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"All things were made through Him, and without Him was made nothing
that has been made.™

Gospel according to St. John: 1, 3.
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ABSTRACT

The main object of this thesis is to offer another attack on the
solution of simultaneous equations. The bulk of the work is on linear
equations.

Much work has been done on approximation or iteration procedures
for the solution of such problems in the last twenty years. The work
has been concentrated on linear equations. Until 1950 all these trial
and error methods took infinitely many corrections to complete, but
some converged so nicely that they have been used extensively. The
real attraction, the author believes, lies in the process of guessing
an answer. Engineers seem to be fascinated by procedures which will
relieve them of the drudgery of mathematics.

As more interest was shown in this type of solution, several authors
made great strides. To progress, some picture or theory had to be visualized.
This picture amounts to the elevation of the tasteless task of solving
linear sets to a geometric problem consisting of locating a point in
space.

Once this is done, all procedures can be compared and evaluated.
For certain sets of equations (called ill-conditioned) all the procedures
which require infinitely many steps are very poor. This thesis discusses
finite-step procedures.

It is the aim of this work to show that finite step procedures
are possible,® and are the best one can obtain. Moreover, all finite
step procedures are a variation on a general procedure which the author
states and which is due to Lanczos. To demonstrate this, several such
procedures have been devised by the author and are applicable to all
types of equations: non-symmetric, non-hermitian complex, skew-symmetric, etc.

The author believes that the best methods have now been generalized,
and that the "guess and try" method of solution has now been substantially
solveds A complete solution would require a complete evaluation of

) _
Lest this be misunderstood, the author wishes to point out that
finite step procedures were known at least six years ago, and perhaps
even by the ancient Greeks.



roundoff error - i.e., the errors resulting when a limited number of
digits are used in the computations. This aspect is discussed, but
by no means solved,

Thesis Superviscr: William XK. Linvill
Title: Associate Professor ¢f Flectrical Engineering



ACKNOWLEDGMENT

It would be unfair and incomplete if certain acknowledgments were
not made at the start. If there is anything of value in this dissertation,
it has been a direct result of the encouragement and advice of Professor
William K. Linvill., To him goes my everlasting gratitude.

Thanks also go to Professor Ernst Guillemin and Professor Parry
Moon for their cooperation and assistance, and to Messrs. Kenneth Ralston,
Jack Porter, and Dean Arden of the Digital Computer Laboratory at M.I.T.
who made possible the programming and execution of the experimental
results.

Thanks also to Mrs. Marilyn Susskind who typed the thesis.



TABLE OF CONTENTS
Page

CHAPTER I

INTRODUCTION o o o o o o o o o o o o o o o o o o o o o oo o o 1
CHAPTER IT |

GEOMETRIC INTERPRETATION OF ITERATION PRocﬁDUBEs o o000 e o B
CHAPTER IIT

N-STEP PROCEDURES « o o o o o o o o' a o ¢ 6 s 0 o s o o o o o4, 20
CHAPTER IV

PROOF OF THE N-STEP PROCEDUEES « o o o o o o o o o o o o o o« 38
CHAPTER V

VARTATIONS OF THE THEME, ANOTHER PROCEDURE o o o o o o o o o o L6
CHAPTER VI - .

EXPERIMENTS WITH LINEAR EQUATIONS, ROUNDOFF ERROR o « « o o o o 58
CHAPTER VII

NON-LINEAR BQUATIONS o o o o « o o o o o o o6 o6 0o s 6 o o o o o 82
APPENDIX I

MATRIX ALGEBRA & o o o o o o o o o o6 o s o o 0 0 o o o o o o o 100
APPENDIX II

HISTORY OF ITERATION PROCEDURES o o« o o o o o o o o o o o o o108
APPENDIX ITE

THE AUTHOR'S METHOD EXTENDED TQ COMPLEX MATRICES & o o o o o o 115
BIOGRAPHICAL NOTE o o o o o o o o « o o o 06 o o o o o o s o o o o o 131

BELIGGRAH{Y * o L] o ©° ° o o o o o L] o o o L o o L] o o o o o L] o o 0132



CHAPTER 1
INTRODUCTION

All too frequently the solution to engineering problems is obtained
implicitly in a set of simultaneous equations. The problem of extracting
an explicit answer from these is generally a large one, and one that
is usually so difficult that the engineer may not know how it is to be
solved.

If the solution of the problem can be reduced to the solution of
a set of simultaneous differential equations, there are methods available
to the engineer. Most of these are approximate, unless the equations
are linear with constant coefficients. If the equations are ordinary,
that is, with no derivatives of the unknown present, then again the
methods are approximate, unless the equations are linear.

It will be recalled that a linear equation is one in which the
unknown or unknowns or any of their derivatives appear in the first
degree only. If the system is not linear, one is forced to employ a
"guess and correct" procedure to obtain an answer - or to make assumptions
8o that the set of equations is reduced to a different set, the solution
to which is known.

O0f late, the construction of large scale automotons to do the
burdensome work of carrying out numerical solutions has given engineers
a new lease on life. It has also given much impetus to logical "cut
and try" procedures, which the author chooses to call iteration procedures.

While the task of solving a large set of simultaneous linear (not
differential) equations is a straightforward matter, it is still an
unpleasant task to perform by hand. Cramer's Rule, or elimination
procedures such as that due to Gauss (or Gauss-Jordan reduction - see
ref. 26, Ch. I), are simple in principle but involved in detail and

susceptible to error.
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Lest the reader become alarmed at this last remark, the author
hastens to state that he has no intention of scrapping these procedures
or of belittling them. He intends merely to exploit another procedure
based originally on a lazier attack on the problem.

The latter procedure was fathered by the solution of non-linear
simultaneous equations. The best approximation procedure evolved to date
for these is called the Newton-Raphson procedure. In this procedure one
guesses or tries to guess the answer, and then attempts to add corrections
to this guess by using information obtained from the equations and his
trial answer.

Naturally the idea occurred to someone that ifla procedure of the
iterative "cut and try" type were to work well on l}gggé equations, it
might work agreeably well on non-linear equations. 'In recent years, therefore,
in an attempt to expand knowledge of methods for the solution of non-linear
equations, much emphasis has been placed on iteration procedures for
linear equations. It is hoped that a procedure which works very well
with a linear set can be set up to work well with a non-linear set.

With these ideas in mind, the author believes that this thesis
presents the best type of procedures for linear equations. The procedures

are then extended to non-linear equations.

1.0 TIteration

Consider a specific set of simultaneous equations:
1% YA T A3 T Ny
8% ¥ 80%p * 8y3%3 T V)

a1% ¥ 830%p Y 233%3 7 Ty
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The "a's"™ and "y's" are known constants, and the "x's" are to be
determined. The subscripts on the létters "a" refer to the equation
number and variable respectively.

One begins by guessing three numbers to use as trials for X5 Xos
and x3. These trials are now checked by substitution in the equations.
It is quite obvious that if this is done and the equations are satisfied
exactly, then one must have the answer. (6f course, one assumes that the
answer to the problem is unique. If more than one answer is possible,
then it can be easily shown that an infinite number is possible. Unless
specifically stated to the contrary, it will be assumed that in all problems
considered there exists an unique answer.)

The probability that one will guess the correct answer is zero;
hence after substitution of the trial numbers in the left-hand side.
and performing the indicated multiplications and additions, one obtains
three numbers which in general will not be Yys Yoo and y3. Intuition
tells us that if these numbers are near the values ¥y, then one is close
to the true answer. This is not, unhappily, always true in an absolute
sense, but it is true in a relative way.

One is now forced to the rather obvious conclusion that the only
information one has concerning the error in these trials is the difference
between the computed left side of these equations and the right side.
These differences are usually called residuals and are defined in this
thesis as

by

14" 1N ™ YRy TNy
Tog = 8%y * 850%p1 * 83%y; T T

Tyg = 83%3 * 830%py * 859%y; -~ V3e

th

Here the subscript "i" refers to the i trial or approximation to the answer.
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At this point one is led to the conclusion that the problem is
solved if the residuals are zero, and one need only continually try
guesses until this condition is obtained. This is surely a hit or miss
way of doing the problem, =0 a short list of some of the methods previously
devised will be given,

A. Alter x4 sufficiently so that : is reduced to zero. This

14
changes the other two residuals, however, so then alter Xos to reduce

Toy to zero, and so on. When this is done, each residual in turn is reduced
to zero, but all the other residuals change at each step. Thus, after
reducing the first residual to zero, the reduction of the second residual
to zero causes the first residual to change, and it is never possible
theoretically to make more than one residual zero at a time. The problem
is similar to that of a mother putting six small children to bed. While
she puts one child in bed and tucks him (or her) in, the other five get

up again. Her only hope is to tire them out one at a time (or employ

more drastic means). This type of iteration sometimes converges (i.e.,

she sometimes gets them all in bed at the same time) and sometimes diverges
(i.e., the children get wilder at each step). The method is aptly termed
a ?relaxation" procedure, but the author is certain that this name did.

not arise in connection with the example cited, however well applicable!
The condition for convergence in this procedure is that the coefficients

a,, and aji are equal. This is usually called a symmetry condition.

ij
There are naturally several variastions on this scheme, but the exact
answer cannot be obtained in a finite number of steps.

B. Instead of changing one trial component at a time, change all
of them (three in the example above) such an amount that the sum of the

squared residuals is minimized. Such a procedure is evidently assured
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of convergence. This was first done by subtracting from each trial x;
a piece of the residual ry ora weighted function of Ty This thesis
deals solely with iterative procedures in which the new trial guess is
obtained from the old by subtracting (adding) corrections. It must be
clear that this is surely not the only way this can be done, but it is

believed to be the simplest. Thus, if pli’ pZi’ p3i are three numbers,
[Qe) "1 T Pis
Xo(s41) " F21 T Poy
*3(161) " %31 T P3i,

The three numbers "p" are of course chosen by some rule in order that
the procedure converge.

C. Related to the above idea are several procedures based on similar
ideas. Such procedures as the Method of Descent are stated in the following
chapter in detail. Most of these procedures are clever, but incomplete,
in that they still require infinitely many approximations. They converge
better than the relaxation procedures, but they also involve more worke.

D. If by using Cramer's Rule or.elimination procedures one can
obtain the solution with a finite number of operations, why not in an
iteration procedure also? In the last few years such procedures have been
found. They are called N-step or minimized-iteration procedures. The
N-step implies that ideally N approximations only need be madeé, where N
is the number of equations. This thesis deals primarily with these
procedures and hopes to show

a) that these procedures or variations on them are the best
that can be obtained,

b) that all such procedures are related, and

é) a general expression for making further procedures has been

obtained.



2.0 The Outline of the Thesis

In order to acquaint the reader with the content of this work before
a complete re;hing is undertaken, the author feels obligated to describe
the contents of each chapter briefly so that the reader may keep his eyes
firmly fixed on the objectives. This is essential, primarily because
most proofs given hereinafter are by contradiction or induction. While
these are perfectly valid from the viewpoint of a mathematician, they yield
little insight into the geometry (or physics) of the problem.

Chapter II will introduce the reader to a geometric interpretation
of all procedures. The object here is to 1lift the uninteresting job of
numerical analysis to a level of maps, pictures, and geometric objects.
This affords insight which the author feels is valuable. To do this the
convenience of matrix algebra is employed. Most of the necessary definitions
and theorems on this topic are briefly contained in Appendix I at the
end of this work. Before one proceeds it is suggested that this section
(Appendix I) be given at least a cursory glance. Chapter I¥ will conclude
by stating the conditions for an N-step procedure.

Chapter III treats specifically with the N-step procedures of the
author, Stiefel and Hestenes, and Lanczos, and attempts descriptive
explanations of these,

Chapter IV presents a general proof of all the procedures stated
in Chapter IIT and points out the fact that, in reality, all these procedures
are intimately related to the general scheme due to Lanczos.

Chapter V states the general N-step procedure and gives examples of
how more procedures can be constructed. By way of illustration, all the

procedures are used in simple examples to clarify their operation.
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Chapter VI deals with roundoff error. While these procedures yield
exact answers in N steps, they do so only if enough significant figures
can be carried. The procedures fall apart if sufficient accuracy is not
maintained. This portion of the problem is very important.and has not been
solved by the author. The problem is discussed at length, but no definite
conclusions are drawn. It is hoped that this aspect of the problem will
be solved in the near future.

Chapter VII extends the author's procedure to non-linear equations and
gives a few examples.

Appendix I is on matrix algebra, and Appendix II gives a short history
of this type of iteration procedure, attempting to name some of the individuals
who have made significant contributions to the problem.

Appendix ITI deals with the author's method exclusively. An extension
is made to complex matrices;, and a general proof for all variations on
this procedure is given. This proof is complicated and is included primarily
for those who wish to study the procedure in more detail. It is felt that
some ideas concerning the influence of roundoff error on the procedure
can be obtained from the proof. Further examples are given demonstrating
the use of the procedures in the event the characteristic equation of a

non-symmetric or complex matrix is desired.



CHAPTER II

GEOMETRIC INTERPRETATION OF ITERATION PROCEDURES

1.0 The Plan of Attack

The problem of the solution of a linear set of equations will be
visualized as the task of locating a point in N dimensional space. The
initial guess will consist of a point in this space, and rules for progressing
toward the point which represents the answer will be given.

The N dimensional space will be assumed to consist of N mutually
perpendicular axes, and each of the unknowns x represent one of these
axes. Thus a certain set of N numbers may be considered to be the coordinates
of a point in N space. For convenience, this point will be called X
if it corresponds to the set of coordinates represented by the kth approximation.

The convenience of matrix algebra is well suited to this purpose.

One need merely express a set of N linear equations in N unknowns as

Ax = y.
Here A represents the coefficients of the various x, and y the set of N
constants on the right side of the equations. In addition to a point in
N space, the set of nunbers can be visualized as an N-dimensional vector,
represented by the line joining the origin of the axes and the point in
question.

One proceeds to describe a given problem in terms of quadratic forms,
which can be geometrically interpreted as maps.

A. Maps, what they are, and how to make them

The problem to be solved is
Ax'Y:’
where A is an Nth order non-singular square matrix, x an unknown column

matrix, and y a known column matrix. One desires that x which, when
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substituted in the equation, yields y. Specifically, an exact answer
is one which yields y exactly. It is presumed that the y is known accurately,
as are all the elements of the matrix A.

Now it is known that if x_(the k™ approximation to x) is not x,
then Axk will not be y. Thus, one can always determine whether or not
X is the answer. One needs to know more, however; one needs to know how
to go from X to x,

One defines the residual

r, = A -y = Ax - Ax - A(xk = X)o
Thus if e =X - X the error in the kth approximation,
r = Aeko
Not only is it known that X is not the answer, but, since T is computable,
one has a "weighted" measure of the error 8

Rather than consider the residual as a point in N space, one might
visualize it as a direction. As such it might occur to the reader to use
this direction to correct the approximation in x. Later some physical
reasons for such a choice will be given, but for the moment it would appear
that its only value is that it is a vector one has just computed and is
related to the error vector e .

The relationship between the residual and the error can be pictured
graphically. The premultiplication of the vector e, by the matrix A has
the general effect of rotating the direction of the vector and changing
its length. The amount of this change cannot be predicted, unfortunately,

for it depends on ey which is not known.



Consider the following diagram in two dimensionse

X (the answer)

If one is at X0 and he wishes to go to x, then the direction to

pursue is the negative ey direction. He does not know what this is, but

he does know the direction of Aek, which will, in general, be at an

angle @ with e, . © will depend on where X, is,

k
Evidently if © is always less than 90°, motion in the negative

rk(Aek) direction can bring him nearer to x if he does not move too far
in this direction. © will always be less than 90o if the dot product of

ey and Aek is always positive, i.e., if

ektAek> 0 for all e, # 0.
This means that if e, Ae
ki k

X4 @ better approximation to x, can be obtained from X, by a formula

is a positive definite quadratic form, then

of the type
Kol © xk - mkrk, where m is a constamt so chosen

that one does not move so far in the negative Ty direction that he gets
farther away from the answer than he was before.

At this point an investigation of ektAek where A is positive definite
is undertaken. This expression is zero at the answer, and positive elsewhere.
If one could compute this quadratic form, and at every step ensure that it
becomes smaller, why he would have a measure of his nearness to x! This

will be called a Map, or mapping function, for it is a device which, if

properly used, will aid in the finding of x.
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B. Definition

A Map (mapping function), Mi’ will be considered to be a computable
positive definite quadratit form in e such that it will be zero when
e = 0, and positive elsewhere. By computable is meant that the value of
the quadratic form Mi can either be determined for a given X Or be an
unknown constant which depends on the solution x plus a quantity which is
determinable for any X o The contours given by Mi = constapt in N space
will cause the space to appear like a relief map, the lowest point of which

is the answer.

It is not difficult to write down two expressions which satisfy these

conditions:
Ml = ektAek A positive definite and symmetric.
M2 = ektAtAek A non-singular,

The restriction of symmetry on A in Mi follows from the fact that
Ml is not computable if A is not symmetric.
Ml = ektAek = (xk - x)t A (xk - x)
R e T T e

xtAx is a constant, call it C, and Ax = y, so

M -¢- xktAxk s T A xktAtx
where xktAtx - xtAxk.

Unless A = A%

My - O = ke - 26y

Ml = C is evidently computablej hence, Mi is usable and can be minimized.

s Atx is not computablei hence, if A is symmetric:

H2 is evidently computable, since r, = Ae

> SO

M2 - (Aek)t(Aek) = rktrk.
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AtA is positive definite and symmetricj hence, M2 is similar in form

to Mlo
To prove the symmetry of AtAe

(AtA)t = AtA. Q.E.D.

To prove the positive definitenesss

Let x' = Ax, Then x'tx' = X

tAtAx is a sum of squares, hence

surely positive definite.

C. Investigation of the Maps Mi and M2
Since both maps involve symmetric positive definite matrices, one

can solve both of these with ohe step by letting B, a positive definite

symmetric matrix, represent A in Mi, and AtA in Mé. (Note that the A

in Mé need not be either positive definite or symmetric.) Then the maps

are of the general type
ektB ek °
Every symmetric matrix possesses an orthogonal modal matrix

L= Ltal such that
LBL = /N, where A is a diagonal matrix of the
characteristic or latent roots of B, Since B is positive definite, all

these roots will be positive.

