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Abstract

Subband coding of digital image is drawing more attention than ever before. The
fundamental property of subband coding system is that the original signal is decomposed
into several statistically dissimilar signals. On one hand, this decomposition constitutes
the primary decorrelating mechanism, which affects the signal compression. However, it
raises the problem of optimally allocating the available channel capacity among the signal
components. This is more critical in coding image at low bit rate. A bit allocation algorithm
based on the the statistics of source image data is developed in this thesis. The original
image data is first transformed into a set of spatioltemporal subbands by using QMF filters.
Then statistics are run through the subbands. According to the statistics, the bit allocation
program allocates the predescribed total bits to different subbands in such a way that the
total distortion in the reconstructed picture will be minimized. A bit rate controlled kd-tree
based vector quantizer is used to conduct the quantization.
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Chapter 1

Introduction

Digital images represented at a low enough bandwidth for them to be useful in com-

puting applications and -new consungr products are more and more in demand, since

both digital data communication and digital data storage are surprisingly increasing.

We address image representations that allow high quality moving video sequences at

near 1.5 Mb/sec.

For the past few years, the Movies of the Future Group at Media Lab, MIT has



explored the use of subband decomposition of image sequences for this purpose.

Subband coding was introduced by Crochiere et al. [34] in 1976 originally for

speech coding. However, considerable attention has been devoted to subband coding

of images since then. The virtue of subband coding is to split up the signal frequency

band into subbands and to encode each band with a coder and bit rate accurately

matched to the statistics of that particular band. Also, the response of the viewer's

eye to different frequencies can be taken into account, and quantization error can be

increased in those bands for which it will be less visible.

Recent advances of subband coding shows that subbands allow a multi-scale image

representation [5] [40] , and afford good performance in coding [23] [1] (22].

Subband coding can be viewed in two components. First the image sequence is

analyzed by a series of linear filters into spatial and temporal regions, then these re-

gions are each quantized. A variety of quantizers may be used, and further processing

may also be performed on the subbands. We have experimented with DCTs and VQ

at the Movies of the Future Group, Media Lab, MIT (refs, tech notes, etc)

In this thesis we examine the bit allocation applied to the subbands. and the

preprocessing applied to the image before subband decomposition. This is important

i



because the. quantization is the source of the compression, and it inherently involves

a loss of data and potential reduction of picture quality. We can view this process as

adding noise selectively to the image, and the manner in which the noise is add and

the amount of it will determine quality and efficiency. It is important to realize that

the encoding process is a matter of throwing away information (data) in such a way

that the reconstructed signal at the decoder output is corrupted the least. (At least

by a visual criterion, if not by a mean squared error measure.)

We will describe the basic structure of the coder and its value in compression and

application, some aspects of the psychophysics of image coding that are exploited in

the subband coder, and characteristics of compressed images when noise is added to

the subbands. Finally, we will describe a bit allocation method and a prefilter that

can be applied to the images to allow high quality and low bit rate.

Before preceding, it is worth while to briefly review Shannon's source coding

theorem.



1.1 Noiseless Source Coding

A data compression system is said to be noiseless if the source symbol sequence is

reproduced exactly at the destination. Consider partitioning the source sequence into

subsequences of length N. We define the information contained in a source symbol

sequence of length N to be

i(x) ~ log 2(p(x)) bits/source symbol. (1.1)

The average information per source symbol, known as the source's Nth order entropy

is

HN(p) - pN(x) log 2  bits / source symbol, (1.2)
N gN PN(X)XEx

where pN(x) is the Nth order source pmf (probobility mass function).For most discrete

sources of interest, this quantity approaches a finite limit, called its entropy, as N

approaches infinity:

H(p) A lim HN(p) bits /source symbol. (1.3)
N-+oo

The noiseless source coding theorem states:



Theorem 1 (Shannon's Noiseless Source Coding Theorem [38]) For any e> 0,

there exists a noiseless source encoder / decoder pair (codec) with average encoder

output bit rate less than H + e, where H is the source entropy. Conversely, no

noiseless source encoder and decoder exist for which the encoder output bit rate is less

than H.

The primary value of this theorem is that it provides a bound for the source coding

if the source entropy is known. However, it does not give a method for constructing

a source coding system.

1.2 Noise Source Coding

When the available channel capacity is less than the source entropy, the noiseless

source coding theorem implies thatwe can not communicate the source sequence

without error. In this case, we can, however, try to contract a codec which introduces

relatively benign types of errors in the reconstructed sequence. For such an approach,

we must be able to quantify distortion between the source sequence x and the repro-

duction sequence i as a function of the two sequences in a meaningful way. Ideally,
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the distortion function should reflect the degree to which the reconstructed sequence

differs from the original. So far, the most commonly employed distortion measure is

the mean square error (mse), defined as

N-1

d(x, z) A N-(x(i) - i(i)) 2, (1.4)
i=0

for sequences of length N. Mean square error distortion is zero in the case of perfect

reconstruction.

The source coding problem is to design a codec which achieve the minimum aver-

age distortion between the original and reconstructed source sequences, subject to the

constraint that the average encoder output bit rate be less than a prescribed value.

Alternately, we may want to minimize the average encoder output rate, subject to

a constraint on the maximum allowable distortion. Here, we introduce a generalized

entropy concept called rate distortion function, R(5), which specifies the minimum

channel capacity required to transnit the source sequence with distortion less than

6, as stated in Shannon's Source Coding Theorem,

Theorbm 2 (Shannon's Source Coding Theorem [38] ) Fix 6 ; 6m> . For any

6' > 6 and R' > R(b), for sufficiently large N there exists a source code C of length

with M codewords, where:



(a) M < 2 [NR']

(b) d(C) < 6'

In this theorem, N is the number of source symbols grouped together into a block,

[-] denotes the largest integer less than the argument, and C is a source code consisting

of a set of M possible reconstruction vectors,

C = (xo,x1, ... xM-1), XJEXN. (1.5)

If we assume that the encoding function, C(.), selects the reconstruction vector

i E C that minimizes the mean square error to its argument, x E xN, then the

average distortion of code C is defined as

d(C) _ 1] p(x)d(x, C(x)). (1.6)
xExN

In general, R' approaches the rate distortion function only as N becomes large, im-

plying that performance is proportional to the sequence length.

As we have seen, neither the noiseless nor the noisy source coding theorem provides

an explicit method for constructing practical source coding systems. However, they



do suggest methods for codec design in image coding.



Chapter 2

Subband Coding

A subband coder can be viewed as two basic components as shown in Figure 2.1.

The first part of the chapter discusses the subband analysis/synthesis; the virtues of

subbands, such as: energy concentration, localization of features in the images, and

the division of images into varying and relatively stationary subbands.

The second part of the chapter explores the kd-tree based vector quantizer; its

design issues; the selection of splitting dimension and the division point on the selected



Input image
sequences Output image

sequences

Figure 2.1: Subband Coder.

dimension; and the bit rate calculation and control in kd-tree based VQ process.

2.1 Subband principles

The moving image sequences are represented as a three-dimensional digital signal with

two dimensions in space and the third over time. Therefore, the three dimensional

subband method should be employed to remove the redundancy in each dimension.

[44 [46] [5] [22].

In subband analysis, the input signal is broken up with a set of band-splitting

filters that cover fully the frequency spectrum of the information in the original signal.

Because the filters cover the frequency domain exactly and each resulting signal can

be sub-sampled at its new Nyquist sampling rate, the number of data points does not

I



increase. However, there is a chan'ce of information loss, due to the leakage in the

filters. Therefore, the desired characteristics of a subband are that its filters exhibit

a minimal leakage and that the result will be a set of output subbands that have a

definite hierarchy of importance. Here we need to solve two problems: finding a set of

filters which preserve total information of original signal in the set of subband signals;

splitting the subbands in such a way that the bandwidth of transmission channel can

be intelligently allocated by more finely coding the important sub-bands and coarsely

coding the unimportant ones. The Quadrature Mirror Filter (QMF) technique has

been normally used as the solution for the first problem [12]. The solution for the

second one is associated with issues in Human Visual System (HVS). The subband

coding schemes for image coding in conjunction with a visual model is quite strong

due to the HVS's nonuniform response across different portions of the spatialtemporal

spectrum. Troxel et. al. and Schreiber [42], Glenn[13] [14] and Kelly[24] all discussed

the reduced distortion sensitivity to high frequency spatial detail that humans exhibit.

Spatially, the human response is not easily modeled, but there are well known

components of the early visual pathway that are surprisingly well approximated us-

ing simple filter banks. Butera[5] took advantage of this approach and employed a

subband decomposition within an image coding system to model these components.

