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ABSTRACT

Fault-tolerant systems and transient Markov models of these systems
are briefly explained, and it is suggested that performance probability
mass functions (PMFs) are a logical measure of fault-tolerant system
performance. For a given Markov model,' the operational state history
ensemble (OSHE) is the key concept in the first approach to performance
evaluation. In certain cases, the growth of the ensemble in time is shown
to be linear rather than doubly exponential. A derivation of the
v-transform follows. The v-transform is a discrete transform which
accurately represents all OSHE behavior and allows symbolic computation of
performance PMFs and their statistics. The second approach to performance
evaluation uses the theory of Markov processes with rewards. This theory
allows more direct computation of certain v-transform results. Comparing
the results from the v-transform and from the Markov reward methods
provides a check on accuracy and a framework for making reasonable
approximations which simplify the computation. Both analytical techniques
are applied to systems whose Markov models have from 7 to 50 states, and
the effects of model parameter variations on the performance evaluation
results will be demonstrated. This thesis concludes with suggestions for
future uses of performance evaluation in the areas of fault-tolerant system
development and modeling.

Thesis Supervisor: Dr. Bruce K. Walker
Title: Assistant Professor of Aeronautics and Astronautics
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LIST OF SYMBOLS AND ABBREVIATIONS

D FDl event: Correct detection of a failed component

U FDI event: False detection (no failed component present)

D FDI event: Missed detection of a failed component

F General FDI failure event

F Event of one failure among n componentsn

FDI Failure Detection/Isolation

I FDI event: Correct Isolation of a component

T FDI event: Isolation of the wrong component

I FDI event: Missed isolation of a component

U(k) Total expected performance generated by a transient Markov model
in k discrete time steps, starting from state x .

JA(k) Expected value of the k-step performance PMF when the Look-Ahead
Approximation is used

JC(k) Expected performance of OSHs culled by the Look-Ahead
Approximation after k time steps

JD(k) Expected performance defect after k time steps due to the Look-
Ahead Approximation

J . (k) Expected value of the k-step performance PMF, given that the
system begins in state x..

JSL(k) Expected k-step performance reaching the system-loss state,
given that the system began in x .

JSLA(k) Expected k-step performance reaching the system-loss state,
given that the system began in x and the Look-Ahead
Approximation is used

J(sk) The performance value associated with state sk (the state
occupied.on time step k)

J. (1,k) The cumulative performance of the lth OSH which started in x.
and ended in x. after k time steps

k Integral discrete time step argument

k Mission time, expressed as an integral number of FDI test
m periods



M(v,k) The k-step matrix of v-transforms

M (v,k) The column vector which is the jth column of M(v,k)

M. (v,k) The v-transform entry in the ith row and the jth column of
M(v,k)

MTTF Mean-Time-To-Failure

n General discrete time index

OSH Operational State History

OSHE OSH Ensemble

P The single-step transition probability matrix

PFA FDI false alarm probability

P(*) Probability that the event specified in the parentheses
will occur

p.. The entry in the ith row and the jth column of P
1J

p.. (,k) The probability that the lth OSH beginning in state x and
3 ending in state xi k time steps later will occur

PMF Probability Mass Function

r The vector of rewards or performance values

sk The state occupied by a Markov process at time step k

S The number of states in a Markov model; the rank of the
matrix P

SL System Loss

SLOSH An OSH which has reached the System-Loss state

t.. (k) The number of distinct OSHs that can possibly begin in
13 state x and occupy state x. exactly k time steps later

v(k) The total performance row vector

v.(k) The jth entry in the total performance vector
3

x. Designator for model state j

x Designator reserved for the state which represents all
1 redundant components functional and no FDI alarms

x SL Designator reserved for the system-loss state (also xS)



AT Discrete time FDI test period

$ (k) The probability of taking any path from state x. to
state xi in k time steps

ao(k) Variance of the expected performance of the performance PMF

E The FDI event signifying correct operation of the redundant
components and FDI system



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Fault-Tolerant Systems

This thesis focuses on control systems which are highly reliable due

to the use of redundant components in their subsystems. The subsystems are

redundant in that they have more components (sensors and actuators) than

are minimally required to usefully operate. the system. The topics of

redundant plant components or redundant control computation elements are

not considered. The overall system has a design lifetime or mission time

during which it operates autonomously and cannot be repaired, and the

system is assumed to begin operation with all components fully functional

and in use. A redundant control system is necessary because component

failures will occur during the life of the plant with non-negligible

probability. When components fail, the performance of the system degrades,

though it may still be capable of performing its mission. After a critical

number or critical combination of components fails, the system degrades to

the point where it is impossible for it to continue operating, at which

time the system is said to be "lost."

It is intuitively clear that it would be better from a performance

standpoint to stop using a failed redundant component rather than to keep

using it and allow measurements or control signals to be corrupted. A

redundancy management (RM) system is an addition to the control system

which is specifically designed to automatically handle such failure

contingencies. RM systems generally have two parts. The failure detection



and isolation (FDI) system monitors the components, decides if any have

failed, and in the event of a failure detection, decides which component

has failed so that it can be isolated from the system. When a failed

component has been detected and isolated, the reconfiguration system shuts

off the failed component and adjusts the compensation gains to optimize the

performance of the closed-loop system using only the remaining components.

Figure 1.1 is a block diagram of a plant which includes an RM-based

controller.

Command + output
-----t Actuators Plant

Sensors

-fFeedback 4es

Reconfiguration
system

JFailure Detection
and Isolation 4--

System
Redundancy Management System

Figure 1.1. Fault-Tolerant System Block Diagram

RM-based control systems are a recent concept. Finding techniques for

successfully and efficiently designing RM systems is especially vital to

the development of fault-tolerant control systems for complex systems such

as large space structures (LSS). RM systems are also widely applicable to

flight control systems, inertial navigation systems, and jet engine control

systems. Research to date in the LSS area has investigated control

component placement considering the likelihood of failures ([3, 11]) and



the development of different FDI strategies ([2, 8, 9]). Current work

concentrates specifically on the problems posed by unmodeled plant dynamics

in FDI designs. The investigation into reconfiguration techniques is less

developed, though general ground rules for control system reconfiguration,

as well as strategies for a variety of systems have been suggested [10],

and informally discussed.

1.2 Transient Markov Models
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there really is none, or incorrectly deciding which component has failed.

In this way, the decision status of the FDI system will require that more

states be included in the model. The number of components and the number

of distinct FDI conditions can combine to give the model many states. One

simplification that is usually possible is to combine into one

"system-loss" state all states which result in a system incapable of

performing its mission. Because the system cannot be repaired, it cannot

autonomously leave the system-loss state once it enters. Hence, the

system-loss state will nearly always be the single trapping state of the

model.

A simple example of state identification may be found in Figure 1.2.

The states are listed for a generic 4- component system in which 2

components must be working in order for the system to be operational. The

simple FDI system cannot indicate a failure if no failure has taken place

and isolates detected failures with certainty. Thus the FD1 system only

adds states in which a failed component is not detected ("uncovered" or

"missed"), i.e., states x2 ' x4 , and x5 . Note that many states aggregate

into the system-loss state. The states are also organized into a Markov

state transition diagram under the assumption that only one failure or FDI

decision can occur during a single test period.

After identifying all possible operational states of the system, the

next step is to determine how the system makes transitions from one state

to another. Because the FDI system will be implemented by a computer and

have a regular test period, transitions will occur on a discrete time

scale. Transition destinations will be probabilistic, because component

failures and FDI decisions are governed by stochastic processes.

Conditional probabilities that failures, detections, and isolations will



SYST-LOSS System Loss Configurations:

1W/1M/21 4M
1W/2M/1I 3M/1I
1W/3M 2M/2I
1W/31 1M/31

41

Figure 1.2. Markov Model State Identification

occur in a single test period are well defined because they represent the

reliability properties of the components and the design goals of the FDI

system. A realistic example of the event tree for a two-stage FDI system

appears in Figure 1.3. "D" indicates a detection and "I" indicates an

isolation, while overbar indicates that the decision was incorrect and

underbar indicates that the decision was missed. In general, all states of

the model will also have self-loops.
P(IIDF) CORRECT O P(DI)

ISOLATION

PDFSOLATIO P(T|DF) WRONG P(DT)

D F P(P(DI)
ISOLATION

ETECTIO CORRE O PI)

P(D|F) =1 - P(D|jF) MISSED PD
P(F) DETECil0NO Pg

P(Illi) FALSE-
AILURE ISOLATION O )P(DI)

1 - P(F) P(Of) or PA SOLATIO

ETECTIO t REJECTION ~ (I

1 - P (liD) CORRECT
OPERATION P(E)

Figure 1.3. Two-Stage FDI Event Tree
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Since the transient

states of the model represent the operational states of the modeled system,

the performance evaluation problem deals entirely with the transient

behavior of these Markov models. There is no interesting steady state

behavior.

1.3 Performance Evaluation

Assume that the performance of a simplex plant can be described by a

scalar related to the plant's steady-state command following or disturbance

rejection capabilities. Such a performance measure is invariant as long as

the plant and control law are invariant. In the fault-tolerant case,

however, failures of control components, FDI decisions, and reconfiguration

actions cause the plant and the control law to change. Fortunately, it can

usually be assumed that the closed-loop dynamics quickly stabilize and

remain fixed between successive reconfigurations, so that each state of the



Markov model can be assigned a distinct performance value in the manner of

a simplex system [4]. These performance values can be calculated for each

state a priori given the plant dynamics, redundant component status, and

FDI status for that state, and the control law set by the reconfiguration

system.

Markov models with state-associated performance values provide a

structure which combines the traditional concepts of performance for

simplex systems and the stochastic behavior of fault-tolerant systems with

redundancy management. It is at this point that the problem of performance

evaluation really begins.

1.4 Thesis Goals

The dominant idea in this thesis is that a performance probability

mass function (PMF) can logically represent the combination of the

state-associated performance measures and the stochastic Markov structure

of fault-tolerant systems. Therefore, the performance PMF and the

resulting performance statistics should be developed as the standard

quantitative measures of fault-tolerant system performance. This concept

is also proposed in a paper by Gai and Adams [4). The first goal of this

thesis is to further develop the performance PMF idea by showing how PMFs

can be derived for a particular model and by investigating their behavior.

Practically speaking, however, such a performance measure is not useful if

it cannot be calculated or approximated with a reasonable amount of effort.

Therefore, this thesis pursues a second goal of representing performance

PMFs in a manner that leads to straightforward computation and solid

approximations.



These topics are particularly interesting because of a peculiar

sparsity of detailed analyses of transient system behavior in dynamic

programming, Markov processes, and operations research oriented literature.

Most results and analyses are "steady-state" in one respect or another:

steady-state gains, distributions, optimizations etc... This thesis

analyzes a transient problem, to the end that parts of the problem which

yield steady-state results are selectively defeated so that the important

transient behavior is clearly apparent.

This thesis will provide further justification for the use of

performance PMFs as a design tool for RM systems. RM systems are already

becoming notorious for their myriad design parameters and complexity.

Component selection and placement, FDI gains and thresholds, and

reconfiguration algorithms are just a few of the engineering challenges

inherent to RM system design. Any technique which allows the comparision

of two RM systems in terms of risk/benefit tradeoffs or parameter

sensitivity will be valuable. Performance PMFs will have the added benefit

of demonstrating which approximations are reasonable to make during the

modeling of RM-based systems. Performance evaluation results can only be

as accurate as the model upon which the analysis is based. Therefore, the

ability to obtain meaningful performance information depends upon models

that are formulated using reasonable approximations with known effects.

Performance PMFs will allow the engineer to gain experience in using

different approximations by showing what the effects of the approximations

are, thus improving modeling practice.



1.5 Thesis Organization

Chapter Two introduces the concept of operational state history

ensembles, discusses their behavior, and shows how these ensembles are the

key to developing performance PMFs for a Markov model. The Chapter

continues by introducing the v-transform, a new tool for representing and

manipulating operational state history ensembles, and shows how to use

v-transforms to calculate performance PMFs and their statistics.

Chapter Three embarks on a different course in which some of the

v-transform results can be computed more directly through an adaptation of

the theory of Markov processes with rewards. The interchange of results

between the v-transform and Markov reward methods suggests an approximation

with predictable behavior which greatly decreases the computational

complexity of the performance PMF problem.

Computational methods and their application to several hypothetical

Markov models are presented in Chapter Four to show the typical form of the

results of performance evaluation. Chapter Four also demonstrates the

effects of varying model parameters such as component reliabilities and

false alarm probabilities on the performance evaluation results and shows

how to effectively use the approximation described in Chapter Three.

Chapter Five concludes the thesis with a brief summary of the major

contributions of this research and recommendations for future work.



CHAPTER 2

PERFORMANCE PMFs AND V-TRANSFORM ANALYSIS

2.1 Operational State Histories

Reference 4 describes operational state histories, but a new

explanation will be presented here as background and motivation for the

v-transform concept to be presented in Section 2.3. An operational state

history (OSH, or trajectory) is a list of the states of the model that a

system visits during a specified number of time steps. The listed states

must be in the order that the system visits them as determined by the

transitions in the model, and each state appears in the list exactly the

number of time steps it is visited. Also, unless otherwise specified, the

initial state of an OSH is always assumed to be the Markov model state

which represents all components functioning with no FDI alarms. If sk is

the state the system occupies at time step n = k, and x, is the initial

state, then an OSH from n = 1 to n = k would be the list:

{X 1 , s2, S3 , ... , Sk)

When the number of time steps is large, it becomes inconvenient (and

also unnecessary) to specify an OSH using a long list of states.

Fortunately, the important information contained in an OSH can be condensed

into two numbers. Each state in the list has a performance value

associated with it. Adding these values, or applying any cumulative

function to them, provides a cumulative performance value for the OSH.

Using a cumulative performance figure is sensible because it reflects the

amount of time the system spends in states of varying quality and thus

indicates how desirable the OSH is from the performance standpoint.



Second, an OSH does not just specify the states occupied, but also the

state transitions, each of which has a probability. The product of these

probabilities is the cumulative probability that the system actually

follows the path the OSH specifies. After calculating the cumulative

probability and performance for an OSH, only the last state occupied needs

to be retained because the two cumulative values characterize the entire

past history of the process. OSH analysis will be preferable to finding

state occupancy statistics, because OSH analysis will provide the PMF of

the system performance, a much richer source of information, and can also

reflect costs associated with transitions and analyze time varying models.

2.2 OSH Ensembles, PMFs, and Assumptions

An OSH ensemble is the set of all OSHs which a system can possibly

follow in a given period of time. Let t (k) represent the number of

possible OSHs on the interval [O,k] with state at time n=O s0 = xj and the

state at time n=k, sk = xi. For the lth OSH of the set, let p..(l,k) be

the cumulative probability and J.. (1,k) be the cumulative additive
13

performance. If S n+1,S is the general single step probability of a

transition from state sn at time n to state sn+1 at time n+1, then

k-1
p. (1,k) = p . p~2  . p ... p~s = ['s13s ,s0  S2, 1 3,s2 Sk!sk-1 = Sn+1,snn=o

where s =x = x., and s through s are determined by the lth OSH.
SO k 1 1 k-1

Similarly, if J(s ) is the performance value associated with the state sn

occupied at time n, then

k

J .(1,k) = J(s0 ) + J(s1) + J(s 2 ) + ... + J(sk) = J(sn)
n=O



To derive a performance PMF, the first step is to calculate the

cumulative probability and performance of every OSH in the ensemble over

the interval [O,km], where km is the mission time of the system. There

will be two kinds of OSHs in the ensemble: OSHs which have reached

system-loss and OSHs which have ended in one of the other (functional)

states. The set of functional OSHs, deconditioned on the final state,

specifies the performance PMF of a fault-tolerant system. The OSHs which

end in system-loss also provide useful information, but these are not

included in the PMF.

Why not simply do these calculations and be finished with the problem?

The obstacle lies in the number of OSHs which could typically make up an

OSHE. For a rough estimate, assume there are N distinct components in a

system which are either "failed" or "not failed" and M binary FDI

diagnostics which indicate either "alarm" or "no alarm." The total number

of possible Markov states will be on the order of 2 M+N, a very large

number. Assuming that every state can make a single step transition to any

other, then if there are S states, over a period of k time steps, there

will be on the order of Sk distinct OSHs! S is large, and k will be also,

so exhaustive enumeration and calculation of p..(l,k) and J.. (1,k) for an

entire ensemble is clearly impossible.

Fortunately, a set of very reasonable assumptions ameliorate the

problem of OSHE size. As Section 1.2 points out, many Markov model states

actually represent a non-functional system and can be aggregated into a

single system-loss state. Depending on the model, system-loss aggregation

can decrease the number of states by as much as an order of magnitude. Two

assumptions reduce the "connectedness" of the remaining states and hence

limit OSHE growth. Since the system is autonomous and cannot be repaired,



it is assumed that the system status can only degrade. If

ordered appropriately, then the state transition matrix,

model will be lower triangular, or nearly so. (1) Except

the states are

P, of the Markov

for self-loops,

there will generally be few or no loops in the models.

analytical techniques which follow in no way depend upon the st

the P matrix, it is still good to keep these properties in mind.

The second assumption, also alluded to earlier, is that

failure or one FDI decision can take place in a single time

assumption is reasonable in light of the dichotomy between the t

times to failure (MTTF) for components, which are on the order o

years, and the FDI test period, which is generally 1 second

This wide difference makes the probability of more than o

occurring in a single test period and the probability of a failu

Though the

ructure of

only one

step. This

ypical mean

f days to

or smaller.

ne failure

re during a

pending FDI decision negligible for the purposes of performance evaluation.

This characteristic reduces the connectivity of the model by decreasing the

number of states to which the system can transition from a given state in a

single step.

Further assumptions which decrease the size of the OSHE originate from

the behavior of the OSHs themselves. Before proceeding, however, it will

be helpful to have a simple Markov model example which illustrates the

behavior about to be discussed. The simple model in Section 1.2 is

(1)
Systems which can recover from FDI errors will possibly have state

transition matrices which are not lower triangular. When the error occurs,
the system could transition to a state with much worse performance. When,
by some means, the error is later detected and corrected, the system will
transition back to a "higher" state with better performance. With
appropriate ordering of the model states, every possible occurrence of such
behavior would correspond to an entry above the main diagonal of the state
transition matrix.



appropriate with the addition of transition probabilities and performance

values. These values are somewhat arbitrary, but do reflect a certain

structure. For the probabilities, states with no pending FDI decisions

(namely, states without M) exhibit high self-loop probabilities, while

states which include M have self-loop probabilities which are smaller, but

remain larger than the probability of entering the state in the first

place. Integral performance values in the lower right hand corner of each

box were assigned for reasons to be explained shortly. The higher the

value, the worse the performance, and it is always worse to use a failed

component than to not use it at all.

.99 4 Component System

Component Status:

x 0 7-W: Number Working
1 .0M: Number Missed

.0 005 .005 .98 #I: Number Isolated

3W/1M 21 .g0 3W/1I

1.01 .04 .0 1 .01 .
2W/2M .91 2W/1M/1I .92 92W/2

x 4 5 'x 4 x6 3

.05 1.05 .05

SYST-LOSS -99
x 0 .005 .050

. 005 .90 .98
1.0P = 0 .01 0 .04

0 .04 .01 .91 .03
0 0 .01 0 .92 .95
0 0 0 .05 .05 .05 1.0

Figure 2.1. Markov Model with Transition Probabilities
and Performance Values

Four representative 4-step OSHs for this model will demonstrate all

the important characteristics of the OSHE. All of the example OSHs begin

in state xi, and the transition probabilities and performance values for

each state, as well as the cumulative probabilities and performances are

also shown.