If the substitution

e = sz, is made,
ektBek = zktLtBsz = ZktJ\-Zko
2 2

e, Be, = A z A

kt k 1211 ‘ * o L] ° ° o o *

2% ANZn1

where zkt = [le 221 o o o ZNl] and >\j> O, j - 1, 2, sooy N,
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This is the equation of an elliptic quadric surface when ektBek = constant.
For M1 or M2 equal to Cl, Cg, 03, etc., one obtains a set of similar concentric
ellipses of equal eccentricities. At the common center of these ellipses

lies the answer to the problem. In two dimensions these contours appear

as those in the figure below.

x is the answer, x, may be the kth approximation, and the contours

for M = Cl’ Coy C3 are as labelled, where 03:>'02:>-Clo

If one more dimension is added to the above picture and M is plotted
vertically, a surface is obtained which is a paraboloid such as that

pictured in the figure at the top of the next page.
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/

ot

An approximation X, can now be visualized as a point on this surface. The
method of Descent is concerned with moving down in this cavity toward the

answer x which lies at the bottom.

D. The Method of Descent

or Let's get to the bottom of this!
The first idea in this connection was to choose the gradient of the
map M and to move in the direction of the negative gradient a distance
which minimizes M. Specifically, for Mls
Mi = ektAek.
Grad Ml = 2rk. This follows immediately from the expansion
of the quadratic form and performing the partial differentiation. X4 is
then obtained from X by the formula

ol T X " M Ty Subtracting x from both sides gives
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xk*l - X = Xk - X - mk rk or
Cxe1 © Sk T M T

Ae

Thus ek#lt

kel = (e, - mr ). A (o - mr,)
‘ 2
= ektAek - karktAek +m rktArk.
Differentiating twice with respect to m 3

d(ek‘ltAekﬁl)

o

Setting the first derivative equal to zero yields:

m = rktrk/rktArk.

2 - 2 rktrk + 2mkrktArk

2
oy hoer)

.amké

hence the quadratic form is truly minimized.

- karktArk >0 if A is positive definite,

This procedure has been referred to as the Method of Steepest Descent,
a name which is misleading since it implies that this is the best that
can be done., Actually for a set of ill-conditioned equations the method
is so slow as to be virtually useless. It is almost better to choose directions
arbitrarily instead of using the r, or residual as it is called. If this
is done, one obtains a more general form of Descent. This is done as follows:
Choose any vector Py Using the formulae
el T % T ™Px

and m = pktrk/bktApk one has a procedure which

is entirely general, i.e., the new approximation will be the one obtained

which minimizes Mi on the vector Py emanating from X o
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For M,s M2 = ekAtAek
Grad M, = 2Atr .

Here the gradient method or “steepest descent™ uses the formulae
el T % T Mt Tk
me = v AL r /v AAAA T .
If this method is generalized for any vector Pys one obtains
Kl ™ %~ PP
m = Py ATy /By AAAA LD,
or
el T e T MPy
me = P AT i/ Prey 2 APy
By suitable choice of the Py these methods can be made to converge
in N steps, and this is the work of Stiefel and Hestenes which is discussed
in Chapter IIX,

E. A minimized error procedure

Actually the considerations of the previous section can be summarized
by stating that under certain restrictive conditions the best corrections
to x seem to be obtained by minimizing the quadratic forms ektAek = ektrk,
and rktrk° By this time the reader may wonder why the simplest procedure
has not been investigated, namely minimizing the error e

Stated in another way, when one is at X5 and he chooses to move
in some direction Py to improve his answer, why not minimize his distance

from the answer? This is a substantial part of the author's contribution

which (he believes) has not been successfully accomplished before.



-17 =

The reason this appears so difficult is that since one does not know
where the answer is, how can one get as near as possible?

Consider the function M! = (M)-!’: - m = |r| « When, with two
equations in two unknowns, one plots the surface represented by M' with
the two unknowns x5 and x, &s the axes, he obtains a cone with elliptical
cross -sections instead of the paraboloid on page 1§. If at some point X,
on this surface, one erects a tangent to the surface whose projection
on the X =X, plane is the gradient of M', then this tangent, if extended,
intersects the X, =X, plane at some point which will be called Xa1® It
is not obvious that this new x is better than the old, but it looks plausible

in the figure below that such is the case.

When the mathematics of this are completed, (it is done just as the

Newton-Raphson procedure in Appendix II) it appears thats
Mol ™ B~ MteTy
m = rktrk/rktAAtrk°
It was not until several examples were done by the author that it was

finally observed that the error in x is minimized by this procedure. To
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show this let
Kol ™ M T ™MAtPx
therefore eal = Cx ~ mkAtpk o
Then ey,1.041 = (8 = MARg (e - mA.p,)
= Ol T TP A ¢ mkzpktAAtpk.
Differentiating twice as before with respect to m yields

d(ek+1tek#1)

dmk

2
and d (ek¢1tek+l) .
dmkz = Py, APy > 0o

Setting the first derivative équal to zero and noting that this does

= ‘2Pk§k + 2m p Ak Py

minimize ek+1 since the second>derivative'is pogitive, one obtains

mk bt pktrk/pktAAtpk. QoEoD.

In particular if Py is replaced by Ty these formulae reduce to the

tangent gradient method discussed at the bottom of the previous page.

F. General

As nice as these procedures appear, none of them are very practical
since even though convergence is assured, the rate of convergence is slow.
This leads the reader to the N step procedures of the next chapter. The
author would like to digress a moment to compare the minimized error
and method of descent procedures. If they are compared on the basis

of M?(ektAtAek) and if the vectors, Pys are chosen as the residuals,
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one obtains

Xeal " % My

1. Minimized error: m_ = r'ktrk/rktBrk vwhere B = AAto
2, Descents m_ = rktBrk/rktBQrk
3., General: m_ = rktBn'lrk/rktBnrk.

The 1limit of the general expression as n becomes infinite can be
shown to be the reciprocal of the largest characteristic number of B,
In fact, all the m above lie in the range of the reciprocals of the
smallest and largest characteristic numbers. This is important only
since it can be shown that if the m,  are in turn the reciprocals of each
of the characteristic numbers of B, the procedure will converge in N steps.
Of course the characteristic numbers are not known, so this is not of
much help practically, but some measure of the value of a procedure can
be gained by noting how near the m  comes to the reciprocal of a latent
root of B. In any event it appears that the Method of Descent has a slight
edge on the minimized error technique with regard to speed of convergence.
The main difficulty with all these procedures is that the choice of
directions is poor. The N step procedures which follow specify the directions

to speed up the convergence.



CHAPTER III
N-STEP PROCEDURES

Chronologically Fox, Huskey, and W’:’leinson8 were the first to suggest
an N-step procedure for the solution of N simultaneous equations. For

reasons of practicality not much was done about this until the work of

2L

made the procedure workable.
9

Stiefel and Hestenes
In the meantime, Lanczos,” while attempting to find an iterative
scheme for obtaining the characteristic polynomial of a matrix, found
an orthogonalization scheme which all other procedures have adopted.
The object of this chapter is to describe the author's N-step procedure
first, since it is believed to be the simplest conceptually. Descriptions

of the work of the other men will then be given, and a general proof of

all the methods appears in the next chapter.

1,0 N-Step Minimized Error Procedure

If one minimizes the error in x at each step of the iteration, then
why not choose a mutually orthogonal set of directions for the steps,
and on each minimize the error? Almost intuitively this procedure must
converge in N steps?

Let the reader imagine that, in three-dimensional space, the answer
to a problem lies in the plane of the paper, as in the figure on the next
page. Imagine further that the first guess X, is directly sabove x in
the figure, so that the direction from x, to x is perpendicular to the
paper. Then, if one is &t X, and the first direction is perpendicular
to the plane of the paper, movement along this direction such that one

gets as near to the answer as possible means stopping at x, on the paper.
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If one now chooses a direction at x perpendicular to X =X s this direction
must lie in the plane of the paper. One such direction is chosen, and x,

is obtained by moving along the negative direction (since the wrong direction
was chosen) until one is nearest to x. Obviously there remains but one

line which is perpendicular to both of the previous directions, and this

goes through the answer x. Movement along this direction until the error

is minimized means arriving at the answer,

I x = x4
e

5 2nd_di:eitijn‘ "
x T T T T -Q2

(xb on the line prependicular
to paper through Xlo)

direction

There are two problems which now need to be settled. Any old set
of orthogonal directions will not do. It will be recalled that to minimize
the error by using vectors P, one needed to know both Py and Atpk° The

equations are repeated below
Meel ™ X T MchePy
me = T Py/Py ARy o
Notice that the correction vectors to the x are Atpk and not Py
hence one must find a set of vectors Py such that the N vectors Atpk
form a mutually orthogonal set. ﬁk needs to be known, since it appears

in the numerator of m e
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Mathematically one may state that the Py must have the following
propertiess

or

There is a straightforward way in which this can be done. It is
an adaptation of some of the work of Fox, Huskey, and Wilkinson and is
really the Gram-Schmidt procedure.

a. Choose P, arbitrarily.
b. Choose by # p, and let
Py =Py - %Py

-0,

t o

Since AA
Py AP
Py AP, = blt. tPo = % oPoyMiPo
or o, = bltAAtpo/potAAtpo'

k

let P = bk -

ce Choose b, different from po,p1 seee P q and

k-17k-1 ” Pk-2Pk-2 - oo - 5 D,
choosing the constants so that Atpk is orthogonal to
all previous Atpj'

Unfortunately this is a tremendous task, for at each step a piece

of each of the previous directions must be removed. The solution of this

dilemma is an adaptation from the procedure of Stiefel and Hestenes, which

is discussed below. It appears that the following iterative scheme

automatically orthogonalizes the directions with the advantage computationally

that at each step only two constants need to be evaluated. Choosing

the first residual as P, and each of the bk above as the successive
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residuals, only the last direction needs to be removed from the bk° This
is not intended to be obvious, and the reasons for this will be made
clearer as the thesis progresses.
In equation form the entire procedure ist
el ™ % T Mt
r, = Ax - y

=T
pO o

e = Ty, Tic/ Py APy

P ® T * Ep1Pa
&k-l = rktrk/rk-ltrk-l.
An additional result of this procedure, which will be proved in
‘the following chapter, is the fact that the residuals form an orthogonal

set as well as the directions. It is well to point out again that this

procedure will work with any non-singular matrix.

2,0 The Method of Conjugate Directions’

Let m Py be the vector correction applied to X to obtain X} 41? viz.
1" M s o
Choose the constant m, SO that the quadratic form ek*ltAektl is minimized,
A being a symmetric, positive definite matrix. Thus

M = Ty Pi/Py AP e

* This name is due to Stiefel and Hestenes, the procedure to Fox, Huskey,
and Wilkinson. ‘
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Then if all the directions Pys k=0,1, 2, s00y N-1 are
"A-orthogonal® or "conjugate" (not to be confused with conjugate complex
numbers), i.e., if

P A0y = O 3F K
then Xy the Nth approximation will be the solution x of the problem
Ax = y.
Suppose one digresses a moment to attempt a visualization of this

procedure. One notes that the recursion formula for e, can be obtained

k
by subtracting x from both sides of the first equation:

kel T F " K T X T MPy
or b 05 B " NS

The "A-orthogonality" of the Py then suggests that the corrections
to the error vector, m P, are orthogonal to all the vectors Apj where
j is any number different from k. That is, if pS is the direction taken
in going from ey to egs then this vector is perpendicular to Apo, Apl,
ceey Aph, Ap6, etc., all except Aps.

It is clear that the Py form an independent set, and this can be
seen in the following manner. Apk is orthogonal to all pj except Py
Since A is positive definite, Apk cannot be orthogonal to Py i.eo.,
pktApk # 0. Therefore, P, has a component of Ap, which is orthogonal
to all the other pj, hence the Py form an independent set. In an entirely
similar way, one can show that the Apk are an independent set, and hence

each set of vectors must span the entire N-space if k = 0, 1, 2, 3, c00, N=1,
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Now let the reader suppose that an initial guess is made, thereby
establishing e,s though it is unknown. In general e, will have a projection
on each of the Apk, i.e., the dot product of e, with the Apk will in
general be non-zero. Suppose the successive corrections to e, are such
that these projections on the Apk are reduced to zero one at a time.

Since the Apk span N space, after N such reductions the error must vanish
for its projections on an independent set of vectors are all zero. Notice
that in order to do this effectively, one must remove the projection

of e on Ap_ (say) in such a way that the projections on all the other

Ap, do not change. If this is not done, one will have a relaxation

k
procedure such as described in Chapter I. ({With regard to the example

of the mother putting the six children to bed, these are the more drastic
means. She chains the children in bed one at a timel)

Starting at the beginning, one wishes to remove from e, 2 vector

such that e, is perpendicular to Apo, i.e., so that e Apo = 0., At

1 1t
the same time it is desired that eltApk = eOtApk for all k # 0, i.e.,

the new error vector has the same projections as the former on the N-1
vectors Apl, Ap2, coes ApN»l’ but no projection on Apo.
Since

e. =g =nm
1 o] opo

Apk"

eltApk = e Apk - mopOt

ot
Evidently the above conditions will be satisfied if
Py AP =0 kA0,
and for k = O eltApo =0 = eOtApo - mprtApo,

orm = eOtApo/pOtApo.
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But eotA - (Aeo)t =T, SO

Mo = I'01-,po/potAI‘)o"

But this is the same m_ one obtains by minimizing the quadratic fomm
eltAe1
of the e vectors on each of the Apk one at a time, without destroying the

, and so the procedure above stated does indeed remove the projections

other projections in the process,

This is the same thing as the minimized error technique, with the
exception that in the latter procedure one minimized the projections
of the error vector on Atpk’ and that the Atpk formed an orthogonal set,
In the method of conjugate directions the Apk did not form an orthogonal

set, and A furthermore had to be symmetric and positive definite. A

two-dimensional picture of this is thought to be helpful.

It is presumed that P, and Pys Apo and Apl are known, and the reader
will note that P, is perpendicular to Apl, Py perpendicular to Apoo
Notice that as P, is subtracted from e.s the projection of the result on

Ap. does not change since P, is normal to Aplo Clearly, if one moves

1
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along the dashed line parallel to P, from e, until the resultant is normal
" to Apo, then the answer will be obtained in two steps.
The author submits that the name of this procedure would be more
appropriate if it were called a minimized projection procedure. Since
; the author did not find this procedure first, why there is little he can
do but suggest.
For the reader who prefers to see a somewhat more rigorous demonstration
' of convergence the author submits the following proof. The result, i.e.,
convergence in N steps, follows from two considerations, one being the
fact that Pys Pys e Pyq form an independent set of vectors, and the
other being the fact that the Nth residual is normal to each of these
vectors, hence it must be zero.
a. The pj form an independent set.
Proof: By contradiction.
Assume there is at least one pj, call it pq, which is a linear

combination of all the rest. That is, if the c, are constants:

J
Pq ™ CPo * ©P1 * ceo0 ¥ Cq1Pq1 * CgaPaer * o0 * NaaPyare

At least one cj must be non-zero., For this particular cj, premultiply

the above equation by pth, where pj is the vector associated with cj.
For all' j # k, p 44 APy = O by hypothesis, then all terms will vanish
except

c‘_jp:th.p’j which must be zero.

But this is impossible since ¢, is non-zero, and A positive definite.

J

Hence the contradiction, and thus the pj do form an independent set.
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b. Ty is orthogonal to all pj.
Proof: Let the residual T be defined as
r, = Axk - Ve (1)

Remark: Since A is non-singular, = 0 implies that X = X.

Tk
Further X =X 1 - M 1P (2)

whe re, from page 15, Chapter II

el ™ Tio14Pre1’Pica14*Px-1 (3)

Premultiplying equation (2) by A, and subtracting y from both

sidess Axk -y = Axk-l -y - mk-lApk-l
or R N mk-lApk-l (L)

Transposing this, and postmultiplying by Pp_1 and substituting the

value of m,_; given in {3) above:

TkePr-1 ~ Tk-14Pk-1 ~ fE:}3§E:}— Pye-14 0 (5)
1 Pe-1 ™ Tk-14Pk- k144D, 4 = O
¢ Pe1¢iP-1 0 kL

From equation (L), postmultiplying its transpose by pj:
TeeP3 T Tk-1¢P5 T ™-1Pk-147P5 (6)
If j # k=1, the coefficient of m__, vanishes, hence
rktpj = rk-»lpj j f k"llo (7)
Equation (7) is true, therefore, for j = k-2, so
Tt Pr-2 = Tk-14Pk-2 (8)
But equation (5) states that the right side of (8) vanishes, hence

TiPr-n = O° (9)

Substituting j = k-3 in equation (7) then yields

rktpk-B = 0 and so forth. (10)
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In particular, for k = N,
I‘thj = O fOI‘ all j = O, 1’ 2, 6000y N“l QoEoDo

Hence, as was asserted r,, = O, and the procedure converges in N steps.

N
Another geometric picture is somewhat more difficult to obtain.

In two dimensions, however, a picture can be constructed. It will be

remembered that the map representing a positive definite quadratic form

is a set of concentric ellipses and that the Ty represents the gradient

of this map at the point X . Equation (5) indicates that rktpk~1 = 0,

that is, the me_1 is so chosen that the last direction taken, P17

is perpendicular to the gradient at the new approximation. In two

dimensions, if the solution is to be obtained in two steps, the next

direction must point to (or directly away from) the center of the ellipses.
Now if P is normal to the gradient, it must be tangent to the

particular ellipse which contains X, s and at the point X, . The new

direction Py must be the radius vector from the center of the ellipses

to X

For example, consider the diagram below in two dimensions:

The initial guess is x, which is on ellipse Eo‘ r, represents the

gradient at Xs which is normal to the curve at X, P, is prbitrarily
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chosen and x is obtained by moving in the negative P, direétion a distance
which minimizes the quadratic form. P, is tangent to the ellipse El

at X and the gradient at X5 Ty is normal to P,e To obtain the solution
X in one more step, it is necessary to follow the direction of the negative
radius vector, here indicated by Pe

The question arises, how does one find pl? What is the relationship
between the radius vector of an ellipse: and the tangent? It turns out
that

Py Ap, = O-

The simplest way to demonstrate this is to reduce the ellipse to its
normal coordinates. As indicated in Appendix I this is always possible.

As a matter of interest, all procedures are better understood when viewed
in terms of their normal coordinates, hence the author will digress a
minute to make this clearer,

If A is a symmetric matrix, then there exists an orthogonal modal
matrix L such that A is reduced to a diagonal matrix, A , of its latent
roots by

LAL = A .