He cites Wilson's work[45] which observes that groups of receptors in the human vi-



sual system. are organized into roughly one octave wide -circularly symmetric band

pass channels. Each of these receptive units therefore responds to detail at a given

scale and is isotropic in nature. This suggests a spatial subband decomposition of an

image into one octave wide regions is a suitable and practical means of modeling the

human visual system. It also has been shown through experimentation that humans

have lower acuity with respect to diagonal edge detail than more vertical or horizontal

orientations. It is important to note that source modeling alone establishes the same

fact. Even though there is no universal probability distribution function for images,

most of the images do not have flat spectra. In fact, the amplitude of the spectral

components decreases rapidly in proportion to spatial frequency. Octave subdivisions,

thereafter, make sense in that they divide the spectra into pieces which have roughly

equal amounts of information.

Temporally, there is less support for octave divisions. The studies of temporal

subband division are not as satisfactory as the one of spatial subband. Romano [22]

described a temporal uniform subdivision scheme which uses 6Hz as base frequency.

This scheme is based on the fact that 24Hz, 30Hz, and 60Hz temporal rates are

widely seen in current imaging systems in this country, and all of these frequencies

are conveniently divisible by 6Hz. However, the computational complexity in the

implementation is very high. Lippman and Butera [27 proposed a coarse temporal

i



subband division method. In this method, there are only two temporal subbands,

low and high. The low band is the average of a pair of pictures and the high band is

the difference of the pair. The poor temporal resolution of the test sequences makes

a further level of temporal filtering not necessary. As a matter of fact, these two

temporal bands are actually composed by the shortest QMF filter. This method also

gives us a perfect temporal reconstruction.

Since this thesis emphasizes the bit allocation among the subbands, choosing the

coarse temporal subband division will not lose the generalization in the bit allocation

problem. The bit allocation scheme developed on the two temporal subband system

should be easily extended to multi-temporal subbands system.

Applying both spatial and temporal subband partitioning scheme examined above,

we use a spatiotemporal system shown in Figure2.2 as the three dimensional subband

model on which we will develop our ad'aptive bit allocation scheme. In the system,

1 dimensional filter is applied separately in vertical and horizontal direction to build

up two dimensional spatial subband. The lowest spatial subbands of each level are

further filtered to get the next level pyramid subbands. There are three levels of

pyramid in all. In Figure2.2 and all of the figures throughout this thesis, we use the

following notation:



* LL - Low pass filter applied both vertically and horizontally

" LH - Low pass filter applied vertically and high pass filter applied horizontally

" HL - High pass filter applied vertically and low pass filter applied horizontally

e HH - High pass filter applied both vertically and horizontally

Figure2.3 shows the corresponding diagram in frequency domain.

2.1.1 Subband Analysis & Synthesis

The problem of splitting a signal into subbands and then reconstructing it again is

usually looked upon as a pure signal processing problem. The exact signal character-

istics and the nature of application is not given any attention. Effectively this means

that errors due to encoding, transmission and decoding are neglected. In that case

the splitting and reconstruction stages become attached and the design is derected at

perfect or nearly perfect reconstruction. For splitting a one dimensional signal into

two subbands the QMF technique was introduced by Croisier, Esteban and Galand

[7].
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A block diagram of an arbitrary M band system is shown in Figure2.4 The diagram

Maximally Decimated Multi-Rate Filter Bank

Coding, Transmission, and Decoding
Input Reconstructed
Signal rSignal
x[n]- - --o Hj( z ,() M M F-----.VF,((n) __ _ A^n

-- & 2( z) MM -- -- F2( n

H2Z X2(n) V2(

Analysis Bank Synthesis Bank

Figure 2.4: Arbitrary M band analysis/synthesis system.

implies that the M bands have equal extents, therefore, decimation rate is constant

across subbands. This is not necessary. In this thesis, we set M = 2.

In traditional filter design theory, an ideal band pass filter, which seems to be

required by the perfect reconstruction filter bank, is not realizable. The filters in the

real world are either separated to avoid overlap resulting in an overall notching of the

A
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spectrum or. allowed to overlap resulting in aliasing. These situations are shown in

Figure2.5 Neither choice satisfies the perfect reconstruction criterion.

Non-overlapping
anAlysis filters

W o)

Ideal
analysis filters

Figure 2.5: Top: Notched 2way band splitter. Middle: Overlapped 2way band
splitter. Bottom: Ideal band splitter

Any notch in the analysis transfer function introduces an unrecoverable error,

because it completely blocks a component from passing through the system. It is

therefore reasonable to allow the analysis filters to overlap resulting in aliasing and

to design the whole system in such a way that the overall system make a cancellation

on any aliasing. The QMF filter, which has two band, is one implementation of this

idea. Figure2.6 illustrate the aliasing as a result of decimating the pictured spectrum

by a factor of 2. To understand how the aliasing might be canceled through out the



overall system, let us begin by writing the expression out.

1 X(e 0)

-2m 0 2n

2

0.5[X(eJlm/2) + X (- e o /2)

Figure 2.6: Aliasing as a result of decimating the pictured spectrum (top)

by a factor of 2

Analysis filters Hi (eW ) are used to decompose input x~n] into a low-frequency

subband and a high-frequency subband which are in quadrature to one another. After

coding, transmission, and decoding, synthesis filters Fj (ejw ) are used to reconstruct

the signal. If hi (ejuj) are ideal brickwall filters. the system will obviously work without

failure. QMF's are such that aliasing caused by Hi (ejw) are canceled out by Fi (eOW)



The transfer function for the two-channel QMF bank of Figure2.4 is:

X' (ej'') 12 [Ho (eiw) Fo (ewa) + H1 (ew') F1 (eiw)] X (ew) +

[Ho (-es'') Fo (ei'') + H1 (-ew) F1 (e')] X (-eid)

Furthermore, choosing the synthesis filters to be

Fo (e') = H1 (-e')

F1 (e') = -Ho (-ew"')

yields the overall LTI transfer function

[Ho (e') H1 (-e") - H1 (ejw) Ho (-e"')j

Adding the further constraint of

(2.1)

(2.2)

(2.3)

T (ew") = (2.4)



H1 (es") = e-iw(N- 1)Ho (-e-i") (2.5)

Insures there is no aliasing, amplitude or phase distortion. For more detailed QMF

design technique, see [39] or [33].

The QMF filter bank discussed above provides us the freedom in picking the

optimal subdivision of the spatiotemporal spectrum to meet the requirements of the

image coding system. The subdivision method used in this thesis is octave for above

mentioned reasons. In this approach, each successive split cuts away half of the

spectrum along a given axis as shown in Figure2.2. This spatial image decomposition

is called QMF pyramid transform [1]. The QMF pyramid transform can be applied

recursively to the lowest subband previous application, and the subbands from each

QMF pyramid process compose one level of pyramid. Each level of pyramid contains

one quarter of pixels of the above level pyramid.

The 9 tap QMF analysis/synthesis bank employed in this work(designed by [39])

to perform the spatial band splitting is pictured in Figure2.7
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pass filter. Top right: Impulse response of the high pass filter. Bottom: Magnitude
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2.1.2 Subband Characteristics

The basic goal of subband coding is to isolate signal energy into a small number

of bands and to separate information in band that are more or less critical to the

human observer. An image is a mapping of three dimensional objects on a two

dimensional plane. It consists of some amount of areas whose luminance is uniform

or gradually varies. Consequently, the contiguous pixels in the image sequences are

highly correlated with each other. In terms of statistics, subband decomposition is a

method to utilize this redundancy. By dividing images into high and low frequency

subbands, the probability density distribution of the pixels varies depending on the

subband. As the high frequency subbands mainly consists of edges of the image,

which occupies minor area of the whole image, the distribution of pixel values peaks

at zero and only the edge pixels have non-zero value. Also the variance is highly

reduced compared with that of the input distribution. A peaky distribution gives low

entropy. The distribution characteristics of the lowest frequency subband is almost

the same as the original image, that is, flat. However, by going down a pyramid level,

the number of pixels decreases. Consequently, the total bits can be reduced.

Figure2.8 is the original picture (frame 6 of second 4 of alley sequence ). and

Figure2.9 illustrates the image characteristics of subbands in three level pyramid. The
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top left, left .second from top, and the left third from top are HL bands corresponding

to pyramid level 1, 2, 3, which contain the horizontal edges of the original image and

some texture. The right one, two, three from bottom are LH bands corresponding to

pyramid level 1, 2, 3, which contain the vertical edges of the original image and some

texture. The one on the left corner is the LL band of pyramid level 3, which contains

the basic shape of the original image, but blurred. The rest three subbands are HH

bands from pyramid level 1, 2, 3, which contains the diagonal edges and some texture

of the original image. All of the subbands here are spatial ones and no temporal

ones are shown here. From this image pattern separation, the irrelevancy reduction

is obtained.

