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"All things were made through Him, and without Him was made nothing

that has been made."

Gospel according to St. John: 1, 3.
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ABSTRACT

The main object of this thesis is to offer another attack on the
solution of simultaneous equations. The bulk of the work is on linear
equations.

Much work has been done on approximation or iteration procedures
for the solution of such problems in the last twenty years. The work
has been concentrated on linear equations. Until 1950 all these trial
and error methods took infinitely many corrections to complete, but
some converged so nicely that they have been used extensively. The
real attraction, the author believes, lies in the process of guessing
an answer. Engineers seem to be fascinated by procedures which will
relieve them of the drudgery of mathematics.

As more interest was shown in this type of solution, several authors
made great strides. To progress, some picture or theory had to be visualized.
This picture amounts to the elevation of the tasteless task of solving
linear sets to a geometric problem consisting of locating a point in
space.

Once this is done, all procedures can be compared and evaluated.
For certain sets of equations (called ill-conditioned) all the procedures
which require infinitely many steps are very poor. This thesis discusses
finite-step procedures.

It is the aim of this work to show that finite step procedures
are possible,* and are the best one can obtain. Moreover, all finite
step procedures are a variation on a general procedure which the author
states and which is due to Lanczos. To demonstrate this, several such
procedures have been devised by the author and are applicable to all
types of equations: non-symmetric, non-hermitian complex, skew-symmetric, etc.

The author believes that the best methods have now been generalized,
and that the "guess and try" method of solution has now been substantially
solved. A complete solution would require a complete evaluation of

*
Lest this be misunderstood, the author wishes to point out that
finite step procedures were known at least six years ago, and perhaps
even by the ancient Greeks.



roundoff error - i.e., the errors resulting when a limited number of
digits are used in the computations. This aspect is discussed, but
by no means solved.

Thesis Supervisor: William K. Linvill
Title: Associate Professor cf Electrical Engineering
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CHAPTER I

INTRODUCTION

All too frequently the solution to engineering problems is obtained

implicitly in a set of simultaneous equations. The problem of extracting

an explicit answer from these is generally a large one, and one that

is usually so difficult that the engineer may not know how it is to be

solved.

If the solution of the problem can be reduced to the solution of

a set of simultaneous differential equations, there are methods available

to the engineer. Most of these are approximate, unless the equations

are linear with constant coefficients. If the equations are ordinary,

that is, with no derivatives of the unknown present, then again the

methods are approximate, unless the equations are linear.

It will be recalled that a linear equation is one in which the

unknown or unknowns or any of their derivatives appear in the first

degree only. If the system is not linear, one is forced to employ a

"guess and correct" procedure to obtain an answer - or to make assumptions

so that the set of equations is reduced to a different set, the solution

to which is known.

Of late, the construction of large scale automotons to do the

burdensome work of carrying out numerical solutions has given engineers

a new lease on life. It has also given much impetus to logical "cut

and try" procedures, which the author chooses to call iteration procedures.

While the task of solving a large set of simultaneous linear (not

differential) equations is a straightforward matter, it is still an

unpleasant task to perform by hand. Cramer's Rule, or elimination

procedures such as that due to Gauss (or Gauss-Jordan reduction - see

ref. 26, Ch. I), are simple in principle but involved in detail and

susceptible to error.



Lest the reader become alarmed at this last remark, the author

hastens to state that he has no intention of scrapping these procedures

or of belittling them. He intends merely to exploit another procedure

based originally on a lazier attack on the problem.

The latter procedure was fathered by the solution of non-linear

simultaneous equations. The best approximation procedure evolved to date

for these is called the Newton-Raphson procedure. In this procedure one

guesses or tries to guess the answer, and then attempts to add corrections

to this guess by using information obtained from the equations and his

trial answer.

Naturally the idea occurred to someone that if a procedure of the

iterative "cut and try" type were to work well on linear equations, it

might work agreeably well on non-linear equations. In recent years, therefore,

in an attempt to expand knowledge of methods for the solution of non-linear

equations, much emphasis has been placed on iteration procedures for

linear equations. It is hoped that a procedure which works very well

with a linear set can be set up to work well with a non-linear set.

With these ideas in mind, the author believes that this thesis

presents the best type of procedures for linear equations. The procedures

are then extended to non-linear equations.

1.0 Iteration

Consider a specific set of simultaneous equations:

alx+ al 2 x2  a1 3 '3  1

a21, 1 , a2 2 a2 + a2 3x3  2

a3 1x1+ a3 2 ' 2 + a3 3 x3 ' y3
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The "als" and "y's" are known constants, and the "x's" are to be

determined. The subscripts on the letters "a" refer to the equation

number and variable respectively.

One begins by guessing three numbers to use as trials for x1., x 2 '

and x3 . These trials are now checked by substitution in the equations.

It is quite obvious that if this is done and the equations are satisfied

exactly, then one must have the answer. (Of course, one assumes that the

answer to the problem is unique. If more than one answer is possible,

then it can be easily shown that an infinite number is possible. Unless

specifically stated to the contrary, it will be assumed that in all problems

considered there exists an unique answer.)

The probability that one will guess the correct answer is zero;

hence after substitution of the trial numbers in the left-hand side.

and performing the indicated multiplications and additions, one obtains

three numbers which in general will not be y1 , y2, and y3. Intuition

tells us that if these numbers are near the values y, then one is close

to the true answer. This is not, unhappily, always true in an absolute

sense, but it is true in a relative way.

One is now forced to the rather obvious conclusion that the only

information one has concerning the error in these trials is the difference

between the computed left side of these equations and the right side.

These differences are usually called residuals and are defined in this

thesis as

r 1 i a' al2"1 + al 3 i - Yl

r - a2 1 xli + a2 2 x2 i +a 2 3 31 2

r - a3 i+ax + a x - y.
H3i a3 1 "i ree 2 st2 i t333i 3he

Here the subscript "i" refers to the it trial or approximation to the answer.



At this point one is led to the conclusion that the problem is

solved if the residuals are zero, and one need. only continually try

guesses until this condition is obtained. This is surely a hit or miss

way of doing the problem, so a short list of some of the methods previously

devised will be given.

A. Alter xli sufficiently so that rli is reduced to zero. This

changes the other two residuals, however, so then alter x2i to reduce

r2i to zero, and so on. When this is done, each residual in turn is reduced

to zero, but all the other residuals change at each step. Thus, after

reducing the first residual to zero, the reduction of the second residual

to zero causes the first residual to change, and it is never possible

theoretically to make more than one residual zero at a time. The problem

is similar to that of a mother putting six small children to bed. While

she puts one child in bed and tucks him (or her) in, the other five get

up again. Her only hope is to tire them out one at a time (or employ

more drastic means). This type of iteration sometimes converges (i.e.,

she sometimes gets them all in bed at the same time) and sometimes diverges

(i.e., the children get wilder at each step). The method is aptly termed

a "relaxation" procedure, but the author is certain that this name did.

not arise in connection with the example cited, however well applicablet

The condition for convergence in this procedure is that the coefficients

a i and a are equal. This is usually called a symmetry condition.

There are naturally several variations on this scheme, but the exact

answer cannot be obtained in a finite number of steps.

B. Instead of changing one trial component at a time, change all

of them (three in the example above) such an amount that the sum of the

squared residuals is minimized. Such a procedure is evidently assured



of convergence. This was first done by subtracting from each trial x

a piece of the residual ri, or a weighted function of ri * This thesis

deals solely with iterative procedures in which the new trial guess is

obtained from the old by subtracting (adding) corrections. It must be

clear that this is surely not the only way this can be done, but it is

believed to be the simplest. Thus, if p li p21' p31 are three numbers,

1i(i+1) " xi 11pl

,2(i+1) * xin - p21

(1+1) ' x3i - 31.

