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Abstract. A box model using measurements from the
Mexico City Metropolitan Area study in the spring of
2003 (MCMA-2003) is presented to study oxidative ca-
pacity (our ability to predict OH radicals) and ROx
(ROx=OH+HO2+RO2+RO) radical cycling in a polluted
(i.e., very high NOx=NO+NO2) atmosphere. Model simu-
lations were performed using the Master Chemical Mech-
anism (MCMv3.1) constrained with 10 min averaged mea-
surements of major radical sources (i.e., HCHO, HONO, O3,
CHOCHO, etc.), radical sink precursors (i.e., NO, NO2, SO2,
CO, and 102 volatile organic compounds (VOC)), meteoro-
logical parameters (temperature, pressure, water vapor con-
centration, dilution), and photolysis frequencies.

Modeled HOx (=OH+HO2) concentrations compare favor-
ably with measured concentrations for most of the day; how-
ever, the model under-predicts the concentrations of radicals
in the early morning. This “missing reactivity” is highest
during peak photochemical activity, and is least visible in a
direct comparison of HOx radical concentrations. We con-
clude that the most likely scenario to reconcile model predic-
tions with observations is the existence of a currently uniden-
tified additional source for RO2 radicals, in combination with
an additional sink for HO2 radicals that does not form OH.
The true uncertainty due to “missing reactivity” is apparent
in parameters like chain length. We present a first attempt
to calculate chain length rigorously i.e., we define two pa-
rameters that account for atmospheric complexity, and are
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based on (1) radical initiation,n(OH), and (2) radical termi-
nation,ω. We find very high values ofn(OH) in the early
morning are incompatible with our current understanding of
ROx termination routes. We also observe missing reactivity
in the rate of ozone production (P (O3)). For example, the
integral amount of ozone produced could be under-predicted
by a factor of two. We argue that this uncertainty is partly
accounted for in lumped chemical codes that are optimized
to predict ozone concentrations; however, these codes do not
reflect the true uncertainty in oxidative capacity that is rele-
vant to other aspects of air quality management, such as the
formation of secondary organic aerosol (SOA). Our analysis
highlights that apart from uncertainties in emissions, and me-
teorology, there is an additional major uncertainty in chemi-
cal mechanisms that affects our ability to predict ozone and
SOA formation with confidence.

1 Introduction

Implementing robust air pollution control strategies as part
of effective air quality management requires a detailed un-
derstanding of the oxidative capacity of the atmosphere: the
oxidation of volatile organic compounds (VOC) initiated by
the hydroxyl radical (OH) starts radical cycling via HOx
and NOx chemistry in the troposphere that drives a variety
of chemical processes, including ozone formation and sec-
ondary organic aerosol (SOA) formation. In an urban area,
the complexity of the tropospheric chemistry is increased
by anthropogenic emissions, which requires sophisticated
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Fig. 1. The schematic of ROx cycling in MCMA is shown. Only the
predominant species involved in radical sources, sinks, and cycling
are shown. Radical pathways are labeled as initiation (I), propa-
gation (P), or termination (T), and assigned a number for cross-
referencing in Table S1 (see Supplemental Information). The thick-
ness of each arrow corresponds to the magnitude of the radical path-
way, as determined in the HOx-unconstrained scenario.

chemical models to formulate effective control and mitiga-
tion strategies.

The oxidation of VOC (see Fig.1) generates organic per-
oxyl radicals, RO2, which can react with nitric oxide (NO),
NO3, and other RO2 to form the analog alkoxy radical (RO),
and nitrogen dioxide (NO2). The alkoxy radical reacts in
the presence of oxygen to generate the hydroperoxyl radical,
HO2, which will readily react with NO to generate recycled
OH and NO2. The conversion of NO to NO2 via ROx cy-
cling in the troposphere followed by NO2 photolysis is key
to understanding ozone formation. Studying the reactive pro-
cesses of these radicals is essential to understanding the gen-
eral oxidative capacity of the atmosphere.

Radical initiation – the breakdown of a closed shell species
yielding a new radical – plays an important role in tropo-
spheric chemistry, as it starts the processes that form sec-
ondary pollutants; however, radical cycling – the amplifica-
tion of new radicals in the ROx-NOx cycle – dominates in
polluted atmospheres e.g., Mexico City Metropolitan Area
(MCMA), where NOx concentrations are high enough so
that radical propagation reaction rates dominate over radi-
cal terminiation rates and can be up to an order of magni-
tude greater than radical source terms. In a companion pa-
per Volkamer et al.(2010) quantify new radical production
(P (HOx)) in the MCMA and on average, 20% of radical
production is attributable to the breakdown of closed shell

species, while 80% is due to radical cycling. As such, it is
important that we understand radical cycling (and recycling),
in addition to radical sources.

Direct detection of OH and HO2 is difficult because they
are both highly reactive and are present at low concentra-
tions. Although an increasing number of studies combine
OH and HO2 measurements and modeling, only a few field
campaigns included HOx measurements in a polluted urban
or semi-urban atmosphere. Measurements of HOx in an ur-
ban atmosphere have been made in London (Abram et al.,
2000) and Birmingham, UK (Heard et al., 2004); Los Ange-
les, CA (George et al., 1999); Nashville, TN (Martinez et al.,
2003); Houston, TX (Martinez et al., 2002); New York, NY
(Ren et al., 2003); near Berlin, Germany (Platt et al., 2002)1;
at Birmingham near London (Emmerson et al., 2007); and
more recently in Mexico City (Shirley et al., 2006; Dusanter
et al., 2009). The study described here is characterized by
a very polluted airmass in the MCMA with elevated levels
of NOx (with campaign median concentrations ranging from
8–134 ppb throughout the day).

The focus of this work is similar to that ofEmmerson
et al. (2007), and includes comparisons between predicted
and measured values of OH and HO2 to ROx, and a detailed
analysis of the impact of radical cycling on the oxidative ca-
pacity of the urban troposphere. Our work differs in that
we are dealing with extraordinarily high NOx concentrations
and VOC loadings, and explore the effects of these unique
characteristics of the airmass on radical initiation (Volkamer
et al., 2010) and the amplification of these new radicals due
to cycling. The extensive amount of data collected during
the MCMA-2003 campaign (Molina et al., 2007) and recent
improvements to the MCM (Bloss et al., 2005a,b) afford an
excellent opportunity to explore a variety of questions related
to ROx chemistry. In general, predicted HOx radical concen-
trations are lower than measured concentrations, and defined
here as “missing reactivity”. The term “missing reactivity”
is used because the lower-than-measured concentrations of
radicals leads to lower levels of reactivity in the ROx radi-
cal cycling. This in turn affects reactive processes such as
ozone and SOA formation. This “missing reactivity” is dis-
cussed in greater detail below, and leads to an analysis of the
mechanism with regard to ROx cycling. Model scenarios are
varied with regard to HOx to elucidate the effects of “miss-
ing reactivity” on VOC oxidation and photochemical ozone
production in the MCMA.

We use a near-explicit chemical mechanism to evaluate the
impacts of the “missing reactivity” via quantitative measures
such as chain length and ozone production. Chain length is a
measure of the number of times that OH goes through the
ROx cycle before a termination reaction. Whereas Part 1
of this study (Volkamer et al., 2010) focuses on radical

1This refers to a semi-rural/urban site near Berlin, Germany. It
is important to note that the highest levels of observed NO were
limited to a few ppbv and that there were strong biogenic influences.
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initiation, this work focuses on radical propagation or recy-
cling. The calculation of chain length is dependent on an
implicit knowledge of branching ratios2 within the chem-
ical mechanism. Ozone production is another quantitative
parameter used to understand “missing reactivity”. The vari-
ables used to calculate ozone production are well constrained
by measurements, which enables a useful comparison to the
value calculated using the modeled values.