Figure2.10 contains three histograms from original picture (from frame 6 of second

4 of alley sequence), LL band of pyramid level 1, and LL band of pyramid level 3,

respectively. It is easy to see that all of these three histograms have almost the same

shape. It proves that the LL band in each pyramid level has the same distribution

characteristic as the original image, that is relatively flat. The three histogram in

Figure2.11 are from LH, HL, and HH bands of the first level pyramid, and in which the

frequency value higher than 200 has been omitted. We can easily see that the variance

in these three bands is much reduced, especially, in the HH bands. Redundancy

reduction has been achieved since the data with the same statistical characteristics



Figure 2.8: The original picture from frame 6 of second 4 of alley sequence.
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Figure 2.9: Pyramid decomposition of the original picture in Figure 2.8.
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has been localized into the same subband.

The subband analysis yields a desirable separation of the data. However, it does

not provide any data compression. The data compression can be realized by non-

linear quantization of subband data. This will be discussed in next section.

2.2 Vector Quantization

The technique of subband analysis/synthesis dealt with in previous section offers us

subbands with desired energy distribution and visual characterization. However, a

proper quantizer is still needed to reach our goal: data compression. Vector Quanti-

zation(VQ) is a relatively new coding technique, but has many attractive features in

image data applications, such as high compression ratios and very low decoding cost.

Therefore, it has been widely used as the quantizer for the subband coding at low bit

rate image communication.
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Now

2.2.1 An Overview on VQ

Although VQ had been applied to speech already in the 1950's by Dudley [9], the use

of VQ was stimulated mainly by the work of Buzo and Linde et al. in 1980 [26], who

proposed a practical method for vector quantizer design based on learning, using a

training set. Gray [16] discusses a large number of variations that are possible on the

basic vector quantization scheme.

A quantizer is defined to be a system that maps a domain to a range in a many to

one fashion. In terms of coordinate systems, a quantizer divides the domain space into

regions and maps all points residing in each to a single representative value. In general

cases, the term quantizer refers to the type of operation described above applied in

one dimension (known as a scalar quantizer). Vector Quantization, also known as

block quantization or pattern-matching quantization, is a direct extension from one-

dimensional (or scalar) quantization to the quantization of multi-dimensional signals.

The basic VQ block diagram is shown in Figure2.12. The input X to the encoder

is a vector of dimension k. In image coding application, X is a block of pixels from

an image. The image is partitioned into contiguous, nonoverlapping, blocks. We

chose square blocks for convenience, although nonrectangular blocks have been found
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Figure 2.12: Vector quantization

to give slightly better performance. The encoder computes the distortion d(X, Y,)

between the input X and each code vector Y, i = 1, 2,.. .,N from a codebook C. The

optimum encoding rule [26] is the nearest neighbor rule 2.6,

Y +-> d(x, yi) < d(x, yj), j= 1,..., L. (2.6)

in which the index I is transmitted to the decoder if code vector Y yields the least

distortion. We need log 2 N bits to transmit the index if fixed length codewords are

employed. The quantity R = (1/k)log 2 N is the rate of the coder in bits per pixel

(bpp). The decoder simply looks up the Ith code vector Y from a copy of the codebook

C, and the output X is is Y1 . The performance of VQ is measured by the average

distortion D = E[d(X, X)], where the expectation is taken over the k-dimensional

probability density of X.



An optimal vector quantizer is one which employs a codebook C* that yields the

least average distortion D* among all possible codebooks. The design algorithm of an

optimal codebook is not known in general. However, a clustering algorithm, referred

to here as the LBG algorithm, is described in [26] which leads to a locally optimal

codebook. LBG operates in the following manner. An initial guess for a representative

(codebook) is made. The Euclidean distance between each input vector and each

representative is calculated and the input vector is assigned to the representative

that is nearest to it. After all input vectors are assigned to representatives, the

aggregate error introduced by coding each input vector with the current codebook

is calculated. Each vector in the codebook is then replaced by the centroid of the

cluster of vectors that map to it and the procedure is repeated. The iteration will

stop when the distortion reaches a minimum. However, it is impossible to bound the

convergence time or to guarantee that the algorithm will converge at all. It is obvious

that LBG is difficult to implement in real time.

2.2.2 - Tree Based VQ Codebook Design

Kd-tree (K dimensional tree), introduced by Friedman and Bentley [11], makes it

possible to characterize multi-dimensional data as a binary search tree at the expense



of some constraints placed on the subdivision process. The application of kd-tree data

structure in vector quantization is discussed in detail by Equitz [10]. In a normal

binary tree, only a single binary decision may be made at any node. The kd-tree

extends this in such a way that the dimension which is subdivided at each node may

be different, even though there is still only one dimension chosen each time. This

mechanism provides more freedom in codebook design, because a different splitting

dimension may be chosen at each node according to different distortion specifications.

(This will be discussed more in section 2.2.4). Since only local scalar partitions are

used in kd-tree, the calculations are limited to only that node. This makes kd-tree

based VQ codebook design much faster in comparison with LBG algorithm. and gives

more potential for real time implementation.

Based on the above idea, Romano [22] put together the previous work done at

Media Lab, MIT in his Master thesis to describe a tree structure based codebook de-

sign, which partition the whole vector space into a set of unequally divided subspaces.

Each of the subspaces has its local representative (code vector), the one which gives

the smallest distortion among the vectors in the subspace. All of the representatives

form the codebook and the elements of the codebook are linked by a k-dimensional

tree data structure. Figure 2.13 depicts an arbitrary kd-tree with K = 2. The basic

consideration for the design of the kd-tree based codebook are: on which dimension
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Figure 2.13: Kd-Tree: A typical kd-tree (K = 2) shown as both a binary tree (left)
and a subdivided 2 dimension space (right)
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we split the. space; where on the selected dimension we split; and when we stop the

subdivision.

The following control parameters are used in Romano's work

.0 Node/Dimension Selection: This parameter dictates how leaves are priori-

tized for subdivision. Candidates for this include selecting the leaf (and dimen-

sion within that leaf) based on the variance, cell extent, mean squared error

(with respect to the representative), maximum error (with respect to the rep-

resentative) or maximum number of constituents. With each iteration the leaf

with the highest selection value becomes the candidate for subdivision. Note

that this value is calculated for each dimension in the cell and the highest one

is retained as the nodes actual selection value. The dimension that resulted in

this maximum score is set to be the split axis should the leaf be selected for

subdivision.

* Split Point Selection: This parameter determines how the split point along

the chosen split axis is calculated. Candidates for this are the mean, median,

mode or midpoint of the split dimension.

* Representative Calculation: This parameter describes the method used in

011



calculating the representative vector for a given cell. Candidate for this is the

centroid of the cell's population in current work.

e Bounding Condition: This parameter sets the criterion which must be met

before the subdivision process terminates. Candidates for this are the code

book size, total distortion incurred by quantizing and Peak distortion incurred

by quantizing. Note that the term "distortion" here can be replaced with any

metric desired.

Even though there are 5 choices in dimension selection and 3 ways in split point

selection, Romano did not explicitly explain how the combination of these parameters

(up to 15 combinations) affect the output of the vector quantizer, or reconstructed

images in his work [22].

Also, it should be noted that the three methods for split point selection: mean,

median, middle, are identical in subband image coding practice, because all of the

subbands except the lowest one have a histogram with Laplacian like distribution.

Some experiments are conducted in section 2.2.4 to examine how these parameters

works.

Different distortion criteria were introduced as bounding condition in terminating



the subdivisions. This shows a better cooperation with different distribution among

subbands. However, the bounding condition here did not couple with any bit rate

control. Since we are working on very low bit rate image coding, the bit allocation

among the subbands becomes critical. We need to introduce a new bounding condition

which can take the bit rate at each subdivision as the termination decision. This will

make the explicit bit allocation in the tree based quantizer realizable.

2.2.3 Bit Rate Control in Tree Based Codebook Design

In Figure 2.12, the only information to be transmitted is the codebook index I, or

codeword, if a global codebook is pre-stored in the decoder. However, some recent

papers [2] [15] [17] [5] [22] suggest the advantages of codebooks which are tuned

specifically for individual images or specific temporal neighborhoods. In other words,

the codebooks must be incrementally updated to make the VQ useful for the low bit

rate coding of images.

As shown in Figure 2.11, the peaky distribution characteristics of all of the sub-

bands except the lowest one gives low entropy. In the review of noiseless source coding

theory in chapter one, we know the entropy of the source data provides us a low bound



for encoding. Therefore, an entropy coding scheme should be considered in coding

the vector index. As a matter of fact, this is one of the advantage of subband coding

we should thereafter take.

Many practical algorithms exist that allow one to get close to, or even fall below,

the theoretical limit such as Huffman coding, run length encoding and arithmetic

coding [35] [36] [31]. The reason it is possible to out perform this lower bound is

that some entropy coders exploit the joint statistics between samples of a signal. The

entropy calculation described in Equation 2.7 only utilizes first order statistics.