The three numbers "p" are of course chosen by some rule in order that

the procedure converge.

C. Related to the above idea are several procedures based on similar

ideas. Such procedures as the Method of Descent are stated in the following

chapter in detail. Most of these procedures are clever, but incomplete,

in that they still require infinitely many approximations. They converge

better than the relaxation procedures, but they also involve more work.

D. If by using Cramer's Rule or elimination procedures one can

obtain the solution with a finite number of operations, why not in an

iteration procedure also? In the last few years such procedures have been

found. They are called N-step or minimized-iteration procedures. The

N-step implies that ideally N approximations only need be made, where N

is the number of equations. This thesis deals primarily with these

procedures and hopes to show

a) that these procedures or variations on them are the best

that can be obtained,

b) that all such procedures are related, and

c) a general expression for making further procedures has been

obtained.
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2.0 The Outline of the Thesis

In order to acquaint the reader with the content of this work before

a complete reading is undertaken, the author feels obligated to describe

the contents of each chapter briefly so that the reader may keep his eyes

firmly fixed on the objectives. This is essential, primarily because

most proofs given hereinafter are by contradiction or induction. While

these are perfectly valid from the viewpoint of a mathematician, they yield

little insight into the geometry (or physics) of the problem.

Chapter II will introduce the reader to a geometric interpretation

of all procedures. The object here is to lift the uninteresting job of

numerical analysis to a level of maps, pictures, and geometric objects.

This affords insight which the author feels is valuable. To do this the

convenience of matrix algebra is employed. Most of the necessary definitions

and theorems on this topic are briefly contained in Appendix I at the

end of this work. Before one proceeds it is suggested that this section

(Appendix I) be given at least a cursory glance. Chapter II will conclude

by stating the conditions for an N-step procedure.

Chapter III treats specifically with the N-step procedures of the

author, Stiefel and Hestenes, and Lanczos, and attempts descriptive

explanations of these.

Chapter IV presents a general proof of all the procedures stated

in Chapter III and points out the fact that, in reality, all these procedures

are intimately related to the general scheme due to Lanczos.

Chapter V states the general N-step procedure and gives examples of

how more procedures can be constructed. By way of illustration, all the

procedures are used in simple examples to clarify their operation.



Chapter VI deals with roundoff error. While these procedures yield

exact answers in N steps, they do so only if enough significant figures

can be carried. The procedures fall apart if sufficient accuracy is not

maintained. This portion of the problem is very important.and has not been

solved by the author. The problem is discussed at length, but no definite

conclusions are drawn. It is hoped that this aspect of the problem will

be solved in the near future.

Chapter VII extends the author's procedure to non-linear equations and

gives a few examples.

Appendix I is on matrix algebra, and Appendix Il gives a short history

of this type of iteration procedure, attempting to name some of the individuals

who have made significant contributions to the problem.

Appendix III deals with the author's method exclusively. An extension

is made to complex matrices, and a general proof for all variations on

this procedure is given. This proof is complicated and is included primarily

for those who wish to study the procedure in more detail. It is felt that

some ideas concerning the influence of roundoff error on the procedure

can be obtained from the proof. Further examples are given demonstrating

the use of the procedures in the event the characteristic equation of a

non-symmetric or complex matrix is desired.



CHAPTER II

GEOMETRIC INTERPRETATION OF ITERATION PROCEDURES

1.0 The Plan of Attack

The problem of the solution of a linear set of equations will be

visualized as the task of locating a point in N dimensional space. The

initial guess will consist of a point in this space, and rules for progressing

toward the point which represents the answer will be given.

The N dimensional space will be assumed to consist of N mutually

perpendicular axes, and each of the unknowns x represent one of these

axes. Thus a certain set of N numbers may be considered to be the coordinates

of a point in N space. For convenience, this point will be called Xk

if it corresponds to the set of coordinates represented by the kth approximation.

The convenience of matrix algebra is well suited to this purpose.

One need merely express a set of N linear equations in N unknowns as

Ax - y.

Here A represents the coefficients of the various x, and y the set of N

constants on the right side of the equations. In addition to a point in

N space, the set of nunbers can be visualized as an N-dimensional vector,

represented by the line joining the origin of the axes and the point in

question.

Gne proceeds to describe a given problem in terms of quadratic forms,

which can be geometrically interpreted as maps.

A. Maps, what they are, and how to make them

The problem to be solved is

Ax a y

where A is an Nth order non-singular square matrix, x an unknown column

matrix, and y a known column matrix. One desires that x which, when
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substituted in the equation, yields y. Specifically, an exact answer

is one which yields y exactly. It is presumed that the y is known accurately,

as are all the elements of the matrix A.

Now it is known that if xk (the kth approximation to x) is not x,

then Axk will not be y. Thus, one can always determine whether or not

xk is the answer. One needs to know more, however; one needs to know how

to go from xk to x.

One defines the residual

rk %r -x y -Ak Ax = A (xk - x).
rk *3Ak"

Thus if e k - xk x, the error in the kth approximation,

rk - Aek'

Not only is it known that xk is not the answer, but, since rk is computable,

one has a "weighted" measure of the error ek'

Rather than consider the residual as a point in N space, one might

visualize it as a direction. As such it might occur to the reader to use

this direction to correct the approximation in x. Later some physical

reasons for such a choice will be given, but for the moment it would appear

that its only value is that it is a vector one has just computed and is

related to the error vector eke

The relationship between the residual and the error can be pictured

graphically. The premultiplication of the vector ek by the matrix A has

the general effect of rotating the direction of the vector and changing

its length. The amount of this change cannot be predicted, unfortunately,

for it depends on ek which is not known.
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Consider the following diagram in two dimensions:

-Z (the ontwer) K T

If one is at Xk, and he wishes to go to x, then the direction to

pursue is the negative ek direction. He does not know what this is, but

he does know the direction of Aek, which will, in general, be at an

angle 9 with ek. 9 will depend on where xk iS.

Evidently if 9 is always less than 900, motion in the negative

rk (Ae k) direction can bring him nearer to x if he does not move too far

in this direction. 9 will always be less than 900 if the dot product of

ek and Aek is always positive, i.e., if

e ktAe k> 0 for all ek / 0.

This means that if e ktAek is a positive definite quadratic form, then

xk+l, a better approximation to x, can be obtained from xk by a formula

of the type

+1 - x - mkrk, where mk is a constant so chosen

that one does not move so far in the negative rk direction that he gets

farther away from the answer than he was before.

At this point an investigation of ektAek where A is positive definite

is undertaken. This expression is zero at the answer, and positive elsewhere.

If one could compute this quadratic form, and at every step ensure that it

becomes smaller, why he would have a measure of his nearness to x! This

will be called a Map, or mapping function, for it is a device which, if

properly used, will aid in the finding of x.



B. Definition

A Map (mapping function), M., will be considered to be a computable

positive definite quadratib form in ek, such that it will be zero when

ek - 0, and positive elsewhere. By computable is meant that the value of

the quadratic form M. can either be determined for a given xk, or be an

unknown constant which depends on the solution x plus a quantity which is

determinable for any xk' The contours given by M. - constant in N space

will cause the space to appear like a relief map, the lowest point of which

is the answer.

It is not difficult to write down two expressions which satisfy these

conditions:

M- ektAek A positive definite and symmetric.

M2 - ektAtAek A non-singular.

The restriction of symmetry on A in M1 follows from the fact that

M1 is not computable if A is not symmetric.