2 The mechanism and the model

The work presented here was performed using the latest ver-
sion of the Master Chemical Mechanism (MCMv3.1) (Bloss
et al., 2005a,b). This version of the MCM includes the degra-
dation kinetics and oxidation schemes of 135 VOC, based on
mechanisms described byJenkin et al.(1997) andSaunders
et al.(2003). The updated version includes an improved un-
derstanding of aromatic schemes using results from recent
laboratory studies (e.g.,Olariu et al., 2000; Olariu, 2001;
Volkamer et al., 2001; Bethel et al., 2001; Martin et al., 2002;
Volkamer et al., 2002). The MCMv3.1 is well suited over a
wide range of NOx and VOC conditions because it explic-
itly represents the sources and sinks of OH, HO2, and RO2
radicals, rather than lumping them. The near-explicit code
enables the user to account for individual reactive pathways,
which is ideally suited to study ROx radical cycling. We used
the FACSIMILE (Curtis and Sweetenham, 1987) software
package as our numerical integrator for the box model.

The model calculations were performed on a 24-h basis,
and were initialized every 10-min with the constrained in-
put parameters listed below. The model is constrained for
the following major species, including measurement uncer-
tainties: NO (±15%), NO2 (±20%), HONO (±10%), O3
(±15%), SO2 (±20%), and CO (±15%). The model is also
constrained for 100 VOC (see Supplemental Material), tem-
perature, pressure, water vapor concentration, J-values, and
dilution in both the horizontal and vertical fields. Photolysis
frequencies were measured by spectroradiometry, and the di-
lution parameter used is described in Part 1 (Volkamer et al.,
2010).

The following modeling scenarios, in terms of constraints,
were used to study HOx chemistry in the MCMA, including
estimated model uncertainties for each case:

– HOx-unconstrained: The model was constrained for
species including NO, NO2, HONO, O3, SO2, CO, 100
VOC, temperature pressure, water vapor concentration,
J-values, and dilution in both the horizontal and vertical
fields. In this case, we report model uncertainties for
OH and HO2 of ±55% and±70%, respectively.

2In this context, we use the term “branching ratio” to refer to the
ratio of radical fluxes of the multiple reaction pathways of a ROx
radical. This is not to be confused with the term branching ratio
used in chain reaction theory for combustion kinetics.

– OH-constrained: in addition to the parameters listed in
the HOx-unconstrained case, a campaign median diur-
nal profile of OH is used to constrain the mechanism.
In this case, we estimate an uncertainty of±60% for
HO2.

– HO2-constrained: in addition to the parameters listed in
the HOx-unconstrained case, a campaign median diur-
nal profile of HO2 is used to constrain the mechanism.
In this case, we estimate an uncertainty of±45% for
OH.

The OH- and HO2-constrained cases are a means to ex-
plore linear and non-linear feedbacks related to ROx
radical sources, propagation, and termination, most no-
tably by predicting the unconstrained HOx radical.

– HOx-constrained: in addition to the parameters listed
in the HOx-unconstrained case, we used a campaign
median diurnal profile of both OH and HO2, from
Shirley et al.(2006) to constrain the mechanism in ad-
dition to the parameters described above. The HOx
measurements were increased by a factor of 1.3 in ac-
cordance with recommended changes to previously re-
ported measurements (W. H. Brune, personal commu-
nication, 2007).Shirley et al.(2006) report a measure-
ment uncertainty of±32%.

In each case, model uncertainties were determined based on
a) the experimental uncertainties of the dominant reaction
rate constants for initiation (e.g., HONO photolysis), prop-
agation (e.g., HO2+NO), and termination (e.g., peroxide or
nitrate formation) routes for each HOx radical and b) mea-
surement uncertainties for species constrained in the model.

Note that the HOx-unconstrained model, the OH-
constrained model, and the HO2 constrained model yield a
balanced model i.e., the radical termination, propagation, and
initiation pathways for a radical are net zero. For instance, in
a balanced model, the pathways for OH shown in Fig.1 will
yield the following: I1+P4=T1+P1+P5.

Apart from varying the constraints imposed on the model,
we ran the model for a) individual days, b) campaign me-
dian concentration time profiles, and c) campaign average
concentration time profiles in both unconstrained and con-
strained scenarios. The model was run for 18 days, 9–24
April 2003. We observed differences between concentration
time profiles on a median and average basis, most notably
at night. The results presented here focus exclusively on in-
dividual days and a median model, as night-time concentra-
tions of NO – an important determinant in radical recycling
rates (HO2/RO2+NO) – are up to 6 times higher on an aver-
age basis as compared to a median basis. As such, we con-
sider the campaign average NO concentrations as statistical
forcing rather than a realistic representation of the airmass
and minimize this forcing by using median profiles.

www.atmos-chem-phys.net/10/6993/2010/ Atmos. Chem. Phys., 10, 6993–7008, 2010
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Note that all concentrations, unless otherwise mentioned,
are reported in parts per billion by volume (ppbv), and all
times are reported as Central Standard Time (CST i.e., Coor-
dinated Universal Time minus 6 (UTC−6)).

The model was constrained for 21 alkanes, 19 alkenes, 16
aromatics, and 23 oxygenated VOC, which includes alco-
hols, aldehydes, ketones, esters, ethers, and organic acids.
The uncertainty for each parameter is a combination of
measurement error, day-to-day variability, and the scaling
methodology employed (as appropriate). See the discussion
in the Supplemental Material for a more detailed description
of the measurements, methodologies, and uncertainties for
each of the constrained species.

We introduced a dilution parameter to represent physical
transport of chemical species out of the MCMA. The reac-
tive species in the model were diluted using a combination
of two approaches: 1) using traffic counts and measured con-
centrations of CO (traffic-CO) to generate a proxy for the
rising planetary boundary layer (PBL), and 2) by matching
predicted photochemical HCHO with observations. If only
the traffic-CO approach is used, then uncharacteristic chemi-
cal accumulation is observed. The increased dilution as a re-
sult of the HCHO modeling eliminates this unrepresentative
accumulation of secondary products (i.e., oxidized volatile
organic compounds, OVOC). For a more detailed discussion
of the methodology employed to constrain the model for di-
lution, see Part 1 (Volkamer et al., 2010).

The photolysis frequencies for O3 (J O3, ±25%),
NO2 (J NO2, ±15%), HCHO (J HCHO, ±15%), CH3CHO
(J CH3CHO,±15%), and HONO (J HONO,±15%) are con-
strained by measurements (Volkamer et al., 2005). The val-
ues forJ HONO have been multiplied by 1.43 to match recent
absolute measurements made byWall et al. (2006) consis-
tent with results presented inVolkamer et al.(2010). The
measured downwelling portion of each J-value was multi-
plied by 1.08 to account for surface albedo corrections. The
code calculates photolysis rates solely as a function of so-
lar zenith angle, which does not account for cloud coverage,
scattering in the atmosphere, and the albedo of the earth’s
surface. As such, the photolysis rates are corrected using
a factor that is based on the average difference between the
calculated and measured values forJ NO2. Calculations were
initially performed using clear sky conditions at a latitude of
19◦21′32′′ N and a longitude of 99◦4′25′′ W.

