=4, where z;,,, . is an increas-
ing function of K*. Lopez-Pintado [8,9] used a dynamic Mar-
kov model to predict cascades on infinite networks with a
threshold and compared networks with different degree dis-
tributions. Morris [10] modeled contagion in regular net-
works with short cycles, assuming that each node played a
two-person game with each neighbor before deciding
whether to adopt that neighbor’s state. If the game is deter-
ministic then this model is equivalent to the threshold model
[9], and, if all players have the same payoff matrix, this is
equivalent to all having the same threshold. Tlusty and Eck-
mann [11] studied a phenomenon called “quorum percola-
tion,” meaning that in addition to a threshold (in their case a
number of flipped neighbors rather than a fraction) it is
shown that an initial seed of arbitrarily flipped nodes must be
large enough or else the cascade will die out. This minimum
size is called the quorum. Jackson and Yariv [12] used mean-
field theory to derive conditions for a similar phenomenon
they call tipping. Gleeson and Cahalane [13] and Gleeson
[14] derived a cascade condition for Watts’ problem by as-
suming the network is locally treelike and without cycles.
They modeled cascades as occurring anywhere in an infinite
tree and showed that larger seeds scaled to the size of the
network will start cascades in the region Watts called “no
global cascades” where z >z, . Dodds and Payne [15] and
Payne, Dodds, and Eppstein [16] examined the threshold
model for networks with degree correlation and showed that
increasing degree correlation increases the size of the giant
vulnerable component for the same z, and, in most cases,
increasing degree correlation increases the value of z for

'Here and elsewhere, a subscript ® is used to denote a quantity
associated with an infinite network, whereas a subscript n denotes a
quantity associated with a finite network with n nodes.
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which cascades occur. Whitney [17] obtained similar results
empirically.

While previous researchers [1-9,11-16] assume that the
network is infinite and locally treelike, they use finite pseu-
dorandom network (FPRN) simulations for comparison to
analysis. The sizes (number of nodes n) of these FPRNs vary
from 1000 nodes (Lopez-Pintado) to 10 000 nodes (Watts) to
100 000 nodes (Gleeson and Cahalane). However, simula-
tions of Watts’ problem on finite Erdés-Rényi (ER) networks
reveal several distinct patterns and behaviors not captured by
previous analyses, several of which are functions of n:

(1) Watts’ z— K™ parameter space comprises two regions.
For finite n, in the region bounded by 1 <z=z,,, , (denoted
“global cascades” by Watts, here called the nonscaling re-
gion) and for K*=4, a single-node seed can start a cascade
regardless of n. In the region where 2>z, ,» (denoted “no
global cascades” by Watts, here called the scaling region)
seed size |S| must exceed a minimum rational fraction
Po,=S/n of the size of the network. Gleeson and Cahalane
derived this as a continuous minimum fraction (here called
po.) for n—oo. Here we show that p,, increases as n de-
creases for fixed z and that py, > py . for finite n. Equiva-
lently, larger clustering coefficient c=z/n increases the nec-
essary seed size fraction.

(2) In the nonscaling region, as z— Zpy,, from below, a
single-node seed can start a cascade but the likelihood of
cascades falls. For 2>z, , cascades cannot be started by a
single-node seed. Thus z exhibits a discontinuous phase tran-
sition at 7=z, ,- Here we present analysis that closely pre-
dicts the value of z,,, and reproduces the discontinuous
phase transition.

(3) Furthermore, depending on 7, Zyux ., Zmax.- the theo-
retical maximum value found by Watts and Gleeson for
n— . Watts observed this and correctly ascribed it to a size
effect. Here we present analysis that correctly predicts the
increase in value of z,,, , and the inverse dependence of this
increase on n.

(4) Cascades in the scaling region are stochastic events
and the same value® of S may or may not cause a cascade
because different seed nodes are selected each time. In this
region, S displays a continuous phase transition in the sense
that the likelihood of a cascade increases smoothly as S in-
creases. Here we present analysis that correctly predicts the
midpoint of this transition.