1 - ektAek =(xk- x)tA(xk x)

-xk tAXk -xtAxk kAY*,i.- Ax

x tAx is a constant, call it C, and Ax - y, so

M1 - C - xkAxk - xA - Ax

where xkAtx - xtAxk'

Unless A - A , A tx is not computable; hence, if A is symmetric:

M - C = xtAxk - 2xlc@

M - C is evidently computable; hence, M1 is usable and can be minimized.

M2 is evidently computable, since rk - Aek' so

M2 - (Aek t(Aek) - rktrk'
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A A is positive definite and symmetric; hence, M2 is similar in form

to M,.

To prove the symmetry of A tA:

(A tA)t = A A. Q.E.D.

To prove the positive definitenesss

Let x' - Ax. Then x' x' - xtA Ax is a sum of squares, hence

surely positive definite.

C. Investigation of the Maps N1 and M
--- 2

Since both maps involve symmetric positive definite matrices, one

can solve both of these with one step by letting B, a positive definite

symmetric matrix, represent A in Mi, and A tA in M2. (Note that the A

in M2 need not be either positive definite or symmetric.) Then the maps

are of the general type

ektBek'

Every symmetric matrix possesses an orthogonal modal matrix

L - L t such that

L BL - A , where A is a diagonal matrix of the

characteristic or latent roots of B. Since B is positive definite, all

these roots will be positive.

If the substitution

ek - Lzk, is made,

ekt Bek - ktL BLzk - kt A sk*

e Be - X 71 2 +z2
ektek - lZ2 1 + A 021 Nnd 0, j 2,nl

where z kt - [zll Z2 . .. ZN1] and > 0, j - 1,9 2, .. N.



r
This is the equation of an elliptic quadric surface when e Be = constant.kt k

For M.1 or M2 equal to CS, C2, C3, etc., one obtains a set of similar concentric

ellipses of equal eccentricities. At the common center of these ellipses

lies the answer to the problem. In two dimensions these contours appear

as those in the figure below.

~1 xii

/

x is the answer, xk may be the kth approximation., and the contours

for M - Cl, C2, C3 are as labelled, where C3 '> C2 '> C .

If one more dimension is added to the above picture and M is plotted

vertically, a surface is obtained which is a paraboloid such as that

pictured in the figure at the top of the next page.

- 13 -
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114,

Xx
$2//

An approximation xk can now be visualized as a point on this surface. The

method of Descent is concerned with moving down in this cavity toward the

answer x which lies at the bottom.

D. The Method of Descent

or Let's get to the bottom of this!

The first idea in this connection was to choose the gradient of the

map M and to move in the direction of the negative gradient a distance

which minimizes M. Specifically, for M 1

M' = e kiAe kM-ekt~k'

Grad M1 - 2rk. This follows immediately from the expansion

of the quadratic form and performing the partial differentiation* X+l is

then obtained from xk by the formula

xk, -xk k rk. Subtracting x from both sides gives
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'k+l - x - - - mk rk or

ek+1 'k - mk k

Thus ek+lt Aek+l - (ek - mkrk)tA (k - mkrk)

- etAek 2wkktAek + Mk2 rkt k

Differentiating twice with respect to mk:

d(ek+1Aek1
S- 2 rktrk + 2mkrkt Ark

Setting the first derivative equal to zero yields:

mk - rkrk/rkt Ark

d (e ktAe k+1)

2 -2rkr k > 0 if A is positive definite,

hence the quadratic form is truly minimized.

This procedure has been referred to as the Method of Steepest Descent,

a name which is misleading since it implies that this is the best that

can be done. Actually for a set of ill-conditioned equations the method

is so slow as to be virtually useless. It is almost better to choose directions

arbitrarily instead of using the rk or residual as it is called, If this

is done, one obtains a more general form of Descent, This is done as follows:

Choose any vector pk. Using the formulae

k+1 - - mkk

and mk Pktrk/Pktk one has a procedure which

is entirely general, i.e., the new approximation will be the one obtained

which minimizes N1 on the vector Pk emanating from xk'



For P

If th

2 M e kA tAek

Grad M2 - 2A trk

Here the gradient method or "steepest descent" uses the formulae

Xk+1 = xk - mkAtrk

mk - rktAA rk/rktA t AArk'

is method is generalized for any vector pk, one obtains

xk1 k - mkA pk

mk k AAtr k/P t tPk

or

Xk+l X - mkk

mk k A trk /PkAtApk

By suitable choice of the pk these methods can be made to converge

in N steps, and this is the work of Stiefel and Hestenes which is discussed

in Chapter III.

E. A minimized error procedure

Actually the considerations of the previous section can be summarized

by stating that under certain restrictive conditions the best corrections

to x seem to be obtained by minimizing the quadratic forms e ktAek e ktrk'

and rk k. By this time the reader may wonder why the simplest procedure

has not been investigated, namely minimizing the error eke

Stated in another way, when one is at xk, and he chooses to move

in some direction Pk to improve his answer, why not minimize his distance

from the answer? This is a substantial part of the author's contribution

which (he believes) has not been successfully accomplished before.

- 16 -
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The reason this appears so difficult is that since one does not know

where the answer is, how can one get as near as possible?

Consider the function M' - (M) w ekitAek - IrkI . When, with two

equations in two unknowns, one plots the surface represented by M' with

the two unknowns x, and x2 as the axes, he obtains a cone with elliptical

cross sections instead of the paraboloid on page 14. If at some point Xk

on this surface, one erects a tangent to the surface whose pro jection

on the xl-x 2 plane is the gradient of M', then this tangent, if extended,

intersects the x1'2 plane at some point which will be called 'k+. it

is not obvious that this new x is better than the old, but it looks plausible

in the figure below that such is the case.

7ngent to conge

XAX

When the mathematics of this are completed, (it is done just as the

Newton-Raphson procedure in Appendix II) it appears that2

1 +1 - 1k - mkAtrk

k = rkrk/rktAtrk*

It was not until several examples were done by the author that it was

finally observed that the error in x is minimized by this procedure. To
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show this let

Xk+1 - Xk - tkApk

therefore ek+1 ' ek - mkAt pk

Then ek+t ek+l = (ek - mkAtpk)t(e k - mkAtpk)

ektek - 2  kkAe + m kAttk.

Differentiating twice as before with respect to mk yields

d(e k+te k+1)
dkltkJ -

2 k~'k N I~PkAAtPk
dm k= - k

dmk

Setting the first derivative equal to zero and noting thit this does

ininimise ek+1 4ince the second derivative is positiye, one obtains

k Pktrk/pktAAt Pk. Q.E.D.

In particular if Pk is replaced by rk these formulae reduce to the

tangent gradient method discussed at the bottom of the previous page.

F. General

As nice as these procedures appear, none of them are very practical

since even though convergence is assured, the rate of convergence is slow.

This leads the reader to the N step procedures of the next chapter. The

author would like to digress a moment to compare the minimized error

and method of descent procedures. If they are compared on the basis

of M2(ektA tAek) and if the vectors, pk, are chosen as the residuals,



- 19 -

one obtains

+1 - k - mkAt rk

1. Minimized error: mk - rktrk/rktBrk where B - At

2. Descent: mk = rktBr BrktB2rk

3. General: mk = rk B n-lr/r ktBnrk

The limit of the general expression as n becomes infinite can be

shown to be the reciprocal of the largest characteristic number of B.

In fact, all the mk above lie in the range of the reciprocals of the

smallest and largest characteristic numbers. This is important only

since it can be shown that if the mk are in turn the reciprocals of each

of the characteristic numbers of B, the procedure will converge in N steps.