S 52 S3  S4  S5

[ .005 .05 .01 .91 = 2.3e-6

0 2 2 5 4 = 13

2 .005 .01 .05 1.0 = 2.5e-6
2. XX3 X57 X7

0 1 4 0 0 =5

.005 .98 .98 98 3 = 4.7e-3
3. X1X3 3 X3W 3
0 1 1 1 1 = 4 9.le-3

99 005 .90 .98 = 4.4e-3 4
4. 1 WX1 X2 X3 X3

0 0 2 1 1 =4

Figure 2.2. Four Example OSHs

The first OSH is a "normal" OSH because it has not reached system-loss

during its 4-step lifetime, but has ended in the operational state x5. The

second OSH reaches the system-loss state at time step 3 and thus remains

there at step 4. Though the system-loss state has no meaningful

performance value, if we assign it the value of zero, then the cumulative

performance value of any OSH reaching system-loss will not change

thereafter. Since the self-loop probability of system-loss is unity, the

cumulative probability of such an OSH will not change either. An OSH is

essentially frozen once it reaches the system-loss state, and since we are

not as interested in system-loss OSHs (SLOSHs) as in normal OSHs (2) that

do not reach system-loss, it makes sense to remove the SLOSHs from the

ensemble and treat them separately. Later, thiire will be other benefits to

setting the system-loss performance to zero.

The third and fourth OSHs illustrate the most significant assumption

(2)
SLOSHs will be useful for reliability evaluation, a by-product of OSH

analysis.



of this thesis. Both OSHs begin and end in the same state, have taken

different paths to that final state, yet have accumulated the same

cumulative performance. As a result, these OSHs can be combined or merged

into a single OSH without losing any information, but while decreasing the

size of -the ensemble. The cumulative probability of the resulting OSH is

the sum of the probabilities of the merging OSHs, and the new cumulative

performance is the same as that of either OSH.

Merging occurs because the performance values are integers. In

general, merging can occur if the performance values of a modeled system

are expressed as integral multiples of an arbitrarily small resolution.

The resolution of the performance scale can be as small as the accuracy of

the analysis requires.

Why is the phenomenon of merging OSHs so important? Earlier, the size

of the OSHE was shown to potentially increase exponentially in time (Sk ).

OSHE growth in the presence of merging is guaranteed to be bounded by a

linear function of time. This is a very important result in terms of the

computability of performance PMFs. Another look at the example model

should provide some insight into why this is true. There is an upper bound

on the highest cumulative performance any OSH can have. To find it,

identify the OSH which takes the most direct path to the most "expensive"

state with a self-loop (xl-.x2-x4). This OSH has the highest possible

cumulative performance, and once it begins to self-loop, the cumulative

performance increases linearly at the rate of 5 units per step. All other

OSHs must have smaller cumulative performance values and will merge (when

deconditioned on the final state) such that there is no more than one OSH

for each performance value. Hence, in the worst case, the size of the OSHE

will increase linearly in time at the rate of J(x*) OSHs per time step,



where x* is the state with the largest performance value.

Now that the concept and utility of OSHEs have been described, it may

be apparent that a useful structure for representing and manipulating them

is lacking. These considerations are the chief motivation for introducing

the v-transform.

2.3 V-Transforms

Using the definitions of t (k), p (1,k) , and J (1,k) of Section

2.2, define the v-transform or performance transform, m (v,k):

t. .(k)
13 3..(1,k)

m (v,k) =p j(1,k) v

1=1

The v-transform is simply a polynomial in v whose terms represent the

characteristics of the k-step OSHE between two states. The coefficients

are the cumulative probabilities, and the exponents are the cumulative

performance values. For example, the transform

m5 ,2 (v,3) = 0.20v2 + 0.50v 4 + 0.20v7

means that the modeled system can transition from state x2 to state x5 in 3

steps and have a cumulative performance of 2 with probability 0.2, a

cumulative performance of 4 with probability 0.5, and a cumulative

performance of 7 with probability 0.2. There remains 0.1 probability that

the system transitions to states other than x5 during those 3 steps.

If k = 1, then for all possible pairs of beginning and end states,

t. .(1) = 1 if the states connect (non-zero transition probability p..) or

t..(1) = 0 if they don't connect (p.. = 0). Thus, define the single-step
13 13

performance transform, m..(v,1):
13



J(x)
m .(v,1) = p 1

J(x1 ) is the performance value of the destination state, which could be

time-varying. The single-step v-transform is always a monomial in v which

represents the probability that if the system is currently in state x., it

will transition in the next step to state x. with incremental performance

J (xi).

The matrix M(v,1) can be constructed with the single-step transform

mij(v,1) as the entry in the ith row and jth column. M(v,1) is similar to

the familiar Markov single-step state transition probability matrix, P.

Setting v = 1 will yield the coefficient of the single-step v-transform,

and therefore:

M(v,1) yIV= - P

For example, the single-step v-transform matrix for the 7- state model is

shown below.

.99
.005v 2 .05v 2

.005v .90v .98v
M(v,1) = 0 .01v 5  0 .04v5

0 .04v4 .01v4 .91v4 .03v 4

0 0 .01v 3 0 .92v 3 .95v 3

0 0 0 .05 .05 .05 1.0

Perhaps the most useful property of P is in finding the k-step

transition probability $..(k) associated with transitions from x. to x., or
13 J l

the matrix of these probabilities, 0(k):

O(k) = P k

When the performance values are time-invariant, M(v,1) has a similar

property:



M(v,k) = [M(v,1)k

The k-step matrix of v-transforms is the kth power of the single-step

matrix. As the single-step matrix is raised to higher powers, the

monomials in v become larger polynomials. Each term in the polynomial

represents one or more OSHs, and the merging property occurs as a natural

result of polynomial multiplication: In the resulting polynomial, terms

with like exponents are combined. As an example, consider Figure 2.3,

where two sets of hypothetical OSHs merge in the state x3 '

xq x,

O.20v + 0.15v 2 + O.lv4  0.lv + 0.2v 4 1

.5v3  0.2v

(x3 ) =3 x3

= O.1v4 + 0.075v 5 + 0.05v 7 + 0.02v 4 + 0.04v7

= 0.12v4 + 0.075v5 + 0.09v 7

Figure 2.3. Merging V-Transforms

The matrix of single-step v-transforms provides the framework for

representing OSHEs for any specified mission time. Summing the columns of

M(v,k m) yields the performance transforms conditioned only on the initial

state x :

M i(v,k M) = [M(vqkm]i
i=1

The summation extends only to S-1 because if there are S states and state

xS represents system-loss, the SLOSHs are not included in the performance

PMF. If the fully functional initial state of the system is xi, then



M 1(v,k ) -is the final quantity of interest: The v-transform of the OSHE

beginning at state x and propagated over km time steps. We are usually

interested in M1(v,km), but the performance transforms for all other

beginning states can also be found without added difficulty.

Though the performance PMF contains all the system performance

information, its statistics can also be helpful performance indicators.

The performance transforms has some convenient properties in this regard:

1. k-step transition probability

$ .(k) = M. (v,k)iJ lj Iv=1

This property is useful because $ j(k) is the unreliability of the system,

an informative by-product of the analysis.

2. Expected performance of the k-step OSHE, beginning at state x.

dM (v ,k)
(k) =-J---

dv I v=1

3. Variance of the expected performance, beginning at state x.:

d2M (v,k)
r2 - (k)
J.(k) dv2  V=1

The system performance is completely characterized by the transform, so

arbitrarily high order moments of the performance PMF can be calculated if

necessary.

Mi(v,km) does not include SLOSHs, but these trajectories still provide

useful information. M Si (v,k) will be the v-transform beginning from state

x . Once again, we are usually interested in M S(v,k ). As above, define

the expected performance of the OSHs which have arrived at system-loss (SL

denotes system-loss) within k steps:

JSL(k) = JS(k) = dM51 (vk)
dv v=1



The first column of M(v,k) can be divided into two parts. The sum of

the first S - 1 elements of this column is the k-step performance transform

starting from state x because the first S - 1 states of the model

represent operational states. The derivative with respect to v of this

performance transform evaluated at v = 1, J1(k), is the expected k-step

performance for systems which are still operational after k steps, starting

from state x . The last element in the first column is called the

system-loss transform, and its derivative with respect to v at v = 1,

JSL(k), is the expected performance for those OSHs which reached

system-loss during the first k steps starting from state x . Recall that

the performance of these OSHs is not of interest because the system has not

survived for the entire mission. The sum of these two expected

performances is the total expected performance, J(k), generated by the

process in k steps without regard to whether the system survived, starting

from state xI :

j(k) = ~ij(k) + JSL(k)

Chapter Three develops a more direct approach to obtaining J(k) using the

theory of Markov processes with rewards. Although knowledge of J(k) is

helpful for checking v-transform results, it alone does not indicate what

portion of the total performance is due to SLOSHs and what portion is due

to OSHs ending in functional model states. The total expected performance

of the system will have other computational uses, however.

Recall that the size of the OSHE, or equivalently, the number of terms

in the performance transform, is guaranteed to be proportional to k, and

the constant of proportionality is the largest performance value in the



model. If the largest performance value is on the order of 10 , and the

mission length is on the order of 10 5 then there are still 10 distinct

OSHs to keep track of. This is an improvement over exponential growth, but

108 is still large. Except for resolving the performance scale, no

accuracy -has been lost through approximations. Using the total expected

performance values to trade a small loss in accuracy for greatly improved

computability will be the goal of Chapter Three.



CHAPTER 3

MARKOV PROCESSES WITH REWARDS

3.1 The Total Performance Vector

This section briefly presents some of the concepts discussed by Howard

in [6), but with a strong bias towards the present application.

As explained in Chapter One, two quantities specify the Markov model

for evaluating the performance of a fault-tolerant system: the single-step

transition probability matrix P and the row vector of state-associated

performance values, assuming they are time-invariant. Let the latter be

denoted r (rewards) where r = J(xj). Let v(k) be the row vector of total

expected performances, indexed according to the starting state, which the

Markov process would accumulate if it moved over all possible k-step

trajectories. It is possible to find a closed-form expression for v(k) in

terms of r, P, and k.

For a single step, v(1) is easy to figure out. v(1) = rP, the sum of

the performance values for each state weighted by the probabilities that

transitions to those states occur, for each possible initial state. In

summation form,

v (i) = J(x)p
1=1

v(1) is sometimes called the expected immediate reward. To find v(2), note

that there is already an expected performance of v(1) accumulated from the

first step. To this, add the expected performance accumulated on the

second step, namely, r weighted by the probability of being in each state



after 2 steps, given the initial state:

v(2) = v(1) + rP2

= rP + rP2

Similarly, to find v(3), add to v(2) the expected performance from the

third step:
v(3) = v(2) + rP3

= r(P + P2 + P3)

By induction, the total expected performance vector given the initial state

for an arbitrary number of steps k is easily shown to be:

v(k) = r(P + P2 + P3 + ... + P)

= rP(I + P + P2 + ... + P k~)

= rP Pn
n=O

The first entry of v(k) is the total expected performance when beginning in

state xi, the same result obtained at the end of Chapter Two:

vl(k) = ~i(k)

3.2 Calculating the Total Expected Performance Vector

The total expected performance vector provides a direct verification

of the results obtained through v-transforms, but it can also provide other

insight into the behavior of models of fault-tolerant systems. To compute

v(k), the modal decomposition of P is helpful:

P = VAW

V is the matrix of right eigenvectors of P, A is a diagonal matrix of the

eigenvalues of P, and W is the matrix of left eigenvectors of P, where

W = V . Substituting the decomposition for P into the expression for
k-1

v(k) : v(k) = rP (VAW)n

n=O



k-1
= rP ZVAnW

n=o

k-1
= rPV A n I W

Since A is a diagonal matrix, if A is the ith eigenvalue,

v(k) = rPV diag[ n] W

n=0

The summation now represents a simple geometric series which can be summed:

k-1 k
A. - 1

n= A

Thus,

k

v(k) = rPV diag i W

Using this expression, the total expected performance vector at mission

time, v(k m), can be computed directly.

The total expected performance vector also has interesting asymptotic

properties. The eigenvalues of a Markov transition probability matrix have

k
the property that 0 < A. . 1. Unless AX = 1, then lim A. = 0, and

therefore:
k1lim =

L1 1

Therefore, it is possible to

performance vector, v(o):

find the infinite horizon total expected

v(co) = rPV diag W
1 - XA

Does v(oo) have finite or infinite elements? Since the eigenvalue

corresponding to the system-loss state is 1, 1 1 is unbounded. But the



performance value for occupation of the system-loss state has been

arbitrarily set to zero because its value is of no consequence anyway. The

system will be trapped in the system-loss state with probability 1 as k

(time) goes to infinity. Setting the system-loss state performance value

to zero forces the steady-state gain in cumulative performance for any

SLOSH to be zero also. As a result, the steady state gain in the total

expected performance represented by the ensemble must also be zero, and all

expected performance is accumulated only during transient behavior.

Therefore, the elements of v(o) converge to finite values which represent

the pure transient expected performance values uncorrupted by any

steady-state gain.

To avoid computational difficulties in working with the matrix P, it

is best to use only the S - 1 by S - 1 upper left partition of P, assuming

there are S states and xS is the system-loss state. This eliminates 1 as

an eigenvalue of the resulting reduced order matrix, and then the computer

does not have to evaluate (1/0) * 0 when computing v(o).

3.3 The Total Expected Performance Profile

The elements of v(bo) are the total expected performance values which

the transient Markov process can generate depending upon the initial state.

For those acquainted with dynamic programming, v(o) is the same as the

vector of relative gains computed during policy iteration, except that in

this case they are no longer relative because there is no steady-state

gain. The first element of this vector is an upper bound which defines the

range of possible expected performance values beginning in state x,. The
I

expected performance for OSHs arriving at system-loss asymptotically



approaches the infinite horizon total expected performance just as the

unreliability of the system approaches unity. Both of these figures as

functions of k give an indication of how close the system is to its

steady-state. A highly reliable system should be nowhere near its

steady-state (which is system-loss) during the duration of a mission. The

difference between the total expected performance (J(k)) and the expected

performance for OSHs arriving at the system-loss state ({SL(k)) is

naturally the expected performance contained in the performance PMF, namely

J1 (k). The relationship between these three quantities can be pictured on

an expected performance profile where J 1 (k) , J SL(k), and J(k) are plotted

versus k. Figure 3.1 shows the characteristic shapes of these curves.

vi N _ _ _ _ _ _ _ _ _ Slope =0 p y

J(k)

S L((k)
11

0
4- '

0 0

0 Ik (time)
km

Figure 3.1. Expected Performance Profile

For a reliable system, km will lie in the early, sharply rising parts of

these curves. The J(k) curve can be found using the techniques of this

Chapter, but the important breakdown of J(k) into its two components J1 (k)

and J SL(k) requires v-transform-generated statistics.



3.4 The Look-Ahead Approximation

Chapter Two ended with a reminder of the complexity of computing

performance PMFs using v-transforms, even when the number of terms in the

transform of the PMF grows linearly. Combining the total performance

vector at mission time v(km) with the v-transform structure yields the

look-ahead approximation. This approximation was motivated by early

v-transform results which indicated that a large number of OSHs represented

such a small expected performance that discarding them would affect neither

the PMF nor its statistics to a significant degree. The approximation thus

reduces the size of the OSHE by eliminating as early as possible during

computation those OSHs which will generate an insignificant amount of

expected performance. What may be considered "insignificant" must be

judged by the engineer, and the chosen value will be shown to have a

significant impact on the computability and accuracy of the results.

When manipulating v-transforms, it would seem plausible to examine the

expected performance represented by each polynomial term and decide whether

to retain the term or discard it based on this value alone. If an OSH has

arrived at state x. from state xI after an arbitrary number of steps
11

{k: k<km with pi,(k) and J (k) as the cumulative probability and

performance respectively, then we would examine the quantity:

dv[pi 1(k)vJ" (k)v=1

Unfortunately, this strategy allows for the possibility of discarding an

OSH which could generate a significant amount of expected performance if it

remains in the ensemble, even though it has not generated significant

expected performance up to the time of the test for its significance.



Using v(k m), however, it is possible to distinguish between significant and

insignificant OSHs (or v-transform terms). v(km) provides an upper bound

on how much expected performance an OSH could generate during a mission as

a function of the starting state. Adding the element of v(km) which

corresponds to the ending state of the (merged) OSH to the cumulative

expected performance of the OSH (i.e. to the exponent of the v-transform

term) and then evaluating the derivative at v = 1 yields an upper bound on

the total amount of expected performance that this term could generate.

Thus, knowledge of v(k,) allows us to "look ahead" and conservatively

discard OSHs with the assurance that their future behavior will really be

insignificant to the performance results. An OSH can be safely removed

from the ensemble if its v-transform term fails the look-ahead test:

d V il(k) vi(km) ?
- pj - v5 v>tolerance

-1v=1

The tolerance value is set by the system designer, and might typically be

some fraction of the total expected performance at mission time starting

from state xi, v (k m). This approximation is conservative because it

discards OSHs using the additional expected performance they could generate

over an entire mission even though the OSH may already be far into the

mission. Therefore many terms are actually retained longer than they need

be. In order to discard an OSH earlier, however, requires the computation

and storage of the total expected performance vectors for all

{k: 0 < k < %}. Then, the remaining expected performance for each state

at each step in time would be known exactly. Unfortunately, the extra

computation this would require far outweighs the expected benefit.

The expected performance profile changes slightly in light of the

look-ahead approximation. Recall that before the approximation is used,



vl(k) = ~(k) = ~T(k) + JSL(k) for all k.

With the approximation, there is a certain amount of expected performance,

J (k), represented by OSHs which are culled. For each OSH that is culled,

some of the expected performance it represents at the time it is culled

would have remained in the PMF and some would have reached the system-loss

state had the OSH remained in the ensemble until mission time. Therefore,

the expected performance in Jc(k) comes directly from "Ji(k) and JSL (k).

Let the expected performance in the PMF under the approximation be JA(k)

and let JSL(k) under the approximation be JSLA(k). Then,

vl(k) = ~i(k) = ~A(k) + TSLA(k) + TC(k) + TD(k) for all k.

The JD (k) is the expected performance defect caused by the approximation.

The defect is always present because insignificant OSHs are culled prior to

mission time. This means that here is a certain amount of expected

performance that would have been generated (whether it ended in system-loss

or not) that was not generated due to culling. Under proper use of the

approximation, both JC(k) and UID(k) should be very small, and therefore

~(k) ~ TA(k) + ~SLA(k) for all k.

The size of J (k) can be checked if J (k) and J A(k) are calculated during

the computation of a PMF. J(k) comes from the total expected performance

vector, and IA(k) is the expected value of the PMF. Therefore, JD (k) is

the only remaining unknown.

The main intent of the look-ahead approximation is that if

7A(k) ~ i(k)

jSLA(k) j SL(k)



then we can be reasonably certain that the resulting performance PMF will

be very close to the performance PMF generated without using the

approximation. By keeping only the "important" OSHs, the approximation

dynamically regulates the OSHE in order to achieve results which have a

guaranteed minimum level of significance. This level is determined by the

tolerance, and through J(k), J (k), and J (k), the engineer can find a

tolerance that yields accurate results with reasonable computational

effort.

This concludes the theoretical portion of this thesis. The past two

chapters have often alluded to computational considerations. As the theory

was developed, computer programs were simultaneously being written which

manipulate v-transform matrices and calculate performance profiles.

Chapter Four presents a number of analyzed examples which demonstrate the

validity of the theory, show the form of typical results, and reveal some

practical considerations in applying these ideas to real problems.



CHAPTER 4

ANALYZED MODELS

4.1 Overview

This chapter presents the results of analyzing several models using

the techniques developed in Chapters Two and Three. Section 4.2 discusses

two computer programs that have been written to manipulate v-transforms and

calculate total expected performance, expected performance profiles, and

performance PMFs. The relationship between the characteristics of Markov

models and the computational complexity of calculating performance results

is also discussed. Section 4.3 presents the several models to be analyzed

and discusses why these models were selected and how they were developed.

The results from analyzing the models with the computer programs are

presented in Section 4.4. Expected performance profiles are presented, and

variations in the performance PMF for different numbers of steps k and

different tolerances in the look-ahead approximation are examined. Section

4.4 also explores the characteristics of performance evaluation results in

two important contexts. First, using performance evaluation results, a

10-state model which approximates a 50-state model is constructed and

analyzed, and the results are compared to those of the 50-state model.

Second, an 8-state model is analyzed for variations in such parameter

values as MTTF and false alarm probabilities to show how such variations in

the RM-based fault-tolerant control system are reflected in the performance

evaluation results.