(5) If we pick a seed whose size is within the range over
which the above transition occurs, the dynamic behavior al-
ways begins by contracting, meaning that fewer nodes flip on
each step than flipped on the previous step. If the seed causes
a cascade, the dynamic process must reverse this behavior
and become expanding, meaning that more nodes flip on
each step than on the previous one. A critical mass that
grows during the cascade beyond an easily-calculated thresh-
old is identified as the cause of this reversal.

The paper is organized as follows. Section II contains the
analysis, which comprises a recurrence relation that is evalu-
ated numerically to reproduce dynamic process time series.

*Where there is no possibility of confusion, we will drop the no-
tation |S| and use S.
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Sections IIT A and III B focus on behavior in the nonscaling
region while Secs. III C and III D focus on the scaling re-
gion. Section IV concludes the paper.

II. ANALYSIS

The goal of the analysis is to predict the average number
of nodes flipped on each step of the dynamic process as well
as their degree distribution. The analysis assumes that the
network is random and its degree distribution is binomial.
This gives us three parameters (n, S, and z or p), whereas in
[7,13] there are two (z and p,.). The order in which the
neighbors of a node flip does not matter, but rather only the
current percent of its flipped neighbors, in determining the
probability that a node will flip. Flipped nodes do not unflip.
Each node is assumed to have the same threshold. The analy-
sis therefore does not have to remember, when evaluating the
next step, which nodes have how many flipped neighbors but
rather only the probability that a node of given degree has a
given number of flipped neighbors, based on how many
nodes of each degree k were predicted on average to flip on
the previous steps.3 The simulation, however, remembers all
these items explicitly.

The derivation begins by determining, in a binomial ran-
dom network of size n, the distribution p, of the degree of an
unflipped node, i of whose k edges link to nodes that are in a
subset comprising S flipped seed nodes selected at random
from the network while the remaining k—i edges link to
nodes that are among the remaining n—S— 1 unflipped nodes.
This event may be expressed as the sum over i of the product
of two independent events p,(i,S) and p,s(k—i,n—S), where

s\ ‘
and
Pustk—i,n—8) = (n ;:: : )pk‘i(l _pySisted ()

Then, the resulting degree distribution for an unflipped node
is

-1 . .
; )pk—t(l _p)n—S—l—(k—t)’

A3)

s\ (n-5
pk=2(l.)p’(l—p)s"(n B

i=0 k

where i =min(k,S).

Equation (3) represents the degree sequences of nodes in
each of the k—classes and predicts the probability that they
have i flipped neighbors (here called “being hit i times”).
Multiplying these degree sequences by n—S, the number of

3That is, even though the analysis predicts the average degree
distribution of flipped nodes, it uses only the number of flipped
nodes to predict what will happen on the next step. This simplifi-
cation is permitted by the modeling approximation that the net-
work’s degree distribution and that of flipped nodes remain bino-
mial throughout the dynamic process.
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unflipped nodes, gives us the average number of each of
these kinds of potentially flippable nodes. Appropriate com-
binations of k and i identify the next set of flipped nodes
whose degree sequence is called F;, comprising |F;| nodes.
Fy is not binomially distributed but we assume it is.* TIts
average nodal degree zp, is significantly less than z. This
difference is important and is taken into account.

The derivation proceeds recursively with the calculation
of the next set of nodes linked to flipped nodes S and/or F,
following the pattern of Egs. (1)-(3):

. r i’ Fl1-i'
poi' Fy) = i PF1(1—PF1) (4)

or

k k=i
s\ . (F
Pk=2 E (.)P’U —p)s ( . )ppl
i=0 ;/— l l
n—S—Fl—l) i’

X(1 - Fl‘f'(
(1-pr) k—i—i'

X(1 = ppgpy) 5171l (5)
Here, the relevant parameters are

Pri=2pi/n,

. _Fizp,— A
Fl— )
Fy

where zp;,=average nodal degree of F,

s

A=E )\Fl,)\’

=1
where N\ =a number of links from F| to S,

F; ) =the number of nodes in F,

that have \ links to S (6)

n—S—a’FlFl

Pnsr1=P n—S—F,

>

ap| = ZF10/2- (7)