2.1 OH reactivity: first order loss of OH

For each of the modeling scenarios described previously,
with the exception of the HOx-constrained scenario, OH loss
is equal to OH production withinτOH <0.1 s, i.e., OH is in
steady state. The modeled and median measured OH reac-
tivity – the pseudo first order rate loss of OH – are shown
in the bottom panel of Fig.2; the total OH reactivity pre-
dicted by the model is about 110 s−1 during morning rush
hour and a value of roughly 20–25 s−1 during the day and
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Fig. 2. The bottom panel shows the median measured (stars) and
modeled (red solid line) OH loss; we also include a plot of mod-
eled OH loss augmented with an estimated OH loss due to pri-
mary organic aerosol (POA) vapors (SVOC+IVOC) as parameter-
ized byRobinson et al.(2007). Note the under-estimation of OH
loss by the model between 05:00–07:00. In the upper panel, the
profile of OH loss in the model is separated into constrained pa-
rameters (black line) and unconstrained parameters (red line). The
constrained parameters are further distinguished as parameters con-
strained by measurements (green line) and those that were estimated
(blue line) based on emissions information in the literature. Con-
strained parameters account for some 75–98% of total modeled OH
loss throughout the day.

between 45–50 s−1 at night. These values are consistent with
those measured byShirley et al.(2006); however, there is a
significant difference between measured and modeled values
from 05:00–07:00, when NOx values are highest. The un-
certainty in the total OH loss measurement is highest under
high NOx conditions (Shirley et al., 2006). The degree of
constraint imposed on the mechanism by inputs in terms of
OH reactivity is shown in the upper panel of Fig.2. Most
notably, the fraction of OH reactivity due to reaction with
unconstrained parameters linearly increases in the morning
around 08:00 until 12:00. This increase is roughly 1 h after
the onset of photochemical processing and due to the oxida-
tion of primary VOC, resulting in the formation of secondary
products. The formation of secondary products and their sub-
sequent oxidation results in an increase of unconstrained OH
loss of roughly 5% per hour, reaching a maximum of 25%.
The decrease in the fraction of OH loss from unconstrained
parameters around 12:00 reflects the venting of the MCMA,
is consistent with an observed decrease in new OH radical
production (Volkamer et al., 2010), and reflects the dilution
implemented in the code (seeVolkamer et al.(2010) for de-
tails).

Atmos. Chem. Phys., 10, 6993–7008, 2010 www.atmos-chem-phys.net/10/6993/2010/
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3 Results and discussion

3.1 Missing OH reactivity

Recent findings indicate that primary organic aerosol (POA)
upon dilution from the tailpipe of a car to atmospheric
conditions may act as a source of semivolatile hydrocar-
bons in urban air, so-called semi-volatile organic com-
pounds (SVOC) and intermediate volatility organic com-
pounds (IVOC) (Donahue et al., 2006; Robinson et al.,
2007). SVOC and IVOC make a significant contribution to
SOA formation (Dzepina et al., 2009). The chemical identity
of these hydrocarbons is unclear, and, as such, SVOC and
IVOC are not represented in MCM. These species could be
relevant to SOA formation (Robinson et al., 2007) and pos-
sibly ozone production. We estimate here for the first time
the possible contribution of SVOC and IVOC to OH reac-
tivity to assess whether the gap between modeled and mea-
sured reactivity can be attributed to these species. We calcu-
lated the OH reactivity of SVOC and IVOC by estimating the
amount of each in the gas phase using POA measurements
(Salcedo et al., 2006): SVOC+IVOC=4·POA+7.5·POA.
Here, we parameterized the data from Fig. 1a inRobin-
son et al.(2007) to account for the effects of variable par-
titioning depending on POA partitioning mass. We used a
molecular weight of 250 g mol−1 (corresponding to a C18
alkane), suggested byRobinson et al.(2007), to convert
µg m−3 to units of molec cm−3. Using this concentration,
and a generic rate constant for reaction with OH radicals
of 4×10−11 cm3 molec−1 s−1 reported byRobinson et al.
(2007), we calculate the corresponding OH loss rate. The
results are plotted as an overlay in Fig.2. Using this method-
ology, we observe a modest increase of 4–14 s−1 of OH re-
activity (about 10% of the measured value). The existence of
SVOC and IVOC is consistent with the observation of a gap
in OH reactivity, though insufficient to obtain closure. The
OH reactivity in our model is about 10–20% too low. The
largest differences tend to be observed between 04:00–06:00,
and also in the afternoon (12:00–16:00). Notably,Lewis
et al.(2000) identified an additional mechanism for OH loss
in terms of volatile carbon in the range of C6 to C14 as oxy-
genated aromatic and aliphatic molecules. These molecules
are difficult to quantify with the measurement techniques
used during MCMA-2003, and they appear to be only par-
tially captured by our model-predicted OVOCs, and esti-
mates of SVOC/IVOC. Notably, the portion of unaccounted
OH reactivity in our model is relatively small and we do not
observe an over-prediction of OH radicals in the afternoon
as has been noted in previous studies (Lewis et al., 2000;
Carslaw et al., 1999). Future studies will need to demon-
strate whether the parameterization of SVOC and IVOC from
laboratory generated POA provide for a meaningful extrapo-
lation to the atmosphere, and whether additional unmeasured
compounds could cause additional OH loss. It appears, how-
ever, from this analysis that SVOC and IVOC, in addition to

their role as SOA precursors, also make a sufficiently large
contribution to OH reactivity to be potentially relevant to O3
formation.

3.2 HOx: measured vs. modeled

The HOx-unconstrained model accurately predicts the di-
urnal profile of both OH and HO2, as shown in Fig.3a,
c. When compared to a lower limit of measured OH val-
ues3, the model predicts OH concentrations within mea-
sured and modeled uncertainties for the day with the excep-
tion of about 05:30 to 06:30 (Fig.3a). In the early morn-
ing, between 06:00–07:00 (i.e., rush hour), the model under-
predicts OH radicals by about a factor of 3–4. Similarly, a
consistent under-prediction is observed in the evening after
18:00, though slightly less than in the morning. Between
07:30–16:00, the model and the measurements are in excel-
lent agreement, with the ratio of measured-to-modeled con-
centrations varying between 0.93 and 1.35 i.e., within error
bars of the measurements and the model.

The model under-predicts the concentration of HO2 for the
entire day, and most notably between midnight and 10:00.
The measured-to-modeled ratios are consistently between
3–10 before 07:00. The predicted concentrations do not
fall within the measurement and modeled uncertainty un-
til around 10:00. The model predicts HO2 concentrations
within modeled and measured uncertainties between 10:00
and 18:30. Thereafter, the ratio of measured-to-modeled con-
centrations starts increasing and varies between 5–12 for the
remainder of the day.

The median concentrations of predicted OH and HO2 from
individual day modeling show good agreement with the pre-
dicted OH and HO2 from the HOx-unconstrained model of
campaign median concentration inputs of HOx sources and
sinks (not shown). A linear regression of individual day OH
and HO2 modeled predictions versus measured values yields
the following relationships:
[OH]model= 0.73·[OH]meas+0.02 ppt,R2=0.98, and
[HO2]model= 0.74·[HO2]meas−2.79 ppt,R2=0.96.

Despite what appears to be an excellent correlation
(R2>0.95) between measured and modeled values, a more
thorough analysis shows these results belie the lack of radi-
cals at high concentrations of NOx. For both OH and HO2,
the measured-to-modeled regression relationship is predom-
inantly determined by the higher concentrations in the after-
noon. As such, the linear regression is skewed in favor of
times when the model more accurately predicts HOx concen-
trations (which, is also at low NOx conditions).