4.2 Computation

4.2.1 Symbolic Manipulation of V-Transforms

A listing of procedures for symbolically manipulating matrices of

v-transforms is presented in Appendix B in the file APPROX.SCM. These

procedures are written in the SCHEME programming language [1], a dialect of

LISP, and were compiled and executed on a modified Hewlett Packard 9826U

microcomputer. SCHEME (or any LISP dialect) is particularly suited for

manipulating v-transforms because of the dynamic nature of the v-transform

matrix data structures. During computation, matrix lists can expand and

contract dramatically as polynomials are multiplied, merged, and culled

using the look-ahead approximation. LISP-related languages are among the

few languages in which such structures can be efficiently created and

manipulated without the need for direct memory management.

Matrix Level:

Column Level:

Element Level:

Term Level:

List of Columns
( column-1 column-2 column-3 ... column-n)

Column Designator
List of Elements

1 (element-1 element-2 element-3 ... element-n))

Element Designator
List of Terms (the V-Transform)

( 1 ( term-1 term-2 term-3 ... term-4 ))I
(exponent coefficient)

Figure 4.1. Matrix Data Structure

As shown in Figure 4.1, matrices of

association lists nested three deep.

way to represent tables. Each member in

v-transforms are represented as

Association lists are an efficient

the association list is a pair



with a key (the first item) and an entry (the second item). If the entry

is another association list, then multidimensional tables can be

represented. On the matrix level, the keys are the column designators and

the entries are association lists of elements. On the column level, the

keys are the element designators and the entries are association lists of

the terms of a v-transform polynomial. Finally, on the element level, the

keys are the exponents of the polynomial terms and the entries are the

coefficients of the terms.

The matrix manipulation procedures are organized hierarchically

according to the level of the matrix structure that each procedure operates

on, i.e. matrices, columns, elements, transforms, or terms. The user

normally interacts with the top level procedures on the matrix level,

though there are some lower-level utilities that are also useful. There

are two approaches to generating performance PMFs, and the four top level

SCHEME procedures permit these two approaches to be used separately or

together. Since all four procedures incorporate the look-ahead

approximation, all require the values in the total expected performance

vector, v(km), and a tolerance value to be specified in their arguments.

The first approach is the linear method. It begins with a column

vector which is all zeros except for a single entry of unity in the element

position corresponding to the beginning state (usually the first position).

The single-step v-transform matrix is then repetitively left-multiplied

into this column for a specified number of iterations. The elements of the

resulting column are added to give the performance transform. This method

is "linear" because the number of matrix-column multiplications required

for its execution is equal to the specified mission time (expressed in the

number of time samples). Two procedures use the linear approach:



"gen-pmf" and "gen-pmf-with-stats." "Gen-pmf" produces the performance PMF

only, while "gen-pmf-with-stats" returns not only the PMF but a sequential

listing of a variety of performance statistics ( 1 (k), JSL(k), J(k), the

unreliability, etc...) for use mainly in performance profiles.

The second approach is the exponentiation method. By multiplying two

matrices of v-transforms, this approach directly computes higher powers of

the single-step v-transfrom matrix. The "exponentiate" procedure raises

any v-transform matrix to a specified power. Thus, to compute the 100th

power of the single-step matrix, "exponentiate" can be used to raise the

single-step matrix to the 10th power, and then to raise the result to the

10th power again. The performance transform is once again the sum of the

elements in the first column of the resulting matrix.

"Exponentiate" and "gen-pmf" each have their advantages and

disadvantages. "Gen-pmf" uses less memory space because only the resultant

column and the single-step matrix must be stored. "Exponentiate" requires

that the entire matrix raised to successively higher powers be stored, and

even though we are ultimately interested in only the first column, it is

easy to quickly fill up the memory during the analysis of large order

models. "Exponentiate" has the advantage of having less overhead for list

operations and thus, if the memory is available, high powers can be

computed more quickly. "Exponentiate" would thus be the choice for use on

computers with virtual memory. "Gen-pmf" has maximum list operation

overhead, but if memory is in short supply, "gen-pmf" may be the only

option.

The fourth top level procedure combines the two approaches. The

procedure "power" takes as one of its arguments a specification list.

"Power" uses "exponentiate" to raise the single-step matrix to the powers



listed in the specification list until the last specification is reached.

Then "power" uses "gen-pmf" to generate the performance PMF. Thus, the

specification list (10 10 72) would compute the performance PMF for a

mission time of 7,200 by raising the single-step mat

in two steps and then linearly propagating the first

matrix to the full 7,200 steps. This method

"exponentiate" procedure, but saves memory when the

Both approaches to computing performance PMFs a

to their treatment of SLOSHs and terms culled

approximation (henceforth, "culled OSHs"). Secti

the behavior of SLOSHs makes it desirable to remove
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Once SLOSHs are removed from the ensemble, both approaches accumulate the

information provided by the SLOSHs as two statistics: the unreliability

and JSL(k). Culled OSHs are treated similarly, i.e. the total probability

and total expected performance represented by these culled OSHs are

accumulated and available via the procedure "gen-pmf-with-stats." However,

there is a computational expense associated with accumulating the culled

and system-loss statistics which can be avoided if the information these

statistics supply is not needed. Hence, the procedures in the file

FAST.SCM (also in Appendix B) are supplied. These procedures are

modifications to selected APPROX.SCM procedures which permit the most

direct (and the fastest) computation of performance PMFs.

Once a performance PMF is generated, it is returned in the form of a

v-transform, i.e. a list of pairs, each pair consisting of an exponent and

a coefficient. At this point, the reliability, expected performance, and

variance can be calculated using the procedures "add-coef," "ddvatl," and

"1variance" respectively. In addition, the PMF can be plotted using the



procedure "plot," and if expected performance statistics have been

generated using "gen-pmf-with-stats," they can be plotted using the

procedure "profile." See Appendix B for listings and documentation on

these procedures.

4.2.2 Computing the Total Expected Performance

A second computer program was written which incorporates the theory of

Markov processes with rewards explained in Chapter Three. This

straightforward program is written in FORTRAN (Appendix B). The core of

the program is the modal decomposition of P (the Markov state transition

matrix) using the IMSL routines EIGRF and LINV1F. EIGRF decomposes P into

V, the matrix of right eigenvectors, and LAM, the vector of eigenvalues.

Then LINVIF computes W, the matrix of left eigenvectors, by inverting V.

Using the resulting modal decomposition, the total value vector for mission

time and for the infinite horizon is calculated exactly as indicated in the

expression for v(k) derived in Chapter Three. A total expected performance

profile is also computed and plotted. All other code is primarily for

input/output operations. All results can be selectively saved in files for

future use.

4.2.3 Computational Complexity

There are several Markov model characteristics which can lead to

computational complexity in a performance evaluation problem.

Computational complexity most severely affects the time required to

generate performance PMFs. First, and most obviously, the more states the

Markov model has, the longer it will take to analyze. During v-transform

analysis, the increase in computation time comes primarily from the list



operation overhead inherent in SCHEME, whereas in FORTRAN there are simply

many more floating point operations to perform. The second key factor is

the mission length expressed as an integral number of FDI test periods. A

longer mission length will always mean longer computation time for the

SCHEME system. However, due to the use of the modal decomposition of P,

the FORTRAN system is relatively immune from the effects of long mission

times. This is fortunate because the FORTRAN results play a key role in

shortening the SCHEME execution time via the look-ahead approximation.

4.3 Models

Several models have been analyzed to demonstrate the different aspects

of performance evaluation. They have 7, 8, 10, and 50 states, and they

increase in complexity in terms of both the model size and the mission

time.

The first model (Figure 4.2) is the model already presented and

discussed in Section 2.2. Though it is rather simple, this model comes

close to the typical model structure for RM-based fault-tolerant systems.

Its dynamics are complicated enough to demonstrate the characteristics of

OSHE growth, of the look-ahead approximation, and of performance PMFs.

The second model is a full-scale, realistic model of a tactical

system. The control system has two independent component subsystems: the

sensors and the actuators. Each subsystem has 4 identical components, any

2 of which must be functional in order for the subsystem to operate. Both

subsystems must be operating for the plant to be mission capable.

The FDI systems for each subsystem are identical, independent,

two-stage detection/isolation systems with probabilistic behavior similar
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Figure 4.2. 7-State Markov Model

to the event tree in Figure 1.3. The FDI systems combined with the

functional component subsets yield an 8-state Markov model for each

subsystem which has the "double-star" structure shown in Figure 4.3. The

transitions are labelled with the FDI events which cause them to occur.

Note that the system can tolerate a single missed detection or a single

missed isolation when there are three or four components in use. However,

when there are only two components in use, any failure (detected or not) or

FDI action will send the system into the system-loss state.

The calculations of all of the transition probabilities are in

Appendix A, but a few of the system specifications will be outined here.

The system is configured for a tactical mission with a duration of two

hours. An FDI test period of 1 second yields a mission length of 7200

discrete steps. Component failure events are assumed to be exponentially

distributed with MTTFs of 100 hours for each sensor and 25 hours for each

actuator. The sensor and actuator FDI systems are identical, and their



State Notation: A/B

A components in use
B failed components in use

failure detected or not
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Figure 4.3. Double-Star Markov Model
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Event Probability for State:

4/0 4/1 D 4/1 D 3/0 3/1 D 3/1 D

P(DIF) = .99 1.0 .95 .98 1.0 .92

P() .001 N/A N/A .005 N/A N/A

P(I|DF) = .75 .65 .75 .65 .60 .65

P(TIDF) .01 .05 .01 .01 .12 .10

P(I|DF) = .24 .30 .24 .25 .28 .25

P(II|) = .005 N/A N/A .025 N/A N/A

Figure 4.4. FDI System Specifications

variances were then computed for each state of the sensor subsystem,

normalized by C2, and fit to an integral performance scale, yielding sensor

subsystem performance values between 1 and 7. The actuator performance was

scaled relative to the sensor performance. Actuator subsystem performance

values were set an order of magnitude higher than the sensor values because

the actuator subsystem is more critical to mission completion than the

sensor subsystem is. For actuators, missed detections and missed

isolations are particularly dangerous, and therefore a missed detection is

assumed to cause the performance to be ten times worse. A missed isolation

causes the performance to be only five times worse because it is assumed

that the reconfiguration system can aid the performance somewhat just by

knowing that a failure is present. The resulting scale of actuator

subsystem performance values ranges from 12 to 170. Once again, refer to

Appendix A for details.

To complete the full-scale model, the two subsystem models were

combined with the assumption that only one FDI event can occur in each

subsystem in any single test period. The states of the full-scale model



are the set of composite states formed by selecting all possible pairs of

states, taking one state from each subsystem model. Since each subsystem

has 8 states, there would be 64 such pairs, but this drops to 50 pairs when

all pairs containing a system-loss state are aggregated.

The task of calculating the transition probabilities for the resulting

50 states is too difficult to do by hand, so it has been automated in the

computer programs. The front end of the FORTRAN code computes the

resulting single-step transition matrix P given two input subsystem

matrices P1 and P2. In the SCHEME system, the procedures in the file

EXPANDER.SCM perform this task (Appendix B). The top-level procedure is

"make-matrix," which takes two arguments, matrix1 and matrix2, the single

step v-transform matrices for the two subsystems. During the process of

combining the subsystems, the performance values for the resulting

composite states are the sums of the performance values of the two

component subsystem states.

The 50-state model is large, complex, and representative of the kind

of models which could easily be encountered during the performance

evaluation of real systems. The dynamics are much slower, and the mission

time is much longer than in the two preceding models. This model is

analyzed to investigate the limits of the computational techniques

implemented in the FORTRAN and SCHEME computer programs. The analysis also

suggests ways to overcome these limits by simplifying the model, as Section

4.4.2 will demonstrate.



4.4 Performance Evaluation Results

4.4.1 The 7-State Model

Using the FORTRAN program, the infinite horizon total performance

vector, v(co), was computed:

v(CO) = [110.27 108.04 109.52 58.06 57.00 56.97 0]

A short listing of the FORTRAN results for this model is presented in

Appendix C. The first element of this vector, v1 (o) , represents the total

expected performance that the system can generate in an unlimited amount of

time, given that it began in state x . The last element corresponds to the

expected performance that would be generated if the system began in the

system-loss state and stayed there. This entry will always be zero since

the performance value of the system-loss state is chosen as J(x ) = 0.

An arbitrary mission time of k = 150 was selected for this system.

At mission time, the total expected performance vector is

v(km) = 62.73 101.16 102.41 58.04 57.00 56.97 0]

Note that v (k ) < v (). When calculating performance PMFs, v (k is a

guideline to defining an appropriate tolerance for the look-ahead

approximation because it is the upper bound on the total expected

performance the system can generate during a mission time. Using vi(km) as

this limit rather than v1 (oo) is preferable because in most systems

v1 (kim) << v1 (o). Figure 4.5 is the total expected performance profile for

v (k) plotted from k = 0 to k = 1000. This model effectively reaches

steady-state in approximately 750 time steps because at this time, its

unreliability is very close to 1, and the total expected performance v 1 (k)

is very close to v1 (oo). The plot of v 1 (k) approaches the asymptote

E(J) = 110.27 showing that the steady-state gain in expected performance is



zero because J(XSL) is zero. All expected performance is generated during

occupancy of the transient states of the model. If J(x SL) had been a

non-zero constant, the steady-state performance profile would have been a

ramp with a slope equal to that constant, and the transient behavior would

thus be obscured.

Using the SCHEME system, several performance statistics were

calculated in order to check the accuracy of the SCHEME results against

those of the FORTRAN system. These values were generated using a tolerance

of 10~10 for the look-ahead approximation.

SCHEME FORTRAN

Vi(km) = 7(150): 62.7362 62.7363

v1 (oo) ~ 7(750): 110.13 110.14

Unreliabilities $si (I50): 0.47009 0.47009

L $3(750): 0.998427 0.998463

The expected performance represented by the OSHs culled by the look-ahead

approximation, J c(k), is 6.3 x 10-2 after 750 time steps. The expected

performance and cumulative probability represented by the culled OSHs will

generally account for any small discrepancies between the SCHEME and

FORTRAN results, if the look-ahead approximation is used properly. In this

case, the tolerance is small enough that the effects of the approximation

on the results are negligible.

The SCHEME system divides the total expected performance J(k) or v1 (k)

into its two major components, 1 (k) and SL(k) . Figure 4.6 is an expected

performance profile and Figure 4.7 is the system unreliability curve on the

same time scale, both generated by the SCHEME system. In Figure 4.6, the

top curve, J(k), is the total expected performance profile, as computed by
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the FORTRAN system in Figure 4.5. The other two curves, J (k) and J (k),

are the components which add to produce U(k). 7 (k), the expected

performance represented by SLOSHs, asymptotically approaches J(k), and

1(k), the expected value of the performance PMF, asymptotically approaches

zero as k increases. This behavior was predicted in Chapter Three. The

similarity in the shapes of the unreliability and J SL(k) curves shows that

all of the probability and expected performance "flows" with the OSHs

toward the system-loss state as k becomes large.

Before presenting performance PMFs, the structure of the PMF plots

needs some explanation. All performance PMFs will be plotted in the same

format. The horizontal axis is the performance axis and the vertical axis

is the logarithmic probability axis. PMFs are plotted as a series of

impulses whose horizontal location is determined by the cumulative OSH

performance and whose vertical height is determined by the cumulative OSH

probability. The PMFs appear solid due to the graphics resolution limits.

The horizontal axis has a range of 450 pixels, and the impulses are plotted

as densely as possible in order to present more information. Because the

range of the PMF performance scale generally exceeds 450, 2 or more

neighboring impulses are added to create the impulse which is actually

plotted. Adding impulses has little effect on the shape of the PMF

because the probability axis is logarithmic, and therefore the plot

accurately represents the envelope of the PMF that would result if higher

resolution graphics had been used. The number of impulses combined into

one impulse affects the horizontal axis scaling and will be noted on each

PMF. Where comparisons are made, this scaling will be identical for all

PMFs under consideration.

The vertical axis is the logarithm of the cumulative OSH probability.



A logarithmic scale was chosen in order to portray the wide range of

probabilities typically encountered in the PMFs. The scale on all plots is

from 100 to 10-15. It is assumed that events which occur with a

probability of less than 10-15 are not of interest and will be culled by

the look-ahead approximation.

It is important to note that although these plots are performance

PMFs, the probability they represent does not add up to 1.0. The total

probability in the performance PMF represents the system reliability, and

the difference between this probability and 1.0 is represented mostly by

the SLOSHs that were removed from the ensemble. As a result, no PMF is

complete without an accompanying specification of either the reliability or

unreliability of the system. It would be possible to normalize the PMF by

the system reliability, but this impedes direct comparison of two or more

systems that have different reliabilities.

Performance PMFs for the 7-state model were calculated to demonstrate

two phenomena: The variation in the PMF shape for increasing times k and

for different look-ahead tolerances. These examples will provide a basis

for examining the PMFs of more complicated systems.

Figures 4.8 - 4.12 are the performance PMFs for the 7-state model at

k = 50, 100, 150, 250, and 750 respectively. The look-ahead approximation

used the v(150) vector computed by the FORTRAN program and a tolerance of

10-. That this tolerance has a negligible effect on the shape of the

performance PMF will be demonstrated shortly. All of these plots have the

same performance scale, and 2 impulses of the PMFs were combined to

generate each impulse in the plots (Scale = 2). These PMFs were produced

by the procedure "gen-pmf-with-stats" so that the J (k) statistic could be

shown with each plot.
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Examining a single PMF (Figure 4.8) immediately reveals a few typical

PMF characteristics. First, there is an impulse at 0 on the performance

scale which

impulses.

"best" OSH

for the ent

model, so

non-zero, t

performance

have the h

performance

is almost two orders of magnitude higher than all of the other

This impulse appears on all PMFs and represents the single

hich remained in the fully functional, no FDI alarm state, x1,

ire 50 steps. The performance of this state is 0 in the 7-state

this impulse lies at 0, but if the performance of this state is

his impulse and the rest of the PMF will be shifted to higher

values. The OSH which this impulse represents will generally

ighest cumulative probability and best (lowest) cumulative

of any OSH in the ensemble, so the impulse will always appear

on the extreme left edge of the PMF.

The next dominant feature of the PMF is a flat or gently sloping

plateau region about two orders. of magnitude below the large impulse. This

region represents the performance values for the next most likely system

behavior, which is the most likely system behavior involving action by the

redundancy management system. Note that the OSH represented by the large

impulse involved no failures or false alarms. The performance value would

therefore have been identical for a system with no RM system at all. The

rest of the PMF after the impulse tells us about the performance of the

system when the RM system has been forced to operate. The plateau region

still involves relatively small performance values and represents OSHs

which spent most of the 50 steps in "good" states (xI or x3 in this case),

but incurred the "expensive" transitions x --1wx 2 -- x3  or x -eax which
1 2 31 3

immediately lowered their cumulative probability by about two orders of

magnitude. Depending upon the structure of the model, there can be several

plateaus of varying widths and heights which can be traced to the behavior



of specific OSH subsets in the ensemble.

The final characteristic of a performance PMF is the gentle slope

below the plateau which decays into a sharp roll-off. This region

represents OSHs which have spent proportionally more time in states with

"high" (i.e. bad) performance values. For most models, as the cumulative

performance values increase beyond a certain point on the plot, the

corresponding cumulative probabilities decrease very rapidly, easily

reaching levels of 10100 or 10-500. It is safe to assume that such OSHs

have negligible impact, and removing these OSHs from the ensemble to

improve computational performance is the main goal of the look-ahead

approximation.

Figures 4.8 - 4.12 also show the time behavior of performance PMFs.

In general, as k increases, the total probability represented in the PMF

decreases and moves towards higher performance values. In terms of

expected performance, the mean of the PMF increases to a certain point and

then decreases as the decrease in the total probability begins to dominate

the spread to greater performance values. This behavior was already

illustrated by the performance profile in Figure 4.6. The major features

of the performance PMF also change with time. The height of the impulse at

0 decreases, and the level of the plateau decreases while its width

increases. The step between the plateau and the roll-off region becomes

less pronounced for larger k, and in general, all of the PMF

characteristics become blurred as k increases. The PMF at mission time is

the most important, however, and at k = 150, the features of the PMF are

still plainly visible. Figure 4.13 shows the superimposed outlines of the

PMFs to more easily illustrate their variation with time.