Entropy, here in this thesis, is calculated from following equation:

N-1

Entropy =1 -p (xi) log2 p (xi) (2.7)
i=0

where p (xi) is the probability of the sample value x;. (This is N = 1 case of equation

1.2)

The total number of bits used for transmission of the coded the images is given:

Total Bits = Bitscodebook + BitScodeword (2.8)



Our goal here is to use this total bits to terminate the subdivision process in kd-tree

based codebook design. We first find out how to calculate the bits used for codebook

and codeword respectively, and then apply it to the kd-tree subdivision termination.

Let us use M to denote the number of pixels in the image to be coded, and L to

denote the vector dimension. Hence the total bits for codeword is:

BitScodeword = (M + L) x entropy (2.9)

In kd-tree case, p(x;) in 2.7 may be expressed as:

p(x;)
number of vectors in the ith sub - space (leaf)

Total number of vectors in the whole vector space
(2.10)

And N in 2.7 represents the number of subspace up to the current subdivision.

The total bits used for codebook..may by calculated as:

BitscoseNook = L x N x entropy . (2.11)

However, the entropy of the codebook is not as easily calculated as that of the code-

word at each subdivision. In practice, the total bit rate of the codebook may be



calculated in either of the following two ways which approximate the bit rate by

entropy calculation:

L

Bitscodebook = ceiling [log2(max[i] + min[i] + 1)] x N

Bitscodeok = ceiling log 2 [n (max[i] - min[i] + 1) x N

(2.12)

(2.13)

A test is conducted here to see the difference of bit rate calculation of codebook

among the ways represented in 2.11,2.12, and 2.13.

Table 2.1 shows the kd-tree parameter's combination used in the tests, which is

also referred throughout the rest of the chapter.

Table 2.2 illustrates the test result. The test picture is the one in Figure 2.15. All

of the test are terminated by error limitation at SNReak = 42db, and the total bits

used for codeword calculated by equation 2.9.

The numbers in the first column refer to the test described in 2.2; the numbers in



Test # Select Split
I Peak Error Mean
2 Peak Error Median
3 Peak Error Middle
4 Extent Mean
5 Extent Median
6 Extent Middle
7 MSE Mean
8 MSE Median
9 MSE Middle
10 MAX MSE Mean
11 MAX MSE Median
12 MAX MSE Middle

Table 2.1: Kd-tree Parameter's Combination

Test # Entropy Bit-added Bit-multi Error-added Error-multi
1 135398 154332 145758 0.1398 0.0765
2 118077 135468 127942 0.1473 0.0835
3 175474 200988 189822 0.1454 0.0821
4 142197 162252 153238 0.141 0.0776
5 128447 147168 138992 0.1457 0.0821
6 177597 203544 192236 0.1461 0.0824
7 210671 241740 228310 0.1475 0.0837
8 201333 231696 218824 0.1508 0.0869
9 244546 281952 266288 0.153 0.0889
10 193548 221796 209474 0.1459 0.0823
11 179678 205920 194480 0.1461 0.0824
12 216988 249336 235484 0.1491 0.0852

Table 2.2: Bits Calculation Methods Comparison



the second, third, and fourth column represent the total bits in which the bits for the

codebook part are calculated in the ways shown in formula 2.11, formula 2.12, and

formula 2.13 respectively. The fifth and sixth column shows the difference between

the ways: formula 2.11 and formula2.12; formula 2.11 and formula 2.13. At the most,

formula 2.12 requires about 15 percent more bits in total then formula 2.11 does,

while formula 2.13 requires only about 8 percent comparatively. It is obvious that

formula 2.13 offers a better approximation towards formula 2.11. Thereafter, formula

2.13 is employed in the thesis work.

So far we have cleared the total bit calculation in kd-tree based VQ codebook

design. However, there is still one assumption we need to prove before we can go

ahead to apply this bits calculation method to control the termination in kd-tree

subdivision. The entropy in formula 2.7 has to be monotonically increasing while N

increases. To prove it mathematically is beyond the scope of the thesis. A test was

run to show this assumption is generally true. The data from the picture in 2.15 is

used to run the test. The X axis in Figure 2.14 represents the N in formula 2.7 in log2

scale, while Y axis shows the entropy correspondently. It seems true that entropy

increases monotonically with N increasing.

Using the work derived above, we have the control of the total bits used up to the
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current subdivision in kd-tree data structure. This provide us a possibility to realize

the bit allocation scheme which is going to be discussed in Chapter 4.

The total bit rate controlled kd-tree works in a very simple iteration. The tree

initially begins as a single node whose constituency is the entire vector space. The

selection value, split point and representative vector are also calculated. The following

loop is then executed until pre-set total bit rate is met:

1. Find the leaf with the maximum selection value.

2. Make the leaf a node and create two new leaves.

3. Calculate the selection value/dimension, split point and representative vector

for both new children.

4. Calculate the total bit rate according to formula 2.8, formula 2.11, and formula

2.13.

5. If pre-set total bit rate is not met, Goto step one.



2.2.4 Parameters in Tree Based Codebook Design

In kd-tree structure, the dimension and the point selected to do each iterative splitting

are very important factors of the vector quantizer performance. A set of 12 test with

different combinations of dimension selection and splitting point (Table 2.1) were run

to evaluate how these combinations cooperate with total bit rate and image statistics.

Table 2.4 and Table 2.3 illustrate the experimental results from different kd-tree

parameters selection combination using test picture 2.15 and 2.8 respectively. The

tests use the entropy of the codeword to terminate the iterative kd-tree splitting and

the entropy used here is 10.9 which is calculated by reconstructing the picture with

SNRpak = 42 db. The numbers in the first column are the tests with the kd-tree

parameters combination listed in Table 2.1. Column two gives the codebook size.

Column three shows the signal to noise ratio between the original picture and the

reconstructed one. Column four and five describe the total bits used by codebook

and codeword respectively. Numbers in the last column are the maximum pixel value

in the error picture, which is the difference between the original picture and the

reconstructed one. Carefully examining the two extreme cases, the test 1 and test

8, we can easily draw some conclusions. First, test 1 uses the codebook size much

smaller than the test 8, even though both of them turned out reconstructed pictures



Test # Codebook Size SNR Codebook Bits Codeword Bits Max MSE
1 3595 42.67 105080 207376 5
2 3835 41.12 111522 207362 8
3 4799 44.46 163562 207360 4
4 3971 43.25 161443 207360 8
5 4182 43.91 165556 207365 10
6 4848 44.57 177623 207364 5
7 5698 44.67 181840 207653 14
8 6117 43.71 139923 207379 24
9 6257 45.37 115795 207361 12
10 5193 44.41 121880 207363 1 1
11 5620 43.21 141366 207362 16
12 5553 45.08 165458 207361 8
13 5702 44.67 177945 207362 14
14 6105 43.71 181630 207371 24
15 6264 45.42 151038 207487 12

Table 2.3: Kd-tree Parameters Selection Tests for Picture 2.8

Test # Codebook Size SNR Codebook Bits Codeword Bits Max Error
1 4287 39.12 135398 209280 60
2 3763 36.57 118077 209281 62
3 5583 40.86 175474 209757 60
4 4507 39.05 142197 209317 60
5 4088 37.27 128447 209303 63
6 5654 40.93 177597 209438 60
7 6715 41.09 210671 209287 58
8 6436 39.27,. 201333 209284 68
9 7832 41.88 244546 209288 58
10 6161 40.88 193548 209299 60
11 5720 38.89 179678 209283 64
12 6926 41.71 216988 209284 58
13 6716 41.09 210697 209282 64

Table 2.4: Kd-tree Parameters Selection Tests for Picture 2.15



with almost. same SNR value. Second, the maxmum pixel value in the error image

of test 1 is smaller than that in the error image of test 8. Here a question is raised:

what does the test 8 spend more code vectors for? To find the answer, it should

be recalled that a variable-rate system is used here, and, the reproduction vectors

are assumed to be coded into binary strings of varying lengths according to their

entropy. Thereafter, the third conclusion is that test 8 devotes more bits to the areas

of discontinuity and fewer bits to areas of slowly varying intensity, while test 1 uses

more bits for the slowly varying intensity such as background. In other words, test 8

favors infrequent vectors while test 1 favors frequent vectors.

One application of the above conclusions may be the consideration of right pa-

rameters selection for the different subband with different energy distribution. For

example, the parameters combination of test 1 may be good for the lowest subband

because it has a relatively flat intensity distribution, while the parameters combina-

tion of test 8 may be preferred for the higher subband which usually has a peaky

energy distribution.

Figure 2.15 to Figure 2.21 are the pictures supporting the above conclusion. Figure

2.16 and Figure 2.17 have the same SNR, but Figure 2.17 used much more code vectors

to code. Figure 2.18 and Figure 2.19 show that the parameters combination of test 1 in
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Table 2.1 perform better for the subband with a relatively flat intensity distribution,

while the parameters combination of test 8 in Table 2.1 are more suitable for the

subband with a peaky intensity distribution. Figure 2.20 and Figure 2.21 back up

the same conclusion as the last pair of pictures do, but the image from LH subband

of first level pyramid is used instead of LL band in the previous two.