Equations (5)—(7) are formulated to account for multiple in-
coming edges into previously flipped nodes F| and the re-
duced average nodal degree of these nodes owing to the de-

*The degree distribution of F; is a rough saw-tooth with peaks at
multiples of K*. We use its average nodal degree to fit it by a
binomial distribution. Subsequent flipped sets have similar shape
distributions. Analysis and simulations agree on the shapes, which
are not shown here.
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pressing effect of the threshold.” From these equations, the
degree sequence F, and number |F,| of the next cohort of
flipped nodes may be determined.

To generate subsequent average numbers of hits on nodes
in the various k—classes on later steps of the dynamic pro-
cess, it is convenient to define

ihj=pip2- " pjs (8)

where

/1;=the probability of being hit i times after j steps,

i=0,1,2,...m hits; j=1,2,3,...s steps,

and p;, p,, etc. are defined in Egs. (1) and (4) and their
recursive successors.
Then we can write

= ihiibo i+ i hiodj+ i ohioidy it e, )

where ¢ ;=the probability that probability that an un-
flipped node is hit § times by nodes in F;. Then the follow-
ing Markov recurrence model for ;i; can be written as

ohj ot 0 o 0 bo,j
1h izt otjer 00 By
U e R R U I R I | R
Lol | Lot meilticn medhis ohj-1 ][ Pmi |
(10)

where typical initial conditions are

oho=(1-p)°,
tho=5Sp(1=p)*~",
o= (1 —PF_/_])FI"',
b= j—lijil(l_ijfl)Fj_l_l,

brj=Fi(Fioy = 1)1’%_/._1(1 —PFI._I)F/'"_Z, (11)

etc.

To use this model to find the average number of flipped
nodes, we observe that vulnerable nodes will flip if hit any
number of times on step j, given that they were never hit
before. Using entries from Eq. (10) we can write

SEquation (6) generalizes the determination of what Newman [3]
calls excess degree conventionally used to derive cascade condi-
tions when the network is assumed treelike and there is no thresh-
old. In that case the excess degree is always k—1 but here the
decrement to k can be >1, depending on the node’s k class and
number of flipped neighbors.
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Vulnerable nodes flip if:

PHYSICAL REVIEW E 82, 066110 (2010)

Hit once(i=1):h;=hj_ ¢y
Hit twice(i =2):,h;= oh;_1 ¢y
Hit thrice(i =3):3h;= gh;_ b5 ;.

etc.

(12)

Note that this formulation assumes that if a node was hit i times on step j then it was hit no more than i—1 times on any

previous step, and that the number of hits never decreases.

First-order nodes flip if they are hit two or more times on step j and have not been hit more than once on any previous step.

Then we may write
Hit
Hit
Hit

etc.

First order stable nodes flip if:

Following this pattern, we can generate time series histo-
ries of the dynamic process representing the average number
of nodes in any category and k—class, such as first-order
stable nodes flipped, second-order stable nodes hit twice,
fourth-order stable nodes not hit, etc., and we can keep track
of the average hit and flip history of every k—class or nodal
degree of node for comparison to simulations.

Note that this analysis is applicable to any value of
S=1, so it covers both the nonscaling and scaling regions.
Gleeson [14] has a separate analysis for S=1.

This analysis is subject to the limitation that, while it
recognizes that both the evolving flipped and unflipped node
cohorts are not distributed binomially, we approximate these
distributions with binomials that have the correct respective
and evolving average nodal degrees.