This can be visualized as a rotation of axes as in analytic geometry,

where the variables xkl are replaced by x'kl by the transformation
x = Lx',

Thus T = er', Py = ka', e, = Lek‘, etc,

The quadratic form ektAek'written in the new variables becomes

9 ' = 1 '
o, TeAle, ' = e Al t. If Ml Aps eeo s Ay are the latent roots

of A, and €15 €o) etc,, are the elements of the vector eé, then the



F equation of a particular conpour eliipse is

2 2
)\191 + >\202 = C,

k The slope of the tangent of this ellipse at any point (el, 92) is

given by clez/clel - - )\101/ }\232, that is, it has the direction
of
» \ A2%
| °
' ~M®
A o]
The radius vector has the direction P .
' : e
2

)\l 0 );232

0 A 1%

A1 N

(Bl ] T M ke,

Note that y -
p' AR, = [o ]

= Oo
Note further that

Py’ /\P," = Py APy
It remains to be shown how one might obtain a set of conjugate
directions, Fortunately this is quite simple and is explained in the work
of Fox, Huskey, and Wilkinson and is entirely analogous to the previously
mentioned orthogonalization schems,
1. Choose P, arbitx:arﬂ&.
2. Choose b, F p_ and let

Py "By = K Py
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Since pltApo = 0,

P 2P = P10 ~ °<6potApo =0

or o<, = bitApo/pOtApo
3. Choose bk different from Pys Pys secces Ppq and let

P = P = P PeoPio ~ ceee m 8P
choosing the constants so that Py is conjugate to all
previous pj.

As previously pointed out, this scheme has serious defects.

3,0 Stiefel and Hestenes! Conjugate Gradients Procedure

At this point, independently, Stiefel and Hestenes made this procedure

workable. Essentially they found a simple way to make the pj conjugate,

For reasons which they explain best, they call this procedure the Method
of Conjugate Gradients.

In a nutshell the procedure is thiss

! T ™ % " TP

ne Thg-v

P, =T,

: =r r 4

;, me = T /P APy
Pp " Tkt ExaPxa

% ?‘"kt'rk/ P14 k1"
The reader will note that at each step two constants are evaluated,

as in the minimized error procedure. The above sequence automatically
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ensures the mutual orthogonality of the I as well as the A=-orthogonality
of the Pye Again, the proof is deferred until Chapter IV.
Stiefel and Hestenes extend their procedure to any non-singular

matrix by solving the new problem
AtAx = AtYo
This is not the same as the author's procedure, for the formulae become:
el T %~ MetePy
e

= r
pO (o]

m = Ty M /oy A ARD,
P = T * EyiPra
€ ™ Tip My M1, M
It is evident that the two are not equivalent, and that the

latter extension by Stiefel and Hestenes looks more difficult. Which

is actually the more complicated is a question for experiment to settle.

41,0 Lanczos Procedure

Ianczos was concerned with obtaining the solution to the

eigenvalue problem, viz.

AX'XXJ

His work will not be discussed in detail here, only that which is pertinent.

He constructs a set of mutually orthogonal vectors in the following manner,

Starting with an initial vector T which is arbitrary, he chooses

r1 = Aro - o<°r°
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2

where A is a symmetric matrix and o(o so chosen that rltro = 0, hence

rltro = 0= rot’}iro - X or%ro

or of = rOtAro/ rotro.

Then
r, = Arl - o(lrl - ﬁoro (2)
choosing c(l so that rztrl = 0 and Bo so that r2tr° - 0-.
ToeT1 ™ 0= rltArl -« lrltrl - ﬁorotrl"

The coefficient of po is zero by choice of o( o 80

o<y = rltArl/ rltrl.
Similarly po rlt“ro /ro r.
Further ry - Ar, - X,r, - p;r; =~ YT (3)

where oy = rztArz/ 1'21;1'2

and surprisingly enough .
% = 0
The reason for this is based on the symmetry of A. It means that

r, contains no component of ro. Since r, and r. contain no component of Ty

3 1l
this must mean from equation (3) that Arz contains no component of r,s or
that
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But Ar_ from equation (1) is

Ar > ™ r:L + o(oro 80
th”o = r21-,r1 + “or2tr6° This is zero since

r, and ry and r, and r, Were made orthogonal.

In fact the general scheme

re = Ay = XK aTey T BeoTio (k)

where o1 "~ rk-lt"'rk-l/ k-1, k-1 )

and Pre2 ® Tiee1y M k-2 T2, Tice2 ()
E is sufficient to ensure that all T form a mutually orthogonal set. This

is proved in the next chapter.

The point that the author wishes to emphasize is that two constants
only need to be evaluated at each step. This is so similar to the method
of the author and that of Stiefel and Hestenes that it cannot be coincidental.
It is the object of Chapter IV to tie these procedures together.

However, to continue with I;.anczosh_'_ procedure,

r
(o)

r, = Aro -, " (4 - 4><°1)ro

T, = Arl - ol ry - poro = A(A=- <><°I)ro - o(l(A- o(oI)ro - poro
N R R RN s
1l o 170 o 0
and similarly it can be shown that
-3 2
T3 [A = (o tol 40 JA” + (o) o+ 0() 4 X =B, =B )A

-(x2°(1°<o' “23 o'B 1040)1] Toe
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Evidently the successive r, are equal to the product of a polynomial
in A times e Since the Ty form an orthogonal set, then if A is of order
N, Iy = 0, since in N-dimensional space N is perpendicular to N mutually
perpendicular vectors. In general then,

th

- Pk(A)ro, where P, is a polynomial in A of the k™ degree.

T

It should be pointed out that r, might vanish where M< N. This happens,

M
as will be seen, if r, does not contain all the eigenvectors of A.
The Cayley-Hamilton Theorem, it will be recalled, states that a

matrix satisfies its own characteristic equation, hence if PN(A) is the
characteristic equation of A, PN(A) l- 0, and the above equation is satisfied
for k = N, It does not follow, however, that if the equation is satisfied,
P,(4) is the characteristic equation.
; It can be proved, however, that if the procedure terminates at the
_ Mt'h step, the Mth degree polynomial in A is a factor of the characteristic

equation and is the characteristic equation if M = N,

Proof: Let Vis Vos ececes Vy be the mutually orthogonal eigenvectors
of A. That these vectors are orthogonal and do span N-space can be shown.

See for example Guilleminn, page 1lLl.

3 Then, in general, r, will be a linear combination of M of these,
MN.

ro = clvl + 02V2 % 000000000 ¥ cH' °

Remark: No linear combination of the v‘1 can possibly vanish since the
vectors are orthogonal.

It is now noted that

Av-)\

i iy

n n
Avg = AyY




and  Py(A)v; = Pyl N, )v,.
Hence By(A)r = ¢ Bl A )vy 4 euee 4 Pyl AWy

If PM(A)ro = 0, then this can only occur if all coefficients of the

i vanish, i.e.,

Bl M) =Bl A,) = ceee = BLA ) = 0.

Then PM()\) contains as many factors of the characteristic equation as r,
contains eigenvectors of A. It is still conceivable that PM()\) has extraneous
factors. It does not actually. If r, is composed of M eigenvectors, then

™™

to M other linear combinations of the same M eigenvectors, which is impossible.

is a linear combination of the same M eigenvectors. It is also normal

Therefore rM

steps as T, has components which are eigenvectors of A. Hence PM(>\ )

= 0, and so the procedure will converge in exactly as many

is a factor of the characteristic equation of A.

It will be pointed out subsequently that the characteristic equation
can also be obtained from Stiefel's method,or the minimized error technique.
Further study should be made of Lanczos' work if the reader wishes amplification
of any points about this procedure, or if the reader is interested in

studying the procedure used when A is not symmetric.



CHAPTER IV

PROCF OF THE N-STEP PROCEDURES

Three methods have now been presented which establish an orthogonal
set of vectors in N-steps, and at each step only two constants are evaluated.
It is reasonable to suppose that these procedures are more than similar,
that they are probably one and the same. Such is indeed the case, and it
is the object of this chapter to prove the orthogonalization scheme of
Lanczos and to show that the procedure of Stiefel and Hestenes is a clever
adpatation of this. The method of the author which was at first thought quite
different from the others turns out to be but a simple extension of the
procedure of Stiefel and Hestenes.

A, Theorem

Given any symmetric matrix A and non-zero vector Tos then the r

k
defined by the iterative scheme

T = Ay = TkaaTka1 T PooTi-2 (1)
form an orthogonal set if

1. e, is any constant F 0.

_ T 1421

2. (¢ o< = 0,
k-1 rk-ltrk-l =1
T Ar '
3. B, = it k-2 B, =B, =0,
k=2 T T 2 1
k=24 k-2
Proof: Given

Tk = ATy = FaTe - ProoTien

b of =0.

Choose °<k-1 such that r k-1

kg
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Premultiplying (1) by one obtains

rk—l-';

0 Ar.

%147k " 0 7 Tke1yMhel T Cr1Tke14Tke1 T Pree2Ti-1y k-2

The coefficient of pk_2 is zero since one presumes d‘k-2 was chosen

so that r

k-ltrk-2 = 0, hence

Te1, Mk
Tie-1, k-1

g =

Choose Bk_2 such that rbtrk-z = 0.

Premultiply (1) by rk-2t obtaining
- = - 0( -
k26" " 0 7 Te2eM k1 T Tke1Tk-2, Tk~ P, T2

The coefficient of xk-l is zero by choice of °<k--2’ hence

o N 0 R I
2 Ty, Tk Tk-24Tk-2

since the numerator is a scalar and A symmetric.

It has now been proved that r, is normal to Y and T o° It is

not evident that r for all j=0, 1, 2, c00oy k=3. The

k
proof is by induction.

is normal to r:j

a. The statement is true for k = 1 and 2. This is true since

°<o is chosen so that r, r = 0, and a<1 and Bo chosen so that r = 0

1t o 271

and r r, = O respectively.

2
b. Assume that it is true for k =q, that is

rktrj = O for all k<< q, and all j <k, hence in

particular, assume

rqtrj = 0 for all j <q.
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From equation (1) one has

o5y = ATy = %yaTsa - Byotioe

O=1pr Ar 4

5 a3 © a d-1

But the coefficients of 0(3-1 and ﬁj_z are zero by hypothesis, hence

= 3179731~ Py-oTqyTs-2"

Ar = Ar = 0 |
Tqy T3-1 T T3-14"Tq J<a
Again using equation (1):

cqyqu¢1 = A?q~-'?§qfq - pqylrﬁ;ls‘

Premultiplying by r one obtains

J=1y
Cq1T3-1Tqe1l T T3-1,0Tq T %qT3-1.7q ~ Pg-1Tj-14Tq1

But again, the coefficients of a<q and Bq-l vanish by hypothesis, so

Cqe1T3-1, "4l ~ F3-1, M I<a

From equation (2) the right side of (3) vanishes if j<gq, so

rq*ltrj-lt = 0 for j,’ 0, 1, 2, coseey q-l.

Since o(q and pq—l were chosen so that

rq*ltrq =0 and rﬁ#ltrq-l = 0

then it is true therefore that
rq*ltrj = (0 for j < q"l QOEODO

B, The N-step procedures and the Lanczos scheme

It is the task of this section to show that the author's procedure
and that of Stiefel and Hestenes are equivalent to each other and are in

fact related to the orthogonalization scheme of the previous section,

(2)

(3)
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The iterative formula for xk in both instances is
el = X - MRy
Thus if Axk*l-y - Axk-y - mkAAtpk

then el = Tk " mkAAtpk’ )

In the conjugate gradient method the formula is the same as this but with A
only and not AAt. In both cases AA% and A were symmetric, so with the reader's
permission, equation (L) will be written simply as

el T T~ ™BPx (5)
where B will signify A for the procedure of Stiefel and Hestenes, and it
will mean AA, for the author's procedure,

t

One more equation is used in each of these procedures, namely

P =Tt €y qPege (6)

Note that equation (5) can be written

1 - 1
“m Tk " %P T mo Tk (7)
If one replaces k by k=1 in equation (5) and solves for Bpk»lg
1
Bp, , = (v, - 1) (8)
k-1 mo_q k-1 k

If equation (6) is substituted in (7) for P,» one obtains
1

1
Tys1 "B * €y 4BRL L - m Tk (9)

One can now use (8) to eliminate Bp, ; from (9) yielding

(10)

1 1 €k-1 Ex-1
B T ( m m oy )y + m o k-l

Equation (10) is the same as equation (1) with k replaced by k+l if



P T
k+1l ™
1 k-l T BT
L == b = K k (11)
M Me-1 Ty Tk
Br.
€ x- Tt Tk-1
and ﬁk 1 = w -——k-.}_ = ;—L—;'—' ° (12)
= M k-1¢ k-1
Therefore the ry will form an orthogonal set if m and Ek_l are so
chosen that the above relations are satisfied.
Adding (12) to (11) gives
B (13)
1 rktBrk . rkt Tl
T Tiee Tk =14 k-1

Replacing k by k=1 and substituting in (12)

‘TiBrya 1
2 R k145 k-1 L U )

(
Tk-1¢Tk-1 P24 k=2

&
(1k)

Evidently this is always possible even though the expressions for
the constants are messy. If one chooses the m and 6k-1 according to
(13) and (1L4) then the T do form an orthogonal set. Knowing this it is
possible to simplify the expressions for these constants.

From equation (5)

Teal = Tk T MEPye
Premultiplying by Ty j # k or k+1 one obtains

:t:"thpk =0 j # k or k+1 (15)

Since p =1, + &k-lpkol

rj_ltgpk - rj-ltBrk j# kor kel (16)
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Also since rk*lt " = 0

S T mkrkthk

t t
rktrk
or mk = —-—F—rk pk (17)
t
and Mol Tl T T, Tk T T k+1
‘rka-ltrku 28)
°r " " T, Bp 1
k&lt pk
From (16), with j = k2
rk*lthk - rk*ltBrk
r r
so mk = - k"’lt k+l (19)
: rk*ltgrk

Replacing k+1 by k in (19) and substituting in (12) yields

r'ktrk
T r (20)
k-lr k-1

Ek'-l

That equations (20) and (1) are equivalent can be demonstrated, but
it is not of particular interest. Equation (17) can be altered further
by noting that the vectors p‘_j are conjugate or B-orthogonal., That is

Py " Tt EgaPya " Ty GaTiat G BTt e M€y 6y o BT
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Therefore 0

o Py " for <kl (22)

But r - :
k+l Ty = kapk

50 Tyl 1-;,’3 = rktp 5" mkpkth 3 (23)

The left side is zero for k¢l > j, and the first term on the right

is zero for k> j, hence both vanish for k > j.

Therefore pkth 4= 0 K> 3. Q.E.D.
Since P = T v ExPra )
(2L
p, Bp, = p, Br, .
kt 3 kt k
If (24) is used in equation (17)
Tk, Tk
t

C. Résumé

It has now been demonstrated that any method employing the equations
Teel = T T MEPy

P = Tt & gPx

rktrk
" T Py BPy
t
rn T
c _ ke, 'k
R R X

where B is symmetric will converge in N steps. The requirement of positive

definiteness seems unnecessary in the light of the foregoing proof.
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The disadvantage when B is not definite is that the m  may become
large, even infinite. Hence the observation that B should be positive
definite is a practical consideration rather than theoretical.

It is now seen that all three methods are fundamentally the same.
It is well to point out that in the author's method
thj = pktAAtpj = (4,p ) (Aps) = 0 3 F ke

Hence the vectors which represent the corrections in the X, do - as previously

P

asserted - constitute an orthogonal set.




CHAPTER V
VARIATIONS OF THE THEME, ANOTHER PROCEDURE

By this time it should be apparent to the reader that variations on

this theme should not be hard to produce., It is curious how geometric
reasoning leads to a mathematical formulation. @nce the latter is achieved,
it is child's play to manipulate the equations to obtain new procedures.
These new procedures may be of questionable value, amd then again the variations
might be those which make roundoff error smaller,
To illustrate the point let us write Lanczos' formula again,

Cla1Tk+1l = ATk T %k T Pra1Tkal

where o(k and Bk 1 are chosen so that r r_ and Ty are zero

r
k#lt k 4-1t k=1

respectively. (Note that if A is symmetric, A may be written for AAt')
This ensures an orthogonal set for the e Now if one substitutes ij -y
for rj:

Coay BXpeyy = ) = My - 04 (b -y) - By o (Axg - 9)e
Premultiplying by A-l, and noting that A_ly = X one obtains
o1 = AT T K G T By * P

The x is unknown, so it can be eliminated by setting =c, .. = o<k+ﬁkw1

Cre1¥ie1 ~ €

so that
(ol 2By %1 = ATy~ o0 T B
It would appear that an N-step procedure can be established where the
new approximation can be made up of the last two X, and the gradient,
It takes a little rearrangement at this point to simplify the scheme.

Ifm = 1/°<'k’ and the above equation is multiplied through by -m_ and
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rearranged, 4
m (o 4B )% = e * M1 %y~ AT

If n is defined as mkpk-l’ one obtains

k=1
S 'l_tl'n;i— (ooemy 1% 5 = mAT).

"kt" k
where , =
% TR AL

r kt“t" k-1

and ® ———

This procedure looks all rightj one must be certain that n, never gets near
-1, Note that AAt is positive definite, so that all mj
iterative formula for the residuals can be written

Aty 37y = By ¢ M7y - mAAT
If n should equal -1, then substitution in the above equation yields
Squaring both sides (i.e., multiplying each by its transpose)

2 2
rktrk - 2rktrk-l * z'1:-1,61”1@1 ™ rkt(Mt) T*

are positive. The

The product of different subscripted residuals is zero, so

2 2
rktrk * -1, k-1 T Mk rkt(“t) Ty

If one now writes the equation again and premultiplies both sides by

(r + T

e k—l)’ one has

Tk, Tk * T el " "‘k"kt“trk * mkrk-ltutrk"
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Setting the right sides of the last two equations equal to one another and

cancelling m from both sides, one has

2
re Alyny 1y g M = men (AA)n
t t t
2 2
rktrerkt(AAt) Iy (r t. & )
T, AA T = - .
k-lt t k rktAAtrk rktAAtrk

It can now be shown that the numerator is always zero or positive, hence
the left side of the equation is greater than or equal to zero.

Proof: Since AAt is positive definite and symmetric, there exists

an orthogonal modal matrix L which will reduce the quadratic forms to a
sum of squares. Letting r'k = er and defining the components of rk'

as ryq Toys eses Tyys the numerator becomes

2 2 2 2
(r)y" ¢ 1"+ oot 1y )0\1 11 % .. ">‘N ™1 %)

2 2.2
'(>‘1r11 "‘>‘2-"21 $ . *>‘NrN1 )

Multiplying these out one gets

3 eyl Zm%x et -5 N -jzzxaxkrﬂ .

J=1 =1

The first and third summations cancel, and the second and third combine to

give (X, -A )2r 2, .2 hich is obviously non-negative.
A TN T T

Note: Before leaving this point note that one has also shown that
this statement is true even if the matrix is not positive definite and

also that what has been shown can be stated equivalently as




2
rkt(AAt) Iy
T ktAAtrk S
1
=z
T t“tr X
r.r
kt k
r, (A7 )2r r, AA T
or that Xt U K ky bk
> . This is what was alluded to at
r A\ r = =r r
kt t°k kt k

the bottom of page 19 when the method of descent was discussed generally.