Figure 2.15: The Original Picture of Flower Garden
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Figure 2.16: The picture shows the error pixels of the reconstructed image from test

1 in Table 2.4. (The error image has been gainbiased by 10.) Error pixels are easily

seen to concentrate in detailed regions.
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Figure 2.17: The picture shows the error pixels of the reconstructed image from test

8 in Table 2.4. (The error image has been garnbiased by 10.) Error pixels appear

more in the slowly varying intensity areas, like the trunk of the tree and the sky.

Meanwhile, there are more peaky error pixels than that in 2.16. However, there are

less error pixels in the area of flowers.
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Figure 2.18: The picture shows the error pixels of the reconstructed image of lowest

subband of the first level pyramid of the image 2.8. The parameters combination in

test 1 of Table 2.1 is used with the codebook size = 3600. It shows much less error

than next picture 2.19 which has the same codebook size but using the parameters
combination in test 8 of Table 2.1. This proves that the parameters combination of

test 1 is good for the subband with relatively flat intensity distribution.
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Figure 2.19: The picture shows the error pixels of the reconstructed image of lowest
subband of the first level pyramid of the image 2.8. The parameters combination in
test 8 of Table 2.1 is used with the codebook size = 3600. It shows much more error
than previous picture 2.18 which has the same codebook size but using the parameters
combination in test 1 of Table 2.1. This proves that the parameters combination of
test 8 is not good for the subband with relatively flat intensity distribution.
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Figure 2.20: The picture shows the error pixels of the reconstructed image of LH

subband of the first level pyramid of the image 2.15. The parameters combination in

test 1 of Table 2.1 is used with the codebook size = 1450. It shows much more obvious

errors than next picture 2.21 which has the same codebook size but using the param-

eters combination in test 8 of Table 2.1. This proves that the parameters combination

of test 1 is not good for the subband with very peaky intensity distribution.
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Figure 2.21: The picture shows the error pixels of the reconstructed image of LH

subband of the first level pyramid of the image 2.15. The parameters combination in

test 8 of Table 2.1 is used with the codebook size = 1450. It shows much less error

than previous picture 2.20 which has the same codebook size but using the parameters

combination in test 1 of Table 2.1. This proves that the parameters combination of

test 8 is good for the subband with very peaky intensity distribution.
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Chapter 3

Psychophysics and Application in
Subband Coding

This chapter reviews the previous work in psychophysics about nonuniform sen-

sitivity of the human vision system (HVS) and how these principles are applied in

the subband coder design in terms of minimizing image distortion. The first section

reviews the efforts towards modeling the response of the HVS. The second section

uses the models to group the pictures in different subbands according to the visual

sensitivity to the local energy distribution. Here, the physical meaning interpretation

of subband image is employed to link the results of HVS with image data statistics

among subbands.



3.1 Psychophysics in Image Coding

Figure 3.1 shows a general image processing system. Usually, the display is the final

destination of processed images. Consequently, the system performance evaluations

are mostly subjective. In the application of image coding, the objective criteria ,such

as signal to noise ratio or mean square error (MSE), are usually employed as the mea-

sure of the reconstructed image quality. It is possible to encode an image with almost

no regard for the psychophysics of the human observer. Sometimes, such a coder

will produce a reasonably good image. For example, coders that operate to minimize

mean square error alone often used in image processing. In general, mean square

error is usually used only within a single algorithm to compare different versions of it.

As mentioned in [21], mean square error provides a broad measure of picture quality.

Even though it allows the tractable analysis for the image data, the limitations of

the mean square error criterion as an indication of subjective image quality are well

known [4] [21] [26] [8]. The advantags of mse is that is mathematically tractable, but

it is not based on a visual mode However, the subjective image quality even plays

a more important role in image processing system, because the displayed image still

need to pass the human visual system (HVS) to target the final destination: human

brains (Figure 3.1). One could argue that the human visual system is evolutionarily



Figure 3.1: General Image Processing System

attuned to the types of images presented to it, and that the optic processing in the

eye and visual cortex are in effect a coder that directly operates on scenes in the real

world and analyzes them for our brains! Thus the HVS works well on natural scenes,

it must follow the statistics of them, and our coder could do as well taking that into

account only.

Detailed and comprehensive studies of HVS and subjective criteria of image pro-

cessing system are outside the purview of this thesis. However, some study of the

human vision system (HVS) will help us to understand what information in the vi-

sual input is necessary or most important in order to code,transmit and reconstruct



image sequences. Especially, we will see how our subband coding structure is conve-

niently configured for exploiting the HVS sensitivity variations with spatiotemporal

frequency.

We try to apply all of available knowledge about the psychophysics of human

vision and to develop a model of the HVS and corresponding distortion measure that

yields the closest possible agreement between calculated distortion and subjective

picture quality. These models might attempt to account for:

* Variations in sensitivity with spatial frequency and direction.

* Non-linearity of the HVS.

* Threshold effects which render distortions below a certain intensity impercep-
tible.

* Masking of distortions around edges in an image resulting from the HVS pre-
occupation with the dominant edges in space and time

e The enhanced perceptibility of error signals which are highly structured in the
spatial domain, such as the blocJking artifacts of DCT codecs or contouring which
results from low rate scalar quantization (see [19], Chapter 4, for example).

Such detailed modeling has been studied [4] [21] [20] [41] [3] [6], however, a definitive

HVS model has not yet been determined.



Butera [5] summarized the recent studies on physiology and psychophysics [18]

[29] [37] [30] [25] [24] [45], and made the following points:

* The HVS records chromatic stimuli from receptor with an inherently longer
time constant and therefore at reduced temporal acuity relative to luminance.

* The retinal signals on which the HVS builds its visual representations appear
to be localized in both space and spatial frequency.

9 Early visual processing appears to take place in a number of separate channels
which differ in their selectivity to spatial and temporal frequency components.

e The information in these channels is further processed, in part, by simple cor-
tical cells which also appear to be orientation selective.

We are interested in how to use these points as a guide for matching the specifics

of the subband coder described in chapter 2 to the performance of the HVS.

3.2 HVS Based Bit'Allocation

One of the advantages which the subband transforms enjoy is the local characteriza-

tion of image data. This is illustrated in a statistical point of view in Figure 2.10 and

Figure 2.11 in section 2.1.2. Here we try to characterize the localized, oriented image



features in subbands in a manner similar to that previously described for early visual

processing in the HVS.

In section 2.1.1, we partitioned a pair of image into a set of 20 subbands which

compose three level spatial pyramid (Figure 2.2. The image data in each level pyramid

may be given physically meaningful interpretations. We take the 8 components of

the first level pyramid in Figure 2.2 as an example to show what this means. The

four temporally low passed subbands can be thought of as isolating energy from

stationary objects. The four temporally high pass subbands hold the energy due to

the oriented movement in the scene. These interpretations can be used to give the

following intuitive meanings to the 3D subbands:

LLL stationary 'blurs'

LLH stationary vertical edgesa

LHL stationary horizontal edges

LHH stationary diagonal edges

HLL moving 'blurs'

HLH moving vertical edges

HHL moving horizontal edges

HHH moving diagonal edges

anote that high pass filtering horizontally accents vertical edge detail



These physical interpretations offer us a chance to relate the human visual sensi-

tivity to the energy distribution in the subbands. Thereafter, we may be able to find

out the non-linear visibility of distortion in the individual subbands.

Based on previous work [32] [42] [43] [13] [14], Butera [5] proposed a relative

hierarchy for the sensitivity to quantization distortion of the spatiotemporal subbands

and ran a series of subjective tests to verify the results.

For the subbands resulting from spatial bandsplitting, the hierarchy is, in order

of most sensitive to least sensitive (referring to Figure 2.2:

o LL

o LH and HL

o HH

For the spatiotemporal subbands, the order of most sensitive to least sensitive is (re-

ferring to Figure 2.2):

o LLL

o LHL, LLH, and HLL

o HLH and HHL

o LHH and HHH



The shortcoming of this hierarchies is that there is no information about the rel-

ative visual sensitivity crossing different pyramid levels. However, we may intuitively

assume that the subbands with the same physical meaning in a lower level have a

higher sensitivity than the ones in a higher level. The results above are by no means

absolute or conclusive. However, we could use them as perceptual guidelines for the

distribution of the quantization distortion among the components. And also, we are

going to develop a bit allocation algorithm in next chapter, in which the MSE is used

as distortion measurement. It was mentioned before that objective metrics do an

incomplete job of predicting the subjective quality of an image. Therefore, we may

want to compare the results from bit allocation algorithms, and then see if there is

any motivation to modify the results by using the facts we get in this chapter.