Of course the characteristic numbers are not known, so this is not of

much help practically, but some measure of the value of a procedure can

be gained by noting how near the mk comes to the reciprocal of a latent

root of B. In any event it appears that the Method of Descent has a slight

edge on the minimized error technique with regard to speed of convergence.

The main difficulty with all these procedures is that the choice of

directions is poor. The N step procedures which follow specify the directions

to speed up the convergence.



CHAPTER III

N-STEP PROCEDURES

Chronologically Fox, Huskey, and Wilkinson were the first to suggest

an N-step procedure for the solution of N simultaneous equations. For

reasons of practicality not much was done about this until the work of

Stiefel and Hestenes made the procedure workable.

In the meantime, Lanczos,9 while attempting to find an iterative

scheme for obtaining the characteristic polynomial of a matrix, found

an orthogonalization scheme which all other procedures have adopted.

The object of this chapter is to describe the author's N-step procedure

first, since it is believed to be the simplest conceptually. Descriptions

of the work of the other men will then be given, and a general proof of

all the methods appears in the next chapter.

1.0 N-Step Minimized Error Procedure

If one minimizes the error in x at each step of the iteration, then

why not choose a mutually orthogonal set of directions for the steps,

and on each minimize the error? Almost intuitively this procedure must

converge in N steps'

Let the reader imagine that, in three-dimensional space, the answer

to a problem lies in the plane of the paper,,. as in the figure on the next

page. Imagine further that the first guess x0 is directly above x in

the figure, so that the direction from x to x, is perpendicular to the

paper. Then, if one is at x ,, and the first direction is perpendicular

to the plane of the paper, movement along this direction such that one

gets as near to the answer as possible means stopping at x, on the paper.
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If one now chooses a direction at x, perpendicular to Xl-x , this direction

must lie in the plane of the paper. One such direction is chosen, and x2

is obtained by moving along the negative direction (since the wrong direction

was chosen) until one is nearest to x. Obviously there remains but one

line which is perpendicular to both of the previous directions, and this

goes through the answer x. Movement along this direction until the error

is minimized means arriving at the answer.

T x -x31 3=

3 direction

2nd direction

Xl

(x0 on the line prependicular

to paper through xi.)

There are two problems which now need to be settled. Any old set

of orthogonal directions will not do. It will be recalled that to minimize

the error by using vectors pk one needed to know both Pk and Atpk. The

equations are repeated below

xk+l xk - mkAtpk

mk - rktpk/PkAAtPk'

Notice that the correction vectors to the x are Atpk and not pk'

hence one must find a set of vectors pk such that the N vectors A tpk

form a mutually orthogonal set. tk needs to be known, since it appears

in the numerator of mk'
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Mathematically one may state that the pk must have the following

properties:

(At pk)t(Atp) = 0 j / k

or PktAA t pj - 0 j / k.

There is a straightforward way in which this can be done. It is

an adaptation of some of the work of Fox, Huskey, and Wilkinson and is

really the Gram-Schmidt procedure.

a. Choose p0 arbitrarily.

b. Choose b1 j p and let

p1 - b - op.

Since p, AAtp - 0,

1 tApo -b AA p - op ApP~~tP 0 - b1  t 0  t t

or o b AL p /p p .

c. Choose bk different from p9pi .... pk-1 and

let pk = bk "k-lk-1 - Pk-2 k-2 - ... - S 90

choosing the constants so that Atpk is orthogonal to

all previous Atpj.

Unfortunately this is a tremendous task, -for at each step a piece

of each of the previous directions must be removed. The solution of this

dilemma is an adaptation from the procedure of Stiefel and Hestenes, which

is discussed below. It appears that the following iterative scheme

automatically orthogonalizes the directions with the advantage computationally

that at each step only two constants. need to be evaluated. Choosing

the first residual as p , and each of the bk above as the successive
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residuals, only the last direction needs to be removed from the bk. This

is not intended to be obvious, and the reasons for this will be made

clearer as the thesis progresses.

In equation form the entire procedure is:

'k+l k - mkAtpk

rk =xy

p 0 r

- rktr k/PkAAtPk

Ek -rk * k-1 k-1

k-l - rktr rk-ltrk-l

An additional result of this procedure, which will be proved in

the following chapter, is the fact that the residuals form an orthogonal

set as well as the directions. It is well to point out again that this

procedure will work with any non-singular matrix.

2;0 The Method of Conjugate Directions*

Let mkpk be the vector correction applied to xk to obtain x , viz.

Xk+1 ' Xk - mk k'

Choose the constant mk so that the quadratic form ek+1tAek+ is minimized,

A being a symmetric, positive definite matrix. Thus

mk -rktpk/PktPko

This name is due to Stiefel and Hestenes, the procedure to Fox, Huskey,
and Wilkinson.
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Then if all the directions pk, k - 0, 1, 2, ..., N-1 are

"A-orthogonal" or "conjugate" (not to be confused with conjugate complex

numbers), i.e., if

PktAp-O j / k,

then xN, the Nth approximation will be the solution x of the problem

Ax - y.

Suppose one digresses a moment to attempt a visualization of this

procedure. One notes that the recursion formula for ek can be obtained

by subtracting x from both sides of the first equation:

xk+l - -' xk - x - mkpk

or ek+l ' ek - mk k

The "A-orthogonality" of the pk then suggests that the corrections

to the error vector, mkk are orthogonal to all the vectors Ap where

j is any number different from k. That is, if p5 is the direction taken

in going from et5 t e6, then this vector is perpendicular to Apo, Ap ,

..., Ap , Ap6 , etc., all except Ap5'

It is clear that the pk form an independent set, and this can be

seen in the following manner. Apk is orthogonal to all p except pk'

Since A is positive definite, Apk cannot be orthogonal to pk' ie'e.

Pkt Apk J 0. Therefore, pk has a component of Apk which is orthogonal

to all the other p hence the Pk form an independent set. In an entirely

similar way, one can show that the Apk are an independent set, and hence

each set of vectors must span the entire N-space if k - 0, 1, 2, 3, ..., N-1.
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Now let the reader suppose that an initial guess is made, thereby

establishing e0, though it is unknown. In general e0 will have a projection

on each of the Apk, i.e., the dot product of e0 with the Apk will in

general be non-zero. Suppose the successive corrections to e0 are such

that these projections on the Apk are reduced to zero one at a time.

Since the Apk span N space, after N such reductions the error must vanish

for its projections on an independent set of vectors are all zero. Notice

that in order to do this effectively, one must remove the projection

of e0 on Ap0 (say) in such a way that the projections on all the other

Apk do not change. If this is not done, one will have a relaxation

procedure such as described in Chapter I. (With regard to the example

of the mother putting the six children to bed, these are the more drastic

means. She chains the children in bed one at a timet)

Starting at the beginning, one wishes to remove from e0 a vector

such that e1 is perpendicular to Ap9, i.e., so that e Ap - 0. At

the same time it is desired that e k eAp for all k 0, i.e.,

the new error vector has the same projections as the former on the N-1

vectors Ap1, Ap2, ... , ApN-, but no projection on Apo.

Since

e - e0 - m0p0

e ltAPk eO.APk -mp Ap

Evidently the above conditions will be satisfied if

PotAPk - 0 k 0,

and for k = 0: e Ap 0 = e Ap0 -m0p Ap ,

or m0 - e Ap0/p9 Ap0.
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But e A - (Ae) - r , so
ort ot

m - r p9/p Ap0.

But this is the same m one obtains by minimizing the quadratic form

e Ael, and so the procedure above stated does indeed remove the projections

of the e vectors on each of the Apk one at a time, without destroying the

other projections in the process.