3500

3000 ?ﬁ——j j
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[
o .= K*=8
& 2500 K*=6
r e ~
8 2000 K =5
S N K*=7
'§ 1500 K*=4\
[
€ 1000 |
=3
=z
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0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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FIG. 1. (Color online) Behavior of the analysis in the nonscaling
region. The figure shows the range of values of z for which cas-
cades occur for various fixed values of K* and one example value of
n=4500. The seed is a single node in each case. The sharp change
in number of nodes flipped indicates a discontinuous phase transi-
tion in z at both extremes. Results are similar for other values of n
although z,, , depends inversely on n (see Sec. Il B). Analyses
and simulations agree closely. Values of z,,, agree closely with
simulations by Watts [7] if n=10 000.

tWiCC(i = 2)2]’1] = lhj—l (vbl,j + Ohj—l(va,j
thrice(i = 3)3}1] = ]hj—l ¢2,j + ()hj—l ¢3,j
four tlmes(l = 4)4]’11 = lhj—l ¢3,j + Ohj—l ¢4,j

(13)

The analysis is implemented in MATLAB, as are the simu-
lations. To determine if a given value of S or S/n will result
in a cascade, we run the analytical recursion [Eq. (10)] and
observe whether the total number of flipped nodes stabilizes
at order 0 or 1 compared to n. The formulation is determin-
istic and the result is bimodal, so it predicts an abrupt tran-
sition from no cascade to cascade as S or S/n increases.

III. COMPARISON WITH SIMULATIONS
A. Nonscaling region: Discontinuous phase transition in z

Watts, in simulations on networks where n=10 000, used
the criterion that a point (z,K") is in the “global cascades”
region if a single node seed succeeds in starting a cascade on
at least 1% of attempts [18]. This criterion is used here,
appropriately scaled for different n so that 1% of a network’s
nodes are chosen as seeds one at a time at random. Inside the
nonscaling region (1 <z=z,,,), the analysis predicts the
average number of nodes flipped per step and predicts cas-
cades if the seed is one node, regardless of the size of the
network within the range simulated (200-36000 nodes).6
Figure 1 and Table I show example results, which display a
sharp phase transition as z— Zy,y . For z<<1, the analysis
predicts that a fractional node will flip on each step and the
total number of flipped nodes will remain small. The analysis
knows only the probability that two nodes are connected and
has no concept of vulnerable clusters or connectedness of the
network as a whole. Thus the analysis effectively predicts
correctly that no cascade will occur for z<<1. For larger z the
analysis correctly predicts a cascade. When z reaches z, ,,
for a given K", the analysis again predicts correctly that a
fraction of a node will flip and the total will stay small. In
order for the analysis to predict a cascade for 7>z, ,, the
size of the seed must be increased. The required size scales
with the size of the network. This behavior is discussed in
Sec. III C.

SAs the network becomes larger, it takes more steps for the cas-
cade to emerge.
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TABLE I. Comparison of z,y , and z,x . for Example K* with
n=4500. Table entries are the values of z at which the phase tran-
sition from cascade to no cascade occurs for infinite and finite net-
works, respectively.

K* 4 5 6 7 8
Zmaxm 3.86 5.76 7.48 9.098 10.66
Zmaxn 42 6.3 8.2 10 12

B. Nonscaling region: Dependence of z,,,, , on n and K*

Within the nonscaling region, the mechanism for starting
cascades changes as z increases. In the middle of this region
the network comprises one large cluster of vulnerable nodes,
usually called the giant cluster. A single-node seed is likely
to be in or adjacent to this cluster, so cascades are relatively
easy to start and are dominated from the outset by flipping of
vulnerable nodes. Gleeson [14] calculated the size of the
giant cluster as a function of z and showed that it is extin-
guished as z— Zp.~5.8 for K*=5. This is the value cal-
culated by Watts [Eq. (5)]. Gleeson’s formulation agrees with
Watts for other values of K* and establishes the position of
the boundary in terms of z,,,. vs K* between the scaling
and nonscaling regions assuming n— .