Chapter 4

Bit Allocation & Pre-filtering

This chapter discusses two topics: bit allocation and prefiltering. Because of the

interaction between input filtering Wd encoding, we choose to address bit allocation

and image prefiltering jointly. The first part of the chapter deals with the development

of bit allocation and its application to low bit rate image coding. The second part of

the chapter explores the role the prefilter plays in the image coding system in terms

of subjective and objective criteria.



4.1 Bit Allocation

4.1.1 A Bit Allocation Algorithm development

We begin to explore the problem of allocating bit rate among the component signals

of subbands such that the mean square error in the reconstructed image is minimized

for a prescribed total channel bit rate. A codec's performance is then characterized in

terms of a channel bit rate versus mean square distortion characteristic. Even though

there are shortcomings of mean square error as a distortion measure, this performance

function proves to be instrumental in optimizing our system. At least, if not optimal,

the resulting bit rate allocation is adaptive according to the input statistics.

The M subband encoder and decoder system in Figure 2.4 are referred to in the

development of our bit rate allocation algorithm. We suppose that the transform,

T, splits an L x N pixels image info M components such that the total number of

samples in all of the M component signals is L x N. There may not be the same

number of samples in each component signal, so we define Sk to be the number of

samples in the kth component signal, expressed as a fraction of the total number of



I

samples, L x N. Then
M

sk = 1. (4.1)
k=1

If the rate, in bits per component sample, allocated to the kth component signal is

denoted rk, then the total channel bit rate, R in channel bits per image pixel, is

M
R = ( Skrk. (4.2)

k=1

We may also relate the total mean square distortion in the reconstructed image

to the distortion incurred by the individual component codecs using the variance

preserving property, namely,
M

D = Zdk. (4.3)
k=1

This relation between component codec distortion and total distortion may be gen-

eralized slightly by assigning relative weights, tok, to each component distortion. A

weighted distortion is potentially useful in attaining a better subjective image qual-

ity [28], since the human visual system is more sensitive to energy over a limited

range of spatial frequencies (Chapter 3). The total weighted distortion is still a linear



combination of the component distortions,

M

D= Ewkdk. (4.4)
k=1

Even though the implications of unequal weighting will not be explicitly expressed

in the following mathematical derivation, we introduce the notation here, so that the

more general allocation problem may be presented.

The final ingredient we need to formulate the allocation problem is the rate versus

distortion characteristics of the component codecs. The component codec model

in Figure 2.4 assumes a form similar to any other source coding problem that a

encoder/decoder (codec) pair must be found for transmitting a random signal over

a channel of finite capacity. In fact, we see that an M-component codec design

contains within it M separate codec designs. The component codecs might be simple

scale quantizers, or sophisticated spatial domain transform or subband codecs.. In our

case is VQ. Not wishing to commit oirselves to a particular type of component codec

at the moment, we assume only that we have component codecs which allow a choice

of encoding rate and incur less mean square distortion at higher encoding rates. Then

each component codec may be characterized by a quantizer function, kk(rk), which

expresses mean square distortion of the kth component signal as a non-increasing



function of the rate allocated to the kth component codec.

Suppose now that we wish to design our component codec to achieve a desired

total channel bit rate, while minimizing the total mean square distortion. This is

fized rate bit allocation problem which may be stated

M

min D = Zdk. (4.5)
k=1

or equivalently,
M

min Z kk(rk). (4.6)
k=1

subject to
M

D= ( Skrk < R rk> 0, Vk. (4.7)
k=1

where R denotes the desired total rate.

In this thesis, the quantizer function kk(rk) is specialized to negative exponential

quantizer functions, i.e., quantizer functions of the form (119] page 491)

rk = ~~og 2  (4.8)
2dk



and corresponding inverse quantizer functions

dk = 2 (4.9)

where e denotes the quantizer performance factor. We assume the quantizer perfor-

mance factor is constant in our work.

Deriving a fixed rate allocation algorithm for the exponential quantizer functions

is simply a matter of following the procedures outlined next. In this case, formula

4.6 could be rewritten as

min 12 2~2rk.
k=1

(4.10)

Given that the goal is to minimize the error in equation 4.10 under the constraint

defined in equation 4.7, we use Lagrange multipliers to obtain:

e2 -2rk Sk --
O k=1R k =

-262-2-2rk In 2( + Ask = 0



2c2 ln 20r = ASO22r,

1 2e2 1n2oa
rk= -lo k

2 Ask

To find A, we combine equation 4.1 and equation 4.2 to get

M M
REsk = ( rks. 

k=1 k=1

Then we apply equation 4.12 to equation 4.11:

M
R (sk

k=1

M

2R s
k=1

M

2RE
k=1

M

sk= log
k=1

M

k=1

M

k=1

k-log
( 2 In 20r

ASk

l 2 2 ) ,5)k]log26l a

E( 2 * ln2)3,]
M

+=1
j=1

log

log 22 l 2 + log M

(4.11)

(4.12)

log 2R ks=



log A = log (22a 1

A=22RE='[)J 2 - (4.13)

Applying equation 4.13 to equation 4.11 then gives

(262 lnU2o- 22R ,
r&=R + -log

2 sk 2e21n2H

Finally, we get

rk =R + -log ** 8 (4.14)

4.1.2 Experiments on Bit Allocation

Table 4.1 shows the encoding tests which use the bit allocation algorithm we developed

above. The test pictures is the sixth and seventh frames of the second of the Alley

sequence. The assigned bit rate in each individual subband rk is used to control the

kd-tree based VQ encoder to achieve the predescribed overall bit rate. Figure 4.1 is

the plot of the test result.



Test # bit/perpixel assigned bit/perpixel coded bit/persecond assigned SNR
1 0.25 0.26 0.57Mbits 27.66
2 0.5 0.35 1.15Mbits 28.53
3 0.75 0.67 1.72Mbits 31.22
4 1 0.97 2.30Mbits 33.07
5 1.25 1.32 2.88Mbits 34.82
6 1.5 1.63 3.45Mbits 36.08

Table 4.1: The Bit Allocation Test
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Figure 4.1: The Bit Allocation Test Result Plot
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It is easily noticed in equation 4.14 that the bit rate in k's subband is related to

the variance of that subband. Therefore, the overall bit allocation scheme should offer

an adaptive allocation according to the input data statistics. And, the result of the

adaptive allocation should also agree with the bit allocation based on HVS in chapter

2.2.4. The experiments which apply the bit allocation on pictures from different scenes

show that this allocation algorithm, even though it is based on objective criterion,

works pretty well with the subjective scene content. For example, we compare the bit

allocation of two picture pairs, one from the sixth and seventh frame of fourth second

of Alley sequence and the other from the tenth and eleventh frame of sixth second of

Alley sequence. Subjectively, the visual content of the second picture pair has much

more body movement. In other words, it contains more motion information. So, we

wish the bit allocation algorithm could assign more bits towards both spatial and

temporal high bands. It does. This is clearly illustrated in Table 4.3 and Table 4.4.

The average bit rate R is set to 0.5 here. The pyramid subbands referring to Figure

2.2 have been labeled in Figure 4.2.

For the first pair of picture, 0 bit is assigned to most of the subbands in temporal

high band since there is not significant much energy distributed among them. In

contrast, more bits are assigned in those subbands in the second pair of pictures since

there is much energy distributed there.
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Figure 4.2: Labels of subbands in Figure 2.2.

subband # bit/perpixel assigned variance
1 5.99 1477.91
2 3.4 40.75
3 3.32 36.79
4 2.58 13.06
5 2.23 32.22
6 2.39 40.4
7 1.42 10.44
8 0.59 13.32
9 0.82 18.31

10 0.65 0.9
11 0.52 0.75
12 0.29 0.54
1 3 0.25 0.51
14 0 1.33
15 0 1.23
16 0 0.75
17 0 1.48
18 0 1.15
19 0 0.21
20 0 1.08

Figure 4.3: The Bit Allocation Test for the sixth and seventh
of Alley Sequence with R = 0.5

Frame of fourth Second

9 20

6 7

3 4 8

12 5 ____



subband # bit/perpixel assigned variance
1 5.88 1442.57
2 2.95 24.75
3 3.26 37.94
4 2.02 6.86
5 1.26 9.55
6 1.92 23.95
7 0.59 3.79
8 0 4.07
9 0.2 8.78

1 0 3.3 40.42
11 2.95 24.84
12 2.72 18.03
13 2.34 10.65
14 1.87 22.32
15 1.74 18.59
16 0.92 5.97
17 0 3.31
18 0.11 7.79
19 0 0.38-
20 0 0.37

Figure 4.4: The Bit Allocation Test for the tenth and eleventh Frame of sixth Second

of Alley Sequence with R = 0.5



Figure 4,5 to Figure 4.10 shows the result pictures of bit allocation test in Table

4.1.