3The lower limit is based on a 0.01 pptv statistical offset. We
found that there was improved agreement between measured and
modeled OH concentrations based on overlap of error bars, in ad-
dition to better agreement in the comparison of measured and mod-
eled HONO concentrations using the lower limit of OH. SeeVolka-
mer et al.(2010) for a more detailed discussion

www.atmos-chem-phys.net/10/6993/2010/ Atmos. Chem. Phys., 10, 6993–7008, 2010
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Fig. 3. Measured (black) and modeled (red) diurnal concentrations of HOx are shown for each of the three balanced model cases:(a) OH,
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by Shirley et al.(2006) multiplied by 1.3 and include a 0.01 ppt offset subtracted from the measured values as discussed in the text and in
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When the model is constrained for HO2 (Fig. 3b), it is un-
able to predict the diurnal profile of OH. As a result of the
HO2 forcing, the model over-predicts the concentration of
OH for the majority of the day, most notably in the morning
04:00–10:00, and at night, 19:00–24:00. The overprediction
of OH from the HO2-constrained model is partly compen-
sated by the fact that our pseudo-first-order OH loss rate is
most underestimated during this part of the day (see Fig.2).
The HO2 constrained prediction of OH would be in better
agreement with the observations if this missing OH loss was
accounted for. Despite this limitation, we do observe overlap
in the observed and predicted concentrations during much
of the day, 10:00–18:00. The distorted diurnal profile of
OH and the over-prediction of the concentration reflects the
strong coupling between HO2 and OH via NO.

The OH forcing (Fig.3d) affects modeled HO2 concentra-
tions less directly, particularly because it involves the entire
ROx cycle; however, the effects of the OH forcing are sig-
nificant. Most notably, from midnight to 06:00 and again
from 18:00–24:00, the measured and modeled HO2 are in

much better agreement. Conversely, the model still drasti-
cally under-predicts the concentrations of HO2 shortly after
sunrise until 09:30. This suggests that the gas-phase mecha-
nism is lacking a HO2 (or RO2) production term.

The exercise of forcing OH and HO2 concentrations in the
mechanism is valuable, as it can help elucidate shortcomings
in the mechanism. The HO2-forcing suggests that the gas-
phase mechanism – particularly under high NOx conditions
– lacks either a significant HO2 source that does not form OH
or an HO2 source and OH sink. However, a large missing gas
phase OH sink appears unlikely, because the modeled pre-
dictions of OH show good agreement with measurements in
the HOx-unconstrained case, and because of high uncertainty
in the OH loss measurements. This is inconsistent with the
relatively small differences between measured and modeled
OH loss (Fig.2). Similarly, the modeled OH in the HOx-
unconstrained case is generally under-predicted, which does
not lend support to the argument that the mechanism has a
missing sink for OH.
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3.3 HO2/OH vs. NO

Apart from absolute HOx concentrations, the ratio of HO2 to
OH as a function of NO is a useful relationship to test our un-
derstanding of HOx cycling (Fig.4). We compare measured
and modeled HOx ratios vs. NO on both a campaign median
basis and an individual day basis. For the sake of compari-
son, we binned OH, HO2, and NO values based on 10 dif-
ferent ranges of NO concentrations. The error bars show the
uncertainty of the HOx ratio, calculated based on the uncer-
tainty of modeled OH and HO2 concentrations.

We observe a similar relationship between the HO2/OH
ratio and NO for both the measured and modeled values;
however, there are significant differences at high NO. The
modeled HO2/OH ratio is lower than the measured ratios
by roughly a factor of 4 at NO concentrations of 100 ppb.
The difference narrows to a factor of 2–3 between NO con-
centrations of 10–100 ppb, and is≤2 for NO concentrations
between 1–10 ppb. The larger differences between modeled
and measured HO2/OH ratios at high NO occurs in the morn-
ing and at night, when the model most drastically underesti-
mates the concentrations of HO2.

The “missing reactivity” noted previously is also evident
in the comparison of the NO dependence of measured and
predicted HO2/OH ratios. The measured HOx ratio has a
shallower slope with respect to NO than the modeled ra-
tio does. The slope of the graphs in Fig.4 yield the NO
power dependence. We expect a dependence of between 1
to 2 (Shirley et al., 2006); however, the measured values of
the HO2/OH vary as NO to the power of 0.36, and the mod-
eled values vary as NO to the power of 0.64, nearly a factor
of 2 increase. The lower-than-expected NO power depen-
dence is tentatively attributed to more efficient HOx cycling
in VOC chemistry and is consistent with laboratory observa-
tions (Bloss et al., 2005a,b).

The HO2/OH ratio vs. NO relationship is also useful in
determining the effects of using median diurnal profiles from
campaign data for modeling. Legitimate concerns exist re-
garding conclusions drawn from the use of average or me-
dian diurnal profiles of radical sources and sinks, particularly
because the characteristics of fast HOx-NOx chemistry may
not be captured. To test our use of campaign median data and
day-to-day variability thereof, we predicted HOx concentra-
tions for a “high NOx” day (11 April, NOmax=220 ppb) and
a “low NOx” day (18 April, NOmax=24 ppb). The modeled
HO2/OH results are also shown in Fig.4; the individual day
results – for both the measurements and the modeling – show
good agreement with the campaign median results, confirm-
ing the utility of modeling on a campaign median basis.

3.4 Predicting RO2

Organic peroxyl radicals play a major role in atmospheric
processes, most notably in its reaction with NO yielding
NO2, adding to O3 production. Unfortunately, ambient

1 10 100

1

10

100

Campaign Median
 measured
 modeled

High (Apr 11) and Low (Apr 18) NO days
 measured
 modeled

modeled 
(hi/low NO)

measured 
(hi/low NO)

modeled

measured

H
O

2 /
 O

H

NO (ppb)

Fig. 4. The HO2/OH ratio as a function of NO. For graphical pur-
poses, all of the HOx ratios are binned based on ranges of NO con-
centrations. We used the following bins: 0–1 ppb, 1–2 ppb, 2–3 ppb,
3–5 ppb, 5–10 ppb, 10–20 ppb, 20–40 ppb, 40–100 ppb, and 100–
200 ppb. Each circle or square represents the median of each NO
concentration bin. The predicted values from the model on a cam-
paign median basis are shown as the orange line with open circles,
whereas the median measured values from the entire campaign are
shown as a black line with open squares. The closed red circles and
closed blue squares are the modeled and measured HOx ratios, re-
spectively, for the high and low NO days, 11 and 18 April. Note
that the lines arenot a fit through the symbols, but rather connect
the symbols to help guide the eye.

measurements of RO2 are difficult, and unavailable from
MCMA-2003. As such, we use MCMv3.1 and the differ-
ent constrained cases to understand the model’s prediction of
RO2 in relation to HOx.

The predicted concentrations for RO2 in the different mod-
eling scenarios are shown in Fig.5. The HOx-constrained
(not shown) and OH-constrained cases predict the same con-
centration of RO2 because the effects of the OH constraint
supersede any effects of the HO2 constraint. The more direct
coupling between OH and RO2 radicals is also evident when
comparing the HOx-unconstrained and constrained cases:
the higher concentrations of RO2 from 10:00–16:00 in the
unconstrained case are coincident with the model’s over-
prediction of OH, noted previously and shown in Fig.3.