In FPRNs, as z— Zyax» We find that most vulnerable
nodes become singletons and a few gather into several small
clusters, rendering the concept of giant cluster ambiguous.
Cascades start only if the seed node is in or links to one or
(rarely) a few of these vulnerable clusters and the process is
then (rarely) able to “hop” to other vulnerable clusters and
ultimately begin flipping stable nodes and expand into the
entire network [17]. The fraction of the network’s nodes that
are vulnerable and the size of the largest vulnerable cluster
both fall as z increases. When z reaches a value z,,,, , where
the size of the largest vulnerable cluster is below a particular
minimum that depends on z, n, and K", a single node seed
can no longer launch cascades, even though typically more
than 20% of the nodes are still vulnerable. Cascades then
depend on flipping a sufficient number of stable nodes on the
very first step, and a single-node seed cannot flip a stable
node. This is why seeds in the scaling region must contain
multiple nodes and their number must scale with the number
of stable (specifically first-order stable) nodes and thus scale
with n. While the analysis presented here does not include
cluster hopping, it nevertheless correctly captures the depen-
dence of Zy,, on n and K*.

Figure 2 shows how z,,,, , varies for two values of K* and
various network sizes 450<n<<18 000. Assuming n—
[7,13,14] there is no dependency on n, whereas simulations
and Eqs. (1)—(13) reveal that z.,,,, rises as n falls. Also,
simulations and analysis agree on a value of z,,,x > Zmax -
Simulations show somewhat larger z,,, , than Eqgs. (1)—(13)
predict for smaller values of n because small FPRNs have
relatively larger vulnerable clusters for similar values of z.
These equations do not model vulnerable cluster size and
thus do not reproduce as large an increase in z,, as that
observed in simulations. Simulations reported here agree
with Watts’ simulations (n=10 000). As n increases, the

PHYSICAL REVIEW E 82, 066110 (2010)
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FIG. 2. (Color online) Comparison of analyses by Watts, Glee-
son, and Whitney with simulations by Whitney and Watts for a
single-node seed. Legend: A: Whitney zp,,y, analysis; B: Whitney
Zmax,n Simulations; C: Watts and Gleeson z,, .. analysis; D: Watts
simulations, n=10 000. Equations (1)—(13) and simulations agree
that zy,, , 18 larger than z,,, ., predicted by infinite network theory,
with the discrepancy increasing as n decreases.

simulation value of z,, , falls toward or past that predicted
by Egs. (1)—(13), depending on K*, and presumably will ap-
proach z,, . as n— %,

We also find that as z—2z,,c, from below, different
FPRNs having the same n, z, and K™ have very different sizes
of largest vulnerable cluster. The standard deviation of larg-
est vulnerable cluster size can be as much as half the mean
size. Statistical analysis [17] shows that the likelihood of
cascades correlates with largest vulnerable cluster size with
correlation coefficient 7>~ 0.4—0.5. Thus apparently identi-
cal FPRNs have very different susceptibility to exhibiting
cascades in the nonscaling region when single-node seeds are
chosen randomly, and this difference can be attributed in
large part to differences in network structure rather than
choice of seed.

C. Scaling region: Dependence of seed size on n
and clustering coefficient

Simulations were made for many combinations of (z,K*)
in the scaling region for different network sizes n
={200,450,1000,2000,4500,9000,20 000} and compared
with the analysis, allowing study of the influence of n and
clustering coefficient c=z/n. Let S,;, be the largest value of
S for which cascades never occur and S,,,, be the smallest
value of § for which cascades always occur. Let the range
(Smin>Smax) be called the transition range. Figure 3 comprises
a sampling of the results of choosing S & (Spin»>Smax)> ShOW-
ing how the size of the seed affects the likelihood that a
cascade will occur. (See Table II for the legend.) The lines
marked by diamonds represent simulations and show a con-
tinuous phase transition from 0% to 100% likelihood of a
cascade as § increases from S, to S, relative to n. The
lines marked by squares represent analysis and show that the
analysis predicts that this transition will occur about midway
in the transition range actually observed in simulations. The
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position of the predicted transition varies but it never occurs
outside the observed transition range.

Figure 4 shows how seed fraction S/n varies with cluster-
ing coefficient c=z/n. This permits us to explore how seed
fraction is affected by network size. As n decreases, the clus-

TABLE II. Legend for Panes in Fig. 3.