4.2 Pre-filter Issues in Image Coding

4.2.1 Prefiltering

In general, a coder degrades non-linearly when overloaded. That is to say the picture

quality decreases rapidly as either bit rate goes down or input detail increases. There-

fore, most image coding systems employ a filter to process the image ( irreversible

) before the actual encoding. For example, in the AT&T proposed MPEG (Inter-

national Standards Organization / Moving Picture Experts Group) image sequence

coding standard, an adaptive prefilter is used to reduce the bandwidth by a factor

of 4, before the image data is sent to encode. The reconstructed image is then the

filtered image with coding noise added. The essential idea to use a prefilter here is to

remove certain amount of information (energy) from the image data, so that the job

for coder may be easier. The prefiltered image will look softer since high frequency



Figure 4.5: The Bit Allocation Test with R = 0.25 bits/per pixel
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Figure 4.6: The Bit Allocation Test with R = 0.5 bits/per pixel
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Figure 4.7: The Bit Allocation Test with R = 0.75 bits/per pixel
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Figure 4.8: The Bit Allocation Test with R = 1.0 bits/per pixel
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-t R= 1.25 bits/per px

Figue 4-9: The Bit Allocation Test with R - i-
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Figure 4.10: The Bit Allocation Test with R = 1.5 bits/per pixel
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Figure 4.11: The Spectrum of a Horizontal Line of sixth frame of fourth Second from
Alley Sequence.

detail is reduced. The trade-off here is between a soft picture and a noisy one. In

many cases, this trade mitigates in favor of softness. We are going to discuss what

character the prefilter should have and how they affect the statistical distribution of

image data among subbands. Then, in next section we will conduct some experiments

to see if the prefilter can make coder work better.

Even though there is no universal pdf (probability density function) for image

data, Laplacian pdfs are mostly accepted as a basic model for image statistics [19].

Figure 4.11 shows the normalized frequency spectrum of a horizontal line from the

sixth frame of fourth second of Alley sequence. It is easy to see that most of the

energy has been concentrated at very low frequency range. This implies that the

prefilter we want does not require a wide passband. As a matter of fact, it may have

a narrow passband, but a very wide transition band. This will make the filter design

easier.



Figure 4.12 shows the magnitude of four prefilters used in this thesis. Figure

4.13 draws the magnitude of MPEG interpolation filter which has been used as post

filter in this work. We ran a test to see how these prefilters affect subband image

data statistics. The original image (480 x 640) are first prefiltered by filter1, filter2,

and filter3 in Figure 4.12. Then, the decimated images (240 x 320) are split into

a 4 level spatial pyramid. Figure 4.14 illustrates the labeled subbands. We plot

out the energy distribution of these 4 level subbands in Figure 4.15, in which the

y axis is logarithmic. It can be easily noticed that the energy distribution in the

lower two level pyramid is almost identical, no matter which prefilter is used to get

the data. Meanwhile the energy distribution in the top two level pyramid is quite

different. The energy decreases while the cut-off frequency of the prefilter gets narrow.

Therefore, if we reconstruct the picture back without coding, picture prefiltered by

filter3 will definitely look poorer or softer than the one prefiltered by filter1, because

more information has been thrown away by filter3. Figure 4.16 shows this result.

The question raised here is if this is still true, when we code subbands and inter-

polate the image back to the original size.
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decimation filter.
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Figure 4.13: MPEG interpolation filter

Figure 4.14: Labels of 4 level pyramid subband.
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Figure 4.15: The plot-out of energy distribution among subbands. -, -.-. , and +++
represent the image data prefiltered by filter1, filter2, and filter3, respectively.



Figure 4.16: The pictures in the order of top left, top right, bottom left, bottom right

represent the image prefiltered by MPEG decimation filter, filter1, filter2, filter3,
respectively.
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4.2.2 Picture Quality vs. Prefiltering

To verify if the different prefilter can make the coder work differently, we run though

the three tests shown in Figure 4.17. The test picture pair are from sixth and seventh

frame of fourth second of Alley sequence. The original picture is shown in Figure

2.8. The bit rata for both experiment SNR 2 and experiment SNR3 is set at R =

0.5 bits/per pixel. (the actual coded bit rate is : RMPEGdecimatioi = 0.36 bits/per

pixel; Rfilter3 = 0.38 bits/per pixel.) Let us have a look at the data in table 4.2.

In the column of SNR 1, the images prefiltered by MPEG decimation filter have a

higher SNR, because the filter favors higher frequency more than filter3 does and

kept more spatial information. The SNR 2 column shows very interesting result.

the reconstructed images prefiltered by filter3 have much higher SNR than images

prefiltered by MPEG decimation filter this time, since the SNR here is mainly affected

by our coder, instead of prefilter. Therefore, we can learn that some prefilters, like

filter3, do make the coder work better. However, the pictures with higher SNR, at the

output of the SNR 2 experiment, do not necessarily look better than the ones with

lower SNR. This is because the input data of this SNR 2 experiment is prefiltered

with different filters. In other words, the source images quality varies at the input of

the SNR 2 experiment.
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Figure 4.17: Diagram for Testing Prefilters
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prefilter used frame # SNR 1 SNR 2 SNR 3
MPEGdeci. 1 38.12dB 28.53 29.45
MPEGdeci. 2 37.91dB 28.41 29.38

filter3 1 32.67dB 34.11 29.43 j
filter3 2 32.63dB 34.26 29.44

Table 4.2: Prefilter Test

The data in column SNR 3 reflects overall picture quality. The SNRs are all close

to each other at this time. This is what we expected. The result here tells us that,

from the system point of view, using a prefilter with wider passband can provide a

sharper reconstructed image with more quantization noise, while using a prefilter with

narrower passband can offer a softer reconstructed image with less quantization noise.

The overall reconstructed image quality can be objectively identical, if proper prefilter

and coding scheme are chosen. This conclusion may make more sense at very low bit

rate coding scheme that it could do at high bit rate coding scheme. However, what

prefilter. should be chosen depends more on subjective preference, which is beyond

the scope of this thesis.

The next 6 pictures illustrate the above conclusion. The original picture for these

6 pictures refers to Figure 2.8. Figure 4.18 and Figure 4.19 show the subjective effect

of diffrent prefilter. Picture in Figure 4.18 looks sharper than picture in Figure 4.19

because the later one used a prefilter with narrow passband. Figure 4.20 and Figure
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4.21 illustrate the results of experiment SNR 2 in Table 4.2 and Figure 4.17. Figure

4.22 and Figure 4.23 are from the result of experiment SNR 3 in Table 4.2 and Figure

4.17. From these two pictures, we can easily see that the two pictures subjectively

look different, even though they have almost the same SNR value and they are from

the same coding system with same bit rate. The only thing made the two pictures

diffrent is the prefilter. So far, we have seen how the prefilter affect the image coding

system at a low bit rate.
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Figure 4.18: The picture is prefiltered by MPEG decimation filter and down sampled

by 2. The test picture is sixth frame of fourth second of Alley sequence.
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Figure 4.19: The picture is prefiltered by filter3 and down sampled by 2. The test
picture is sixth frame of fourth second of Alley sequence.
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Figure 4.20; The picture is coded at 0.36 bits/per pixel. The source image data has

been prefiltered by MPEG decimation filter before being sent to the encoder. The

test picture is sixth frame of fourth second of Alley sequence.
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Figure 4.21: The picture is coded at 0.38 bits/per pixel. The source image data has

been prefiltered by filter3 before being sent to the encoder. The test picture is sixth

frame of fourth second of Alley sequence.
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Figure 4.22: The picture is interpolated by 2 after being coded at 0.36 bits/per pixel.

The source image data has been prefiltered by MPEG decimation filter before being

sent to the encoder. The test picture is sixth frame of fourth second of Alley sequence.
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Figure 4.23: The picture is interpolated by 2 after being coded at 0.38 bits/per pixel.
The source image data has been prefiltered by filter3 before being sent to the encoder.
The test picture is sixth frame of fourth second of Alley sequence.
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Chapter 5

Coding Experiments

5.1 A Coding System with Adaptive Bit Alloca-
tion - An Over.view

The previous chapters have described the variety of elements involved in our image

coding system. We can put them together here to build up our subband image

coding system with adaptive bit allocation and flexible pre-processing (prefiltering).
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The system is drawn in Figure 5.1 The input of the system is 480 x 640 pixels

picture sequences. The system takes a pair of pictures at each time and does the

prefiltering and downsampling work to take out the part of the energy which can

potentially overload the coder in the later part of the system. A one dimensional

filter with the required characteristics (described in chapter 4) is used as a prefilter

and applied in both vertical and horizontal direction to reduce the bandwidth to 240 x

320. The subband decomposition is performed with respect to both space and time.

The average and the difference of the pair of image are regarded as the temporal

low and high bands. Spatially, one dimensional QMF filters are applied to generate

three level subband pyramid. There are totally 20 subbands after subband analysis

and they represent different energy concentrations and physical characteristics. Since

our goal is to code image sequences at a low bit rate, the bit allocation algorithm

developed in chapter 4 is employed here to allocate the available bits to meet the local

statistics of the subbands. The prepared subband data was then sent to the encoder.