This is the same thing as the minimized error technique, with the

exception that in the latter procedure one minimized the projections

of the error vector on A tpk, and that the At pk formed an orthogonal set.

In the method of conjugate directions the Apk did not form an orthogonal

set, and A furthermore had to be symmetric and positive definite. A

two-dimensional picture of this is thought to be helpful.

.le

/0/

It is presumed that p0, and p1 , Apo and Ap, are known, and the reader

will note that p0 is perpendicular to Apl, p1 perpendicular to Apo.

Notice that as p is subtracted from e , the projection of the result on

Ap1 does not change since p0 is normal to Apl. Clearly, if one moves
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along the dashed line parallel to p0 from e until the resultant is normal

to Ap , then the answer will be obtained in two steps.

The author submits that the name of this prodedure would be more

appropriate if it were called a minimized projection procedure. Since

the author did not find this procedure first, why there is little he can

do but suggest.

For the reader who prefers to see a somewhat more rigorous demonstration

of convergence the author submits the following proof. The result, i.e.,

convergence in N steps, follows from two considerations, one being the

fact that p 0, pY, ... Nl form an independent set of vectors, and the

other being the fact that the Nth residual is normal to each of these

vectors, hence it must be zero.

a. The p form an independent set.

Proof: By contradiction.

Assume there is at least one p J call it pq, which is a linear

combination of all the rest. That is, if the c . are constants:

pg - c p + c p + .... + cqpq + cq+1q+1+. + cN-1-1*

At least one c . must be non-zero. For this particular c ., premultiply

the above equation by p itA, where p is the vector associated with c .

For. all' j J k, pjtApk - 0 by hypothesis, then all terms will vanish

except

c p Ap which must be zero.

But this is impossible since c is non-zero, and A positive definite.

Hence the contradiction, and thus the p do form an independent set.
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b. rN is orthogonal to all p .

Proof: Let the residual rk be defined as

rk - Axtk ~

Remark: Since A is non-singular, rk - 0 implies that Xk X X*

Further xk ' xk - mk-lk-1 (2)

where, from page l5, Chapter II

k-1 - rk-ltk-/pk-ltApk-1

Premultiplying equation (2) by A, and subtracting y from both

sides: Axk - y - Ak-1 - y - mk-Apk-1

or rk ' rk-1 - mk-1 Apk-1

Transposing this, and postmultiplying by p k-1 and substituting the

value of mk- 1 given in (3) above:

rktPk-1 - rk-ltp k-1 , lk-ltApk-1 - 0. (5)
k-lt k-1

From equation (h), postmultiplying its transpose by p.:
I)

rkt j - rk-ltpj - mk-1pk-ltAp (6)

If j / k-1, the coefficient of mk-l vanishes, hence

rktpj - rk-1pj j / k-l. (7)

Equation (7) is true, therefore, for j - k-2, so

rktpk2 rkltpk-2 (8)

But equation (5) states that the right side of (8) vanishes, hence

rktpk-2 = 0. (9)

Substituting j = k-3 in equation (7) then yields

rktPk-3 - 0 and so forth, (10)
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In particular, for k - N,

rNtpj 0 0 for all j - 0, 1, 2, .... , N-1 Q.E.D.

Hence, as was asserted rN - 0, and the procedure converges in N steps.

Another geometric picture is somewhat more difficult to obtain.

In two dimensions, however, a picture can be constructed. It will be

remembered that the map representing a positive definite quadratic form

is a set of concentric ellipses and that the rk represents the gradient

of this map at the point xk. Equation (5) indicates that rk pkl = 0,

that is, the mk-1 is so chosen that the last direction taken, pk-l'

is perpendicular to the gradient at the new approximation. In two

dimensions, if the solution is to be obtained in two steps, the next

direction must point to (or directly away from) the center of the ellipses.

Now if pk-l is normal to the gradient, it must be tangent to the

particular ellipse which contains xk, and at the point xk. The new

direction pk must be the radius vector from the center of the ellipses

to xk'

For example, consider the diagram below in two dimensions:

The initial guess is x0 which is on ellipse E . r0 represents the

gradient at x0 , which is normal to the curve at x0 . p0 is arbitrarily
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chosen and x, is obtained by moving in the negative po direction a distance

which minimizes the quadratic form. p0 is tangent to the ellipse E1

at xi, and the gradient at x1 , rl, is normal to p0 . To obtain the solution

x in one more step, it is necessary to follow the direction of the negative

radius vector, here indicated by pi.

The question arises, how does one find pl? What is the relationship

between the radius vector of an ellipse- and the tangent? It turns out

that

p a -0.

The simplest way to demonstrate this is to reduce the ellipse to its

normal coordinates. As indicated in Appendix I this is always possible.

As a matter of interest, all procedures are better understood when viewed

in terms of their normal coordinates, hence the author will digress a

minute to make this clearer.

If A is a symmetric matrix, then there exists an orthogonal modal

matrix L such that A is reduced to a diagonal matrix, A , of its latent

roots by

L AL = A.

This can be visualized as a rotation of axes as in analytic geometry,

where the variables Xk are replaced by x'kl by the transformation

x - Lx'.

Thus rk = Lrkl, 'k = Lpk' ek = Lek 1, etc.

The quadratic form e ktAek written in the new variables becomes

ektL t ALek ekt ek * l' 2' '' ' N are the latent roots

of A, and el, e2 , etc., are the elements of the vector el, then the
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equation of a particular contour ellipse is

X 1 2+ 2 2-a C.

The slope of the tangent of this ellipse at any point (e, 92) is

given by de 2 /de - - lei/ 2 e2, that is, it has the direction

of

- \2e2

The radius vector has the direction pit  .

e2

1 0 2 e2Note that 1 2

LX1 X2e21
SE 821 X1 J2 - 1X 2e 1e 2 - 1 X 201e 2

- 0.

Note further that

p 't po'- P3t Apo.

It remains to be shown how one might obtain a set of conjugate

directions. Fortunately this is quite simple and is explained in the work

of Fox, Huskey, and Wilkinson and is entirely analogous to the previously

mentioned orthogonalisation scheme.

1. Choose p0 arbitrarily.

2. Choose b / p0 and let

p1 -b - op.
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Since p tAp 0  0,

pt Ap - b -Ap oop4 - 0

or o4 - b Ap/pAp

3. Choose bk different from p0 , p1, .... , pk-1 and let

Ek - bk - (k-1 k-1~pk-2 k-2 - ---- - L09

choosing the constants so that pk is conjugate to all

previous pi.

As previously pointed out, this scheme has serious defects.

3.0 Stiefel and Hestenes' Conjugate Gradients Procedure

At this point, independently, Stiefel and Hestenes made this procedure

workable. Essentially they found a simple way to make the p . conjugate.

For reasons which they explain best, they call this procedure the Method

of Conjugate Gradients.

In a nutshell the procedure is this:

k+1 - Mk k

rk = x Y

- r

The reader will note

as in the minimized error

nk - rkprkk Ap

Pk - rk 6k-lk-1

E - rk tr/rk.ltrk-l*

that at each step two constants are evaluated,

procedure. The above sequence automatically
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ensures the mutual orthogonality of the rk, as well as the A-orthogonality

of the pk. Again, the proof is deferred until Chapter IV.

Stiefel and Hestenes extend their procedure to any non-singular

matrix by solving the new problem

A Ax - A y.

This is not the same as the author's procedure, for the formulae become:

Xk+l ' -k I KAVPk

r= Axk -rk

p0 r0

mo - r A

mk -r AA tr pkt AAAtPk

Ek - rk + k-1 k-1

tk-1 -rktl rk-1 t rk-l

It is evident that the two are not equivalent, and that the

latter extension by Stiefel and Hestenes looks more difficult. Which

is actually the more complicated is a question for experiment to settle.