The next series of PMF plots, Figures 4.14 - 4.18, show the effects of



variations in the look-ahead approximation tolerance of a PMF. These plots

are the 150-step PMFs of the 7 state model for tolerances of 10~ , 10-6

-4 -3 -2
10 , 10 , and 10 . All plots have the same horizontal scale (2 PMF

impulses combine into 1 plotted impulse) which is the same scale used in

Figures 4.8 - 4.12.

It should be clear that the smaller the tolerance is, the mor.e

accurate the PMF will be, because more of the "insignificant" OSHs remain

in the ensemble. The "baseline" PMF is therefore the plot in Figure 4.14

with a tolerance of 10 8. The accuracy of this PMF is apparent from its

statistics. Its reliability agrees with the FORTRAN result to more than 5

decimal places. Furthermore, J s( 150) is 43.7993

computed at a tolerance of 10-10. Adding the mean

agrees with the total expected performance, v (km),

program to 5 places. By inspection, the smallest i

PMF (on the right edge) that was not removed by

probability of about 10 10, which is insignificant.

In Figure 4.15, the tolerance has been raised

statistics, to the accuracy they are represented,

from the SCHEME profile

(18.9365) to JSL (150)

computed by the FORTRAN

mpulse appearing in this

the approximation has a

to 10- 6 Note that the

are exactly the same as

those of 4.14, even though the smallest impulse represented now has a

slightly greater probability, about 10 8. In 4.16, the tolerance is 104,

and now the statistics of the PMF have changed very slightly - perhaps not

by what would be considered a significant amount, but some accuracy has

been lost. As the tolerance is raised to 103 and then 10-2 in Figures

4.17 and 4.18, the shape of the PMF and its statistics change much more

drastically, such that the PMF in Figure 4.18 is useless as an analytic

tool. Note, however, that for good tolerances like 10-6 and smaller, the

PMF has a maximum value of about 450 for 150 time steps. This indicates
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Figure 4.18. 150-Step Performance PMF for a Tolerance of

that the OSHE has grown at an average rate of 3 OSHs per step,

smaller than the upper bound of 5 OSHs per step predicted by the

0

10- 2

which is

largest

performance value in the model. Also note the typical sizes of the

variances of the PMFs. Variances which are so large relative to the mean

reinforce the idea that realistic performance evaluation cannot be solely

based on an expected performance profile of a system. The performance PMF

should be used first because it provides much more information about a

system and is less likely to be misleading.

Selecting a "good" tolerance to use during analysis is a problem of

trade-offs. If the tolerance is too small, the computer will need extra

memory space and more computation time to store and manipulate the

additional v-transforms of insignificant OSHs. However, a tolerance which

is too large can significantly alter the PMF, reducing it to either nothing
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or just the largest (leftmost) impulse,

statistics Therefore, selecting a tolerance to use for the look-ahead

approximation is a compromise between accura

computation time. There should be a tole

PMF to be computed for k = k in most probl

computational resources must be found, or

with less severe computational requirements.

Earlier, it was claimed that v (km) is

tolerance. For the 7-state model, v 1 (150)

in Figure 4.14 - 4.18 used tolerances that w

of magnitude smaller than v (150). For t

very accurate for a tolerance 6 orders of

results suffered for tolerances larger than

with the other models to be presented s

magnitude below v (k m) worked well as a

computationally possible, it is reasonable

down from v 1 (k ) in choosing the tolerance,

cy, computer

rance which

memory

allows a

ems. If not,

else the problem

usage, and

reasonable

more powerful

must be recast

a good guide for selecting a

is 110, or about 102

ere 10, 8, 6, 5, and

his problem, results

magnitude below v 1(

this. After gaining

hortly, a tolerance 6

rule of thumb.

to go as far as 9 or

but using tolerance

The PMFs

4 orders

were still

150) , but

experience

orders of

If it is

10 decades

s smaller

than 10 decades down for general performance evaluation problems is

wasteful and probably will not improve the results.

4.4.2 Modeling Approximations (The 50- and 10-State Models)

The 50-state model described in Section 4.3 was a severe test of the

SCHEME system. The FORTRAN program had no difficulty generating results

some of which can be found in Appendix C. FORTRAN provided v(7200)

(k = 7200) which was used by the SCHEME system. The first element of

5
v(7200) is 101,296., or about 105. In light of this, two tolerances were

used with the SCHEME system: 10 (9 decades down) and 0.1 (6 decades

and simultaneously destroying the

.



down) according to the framework for selecting tolerances described above.

Unfortunately, this model quickly reached the memory limit of the HP9826.

The PMF for k = 111 was the greatest that could be calculated for the

tolerance 10 , and the PMF for k = 376 was the best possible for a

tolerance of 0.1. These limits were reached so soon because the HP9826

completely relies on physical RAM for memory and has no virtual memory

capability. On a larger computer with virtual memory, there is little

doubt that this problem could be analyzed for much larger values of k.

Rather than abandoning the 50-state model, it can be used to

demonstrate an important application of performance evaluation: Model

simplification. In the past it has been a common practice during

reliability analyses to either ignore or aggregate many states of a large

Markov model in order to make the model analytically tractable. Selecting

the states to ignore or aggregate has generally been based more on

intuition than on solid indications of how using a reduced order model will

affect the results of the analysis. Examining the "modal coefficients" of

a Markov model calculated during performance evaluation can partially

rectify this problem.

In the FORTRAN program, the value of v 1(k) is the only value

calculated in order to generate a total expected performance profile. To

calculate v 1 (k), the expression derived in Chapter Three is used directly:

- k -
X. - 1

v(k) = rPV diag W

Since r is a row vector and P and V are square matrices, rPV will also be a

row vector, and rPV multiplied by the diagonal matrix of modal geometric

sums will also be a row vector. To find v (k), the inner product of the

row vector



k-

rPV diag i

1X -

and the first column of W is all that needs to be computed. The expression

for v (k) will take the following form:

k -- k- k -
V k) a IXI - 1 + a 2 ~ I + S1XS-1 ~

(ealv (k) = a{' ~ J+ a2[ :]+ ... + a~i4
1 - - )2 - .-XS-1 -i

(Recall that A = 1 and is left out of the problem by partitioning P.) The

coefficients "a " are the modal coefficients. If [rPV]. is the ith element

of the row vector rPV and W is the ith element in the first column of W,

then
a = [rPVJ1 W1

The modal coefficients indicate which Markov states contribute the greatest

amount of total expected performance in v (k). Therefore, these

coefficients serve as a guideline for which model states are the most

important in terms of performance. The modal coefficients of the 50-state

model are in an output listing in Appendix C.

Among the 49 modal coefficients, there are 9 (highlighted by boxes)

which are from 3 to 5 orders of magnitude larger than the other 40. For

this system, it might be expected that these 9 coefficients correspond to

the states with the 9 largest (> 0.9995) self-loop probabilities or

eigenvalues. Though specification of the entire 50-state model had to be

automated, the origins of these 9 dominant states are easy to trace. In

the 8-state subsystem models, 3 states have the largest self-loop

probabilities for both the sensors and the actuators: x,, x , and xy,

which correspond to component configurations 4/0, 3/0, and 2/0,

respectively. When the actuator and sensor subsystems are combined, the 9

dominant states of the 50-state model are the various combinations of each



of the the 3 dominant sensor states with each of the 3 dominant actuator

states. Note that in this case, the dominant states are not the states

with the largest performance values.

Knowing which states dominate the 8-state and 50-state models, the

greatly simplified 4-state models of the sensor and actuator subsystems in

Figure 4.19 were constructed. Half of the states and the complicated

transition structure of each subsystem have been ignored. The upper three

states in each model correspond to the states x1 , x , and x7 for each

subsystem, and take their self-loop probabilities and performance values

from these states. When the two 4-state models are combined (once again

assuming independent subsystems), a 10-state model results which should

reasonably approximate the original 50-state model from a performance

evaluation standpoint. A listing of the eigenvalues and modal coefficients

for the 10-state model is in Appendix C.

SENSORS ACTUATORS

_+ 1) = P(z + nI) =
0.999983889 x1  1 12 0.999950555

1.6111e-5 4.9445e-5

P(E + MI) = P(E + I=

O.9998T13 X4 2 x4  17 0.9998416

1.587e-4 1.58329e-4

P(E) = P(Z) =
0.99999444 X7 3 x7  24 0.999977778

5.5556e-6 2.2223e-5

1.0 SYST-LOS SYST-LOSS 1.0

Figure 4.19. Approximate Subsystem Models

Figure 4.20 is a comparison of the total expected performance profiles



of the 50-state and 10-state models. The profiles match relatively

closely, developing significant discrepancies only for times much larger

than mission time. A magnification of the same plot is shown in Figure

4.21, enlarged so that the behavior for times near k can be seen.m
Clearly, the two models match very closely in terms of expected

performance.

Using the SCHEME procedures which calculate performance PMFs directly

without accumulating statistics (Appendix B, "FAST.SCM"), the 350-step PMFs

for the 10- and 50-state models were calculated using a tolerance of 0.1

(Figures 4.22 and 4.23). The PMFs are scaled by 15 to produce these plots,

which are very similar visually. T

From the total performance prof

approximately 4560. At k = 350,

performance has reached the sys

compared to 2.5 x 10 5, the appro

v (350) approximately equals the me

The PMFs differ largely in the

low probability transitions in

10-state model. The elimination of

state leads to a significantly

10-state model. The 50-state model

he mean values match reasonably well.

ile, the expected performance v (350) is

a negligible amount of expected

tem-loss state~ because 350 is so small

ximate steady-state time. Therefore,

an values of both PMFs.

ir reliabilities and variances. Many

the 50-state model are eliminated in the

these extra paths to the system-loss

higher predicted reliability for the

also has several extra impulses beyond

the 6300 performance figure which is the largest 10-state model performance

value. Though these impulses affect the mean very little, they contribute

more significantly to the variance.

In this instance, the 10-state model proves to be a useful

approximation to the 50-state model. This approximation may seem obvious

because both subsystems have the same easily identifiable structure, but
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Figure 4.22. 350-Step Performance PMF for the 50-State Model
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examining the modal coefficients and eigenvalues may be useful in other

more complicated systems with dominant states that are difficult to

identify. Regardless of how an approximate model is constructed,

performance evaluation of a complete model will still be helpful in

determining whether the approximations are valid.

4.4.3 Parameter Variation Analysis

The most promising application of the performance evaluation methods

is as a design tool for redundancy management systems. Performance PMFs

and expected performance profiles permit the comparison of RM systems that

use different components, FDI strategies, reconfiguration algorithms, plant

dynamics, or any other system factor that can be modeled. Using such

comparisons, the engineer can make sound decisions during the RM system

design process.

To demonstrate the use of performance evaluation in an RM design

context, the 8-state sensor subsystem model described in Section 4.3 was

reconfigured for variations in two key parameters: The

mean-time-to-failure (MTTF) of the components, and the false alarm

probabilities, PFA' of the FDI system for states 4/0 (x) and 3/0 (x 4).

The table below summarizes the six cases that were analyzed. All cases

have the same performance structure as the sensor subsystem described in

Section 4.3, and case 1 has the same parameters which were used for that

subsystem. More detailed information about the models for cases 2 through

6 is presented in Appendix A.

The first phase of performance evaluation is the calculation of total

expected performance profiles and the v(k m) vectors for each case. Short

listings of the FORTRAN output for each case are in Appendix C. Figure



MTTF PFA 4/0 P FA 3/0

CASE 1 100 0.001 0.005
CASE 2 100 0.005 0.01
CASE 3 100 0.05 0.1
CASE 4 10 0.001 0.005
CASE 5 10 0.005 0.01
CASE 6 10 0.05 0.1

4.24 shows the total expected performance profiles for all six cases for

times long enough for all systems to reach steady-state. The systems with

the higher component MTTFs of.100 hours take longer to reach steady-state

than the systems with MTTFs of only 10 hours. Component MTTFs are the

basis for most of the self-loop probability of the dominant model states.

Note also that the systems with long MTTFs reach much higher expected

performance values. This behavior is due to the fact that the OSHs in

these cases spend more time in the "operational" states with non-zero

performance values before ultimately moving to the system-loss state.

An interesting feature of the curves for cases 2 and 3 is that they

cross in the area of k = 200,000. Though this k is much larger than

mission time (7200), prior to k = 200,000, case 2 would be the more

desirable system based on total expected performance alone. After

k = 200,000, case 3 is more desirable. Though this conclusion is not very

meaningful due to the magnitude of k, it is the first indication that the

steady-state behavior of the systems does not accurately reflect their

transient performance.

The mission time for all six cases is 7200 steps. Figure 4.24 is

magnified in Figure 4.25 to reveal the behavior of the profiles in the area
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of k = 7200. As Figures 4.24 and 4.25 demonstrate, the differences between

the short-term and long-term behavior of the systems can be quite dramatic.

Recall that profile curves 1, 2, and 3 have the long rise time and must

eventually rise above curves 4, 5, and 6. Yet in Figure 4.25, cases 1 and

2 have the lowest profile curves. The lowest curves have better

performance because the performance values are larger for model states with

poor performance. Cases 4 and 5 are the next best after 1 and 2, and case

3 is the worst, though it crosses curve 6 only shortly before k . Since

curves 3 and 6 are so close at k , one could conclude that using 100 hour

MTTF components rather than the 10 hour MTTF components is not worth the

additional expense unless the FDI system can be improved. Since the total

expected performance profiles do not reveal the expected performance of the

PMF and the expected performance of the SLOSHs, we move to the second phase

of performance evaluation.

Using the v(k m) vectors calculated by the FORTRAN program, 1000-step

performance PMFs for the 6 cases were calculated with the SCHEME system

(Figures 4.26 - 4.31). Limits of the microcomputer prevented 7200-step

PMFs from being calculated, but once again, this would not be a problem on

a mainframe computer with virtual memory. The first element of v( ) was

on the order of 104 in all 6 cases, so a conservative tolerance of 10 4 --

8 decades down from v1 (k ) -- was used for the look-ahead approximation to

insure accurate results. With this tolerance, OSHE growth was about 2 OSHs

per step. The plots have a scale factor of 7, i.e. 7 PMF impulses were

added to generate each plotted impulse. Each plot also includes a variety

of other information. The "Max Prob" is the height of the large impulse on

the left side of each plot, while "Min Prob" is the height of the smallest

impulse, showing that the look-ahead approximation culled all impulses with



probabilities less than "Min Prob." "Max Perf" and "Min Perf" show the

range of performance values represented by the PMF, and for these models,

the performance scale is proportional to the variance of the sensor

measurement noise (see Appendix A).

The PMFs amplify the information provided by the expected performance

profiles. The two plateaus of case 1 are lower than the corresponding

plateaus or roll-off regions in any of the other cases, showing that case 1

would be considered the best system, as our intuition would indicate. The

plateaus for cases 3 and 6 are missing entirely, and the level of the flat

region prior to roll-off is almost one order of magnitude higher than any

of the other plots. Note also the mean values and variances of each plot.

In order of increasing mean values and variances, the PMFs ordered by case

number would be 1, 2, 4, 5, 3, and 6. Comparing cases 1, 2, and 3, and 4,

5, and 6 as separate groups of three, we see that the height of the largest

impulse (Max Prob) decreases slightly between the first two cases in each

group and is drastically lower in the third case (3 and 6). Because the

false alarm probabilities grow progressively larger for each of these

groups, the probability that the system will remain in the state x1 for the

entire 1000 steps decreases.

Two examples will show how the performance PMFs function in RM system

design. Suppose that beginning with the system in case 6, we wanted to

know whether it would be better to use the more reliable 100 hour MTTF

components, as in case 3, or to improve the FDI system, as in case 5. The

superimposed outlines of the PMFs for cases 3, 5, and 6 are presented in

Figure 4.32. Clearly, case 3 is only slightly better than case 6, whereas

case 5 is much better - including an order of magnitude decrease in the

roll-off region probability. Therefore, it is better in this example to
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Figure 4.27. 1000-Step Performance PMF for Case 2
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Figure 4.31. 1000-Step Performance PMF for Case 6
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work on improving the FDI system rather than to waste resources on better

components.

For the second example, suppose that the baseline system is case 5 and

we pose the same question: Is it better to improve the components or to

improve the FDI system? Case 2 has better components with the same FDI

performance, while case 4 uses better FDI with the same components. The

superimposed outlines of the three PMFs in Figure 4.33 show that improving

the components is the better option. The case 2 PMF is an order of

magnitude below the case 5 PMF over its entire range, while the case 4 PMF

offers only a small improvement over case 5 in the roll-off region.

When performance evaluation is used to design RM systems, the

comparison of different systems may be quite different. The models in the

six cases considered here all have the same performance measures, so the

PMFs had approximately the same ranges of performance values when the same

look-ahead tolerance was used. It is more likely that this would not be

the case in a real application. For example, improving the components may

change not only the probabilistic structure of the model, but also the

performance structure if more reliable components also have better

accuracy. The comparison of systems involving such component variations

will be clear using performance PMFs.

Performance PMFs emphasize several design goals. Primarily, it is

best to have most of the probability in the PMF concentrated in the lower

range of the performance scale. Designing systems with low, narrow

plateaus and sharp roll-off regions is preferable to high, wide plateaus

and slow roll-offs. It is also beneficial to use a number of different

performance evaluation structures to evaluate a system. Performance

evaluation results are as much a function of the performance structure of a
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model as they are a function of the probabilistic structure. There is

certainly more than one performance measure which can be derived for each

model state for most systems, and therefore it will be wise to compare PMFs

for as many different sets of performance criteria as are deemed relevant

to the design. During all comparisons, however, it is a good idea to keep

the tolerance approximately the same relative to v (k m) to insure that the

PMFs change appearance due to different models and not different

tolerances.



CHAPTER 5

CONCLUSION

5.1 Summary

The Markov models of fault-tolerant systems which use redundancy

management are inherently transient models with trivial steady-state

behavior. New methods are needed to analyze such systems because the large

body of theory which exists for analyzing processes with non-trivial

steady-state behavior does not apply in general to these transient systems.

This thesis has developed and demonstrated two new methods for

evaluating the performance of fault-tolerant systems using transient Markov

models. Beginning with the concept of operational state histories and OSH

ensembles, it was first demonstrated that ensemble growth in time is at

worst linear and not exponential if an integral performance measure is

adopted. The newly conceived v-transform was introduced to represent and

manipulate OSH ensembles and to allow straightforward calculation of

performance PMFs. Second, the theory of Markov processes with rewards was

adapted to calculate the transient expected performance profile and the

total expected performance vector of a system. Finally, the interaction of

the two methods supplied a basis for making the conservative, predictable

look-ahead approximation which simplifies the calculation of performance

PMFs.

To demonstrate the usefulness and feasibility of the performance

methods developed, computer programs were written which manipulate matrices

of v-transforms and calculate total expected performance profiles. Using

these programs, several example models were analyzed. A 7-state Markov



model demonstrated the basic theoretical concepts and revealed the form of

typical performance PMFs and total expected performance profiles. Next,

the analysis of a 50-state model demonstrated that performance evaluation

can permit reasonable approximations to be made during the modeling

process. A 10-state approximation to the 50-state model produced

essentially the same results from the performance evaluation standpoint.

The primary use of the performance evaluation techniques developed here is

in RM system design. Hence, several performance PMFs and profiles were

calculated for an 8 state model for variations in its key parameters (MTTFs

and PFA)' Parameter variation showed that the performance evaluation

methods are good design tools for comparing different RM designs. Given a

certain RM design, these methods can also indicate to the engineer which

potential improvements to the system will bring about the greatest marginal

increase in system performance.

Though expected performance statistics and profiles are easier to

compute than performance PMFs, to use them as the sole indicator of system

performance is dangerous. First, because the failure times of components

are generally exponentially distributed, the variance of the expected

performance will be equal to or much larger than the expected performance

itself. Second, the total expected performance of the system does not

reveal the fraction of total expected performance represented by OSHs which

occupy operational states at mission ti-me and the expected performance of

the SLOSHs. The decomposition of the total expected performance is

important. Finally, the performance PMF is a rich source of design

information. It is conceivable that changes in an RM system design could

leave the total expected performance value unchanged while drastically

changing the shape of the performance PMF and the behavior of the system.