Since one has now shown that r -1 AAtr is non-negative, then

k=1, k
M-, Mk
n_y =Mz = is non-negative also. But its was assumed
k-lt k-1

that n 1 was =1, hence the conclusion that n_4 cannot be -1,

While n camnot be -1, it can unfortunately get close to this value,

k-1
and it is a matter of experience whether the procedure is of practical
value. In any event, it is clear that this study has not been ended. It

is really only beginning.

1,0 Skew Symmetric Matrices

Though what is to follow may not have practical implications, it
is possible to set up an N-step procedure for skew symmetric matrices.
In the back of the author's mind is a procedure by which non-symmetric
matrices can be partitioned into their symmetric and skew symmetric parts.
Actually there is little reason to suppose that this would work.

While it is true that one is apt to outlive Methuseleh before he
finds a practical example which is skew symmetric, it is of mathematical

interest at any rate,
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The large difficulty with skew symmetric matrices is the fact that
half the time they are singular. Since all characteristic roots are
imaginary, and all the coefficients of the characteristic equation are
real, all roots must occur in conjugate pairs. If the order of the matrix
is odd, then one imaginary root must be its own conjugate and that is, of
course, zero. Then all odd-order skew symmetric matrices are singular.
Even order skew symmetric matrices have a rank which is an even number,
and chances are that one chosen at random will be non-singular.

Since S = -3, is the condition for skew symmetry, all quadratic

t

forms in S or any odd power of S are zero. Thus xth = xtStx = -xth

implies that this is true. This is a big help, for if one starts out as

Lanczos dids r
r = Sro r, is orthogonal to Toe

ry = 8r) - &1,

One now chooses cxb so that r2 ro = 0, Note that r.  r. is zero

2,1
t t
automatically since r, Sr., vanishes, and r. r 1is zero.
1t‘ 1l lt o
o =r Sr/r r.
o] 1t t o 04 ©
Note at this point that r, = Srb = -Strb, hence

= .r r/r r.
O% " 1 0, ©

This is evidently a negative number, so let a = - O(o.

One now wonders if an iteration formula such as

Tl = Srk + ak-lrk-l is sufficient to establish an

orthogonal set. One might attempt a proof of this by induction.
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Proof: The statement is true for k = O and 1. Assume it is true for

all k up to and including gq=1, i.e., r_r, =0 for j<q, and all r_ r,
9 J Py J
are also zero for j # p, and j and p less than q.

Choose aq_1 so that r q*ltrq-l = 0, Thus

Toel Srq + aq_qu_l (1)

T =
*heToa qtst a1 * %g-17a-1,Tq-1 =0
a = <r S r r 2
91 ™ g, %701/ T, Ta-1 )
Formulating the product of the transpose of (1) and r jz
r r, = S,r,4a .r .r..
a*ly § Tapt 3 a-lig-l
The last term on the right is zero for all j<q, except g-1, by hypothesis,
so
rQ“'ltrj = rq‘bStr:j for all j << q except g-l. (3)
But
r... =5, + a, so
j*1 J j=1 j-l
r r =r Sr,+a,.r r, ..
q J#1 gy J S-ligp -l
The last term on the right is zero for all j << q, hence
r =y Sr,=-r S,r,=-r r, for j <g-l. (L)

Ta, 31 Ta." q, t a*l,” ]
Equation () is obtained by substitution from (3) into (k).

Thus

-r r for j<<ag-l.
qQ,

Tae1,Ty T 341



-52 -

But the right side is zero by hypothesis for all j << g-~1l, and so

=0 for <<q=l,
Tq+1, "3 or §J <q (5)
Since rq*l rq_1 was made zero by choice of aq-l’ then
t
= 0 f °
rq*ltrj or j<<aq
What about j = q; is this zero? Premultiplying equation (1) by rqt
rqtrq+1 = rqzrq + aq-l rqtrq‘1 = 0,
Thus one has shown that
0 for j<<qg+l. (6)

r r.=
1.3

The procedure for skew symmetric matrices can now be summed up as

followss
Tieel = ST * 8T (7)
rktstrk-l
k-l Tk-1, k-1
Since r = Srk_1 *a ol o9 rktrk = rktSrk_l and. so
ok (8)
P ‘S, 8
' | rk-ltrk-l

This is seen to be much simpler than the symmetric case.

2,0 The Characteristic Equation of a Matrix

Since each procedure actually constructs the characteristic equation
of the matrix - A, Mt’ S, depending on the procedure - one can obtain
the characteristic equation by using the m and E‘k-l obtained im the

solution of Ax = y in the following polynomial difference equations:
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P =Q =1

(o] []

Prer " B - my A %

U =Pt 1%

If this scheme is used with the Stiefel-Hestenes procedure, one
obtains the characteristic equation of A. If it is used with the author's

procedure, one obtains the characteristic equation of AAt’ which is the

same as the characteristic equation of AtAo In the latter event it is
quite simple to show that

r, = Pk(AAt)rO and

Pk = Qk(AAt)ro°

Should the procedure terminate in M steps instead of N, where M <N,

then PM(>\) is a factor of the characteristic equation.

3.0 Examples of the lteration Procedures Discussed

To make the ideas clearer, several examples of the author's iteration
procedures are given below. All steps are given, but some additions are
absent. Simple examples are taken so that roundoff error does not affect

results,
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A, Non-symmetric, non-definite

Ax = y where
1 1 2 1 0 1 -3 3]
- - = = = = = = —2—
A=2 =2 0| y=|0]. X 0 r, 0 Atro =1 m TN T 1
1 0 1 2 0 -2 -1 1)
2 -l 7 [16 ]
2 _ 8k _ 10 _ 30 77 1
=0 | & T P T T R | AP Mt K 1 |V
-1 | -19 -5 1oj
b 8 1 1
-2 121 - b - .2
Tp=Te |t | €L =T Po g 1| APa=TE| 2| M= %3 7|1 Anse
| =2 | -7 -5 1

If one now uses the ™, and Ek:in the polynomial iterations
Po = Qo =]
Peel = P "M A O

Qi ™ Pk*l + Ska one obtains

- 5 _205 5 ., 6T 7.\ 2
=L Q=L Py =l-gh, Q =gR -7, B s loghe o5 A

_ 266 _ 119 7 2 . 7 13 \2 1 3
SE 5k ISR RSELEREEI 7S REEE I

Multiplying by 36 gives the characteristic equation of AAt’ viz,

3 2
>\ -13)\ +h2>\ =36,
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B. A non-symmetric matrix with the procedure introduced at the beginning

of this chapter.

For comparison the problem of example A will be taken.

1 1 =1 1 0 -1 -3
A=(2 =2 O] y=]|0 o X =|0] » =] 0 Atro = | =] m =57 xl = 15
1 0 1 2 0 -2 =1
2 7 16
-2 .5 - 35 -.28 < 375 - =
1‘1 11 101 A ‘brl a1 -6 ml -235 no %73- 1+no -E—?-j- 12 I 17
-1 -1 10

Notice that the x, is the same as in example A. It would appear that the

steps are the same for

L 0 1
2 12 7 11 49
ry, = 15— |1 Ar, = Bl M= N =-% ln, =+ 2= x3 =|1| Ans.
=2 -1 1

From a comparison of examples A and B it would appear that the latter

is superior numerically since it was much easier to compute. This is

something for experience to settle.

C. Skew symmetric matrix

It will be recalled that a simple orthogonalization scheme was presented
for skew symmetric matrices. This procedure can be used in even-order
‘» skew symmetric simultaneous equations by evaluating all the even-subscripted

approximations. The reason that the odd-subscripted approximations are

not evaluated is simply because the iteration formula for Xel is
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Xee1 = xk‘l*mkrk, and setting k = O, one needs X 45 to evaluate X e Thus

X5 xé, etc., cannot be evaluated. This is all right since only even-ordered

systems have answers, if then,

The procedure:

An example:

0o 2 -1 o0
=2 0 2 1
1 -2 0 -1

0 =1 1 CU

r = Sx
o)

0] -1

R 0

-y

Sr
o

+m,r

XytiaTs

, etce

where
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= 57 =

—_ — ~ - ~

2 L3 1

1 13 53 1 .
' = =521 n, = r R m o X = Se

15 22 1

The characteristic equation for S can be obtained from the following procedures

Po =1, P1 ==X R Pk*l = Pknl*mk)\ Pko When the values of m above are used,

s 2
one obtains P =1, Pl=>\ sP =1*._3%__>\ ,p3=11§)4>\4_ %%)\3,

=1+1l>\2"' }\hu

?
B,

.0 Inverting a Matrix

As indicated by Fox, Huskey, and Wilkinson, a matrix may be inverted

by these procedures by solving N problems, with

1
0
0 coe e Ty "™ « Each answer constitutes

Q oO+ro
= [eNeNe

0

a column of Aale



CHAPTER VI
EXPERIMENTS WITH LINEAR EQUATIONS, ROUNDOFF ERROR

The N-step procedures have some selling points which the author would
like to review. So far as iteration procedures go, those which converge
in N steps seem to be the best. The author's procedure pays no attention
to symmetry and is convenient in this regard.

As far as the number of operations is concerned, the elimination
methods are best. The N-step procedures have from three to six times as
many multiplications, but nevertheless have other advantages. It is clear
to the author that if a problem were to be solved by a hand computer, an
elimination procedure is easiest. Since it takes so much time to perform

an operation by hand, the time is worth money. On a high-speed computer,

however, the difference in time may only be a matter of ten seconds., This
is still woé£h money, but there are other advantages.

éi Elimination methods generally triangularize the original matrix, thus
destroying it or requiring additional storage space. In many machines

storage is more important than time. If, as a result of error accumulation

due to the finite number of digits carried by the computer the answer obtained

e is not good, there is not much that can be done. The iteration methods
have a distinct advantage in this regard. The matrix is not destroyed,
and any answer can be checked.

The real problem involved here is to know in advance whether a set

of equations is ill-conditioned. This last term warrants explanation.

First, one assumes that the matrix A and the known vector y are
known accurately. If this is not true, then the whole problem is one of

guesswork unless the matrix A is well-behaved or well-conditioned.
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It is possible to have a set of equations and an approximation to the
answer for which the residuals are very small, i.e.,

Axk =y =1, where Ty is small compared to y. At the same

time & =X - X - the error in this approximation - is large. For example,

let
Xy ¢ 3%y = b4
33.33x;, ¢ 100 x,) = 133.33.
1 (2,000 0.0002
Here x = o Let x = s then T, = 0
1 0.6666 000.01

Most individuals would be quite satisfied that X =X if they did

not know x, simply because £y is small compared to y. Evidently small
residuals are not always an indication of good results,
In the process of analyzing this, we note that

r = Aek, and

|2 A Ae

'rk = rktrk = ekt gAey . Hence the square of the ratio

1 of the magnitude of the residual to the error is

o

2
Irkl i ektAtAek °
|ek' ektek
This is known as the Rayleigh Quotient of AtA and is known to be
bounded above by the largest characteristic number of AtA and below by

the smallest characteristic number of AtA. Hence, if )“n is the largest
and )\1 the smallest characteristic numbers of AtA (which is positive

definite and symmetric) 2
Tk
k
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Apparently )\n and )\1 have some influence on iterative procedures.
It is known that if all the characteristic numbers were equal, convergence

would be obtained in one step. Hence, the ratio >‘n is a figure of
M
merit for a matrix with regard to an iterative procedure.
It would appear that the number of equations would somehow enter into

the picture also. This is reasonable since the more multiplications the

greater the accumulated error.

1.0 Diagonal Matrices

Some interesting results have been obtained by using the author's
procedure on diagonal matrices. Since an iterative procedure cannot
differentiate between matrices, a di#gonal matrix is just as hard to solve
as any other. It has distinct advantages for testing purposes.

It will be shown that only two things influence roundoff error in an
iterative scheme: one, the spread of the characteristic numbers of AtA’
and two, the size of the component in the error vector, e, which is parallel
to the eigenvector corresponding to the smallest characteristic number.

A diagonal matrix has its characteristic numbers and its eigenvectors
in evidence. For these reasons it is possible to evaluate the effects of both
the spread of characteristic numbers as well as that due to the initial
error vector, ey In 211 the examples below the initial guess is the null
vector, the characteristic vectors are the coordinate axes, and the answer
is the vector whose components are all unity. In six dimensions, for example

'xot-[oooooo], x, =L 1111 1], s

=11 1 1 1 1 1}.
., = ]
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If the eigenvectors have unit magnitude.and are denoted by v,¢

J
vw=[ooo0o00], w =[010000],
t %
vyw=[0o01000], w =f0o0o010 0],
t t
Vs, - [oooo1 0], vét-[o 0000 1],

A moment's reflection will show the reader that
e, = -(vi CV eV LV vé).

Thus, with the above choice for x and X s one has a situation in which
all components of e, parallel to the eigenvectors are equal in magnitude.

Five examples of this type weére done on the digital computer at
M;I.T. - Whirlwind I. In each case the procedure was used four times;
i.e., after X, was obtained, it was used as an initial guess and the
procedure was used again in an effort to improve the answer. The X5
thus obtained was used as an initial guess again, etc. If we denote
each of the following matrices by D.1

solved were D .x = yj, where the answer to be sought, x, was six ones.

J
Since the diagonal matrix has its characteristic numbers on the diagonal,

s .J some number, then the problems

ioeo,

—)\1000001
o%zoooo
00)3000

D, - N .
0 00 X000
oooo)\go
ooooo>\6
_ _
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the problem is totally specified by writing down the characteristic numbers,
Since the answer is a group of ones, the vector y is merely the column
matrix of the characteristic numbers, and so in the examples below, y, Xgs

X 5 X, 8° and x2h are given. The reader is to remember that X8 (say)

is obtained by using x,, 88 an initial guess.

Example 1
105 [ 999l | [ 09996 | [ .9997 1999986 |
10 1.0016 1,001 .9908 1.000073
1 1.0100 +5p50 1.0049 . 749853
o | T o | 27 | 00 [ 87| s | 2T Lreom
.01 .0001 20052 .0053 .010336
| .001 | | 000001, | 00005 400005 | | 00010 |
Ratio of largest to smallest characteristic number of n%D - v 10120

The computer carried 24 binary digits {about 7.2 decimal) and used floating
point operations. Only those digits which are significant were written
above, although the machine gives eight digits on the print-out.

Notice that the components of LR along the eigenvectors Vys Vo and
73 were removed almost completely in the first six steps. In the next
8ix steps some of the v3 was lost in an effort to remove more of vh.
Judging from the last two steps vS and \/3 might be removed from the error
vector, if one wanted to wait long enough. Conclusion: the method is not
of much use with a 1012 ratio. This, of course, is not strictly true.

For example, if the initial guess were

x = [b 0 01 1 1] it is clear good results would

be obtained, probably in the first six steps. This is the same thing
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as knowing half the answer, which is, of course, wishful thinking.
Even though the Xo), is not what one might deem a good answer, the

residual r2h is

ry =[--01373 .00725 -.2501k -.02371 -.00989 -.00099 ]
2hy,

Example II
100 | 990559 [1.04992 | [ .998395 | 1.01232 |
10 999987 1.00102 999997 1.00058
5 +999998 © 69472 -999996 .973295
Y= .5 | % "[1.039288| 12 " | .84yok| *18 T |1.007805 [ 2 7| .908011
1 .oh2162 85871 8614738 941039
Ry | .000k22 | | 00922 | 009639 | | 015247 |

Ratio of largest to smallest characteristic number of Dzz 108.

Notice how the procedure seems to destroy some of the good answers in
an attempt to improve some poor ones. Again one can hardly be overjoyed

at the results,

E Example III
(100 | [ 99502 | [ .99336 ] 1,00073 | 1.00101 ]
“" 50 1.40l53 +9299L 1.05557 1,20335
10 o99m | 97285 199867 9762l
T g |67 |rionss| 27 | Loma0| 387 |r.000m2| 2 7| Lommn
1 .78848 1.0191k 1.01161 +95638
| 1] | 400827 | | 401957 | 02359 | 07201 |

)
Ratio of largest to smallest characteristic number of D23 1060
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Example IV
200 | 1.2139% | 1.00186 | 104098 | 1.00051 |
70 94053 {1,007 499995 +99999
Lo «99L09 1,00004 +99780 99996
T 0| 67| gsems| 27| inzer | 7| owsor | 27| oumur
s 1,01;826 o TL767 1.01412 291736
| 1] | +10856 | <T2761 | 73912 | | <91735 |
Ratio of largest to smallest characteristic number of Dze 1ou.
Example V

Iﬂ has probably occurred to the reader by now that one large point has
been overlooked, viz., who on earth would ever solve a problem with such
a large discrepancy in element size? The answer to this comes in the next
example. The point is that a matrii may appear to have elements of
uniform size, and yet its characteristic numbers have a large spread or ratio.
To demonstrate this, let us take the matrix of example IV and simply rotate
axes., Thus, the problem will be changed only because our point of view

is changed. To affect this, the author chose an orthogonal matrix L, where

[ 1 -1 -1 -1 -1
V6 Ve 2 2 213 23
R | 1 -1 -1 1
V& 46 2 2 A3 23
1 1 1 -1 -1
6 Y6 2 2 23 23
L 1 - 1 1 -1 1
V6 6 2 2 A3 23
I 0 1 1
V& 46 B 43
P . 0 0 1 -1
V& V6 R
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The new matrix A was constructed by setting
A= LtDL, where D is the diagonal matrix of example

IV, Thus, LAL, = D, and so A has the same characteristic numbers as D,

and since A istsymmetric, AtA = A2 has the same characteristic numbers
as Dz. To geven significant figures A is
97.66667 10,6667 O -2klgk90  -2h.5130h  ~6.12826 |
10.66667  37.66667 =2h.9u90 0 -6.12826  -24.5130h
0 -2h.lgkgo 55, 15. 0 17.32051
=2l 49490 0 15, 55. 17.32051 0
-42.51304 =6,12826 0 17.32051  20.33333 6.33333
| -6.12826  -2i.5130L  17.32051 0 6.33333 20433333 |

Irx =1 1111 1], then
y, = [6.80286 -6.80286 62.82561 62.82561 13.3.587 13.3u587 .

It will be noticed that the eigenvectors of A are the rows of L, and it

might be interesting to compute e, in tems of these rows.

eo = 076 vl - lzoh v3 - 109‘2 vSo

Notice that three of the eigenvectors, including the smallest, are

missing. This then is equivalent to solving the first problem with an

initial guess of x = [1.76 1 ~24 1 -.97 1]. It is clear
t

that the answer should be good, and it is. For the matrix A above, the

sixth step ylelds:

x, = [1.0000000 .99999976 9999999k 1.0000001. .99999988 99999962
t .