Kd-tree based VQ is used as the encoder. The encoder is controlled by total bit rate

so that the predescribed bit rate can be achieved. The encoded data may be either

stored for later application or sent out through distributed networks. The docoder

part of our codec system is very simple, just an index mapping. The 20 subbands

have been individually active throughout our coding and decoding process. The next
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Figure 5.1: Image coding system with adaptive bit allocation
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step is to put the subbands back through a subband synthesis system and to evaluate

the output picture quality at this point. Our system provides a chance to go back to

the prefilter stage if the output picture quality is not satisfactory. Different prefilters

may be used to vary the statistics of subbands. The post filter is used to interpolate

the image date back to its original size, before it is sent to any application destination.

5.2 Coding Examples

The following tables and figures demonstrate the results of coding a pair of image from

the Alley sequence, by using 4 different prefilters. The four prefilters are described

in chapter 4, Figure 4.12. The bit rates among the four experiment are between 3.6

bits/per pixel and 3.8 bits per pixel, which is approximately 820 Kbits/per second.

SNR 1, SNR 2, and SNR 3 in Table 5.1 refer to the experiment described in Figure

4.17. In Table 5.1, we can see that the overall SNR's (reflected by column SNR 3) of

these four experimental result are very close to each other. Carefully examining the

data in Table 5.1, we find that the numbers in column SNR 1 decrease as passband

of the applied prefilter becomes narrower; more and more information is getting lost.

This implies that the picture processed by a prefilter with a narrow passband is
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Table 5.1: Coding experimental results with different prefilters.

getting lossy. In contrast to this, the numbers in SNR 2 increase as the passband of

the applied prefilter becomes narrower. This means the picture processed by a prefilter

with a narrow passband is getting less and less quantization noise. To compromise

the quantization error with informaiton loss, we get the result in the column of SNR

3.

From Table 5.2 to Table 5.5, we can tell that the bit allocation algorithm we

ran allocates more bits towards the lower bands, when the passband of the applied

prefilter becomes narrower and narrgwer.

Figure 5.2 to Figure 5.5 show part of the experimental results in Table 5.1. The

pictures for the rest of experimental results were shown in chapter 4 before.
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prefilter used frame # SNR 1 SNR 2 SNR 3
MPEGdeci. 1 38.12 28.53 29.45
MPEGdeci. 2 37.91 28.41 29.38

filter1 1 34.72 31.83 29.71
f iIt er 1 2 34.21 31.77 29.72
filter2 1 33.62 33.24 29.73
filter2 2 33.59 33.41 29.78
filter3 1 32.67 34.11 29.43
filter3 2 32.63 ,34.26 ,29.44



subband # bit/perpixel assigned variance
1 5.99 1477.91
2 3.4 40.75
3 3.32 36.79
4 2.58 13.06
5 2.23 32.22
6 2.39 40.4
7 1.42 10.44
8 0.59 13.32
9 0.82 18.31
10 0.65 0.9
11 0.52 0.75
12 0.29 0.54
13 0.25 0.51
14 0 1.33
15 0 1.23
16 0 0.75
17 0 1.48
18 0 1.15
19 0 0.21
20 0 1.08

Table 5.2: Coding experimental results with MPEG decimation filter as prefilter
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subband # bit/perpixel assigned variance
1 6.64 1474.36
2 3.98 36.71
3 3.91 32.84
4 3.11 10.83
5 2.62 22.22
6 2.75 26.58

7 1.54 4.98
8 0.29 3.51
9 0.52 4.86

10 1.31 0.91
1 1 1.0 9 0. 67
12 0.83 0.46
13 0.71 0.38
14 0.22 0.79
15 0.21 0.77
1 6 0 0.32
17 0 0.27
18 0 0.23
19 0 0.01
20 0 0.11

Table 5.3: Coding experimental results with filter1 as prefilter.
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subband # bit/perpixel assigned variance
1 6.87 1474.73
2 4.21 36.09
3 4.11 31.97
4 3.28 10.09
5 2.72 18.78
6 2.83 21.78
7 1.51 3.47
8 0.21 2.28
9 0.43 3.13

10 1.51 0.86
11 1.29 0.64
12 1.01 0.43
1 3 0.91 0.37
1 4 0.27 0.62
15 0.25 0.61
16 0 0.21
17 0 0.16
18 0 0.13
19 0 0.01
20 0 0.04

Table 5.4: Coding experimental results with filter2 as prefilter.
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subband # bit/perpixel assigned variance
1 7.07 1470.52
2 4.33 33.04
3 4.24 29.08
4 3.36 8.64
5 2.78 15.41
6 2.87 17.51
7 1.43 2.36
8 0.16 1.63
9 0.38 2.21
10 1.71 0.86
11 1.39 0.56
12 1.15 0.41
13 0.98 0.31
14 0.32 0.51
15 0.28 0.48
16 0 0.14
17 0 0.11
18 0 0.09
19 0 0
20 0 0.01

Table 5.5: Coding experimental results with filter3 as prefilters.
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Figure 5.2: The picture is prefiltered by filter1 and downsampled by 2. The test

picture is the sixth frame of the fourth second of the Alley sequence.
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Figure 5.3: The picture is prefiltered by filter2 and down sampled by 2. The test

picture is the sixth frame of the fourth second of the Alley sequence.
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Figure 5.4: The picture is interpolated by 2 after being coded at 0.37 bits/per pixel.

The source image data has been prefiltered by filter1 before being sent to encoder.
The test picture is the sixth frame of the fourth second the of the Alley sequence.
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Figure 5.5: The picture is interpolated by 2 after being coded at 0.36 bits/per pixel.

The source image data has been prefiltered by filter2 before being sent to encoder.

The test picture is the sixth frame of the fourth second of the Alley sequence.
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Chapter 6

Conclusions and Further Work

6.1 Suggestions for Further Work

This thesis brings up a couple of interesting topics and provides some experimental

results. However, there is much more left for closer examination.

In chapter 2, we developed a total bit rate controlled kd-tree based vector quan-

124



tizer, and pointed out that different kd-tree parameter's combination can lead to

different error concentration under predescribed bit rate. We demonstrated that this

is especially important when using variable length entropy coding. However, only few

combinations have been tried. There is work leftto try to figure out how to relate the

different combination of parameters to different individual subbands by either local

statistics or physical features.

The bit allocation algorithm developed in chapter 4 shows some positive results.

Even though it is not optimal, it does give good bit allocation according to the objec-

tive image data statistics and it is adaptive to the energy distribution of the subbands.

But, there are two things we should explore in more detail in the future. The quan-

tizer function we used is a one dimensional scalar quantizer function. The quantizer

we really used is vector quantizer. One argument could be that a vector quantizer is

just the extension of a scale quantizer in multiple dimensions. Whether or not this

is true, we need more theoretical evidence. The other thing is the optimization. In

equation 4.4, there is a weighting factor wk which is supposed to be modified to meet

the characteristics of the HVS. However, this factor has not been touched yet so far.

This could be a good starting. point to run on optimization.

We compared, in chapter 4, the pictures which have the same overall objective
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measure but different subjective character. The experimental results indicate that the

prefilter in image processing can affect the subjective character of the reconstructed

image. For example, the prefilter with narrow passband can make the picture look

softer, while the prefilter with wide passband can make the picture look sharper but

noisy if the pictures processed by either prefilter are coded at same bit rate. The

experiments conducted in this thesis focus on the very low bit rate coding scheme.

Under this circumstance, the prefilter does affect the overall picture quality very

much. However, this may not be that obvious when the bit rate can afford to go up.

Some more experiments could be conducted to see if bit rate goes up how the overall

picture quality change with different prefilters. Meanwhile, some subjective test may

help us to understand whether people prefer sharp but noisy pictures or like soft but

smooth pictures.

6.2 Conclusion

An adaptive bit allocation algorithm was developed and tested here which provides

the subband coding system with a better code bit distribution, even though it is not

optimal. This is especial important for low bit rate image data transmission enabled
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by subband.coding scheme. The original image data is first transformed into a set

of spatialtemporal subbands by using QMF filter. Then statistics are run through

the subbands. According to the statistical distribution, the bit allocation program

allocates the predescribed total bits to different subbands in such a way that the

total distortion in the reconstructed picture will be minimized. Since the prefiltering

is often involved in the image processing, different prefilters have been tested in our

system to check how they can affect overall image quality encoded by our system.

The experiments conducted on the image coding system in this thesis demonstrate

that the bit allocation algorithm is good and the prefiltering issues are worth to study,

particularly their interaction with the other components of the image coding system.
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