In such a case, the total expected performance would be particularly

misleading.

5.2 Recommendations

V-transform analysis is very flexible, especially when the

manipulations are done symbolically in a LISP environment. Many modeling

variations such as time-varying performance measures or time-varying

component and FDI behavior can be added with no computational penalty.

There are also many other possibilities for approximations similar to the

look-ahead approximation which simplify computation without affecting the

results drastically. For example, an approximation which redistributes

culled OSHs, combining them with other OSHs with similar cumulative

performances rather than discarding them, may prove to be better than the

look-ahead approximation.

As stated in Chapter One, showing how to construct transient Markov

models was not a major goal of this thesis. However, it became quite clear

during the course of this research that the greatest challenge in

evaluating the performance of a system may be the specification of an

accurate model for that system. Once the model is specified, applying the

techniques developed in this thesis should be straightforward. The

importance of accurate modeling cannot be overemphasized. The results of

performance evaluation can only be as accurate as the model itself.

In the interest of constructing example models, several assumptions

were made which will not be true in general. For example, it was assumed

that all components in each system were identical, that the subsystems for

the 50-state model were independent with respect to the performance



measures and state transition probabilities, and that components have

independent accuracies and MTTFs. Furthermore, closed-loop plant dynamics

and reconfiguration algorithms were not considered in any of the

performance measures. The next logical step in the modeling area will be

to locate systems which are either operational or in advanced design stages

and to try to model them realistically for the purposes of performance

evaluation.

Great improvements can be made in the automated manipulation of

v-transforms. The SCHEME system provided in Appendix B served only to

demonstrate the feasibility of the v-transform and performance PMF

concepts. Though the linear growth of OSH ensembles in time is comforting,

computation time is proportional to k. This causes long execution times

for complex systems. Though the look-ahead approximation helps,

computational improvements are clearly necessary. An efficient v-transform

manipulation package should be written for use on a larger computer with

virtual memory, preferably a dedicated LISP processor. Though results

cannot be guaranteed for ever-increasing model dimensions or mission times,

this single advancement will probably overcome the computational complexity

of problems which will be encountered while analyzing current systems and

those of the near future.

Thinking ahead to the long-term evolution of performance evaluation

methods, v-transform manipulation is ideally suited to the parallel,

multiprocessor computers which are currently envisioned. Since the entire

matrix of v-transforms is known a priori, the v-transforms for different

parts of an OSHE and for different times k could be calculated

simultaneously and recombined to generate the performance PMF. Such a

system would permit larger models to be analyzed for longer mission times



without significantly increasing the computation time, and without the need

for storing all results in memory simultaneously. These benefits make

parallel processing of v-transform matrices a quite attractive possibility.
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APPENDIX A

Modeling calculations for the 8-state "double star" actuator and sensor
subsystem models described in Section 4.3.

1. Mission time:

Mission Duration:
FDI Test Period:
k = 2 x 60 x 60 =

2 hours
1 second
7200 FDI tests per mission

2. Failure Probabilities:
Single component failure times are exponentially distributed:

t

P(F1 ) = 1 - e MTTF

For t = AT, the FDI test period:

AT
MTT F AT

MTTF

Hence, the single component failure probability during AT is

P(FI ) AT
MTTF

AT
MTTF

Failure probability for
components are identical

1 of n components during AT, assuming all

1 - P(each component does not fail)

= 1 - (1 - P(F1 ))

AT n

- MTTF

1 - (1 - n MTTF~ MTTF

n AT
MTTF

P(F n)



3. Example event trees for each state of the actuator subsystem:

4-component system / 2 functional components required for operation.

MTTF: 25 hours (9.0e+4 seconds)
AT: 1 second
P (F4 ): 4.44e-5
P(F3 ): 3.33e-5 EVENT PROBABILITY DEST.STATE
P(F2 ): 2.22e-5
State 4/0 PFA: 0.001 DI 3.3e-5 3/0

State 3/0 PFA: 0.005

4.4e-7

DI 1.056e-5

4.4e-7

4.9997e-6

DI 9.94956e-4

E 0.99895560

DI

0.I

4/1 D DET? ISO- 0.05 DI

3 0
DI

0.65

0.05

0.30

DI 0.7125
0.7

DI

DI

0.0095

0.228

0.05

3/1 D

4/1 D

4/1 D

3/0

4/0

4/0

3/0

3/1 D

4/1 D

3/0

3/1 D

4/1 D

4/1 D



EVENT

- DI

- DI 7

-DI

DI

DI'

DI

PROBABILITY

2.1233e-5

3.2667e-6

8.16667e-6

6.6667e-7

1. 2499e-4

4.874838e-3

Z 0.99496683

DEST. STATE

2/0

SL

3/1 D

3/1 D

2/0

3/0

3/0

0.60

3/1 D DET? ISOL? 0.12

0.28

0.65

0.92

IP (F2 F2
2/0

1 - P(F2

DI 0.60

0.12

0.28

DI

DI

DI 0.598

0.092

0.23

0.08

2. 2222e-5

0.99997778

2/0

3/1 D

2/0

SL

3/1 D

3/1 D

SL

2/0



The resulting single-step transition matrix for the actuator subsystem:

0.999950558
4.4444e-7 0.50
1.056e-5 0.228 0.30
3.79998e-5 0.7125 0.65 0.99984167
4.4e-7 0.0095 0.05 6.66667e-7 0.08

8.16667e-6 0.23Q 1.46229e-4 0.598
3.26667e-6 0.092

0
0.28
0.60
0.12

0.999977778
2.2222e-5

4. State transition matrices for the sensor subsystems:
The event tress and calculations are identical to the actuators

subsystems except for changes in P(F4 ) , P(F3 ) , P(F2) , and the P s
for states 4/0 and 3/0. These probabilities are highlighted wit

boxes in the event tree diagrams above. The general form of the

state transition matrix represented by the event trees above is

shown below. Each entry in the matrix represents the event or

events which causes the transition to occur.

ORIGIN STATE

4/0 4/1 D 4/1 D 3/0 3/1 D

D + z

3/1 D 2/0

DI DI DI

DI + DI DI DI DI + z

DT DT DI

03

0
DI DI DI

DI + DI DI DI 1 - P(F2)

DT DT DI P(F2)

1.0

4/0

4/1 D

4/1 D

3/0

3/1 D

3/1 D

2/0

1.0



CASE 1 (Used with the actuators to form the 50-state model in Section 4.4.2,
and for the parameter variation analysis of Section 4.4.3.

MTTF: 100 hours
P(F 4 ): 1.11e-5
P(F 3 ): 8.33e-6
P(F 2 ): 5.55e-6
State 4/0 PFA: 0.001
State 3/0 PFA: 0.005

Single-step state transition matrix:

0.999983889
1.1111e-7
2.64e-6
1.32499e-5
1.1e-7

0.05
0.228
0.7125
0.0095

0.30
0.65
0.05

0
0.9998413
1.66667e-7
2.04167e-6
1.30307e-4
8.16667e-7

0
0.08
0.23
0.598
0.092

0.28
0.60
0.12

0.999994444
5.55556e-6

CASE 2
MTTF:
P (F4):
P (F3):
P (F 2)
State
State

100 hours
1.11e-5
8.33e-6
5.55e-6

4/0 PFA: 0.005
3/0 PFA: 0.01

Single-step state transition matrix:

0.99996390
1.1111e-7
2.64e-6
3.32497e-5
1.1e-7

0.05
0.228 0.30
0.7125 0.65
0.0095 0.05

0 }
0.999741669
1.66667e-7
2.04167e-6
2.55306e-4
8.16667e-7

0.08
0.23
0.598
0.092

0
0.28
0.60
0.12

0.999994444
5.55556e-6

1.0

1.0



CASE 3
MTTF: 100 hours
P(F 4): 1.11e-5
P(F ): 8.33e-6
P(F2): 5.55e-6
State 4/0 PFA: 0.05
State 3/0 PFA: 0-1

Single-step state transition matrix:

0.999738905
1.1111e-7 0.05
2.64e-6 0.228
2.58247e-4 0.7125
1.1e-7 0.0095

0

0.30
0.65
0.05

0.997491630
1.66667e-7
2.04167e-6
2.50528e-3
8.16667e-7

0
0.08
0.23
0.598
0.092

0.28
0.60
0.12

0.999994444
5.55556e-6

CASE 4
MTTF: 10 hours
P(F4): 1.11e-4
P(F3): 8.33e-5
P(F2): 5.55e-5
State 4/0 PFA: 0.001
State 3/0 PFA: 0.005

Single-step state transition matrix:

0.9998838894
1.1111e-6 0.05
2.64e-5 0.228
8.74994e-5 0.7125
1.1e-6 0.0095

0

0.30
0.65
0.05

0.999791677
1.66667e-6
2.04167e-5
1.78072e-4
8.16667e-6

0
0.08
0.23
0.598
0.092

0.28
0.60
0.12

0.999944444
5.55556e-5

1.0

1.0



CASE 5
MTTF: 10 hours
P(F 4 ): 1.11e-4
P(F3 ): 8.33e-5
P(F2): 5.55e-5
State 4/0 PFA: 0.005
State 3/0 PFA: 0.01

Single-step state transition matrix:

0.999863891
1.1111e-6 0.05
2.64e-5 0.228
1.07497e-4 0.7125
1.le-6 0.0095

0

0.30
0.65
0.05

0.999666688
1.66667e-6
2.04167e-5
3.03062e-4
8.16667e-6

0
0.08
0.23
0.598
0.092

0.28
0.60
0.12

0.999944444
5.55556e-5

CASE 6
MTTF: 10 hours
P(F 4): 1.11e-4
P(F 3): 8.33e-5
P(F 2 ): 5.55e-5
State 4/0 PFA:
State 3/0 PFA :

Single-step state transition matrix:

0.99963891
1.1111e-6
2.64e-5
3.32472e-4
1.1e-6

0.05
0.228
0.7125
0.0095

0

0.30
0.65
0.05

0.99741688
1.66667e-6
2 .04167e-5
2.55287e-3
8.16667e-6

0
0.08
0.23
0.598
0.092

0.28
0.60
0.12

0.999944444
5.55556e-5

1.0

0.05
0.1

1.0



5. Performance Value Calculations for Both Subsystems:

Performance values for the sensor subsystem are proportional
to the variance of the measurement noise for each state. A
failure increases the measurement noise of a single sensor by 902.
Below, the variances of the measurement noise for each model state
are calculated. These values are used both in Section 4.4.2 and
in Section 4.4.3.-

Operating Sensor Measurement Noise: N(O, a2)
Failed Sensor Measurement Noise: N(O, 10a 2)

State 4/0: 16 =1T

States 4/1 D and 4/1 D: -9,2 + C2 + C2 + C2 13 C2
16 16

State 3/0: 3 Y2

States 3/1 D and 3/1 D: 10j2 + (2 + a2 4 y2
9 3

State 2/0: 2 2 a 24 -2

Dividing the above variances by a2 and fitting the resulting numbers to
an integral scale yields the following normalized performance values:

State 4/0: 12
States 4/1 D and 4/1 D: 39
State 3/0: 16
States 3/1 D and 3/1 D: 64
State 2/0: 24

Performance values for the actuator subsystem used in Section 4.4.2
were fixed relative to the values for the sensor subsystem according
to the following rules:

1. Actuators are 10 times more critical to mission completion than
the sensors, so the actuator state 4/0 value is 10 times the
sensor state 4/0 value.

2. A detected, isolated failure increases the performance value by
a factor of .

3. A missed detection increases the performance value by a factor
of 10.

4. A missed isolation increases the performance value by a factor
of 5.



The following performance values can then be calculated:

Sensor state 4/0 value = 12
Actuator state 4/0 value = 120
Actuator state 4/0 D = 1200
Actuator state 4/0 D = 600
Actuator state 3/0 = 170
Actuator state 3/0 D = 1700
Actuator state 3/0 0 = 850
Actuator state 2/0 = 240

Because the OSHE can potentially grow in time at the rate of the
largest performance value, all values were scaled down by a factor
of 10 to yield the values which were used in Sections 4.4.2 and 4.4.3:

State Sensors Actuators

xi 1 12

x2 4 120

x3 4 60

x4 2 17

x5 7 170

x6 7 85

x7 3 24

100
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COMPUTER PROGRAM LISTINGS
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001 This is the listing of the file "A
;PPROX.SCM." This file has all of the

002 procedures necessary for manipulating matrices of v-transforms in a
003 numoer of ways. Provision is also included-to cull OSHs using
004 ; the look-ahead approxination. The file "rule-list5.scn" can
005 ;; be usea with this file. Any other file which defines a matrix Must also
006 include Dindings for "vkm" and "tolerance."
007 (declare (usual-integrations))
008
009
610 Top level (level 1) procedures: Operations on matrices
011
012 Gen-pmf returns a performance transform given a matrix of v-transforms, the
013 number of time steps desired, the beginning state (which must be one of the
014 column designators of the matrix), the total expected performance vector at
015 mission time, vkm, and a tolerance, to1. Vkm should be an alist with column
016 designators as the keys.
017
018 (define (gen-pmf matrix steps begin-state vkm tol)
019 (let loop ((result (make-init begin-state)) (count steps))
020 (cond ((zero? count)
021 (transform (add-elements result)))
022 (else
023 (print count)
024 (set! result (merge-column (multiply-col-mtx result matrix vkm tol)))
025 (loop result (-l+ count))))))
026 -
027 Gen-pmf-with-stats also computes the performance transform, but in addition
028 returns lists of statistics for each step of propagation. The statistics
029 returned are the expected performance of the PMF, the expected performance
030 arriving at system-loss, the expected performance of culled terms, the total
031 expected performance, the total culled probability, and the unreliability.
032
033
034 (define (gen-pmf-with-stats matrix steps begin-state vkm tolerance)
035 (let loop ((result (make-init begin-state)) (count steps)
036 (pmf-jbar '()) (.syst-loss-jbar '()) (culled-jbar '().)
037 (total-jbar '()) (culled-prob '() (unreliability '()))
038 (cond ((zero? count)
039 (append (list pnf-jbar) (-list syst-loss-jbar) (list culled-jbar)
040 (list total-jbar) (list culled-prob) (list unreliability)
041 (list (transform (add-elements result)))))
042 (else
043 (print count)
044 (setI result (merge-column (multiply-col-mtx result matrix
045 vkm tolerance)))
046 (let ((t (car (transform (assoc 'system-loss (elements result)))))
047 (c (car (transform (assoc 'culled (elements result)))))
048 (pjbr (pmf-j-bar result)))
049 (set! pnf-jbar (cons pjbr pmf-jbar))
050 (cond ((null? t)
051 (set! t.'(0 0))))
052 (cond ((null? c)
053 (set! c '(0 0))))
054 (set! syst-loss-jbar (cons (expon t) syst-loss-jbar))
055 (set! culled-jbar (cons (expon c) culled-jbar))
056 (set! total-jbar (cons (+ pjbr (expon t) (expon c))
057 total-jbar))
058 (set! culled-prob.(cons (coef c) culled-prob))
059 (set! unreliability (cons (coef t) unreliability)))
060 (loop result (-1+ count) pmf-jbar syst-loss-jbar culled-jbar
061 total-jbar culled-prob unreliability)))))
062
063
064 Gpws is another version of the procedure above. It functions identically.
065
066 (define (gpws natrix steps begin-state vkm tolerance)
067 (let loop ((result (nake-init begin-state)) (count steps)
068 (pmf-jbar '()) (syst-loss-jbar '()) (cullea-jtar '())
009 (total-jbar '()) (culled-prob '()) (unreliability '()))
070 (cond ((zero? count)
071 (append (list pmf-jbar) (list syst-loss-jbar) (list culled-jbar)
072 (list total-jbar) (list culled-proo) (list unreliaoility)
073 (list (transform (add-elements result)))))
074 (else
075 (print count)
076 (set! result (rierge-column (multiply-col-mtx result matrix

102



077 vkm tolerance)))
078 (let ({t (car (transforrm (assoc 'systen-loss (elements result)))))
079 (c (car (transform (assoc 'culled (elements result)))))
080 -(pjbr (pmf-j-oar result)))
081 (cond ((null? t)
082 (setl t '(0 0))))
083 (cond ((null? c)
084 (sett c '(0 0))))
085 (loop result (-I- count) (cons pjbr pnf-jbar)
086 (cons (expcn t) syst-loss-jbar) (cons (expon c) culled-jbar)
087_ (cons (- pjbr (expon t) (expon c)) total-jbar)
088 (cons (coef c) culled-prob) (cons (coef t) unreliability)))))))
089
09 -
091 Power computes the performance transform using a combination of gen-pmf and
092 exponentiate. The spec-list takes the place of."steps." The spec-list
093 should be a list of numbers indicating the progressive exponentiations
094 desired of the input matrix, mtx. On the last specification, the procedure
095 gen-pmf is used in order to save space. The product of the number in the
096 spec-list should be the number of steps for wnich the performance transform
097 is desired.
098
099 (define (power matrix spec-list begin-state vkm tolerance)
100 (let loop ((specs spec-list) (mtx matrix))
101 (cond ((zero? (- (length specs) 1))
102 (gen-pmf mtx (car specs) begin-state
103 vkr tolerance))
104 (else
105 (loop (cdr specs)
106 (exponentiate mtx (car specs) vkm tolerance))))))
107
108 Exponentiate raises the specified matrix to the specified power.
109
110 (define (exponentiate matrix power vkm tolerance)
111 (let loop ((result matrix) (count (-1+ power)))
112 (cond ((zero? count)
113 result)
114 (else
115 (print count)
116 (setl result (multiply-matrices result matrix vkm tolerance))
117 (loop result (-1+ count))))))
118
119 Multiply-matrices returns the matrix which is the product of matrix1
120 and matrix2.
121
122 (define (multiply-matrices matrix1 matrix2 vkm tolerance)
123 (let ((result '() ))
124 (let loop ((matrix matrix1))
125 (cond ((null? matrix)
126 result)
127 (else
128 (setl result (cons (merge-column (multiply-col-mtx (car matrix)
129 matrix2
130 vkm
131 tolerance))
132 result))-
133 (loop (cdr matrix)))))))
134
135
135 (define (get-column column-number matrix)
137 (assoc column-number matrix))
138
139
140
141 Level 2: Operations on columns
142
143 (define (nultiply-col-ntx column matrix vkm tol) ;Multiplies a column by a
144 (let ((result '() )) ;; natrix and returns the elements
145 (let loo l ((els (elements column))) of the resulting column.
146 (cond ((null? els)
147 (make-column (column-nuriber column) (cull result vkm tol)))
148 ((culled? (car .ls))
149 (set! result (cons (car els) result))
150 (loop1 (ccr ;ls)))
151 (else
152 (let loop2 ((product (multiply-el-col (cair els)
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(if (null? product)
(loopl (cdr els))
(let ((element (assoc (row-number

result)))
(cond ((null? element)

(set! result (cons (car
( Nop2 (cdr product)))

(else
(set-cdr! element (list

get-column (row-number
(car els))

matrix))))

(car product))

product) result))

(append (transform element)
(transform
(car product)))))

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
211
218
219
220
221
222
223
224
225
226
227
228

(derin
(let
(I

e (count-terils column)
((count 0))

et loop ((els (elements colunn)))
(cond ((null? els)

count)
((systen-loss? (car els))
(loop (cdr els)))

((culled? (car els))
(loop (cdr els)))

(else
(set! count (+ count (length (transfcrm (car els)))))
(loop (cdr els)))))))

(define (column-nunber column)
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(loop2 (cdr product))))))))))))

(define (merge-column column) Returns column whose elements have
(let ((result '() -)) had either the merge-element, the

(let loop ((els (elements column))) merge-culled, or the merge-syst-
(cond ((null? els) loss procedures applied to them.