It is clear at this point that the spread in characteristic numbers,
if large, must be accompanied by a shrewd guess at the answer for an initial

step if good results are to be expected. Two points have not been covered




s
TR

as yet: the effect of dissymmetry, and the effect of roundoff due to the
additional multiplications when the matrix is not diagonal,

The first question can be answered easily. A new matrix A' was
constructed from A of the previous example by interchanging the first and

third equations, and the sixth and fourth equations. This gives A' as

o0 -2hhoko 55, 15, 0 17.32081 |
10.66667  37.66667  =2h.49L90 0 -6,12826  =2.51304
' 37066667  10.66667 0 «24. 49490  <2h.51304  -6.12826
b -6,12826  =2)4,5130k  17.32051 0 6033333  20.33333
-24,5130k  -6.12826 0 17.32051  20.33333 6.33333
| -2l .Li9k90 0 15. 55. 17.32051 o |

It will be demonstrated below that the characteristic numbers of A'tA'
are the same as those of A2 or D? (in example IV), and the eigenvectors
of A'tA' are almost the same as those for Azo Hence, no change in results
should be expected, and this is corroborated by the results:

X = [1,0000002 09999996  .9999993L  1.000000L  .999999LO 1.0000001] .
t

In the product of two n~dimensional veetors, n products are formed.
Assume that'in’éach of these the first k significant figures are retained
and the rest discarded. Let @ represent the error due to rounding,

This will be less than one half a unit in the last place, or, if k stands
for decimal digits, @ << o5 x 10°k, assuming that the product is between

ol and 1.0, For example, if the product were .23760, and this were rounded
to three figures (k = 3) yielding .238, the error is .k x 103 or b x 107K,
Now the worst possible situation would arise if all n errors were cumulative,

yielding a total error of .5n x 10-k° For n = 10, then, one would obtain
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the same accuracy with ten multiplications using k digits as with one
multiplication with k-1 digits. This would occur if all product terms
were of equal size. If one product term dominates, then its error is
roughly the error of the total.

It would appear that the worst situation is not very serious, since
even if one had 100 equations, only the last two digits would be, in effect,
wasted. So far as a computer goes, it is generally not difficult to get
around this by changing the arithmetiic used. Of course, for machines with

a small number of digits, this could be a problenm.

2.0 Non-Diagonal Matrices

A few examples were done ﬁith matrices which were not diagonal,

Some were symmetric, some non-symmetric. It hardly seems necessary to
include them since they were used merely to demonstrate the fact that
the procedure works and are contained in Memorandum M=2229, Digital
Computer Laboratory Report, dated June 11, 1953, and written by the
author. Some of the results were good, some very bad. The experiments
are, however, of little scientific value since it is felt that the
characteristic numbers, eigenvectors, etc., should be known in advance.

One conclusion can be drawn, but cannot be based on fact. It appears
that the number of equations does not have too much to do with the efficiency
of the procedure. If the-number of equations ie larre, it is possible
to have a greater number of small characteristic numbers. This possibility
plus the accumulation of roundoff errors would have some effect on the

speed of convergence.
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In order that the author's method might be compared to that of
Stiefel and Hestenes, two examples which they used in their paperzh
are given below as well as one simple fourth order non-symmetric matrix.
Example I (by Stiefel)

[ 0263879 -.014799  .016836  .079773 -.020052 011463
-.014799  .249379  .02876L  .057757 -.0566L8  -.13Lh93
016836  .02876L  .26373Lh  ~-.033628 -,012128  .084932
2079773  .057757 =-.033628  .215331  .090696  -.037L489
=.,020052  =.0566L8 -.012128 =.090696  .32LL486  -.022L8)

_-0011&63 =.134493  .084932  -.037489  -.022L8L 0339271 |

¥y = [ +337100 .129960 .348510 .372L40 303870 .241200 |

x, =0 1111 1 xot-[oooooo].

Again with twenty-four binary digitss
X, = [1.000000k  1.0000001 .9999993k  1.000001k  1.0000019 09999991@]0
t

Ratio of largest to smallest characteristic numbers of AtA: 61.6.

Example II (by Stiefel)
6 13 =17 1 1 o
A=]13 29 =38 y = 2 X = =3 x =10 o
<17 =38 50 -3 =2 0
This example was done twice. The ) below was used as an initial guess

and x6 was obtained,

~1.0646319 .99999L,75
x3 = =1,9835417 and x = =2.9999986 | .
=1,9039863 =2 ,0000007

Ratio of largest to smallest characteristic numbers of AtAa 2.075 x 106o
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Example III (by the author)

1 01 01 1] 0] (1] 0] [1.0000041 |
1 <1 1 -1 I -1 0 = 099999922
f A=l g o o T e T T T ol ™7 |1.0000088
2 1 2 -2 5 -1 | 0 | | =+9999959L |
Batio of largest to smallest characteristic numbers of A As 282,

3.0 A Priori Error Analysis

The large and unanswered question is; how does one know in advance
whether the answers are good or bad? If this could be answered in one
sentence, then iteration procedures Qould be unnecessary. The following
sections talk about this problem, but no definite conclusions are drawn.

While this may sound like heresy, the author would like to raise

this point. Why would anyone want an answer to a set of jill-conditioned

equations? If the unknown which corresponds to the eigenvector associated
with the smallest characteristic number is so ill-defined by the equations,

what matter what it is? If this were a physical system, it would be a

very unstable one, and hence the inability to get an answer gives a measure
if of the stability of the system.

Physicists have often remarked that they do not really want the

solution to the matrix A anyway, since its elements are not accurate. Such
an individual is usually the first to complain about the inefficient
solutions. If one's mathematics or physics are sloppy, one cannot expect
impeccable results.

With an iteration procedure, ill-conditioning can be discovered quite
simply. Merely try two opposing initial guesses and compare results. If
they are close, it is probably a good answer. If not, the opposite conclusion

may be drawne.
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Still, someone may insist on the solution of the set of equations.
They must allow the computer to change the equations; for an ill-conditioned
set can be made well-conditioned with a little effort. If this is done,
some of the advantage of the iteration procedure over the elimination
procedure is lost, but not the most important advantage, that which enables
one to evaluate the answer,

The author and the reader would be happy at this point if such a
procedure could be outlined. Some solution to this must be obtained in
the near future, but the task is not simple. The author has a few suggestions
which he will offer but he will not at this time vouch for them.

The equations should be rearranged so that the largest elements fall
on the main diagonal. It is not necessary to do this; it is only necessary
that the largest element of each row be in a different column from the
largest element of the other rows. If this cannot be done, the equations
are most likely ill-conditioned. The variables should now be changed
in such a way as to affect a dominant diagonal. It might be appropriate
to show at this point that the interchanging of rows of equations does
not affect the characteristic numbers of AtAa

Shuffling rows or columns of A does not have any effect on the characteristic
numbers of A.A_. This can be shown by realizing that shuffling rows of A is

t
the same as shuffling columns of Ato Since AtA and AAt have the same

characteristic numbers, it is true that interchanging rows of A is permissible

if it is permissible to interchange columns. Since any change of colums

can be broken down into a finite number of single interchanges, it is only
necessary to show that if the ith and jth columns of A are interchanged,

then the characteristic numbers of AtA are unchanged. Let the columns
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of A be called W Uy ooy Uye Then the PQ element of AtA is uPtqu
Now interchange the ith and jth columns of A, This new matrix is to
be called A', and its columns are the vectors Wy eees uj, Uss oooy Upe

Then the PQ element of A!

¢ s . .
tA is uPtuQ for all P and Q different from i
and j. Writing out the matrices AtA and A'tA' and indicating only the
ith and jth columns and rows of eachs
B u u, ]
u1t i ult J
AA = wouy U U, e e U U U Us oeee U Uy
t i, i, 2 i1 1 J i,
u, Su, u ° o U, u, u eoo0 U,
Jtul Jg 2 g1 3l Jt"N
uNtui uNtuj
B u u h
ult 3 “1,6 i
A' A' = u. u, u ° ° u, u, u., u, ooo u
t Jtul 3y ? 6 N B M jtuN
u. u u, u ° e U, u u, u, 000 u,
i1 i 2 1,3 i 1tuN
u u
i A “Nt i |

Thus the determinants |At.A - >\Il and |A’tA' - >\I[ are identical if

the i-j columns and rows are interchanged. But the interchange of rows

and columns does not affect the value of a determinant - it merely changes

its sign. Thus two changes of rows and/or columns do not even change

the sign (which is unimportant anyway since the determinant is to be

equated to zero). Hence the determinants are equal and so are the characteristic

numbers. This should not be suprising, for it is clear almost intuitively
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that one can expect little help from an interchange of rows or columns.
There are two tricks remaining. One is to multiply the ith row
by a constant and add it to the jth row. In AtA this will mean multiplying

th row and column by the constant, and adding them to the jth row

the i
and column respectively. The only elements that will be affected are
those in the jth row and column. When A\ is subtracted from all the
elements on the trace of AtA’ and then the ith row and colum are multiplied
by ¢ and added to the jth row and column, the result is not the same as
when A 1is subtracted from the diagonal elements of A'tA'. Indeed,)\
appears in some of the off=diagonal elements. Hence, as expected, the
characteristic numbers of AtA are changed by such a manipulation. How
much and in what way one must investigate,
The other trick is to multiply one of the rows or columms by a constant.
This will also change the characteristic numbers of AtAo Then it is possible
to improve the ill-conditioning of a set of equations by either of these
two tricks. These are the only really simple maneuvers at one's disposal,
Just what rule one should follow is debatable. Une procedure would
be to rearrange the equations so that as many large numbers appear on the
main diagonal as possible. These can be made approximately the same size

by suitable multiplication, and the large off-diagonal elements remaining

can be minimized by manipulating the equations.

Examples 2 3 -3 7% =36 8l |
A = 6 =2 6 AtA = =36 22 =}}2
6 -3 7 8 <2 9

The characteristic numbers of A are 1, =2, 4. The characteristic numbers
of ALA are 188,1, 3.9, .0853. The spread in characteristic numbers of

AtA is 2200 to one.
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If rows one and two of A are interchanged, the matrix becomes symmetric,
but with large off-diagonal elements. This matrix can be helped by adding
twice the first row to the second and third rows. If this is done, the
new characteristic numbers of AtA are 37, 18.9, and .092 with a spread
of LOO to one. This is not a large improvement, it is true, but it is
surely an improvement. If the above operation is performed and the first

and third columns are then interchanged, then

A'= |0 L 2 whose off-diagonal terms are smaller,
1 3 2

but still not small enough. If the first row is now added to the second
and subtracted from the third, one obtains
-3 0 1
A'' =1 0 L4 2| . This looks as though it might be
1 4 2
an improvement, but one has to stop and think about what he is doing.

It is to be remembered that operations on rows are simple because
one is actually attempting to solve a linear set of equations. These
are lined up in rows to begin withj hence it is simple to multiply one
equation by something and add it to another. It is also simple to rearrange
columns since this amounts to a redefinition of the unknown x by simply
rearranging its elements. But when colums are added, the x is changed,
perhaps beyond recognition. For example, if the first column is added
to the second, the new unknown Xy is now the sum of X4 which has not
changed and the old Xy e This really amounts to a linear transformation

and may involve the solution of another set of equations. This is not
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too serious for many of these transformations are trivial, and some are
orthogonal. This means that the transpose of the transformation is its
inverse, and hence it should be a simple matter to change from one set
of variables back to the original set. See Guilleminll, page 5L et seq.
In any event there are some things one can do to improve the equations.
The only other thing left at his disposal is an improvement of his first
guess. 0Oddly enough it is not necessary that his first guess be near the
answerj it is only necessary that the error vector, €y contain small
components of the eigenvectors corresponding to the small characteristic
numbers. This can be seen from the previous examples or from the two
dimensional ellipse. If the ellipse is long and thin like a cigar or
worse, like a needle, then the gradient will be in the direction of the
largest eigenvector, almost regardless of one's position on the ellipse
excepting, of course, the very ends, Since Atrk is the gradient of
ektAtAek at X one is alsmot certain to wind up on one of these needles.
Once there, the residuals are so small that the procedure falls to pieces.
This will not matter if the component of the error along the long axis
{(the one corresponding to the smaller characteristic number) is small.
This really does not help much since one does not know this vector.
It is too difficult to find, and once found would not be of any use
since one presumably does not know where the answer is. It does help
one in this sense though; if one initial guess proves to give miserable
results, then try another. Specifically, if all zeros are used for the
first guess and the answers oscillate about plus ones, then try all

twos as a first guess. It might be possible to bracket the answer in

this fashion.
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An approximate way to get the number of digits in the ratio of the
largest to smallest characteristic numbers would prove helpful. It can
be shown (see Hildebrand26, pages L49-50, Section 1.18) that the sum of
the characteristic numbers of a symmetric matrix is equal to the sum of
the elements on the trace. Since the elements of the trace of AtA
are the squares of the lengths of the vectors represented by the rows
of A, then the sum of the characteristic numbers of AtA is equal to
the sum of the squares of the elements of A. Since all characteristic
numbers are positive, this is an upper bound on the characteristic numbers
of AtA° Thus one can obtain some estimate of the size of the largest
characteristic number. Also, if the first estimate x, is not near one
of the longer axes of the ellipse, then 1/mo N %hax° Actually '.L/m,0
will always be smaller than the largest characteristic number; hence
one has an upper and lower bound on this number. As for the smallest
characteristic number, one encounters much more difficulty. Since the
product of all the characteristic numbers is the square of the determinant
of A, then usually >\min. =1 lA‘2/>\ max. This is rather hit or miss,
but it is as simple a method as the author can devise.

Example: -2 3 =3

A= |6 =2 6 | - The sum of the squares of all elements
6 =3 7

is 192, which is almost exactly the largest characteristic number.
,A|2 = 6L, and 64/192 = .333 which is about four times the smallest
characteristic number. This gives a ratio of 578 instead of 2200, but

the number of digits is only off by unity.



Another examples

1
1 -1 1 A1
1
2

A= 4 2 -2 o The sum of the squares of the
1 2 =2
elements is 31, and the largest characteristic number is 16.95. |A|2 = 36,

so 36/31 = 1,16 while the smallest characteristic number is about .06,
Here the ratio is 27 instead of 282. Again, the largest error seems to

come from the smallest characteristic number.

3.0 More Equations than Unknowns

If there are fewer equations than unknowns, then it is not likely
that any solution exists. Certainly no unique solution exists since several
of the variables can be chosen arbitrarily, and different answers can be
obtained.

If there are more than N equations and only N unknowns, then A is
a MxN matrix with M > N, In many instances solutions of a type exist.

In any event both the case for M >N and M <N can be covered along with

the singular case.

An MxN matrix with M < N can be made a NxN matrix by adding N-M rows
of zeros to the bottom. One now obtains a matrix which is square, non-symmetric,
and of rank less than or equal to M. This problem is now seen to be identical

with the one in which A was an NxN matrix at the start, but of rank M < N,

The two problems differ only in that the latter matrix can be symmetric

while the former obviously cannot.
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If A is of order N and rank M and symmetric (read AtA for A if it is
not symmetric), then there exist N-M eigenvectors of A which are mutually
orthogonal to all the other eigenvectors of A, such that A times these
vectors yields zero. In general an initial guess x, will contain these
eigenvectors as will the right side of the equation y. Axb will not possess
these eigenvectors as components, however, and so the residual r, = Axb -y
will contain as meny of these eigenvectors as -y and in the same amount,

It will now be recalled that ry=r, - mbAro, and so ry will have these
same components of the original eigenvectors as =-y. These eigenvectors
proceed right through the procedure, so that the last residual is not
zero, but contains these components of the null eigenvectors that =y had,
Since X =x, -nr, and x, and r, have components of these eigenvectors
in general, then it is seen that something happens to these components
in the approximations X Just what happens to them depends on which
procedure is used.

If A is non-symmetriec, the correction to x is given by Atr o The
problem that is really being solved is AtAx = A y. If Rk is defined as

t

Atrk = AtAx - Aty; then RN contains the same null eigenvectors as -Aty

and will not always be zero. It is to be understood that if the y or

é> Aty is deficient in one or more of these null eigenvectors, the procedure
will terminate prematurely since‘ro or Bb contain less than N independent
eigenvectors. Also, r, can equal zero if the y (or Aty) is completely
deficient in these eigenvectors. This last will always happen if there

are fewer equations than unknowms.
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To discover what happens to the null eigenvectors in x, by the time
it becomes Xgs one starts out as follows:
ry, Ty =Ty - mAr (read ALA for A if A is not symmetric, and R for r)
orry = (I-mhr, r,=r) -mip =1, -mhr) -m g Ar,
or r, (I mlA)rl m EoAr'o [I (mlmoﬁmla O)A + mlmoA r,
and so on until

oy ox [T-Cngem oo empgem emy 4wy g, plus
more terms)A, plus terms in 2 up to AN] r,.

Now in the following, the small x, and Ty will not be the entire
approximation X, or the entire residual r, as previously used, but only
the components of these in the null eigenvectors of A. That is, let
x, = <=._|_elilvcze.2 for a two-dimensional example, the c's being constants
and e's being eigenvectors of A, If e, is a null eigenvector of A, i.e.,
Ae

= 0, and e, is not a null eigenvector, then the new X, about which

2 1
the next paragraph will deal is simply x, = Cyeyo One desires at this
point to trace only these components through the procedure, hence the
artifice. Since all residuals have the same components of these null

vectors, then under our new definition, T, = T} = eco = Iyo
[ "% "M%
Xp =X ~MPy T X, =BT, -mr) ~mE qro
=%, - (myemem€ )r .
Should one continue in this manner, one would discover that

xy = x<> - Cro where C is the coefficient of A in the

polynomial in A above.




- 79=-

One now sees exactly what happens to the null components of the
initial guess. They are merely changed in magnitude by a constant amount,
depending only on A and y. Thus the answer obtained depends entirely on
the initial guess. The last residual will depend on the initial guess.
Thus, the residuals are not minimized in the mean square sense when A
is symmetric.

An example of this might be interesting,.

1 1 O 1 4 0
A=]1 1 O] x=«]0| « Choosing x = 0] it is evident that x
o 0 1 1 0 -1
can have no component of the null eigenvector in it. If )& 1" o, v, = 1],

the null vector
0 1

>\2"1,V2=0, x3.2’ v3’1 o

1l 0
One can verify by substitution that y = -%v:L + v, +-;L;v3, and so the
null component of y (or -rk) is -}:vlz. Then the final approximation x,
(since A is of rank 2) should contain C(-ivl). If the work is carried

out, xzt - [_2 -2 2] , which is a poor answer, and x, = 2v, - 2v,,

and C is seen to be L.