Figure pane n z K* c

A 200 29.51 6 0.1475
B 450 29.9 6 0.066
C 450 40 10 0.088
D 4500 29.87 10 0.0066
E 4500 19.91 8 0.0044
F 20000 20 0.01

tering coefficient increases and so does the required seed
fraction. The analysis in this paper agrees with [13] for
n > 18 000 but for smaller values of n our analysis and simu-
lations agree that larger seed fractions are needed, and this
dependency on network size is not captured by [13,14].
This result (that increased clustering requires larger seeds)
may seem counterintuitive and there is prior analysis [14]
that suggests the opposite for infinite networks. Since our
analysis is confounded by the size effect, a simulation study
was made using binomially distributed FPRNs of fixed n and
z having ¢>z/n. This was accomplished by using a routine
by Volz [19], which takes a given degree sequence and target
¢ and synthesizes a network with approximately that degree
sequence and c¢. Our analysis may be modified to account for
larger ¢ by calculating how that would enhance the likeli-
hood that a stable node would have i>1 neighbors in the
seed and that those neighbors might be connected so that one
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FIG. 4. (Color online) Seed fraction S/n required to launch cas-
cades for different values of z and clustering coefficient c=z/n. Wh:
this paper; GC: Gleeson and Cahalane. Analysis and simulation
agree so well (Fig. 3) that this chart is constructed using analysis
only.

or more triangles would be formed. The result’ is that Eq. (1)
is modified by a factor (1—p+c)"~! (with appropriate normal-
ization), where p=py; in Eq. (4) and its recursive successors
for steps j>1. Making this modification gives the result in
Fig. 5 for one example network, comparing analysis and
simulations. Here we see that increased clustering (holding
degree sequence and network size fixed) allows smaller
seeds to cause cascades. The analysis follows this trend di-
rectionally, losing accuracy for ¢ >0.2 where positive degree
correlation r, known [15-17] to enhance the likelihood of
cascades, confounds the results.

D. Scaling region: “Near death” phenomenon

The analysis predicts that dynamic processes in the scal-
ing region launched with a value of |S| below the predicted
transition value will, on average, terminate without causing a
cascade, but in the simulation a cascade may or may not
occur for different seeds of the same size anywhere in the
transition range, as illustrated in Fig. 3. All such processes,
whether obtained from the analysis or from simulations, be-
gin by contracting, meaning that the number of nodes flipped
on each step is less than the number flipped on the previous
step. In simulations, if no cascade occurs, the process simply
continues to contract until it dies. In those simulations where
a cascade occurs, the process still begins by contracting but
eventually, perhaps after many steps where it flips very few
nodes, it wakes up and begins flipping increasing numbers of
nodes on each step in an explosive expanding pattern. We
call this nonmonotone behavior the “near death” phenom-
enon. It seems that something changes or some threshold is
exceeded in the successful runs. In this section we discuss
what the cause might be.

"See the Appendix for the derivation.

PHYSICAL REVIEW E 82, 066110 (2010)

Fraction of Cascades

4
5
(

4

size of seed

40

FIG. 5. (Color online) Fraction of trials resulting in a cascade vs
clustering coefficient for n=1000, z=20, and K*=6. Compare to
Fig. 3 where c¢=z/n for all cases. Vertical lines are from the analy-
sis; slanted lines are from simulations. As the clustering coefficient
increases, the necessary seed fraction decreases in simulations and
analysis. Each simulated network has the same size and binomial
degree sequence but increasing clustering coefficient. The smallest
clustering coefficient is c¢=z/n=0.02, corresponding to a pure ran-
dom network having n=1000 and z=20. Volz’s method [19] is used
to create the other networks with the same n and z and larger c.
Networks with the smallest degree correlation r were selected to
minimize confounding effects of large positive degree correlation,
which emerges naturally as ¢ increases.