(make-column (column-number column) result))
((system-loss? (car els))
(set! result (cons (merge-syst-loss (car els)).

result))
(loop (cdr els)))

((culled? (car els))
(set! result (cons (merge-culled (car els))

result))
(loop (cdr els)))

(else
(set! result (cons (merge-element (car els))

result))
(loop (cdr els)))))))

(define (add-elenents column)
(let ((result '()))

(let loop ((els (elements column)))
(cond ((null? els)

(merge-element (make-element (column-number column) result)))
((culled? (car els))
(loop (cdr els)))

((system-loss? (car els))
(loop (cdr els)))

(else
(set[ result (append (transform (car els)) result))
(loop (cdr els)))))))

(define (make-init begin-state)
(list begin-state (list (list begin-state (list (list 0 1))))))

(define (pmf-j-bar column)
(let loop ((j-bar 0) (els (elements column)))

(cond ((null? els)
j-bar)

((system-loss? (car els))
(loop j-bar (cdr els)))

((culled? (car els))
(loop j-bar (cdr els)))

(else
(seti J-bar (+ i-bar (ddvatl (transform (car els)))))
(loop j-bar (cdr els))))))



(car column))

(define (elements column)
(cadr coTunn))

(define (make-column column-nunber elements)
(list column-number elements))

Level 3: Operations on elements

(define (multiply-elements elementi element2)
(let ((result '() ))

(let loopi ((tf1 (transform element1)) (tf2 (transform element2)))
(cond ((null? tfl)

(cond ((eq? (row-number elementi) 'systen-loss)

229
230
231-
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272-
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

(else
(set! result (cons (multiply-terms (car til) (car t2))

result))
(loop 2 (cdr t2))))))))))

; Multiplies the transform of
; one element by the transforms
; of the elements of the column
; and returns the list of
; resulting elements.

(define (multiply-el-col element column)
(let ((result '() ))

(let loop ((els (elements column)))
(cond ((null? els)

result)
((culled? (car els))
(loop (cdr els)))

(else
(set! result (cons (multiply-elements element (car els))

result))
(loop (cdr. els)))))))

(merge-element element) Returns the element which
(result '() )) results when all terms in the
loop ((tf (transform element))) argument which have the same

f (null? tf) exponent are added.
(make-element (row-number element) result)
(lot ((term (assq (expon (car tf)) result)))

(cond ((null? term)
(sett result (cons (car tf) result))
(loop (cdr tf)))

(coef term)
(coef (car tf)))))

Creates a syst-loss datum
; of the syst-loss trap prob
; and cunulativ- expected cost
; of trajs ending at syst-loss.

st (make-tern
costbar
sum-of-probs))))

(else
(set-cdrl term (list (+

(loop (cdr tf)))))))))

(define (merge-syst-loss element)
(let ((sun-of-probs 0) (costbar 0))

(let loop ((tf (transform element)))
(cond ((null? tf)

(make-element 'system-loss (li

(else
(sett sum-of-prons (+ (coef (car tf)) suri-of-probs))
(set! costoar (- (expon (car tf)) costbar,')
(loop (cur tf)))))))

(define (mergo-culled elenant)
(let ((sun-of-probs 0) (costbar 0))

(let loop ((tf (transform element)))
(cond ((nuil? tf)

(nAke-elenent 'culled (list (oake-term cOstdr sun-of-probs))))
(else
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(make-element 'system-loss result))
((eq?.(row-number element2) 'systen-loss)
(make-element. 'system-loss (reduce-transform result)))

(else
(make-elemen-t (row-number element2) result))))

(else -'Iultiplies two elements
(let loop2 ((t2 tf2)) and returns the resulting

(cond ((null? t2) element, which takes the
(loopI (cdr tfl) tf2)) row number of element2.

(define
(let I

(lei



305 (setl sun-of-probs (+ (coef (car tf)) sum-of-probs))
306 (setl costbar (- (expon (car tf)) costbar))
307 (loop (cdr tf)))))))
308
309 (define (cull el-list vkm tolerance)
310 (let ((result '()))
311 (let loop ((els el-list))
312 (cond ((null? els)
313 result)
314 (else
315 (let ((el (car els)))
316 (cond ((system-loss? el)
317 (sett result.(cons el result))
318 (loop (cdr els)))
319 (~(culled? el)
320 (let ((cull-el (assoc 'culled result)))
321 (cond ((null? cull-el)
322 (set! result (cons el result))
323 (loop (cdr els)))
324 (else
325 (set-cdri cull-el
326 (list (append (transform el)
327 (transform cull-el))))
328 (loop (cdr els))))))
329 (else
330 (let ((culed-el (cull-transform (transform el)
331 (cadr (assoc (row-number
332 el)
333 vkm))
334 tolerance))
335 (cull-el (assoc 'culled result)))
336 (set! result (cons (make-element (row-number el)
337 (transform
338 (cadr culled-el)))
339 result))
340 (cond ((null? cull-el)
341 (set! result (cons (car culled-el) result))
342 (loop (cdr els)))
343 (else
344 (set-cdri cull-el (list (append
345 (transform cull-el)
346 (transform
347 (car culled-el)))))
348 (loop (cdr els)))))))))))))
349
350 (define (system-loss? element)
351 (eq? (row-number elenent) 'system-loss))
352
353 (define (culled? element)
354 (eq? (row-number element) 'culled))
355
356 (define (row-number element)
357 (car element))
358
359 (define (transform element)
360 (cadr e-lement))
361
362 (define (nake-element row-number transform)
363 (list row-number transform))
364
365
366
367
368 Level 4: Operations un transforms
369
370 (define (cull-transforn trnsform value-remaining tolerance)
371 (let (((ulls '()) (oks '()))
372 (let loop ((terms trnsform))
373 (cond ((null? terms)
374 (list (list 'culled (r..iuce-transforn culls)) (list 'oks oks)))
375 ((low-perf? (car terns) value-remaining tolerance)
376 (set! culls (cons (car terns) culls))
377 (loop (cdr terris)))
31.1 (else
3/9 (sotl oks (cons (car teris) oks))
380 (loop (cdr terns)))))))
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(define (reduce-transforn transform)
(list (nase-tern (davati transform) (add-coef transform))))

(define (add-coef transforn)
(if (null? transform)

0

Returns the sun of the coefficients
of the specified transform.
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(define (ddvatl transform)
(if (null? transform)

0
(- (* (coaf (car transform))

(expon (car transform)))
(ddvati (cdr transform)))))

(define (d2dv2atl transform)
(if (null? transform)

0
((* (coef (car transform))

(expon (car transform))
(expon (car transformr)))

(d2dv2ati (cdr transform)))))

(define (variance transform)
(let ((ej (ddvatl transform))

(ej2 (d2dv2atl transform)))
(- ej2 (* ej ej))))

Level 5: Operations on terms

(define (multiply-terms ternl term2)
(make-term (+ (expon term1) (expon term2))

(* (coef terml) (coef term2))))

Evaluates the derivative of the
specified cost transform at v-1.

Multiplies two terms
and returns the resulting

; term.

(define (low-perf? term value tolerance)
(< ( (* (expon term) value) (coef term)) tolerance))

(define (low-castbar? term tolerance)
(<= (* (coefsterm) (expon tern)) tolerance))

(define (expon term)
(car term))

(define (coef term)
(cadr term))

(define (make-term expon coef)
(list expon coef))

Utility Procedure for Obtaining Output

(define (print-list ls file-name per-line)
(let ((chan (open-printer-channel file-name)))

(let loop ((] Is) (count per-line))
(cond ((null? 1) (close-channel chan))

((zero? count)
(newline chan)
(loop I per-line))

(else
(princ (car 1) chan)
(princ " " chan)
(loop (cdr 1) (-1+ count)))))))

Abbreviations for oft-used procedures

(define
(def ine
(d finc
(def ine
(deitfine

(ncm argl arg2 arg3 arg4) (nultiply-col-mtx argi ir-2 argJ arg4))
(nc arg) (iirge-cnluiin arg))
(ct arg) (count-tcrns arg))
(at arg) ( id-elements arug)
(ne arq) (mierge-elentent a1rg))

(define (ac arg) (add-coef arg))
(define (mn argi arg2 arg3 arg4) (multiply-natrices argl arQ2 arg3 arg4))
(define (exp arg1 arg2 arg3- arg-) (exponentia-e argi arg2 arg3 arg4))
(define (prop argi ar-g2 arg3 arg4 arg5)

(gen-pnf-tith-stats arg1 arg2 arg3 arg4 arg5))
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001 This is the file "FAST.SCM.
002
003 ; Top level (level 1) procedures: Operations on matrices
004 (declare (usa;-in tegrat tions))
005
006 (define (orcc-fast ratrix steps begin-state vkn tol)
007 (let loop ((result (nake-ini.t begin-state)) (count steps))
008 (cond ((zero? count)
009 (transform (add-elements result)))
010 (alse
011 (print count.)
012 (set! result (merge-colunn (nult-col-mtx-fast result matrix
013 vkm tol)))
014 (loop result (-1+ count))))})
015
016
017 (define (power matrix spec-list begin-state vkm tolerance)
018 (let loop ((specs spec-list) (ntx matrix))
019 (cond ((zero? (- (length specs) 1))
020 (prop-fast ntx (car specs) begin-state (car specs)
021 vkm tolerance))
022 (else
023 (loop (cdr specs)
024 (exponentiate ntx (car specs) vkm tolerance))).)))
025
025 (define (exponentiate matrix power vkn tolerance)
027 (let loop ((result matrix) (count (-1- power)))
028 (cond ((zero? count)
029 result)
030 (else
031 (print count)
032 (set! result (nultiply-matrices result matrix vkm tolerance))
033 (loop result (-1 count))))))
034
035 (define (multiply-matrices matrix1 matrix2 vkn tolerance)
036 (let ((result '() ))
037 (let looo ((matrix matrix1))
038 (cond ((null? matrix)
039 result)
040 ((system-loss? (car matrix))
041 (loop (cdr matrix))) -
042 (else
043 (set! result (cons (merge-column (mult-col-mtx-fast (car matrix)
044 matrix2
045 vkm
046 tolerance))
047 result))
048 .(loop (cdr matrix))))))).
049
050
051 Level 2: Operations on columns
052
053 (define (mult-col-ntx-fast column matrix vkm tol) ;.; Multiplies a column by a
054 (let ((result '() )) ;; matrix and returns the elements
055 (let loopi ((els (elements column))) of the resulting column.
056 (cond ((null? els)
057 (nake-column (column-number column) (cull-fast result vkm tol)))
058 (else
059 (let loop2 ((product (nultiply-el-col (car els)
060 (get-colunn (row-number
061 (car els))
062 matrix))))
063 (if (null? product)
064 (loopl (cdr els))
065 (let ((element (assoc~(row-nunber (car product))
066 result)))
067 (cond ((null? elenent)
068 (set! result (cons (car product) result))
060 (loop2 (car proouct)))
070 (else
071 (set-cdri element (list (append (transform element)
072 (transform
073 (car product)))))
074 (10op2 (cdr prod.,;t))))))))))))
075
076 ( Nfine (merge-co.in column) ;;etrns colurm whose e tments haie
077 (let ((resuit *a )) : ln merge-ei.Int .pplied to them.
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(let loop ((els (elements column)))
(cond ((null? els)

(make-column (column-number column) result))
(else
(set! result (cons (merge-elenent (car els))

result))
(loop (cdr els)))))))

Level 3:- Operations on elements

(define (multiply-elements element1 element2)
(let ((result '() ))

(let loopi ((tfl (transform element1)) (tf2 (transform element2)))
(cond ((null? tfl)

(make-element (row-number element2) result))
(else Multiplies two elements
(let loop2 ((t2 tf2)) and returns the resulting

(cond ((null? t2) element, which take& the
(loopl.(cdr tfl) tf2)) row number of element2.

(else
(set! result (cons (multiply-terms (car tfl) (car t2))

result))
(loop2 (cdr t2))))))))))

(define (multiply-el-col element column) Multiplies the transform of
(let ((result '() )) ; one element by the transforms

(let loop ((els (elements column))) of the elements of the column
(cond ((null? els) ; and returns the list of

result) ; resulting elements.
((system-loss? (car els))
(loop (cdr els)))-

(else
(sett result (cons (multiply-elements element (car els))

result))
(loop. (cdr els)))))))

(define (cull-fast el-list vkm tol)
(let ((result '()))
(let loop ((els el-list))

(cond ((null? els)
result)

(else
(set! re-sult (cons (make-element

result))
(loop (cdr els)))))))

Level 4: Operations on transforms

(define (cull-trans-fast trnsform value tol)
(let ((result '()))

(let loop ((terns trnsform))
(cond ((null? terms)

result)
((low-perf? (car terms) value tol)
(loop (car terms)))

(else

(row-number (car els))
(cull-trans-fast -
(transform (car els))
(cadr
(assoc (row-number (car els))

vkm))
tol))

(seti result (cons (car terms) result))
(loop (CcrtLIrnIs)))))))
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001 ;; This file contains the procedures
;required to plot a perfdrmdnce PMF from

002 the v-transform of that PNF. The transform must be an alist indexed by
003 cumulative performance values. The top level procedure is "plot" which
004 takes two arguments: the transform and pts-per-bar. P ts-per-bar allows
005 a plot to he given a certain x-axis (the oerfornance axis) scaling so that
006 it is easier to compare two different F'Es. If pts-per-bar is nil, the
007 procedures will scale automatically. The scaling of the y-axis (proonbility
008 axis) is always logarythmic between 10**0 and 101*-15. It is assumed that a
009 ;; tolerance will be selected during propagation which will cull any OSH that
010 has a cumulative probability of 1ess than le-15.
011 (declare (usual-integrations))
012
013 (define (plot transform pts-per-bar).
014 (let ((orgx -225) (orgy -150)
015 (rangex 450) (rangey 300)
016 (xint 20) (yint 20))
017 (draw-axes orgx orgy rangex rangey xint yint)
018 -(draw-bars (process-y (process-A transform rangex orgx pts-per-bar)
019 rangey
020 orgy
021 yint)
022 orgy)))
023
024 (define (profile list yres plot-every)
025 (let ((orgx -225) (orgy -150))
026 (position-pen orgx orgy)
027 (let loop ((1s list) (counter plot-every) (k 1))
028 (cond ((null? 1s)
029 'done)
030 ((eq? counter plot-every)
031 (draw-line-to (' k orgx)
032 (+ (floor (/ (car 1s) yres))
033 orgy))
034 (loop (cdr is) 0 (1+ k)))
035 (else
036 (loop (cdr Is) (1+ counter) k))))))
037
038 (define (draw-axes orgx orgy rangex rangey xint yint)
039 (clear-graphics)
040 (position-pen orgx orgy)
041 (draw-line-to orgx (+ orgy rangey))
042 (position-pen orgx orgy)
043 (draw-line-to (+ orgx rangex) orgy)
044 (let xchits ((x-pos 0))
045 (cond ((> x-pos rangex)
046 )
047 (else
048 (position-pen (+ orgx x-pos) (- orgy 5))
049 (draw-line-to (+ orgx x-pos) orgy)
050 (xchits (+ x-pos xint)))))
051 (let ychits ((y-pos 0))
052 (cond ((> y-pos rangey)
053 )
054 (else
055 (position-pen (- orgx 5) (+ orgy y-pos))
056 (draw-line-to orgx (t orgy y-pos))
057 (ychits (+ y-pos yint))))))
058
059 (define (axes).(draw-axes -225 -150 450 300 20 20))
060
061 (define (draw-bars list-of-pairs orgy)
062 (let loop ((is list-of-pairs))
063 (cond ((null? is)
064 ())
065 (else
066 (position-pen (car (first is)) orgy)
067 (draw-line-to (car (first Is)) (cadr (first Is)))
068 (loop (cdr Is))))))
069
070 (define (process-x transform rangex orgx pts-per-bar)
071 (let ((result '()) (nax (naA-perf transform)))
072 (cono ((null? pts-per-bar)
073 (define vals-per-har (ceiling (/ max rangex)))
074 (princ " Points per bar: ")
075 (pr int vai s - er-bar)
076 (princ " Maximum performance value: "
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(prin1 max))
(else
(define vals-per-bar pts-per-bar)))

(cond ((eq? vals-per-oar 1)
(let shift ((tf transform))

(cond ((null? tf)
result)

(else
(set! result (cons (list (+ (car (first tf)) orgx)

(cadr (first tf)))
result))

(shift (cdr tf))))))
(else

(let loop ((tf transform))
(cond ((null? tf)

result)

077
078
079
080
081
082
083
084
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102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
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123
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(cadr (car tf)))

(set-cdri pair (list (+ (cadr (car tf))
(cadr pair))))

(loop (cdr tf)))))))))))))

(define (process-y transform rangey orgy yint)
(let ((result '()))

(let loop ((tf transform))
(cond ((null? tf)

result)
(else
(set! result (cons (list (car (car

(+ (round

result))
(loop (cdr tf)))))))

tf))
(* (/ (log (cadr (car tf)))

2.30258)
yint)) rangey orgy))

(define (max-perf transform)
(let loop ((tf transform) (maxval 0))

(cond ((null? tf)
maxval )
((> (car (car tf)) maxval)
(loop (cdr tf) (car (car tf))))

(else
(loop'(cdr tf) maxval)))))

(define (min-perf transform)
(let loop ((tf transform) (minval (caar transform)))

(cond ((null? tf)
minval )
((< (caar tf) minval)
(loop (cdr tf) (caar tf)))

(else
(loop (cdr tf) minval)))))

(define (min-coef tr3nsform)
(let loop ((tf transform) (minval (second (car

(cond ((null? tf)
minval )

((< (second (car tf)) minval)
(loop (cdr tf) (second (car tf))))

(else
(loop (cdr tf) minval)))))

(define (nax-coef transform)

(Iet loop ((tf transforn) (naxval (second (car
(cond ((null? tf)

1ax va I )
((> (second (car tf)) iaxval)

transform))))

transforn))))
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(else
(let ((newx (+ (floor (/ (car (car tf))

vals-per-bar))
orgx)))

(let ((pair (assv newx result)))
(cond ((null? pair)

(set! result (cons (list newx
result))

(loop (cdr tf)))
(else



153 (loop (cdr tf) (second (car tf))))
154 (else
155 (loop (cdr tf) maxval)))))
156
157 (define (shiftx transform val)
158 (let ((result '()))
159 (let loop ((tf transform))
160 (cond ((null? tf)
161 result)
162 (else
163 (sett result (cons (list (- (caar tf) val)
164 (second (car tf)))
165 result))
166 (loop (cdr tf)))))))
167
168
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001 ; Listing of the file "EXPANDER.SCM
These procedures take the matrices

002 of v-transforms for two independent subsystems and construct the matrix
003 of v-transforms for the comoosite subsystem. If the input matrices have
004 ranks N-1 and M-1, then the resulting matrix will have the rank N*M+1.
005 This file requires procedures in the approx.scm file, so load approx first.
006
007 ;Make-matrix is the top level procedure. It takes as arguments two
008 ;; previously define matrices of v-transforms. It returns the composite
009 matrix.
010 (declare (usual-integrations))
011
012 (define (make-matrix mtxl mtx2)
013 (let ((result '())
014 (name-list (make-names (gen-state-list mtxl mtx2)))
015 (syst-loss-col '(system-loss ((system-loss ((0 1)))))))
016 (let loop ((nlist name-list))
017 (cond ((null? nlist)
018 (append (reverse result) (list syst-loss-col)))
019 (else
020 (sett result (cons (gen-co' mn (caar niist) mtxl mtx2 name-list)
021 result))
022 (loop (cdr nlist)))))))
023
024 Gen-column (generate-column) takes as arguments:
025 1. state: a pair of state designators, the first from matrix1 and the
026 second from matrix2, which as a pair designates a composite
027 state.
028 2. mtxl: the v-transform matrix for subsystem1
029 3. mtx2: the v-transform matrix for subsystem2
030 4. name-list: an association list (alist) which has as its key the
031 possible composite state pairs which can be defined for the
032 particular mtxl and mtx2. The entry under each key is a
033 number which is the new name for the composite state. This
034 is so it is not necessary to always refer to composite
035 states by their list designations.
036 Gen-column returns the column which results when mtx1 and mtx2 are
037 expanded according to the conam'site state designator "state." The
038 resulting column ano its elements have the new names specified in name-list,
039
040
041 (define (gen-column state mtxl mtx2 name-list)
042 (let ((result '())
043 (syst-loss-prob 0))
044 (let loop1 ((els1 (elements (get-column (car state) mtxl)))
045 (els2 (elements (get-column (cadr state) mtx2))))
046 (cond ((null? els1)
047 (cond ((zero? syst-loss-prob)
048 (make-column (second (assoc state name-list))
049 (reverse r asul t)))
050 (els8
051 (make-column (second (assoc state name-list))
052 (append (reverse result)
053 (list
054 (list 'system-loss
055 (1ist
056 (list 0 syst-loss-prob)))))))))
057 (else
058 (let ((element1 (car els1)))
059 (let loop2 ((elms2 els2))
060 (cond ((null? elms2)
061 (loopl (cdr elsi) els2))
062 (else
063 (let ((element2 (car elms2)))
0104 (let ((name (get-name (row-number element1)
065 (row-number element2)
066 name-list))
067 (term (multiply-termns (car (transform element1))
0638 (car (transform element2)))))
069 (cond ((eq? name 'systeii-loss)
070 (set! syst-loss-prob (+ (coef term) syst-loss-prob))
071 (1.op2 (cdr elmos2)))
072 (else
073 (set! result (cons (make-eleneont niame (list term))
0/4 result))
75 (lo op2 (cr