On the other hand, if AtA = Ay= Azx = Ay were solved using the

procedure for non-symmetric equations, the answer would be X, = [_-7,_" 1',‘ 1],
t

which is the mean square solution. Aty = Ay = AP + v3, and so with the

initial guess of zero for X, the answer should have no vy in it and

o wtv ev .
it does not: x2 4v3¢v2
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It is now seen that the simpler procedure is almost valueless, but
that the longer one is practical. How does the author's procedure behave
under these circumstances?

The author's procedufe is based on minimizing the error. Since there
is no answer, this naturally leads to havoc. When the author 's procedure
was used on the above example, the result was th - [ﬁ/6 1/6 10/6]‘0
While this is nearer the mean square answer than that obtained by the
method of Stiefel and Hestenes, a surprising thing occurs when this
answer is used to get a better approximation. The procedure simply retraces
of = [0 0 0]° In other words, it

2
t
oscillates. This does not occur with Stiefel and Hestenes' 'simpler procedure

its steps and gives a new x

for if xbt - [? -2 2] is used, the new x2t is [y =l 0] . This
is seen to be -hvl, and the answer is increased by another -2v1° Thus
the answer grows arithmetically.

it AtA is singular, then in three dimensions the map ey AtAek is
t

a set of tubes or pipes which are elliptical in cross section. Using
the author's method no additional components of the null eigenvectors
are introduced in the new approximations (x? above = 1/6 vyt 10/6 v2),
vwhich means that all motion from approximation to approximation is in a
plane normal to vi.

This is so similar to a wave guide at cutoff that the author cannot
resist making the analogy. It will be recalled that an electromagnetic
wave of wave length )» can pass through a rectangular wave guide if, and
only if, )\/2 is less than d, where d is the length of the longer dimension

of the guide's cross section. Moreover, the smaller the wave length,

the more rapid the transmission along the guide.
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If the relation

A

—_— L - M is written, one can see
2d max

that if >‘min is zero, the iteration procedure will oscillate, and also
the wave guide will oscillate as a cavity resonator. In both instances
no information will come out the other end. If, however, the ratio of
characteristic numbers is large, i.e., near unity, the iteration procedure
will converge rapidly, and the wave guide will transmit the wave at

almost top speed.

It was stated that the null vector components of X, appeared in the
same magnitude in all successive X o This occurs for a very interesting
reason. The null eigenvectors of AAt (which is the matrix used in the
author's procedure) are also the null eigenvectors of Ato
| Proof: Let v be a null eigenvector of AAts

AAtv = 0, so
vtAAtv = 0, or
IAtv|2 = 0. Since the magnitude of a vector is zero only
if all its components are, Atv =0 Q.E.D,

All corrections in the author's method to the x, are by vectors
Atpk, and hence all null eigenvectors of AAt in p disappear,

In the case where y contains no null eigenvectors of A, then the
simpler Stiefel-Hestenes procedure is of much value in these cases.

In the event there are more equations than unknowns, i.e., if A
is MxN and M > N, the longer Stiefel-Hestenes procedure is still the
best, It gives a mean square solution which is unique if at least one set

of N equations out of the M form an independent set. This is usually

probablﬁ.



CHAPTER VII
NON-LINEAR EQUATIONS

It is the purpose of this chapter to discuss ways of using the author's
procedure for the solution of non-linear equations. Some examples are
worked out, and an engineering problem concerned with the field of control

is solved.

1.0 Approximate Minimized Error Technique for Non-Linear Simultaneous Equation

A. One desires that group of numbers x.l.l’ 121, 0000y xm_ for which

the N equations below are simultaneously satisfied.

g, fl(xil’ xzr*“°°°°’~‘h1) =0
i £,0X)3 Fpys cesees X)) = 0

£(X 15 Xpys oeeees Xp) =0
Let x, = [xll Xp) Xg3 o o e xm] represent the solution, and
x, the k":’h approximation to the solution. Let Py be a vector which will
be used as before for obtaining X 41 from X

As in the Newton-liéphson procedure of Appendix IIs

[0n/0x, 3t/dx, . . of/dx,
ofy/3x,  f/¥xy o o A dxy

Ak ) ° o °
oMy dx, M/ Ix, . afﬁ/a,%nJ

It is understood that all the partial derivatives are evaluated at X




One now sets
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~
i

= £,(x)

e
£
o

[

T 5 SRS R R 0 T S T S T

and proceeds to write

and so on up. to

of the r, explicitly, the first set of equations implies the second.

]

£,(x,)

o

L]

£y (x)

= gl(rk)

xglk = g,(r,)

= enlT)s

where

k
r, = [r r o ° T ®
k t ]_lk 211{ NI‘J

While it may not be possible in most cases to write the X, in terms

k
now defines
dgy/ 3ryy
Gk = .
dgy/ o1y

evaluated at r, »

k

og,/ ory

38,/ 0Ty

3,/ 1y

bgz/ ) ™’

One
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It is approximately true that

X - = Gkrk.
Proof: For any component x of xk

x (r ) - gy (0) . A Taylor expansion of g (0)
Jlk 5 J
about rk yields

(0) -gJ( ) ¢ [égj/é 1%0-r)y) # coueee @ égj/ér x(0-r )]

(plus terms of higher order.)
If the higher order partial derivatives are small, or if the residuals are

small, then

gj(rk) - gj(O)z rnégj/c)rn soesos rmégj/érm.

The right side is evidently the jt row of Gkrk, hence

xk -x A5 Gkrk Qo oDo

It is also useful to note that

k Ak = I, the unit matrix. (See pages 112 and 113, 0:-xgood28 )

Proofs The 1;] element of the product G, ﬁ‘t call it i=-j, will be the
t

scalar product of the it'h column of Gk and the j row of Ak or

j-3 = [é gl/aril égz/ éril . o égﬂ/ arn] x éfj/ 3111
afj/éxﬂ
94/ 3y |

ar égl 3r, dg 3f, Sey
g.;lii_ 3%, + ang STt e + TJJFM ok
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But 8 = Xq12 8y T Xy etc., and fj = rjl’ hence the right hand side is

m=N ér- éx
. L ml . Or / Or.. . That is, all the terms
dx ory; j1 il

m=1

on the right combine to give simply the partial derivatives of the jP
t
residual with respect to the i h which is unity when i1 = j, and zerc otherwise,

Herce the product matrix is the unit matrix, which was to be proved.

B, The procedure
Let
%0 T mkAktpk"

Choose m_so that |ek‘1| is a minimums

2 2
okl = Cia1, ®een ™ Ok, %% T Pk A Pic*™e Pie, Ak P
t t t 7t t t
Differentiating and setting the derivative with respect to ™ equal to zero
one obtains for m
e P
_ k, Mk, Pk
e e Pl P

Since ek = xk - X = Gkrkz

r, G P r. p
kt ktnktk ktk

Q =
S T & P & 1) (A ]
t t t t
Now one sets P = Ty + ak-lpk-l" Postmultiplying the transpose

of this by A'kﬁ(-ltpk—l and choosing Sk-l so that (Aktpk) t(Ak-ltpk-l) = 0,

r P
k tAkAk-l t k-1

€i1 pk-ltAkAk-ltpk-l ’

Unfortunately the expression for 6k~=1 cannot be readily simplified,
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C. Newton-Raphson procedure

If a high-speed digital computer is available, it seems expedient
to use the Newton-Raphson procedure with the author's iterative scheme,
using the scheme to solve the simultaneous equations which arise at each
step. If the process is to be done on a hand calculator, it is possible
to do this also, bu£ the additional work involved in using the procedure
of part B on the preceding page does seem simpler since convergence is

much more rapid. Simple examples are given below.

2,0 Two Equations in Two Unknouns

Ao o
xile,x21 - 368 = 0

-2x
xlle 21 - 0135 = 0

(It is realized that this problem is simply solved by dividing the
two equations, but the author wishes to ignore this.)

The answer is

1
X = .
1
Solution
T . 2%y
A =
t .
-X -2
21 %01
Xy -2x)7@

The first guess will be
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o
ERey [—.ola]
% ,
ml bd 1708 & .X=[/]
[.305 T ¢ Ls
2 «730 ]
Continuing in this manner: # |
Bz
E 730 B
- g oA %,
954
x’" «921

Evidently convergence is quite good, as indicated by the figure
at the upper right.

B. To compare this procedure with the Newton-Raphson procedure, the
example worked out in Appendix II will be worked for two steps. It will

be recalled that the solution was x _[%] , and x = [é] « The first two
' °
0

0
steps (one step in the procedure, but two equations in two unknowns had

1/

to be solved) yielded as an approximhtion « Below is shown
x2 -
3/

the results of the first two steps of the author's procedure.
2. e 2
(xy -1+ (x, +1)°=1=0

(x,, - 2)2 + (le/z)z -1 =0



1.5
E, = -.197
=a297
| o - [ 0099]
=,078 X j/ﬂ/,f
Ll L,sus] X
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If the two solutions are compared, one sees that the second is better
than that obtained by the Newton-Raphson procedure whose error was .35k,
and the error by the latter method .286. Though this is an improvement,
it is questionable just how much and whether the improved accuracy is worth

the additional worke.

3.0 The Impulse Response

Suppose the engineer is conf:onted with the problem of determining
the impulse response of a black box. It will be assumed that the contents
of the box are unknown to him, but that the box behaves in a linear fashion
in the range desired. (If it is non-linear, the impulse response is of
little value.) The linearity may be checked by experiment by exciting the
box with similar signals of varying amplitudes and observing the response
of the box to each of these. If the responses are similar and vary in
amplitude with the input, then it can be assumed that the system is reasonably
linear.
The impulse response of a linear system is a sum of exponentials and
will be called h(t). Thus
.. t
*n t, x

are constants, real or complex. In physical systems

Xy b X b
e * xsle ‘ ® L ] L ]

h(t) = x,.®

where the unknowns le
the presence of a complex coefficient or exponent is always accompanied
by another term whose coefficient and exponent are conjugate to the first.
Thus h(t) is a real function of time. In general, however, the x,, are

otherwise unrelated. The real parts of the exponents X,  &re zero or

positive.
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In most engineering work it is not necessary to obtain the entire
impulse response. Indeed, this is not possible with the knowledge of
present day servomechanisms. Usually the location of three terms is sufficient,
but this number is, of course, open to conjecture. Some consideration
needs to be made concerning the type of signal that is to be fed into the
box. If, for example, it is to be run by a LhO=cycle alternator, evidently
the response is needed in this frequency range. If, on the other hand,
it is a control mechanism, then the lower frequency range is the more
important. It will be assumed that the engineer answers these questions
as adequately as he can before attempting a solution to the problem.

The Laplace Transform of the impulse response above will be called
H(s), thus

H(s) -;;?—L..;él.«%-*. o e
21 X1 61
It is now apparent that the constants sought are residues and poles of the
transform which is in turn the transfer function of the black box.

It is possible to obtain a graphic picture of the impulse response by
other means. These means are not accurate, and moreover, give the answer
to the problem in just the form that is almost valueless. The real desire
of the engineer is to have a transform on which he can rely for use in
snalysis and control work. He might wish to draw a simplified equivalent
circuit. All these require the exponential form. In addition, the
exponential form can be manipulated easily in convolution, etc.

The question now arises, what if there are really five important
poles and the engineer assumes but three for his solution? It is clear

that none of the poles the engineer finds will be the correct ones since



o s e

his three must approximate five. How much does this matter? This is an
interesting problem and not part of this thesis. It is thelauthor's feeling,
however, that the location of the poles is not generally critical, and

not much varistion in response would be observed if these were moved around

a little. Some appreciation for this can be observed by taking a simple example.

Let h(t) = e.t, then H(s) = 1/(s+1). H(s) has a pole at s = =1,
At t = T, where T >>1, one cuts the sbove impulse response off and obtains
a new impulse response hl(t) which, for all practical purposes is the same
as h(t), thus

hl(t) - u(t) - u(t-Ti] o u(t-a) is the unit step

function at t = a. If T is very large, little difference can be detected
between the two impulse responses. Indeed, if T is greater than L seconds,
the error is only about two per cent. But look what happens to the transform!

1 - e-T(s#l)
Hl(s) - Sii has no pocles at all in the entire

a-plane but has an essential singularity at infinity. While nothing very
important happéned to h{t), its transform was really pushed around. For
this reason and others the author feels that pushing the poles around is
legitimate sport and not something to be frowned upon. The reader should
not infer from this that the author feels the transform is not of much
value. If this were the case, less effort would be spent trying to obtain
it. It might be an interesting thesis to try to determine how accurate
the location of poles need to be to give the engineer enough information
to proceed.

A. Test signals

D~C. If the black box is excited by a d-c source of one volt (or

one ampere depending on the manner of excitation), the steady-state response



Go is given by using the final value theorem on the output transform:
d=-c

il
o°d-c iimo s{——— s‘..,‘21) e o )l/s
- 31 51 + (1)
*n * il * *61

Since this response should be simple to measure, one has obtained an equation
relating the variables.
Sinusoid. If the box is now excited by a voltage cos wt, the steady-state

response can be obtained from the residues of the poles at s = ¢ jw, where

J bl "10
91 s
s]-il:jco (el s ¢ 2 e e) 32 + co2
= 1/2( xll &* x31 . ° )0

x21+ Joo xh1+ Joo

The conjugate expression yields the residue at s = -jw. If the observed

response is A sin ot + B cos ot, then its transform may be written

B « Jok B = jod
L(GO ) -—2———2-*—’-2—;:2—=1/2—-—L—4-1/2——J—.

a=c 8 - Jo s + jo
Equating residues gives
B - Joh = xll + 31 Sl * o+ o o (2)

leojw h#jm -o-.,jm

X3, xit X3t
11 31 51
X * ° L4 L ( 3 )

Prakt m R T

Again the ésterisk is to be read "conjugate."
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There are two cases to consider.
Case one: All x are real. Thus the asterisks may be dropped

in Equation (3) and addition and subtraction of the equations gives

g . 1, Tmtm o, Tita
3,7 77 55t o o

Case two: There are one or more conjugate pairs. If x.. is

31
complex, then x51 must be its conjugate., Also if X is complex,

Xgy = X and so Equations (2) and (3) on the preceding page may be

written:
, M1 X X5y
B - Juh = x214jm * xhl+jm * Xgy o0 ¢ s
11 X5 X3 -
B + juk x21-aja) + x61‘3°’ * xhl"j‘” + . 6 .

where X4 and X, are assumed to be real, and any other conjugate pairs
are treated as these were. These equations are now seen to be the same
as (2) and (3) but with the conjugates dropped, and hence solving for B
and wA will again yield Equations (L) and (5). Equations (1), (k4), and
{5) can now be used to obtain as many relations as are necessary to solve
the problem. Other relations can be obtained from the transient response,
if necessary, but these yield poor results in general. The transient
response is usually helpful in determining a reasonable first gess to
the solution. In the example that follows, excitations of 1 ~ cos awt

and 1 - cos 2wt will be used, and it can be determined from the trmnsform

(L)

(5)
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that the entire response to the first is given by

- t S S -X,.. t
eo(t) = Go -Asinot «-Bcosat -C e'xél -De L1 -Be 61
d-¢

where Equations (1), (4), and (5) yield 6, s B, and A respectively, and
d-c

C, D, E, etc., are given by
2 2
" p.t™
Xy (2 "4") % (% )

Setting t = 0 yilelds no valuable information, but setting t at some positive

C =

() etCQ

values will yield equations. These are more difficult in form and harder
to work with. They are not very accurate for large t, and hence constitute
an ill-conditioned set. One such equation is more than necessary.

B. A specific problem

Suppose, for this éxample,,the exact answer is known, visz.
n(t) = e tee 2t o (143)e~H 20141 _ (_5y,=3/201-3)%,

Thus one has an impulse response with four exponentials, and the transform
has four poles. What happens when one assumes h(t) is composed of only
three exponentials?

The equations to be solved are

R X X
1, A, B, B a4

X1 M3 *a
01 X3 X5

2s —"""2 + + . LS 82
4%y 1"‘&:2 1"‘? |

3. Mz, g, It oy
1+ 1+ 2 1+ 2
*n il 61
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h+x21 h#x"l -h¢x61 :

49%n , *3%a X5 %61
Se % * - 5— * — - =294
baxy hex)y bexgy

6. 1'11 + 131 + x51 = 0,

These equations are obtained simply by exciting the box with functions
1l -costahd 1 - cos 2t. The response is a d-c plus a sinusoid whose
phase can be determined. Since the output is usually recorded on graph
paper, the constants on the right side'of the above equations cannot be -
obtained any more accurately than to three significant figures.

Equation 6 will not always be true. This relationship among
the residuals means that the response to an impulse starts at zero. This
means the box is very sluggish at the outset. If the device is complicated,
as is a guided missile, this assumption is not bad.

The first approximation should be a good one. It is reasonable to
suppose that two of the poles are complex conjugates, the third being real.
This implies that two of the unknowns are real and the other four complex.
If just the first two equations are taken, and only the first terms of
each, one finds that x), = +07 # J1.37, and x,, = u6 ¢ 38,22, Since
these are complex, one should take half of X9 since the equations are
linear in X Thus x,, = J.7 and x,, = o5 + 38 are an indication of the
magnitude of two of the unknowns. These assume that the other residual
is zero, which it probably is not. If these values are substituted in
equation 3, one obtains

*51%61

1ex,

= -.h02 °
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If the same substitution is made in equation li one obtains

2 = “’olhlo

boxgy

Solving these two equations for Xgy

and 1.5, From equation 6 the real parts of X and X3 should be about

and Xa gives respectively =.87

olilj. Going back to the experimental results, the transient seems to have
a frequency of about one or two radians per second, so choose as an initial
guesss

XOt = [05 + jc? 05 * jlog 05 = j°7 °5 = jl"s =1 1°5] °

One now evaluates the residuals:

r o= [.206 =050 1.27 .6k .06 o] .

t
1 1 %01 1 pal 1 ]
%01 1*x212 1+x212 , h*x21 h¢x21! )
X TEyXyy X (1xn 7)) -2xgyxy Xy (hexy7) o
X0 (14x,, )2 (1*x212)2 (h*x212)2 (h*x212)
1 1 A1 1 gh! 1
8 = b 1%, 1%, , boxy bexy ,
b ey Pxgyx, 20w, ") 2xgx, Xy (e, ) o
) =5 5.0 5.7 5
X, (1+xh1 ) (l*xhl ) (b"'xhl ) (L‘*xhl )
1 1 X1 1 X61 1
x61 1+x612 1-0-x612 , hﬂcélr li4x 61§ )
X Bgxg R OxgT) o ZxpXg o x Uk ) o
3512 (l*x612)2 (1*x612)2 (h*x512)27 (h*xélz)z |

One look at the residuals tells the engineer that these could be made

smaller by just choosing Xy = Ky < Xgl

intelligent guess since the signs of the residues can be positive or negative,

= 0, Actually this is a more
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while the real parts of the poles have to have negative values. Then a

more intelligent guess is

x -[o o5 4 315 0 5= 3i.5 O 1.5]

o]
t
r, =[-167 -182 .227 bk .29 O] which is evidently
. |
better than before.
24506 =.30845.462  .53843.693  o32¢§e2h  .52-3.36 1
0 0 0 0 0 0
A o 029306 -030B-3.u62  .538-3.693  .3205.2k  J52¢8.36 1
(o)
t 0 0 0 0 0 0
667 .307 61 16 2 1
0 0 0 0 0 0 |

Note that this is singular and that the Newton-RBaphson method will

not work. This does not affect the author's procedure for at the next

approximation the matrix will change.
After thirty steps the last approximation (using slide rule, hence
three significant figures) one obtains:
*30, [-.853-3.533  1.227+j1.52 =.853+§.533 1.227-j1.52 1.706 1.51:
with residualss '
30, [-.013 .027 -.037 .02k .039 O],

In the course of the solution several short cuts were taken, suchas

using gk“fpkf rk_ﬂz instead of the more complicated formula, and the matrix

A*k was used about four or five times before a new one was computed. Total
t

computing time by hand sbout forty hours. It turns out that slide rule
accuracy will not improve the answer appreciably. This is not too important

since the example is merely for demonstration purposes.
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If the two impulse responses are plotted on the same graph, one
would notice that the original is about one-third larger, but that they

are essentially the same shape, One need not be too disappointed at this for

there was no reason to anticipate that the three-pole approximation would
have a graph identical to the four-pole original.