4.0 Lanczos Procedure

iTncos was concerned with obtaining the solution to the

eigenvalue problem, viz.

Ax - x.

His work will not be discussed in detail here, only that which is pertinent.

He constructs a set of mutually orthogonal vectors in the following manner.

Starting with an initial vector r 0, which is arbitrary, he chooses

r - Ar - e r
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where A is a symmetric matrix and co so chosen that r r - 0, hence

rt r - 0 - r Ar - c, r r

or -r Ar /r r.
0 ot 0 o

Then

r2 - Ar - o 1 r1 - por

choosing oe so that r - O and P, so that r 2tr 0.

r2tr - 0 - r Ar - a r r - Por ri.

The coefficient of P is zero by choice of o( , so

(2)

a, - r Ar1 /r r.

P -r Ar /r r .
0 r~0 ~

Similarly

Further
r3

3(2

A,

-Ar XOcr 21r2 2r2 ~ 1r- 7r

- r2tAr /r 2tr2

- r2tArl/ri r1

('3)

and surprisingly enough

0.

The reason for this is base

r3 contains no component of r0  Sinc

this must mean from equation (3) that

that

d on the symmetry of A. It means that

e r2 and r1 contain no component of r ,

Ar2 contains no component of r0 , or

r Ar2 - r2 Ar - 0.

where
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But Ar from equation (1) is

Ar, - r, + d r so

r2 Ar - r r1 + r2 r. This is zero since

r2 and r, and r2 and r were made orthogonal.

In fact the general scheme

rk Ar k-1 k-1 rk-1 ~k-2rk-2

where cek-1 - rk-lAr kl/rk1r k-1 (5)

and Pk-2 r k-lArk- 2/rk-2trk- 2  (6)

is sufficient to ensure that all rk fonm a mutually orthogonal set. This

is proved in the next chapter.

The point that the author wishes to emphasize is that two constants

ony need to be evaluated at each step. This is so similar to the method

of the author and that of Stiefel and Hestenes that it cannot be coincidental.

It is the object of Chapter IV to tie these pzocedures together.

However, to continue with Lancsos' procedure,

r
0

r Ar 0  oe0 r 0  (A - oe-1)r0

r2  Al o< 1 r -P r -A(A- of.,I)r o (A- of. I)r -P 0 r

S[A2 -e + )A + ( 0 - ) r1

and similarly it can be shown that

r -EA -(ot 2 O1 +o< )A2 + (oe< -P2 -1. omP 1 ~o)A

-(oe 2 1 co- 2Y00~01 o) r .

Mon.-
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Evidently the successive rk are equal to the product of a polynomial

in A times r . Since the rk form an orthogonal set, then if A is of order

N, rN - 0, since in N-diensional space r is perpendicular to N mutuallyN

perpendicular vectors. In general then,

th
rk k )r, where P is a polynomial in A of the k degree.

It should be pointed out that rM might vanish where M< N. This happens,

as will be seen, if r, does not contain all the eigenvectors of A.

The Cayley-Hamilton Theorem, it- will be recalled, states that a

matrix satisfies its own characteristic equation, hence if PN(A) is the

characteristic equation of A, PN(A) - 0, and the above equation is satisfied

for k - N. It does not follow, however, that if the equation is satisfied,

P (A) is the characteristic equation.
N

It can be proved, however, that if the procedure terminates at the

Mth step, the M degree polynomial in A is a factor of the characteristic

equation and is the characteristic equation if M - N.

Proof: Let v, v2 , ..... , vN be the mutually orthogonal eigenvectors

of A. That these vectors are orthogonal and do span N-space cai be shown.

See for example Guillemin 11, page 14l.

Then, in general, r will be a linear combination of M of these,

M ( N.

r0 iv 1 *c 4 V ... ,..r cv 2 2 +.....+cMvM*

Remark: No linear combination of the v can possibly vanish since the

vectors are orthogonal.

It is now noted that

Av - vi

n nA vi= \1 v
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and PM(A)vi - PM Xi)v.

Hence PM(A)r - clPM( 1)v ++ 0 0 cWM( XM)vM.

If PM(A)rO - 0, then this can only occur if all coefficients of the

VM vanish, i.e.,

PM 1) 2  '' X M M) - 0.

Then PM( ) contains as many factors of the characteristic equation as r

contains eigenvectors of A. It is still ccnceivable that PM(X ) has extraneous

factors. It does not actually. If r is composed of M eigenvectors, then

rm is a linear combination of the same M eigenvectors. It is also normal

to M other linear combinations of the same M eigenvectors, which is impossible.

Therefore rM - 0, and so the procedure will converge in exactly as many

steps as r0 has components which are eigenvectors of A. Hence P M

is a factor of the characteristic equation of A.

It will be pointed out subsequently that the characteristic equation

can also be obtained from Stiefel's method,or the minimized error technique.

Further study should be made of Lanczos' work if the reader wishes amplification

of any points about this procedure, or if the reader is interested in

studying the procedure used when A is not symmetric.
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PHDOF OF THE N-STEP PROCEDURES

Three methods have now been presented which establish an orthogonal

set of vectors in N-steps, and at each step only two constants are evaluated.

It is reasonable to suppose that these procedures are more than similar,

that they are probably one and the same. Such is indeed the case, and it

is the object of this chapter to prove the orthogonalization scheme of

Lanczos and to show that the procedure of Stiefel and Hestenes is a clever

adpatation of this. The method of the author which was at first thought quite

different from the others turns out to be but a simple extension of the

procedure of Stiefel and Hestenes.

A. Theorem

Given any symmetric matrix A and non-zero vector r 0, then the rk

defined by the iterative scheme

ckrk = k-1 k- rk-i pk-2rk-2

form an orthogonal set if

1. ck is any constant J 0.

r Ar
rk--lt k-1

2. 0(k-l rkirk -- 0.

3. k-2 rk-lt Ark 2  -2 - - 0.
k-2trk-2

Proof: Given

ckrk k-1 k- rk-i ~k-2rk-2

Choose Ok-1 such that rktrk-1 = 0.
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Premultiplying (1) by rk-lt one obtains

ckr k-trk - 0 - rk-ltArk-1 ~ k-1rk-1trk-1 . Pk.2rk-l4rk-2

The coefficient of sk-2 is zero since one presumes 6k-2 was chosen

so that rk-ltrk-2 - 0, hence

r Ark-1t k-i
k-i 0

rklrk-1

Choose sk-2 such that r krk-2 - 0.

Premultiply (1) by rk- 2 t obtaining

ckrk-2trk - 0 = rkr2I k-1 ~ k-1rk-2trk-1 - Pk-2trk-2

The coefficient of 0( k- is zero by choice of o~k-2, hence

rk-2tArk-l
rk-2trk-2

rk-lt k-2

rk-2trk-2

since the numerator is a scalar and A symmetric.

It has now been proved that rk is normal to rk-1 and rk 2. It is

not evident that rk is normal to r for all j = 0, 1, 2, .... , k-3. The

proof is by induction.

a. The statement is true for k - 1 and 2. This is true since

o is chosen so that r r - 0, and o< and @ chosen so that r r - 0

and r r - 0 respectively.

b. Assume that it is true for k ,q, that is

rktr - 0 for all k-< q, and all j <k, hence in

particular, assume

r r - O for all j <q.
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From equation (1) one has

c r - Ar

so o r r -0 - r Ar - r r -Pjr rj2aq i at j i-1i j. 1 rqtrj .1 1 - 0..2 qtj-

But the coefficients of o( and PJ2 are zero by hypothesis, hence

r Ar - =r Ar 0 j <( q

Again using equation (1):

cqlrq+1  Arq- o r - r

Premultiplying by rj1  one obtains

q+1 r - r A - or rq - Pq-1 r .