0/;6

113



077 Gen-state-list generates a list of all possible concosite states which can
078 be defined for the matrices mtx1 and rtx2. The composite states are
079 returned as pairs.
080
081 (define (gen-state-list mtxl rtx2)
082 (let ((result '()))
083 (let loop1 ((mx1 mtx1) (mx2 mtx2))
084 (cond ((null? mx1)
085 (reverse result))
086 ((system-loss? (car mx1))
087 (loop1 (cdr mxl) mx2))
088 (else
089 (let loop2 ((n2 mx2))
090 (cond ((null? m2)
091 (loop1 (cdr mxl) mx2))
092 ((system-loss? (car m2))
093 (loop2 (cdr m2)))
094 (else
095 (set! result (cons (list (column-number (car mxl))
096 (column-number (.car m2)))
097 result))
098 (loop2 (cdr m2))))))))))
099
100 Make-names takes-as its argument the state-list which is produced by the
101 procedure gen-state-list. It returns an alist which has the composite
102 states in state-list as keys and integers (assigned in ascending order)
103 for the new names.
104
105 (define (make-names state-list)
106 (let ((result '()))
107 (let loop ((counter 1) (sl state-list))
108 (cond ((null? sl)
109 (reverse result))
110 (else
111 (set! result (cons (list (car sl) counter)
112 result))
113 (loop (1+ counter) (cdr sl)))))))
114
115 Get-name does an alist look-up based on statel and state2 (s1 and s2) to
116 find the new name in name-list for the composite state (s1 s2).
117
118 (define (get-name si s2 name-list)
119 (cond ((or (eq? si 'system-loss) (eq? s2 'system-loss))
120 system-loss)
121 (else
122 (second (assoc (list si s2) name-list)))))
123
124
125
126
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C MAIN PROGRAM: PROFILE.FOR
C PERFORMS ALL CALCULATIONS NECESSARY FOR GENERATING A PERFORMANCE
C PROFILE FOR A LARGE SYSTEM WITH TWO INDEPENDENT SUBSYSTEMS.
C THE CODE DOES NOT LIKE SYSTEMS WITH REPEATED OR COMPLEX EIGENVALUES,
C SO CHECK FOR THESE CONDITIONS BEFORE RUNNING THE PROGRAM. THIS IS
C DUE TO THE FACT THAT THE IMSL ROUTINE EIGRF CANNOT FIND LINEARLY
C INDEPENDENT EIGENVECTORS FOR A REPEATED EIGENVALUE, IF THEY EXIST.
C COMPLEX EIGENVALUES SHOULD BOT BE A PROBLEM FOR MOST LOWER
C TRIANGULAR MARKOV MODELS.
C AFTER COMPILING, LINK THIS PROGRAM USING THE COMMAND:
C LINK PROFILE, IMSLIBS/LIB,PENPLOT2$/OPT
C AND THEN USE
C RUN PROFILE
C TO RUN THE PROGRAM.
C PRIOR TO COMPILATION, SET THE PARAMETER S TO BE THE ORDER OF THE
C LARGE COMPOSITE SYSTEM, i.e., THE PRODUCT OF THE ORDERS OF THE TWO
C SUBSYSTEMS.
C IF ANALYSIS OF ONLY ONE SUBSYSTEM IS DESIRED, SET S TO BE THE ORDER OF THE
C SUBSYSTEM, AND ENTER THE IDENTITY SYSTEM (NULL.DAT) AS THE SECOND SUB-
C SYSTEM WHEN THE PROGRAM ASKS FOR IT.
C

INTEGER S,PTSSS
PARAMETER (S=6, PTS=110, SS=20)
INTEGER N,DECSPPD,R(S) ,NP1,J,RN,I,IJOBK,SPECM,COL1,COL2,DESTROW
INTEGER IER,IDGT,NPTS,SIZE,NEWIND(S,2) ,NEWMTX(20,20) ,INDEX
INTEGER Ri (SS) ,R2 (SS)
REAL P1(SS,SS),P2(SSSS),DPVALSL(S),ARRAY(3,PTS)
REAL P(S,S) ,ELKM,Q(S) ,WK(S*S+2*S) ,VINF (S) ,VKM(S) ,RATIO
REAL TIME (PTS) ,W(SS) ,QV(S) ,COEFS (S) ,V1K(PTS)
REAL MODE(PTS,S),RLAM(2*S),RV(2*S*S),REALV(S,S)
COMPLEX LAM (S) , V (S, S)
CHARACTER*10 RESP, INFILE1, INFILE2,0UTFILE,AFILE
CHARACTER*40 XL,YL
LOGICAL CMPLEXLOWTRI ,EIGVALS,COMPS
REAL LAMKM(S),VLAMKM(S,S),COL(S),REL
EQUIVALENCE (LAM(1),RLAM(1)), (V(1,1),RV(1))

C
C INITIALIZATION SECTION TO READ P1, P2, R1, R2, AND SOME PARAMETERS. NOTE
C THAT THE Ps ARE STORED IN A SPECIAL SPACE SAVING MODE SINCE THEY WILL
C GENERALLY BE SPARSE MATRICES.
C

PRINT*,'SPECIFY SYSTEM 1 FILE NAME: '
READ(5,2) INFILE1
PRINT*,'SPECIFY SYSTEM 2 FILE NAME: '
READ(5,2) INFILE2

2 FORMAT (A10)
C
C READ R1 AND P1 FROM SYSTEM 1 FILE.
C

OPEN(UNIT=1,FILE=INFILE1,STATUS='OLD')
READ (1, 4) N, SPEC

4 FORMAT (2116)
READ(1,6) (R1(K),K=1,N)

6 FORMAT(5I16)
READ (1,8) (WK (K) , K=1, SPEC)

8 FORMAT (5F16.10)
CLOSE (UNIT=1 , STATUS=' SAVE*)
DO 12 I=1,N

DO 10 J=1,N
Pl(I,J) = 0.0
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10 CONTINUE
12 CONTINUE

c
C WRITE Pl VALUES FROM SPACE SAVING MODE (IN WK) TO FULL STORAGE MODE IN
C THE P1 ARRAY.
C -

J = 0
DO 16 K=1,SPEC

IF((WK(K) .GT. 1.0) .OR. (K .EQ. 1)) GO TO 14
P1(RNJ) = WK(K)
RN = RN + 1
GO TO 16

14 J = J + 1
RN = WK(K)

16 CONTINUE
C
C READ R2 AND P2 FROM SYSTEM 2 FILE.
C

OPEN(UNIT=1,FILE=INFILE2,STATUS='OLD')
READ(1,18) MSPEC

18 FORMAT(21l6)
READ(1,20) (R2(K), K=1,M)

20 FORMAT (5116)
READ (1, 22) (WK (K) , K=1, SPEC)

22 FORMAT(5F16.10)
CLOSE (UNIT=1, STATUS=' SAVE')
DO 26 I=1,M

DO 24 J=1,M
P2(I,J) = 0.0

24 CONTINUE
26 CONTINUE

C
C WRITE P2 FROM SPACE SAVING MODE (IN WK) TO FULL STORAGE MODE IN
C THE P2 ARRAY.
C

J = 0
DO 30 K=1,SPEC

IF((WK(K) .GT. 1.0) .OR. (K .EQ. 1)) GO TO 28
P2 (RN, J) = WK (K)
RN = RN + 1
GO TO 30

28 J = J + 1
RN = WK(K)

30 CONTINUE
C

PRINT*, 'MISSION TIME (REAL NUMBER):
READ(5,32) KM

32 FORMAT (F16.0)
PRINT*,'NUMBER OF DECADES FOR PROFILE (TWO DIGIT INTEGER):
READ(5,34) DECS
PRINT*, 'POINTS PER DECADE (TWO DIGIT INTEGER):
READ(5,34) PPD

34 FORMAT(12)
C
C INITIALIZE NEWIND AND NEWMTX MATRICES, WHICH ACT AS INDIRECT
C ARRAY SUBSCRIPTS FOR THE EXPANSION OF P1 AND P2 INTO P.
C

DO 38 I=1,N
DO 37 J=1,M

NEWIND((I-1)*M+J,1) = I
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NEWIND((I-1)*M+J,2) = J
NEWMTX(I,J) = (I-1)*M+J

37 CONTINUE
38 CONTINUE

C
C EXPAND P1 AND P2 INTO P
C

SIZE = N * M
DO 41 INDEX=1,SIZE

COLl = NEWIND(INDEX,1)
COL2 = NEWIND(INDEX,2)
DO 40 I=1,N

DO 39 J=1,M
DESTROW = NEWMTX(I,J)
P(DESTROWINDEX) = P1(I,COL1) * P2(J,COL2)

39 CONTINUE
40 CONTINUE
41 CONTINUE
C
C COMPUTE THE SYSTEM LOSS TRANSITION PROBABILITY VECTOR
C

DO 44 J=1,SIZE
DPVAL = 0.0
DO 43 I=1,SIZE

DPVAL = DPVAL + P (I, J)
43 CONTINUE

SL(J) = 1.0 - DPVAL

44 CONTINUE
C
C COMPUTE R FROM R1 AND R2
C

DO 48 I=1,N
DO 46 J=1,M

INDEX = NEWMTX(IJ)
R(INDEX) = R1(I) + R2(J)

46 CONTINUE
48 CONTINUE
C
C CHECK FOR A LOWER TRIANGULAR P MATRIX
C

LOWTRI =. TRUE.
DO 52 I=1,SIZE-1

DO 50 J=I+1,SIZE
IF(P(I,J) .NE. 0.0) LOWTRI = .FALSE.

50 CONTINUE
52 CONTINUE

IF (LOWTRI) GO TO 54
PRINT*,'P IS NOT LOWER TRIANGULAR, SKIPPING EIGVAL TEST.'
GO TO 60

54 CONTINUE
C
C CHECK FOR NO DUPLICATE EIGENVALUES
C

EIGVALS = .TRUE.
DO 58 I=1,SIZE-2

DPVAL = P(I,I)
DO 56 J=I+1,SIZE

IF(DPVAL .EQ. P(J,J)) EIGVALS = .FALSE.
56 CONTINUE
58 CONTINUE
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IF (EIGVALS) GO TO 60
PRINT*,'EXECUTION HALTING: REPEATED EVALS IN P.'
PRINT*, 'EIGENVALUES:'
PRINT161, (P(I,I) ,I=1,SIZE)
PRINT*,'P MATRIX BY ROWS:'
PRINT161, ((P(I.,J), J=1,SIZE), I=1,SIZE)
STOP

60 CONTINUE
C
C COMPUTATION OF EXPECTED IMMEDIATE REWARD (ROW) VECTOR, Q=RP.
C

DO 90 J=1,SIZE
Q (J)=0.0
DO 80 I=1,SIZE

Q(J) = Q(J) + R(I) * P(I,J)
80 CONTINUE
90 CONTINUE

PRINT*, 'Q'
C
C MODAL DECOMPOSITION OF P INTO V, LAM, AND W.
C

IJOB = 2
CALL EIGRF(P,S,S,IJOB,RLAM,RVS,WK,IER)
PRINT*, 'EIGRF'

C OPTION TO HALT IF EIGRF PERFORMS POORLY.
IF (WK(1) .LT. 100) GO TO 115
WRITE(6,100) WK(1)

100 FORMAT (' ','EIGRF PERF = ',F6.0,'. SHOULD I PROCEED?')
READ(5,110) RESP

110 FORMAT (Al)
IF (RESP .EQ. 'N') STOP

C COPY V TO PART OF REALV SINCE INPUT TO INV ROUTINE GETS DESTROYED.
CMPLEX = .FALSE.

115 DO 140 J=1,SIZE
DO 130 I=1,SIZE

REALV(I,J) = REAL(V(I,J))
IF (AIMAG(V(I,J)) .EQ. 0.0) GO TO 130
WRITE(6,120) J

120 FORMAT(' ','EIGENVECTOR ',13,' IS COMPLEX.')
CMPLEX = .TRUE.

130 CONTINUE
140 CONTINUE

PRINT*, 'V COPIED'
IDGT = 7
IF (CMPLEX) STOP
CALL LINV1F(REALV,S.S,W,IDGT,WK,IER)
PRINT*, 'LINV1F'

C OPTION TO HALT IF LINV1F PERFORMS POORLY.
IF (IER .NE. 129) GO TO 168
WRITE (6,150) IER

150 FORMAT (' ','LINV1F IER = ',13,'. CHECK THE S PARAM OR EVALS.
1 ' SHOULD I PROCEED?')

READ(5,160) RESP
160 FORMAT (Al)

IF (RESP .NE. 'N') GO TO 168
PRINT161, ((REAL(V(I,J)), J=1,SIZE),I=1,SIZE)
PRINT161, ((W(I,J) ,J=1,SIZE) ,I=1,SIZE)

161 FORMAT(6(1X,G12.6))
STOP

C
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C COMPUTE RELIABILITY AT MISSION TIME.
C
168 DO 162 I=1,SIZE

LAMKM(I) = REAL(LAM(I))**KM
162 CONTINUE

DO 164 J=1,SIZE
DO 163 I=1,SIZE

VLAMKM(I,J) = REAL(V(IJ)) * LAMKM(J)
163 CONTINUE
164 CONTINUE

DO 166 I=1,SIZE
COL(I) = 0.0
DO 165 J=1,SIZE

COL(I) = COL(I) + VLAKM(I.J) W(J,1)
165 CONTINUE
166 CONTINUE

REL = 0.0
DO 167 I=1,SIZE

REL = REL + COL(I)
167 CONTINUE

C
C COMPUTATION OF QV
C
169 DO 180 J=1,SIZE

QV(J) = 0.0
DO 170 I=1,SIZE

QV(J) = QV(J) + Q(I) REAL(V(IJ))
170 CONTINUE
180 CONTINUE

PRINT*, 'QV'
C
C COMPUTATION OF THE INFINITE HORIZON TOTAL VALUE VECTOR, VINF.
C

DO 190 J=1,SIZE
WK (J) = QV (J) / (1 - REAL(LAM(J)

190 CONTINUE
DO 210 J=1,SIZE

VINF(J) = 0.0
DO 200 I=1,SIZE

VINF(J) = VINF(J) + WK(I) * W(I,J)
200 CONTINUE
210 CONTINUE

PRINT*, 'VINF'
C
C COMPUTATION OF THE TOTAL VALUE VECTOR AT MISSION TIME, VKM.
C

DO 220 J=1,SIZE
WK(J) = QV(J) * (REAL(LAM(J)) ** KM - 1) / (REAL(LAM(J)) - 1)

220 CONTINUE
DO 240 J=1,SIZE

VKM(J) = 0.0
DO 230 I=1,SIZE

VKM(J) = VKM(J) + WK(I) * W(IJ)
230 CONTINUE
240 CONTINUE

PRINT*, 'VKM'
C
C COMPUTATION OF MODAL COEFFICIENTS FOR V1(K).
C

DO 250 I=1,SIZE
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COEFS(I) = QV(I) * W(I,1)
250 CONTINUE

PRINT*, 'COEFS'
C
C COMPUTATION OF VALUES FOR MODAL PLOT OF PERFORMANCE PROFILE
C

RATIO = 10.OEO ** (1.OEO / PPD)
DO 270 I=1,DECS

DO 260 J=1,PPD
TIME((I-1) * PPD + J) = INT(10.0 (I - 1) * RATIO * (J - 1))

260 CONTINUE
270 CONTINUE

PRINT*,'TIME'
NPTS = DECS * PPD
DO 290 I=1,NPTS

V1K(I) = 0.0
DO 280 J=1,SIZE

MODE(I,J)=COEFS(J)*(REAL(LAM(J))**TIME(I) - 1)/(REAL(LAM[(J)) - 1)
V1K(I) = V1K(I) + MODE (I,J)

280 CONTINUE
290 CONTINUE

PRINT*, 'MODE'
C
C SELECTIVELY SAVE INFORMATION IN OUTFILE.
C

PRINT*,'SAVE ANY INFO?'
READ(5,510) RESP
IF(RESP .EQ. 'N') GO TO 520
PRINT*,'SPECIFY OUTPUT FILE NAME:'
READ(5,2) OUTFILE
OPEN(UNIT=1,FILE=OUTFILE,STATUS='NEW')
WRITE (1,295) OUTFILE, INFILE1, INFILE2

295 FORMAT(' ','PRINTOUT OF OUTPUT FILE ',A10
1 /' ','SYSTEM 1 INPUT FILE WAS ',A10
2 /' ','SYSTEM 2 INPUT FILE WAS ',A10)

WRITE (1, 300) KM
300 FORMAT(' ','MISSION TIME K = ',F16.0)

WRITE(1,310)
310 FORMAT(' ','TOTAL VALUE VECTOR AT MISSION TIME:')

WRITE(1,325) (VKM(K), K=1,SIZE)
WRITE (1, 315) REL

315 FORMAT(' ','RELIABILITY AT MISSION TIME: ',F16.10)
WRITE (1,320)

320 FORMAT(' ','TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:')
WRITE(1,325) (VINF(K), K=1,SIZE)

325 FORMAT(' ',5F16.4)
C

PRINT*, 'SAVE EIGENVALUES?'
READ(5,510) RESP
IF(RESP .EQ. 'N') GO TO 340
WR I TE (1, 330)

330 FORMAT(' ','EIGENVALUES OF STATE TRANSITION MATRIX:')
WRITE(1,360) (REAL(LAM(K)), K=1,SIZE)

C
340 CONTINUE

PRINT*,'SAVE MODAL COEFFICIENTS OF V1(K)?'
READ(5,510) RESP
IF(RESP .EQ. 'N') GO TO 370
WRITE (1, 350)

350 FORMAT(' ','MODAL COEFFICIENTS IN EXPANSION OF V1(K):')
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WRITE(1,360) (COEFS(K), K=1,SIZE)
360 FORMAT(' ',5F16.10)

C
370 CONTINUE

PRINT*, 'SAVE R VECTOR AND P MATRIX?'
READ(5,510) RESP
IF (RESP .EQ. 'N') GO TO 410
WRITE (1,380)

380 FORMAT(' ','PERFORMANCE VECTOR:')
WRITE(1,390) (R(K), K=1,SIZE)

390 FORMAT(' ',5116)
IF (LOWTRI) CO TO 402
WRITE (1, 400)

400 FORMAT('O','FULL STATE TRANSITION MATRIX LISTED BY COLUMNS:')
WRITE(1,440) ((P(I,J), I=1,SIZE), J=1,SIZE)
GO TO 408

402 WRITE(1,404)
404 FORMAT('0','CONCISE LOW TRI STATE TRANS MATRIX BY COLUMNS:')

DO 408 J=1,SIZE
WRITE(1,405) J

405 FORMAT(' ','COLUMN ',12,':')
WRITE(1,406) (P(IJ) ,I=JSIZE)

406 FORMAT(' ',5F16.10)
408 CONTINUE

WRITE (1,409)
409 FORMAT('0','SYSTEM LOSS TRANSITION PROBABILITY VECTOR:')