Another plan of attack is to obtain the step response from the measured
data by subtracting out the steady-state sinusoid. One can fit two or three
exponentials to this curve in a rather simple manner. Again there is no
reason to suppose that the response obtained in this fashion would satisfy
the original equations unless the correct number of poles are assumed.

In any event the solution of a problem of this sort is hardly an
exact business, and much judgment should go into the use to which the results

are pute.



APPENDIX I
MATRIX ALGEBRA

It is the author's belief that the study of simultaneous equations
is most easily done from the viewpoint of geometry. Much use, however, is
made of Matrix Algebra, and it is felt that a review of the more important
theorems of this study will assist the reader in comprehending the thesis,
Even if the reader is conversant with the algebra, it is suggested that
this section be given at least a cursory glance.

l., Definition: A matrix is a rectuangular array of numbers. It

will be denoted simply by a single letter as

_ _
811 %2 3
8 % 93
A = °
8 %32 %33
%1 e A3

The letters with double subscripts will be called the elements of the

matrix, the first subscript representing the row in which this element appears,

and the second; the column. Thus a,, is the element in the ith row and jth

id
column. The matrix A above is called a four by three matrix (abbreviated
Lx3) indicating that it contains four rows and three columns.
The matrix consisting of one column is called a colum matrix or
vector. The notion of a vector is borrowed from geometry. Thus the vector

1

X = X21

x

31
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is the directed line joining the origin (0,0,0) and (xll’xal’x31)’ Though

the human mind is confined to visualigzing only three dimensions, it is a
trivial matter to write a vector consisting of forty elements. *This is
imagined as being a vector in forty-dimensional space.

2, Addition (Subtraction) of Matrices. Only matrices which have
the same number of rows and columns may be added. If aij is theijth element

of A, and b, , the ijth element of B, then the ijth element of A¢B is simply

i)
aij + bij'
3. Multiplication of a Matrix by a scalar. A matrix is multiplied
by a scalar if all its elements are multiplied by the scalar.
Lo The Transpose of a matrix will be the matrix with the rows énd

columns interchanged. Hence, if the subscript "t" indicates the transpose

then if :
. : a
31 ¥y &3 u fa
A= . . . it follows that At = 312 8| -
21 22 23 a

83 %23

S. The scalar product of two vectors is defined as the sum of the

products of corresponding elements. For example

4Ly = ["11 % x31:] Vo1 = (X791 %%0 T *X5y 75y )

Ré

The transposed column matrix or vector, Xy s above is called a row matrixe.
It will always be understood that a product involving a transposed vector,

and a vector indicates the scalar product.
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6. A non=column or non-row matrix will be thought of as a double vector
sete If A is a NxM matrix it may be imagined as a set of N-M=dimensional

vectors transposed (the rows) or a set of M N-dimensional vectors (the columns).
Let v, be the first row of the matrix A, and v, the i
t t

fhe ith colum of a matrix B, If these vectors have the same number of elements,

rowe Let ui be

then the scalar product of vituj will, by definition, be the i-jth element

of the product AB., Then, to obtain the product of two matrices, the number
of columns of the first must equal the number of rows of the second, and the
elements of the product are obtained by taking the scalar products of the rows
of the first with the columns of the second. The matrix representing the
product will have the same number of rows as the first, and the same number

of columns as the second. Thus, if

A= 2t and B = [?1 u, u3 uy] then

v v, ¥ Vo u Vv, u
31 T2 23 T3gh

It is now evident that an NxM matrix times an MxL matrix yields an NxL
matrix. It must be pointed out that the multiplication depends on the order

in which the matrices appear, and that AB ¥ BA in general.
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L -] :: - [1a-2xz] = ,[;3]

1x=2 1 =2

1 1x1
2[1-2]- 2 22| |2 ob|”

7. The transpose of a product is the product of the transposes in the

reverse order, i.e.,

(ABCD)t = DtCtBtAt.

8. A Symmetric Matrix is a matrix which is identically equal to the

transpose, hence
A= At implies that A is symmetric.

9, A matrix is said to be singular if there is some vector v such that
Ay = 0. Since the matrix A consists of N vectors transposed (rows), this implies
that each of these rows is a vector perpendicular to v. If A is not square,
it is always singular. If it is square, A = O implies that the rows of A
do not span N-dimensional space, and hence at least one of these rows is a
linear combination of all the others. Determinant theory indicates that in
this event, the determinant of A is zero, and hence if the determinant of
a matrix is nonzero, the matrix is nonsingular. .

10, The main diagonal of a matrix consists of the elements on the diagonal
beginning in the upper left and proceeding to the lower right of a square
matrix. All elements whose column number and row number are equal lie on
the main diagongl or Eggggo*

11. A diagonal matrix is a square matrix all elements of which are
zero except those on the trace. The unit matrix is a diagonal matrix whose
trace consists solely of ones., The property of the unit matrix is that for

This is a generalization it appears, hildebrand26

diagonal elements the "trace."

q

calls the sum of the
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any matrix C
IC = CI = C, I being the unit matrix.
12. The order of a square matrix is the number of rows or columns.
13. A square non-singular matrix A always possesses a matrix A“l
called its inverse such that

£l - a a7t

= I, where I is the unit matrix of the same
order as A, It can also be shown that the inverse of a product of matrices
is the product of the inverses in the reverse order, viz.
(ascp) L = plclp™1st,

1k, A square matrix is skew symmetric if it is equal to the negative
of its transpose. The trace of g skew-symmetric matrix consists of zeros.
In equation form S = =St implieé S is skew symmetric.

15. A square matrix with complex elements is called Hermitian if it
is equal to the conjugate of its transpose. That is,

He Ht*’ implies that H is Hermitisn. The superscript #

is to be read "conjugate."

16, Latent roots or characteristic values. A square matrix A possesses

the property of transforming certain vectors into themselves, i.e., if v

is a vector. and N a number and
Av = A\ vy

then the vector v is called a characteristic (or eigen) vector of A, and A
a latent root (or characteristic value) of A. Evidently if

Av = A\v, then (A = AI)v = 0.
The matrix (A - AI) is therefore singular, and hence the determinant is
zero. The determinant |A = )\Il when evaluated is a polynomial in X of
the Nth degree. Hence there are N A for which A - A is singular, and

generally, N vectors for which (A = A\ I)v = 0.
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It is a simple matter to show that the latent roots of a symmetric of
Hermitian matrix are real, and that the roots of a skew=-symmetric matrix are
imaginary.

17. The Cayley-Hamilton Theorem. The characteristic equation of a
square matrix defined by |A = )\Ilzo, as stated before, is a polynomial
of Nth degree in Xk o The Cayley-Hamilton Theorem states that the matrix
A satisfies this equation.

Examples Find the characteristic polynomial of

1 =1
A=
2 0
A -1
|a - 1| - = (1=A) (EA) +2= XPo N+ 2,
2 -\
According to the Cayley-=Hamilton Theorem then

22 - A+ 2T  should vanish.

) a1 <1 1 -1 2 0 0o o
| 2 2] 2 0 o 2 0 O

18, Quadratic forms., If x is an unknown column vector and A any
square matrix, then the product xiAx is known as a quadratic form. Since
this is a multiplication of a 1xN by an NXN by a Nx1 matrix, the product

is a scalar. Therefore the transpose of a quadratic form equals the quadratic

form or

xtAX = xtAtx°



T
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This quadratic form admits of a geometric interpretation. The equation
xtAx = ¢, where ¢ is a constant, is a quadric surface composed of N-dimensional
ellipses or hyperbolae. Any matrix (square) can be expressed as the sum
of a symmetric matrix B and a skew-symmetric matrix S; i.e.,

B = 1/2(A+At) and 8 = 1/2(A~At),
and A = B4S.

The guadratic form of a skew-symmetric matrix and a vector x is zero
since x,S5x = xistx = -x,5x. Therefore x Ax = x Bx,

It can be shown that the quadric surface given by the equation xtAx =]
is one whose axes are given by the eigenvectors of B, and the reciprocal of
the squares of the lengths of the semiaxes of this surface are the characteristic
values of B. The surface, by the way, is centered at the origin, and hence
there always exists a linear change in variables which will rotate the axes
x so that the quadratic form is reduced to a sum of squares,

The change in variables may be expressed in matrix notation as

x = L x', where L is a matrix whose colums are the
normalized eigenvectors of B (by normalized is meant the sum of the squares

of the components is unity). This matrix L is usually called the normalized

modal matrix of B, and is such that
Ax-x'LALx?-)\ '2+)\x'2¢ o*)\ '2
Xy bt 111 *n coecec® Ay¥NL °
- xt!/\hx' .

This places the )\k of B in evidence. It may also be noted that _A_is

the diagonal matrix of the characteristic numbers of B and not A, unless A

is symmetric.
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If all the characteristic numbers of B are positive, then the gquadratic
form is always positive for any non-=zero x. In this case xtAx is a positive
definite quadratic form. In this event, the matrix A will be considered to
be positive definite if and only if the characteristic values of its symmetric
part are all positive. For other definitions see Schgnhardto25

19, Rayleigh Quotient. The quadratic form xtIx = XX will be referred

to as the squared magnitude of the length of the vector x. The ratio

xtAx ) xth
X, X xtx

is called the Rayleight Quotient of A and is bounded above by the largest
characteristic value of B and below by the smallest characteristic value of B,
20, The characteristic values of A and At are identical. This follows
from a knowledge of the fact that the value of a determinant is unchanged if
its rows and columns are interchanged.
21, If A is a non-singular matrix, then the characteristic values of
AtA are the game as those of AAto (Notes AtA and AAt’ with this one
exception, have nothing in common. They are neither equal nor transposes
of one another.) The proof of this amounts to a recognition of the fact that

the determinant of a product of matrices is equal to the product of the

determinants, hence
@ll

YW 57 v IR YW (I
The theorem is probably true even if A is singular, but fortunately
this need not be shown for the work which follows deals with non-singular

matrices.



APPENDIX II

HISTORY OF ITERATION PROCEDURES

An iterstion procedure is understood to be a rule or set of rules
the repeated application of which will yield an answer or improved approximations
to the answer of a mathematical problem.

In general, procblems are solved by first guessing an answer. In the

linear system no particular rules are stated for this first guess; but in
non-linear systems some shrewdness is necessary. After the first guess,
an automatic application of the rules of the procedure should produce the
answer or an "improved" approximation to the answer.

Evidently the procedures must converge, that is;, the engineer or
mathematician must be certain that his work is fruitful. This would mean
not only assured convergence, but rapid convergence. It is not enough to
tell a man he will arrive at his destination unless he knows hLow long it
will take. If it takes too long, he may not have the time, desire, or energy

to make the trip.

1.0 History of the Problem

From the time of Newton until 1929, iteration procedures were the
plaything of mathematicians., With little practical incentive, not much was
done in this field. In 1929 Hardy Cross3 brought forth a moment distribution
scheme for the solution of trusses which excited wide interest. Since then
much work has been done.

A, The Newton-Raphson method is familiar to all college sophomores
in calculus. It is used to determine zeros of functions, or, in its

extended form, to solve non-linear simultaneous equations. Though it may
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well be classed as the first iteration procedure of note chronologically,
it has been the first in order of importance also. The reason is its
rapid convergence.

In addition to the simplicity of the method, it has a geometric
interpretation. Essentially it linearizes a non-linear problem in the vicinity
of the approximation and obtains a new approximation by solving the linear
set obtained,

For example, let y = f(x). Suppose it is desired to find a zero of
f(x). With some restrictions it is possible to guess an x_ such that f(xo)
is small. Assuming that the curve represented by y = f(x) is nearly linear
in the vicinity of the zero, one passes a straight line through the point
(xb,f(xb)) tangent to the curve at this point. The intersection of this
straight line and the x-axis is assumed to be a better approximation to the
zero of £{x) than X, e Usually this is the case, and when near the answer
this procedure converges with increasing speed at each step.

This procedure has been so important to the work of the author that he
wises to emphasize it further. An example will make it clearer.

Lety = 12 - 2.
It is desired to find the zero of x2-2 which the reader will note is the square
root of two. The slope of the tangent to this curve at any point x is given

by the derivative, namely 2x. Thus, for any point X B = xkz - 2, and the
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slope of the tangent is 2xk. From the figure at the right
it can be seen that the tangent line

erected at (xkyk) intersects the x-axis P )/=A;L2

a distance of ax = yk/2xk from x, .

Hence a new approximation X4 CaR be

obtained from X by subtracting A x,

w
NI

i.e.,
PRE KLY
Suppose we let x, = 2, then
x = 2 -2/l =1.5 "R
= 1.5 - .25/3 = 1.4167

fangent //ne

%2
x3 = 1.4167 - .007/2.833 = 1.4142

This answer is already correct to five significant figures since to
seven significant figures ~/2 = 1.41L21l.

The speed of this method is amazing! Note that the new approximation
is obtained from the old by subtraction of a correction.

Suppose now, one is confronted with two functions in two unknowns
and wishes to find the values of these unknowns which will reduce both functions
to zero. That is, let 2, = fl(x,y) and z, = fz(x,y). As in the case
of the one unknown, each of these functions can be represented as surfaces
in three dimensions. The intersections of these surfaces and the x=y plane
will be curves, and the point of intersection of these curves is the point

desired, The Newton-Raphson method suggests that one guess at the answer

as before.

One then proceeds to erect at the point corresponding to this guess

a tangent plane to surface number one and a tangent plane to surface number



- 111 -

two. These tangent planes intersect the x-y plane in straight lines, and
the intersection of these straight lines is to be the new approximation to
the answer.

Without going into the details the mechanics of this procedure are as
follows: If h is the correction to be applied to X0 and q the correction
to be applied to Yy then h and q are found by solving the pair of linear
simultaneous equations,

afl/ax o h+ afl/ay, . q-fl(xk,yk)

afg/ax o h afz/ay . q=f2(xk,yk)

where it is to be understood that the partial derivatives are evaluated

at the point (xk,yk)o The new approximation then is

Kol T X "B AT,y TR - A
Again it is felt that an example with pictures will prove helpful.
Let z, = fl(x,y) = (x-1)2 + (y+1)2 -1

2, = £,(5y) = (x-2)° + (5/2)° -1,

If these surfaces are plotted on three-dimensional
Cartesian coordinates as at the right,
they are paraboloids with circular and

elliptical cross sections.
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The second figure, on the right, shows
the intersections of the surfaces fl and f2

and the x-y plane, where it is evident at

a glance that one solution is (1,0).
However, the first guess will be chosen
as (0,0).

Tangent planes are now constructed

to each of these paraboloids which

7

intersect the x-y plane in the two lines J

NH

shown, the point of intersection of these
lines being the new approximation (1/h, 3/h). The reader will note that
this new approximation is a great improvement over the first guess. The
computations have been omitted purposely since it is the geometry that the
author wished to emphasize,

The generalization of this method to N unknowns is simple. Xf the
N unknowns to be found are X\qs “Xyg secoes Ko and the N functions of these
N variables are fi, £2, cosoy :N’ one begins by defining the matrix of the

Jacobian of these functions evaluated at the kth approximation as
==

'31'1/ 3%, d£,/dxy o o afl/ale_

Ay 3%y 91 0xy o o o 3L/ 3xy
Aka

_?fh/iixrl bfk/a:%n; e o o be/azﬁnE_

and r, as the vector given by

k
rkt = [?l(xk) fz(xk) o o o fN(xk)] .
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It is to be understood here that X, is a matrix or vector composed
of all the components of the kth approximation.. fj(xk) is intended to
mean fj(xil’ ceoy xﬂl) evaluated at the k'D approximation.

Then the simultaneous equations representing the corrections may be
written in matrix form as

A.kA X, =Ty, oOr
Ax, = Ak-lrk.
Thus the iteration procedure may be summed up by writing
kel T % T Alcml’:k’
B. The Spark of Life. Surprisingly little was done before
1929, In 1847 Cauchy27 presented an iteration procedure as did Seydel

3 presented a paper to the A.S.C.E.

in 1874, In 1929, however, Hardy Cross
entitled, "Analysis of Continuous Frames by Distiibuting Fixed-end Moments,"

His is really an application of the Seydell (Seidel)'procedure to structural

frames, but it has the advantage that it appealed to engineers of the day
in a psuedo-physical way. To give some indication of its appeal, the
paper by Cross is eleven pages long and following this are 127 pages of
discussion. Evidently it was thought important then, even as it is now,
since almost no paper on iteration omits mention of the work.

b

In 1939 Temple™ wrote a masterful paper discussing Southwell5

and
iteration in general. The Method of Deséent is discussed, and amplification
of Temple's work can be found in Hamoé

The first attempt at a geometric visualization was made by Synge?
in 194L, and this is certainly well written'in Ham.

Co N=Step Procedures. An N-step procedure is a method which,

starting with a wild guess at the answer to a set of N simultaneous equations,
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-this guess can be reduced to the exact answer in N iterations,

In 1948 Fox, Huskey, and W:i.lls::i.nson8 presented an N-step procedure
for linear simultaneous equations. Though this is probably not the first
such procedure of its type, it is the first reference of recent years.
I-ancz039 in 1950 presented an N-step procedure for the solution of the
eigenvalue problem. Hesteneszo in 1951 and Stiefello in 1952 presented

a method based on Descent.,



APPENDIX III
THE AUTHOR'S PROCEDURE EXTENDED TO COMPLEX MATRICES

This section deals with the author's procedure entirely. The procedure
is extended to include 11neaf complex simultaneous equations, and a procedure
for evaluating the characteristic equation of any real or complex matrix.