The RO2/HO2 ratios (shown in Fig.5b vs. NO) are an-
other metric used to understand the prediction of RO2 as it
relates to HOx. In each of the modeled scenarios in steady
state, the RO2/HO2 ratio is between 0.7–1, whereas in the
fully constrained case, the ratios are significantly lower and
drop below 0.2 when NO>7 ppb. As mentioned previously,
the coupling between OH and RO2 is more direct than that
between HO2 and RO2. As such, the lower-than-expected ra-
tios are a direct result of the fixed OH concentration eliminat-
ing any effects that a fixed HO2 concentration may have. In
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Fig. 5. Predicted RO2 concentrations(a) and the ratio of RO2/HO2 vs. NO(b) for different modeling scenarios: HOx-unconstrained (black
line and squares), OH-constrained (red line and circles), and HO2-constrained (blue line and triangles-up), and HOx-constrained (orange
triangles-down). The RO2 concentration demonstrates an expected near-linear dependence on OH concentration. The steady-state models
similarly predict RO2/HO2 ratios∼1 at concentrations of NO ranging from 1–100+ ppb; however, the HOx-constrained case predicts a much
lower ratio, particularly at high NO (>7 ppb).

other words, with just a fixed HO2 concentration, the profile
of OH and the predicted concentrations are distorted (Fig.3b)
because of the fast HO2+NO reaction (P4 in Fig.1). How-
ever, in the HOx-constrained model, the OH constraint off-
sets this forcing by HO2 (which also yields an unbalanced
model). We consider the predicted RO2 concentration in the
HOx-constrained case as a lower limit.

3.5 Chain length

Chain length is broadly defined as the number of times that
a hydroxyl radical will be regenerated via the ROx cycle
(Fig. 1). The radical chain length is a parameter that captures
the characteristics of the fuel (i.e., VOC) in its oxidative envi-
ronment. It is an effective means to assess the relative impor-
tance of new radical production relative to radical propaga-
tion in the MCMA. Strictly speaking, chain length is only a
well defined quantity if the radical chain has a single point of
initiation and a single point of radical termination (i.e., a lin-
ear radical chain reaction). Atmospheric ROx cycling is in-
herently more complex: multiple reactions initiate the radical
chain by providing sources for different radical intermediate
species of the radical chain. Similarly, multiple reactions can
terminate the radical chain at different ROx radical interme-
diate species. To our knowledge there is currently no defini-
tion of chain length available in the literature that accounts
for this atmospheric complexity. We define two parameters
that both characterize chain length:n(OH) andω. n(OH)
is defined from a perspective of radical initiation, whereas
ω is defined from a perspective of radical termination, i.e.,
treats radical propagation as a first order exponential decay
process. Both parameters are quantitatively comparable, and
each parameter is discussed in greater detail below.

We definen(OH), as:

n(OH) = γOH

[
6OHnew+propagated OH

6OHnew

]
, (1)

TheγOH term is the fraction of OH entering the radical cycle:

γOH =
(OH→ RO2)+(OH→ HO2)

total OH loss
. (2)

Total OH loss includes all pathways in which OH is perma-
nently lost or has the potential to be recycled i.e., it is equal
to the sum of all propagation (P1 and P5, Fig.1) and termina-
tion routes (T1, Fig.1).There are numerous parameters used
to calculate chain length found in the literature (e.g.,Wagner
et al. (2003); Seinfeld and Pandis(1998); Emmerson et al.
(2007); Stroud et al.(2004); Martinez et al.(2003)). Most
parameters for chain length assume that a single OH radi-
cal will cycle through at least once (i.e.,n(OH)=1). If radi-
cal termination rates exceed propagation rates throughout the
ROx cycle, then we conclude that a single radical may not
complete the cycle before being removed from the system.
We have therefore added theγOH term. While this scenario
(i.e.,n(OH)<1) is unlikely in a polluted environment such as
Mexico City, it is nonetheless an important adjustment to re-
main consistent in our calculation ofn(OH) as a quantitative
measure of chain length i.e., as the amplification of radical
sources.

The6OHnew term is defined in Eq. (1) ofVolkamer et al.
(2010) and is the sum of all new ROx radical production,
weighted using conversion factors for the respective species
into OH:

γHO2 =
HO2 → OH

total HO2 loss
, (3)

γRO=
RO→ HO2

total RO loss
,and (4)
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γRO2 =
RO2 → RO

total RO2 loss
. (5)

The6OHnewterm is then defined as:

6OHnew=[OH]new+γHO2 · [HO2]new
+γHO2 ·γRO·γRO2 · [RO2]new, (6)

The calculation ofn(OH) is most sensitive to the definition
of initiation and propagation terms, and to a lesser degree
termination. This requires careful accounting of the reactive
pathways. The definitions employed here are similar to those
used byWagner et al.(2003):

– new radical production (i.e., initiation) is the breakdown
of a closed shell molecule into two radicals or as the
conversion of O3 or NO3 into a ROx species;

– propagation is the transformation of one ROx species
into another;

– termination (i.e., radical sinks) is the formation of a
closed shell molecule from the reaction of two radicals;
and,

– the mechanism contains certain species that are in fast
equilibrium with radicals, such as PAN. For these com-
pounds, a net term is calculated. The net parameter is
then appropriately classified as either production or ter-
mination.

In contrast toWagner et al.(2003), we treat absolute fluxes
for fast radical-radical reactions and HONO formation.Wag-
ner et al. (2003) defined “delayed propagation” as fast
radical-radical reactions form a radical reservoir that sub-
sequently photolyzes to yield two radicals. Similarly, they
define a net flux production of OH by subtracting the pro-
duction of HONO (from the reaction between OH and NO)
from the production of OH via HONO photolysis. This term
is then lumped into6OHnew. We have assessed the effect
of including a “delayed propagation” term in the calculation
of n(OH). When including the net flux from radical-radical
recombination reactions and the subsequent photolytic de-
composition reactions for all the appropriate species (i.e., hy-
droperxide, organic peroxides, and oxygenated compounds
e.g., aldehydes), we observe a modest increase inn(OH) (not
shown); however, this is a function of accounting, and not
a chemical manifestation of radical cycling. The differences
are only observed during the day-time because OVOCs are
formed from the processing of primary emissions at sun-
rise that make the greatest impact on the delayed propaga-
tion accounting. Wagner et al.(2003) uses a similar net
flux approach in the treatment of HONO. A potential prob-
lem associated with using the net flux approach for HONO
is a negative term in the summation of6OHnew. That is,
whenever HONO formation is larger than HONO photolysis,
the contribution of new OH to6OHnew may be a negative
number, which does not make physical sense (seeVolkamer

et al. (2010) for more discussion). Furthermore, a correla-
tion of production and loss terms creates a convolution that
should be avoided to study radical cycling chemistry. Ulti-
mately, our determination ofn(OH) as a parameter for chain
length does not include “delayed propagation” or a net flux
approach for HONO accounting. In our case, the processes
are treated rigorously as either termination or new radical
production.

Having defined the various radical reaction pathways, we
use the grouped terms to calculaten(OH). Rather than cal-
culate a single OH chain length based solely on the “long”
chain [L: OH→RO2→RO→HO2], we also consider the di-
rect cycle between between OH and HO2 i.e., the “short”
chain (S). That is:

n(OH) = γOH

[
αOH→HO2n(OH)S+βOH→RO2n(OH)L

]
, (7)

where

n(OH)S=

([OH]new+γHO2 ∗[HO2]new)+(OH→ HO2)

[OH]new+γHO2 ∗[HO2]new
, (8)

n(OH)L =
6OHnew+(OH→ RO2)

6OHnew
(9)

αOH→HO2 =
OH→ HO2

OH→ HO2+OH→ RO2
,and (10)

βOH→RO2 = 1−αOH→HO2. (11)

The median values forn(OH) andγ for both the HOx-
constrained and HOx-unconstrained cases are shown in
Fig. 6. In the HO2- and HOx-constrained cases, cycling is
high in the morning, with a peak of 25 around 06:30 and
then decreases to 15 over the next hour. From 10:30 to 14:30,
n(OH) is between 3 and 5. Conversely, there is no morning
peak evident in the HOx-unconstrained case. This difference
in n(OH) is coincident with previously noted missing reactiv-
ity shortly after sunrise and during rush-hour. Then(OH) for
the HOx-unconstrained model reaches a high value of about 4
around 05:00 and is in the range of 2.5–4 throughout the day.
The peak difference in chain length values occurs at 05:30,
at which time the median value for the constrained case is a
factor of 9 higher than the unconstrained modeling.