WRITE(1,440) (SL(K), K=1,SIZE)
C
410 CONTINUE

PRINT*,'SAVE MATRICES OF RIGHT AND LEFT EIGENVECTORS?'
READ(5,510) RESP
IF(RESP .EQ. 'N') CO TO 450
WRITE (1,420)

420 FORMAT('0','MATRIX OF RIGHT EIGENVECTORS (LISTED BY COLUMNS):')
WRITE(1,440) ((REALV(IJ), I=1,SIZE), J=1,SIZE)
WRITE (1,430)

430 FORMAT('0','MATRIX OF LEFT EIGENVECTORS (LISTED BY COLUMNS):')
4RITE(1,440) ((W(I,J), I=1,SIZE), J=1,SIZE)

440 FORMAT(' ',5F16.10)
C
450 CONTINUE

PRINT*,'SAVE V1(K) PROFILE VALUES?'
READ(5,510) RESP
IF(RESP .EQ. 'N') GO TO 520
PRINT*,'SAVE MODAL COMPONENTS OF V1(K) TOO?'
READ(5,510) RESP
COMPS = .FALSE.
IF(RESP .NE. 'N') COMPS = .TRUE.
WRITE (1, 460) DECS

460 FORMAT('O','EXPECTED PERFORMANCE PROFILE FOR K = 1 TO 10**',
1 12)

DO 500 K=1,NPTS
WRITE (1, 470) TIME (K)
IF(COMPS) WRITE(1,480) (MODE(K,J), J=1,SIZE)
WRITE(1,490) V1K(K)

470 FORMAT('0','FOR K = ',F16.0)
480 FORMAT(' ',5F16.10)
490 FORMAT(' ','V1(K) = ',F16.4)
500 CONTINUE
510 FORMAT (Al)
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CLOSE (UNI T=1,STATUS=' SAVE')
520 CONTINUE
C

PRINT*, 'GENERATE A PLOT OF THE EXPECTED PERFORMANCE?'
READ(5,510) RESP
IF (RESP .EQ. 'N') GO TO 523

C
C GENERATE PLOT OF EXPECTED PERFORMANCE PROFILE
C
C FIRST COPY TIME, V1K, AND VINF(1) TO ARRAY.
C

DO 522 I=1,NPTS
ARRAY(1,I) = TIME(I)
ARRAY(2,I) = V1K(I)
ARRAY(3,I) = VINF(1)

522 CONTINUE
XL = 'TIME K'
YL = 'EXPECTED PERFORMANCE, E (J]'
CALL QPICTR (ARRAY, 3,NPTS,QXLAB (XL) ,QYLAB (YL) ,QLABEL (4),

1 QI SCL (1) , QX (1) ,QY (2, 3) )
523 PRINT*,'SAVE PLOT ARRAY FOR FUTURE PLOTTING?'

READ(5,510) RESP
IF (RESP .EQ. 'N') GO TO 530
PRINT*,'SPECIFY ARRAY FILE NAME:'
READ(5,2) AFILE
OPEN(UNIT=1,FILE=AFILE,STATUS='NEW')
WRITE(1,525) ((ARRAY(I,J) ,J=1,NPTS) ,I=1,3)

525 FORMAT (5F16. 4)
CLOSE (UNIT=1, STATUS='SAVE')

530 CONTINUE
STOP
END
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APPENDIX C

FORTRAN RESULTS
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PRINTOUT OF OUTPUT FILE FOR 7 STATE MODEL
SYSTEM 1 INPUT FILE WAS STATE7.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 150.
TOTAL VALUE VECTOR AT MISSION TIME:

62.7363 101.1588 102.4084
56.9740

RELIABILITY AT MISSION TIME: 0.4700905979
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

110.2767 108.0375 109.5156
- 57.0000

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9499999881 0.0299999993 0.9800000191
0.9900000095

MODAL COEFFICIENTS IN EXPANSION OF V1(K):
0.4552075863 -0.0068692365 -2.9027307034
2.4630970955

PRINTOUT OF OUTPUT FILE FOR 50 STATE MODEL
SYSTEM 1 INPUT FILE WAS SENSORS.DAT
SYSTEM 2 INPUT FILE WAS ACTUATORS.DAT
MISSION TIME K =
TOTAL VALUE VECTOR

101296.7344
138798.9844
141714.7344
141263.5156
162065.2656
139751.6719
132518.2031
94289.5000
122555.6797
154608.8438

7200.
AT MISSION TIM

143869.7031
166291.8125
139484.1406
141166.7188
102659.3672
135962.5469
132710.1719
128783.4766
146831.3125
151158.8125

RELIABILITY AT MISSION TIME:
TOTAL VALUE VECTOR

1262333.3750
843662.2500
903717.7500
898255.3750
852164.4375
732117.3125
874573.5625
997494.4375
676020.1250
1033379.2500

143820.0156
102511.7266
135702.3906
141305.4375
141921.8281
162892.8594
129750.3359
128658.2188
113143.5000
147061.2031

0.9796848893
FOR INFINITE TIME HORIZON:
1071391.8750
1010926.7500
731679.5625
890489.8125
1040697.1875
712305.5625
886994.3125
856611.3750
810045.7500
833774.6250

EIGENVALUES OF STATE TRANSITION MK
2222 0.2799937725

0.2809553742 0.0842999965
0.0221200008 0.0063200002
0.0789987296 1.99T83
0.2999525070 0.0499920845
0.0239199996 0.2989525497
0.0498997234 0.0139720002
0.0024949999 0.0498991944
0.999791801 0.2999851704

MOD . S IN EXPANSION OF
772-41,644- 0,0005351
0.0000000088 -20.90989685061
-0.0000133974 -0.0000000005
0.0000000000 0.0 g0 gQo
-0.0000051608 6.11329126361
-0.0000034946 0.0000000009
0.0000000000 0.0000189747
-0.0000052534 0.0000000000S0.0000011832
10.5578575134 0.0000421797

1061907.5000
1040346.6250
711880.3125
902957.8125
899471.6875
853522.6250
715667.1250
849100.2500
1196980.8750
811213.4375

TIX:
0.0799982175
0.2809984386
0.0140499994
0.0789874643
0.2799556851
0.9998255968
0.08969;
0.0039919997
0.9999449849
0.0499975W2

V1(K):
-0.0000002238
0.0011715272
0.0000000000
-0.0000002633
0.0000030365

0.0 0 0nu
0.0000000000

58.796642303
-0.00ut

58.0350

58.0610

0.0399999991

0.0195787884

143882.7188
141673.8750
162580.9688
139041.7969
141827.2500
97118.4453
126232.6016
128844.5547
154534.6094
176192.2344

1077135.2500
899014.7500
853012.6250
730952.0625
891702.7500
1027419.6250
696301.0625
861159.0000
1027921.5625
972043.4375

0.9998190403
0.0 86
0.2809954584
0.0237000026
0.0799873322
0.2989983261
0.0149499997
0.0498920791
0.2799861431

t-0.61143809561
0.0000000005
-0.0002682131
0.0000000000
-0.0000000150
-0.0016868892
0.0000000000
0.0000000611
-0.0000357349
115.7902603149

57.004

57.030

0.050000000

-0.013283506

142666.984-
141578.281.
102266.562.
135272.046
141961.937.
132647.359-
151236.484.
125970.882:
154383.906

867125.875.
891246.625
1039759.000
711172.687
904173.187
882310.625
834347.500
694821.625
1018907.437

0.299993336
0.022479997
0.078999564
0.003950000

0.083719998
0.298995196
0.014969999
0.079996042

-0.000062723
0.000000000
0.000022682

0.06425242
-0.00oo
0.000403281
0.00000000C
0.000000162
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PRINTOUT OF OUTPUT FILE FOR 10 STATE MODEL
SYSTEM 1 INPUT FILE WAS SENS4.DAT
SYSTEM 2 INPUT FILE WAS ACTS4.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

100081.7266 143873.1875 164129.1719
174599.1406 113377.0938 156708.3906

RELIABILITY AT MISSION TIME: 0.9617496133
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

1206475.3750 1041040.7500 954063.9375
996130.3125 1225833.6250 1060561.6250

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9999722242 0.9998190403 0.9999616742
0.9998254776 0.9999449849 0.9997918010

MODAL COEFFICIENTS IN EXPANSION OF V1(K):
64.9560089111 0.3387398720 -12.5435619354
-0.8916142583 -53.7432746887 -0.2342728227

PERFORMANCE VECTOR:
13 18 25
26 15 20

CONCISE LOW TRI STATE TRANS MATRIX BY COLUMNS:
COLUMN 1:

0.9999344349
0.0000000000

COLUMN 2:
0.9998254776
0.0000000000

COLUMN 3:
0.9999616742
0.0000000000

COLUMN 4:
0.9997918010
0.0000000000

COLUMN 5:
0.9996828437

COLUMN 6:
0.9998190403

COLUMN 7:
0.9999449849

COLUMN 8:
0.9998360276

COLUMN 9:
0.9999722242

0.0000494442
0.0000000000

0.0001583265
0.0000000000

0.0000000000
0.0000000000

0.0000494372

0.0001583039

0.0000000000

0.0000494447

0.0001583281

SYSTEM LOSS TRANSITION PROBABILITY
0.0000044703 0.0000045896
0.0000222921 0.0000055432

0.0000000000
0.0000000000

0.0000000000
0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

VECTOR:
0.0000267029
0.0000056624

110722.2734
176192.2344

1259931.5000
972043.4375

0.9998360276
0.9999344349

5.8889918327
9.2080230713

0.0000116105
0.0000000000

0.0000116093

0.0000116108

0.0001586921

0.0001586749

0.0001586965

0.0000001192
0.0000277758

154739.031:

1087796.375(

0.999682843'

0.021143509

1

0.000000000

0.000000001

0.000000000

0.000000007

0.000000025

0.00000017E
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PRINTOUT OF OUTPUT FILE FOR CASE 1
SYSTEM 1 INPUT FILE WAS CASE1.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

7661.4551 15810.6689 15918.6836
17647.3516 21174.5586

RELIABILITY AT MISSION TIME: 0.9918781519
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

525863.6250 463226.2813 463286.5313
451003.1250 541197.5000

EIGENVALUES OF 'STATE TRANSITION MATRIX:
0.9999944568
0.0500000007

MODAL COEFFICIENTS
3.9519212246

-0.0000000006
PERFORMANCE VECTOR:

0.2800000012
0.9999839067
IN EXPANSION OF
0.0000136059
-3.0170705318

0.0799999982

V1 (K) :
-0.0000000422

15744.1455

463186.2500

0.9998412728

0.0651749074

18176.919,

464533.437!

0.300000011c

-0.000017300f

CONCISE LOW TRI STATE TRANS MATRIX
COLUMN 1:

0.9999839067 0.0000001111
0.0000000000 0.0000000000

COLUMN 2:
0.0500000007 0.2280000001
0.0000000000

COLUMN 3:
0.3000000119 0.6499999762

COLUMN 4:
0.9998412728 0.0000001667

COLUMN 5:
0.0799999982 0.2300000042

COLUMN 6:
0.2800000012 0.6000000238

COLUMN 7:
0.9999944568

SYSTEM LOSS TRANSITION PROBABILITY
0.0000000000 0.0000000000
0..1199999452 0.0000055432

BY COLUMNS:

0.0000026400

0.7124999762

0.0500000007

0.0000020417

0.5979999900

VECTOR:
0.0000000000

0.0000132499

0.0094999997

0.0000000000

0.0001303072

0.0000262260

0.000000110(

0.000000000(

0.000000000!

0.092000007

126



PRINTOUT OF OUTPUT FILE FOR CASE 2
SYSTEM 1 INPUT FILE WAS CASE2.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

8404.9609 18105.2070 18108.7539
17647.3516 21174.5586

RELIABILITY AT MISSION TIME: 0.9971009493
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

573334.5625 544256.5625 540628.3125
451003.1250 541197.5000

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9999944568
0.0500000007

MODAL COEFFICIENTS
3.5994093418

-0.0000000006
PERFORMANCE VECTOR:

0.2800000012
0.9999638796
IN EXPANSION OF
0.0000136064
-2.7688279152

0.0799999982

V1 (K) :
-0.0000000422

18103.3457

546477.1250

0.9997416735

0.1694644690

18176.919S

464533.437!

0.300000011S

-0.000017301(

7 3
CONCISE LOW TRI STATE TRANS MATRIX
COLUMN 1:

0.9999638796 0.0000001111
0.0000000000 0.0000000000

COLUMN 2:
0.0500000007 0.2280000001
0.0000000000

COLUMN 3:
0.3000000119 0.6499999762

COLUMN 4:
0.9997416735 0.0000001667

COLUMN 5:
0.0799999982 0.2300000042

COLUMN 6:
0.2800000012 0.6000000238

COLUMN 7:
0.9999944568

SYSTEM LOSS TRANSITION PROBABILITY
0.0000000000 0.0000000000
0.1199999452 0.0000055432

BY COLUMNS:

0.0000026400

0.7124999762

0.0500000007

0.0000020417

0.5979999900

VECTOR:
0.0000000000

0.0000332497

0.0094999997

0.0000000000

0.0002553062

0.0000008345

0.000000110C

0.000000000c

0.000000000C

0.092000007(
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PRINTOUT OF OUTPUT FILE FOR CASE 3
SYSTEM 1 INPUT FILE WAS CASE3.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

14620.5732 20739.6875 20623.2891
17647.3516 21174.5586

RELIABILITY AT MISSION TIME: 0.9797978997
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

545559.8750 539642.8750 536224.3125
451003.1250 541197.5000

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9999944568
0.0500000007

MODAL COEFFICIENTS
3.0703322887

-0.0000000006
PERFORMANCE VECTOR:

0.2800000012
0.9997389317
IN EXPANSION OF
0.0000136119
-2.1864285469

0.0799999982

V1(K):
-0.0000000422

20811.4844

541734.5625

0.9974916577

0.1163672656

18176.919,

464533.437!

0.300000011

-0.000017310

CONCISE LOW TRI STATE TRANS MATRIX
COLUMN 1:

0.9997389317 0.0000001111
0.0000000000 0.0000000000

COLUMN 2:
0.0500000007 0.2280000001
0.0000000000

COLUMN 3:
0.3000000119 0.6499999762

COLUMN 4:
0.9974916577 0.0000001667

COLUMN 5:
0.0799999982 0.2300000042

COLUMN 6:
0.2800000012 0.6000000238

COLUMN 7:
0.9999944568

SYSTEM LOSS TRANSITION PROBABILITY
0.0000000000 0.0000000000
0.1199999452 0.0000055432

BY COLUMNS:

0.0000026400

0.7124999762

0.0500000007

0.0000020417

0.5979999900

VECTOR:
0.0000000000

0.0002582472

0.0094999997

0.0000000000

0.0025052871

0.0000008345

0.000000110c

0.000000000c

0.000000000(

0.092000007(
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PRINTOUT OF OUTPUT FILE FOR CASE 4
SYSTEM 1 INPUT FILE WAS CASE4.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

9995.1602 15951.5039 15921.4404
14838.2051 17802.3730

RELIABILITY AT MISSION TIME: 0.9388317466
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

68791.2578 60163.0273 59535.0703
45005.9844 54000.9141

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9999444485
0.0500000007

MODAL COEFFICIENTS
7.3351488113
-0.0000000063

PERFORMANCE VECTOR:

0.2800000012
0.9998838902
IN EXPANSION OF
0.0001360330
-8.6147670746

0.0799999982

V1(K):
-0.0000004218

15969.4111

60544.4180

0.9997916818

2.2798321247

15283.525-

46356.394'

0.3000000111

-0.0001729781

CONCISE LOW TRI STATE TRANS MATRIX
COLUMN 1:

0.9998838902 0.0000011111
0.0000000000 0.0000000000

COLUMN 2:
0.0500000007 0.2280000001
0.0000000000

COLUMN 3:
0.3000000119 0.6499999762

COLUMN 4:
0.9997916818 0.0000016667

COLUMN 5:
0.0799999982 0.2300000042

COLUMN 6:
0.2800000012 0.6000000238

COLUMN 7:
0.9999444485

SYSTEM LOSS TRANSITION PROBABILITY
0.0000000000 0.0000000000
0.1199999452 0.0000555515

BY COLUMNS:

0.0000264000

0.7124999762

0.0500000007

0.0000204167

0.5979999900

VECTOR:
0.0000000000

0.0000874994

0.0094999997

0.0000000000

0.0001780729

0.0000081062

0.000001100(

0.000000000(

0.000000000

0.092000007-
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PRINTOUT OF OUTPUT FILE FOR CASE 5
SYSTEM 1 INPUT FILE WAS CASES.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

10584.5488 16556.1563 16498.5645
14838.2051 17802.3730

RELIABILITY AT MISSION TIME: 0.9186308980
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

65166.3711 57775.9727 57256.6797
45005.9844 54000.9141

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9999444485
0.0500000007

MODAL COEFFICIENTS
5.8312849998

-0.0000000063
PERFORMANCE VECTOR:

0.2800000012
0.9998638630
IN EXPANSION OF
0.0001360379
-5.8246917725

CONCISE LOW TRI STATE TRANS MATRIX
COLUMN 1:

0.9998638630 0.0000011111
0.0000000000 0.0000000000

COLUMN 2:
0.0500000007 0.2280000001
0.0000000000

COLUMN 3:
0.3000000119 0.6499999762

COLUMN 4:
0.9996666908 0.0000016667

COLUMN 5:
0.0799999982 0.2300000042

COLUMN 6:
0.2800000012 0.6000000238

COLUMN 7:
0.9999444485

SYSTEM LOSS TRANSITION PROBABILITY
0.0000000000 0.0000000000
0.1199999452 0.0000555515

0.0799999982

V1 (K) :
-0.0000004218

BY COLUMNS:

0.0000264000

0.7124999762

0.0500000007

0.0000204167

0.5979999900

VECTOR:
0.0000000000

16590.9648

58090.7617

0.9996666908

0.9936411977

0.0001074972

0.0094999997

0.0000000000

0.0003030625

0.0000081062

15283.525-

46356.394.

0.300000011

-0.000172985;

7

0.000001100

0.000000000

0.000000000

0.092000007
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PRINTOUT OF OUTPUT FILE FOR CASE 6
SYSTEM 1 INPUT FILE WAS CASE6.DAT
SYSTEM 2 INPUT FILE WAS NULL.DAT
MISSION TIME K = 7200.
TOTAL VALUE VECTOR AT MISSION TIME:

14337.6641 17639.4141 17532.5137
14838.2051 17802.3730

RELIABILITY AT MISSION TIME: 0.7897561193
TOTAL VALUE VECTOR FOR INFINITE TIME HORIZON:

57231.3984 54310.8984 53949.3203
45005.9844 54000.9141

EIGENVALUES OF STATE TRANSITION MATRIX:
0.9999444485
0.0500000007

MODAL COEFFICIENTS
3.6018893719

-0.0000000063
PERFORMANCE VECTOR:

0.2800000012
0.9996389151
IN EXPANSION OF
0.0001360926
-2.7705199718

CONCISE LOW TRI STATE TRANS MATRIX
COLUMN 1:

0.9996389151 0.0000011111
0.0000000000 0.0000000000

COLUMN 2:
0.0500000007 0.2280000001
0.0000000000

COLUMN 3:
0.3000000119 0.6499999762

COLUMN 4:
0.9974168539 0.0000016667

COLUMN 5:
0.0799999982 0.2300000042

COLUMN 6:
0.2800000012 0.6000000238

COLUMN 7:
0.9999444485

SYSTEM LOSS TRANSITION PROBABILITY
0.0000000000 0.0000000000
0.1199999452 0.0000555515

0.0799999982

V1 (K) :
-0.0000004220

BY COLUMNS:

0.0000264000

0.7124999762

0.0500000007

0.0000204167

0.5979999900

VECTOR:
0.0000000000

17704.2363

54529.0000

0.9974168539

0.1690896899

0.0003324722

0.0094999997

0.0000000000

0.0025528751

0.0000081658

15283.525

46356.394:

0.300000011'

-0.000173076.

7

0.000001100

0.000000000(

0.000000000(

0.092000007
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