A proof is given for the general case which is long and difficult. It
is felt that only those readers who are particularly interested need to
go through this. It is included simply because the work would be incomplete

without it.

1.0 Complex Equations

Let the problem to be solved be
Ax = y
where A is a non-singular, complex, square matrix, x an unknown complex
column matrix to be found, and y a known column matrix.
Then a procedure which will yield x in N steps is given by the formulaes
= - A:}
S T Y it B

(The asterisk is to be read "conjugate.")
P = T ¥ & aPra

T, Axk -y

r, T
kt k
metTE — ry which is real and
*
i,k
€xa ~ ¥ which is also real.
k=1, 7 k-1
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2.0 The Characteristic Equation of A

If A is a non-singular complex matrix, the characteristic equation
of A can be obtained by the following double iteration procedures

Choose e, arbitrarily.

Let eo' =e and
®ke1 = % ~ ™MPx ®'ve1 " &'k "~ mk*p'k
Py = Aot &y 1Pra Py = Aty Py
Po © Aeo p'o = Aéfec'
e p* P e* '
R Pt
b i’ktﬁ* K pktp*k'
. ektAté*k'
K °k-1t‘te*k-1

OGnce the m and kal are all found, the iterative scheme

P =1 , Qo =1

Pror = B = ™ )‘Qk
Qo1 = Praa * B o
A th i A
where Pk and Qk are polynomials in of the k degree, yields Pﬁ( )
as the characteristic equation of A. If, however, the process terminafes
before the Nth step, PH is a factor of the characteristic equation of A.
It is readily admitted that this is a somewhat complex procedure.

It is practically valueless if A is not Hermitian since some of the m,

may become infinite otherwise.
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If the m and & Kk are obtained by using the procedure of Stiefel
and Hestenes and used with the two polynomial difference equations on the
preceding page, one does obtain the characteristic equation of A as a
by-product of the solution of the set of equations. If the m and ¢ K
are obtained from a solution of a set of equations using the author's
procedure, the equation obtained is that of the characteristic equation

*

of AAt if A is real, and AA %

It is the author's opinion that Lanczos' procedure is superior to

if A is complex.

these., His procedure does not even require A to be nomsingular, and hence

should be easier,

3.0 General Proof

Let A be a non-singular complex square matrix of order N,
x a colum matrix, and
Y,¥',P,P',r,r', etc, be colum matrices.
Ax =y (1)
X = Afly
B x = a7y =Y
Define X, as the kth approximation to the answer x of the problem

Ax = y, and xk' as the kth approximation to the answer x of the problem

A*tx = y', where x is the same in both instances. If e =% = X and

ek‘ = xk' - x then

rk = Aek
(2)

t.*l
and rk A tek o
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Let x =x ' so thate =e'. (3)
Mol ™ N " P and  x' o =x, -mip! (L)
P = Ao * €1 and  p'y = A ¢ EN pt (9)
kel T % T Mk and SR EINEE o8 1N (6)

3*
1
m is now chosen so that ek*lte kel is stationary, and 81:-1 so

that 5t o
P, P - = Vo
kt k-1
One sets p = Ae_ and p_!' e 2" e . . (7)
o o o T to ’ °

(a) m

*' *' *'
®ke1,® kel T (°kt = mkpkt)(e k"% x

When this is multiplied out and the first derivative is taken with respect
to m and set equal to zero, one obtains

e*| @ p*'
pkt k" %P

*
2p_ p'
k, k

m =

Assume here that the denominator does not vanish, and if it does, one
starts over with a new X, and hopes for the best.

It is now desired to demonstrate that
) 3
1 t .
pkte k™ ektp k for all k.
Proof: (by induction)

Setting k = 0, and noting that e, = e'o

p

0 * 2
o e o “eo)teo eo "t.e o

t t

*, IR L *
and eotp o eot(h teo) eotAte 5 *
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So it is true for k = 0.

Assume that it is true for k = k.

p e*' =g p*|
kt k kt- k
From equations (5) and (6)
»* ®
Pra1® ko1 = (Aot EP (7 - mp™
* ™ 2 *
= ) t - : ]
Pre1,® kel T G Pt 'k ¥ EiPi,® 'k "‘kekslt“tp K

L)
- 8kmkpkyp " °

*' = - *l *' .
and *ke1,P kel (o - mp ) (hie™t py ¢ E2'))

*
= ¢ Ao mkpkt k«l"&ekt

3%
- '
&kmkpktp K °

Subtracting the twos

+1 p*' - P e*' =e A e*" . =€ A"
ex*eP ka1 ke1,® kel L b kel T Tkl Ttk

3*
- ]
o m (o4 Atp k ~ P Ml 1)
t - l
‘Ek(%tp k ~ Px® )
The coefficient of Ek is zero by assumption. Taking the first and last

terms on the right together, and the second and third:

e p*' - p e )A e ' A( of
kel kel T Thel, kel “kpkt k¢1 A = mP Ny
e A e*' - Ae * = 0
kol "% kel ek«lt £® kel T V°

* ™
- 1
s0 ekﬂtp 'l 1 pk‘lte Kol Q.E.D.
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and

e *y e*'
ktp k pkt K
) p p*' ) p p*' ®)
kP ok k, K
©) &

One chooses ék-l so that

p p*'/ =p' p_ =0
ko k-l ky k-1

Postmultiplying (5) by ,p*'k_l and p,

+* 3 4%
1] = ' ' =
PP k1 T % tAtp -l ¥ E k1P P 'k 0

3% 3% 3
and P 'y Pey =© " APy EpgP k-ltpknl 0.

t t
4 ¥*
1 ]
ektAtp k-1 e ktApk-l
so 5k-1 = . ¥ or = ¥, (9)
pk-ltp k=1 P a1 tpk-l

It is not apparent that the above expressions for € k-1 are equivalent.

To show this it must be demonstrated that

. ot
ektAtp k-1 " %k, APy

Proof: (by induction)

Setting k = 1

»* 3
e. Ap' =e AAe
1tt o lt

. %
elto lto
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s
But e, = e, -mp, and e 1" ~m P,
so e '1 A2e e A2e -m p*' Aze = e*otAzeo -m e*o A3e
" o, © o o, o o o, o
2 _ 2 % 2 % 2 #® 3 #
and eltAt s eotAt °o mbpotat o eotAt o mbeotht o

% »*
- 1
80 el Atp 'o e 1 Ap o

It is true for k = 1,

Assume it is true for k = k, i.e., that

A *l - e*' Ap
ektp k-1 k, k-1 °

From equations (5) and (6)
»* * *
t - - t
ek#ltAp k (ekt mkpkt)At(Ate k * 8k:-lp 'ksl)

and *, = (a1
e i1 2Py = (o

»*
. - mp ' )A(ke + € P ;)

Multiplying these out and subtracting and cancelling like terms, one

obtains

* 3%, 3 2 3 2
1 - 1 = 1 1 - ]
Apt,-e k*ltApk m (™ Ae+ & 1Py Ap ) - ATeT"

e, .
kel t t t

t

* 3
- ' ' 1 '
- 1pktAtp k1) * e 1(‘3kt tp k=1 " ktAp K-1)°

The last term on the right is zero by assumption, so
* * * * #*
| B 1 - 1 - il |
ko1 AP kT ® an AP T (P kA (Ao &y Ppn] Pe At (A" P k1))

3
I~ 1 =
mk(p ktApk pkt tp k) 0.

*l = *l
or ek*ItAtp. k=€ k#ltApk o Q.E.D, (10)
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(c) It -can now be shown that

To prove this, one first shows that

0.

*| = *' -
pk*ltp k=1 ~ P 'yl tpk-l

Proof: (by induction)
Postmultiplying (6) by p*'k, and using (8)

e p*' y
&, P - ekp*' A p_ D" =0
kel,” k y K B, P . k™ k _
v (12)
and similarly *, -
e k"ltpk 0.

Postumltiplying (6) by p*'k_lz

e *, -e ph - *,
k-tltp k-1 ktp k-1 mkpktp k=1

and * *
1
e kil tpk-l pk.l "’kP k, P °

The right-hand members of both equations are all zero by equations (11)

and (12) so

% 3
] - =
1P k-1 7 ° "kl Pl 0. (13)

Premultiplying (5) by o '\, 3
t

e*' p, = ot Ae, ¢+ € e* p
1:4-1t k k#lt k k-1 k+1t k=1
and
o » »
“er, P 't °kf1tAt° " ek-l‘kﬂtp "k-1°
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The left-hand quantities are zero by (12), and the coefficients of

&y are zero by (13) so

»
e ! Ae

ke, "%k =

Postmultiplying (6) by Be, ¢

e*' _
k-l-lt t k-l kt

and *, -
emqg%e k-1 ekﬁke

3% 3# .
Al "ear = ° 'k Ao

i1, 4"

t

t =
k

3%
-« t
mpty Aoy

- mkpktAte

The first terms on the right are zero by (14) so

2 3%
1 P 1
o1 2% 'yl mkpktAte k=1

%
d *, - A
an ® kel hey 4 = mkp ky ey

Setting k = 1 one obtains

%*
Ae = - ' Ae
2t 0 Kt 1t 0

and e

v . - o°
2 A e mlpltA e

t

* #*
= - t
But Aeo P, and Ate o =P ', =0

*
' Ae ==-mp'. p =0
2, % ™ 1,70

and e, Ate o R

From equations (6)3

-mlp*'o p1 = 0 by equation (11).

(1h)

(15)

(16)
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From equations (5)

Pre2 = Aopun * E1Prn
and *, #*
= ' .
P ke?2 Ate ke2 * € k+1Pke1
Combining these two equations:
3
e A
k¢2t t »* *
Py Py ' = e ' e ')
1 ™
and »
e 'k#2 A
p* o p = ———t (e -6 )
k412t k m, k k+1
When multiplied out, the last term on the right is zero by (14) so
* 1 3
' = t
Pra2, P 'k T T Pke2 tAte X
(17)
and % 1 3*
p' p, = e ! Ae
k+2t k m k«?t k

Setting k = 0, equation {16) indicates that

3 #*
pk+2tp 'k = p 'k*z\tpk = O for k = Oo

Assume it is true for k = k, i.e.,

P p*'-p*' p, = Oo
k¢2t k kﬁzt k

From equation (5)
»* »* *
= = ! ™ 1 - ]
kel “Prel = ExP M Aol TP gt Py

From equation (15):

Ae
e Ae - Ae {p &
k3, r"1«'2"’ ke2, "’"koep k2, Plesl” 1Pxc)

= =M 40P 'k+2tpk¢1 * Mo E-kp k¢2tpk



- 125 =

and similarly
e .. Ae"t * om D p*' + & p*' °
63, 76% kol T Teo2Pke2, P kel T Moz EiPue2, Pk
But the first terms on the right of each equation is zero by (11) so

e Ae = € o p
ko3, kel T M2 &P ko2, Prc
(18)
and * - *,
%03, %% ko1 ™ Moz € 1Pie2 P 'k
Equation (17) is now substituted in (18), increasing k by 13

mee2 € x

e*' - 27k p*'
k+l mk*l k+2t k

P p*' = .—1—_ e A

k3 A k+l ™l k*-Bt t

Since the right-most term is zero by assumption,
*

t - .

p k3 tp k¢l 0

*
.- 3 9 .‘ . -
In a similar way one shows that p k"'3tpl ‘1 0 so

3 * ‘
=t - \
Pk *ztp 'k P k‘ztpk 0 for 2ll k QoEoDo (19)
From (18) one sees that
e de, = e e*' = 0 also (20)
k4-2t k MztAt k °

This equation is similar to (14), hence one may proceed with the

proof of

p p*'-p*' p, =0
ke3," k ke3, "k

in exactly the same way, and so forth. Hence it is true then that
* +* * *
', =p! =e Ae' =¢ de, =0
PP g™ P ktpj k"% X, %3

for J } ko
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(d) The p, and p'  form an independent set if for mo k

3*
P p' = 0,
kt k

This can be shown by assuming that this is not true, that is, by assuming
one p j is a linear combination of the others. Premultiplying this by

p*' j yields a contradiction.
t

(e) Thus p = p'N =0, and e and e'N = 0,

(f) If A is Hermitian (or symmetric if real), convergence is
assured, and double iteration unnecessary for the m, and £ x &re real,
and all the primed quantities are therefore equal to the unprimed
quantities. That the m, and € x are real can be most easily seen by
noting that if they are real, the unprimed quantities equal the primed
quantities, and that if this is true, the constants must be real. A
proof of this is a simple matter and can be done by induction,

3

If A =A". and sin =e' then p' =Ae’ =
t and since eo eo en p o teo poc

Surely then, m is real and e = e'l 80 &o is reals It follows

therefore that P - p'l and so forth.

* *
(g) e, p' =e Ae'’ no matter what A is,
k‘b k kt t k

Since p""'k = Ate*'k + 8k-lp*'k-1

then * . *,
Lk o Ao ' * €y

e e p*'
k + =1 kt. k-1

The last term is zero by equation (12), so

3* *
| = 1}
ktp K ekt&te X as asserted,
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Thus m, can be rewritten in light of this and equation (8)

3%
]
ektAte k
M = %, (21)
pktp Kk
#* #* 3
h) Using e ! =e ' 4m, ',
() & ° yn 3 ¥ MyaP e
one shows that e 4 e*' = 0 implies that
k, b 3=1
e, A e
Tkt
m = —— for k # j-1.
j"]- e Ap*'
kgt 3-1

Multiplying this by equation (9) yields

%
e Ae!
kt t k

8k~1mk=1 by setting j = ko

*'
pk=1tp k=1

Using equation (8) for m ;> and the result of (g) above

*
1
ektAte K

- (22)

]
ekaltAte k=1

€yl =

hoo RéSUJ’ﬂé

The procedure then can be written alternatively as

= - 1 - : o= *. !
eel = % ~ MPx e'ye1 T &' T Py

= ] = * 1 ol ?
P = Aoyt &y 3P p'y =Aye'* € 4Py



ektAte*‘

mk =
p, P
ik’ K

! *'
°kt‘t° Xk
ak 1 = . y

= [}

%1, 4° k-1

If, in this procedure, A is replaced by A*tA, and Py by A*tpk, the
procedure reduces to that of Section 1 in this chapter. Since AtA is

Hermitian, then only one iteration is necessary, as asserted.

5.0 Further Examples of these Procedures

A, Non-symmetric, hon-hermitian complex matrix.
Ax = y where
J 1 1 1+3 0 -1-3
kel 1% 1-3| y=|3 | where j =\ l. Eetx =|0| r =| -3

0o -5 2 243 0 -2-3
245 -2-] 39-253

pr s 3 [ om = gg— x = gg" 3 r, = -53;7- <19+16j| . Note
-8-63 8463 144153

that the residuals are not orthogonal, but the conjugate of one is

orthogonal to the other.

253-2033 7-3673
199 _ 8 | _ 8 - - 199x57
B "7 PLToy [BOWLI| ap - TS| m - gy

504823 29-1353
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-1,89+1,0L93 «512-8763
1 1 2
=y | U35 -5973) - - | 178-1,103j . 51°x12,869
x? x331 2 m ’ El -5—2—;;;]-.2);—8-——
1,757+1,8653 .| =393+1,6L03
12,103-20,4133 -4,89-6063
199 17x199
p2 = m -12,100-1, 8013 A*tpz -5-2-;3—;1—' -1,220-5973
-35+18,9425 ] 10242103
J
- 2X331 - .
17 1199 13 1 Ans,
143

Using the constants in the polynomial iteration scheme, one obtains

the characteristic equation of AA* H

1=>°-=1,':z-1,1’1-1-----.)‘,q1 A8 . BN, p, -1 .20 3
7 57 57x1655

199 )2, Q, - 5°x331 *12§869xh31 99,009x1655457 x12,869 A1 A2

&
1655 5°x331 57x5"x331 1655

Po=1-BNe B X2- 3 N3 or mattpiying by 17, A-13 \23A 17,

B. The characteristic equation of A, where A is nonsymmetric and
nondefinite.
For purposes of comparison, the same matrix will be used as in
Examples 1 and 2 of Chapter V.
1 1 -]
A=|2 2 O| - This is a double iteration procedure, as previously

1 0 1
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1

indicated, and curiously enough a choice of e, = O | causes ptp' = 0,

0
i.e., the procedure does not work for this initial guess. If e, is
0
chosen as |1| it works fine.

0
0] "1 2 1 2
eo-l p. =|=2 p'o- -2 mo--% 31‘%1 e'l-%l
0 0 0 0 0
2 L N 4
1 1 -2 -1 -2
hey = 3|0| Ae'y =510 € =-5 p=g5|b} p'y=5|2
1 -2 3 -3

~
K
o

Using the c_onsta_nts mk and Ek in the polynomial iteration scheme
as before, one obtains
- - - 1 4 1 a1 o3 _2 2
Po=L Q=1 B 1*::)"“1 5 *30 0 13x z A%
2 - 1 3 .
Q2 —fg -3>\ —§->\ ,P 1l- 3 4'3>\ . MultlplyingP3

by 6 gives the characteristic equation of A, viz, >\3 - h)\ + 6.



BYOGRAPHICAL NOTE

Edward J. Craig was born in Springfield, Massachusetts, on July 17,
1924, the son of an uncommonly good portrait photographer with an uncommonly
good sense of humor, and the son of a brilliant and lovable mother.

Perhaps the simplest way to convey a picture of Frank and Lillian
Craig is to remark that if their som has done anything well in this world
it was no accident.

The author was graduated from the Holy Name Grammar School in
Chicopee, Mass., in 1937. He attended Cathedral High School in Springfield,
Mass., for three years, transferring to the Albany High School, Albany,

New York, in 1940. He was graduated from the latter in 1941 and entered
Union College in September of that year.

The Army beckoned in June 1943, and over three years were spent
in the Army and Army Air Corps. In November 194l he was commissioned
as a navigator on a bomber and was finally released in September 1946
as a first lieutenant. '

Studies were resumed at Union College, and graduation came in 1948,
He then spent a year in the Mathematics Department of Union College as an
Instructor and in 1949 entered the Massachusetts Institute of Technology
as a graduate student and teaching assistant. He is now serving as
Assistant Professor at Northeastern University.

He has one older brother, Frank, Jr., and a younger sister, Lillian.
 He was married June 1lli, 1947 to Jeanne M. McDonald and is the father of
Theresa, 5, and David, 3.
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