But again, the coefficients of o(q and P vanish by hypothesis, so

eq+1-r 1q+ j- 1 Ar q' j <q

From equation (2) the right side of (3) vanishes if j<q, so

rq+1 trj-1- 0 for j - 0, 1, 2, .... , q-l.

Since of. and P were chosen so that

rq, rq -O and r r - 0

then it is true therefore that

rq+1 r - O for j < q+1 Q.E.D.

B. The N-step procedures and the Lanczos scheme

It is the task of this section to show that the author's procedure

and that of Stiefel and Hestenes are equivalent to each other and are in

fact related to the orthogonalization scheme of the previous section.

(2)

(3)

- CO1~ rj - Pj-2 rj-2
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The iterative formula for

Thus if

then

Xk+1

rk+1

xk in both instances is

- - mnkAtpk

- - -. mAAt k

- rk - tkpt k'

In the conjugate gradient method the formula is the same as this but with A

only and not AAt. In both cases AAt and A were symmetric, so with the reader's

permission, equation (4) will be written simply as

rk+l - rk - mk k (5)

where B will signify A for the procedure of Stiefel and Hestenes, and it

will mean AA for the author's procedure.

One more equation is used in each of these procedures, namely

Pk - rk + u to(pk-1. (6)

Note that equation (5) can be written

If o

If e

One c

1r Bp -L

- rk +l pk - k rk

ie replaces k by k-l in equation (5) and solves for Bpkl:

Bpkl - L (rk-1 - rk)

quation (6) is substituted in (7) for pk, one obtains

- rk+l = Br + k- rk
mkk Ek-l kj- 11k -k

an now use (8) to eliminate Bpk-1 from (9) yielding

- r - Br - ( -I- + Ek-1 ) +
mk k+1 k mk mk- rk

Equation (10) is the same as equation (1) with k replaced

k-l

by k+l if

(14)

(7)

(8)

(9)

(10)
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1

S+ k-1 rktBrk
SNk-1 rktrk

and Pk-1 = ~

Therefore the rk will form

chosen that the above relations

Adding (12) to (11) gives

k-I rktBrk-1
"r r .

mk-1 rk-lt k-1

an orthogonal set if mk and

are satisfied.

(12)

Ek1are so

r ktBrk 
+

rkrk

rktBrkl (13)

rk-ltrk-1

Replacing k by k-1 and substituting in (12)

rktBrk-1 1

k-1" - rk-ltrk-1 * rk-ltBrk1_ rk-lt Brk-2

rk-ltrk-1 rk-2trk-2

Evidently this is always possible even though the expressions for

the constants are messy. If one chooses the mk and Ek- according to

(13) and (14) then the r . do form an orthogonal set. Knowing this it is

possible to simplify the expressions for these constants.

From equation (5)

rk+l = rk - mkpk'

Premultiplying by r , j / k or k+1 one obtains

r iBpk -O j k or k+1

Since Pk - rk 6k-1 k-1

r Bp - r Brk
j / k or k+1

(ii)

i_ ,

(14)

(15)

(16)



Also since rk+l rk -O

rk+l rk - 0 -r rk - mkrk Bpk

rkrk
or - (17)

mk r k Bpk

and rk+1 rk,+l rk+l rk - mk rk+1 Bpk

or-rk+1 k+8)
'k+1 Bpk

From (16), with j - k+2

rk+1 Bp - rk+1 Brk

so mk*~rk+1 trk+1 (9

rk+1 k k

Replacing k+1 by k in (19) and substituting in (12) yields

rk rk
E - rk rk (20)

k-1 rk-1r k-1

That equations (20) and (14) are equivalent can be demonstrated, but

it Is not of particular interest. Equation (17) can be altered further

by noting that the vectors p. are conjugate or B-orthogonal. That is

pk Bp 0  j J k (21)

This can be proved by simply noting that

p. - r. + p._l - r+ r. + 6 . Ejr + ... +( j -2 *o)ro3 3 3431 j j-l-l J-l J-2 J-2 _- j2 00,
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rk~~~~l p4 - 4oW c +.

Therefore rk+1 for j <k+1 (22)

But rk+l a rk - mkBpk

so r+ 1p = rk p Bp (23)

The left side is zero for k+1 > J, and the first term on the right

is zero for k> j, hence both vanish for k > J.

Therefore p Bp = 0 k > J. Q.E.D.

Since pk- rk k-lk-l

(24)

pk Bp - p Brk

If (24) is used in equation (17)

rk rk

mk p Bpk . (25)
t

C. Resume

It has now been demonstrated that any method employing the equations

rk+l = rk - BPk

Pk = rk+ pk-l~k-1

rk rk
mk p p

t

rkt rk

Ekl-1 rl~k1 rk-1 trk-1

where B is symmetric will converge in N steps. The requirement of positive

definiteness seems unnecessary in the light of the foregoing proof.



The disadvantage when B is not definite is that the mk may become

large, even infinite. Hence the observation that B should be positive

definite is a practical consideration rather than theoretical.

It is now seen that all three methods are fundamentally the same.

It is well to point out that in the author's method

pk Bp - pk t tk .(A p ) 0 j j k.

Hence the vectors which represent the corrections in the x do - as previously

asserted - constitute an orthogonal set.



CHAPTER V

VARIATIONS OF THE THEME, ANOTHER PROCEDURE

By this time it should be apparent to the reader that variations on

this theme should not be hard to produce. It is curious how geometric

reasoning leads to a mathematical formulation. Once the latter is achieved,

it is child's play to manipulate the equations to obtain new procedures.

These new procedures may be of questionable value, and then again the variations

might be those which make roundoff error smaller.

To illustrate the point let us write Lanczos' formula again.

ek+1k+1 w t rk - krk ~ Pk-lrk-1

where o/. k and @k-l are chosen so that rk+l rk and rk+l rk-l are zero

respectively. (Note that if A is symmetric, A may be written for AA.)

This ensures an orthogonal set for the rk. Now if one substitutes Ax - y

for r.:

ck+l 1 (A+1 t)Artk k ' k-l -l ~- *

Premultiplying by A 1 , and noting that A 1 y = x one obtains

ck+lk+l - ck+lx A trk - k + k k-1-1 + Pk-lx'

The x is unknown, so it can be eliminated by setting -ck+l k+k-1

so that

k(e, k+0k-lkl = Atrk O<kxk k- k-l'

It would appear that an N-step procedure can be established where the

new approximation can be made up of the last two xk and the gradient.

It takes a little rearrangement at this point to simplify the scheme.

If mk = l/C(k, and the above equation is multiplied through by -mk and



rearranged,

mk("' kPk-1)k+l - k mkPk-lk l - mk trk'

If nk-1 is defined as mkik-1, one obtains

1
+ * 1 +n +nk1 - mkAt rk).

rk rk
where mk A

rk trk

rkt t rk-i
and 'k-1 r rk-i k-1t

This procedure looks all right; one must be certain that nk never gets near

-1. Note that AAt is positive definite, so that all m are positive. The

iterative formula for the residuals can be written

(nk-l)rk+l " rk + nk-lrk-1 - mk trk'

If nk- should equal -1, then substitution in the above equation yields

rk - rk-l Mk trk

Squaring both sides (i.e., multiplying each by its transpose)

rk rk kt k-1 + rk-t k-1 mk rk t rk

The product of different subscripted residuals is zero, so

22
rk rk*r - m rk (A) rk

If one now writes the equation again and premultiplies both sides by

(rk + rk-l), one has

rk rk + rkl rk-1 mmkkrk t rk
tt mkk~t k
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Setting the right sides of the last two equations equal to one another and

cancelling mk from both sides, one has

rk AArk + rk A rk - mkrk (At 2r
ttk k1tkt t)r

2 2
rk kk( t) rk (rk trk)

rk-1 trk rkAA t rk rk trk

It can now be shown that the numerator is always zero or positive, hence

the left side of the equation is greater than or equal to zero.