The conversion factors,γROx shown in the upper panel
of Fig. 6, provide a means to understand cycling and chain
length via an alternative approach. The conversion factors
are a measure of radical propagation efficiency relative to ter-
mination. We treat radical cycling as a first order exponential
decay process in which the conversion efficiencies are related
to the propagation of the OH radical. We define a parameter,
ω, so that:
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γ ω
ROx

.
=

1

e
,and (12)

ω = −[ln γROx ]
−1,where (13)

γROx = γOH×γRO2 ×γRO×γHO2 (14)

The medianω value for the HOx-constrained case is
shown in Fig.6. The chain length parameters have differ-
ent perspectives with regard to radical cycling: then(OH)
focuses on propagation and initiation radical fluxes, while
ω focuses on branching ratios for individual ROx species to
propagate versus terminate the radical chain. The agreement
betweenn(OH) andω is a measure of our understanding of
radical cycling. In principle, the values for each should be the
same; however, the plots forn(OH) andω in both the HOx-
and HO2-constrained cases show significant differences, par-
ticularly between 04:00–10:00, and again after 14:00.

In a straight radical chain, the condition of radical con-
centrations in steady state imposes the constraint that radical
initiation and termination fluxes are equal. In atmospheric
ROx radical cycling it follows from Eqs. (1) and (13) that in
order to bringn(OH) andω into agreement, the HO2 con-
strained model requires: 1) additional radical sources (i.e.,
lowersn(OH)); 2) an HO2 sink and/or lower radical conver-
sion efficiencies (i.e., lowersn(OH) andω) or, 3) a combi-
nation of 1 and 2. Alternatively, a higher value ofω could
reduce the mismatch between both metrics of radical cycling
in the HO2 constrained model. However, this would require
higher gamma values (fewer radical sinks) and seems some-
what unlikely for the following reasons: during the period
of most significant disagreement betweenω andn(OH), the
product of theγ -values varies between 0.6–0.7 (see upper
panel of Fig.6). In order forω to reach a chain length of
20, for instance, the product of theγ -values must approach
0.95, which is inconsistent with our current understanding of
organic peroxyl and hydroperoxyl radical kinetics. It should
be noted that any increase in the radical conversion efficien-
cies of RO2→RO, RO→HO2, and HO2→OH will have a
non-linear effect on chain length calculation, as it will in-
crease the contribution of new HO2 and/or new RO2 to the
6OHnewterm, and this lowersn(OH).

Assuming the HOx measurements are correct, we con-
clude that there are two possible explanations to resolve the
inconsistency betweenn(OH) andω: 1) an additional ROx
radical source is needed, and 2) an additional HO2 sink is re-
quired that does not form OH. Note, however, that both (1)
and (2) are necessary in order for the chain length results to
be consistent.

We have identified the following laboratory findings that
may affect chain length:

– The photolysis of nitrylchloride (ClNO2) as a source for
RO2 at high VOC concentrations (Roberts et al., 2008;
Thornton et al., 2010). As discussed inVolkamer et al.
(2010), this RO2 source is likely operative and relevant
in Mexico City.
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Fig. 6. Panel(a) at the top breaks down the branching ratios of
RO2→RO radical reaction pathways via NO, RO2, and HO2 to
demonstrate that the afternoon chemistry is still very much driven
by NOx and much less by organic peroxyl radicals formed as prod-
ucts of secondary oxidation. Panel(b) in the middle shows the
conversion factors,γ , for the HOx-constrained case. Panel(c) at
the bottom shows the chain length parameters,n(OH) for the HOx-
constrained (black line, solid), HOx-unconstrained (red line), and
HO2-constrained (black line, dashed) scenarios andw for the HOx-
constrained (black line), HOx-unconstrained (blue, dashed), and
HO2-constrained (orange, dashed) scenarios.

– The formation of OH and HONO from the reaction be-
tween NO2

∗ and water vapor as reported byShuping
et al. (2008). We introduced a series of reactions into
the MCM to account for this reaction and no appreciable
difference was observed in the chain length parameters.

– The formation of HNO3 via reaction between HO2
and NO in the presence of water vapor as reported
by Butkovskaya et al.(2005) and Butkovskaya et al.
(2007). The mechanism is consistent with the sec-
ond explanation listed above; however, only introduc-
ing a HO2 sink would increase missing reactivity in the
model.

– The formation of OH from the reaction betwen organic
peroxy radicals and HO2 as reported byHasson et al.
(2004). We note that this mechanism is most significant
at low levels of NOx.

– Finally, the formation of OH from organic peroxy radi-
cals as reported byHatakeyama et al.(1986) andPeeters
et al.(2009).

The first three (3) points would decrease chain length and the
last two (2) points would increase chain length.
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Fig. 7. The median diurnal profile for ozone production for in-
dividual day modeling is shown for the HOx-constrained (orange
line) and HOx-unconstrained (green line), as well as for the median-
model runs for HOx-constrained (blue line) and HOx-unconstrained
(red line). Finally, P (O3) as calculated using only measured
HO2 is shown as the black line. The top panel results from di-
viding the integral of the medianP (O3)HOx-con by the median
P (O3)HOx-uncon (red line) and medianP (O3)HO2-con by the me-
dianP (O3)HOx-uncon(black line).

3.6 Ozone production

Ozone formation is essentially a competition process be-
tween VOC and NOx for OH (Seinfeld and Pandis, 1998).
Net instantaneous ozone production,P (O3), is a measure of
ozone formation as a result of NO oxidation via reaction with
HO2 or RO2, yielding NO2 and OH or RO, respectively. The
production rate also accounts for radical loss channels form-
ing HNO3 and RNO3. The net instantaneous O3 production
is calculated as:

P (O3) = kHO2+NO[HO2][NO]+6ki[RO2]i [NO]

−P(HNO3)−P(RNO3) (15)

The medianP (O3) diurnal profiles for the individual days
and the median model in the HOx-constrained and HOx-
unconstrained scenarios are shown in Fig.7. The median
profile of P (O3) as calculated using only measured HO2 is
also shown.

The median-model HOx-constrained, median of individual
day HOx-constrained modeling, and HO2-measured cases
exhibit similar profiles forP (O3), with a peak at 08:00 of
115, 107, and 65 ppb hr−1, respectively. The median-model
HOx-unconstrained and individual day HOx-unconstrained
modeling show similar profiles, but are very different from
the other 3 cases shown. The timing of the peak ozone pro-
duction is shifted by about 2 h, and shows a much less pro-
nounced peak of 45 ppb hr−1. We consider the profiles for
both the HOx-constrained cases as lower limits because of a

lower-than-expected RO2/HO2 ratio, as shown in Fig.5b. If a
RO2/HO2 ratio of unity is assumed, the magnitude ofP (O3)
increases to well above 100 ppb hr−1.

The differences observed in theP (O3) profiles, most no-
tably between 06:00 and 10:00, are coincident with the afore-
mentioned missing reactivity. The under-estimation of HOx
radicals in the unconstrained code manifests itself in both
the magnitude and timing of peak ozone production. De-
spite the fact that the various profiles come into good agree-
ment by 10:00, the measurements indicated that the bulk of
NO→NO2 conversions take place before that time. The up-
per panel of Fig.7 quantifies the effects of the missing re-
activity on the oxidative capacity of the Mexico City atmo-
sphere. The HOx-constrained case predicts a minimum of
75% greater cumulative ozone production than the uncon-
strained case throughout the day, with a factor of 5 difference
in the early morning at the onset of photochemical process-
ing.