In the theory of diffusion of innovations [20-23], the term
“critical mass” refers to the number of initial innovators.
Certainly this can be related to the minimum seed size
needed to start a cascade. But in addition we observe in our
simulations a second critical mass that causes a marginally
sized seed to eventually succeed occasionally. Our hypoth-
esis is that the number of nodes lacking one flipped neighbor
is the pivotal parameter. We begin by observing that when
the process is contracting and could stop, the number of
nodes flipped on each step is small, perhaps as few as one or
two nodes. In such a situation, the likelihood that a node in
the network could have two or more neighbors in the set of
newly flipped nodes is essentially zero. Thus each unflipped
node will be hit at most once on this step. If that node needs
only one more hit to flip, it will flip. Nodes needing two or
more hits to flip will have no chance of flipping. Thus we
may safely confine ourselves to nodes needing only one
more hit in order to flip. Let the number of these nodes be
called N,,, where the subscript stands for “one short.”

Let g be the probability that a node in the network has a
link to the newly flipped nodes on step j, called F; and com-
prising |F}| nodes:

Foo
= —LH (14)
n

where zp; is the effective average nodal degree (equivalently,
the number of excess edges) of F;, which is defined in Eq.
(6). Fjzp; is then the average number of unflipped nodes in
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the rest of the network that will have links to F;. Ny of these
are one short. Thus the average number of nodes one short
that have links to F, called Nygy; is

N osF {ZF j

Nosrj= (15)

This is the average number of nodes that F; is expected to
flip. In order for the cascade to be at least self-sustaining, this

number should equal F;. Setting Nogp;=F; yields

N0S=I’Z/ZFJ‘. (16)

The predicted number one short may be calculated from
Eq. (10) using logic similar to that in Eq. (12) or Eq. (13).

These parameters are used in Fig. 6, where we show the
number of nodes one short at the moment that failed cas-
cades died out (called max one short) for a range of seed
sizes, comparing analysis and simulations. The results are
averages of 20 runs for each seed size. The agreement is
good, and both the predicted and actual max one short do not
exceed the theoretical threshold required for a cascade until
the seed is large enough for both analysis to predict, and
simulations to confirm, cascades. Results for the other cases
in Fig. 3 are similar and are not shown. These findings indi-
cate that the predicted threshold is a good one in the sense
that almost all processes that fail to exceed it die out while
almost all processes that exceed it go on to become cascades.
Most of the time the threshold is exceeded before the rever-
sal occurs, providing a prediction of the eventual cascade.
Since both failures and successes look the same at the outset,
this prediction could be useful in practical situations.

This result also shows that the underlying basis for the
Molloy-Reed criterion [5,6] (successful processes always flip
more nodes on each step than on the previous step) does not
hold for the threshold problem in the scaling region.

IV. CONCLUSIONS AND DISCUSSION

We have investigated the properties of cascades on finite
random networks with binomial degree distributions using
analysis and simulations. Our analysis makes no assumption
that the network is locally treelike. It covers both the case
where the seed is a single node and where, for increased z,
successful seeds need to be a sufficiently large fraction of

Size of Seed S

network size. We showed that the parameter space for single-
node seeds extends to larger values of z than if the network is
assumed to be infinite. For values of z for which the seed
needs to be a sufficiently large fraction of the network, we
showed that larger seeds (relative to network size) are re-
quired as network size decreases (c=z/n increases). If the
network’s clustering coefficient is increased by construction,
keeping z/n fixed, smaller seeds are sufficient, and this too is
predicted by our analysis. Finally, we showed that, when the
seed must be a sufficiently large fraction of the network, the
dynamic processes always flip fewer nodes per step at first
and appear about to die but some processes reverse later and
consume the entire network. We showed analytically, verified
by simulations, that this turnaround is due to the rise, above
a certain threshold, in the number of nodes which are one
short of having enough flipped neighbors to make them flip.
We derived the size of this threshold and showed that it
equals the size of the network divided by the average number
of excess edges of recently flipped nodes.