4 Comparison to other studies

4.1 Radical budgets

The MCMv3.1 has only recently been used in similar detail
to quantify radical fluxes for initiation, propagation, and ter-
mination. In Part 1,Volkamer et al.(2010) compare new rad-
ical production rates in the MCMA to other airmasses, noting
both the homogeneity of radical sources in the MCMA and
the higher production rates. The radical fluxes for cycling
routes that we report for both the HOx-unconstrained and
HOx-constrained cases are considerably higher than those re-
ported elsewhere (Emmerson et al., 2007, 2005; Platt et al.,
2002). Apart from the RO→HO2 route, the radical flux from
one ROx radical to another is roughly 1.5–3 times larger in
the MCMA compared to the cleaner sub-urban airmass ob-
served during the TORCH campaign, and the semi-polluted
atmosphere in Birmingham during the PUMA campaign.
The radical flux of propagation pathways is higher for the
MCMA due to higher NOx concentrations and VOC concen-
trations, and higher rates of radical initiation. The RO→HO2
flux in the MCMA is comparable to the value reported for
Birmingham for 2 reasons: 1) at the high concentrations of
NO observed during MCMA-2003, the conversion efficiency
for the RO2→RO route is lower because of the formation
of organic nitrates (RNO3). This yields fewer RO radicals,
meaning a lower flux into HO2. 2) We observe a much higher
rate of thermal decomposition of RO radicals back into RO2
radicals. A direct comparison with the BERLIOZ campaign
is difficult because the radical production rates are distin-
guished only by production and destruction.

4.2 Missing HOx radicals

The under-prediction of OH and HO2 in our HOx-
unconstrained model has also been observed in other
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environments, including atmospheric chamber studies (Bloss
et al., 2005a,b), the upper troposphere (Folkins et al., 1997;
Tan et al., 2001; Faloona et al., 2000), and other urban areas
(Martinez et al., 2003; Ren et al., 2003). Shirley et al.(2006)
employ the RACM mechanism to study the MCMA (2003
campaign) and do not observe the same missing radicals at
high NOx concentrations, and report that the measured-to-
modeled ratios during rush hour for HO2 is 1.5. Dusanter
et al.(2009) use the same RACM mechanism, with different
constraints, to study the MCMA (2006 campaign) and note
an under-prediction of HO2 in the morning (08:00–11:30),
peaking at a factor of about 5 at 10:00. They offer three po-
tential explanations, including (i) close emission sources of
NOx and VOC leading to inhomogeneous air masses, (ii) a
missing radical source, and (iii) an over-estimated HO2 to
OH radical propagation route in the code due to an unknown
chemical process that converts OH into peroxy radicals. Sim-
ilarly, Ren et al.(2003) note an increasing measured-to-
modeled ratio with increasing NO. At NO concentrations
greater than 10 ppb, RACM under-predicts HO2 by a factor
of 2–20, similar to what we observe in the MCMA. To ex-
plain the difference, they suggest unknown HOx sources that
increase with NO, or shortcoming in HOx-NOx chemistry.
Based on our analysis using the detailed MCMv3.1 and the
chain length cycling parameters,n(OH) andω, we conclude
that there is a significant missing source for HO2 and smaller
one for OH. Because the predicted OH concentrations are
generally very good, the introduction of a missing source for
HO2 must be accompanied by a pathway that does not form
OH via reaction with NO (i.e., a sink for HO2 radicals) or be
accompanied by an efficient OH loss mechanism consistent
with the discussion in Sect.3.1.

The very high NOx concentrations observed during
MCMA-2003 makes our study unique amongst those em-
ploying the MCM and extends the NOx range over which
MCM has been employed in field studies. The median peak
NOx concentration employed here is about 130 ppb, with
some days as high as 250 ppb. Our results demonstrate the
incomplete understanding of HOx chemical cycling at high
NOx beyond experimental doubt. In other studies employing
the MCM, the peak NOx concentrations are roughly 30 ppb
for PUMA-summer, 30 ppb for BERLIOZ and 25 ppb for the
TORCH campaign. High concentrations of NOx were ob-
served during the winter months of the PUMA campaign
(140 ppb), however, HO2 measurements were largely un-
available to compare with predicted values. As such, the
noted missing radicals, while difficult to compare directly
with other field campaign analyses employing the MCM,
presents confirmation at previously unstudied high NOx con-
ditions. The key message from our work is that comparing
radical concentrations is misleading when comparing models
because it is not reflective of the radical fluxes and reactivites.
This is overcome by using the two chain length parameters
employed herewithin.

4.3 Defining a chain length parameter

The chain length parametern(OH) is widely used as a quan-
titative measure of radical cycling, but the equations used to
calculate the parameter vary significantly. We evaluate sev-
eral of these equations here.Seinfeld and Pandis(1998) cal-
culate it as:

n(OH)Seinfeld/Pandis=
new OH+old OH

new OH
, (16)

where “old” OH is defined as recycled or propagated OH,
a similar equation to the one employed here. On the other
hand, in the TOPSE campaign,Stroud et al.(2004) calculate
chain length as:

n(OH)TOPSE=
P (OH)cycling

L(ROx)
, (17)

whereP (OH)cycling is OH radical production from propa-
gation routes (i.e., HO2→OH) only andL(ROx) is the sum
of all radical losses. In a slightly different approach,Emmer-
son et al.(2007) calculate chain length as:

n(OH)TORCH=
P (OH)HO2→OH

new OH
, (18)

where the OH production term is solely defined by the HO2
propagation route and new OH is the same as I1 in Fig.1.

As part of the Southern Oxidants Study (SOS),Martinez
et al.(2003) use the following equation:

n(OH)SOS=

[OH] ·OHreactivity−L(HOx)

L(HOx)
, (19)

The range of equations for OH radical chain length make
comparisons between airmasses of different VOC and NOx
loadings extremely difficult. For instance, at peak NOx con-
centrations around 07:00 we calculate a chain length using
the equations defined above and get a range of 14–45. By
12:00, they come into better agreement, but the range of val-
ues is still 2–6. There is a need for a formalized equation to
match the definition of chain length for sufficiently conclu-
sive comparisons between airmasses.

In the case of the equation provided bySeinfeld and Pan-
dis (1998), they do not account for the sink of OH radicals,
as defined by us asγ(OH) in Sect. 3.5. Similarly, in applying
their equation, we must assume that “new OH” is equivalent
to 6OHnew. In the TOPSE and SOS calculation of chain
length, the role of new radical formation is folded entirely
into radical propagation and termination. Ultimately, both
of these assumptions over-simplify the conversion efficiency
between RO2 and HO2 to OH. The TORCH calculation over-
simplifies radical initiation. As mentioned previously, when
accounting for “new OH”, the sum of new radicals from other
sources should be counted. This is particularly important be-
cause the sum of new ROx radical production is considerably
larger than new OH radical production (seeVolkamer et al.,
2010).
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Each of the equations for chain length provides a quantita-
tive determination of radical propagation relative to initiation
and/or termination, yet they lack consistency. With MCM we
can account for each of the radical initiation, propagation,
and termination pathways (Fig.1) and we make no assump-
tions about the VOC or NOx environment. Our explicit cal-
culation of OH chain length is a normalized calcuatlion that
is linked to production rates and is a quantitative determina-
tion of the amplification of radical sources. We consider it
a valuable tool in assessing the oxidative capacity of a given
airmass and provides the quantitative rigor necessary to com-
pare it to other airmasses.

4.4 Ozone production

Our comparison of ozone production to other studies focuses
on magnitude and timing of ozone production. In terms of
magnitude, we report similar values as those reported by
Shirley et al.(2006) using RACM and byLei et al. (2007)
in a 3-D chemical transport study. Compared to other cities,
we report much higher values of ozone production (Klein-
man et al., 2005). The study byRen et al.(2003), with under-
predicted HO2 concentrations in the model, observe a similar
difference betweenP (O3) from measurements compared to
the model as shown here in Fig.7.

In terms of the timing, the measurements of OH, HO2,
NO, and NO2 in the MCMA indicate a much different profile
for ozone production than the model suggests. As shown in
Fig. 7, the model clearly lacks the sharp peak around 08:00.
Instead we observe a broad peak between 10:00–11:00, some
2 h after measurements suggest peak ozone production. Sim-
ilarly, in the results presented byShirley et al.(2006), peak
ozone production is around 09:30, nearly 1.5 h later than ex-
pected. In the case presented byLei et al. (2007) using a
chemical transport model, they observe peak ozone produc-
tion around 12:30 (W. Lei, personal communication, 2007)
more than 4 h later than expected by observations. In the
PMTACS-NY study, measurements indicate peak ozone pro-
duction around 09:00. In addition to a consistent under-
prediction of ozone production by the model compared to
measurements, models do not predict a distinct peak in ozone
production in the early morning.

5 Conclusions

High radical recycling fluxes are largely responsible for the
high photochemical activity in the MCMA compared to other
urban environments. In this study we have provided a unique
perspective on radical recycling as the quantitative amplifi-
cation of radical initiation fluxes (Volkamer et al., 2010). We
use MCMv3.1, in combination with measurements of OH,
HO2 and OH loss rate (Shirley et al., 2006) to identify short-
comings in our understanding of radical cycling under con-

ditions of high VOC and NOx loadings characteristic of the
MCMA, and other polluted urban environments.

– We find excellent agreement between a lower-limit mea-
sured concentration and the modeled concentrations of
OH using MCMv3.1, with a notable under-prediction
around 06:00–07:00. We observe a significant under-
prediction of HO2. These missing radicals are most no-
table when NOx concentrations are high (25–130 ppb).
Despite a good correlation using a linear regression
analysis for measured and modeled HOx, we caution
against this metric as it is weighted towards times when
HOx values are high and NOx concentrations are low.
The metric may simulate apparently good agreement
between the model and measurements and does not re-
flect photochemical activity (i.e., radical fluxes). Our
analysis extends the range over which MCMv3.1 has
been tested under real-world conditions towards higher
NOx.

– A significant imbalance is identified in the measure-
ments of OH, HO2 and OH loss rates (Shirley et al.
(2006); see Supplemental Information). Notably, HO2
measurements are characterized by a high signal-to-
noise ratio and are typically regarded as the most reli-
able of the HOx related measurements (W. H. Brune,
personal communication, 2003). Due to the measure-
ment imbalance we can not simultaneously constrain
the model for OH and HO2 measurements, and bal-
ance OH production and loss. This limits our ability to
test predictions of OH and HO2. However, it does not
limit our assessment of chain length from any balanced
model (either not constrained by HOx observations, or
constrained by OH or HO2). We define chain length
as the number of times that a hydroxyl radical will be
regenerated via the ROx cycle.

– Atmospheric ROx cycling is inherently complex and
calculations of chain length suffer from multiple points
of radical initiation and termination. We find that the de-
termination of chain length using equations found in the
literature vary by a factor of 3 if applied to the MCMA-
2003 data set. Any exact determination of chain length
requires a single point of initiation and/or termination.
We calculate two chain length parameters: The first pa-
rameter,n(OH), calculates chain length from the per-
spective of radical initiation (see Eq. 1). The production
of ROx radicals is expressed in terms of OH-equivalents
i.e., the multiple points of initiation are compressed into
a single parameter6OHnew. The ω parameter calcu-
lates chain length based on consideration of radical ter-
mination (see Eq. 11). Theω parameter accounts for
the multiple points of termination and does not depend
on radical initiation. To our knowledge these parame-
ters represent the first systematic attempt to capture the
complexity of the atmospheric ROx radical cycle and
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may help normalize future attempts to compare chain
lengths between air masses.

– Both chain length parameters give comparable num-
bers for the HOx unconstrained model case (1<n(OH)
∼ω<4). However, we findn(OH)>20 during morning
hours if the model is constrained for HO2 observations.
As expected,ω remains unaffected by the HO2 con-
straint. The high values ofn(OH) are not compatible
with our understanding of radical termination. If the
HO2 observations are correct, there is no single process
that can resolve the mismatch betweenn(OH) andω in
the HO2-constrained scenario. An additional ROx radi-
cal source in combination with an additional HO2 sink
that does not form OH directly may resolve this conun-
drum. Note that any combination of processes would
bypass the OH radical as an intermediate.

– The model under predicts the observations of OH and
HO2 during morning hours. Our analysis demonstrates
that at very high NOx (100 ppb) our understanding of
the sources and fate of ROx radicals is incomplete. We
conclude that in order to reconcile models with obser-
vations, a significant portion of the ROx radical fluxes
needs to follow essentially different reaction routes that
may not involve the OH radical as an intermediate
species. A significant RO2 source could be tied to chlo-
rine radicals in the MCMA (see discussion inVolkamer
et al., 2010), though it appears that most of the needed
RO2 source is currently still unaccounted for.

– Control strategies for effective air quality management
rely on the predictive capacity of models. The short-
comings in our ability to predict the ROx radical cy-
cle with confidence have implications for ozone forma-
tion and the formation of SOA. For instance, the ozone
production rates reported in this study are much higher
than those reported elsewhere. Based on our current un-
derstanding that HO2 radicals propagate to convert NO
into NO2 as part of the ozone production process (at
high NO), we find that the model under predicts the
accumulated amount of ozone by at least a factor of 2
compared to the HO2-constrained model. The uncer-
tainty due to missing radicals in models may appear
reduced in urban airshed models that employ lumped
chemical codes which are optimized to a specific target
question (e.g., predicting ozone). However, the uncer-
tainty inherent to these chemistry modules proves diffi-
cult to parameterize over a wide range of VOC and NOx
conditions (Carter, 2004). For conditions typical of the
VOC limited chemistry relevant in the MCMA the un-
certainty in predicting ozone ranges between 10-40%
(or several 10 ppb at peak ozone concentrations). This
uncertainty is comparable to that from uncertain emis-
sion inventories and meteorology (Lei et al., 2007). Fur-
thermore, the underestimation of oxidant fields poses an

additional modeling challenge with predicting the rapid
formation of large amounts of SOA observed in urban
air (de Gouw et al., 2005; Volkamer et al., 2006; Klein-
man et al., 2008).

– There is a need for further laboratory research and field
work to improve our understanding of ROx radical initi-
ation and cycling. In particular, RO2 radical concentra-
tions are poorly constrained by observations. Our un-
derstanding would benefit from data sets that co-locate
multiple instruments capable of measuring HOx, RO2,
and first order OH loss at high NO, NO with high sen-
sitivity and time resolution (i.e., 100 ppt detection limit
with a second time resolution), an extensive library of
time-resolved VOC concentrations, and heterogeneous
radical processes. To our knowledge, no field cam-
paign has captured all of these measurements, and some
of these measurements will require instrument develop-
ment.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/10/6993/2010/
acp-10-6993-2010-supplement.pdf.
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