Two findings may have more general value. First, our
previous work [17] showed that cascades in finite networks
caused by single-node seeds are more likely if the network
contains larger than average vulnerable clusters and/or posi-
tive degree correlation (which itself increases vulnerable
cluster size). The degree of the seed has less influence, indi-
cating that seed choice is less likely to be a factor than par-
ticular internal structure of the network. These particular in-
ternal structures are repeatably observable and highly
variable properties of FPRNSs, indicating that finite networks
have important characteristics not revealed when theory as-
sumes infinite networks or relies on mean-field assumptions.
Second, the importance of the ‘“one-shorts” indicates that
evolving network states, rather than seed choice, may be
more important in determining whether a cascade will occur
or not, and this evolution is stochastic. The first finding in-
dicates that some finite networks are inherently more suscep-
tible to cascades due to differences in internal structure (the
opposite of Watts” conclusion [7] that cascades are caused by
unusual shocks to networks that are substantially identical)
while the second suggests that, if the right nodes are
watched, information could be gleaned while a dynamic pro-
cess is under way in order to determine if the original seed
will result in a cascade.
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an unflipped node

an unflipped node noge

nodes in seed nodes in seed

A B A B
(1-p) p

FIG. 7. Influence of clustering coefficient ¢ on likelihood of a
node having a neighbor in the seed. Left: with probability 1-p,
nodes A and B are not linked. Then the probability that the un-
flipped node has two links to the seed is the same regardless of the
clustering coefficient. Right: with probability p, nodes A and B in
the seed are linked. With the same probability, the unflipped node
has a link to B. The probability that the unflipped node also has the
dashed link to A is c.
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APPENDIX: ACCOUNTING FOR INCREASED
CLUSTERING

We look only at what happens on the first step since later
steps follow the same pattern. The analysis assumes that in-
creasing the clustering coefficient will alter the likelihood
[Eq. (1)] that an unflipped node will have a given number of
neighbors in the seed, which is a component of the analysis
required to predict cascades. Other parts of the analysis are
assumed unchanged.

If the clustering coefficient ¢ exceeds the node-node link
probability p, this will affect the likelihood that a randomly
chosen unflipped node will have a given number of links to
the seed because if the seed nodes are linked to each other
then they could be part of a triangle that includes the un-
flipped node more often than in a random network. See Fig.
7 for the simplest case.

In Fig. 8 we show the ways that an unflipped node could
have three neighbors in the seed.

The probabilities of the left and right configurations in
Fig. 7 are, respectively,

Left: (1 —p)(i)pz(l -p)¥,

N
Right: p<2 )pc(l -p)52. (A1)

The sum of these is the probability that the node will have
two neighbors in the seed:

PHYSICAL REVIEW E 82, 066110 (2010)

A B c
(1-p)2

p(1-p)

FIG. 8. Influence of clustering on likelihood of a node having
two neighbors in the seed. Left: with probability (1—p)? the three
seed nodes are not linked. The clustering coefficient does not affect
this event. Center: there are two ways, each with probability
p(1-p) that two of the three seed nodes could be linked, one of
which is shown. The clustering coefficient affects the likelihood
that the third dashed link will exist. Right: here the clustering co-
efficient affects the likelihood that the unflipped node will have
three links to seed nodes that are linked to each other.

. . S
pr(2 neighbors in the seed)=(1-p+ c)(2 >p2(1 -p)S2.

(A2)

This comprises an adjustment (1—p+c) to the original
equation for the required quantity. (Normalization is also re-
quired.) By similar logic, we can evaluate the situation in
Fig. 8:

pr(3 neighbors in the seed)

S S
=(1 —p)2<3 )p3(1 -p) 3 +2p(1 —p)<3 )0p2(1 -p)?
+ pz(i )czp(l -p)

S
=[(1-p)*+2c(1-p)+ cz](3 )p3(1 -p)¥. (A3)
This comprises an adjustment [(1—-p)>+2c(1-p)+c?] to
the original equation for the required quantity.

In general, the relationship is

pr(i neighbors in the seed)
i1 S) S—i
=(IL-p+o)=| . Jp(1=p)™
appropriate normalization. (A4)

In subsequent steps of the cascade, we need to modify this
to distinguish between the likelihood pp; that there is an edge
from the newly flipped set Fj to an unflipped node and the
likelihood p that there is an edge between two members of
Fj. This changes Eq. (A4) to

pr(i flipped neighbors in Fj)
1S 5-1
=(1-p+c) ; ij(l -pr)>/

appropriate normalization for j>1. (A5)
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