Proof: Since AA is positive definite and symmetric, there existst

an orthogonal modal matrix L which will reduce the quadratic forms to a

sum of squares. Letting r'k a Lrk and defining the components of rk

as r1l, r21, .. , rN1, the numerator becomes

(ry2 r21 + .. + rN12)( 2r + . 2 )rN1

-( \r 2 +\2 2 1
2  + 2NrN1 )

Multiplying these out one gets

IJ;jX rj +7(Xk )rjl rkl r 2X.\krjlk
j-l J01 j k

The first and third summations cancel, and the second and third combine to

give ~J~j -A r~ Jrkl2 which is obviously non-negative.

Note: Before leaving this point note that one has also shown that

this statement is true even if the matrix is not positive definite and

also that what has been shown can be stated equivalently as
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rk t t k

rk AA trk

rk trk

rk rk

or that rk (At) rk rk Qtrk
or hat t t .This is what was alluded to at
kt trk rktrk

the bottom of page 19 when the method of descent was discussed generally.

Since one has now shown that rk-1 tr is non-negative, then

rk-1 trk
n k-1 = k rk r is non-negative also. But its was assumed

t

that nk-l was -1, hence the conclusion that nk-l cannot be -1.

While nk-1 cannot be -1, it can unfortunately get close to this value,

and it is a matter of experience whether the procedure is of practical

value. In any event, it is clear that this study has not been ended. It

is really only beginning.

1.0 Skew Symmetric Matrices

Though what is to follow may not have practical implications, it

is possible to set up an N-step procedure for skew symmetric matrices.

In the back of the author's mind is a procedure by which non-symmetric

matrices can be partitioned into their symmetric and skew symmetric parts.

Actually there is little reason to suppose that this would work.

While it is true that one is apt to outlive Methuseleh before he

finds a practical example which is skew symmetric, it is of mathematical

interest at any rate.
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The large difficulty with skew symmetric matrices is the fact that

half the time they are singular. Since all characteristic roots are

imaginary, and all the coefficients of the characteristic equation are

real, all roots must occur in conjugate pairs. If the order of the matrix

is odd, then one imaginary root must be its own conjugate and that is, of

course, zero. Then all odd-order skew symmetric matrices are singular.

Even order skew symmetric matrices have a rank which is an even number,

and chances are that one chosen at random will be non-singular.

Since S - -S is the condition for skew symmetry, all quadratic

forms in S or any odd power of S are zero. Thus xtSx - x S x = -x Sxt t

implies that this is true. This is a big help, for if one starts out as

Lanczos did: r

r = Sr0 r, is orthogonal to r,.
*0 00

r2 - Sr1 - c~r

One now chooses og so that r2 r = 0. Note that r2 r is zero

automatically since r1 Sri vanishes, and ri r is zero,
t 1 t

of = r S r /r r

Note at this point that r, = Sr 0  -Str 0 , hence

c/ * -r 1  r /r0 r0 .

This is evidently a negative number, so let a = - .

One now wonders if an iteration formula such as

rk+1 " Srk + ak-lrk-1 is sufficient to establish an

orthogonal set. One might attempt a proof of this by induction.
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Proof: The statement is true for k = 0 and 1. Assume it is true for

all k up to and including q-1, i.e., r r. = 0 for j < q, and all r r .

are also zero for j j p, and j and p less than q.

Choose aq-1 so that rq+1 rq- 1 = 0. Thus

r =-Sr + a r (1)q+1 q q-1 q-1

rq+1r - r S r + a r r =0

a q-= -r tS tr 1/r q r q (2)

Formulating the product of the transpose of (1) and rj:

rq +1r = r S r + a r r
q t qt tj - -j

The last term on the right is zero for all j (q, except q-1, by hypothesis,

so

r q 1 r. r S r for all j-,; q except q-1. (3)

But

rj+1 Sr +a rj..,1  so

r tr j+ = rq Sr + a. lr r. .

The last term on the right is zero for all j < q, hence

r r+ 1 = r Sr = - r S r. = - r r. for j <q-1. (1)

Equation (h) is obtained by substitution from (3) into (4).

Thus

r q,1 r = - r r .1 for j < q-1.
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But the right side is zero by hypothesis for all < q-1, and so

rq+1  -o for j <q-1. (5)

Since rq 1 r q 1 was made zero by choice of aq., then

rq+1 r =0 for j< q.
tk j

What about j - q; is this zero? Premultiplying equation (1) by r

r rq+1 - r Sr + a r r - 0.qt q q r-1 q -

Thus one has shown that

rq,1 r - 0 for Jzq+1. (6)

The procedure for skew symmetric matrices can now be summed up as

follows 2

rk+l Srk + akl-rk-1

rk Strk-1

tak-1l rk-1rk -1

Since rk - Srk-1 + ak-2rk-2, rk rk - rk Srk-1 and so

a- kr 2  k- rk k rk-i8
rk rk

ak-1 - rk r (8k1k-1

This is seen to be much simpler than the symmetric case.

2.0 The Characteristic Equation of a Matrix

Since each procedure actually constructs the characteristic equation

of the matrix - A, AAt, S, depending on the procedure - one can obtain

the characteristic equation by using the mk and ek-1 obtained in the

solution of Ax - y in the following polynomial difference equationss



P = Q W 1
0 0

Pk+1 MPk - mk XQk

c= k + Ek-1 -l

If this scheme is used with the Stiefel-Hestenes procedure, one

obtains the characteristic equation of A. If it is used with the author's

procedure, one obtains the characteristic equation of AA , which is the

same as the characteristic equation of A A. In the latter event it is

quite simple to show that

rk P(AA)r and

k to
Pk= Qk(At )r 0

Should the procedure terminate in M steps instead of N, where M < N,

then PM(X ) is a factor of the characteristic equation.

3.0 Examples of the Iteration Procedures Discussed

To make the ideas clearer, several examples of the author's iteration

procedures are given below. All steps are given, but some additions are

absent. Simple examples are taken so that roundoff error does not affect

results.



A. Non-symmetric, non-definite

Ax = y where

A 2 - o 0 1-3
A = 2 -2 0 y = 0 . x -0 r10 0 At r =

L1 0 _ .21 0 -2j -

121

121
Ej 1125

-ou
pi = TT12

-19]

8

P2W14 1
2 7P1

-7

71
Atp3= 0161

-51

AtP2 -T
2j

-5J

M = x2L

77 1
m, 2 4T X2 = 

5
m2 ~iI xI Li

If one now uses the mk and 6 k in the polynomial iteration:

P0 - QP - 1

k+1 = k - k

Qk+1 -k+1 + Ek@k one obtains

Po = 1, Q = 1, P, = 1 - , Q 205 5 \ P2 = 1 L7 X L X 2
90 90

266 119 7
2 15 90

\ 2 7 13 2 1 X3\, and? P3 ~ ---

Multiplying by 36 gives the characteristic equation of AAt, viz.

3 2
-13 X + 42X -36.

2

r - 10

-1

r2
-2 l--

3

16
17

10

Ans.



27

2 6 _

L-1 -1

16

8 375 1
- 7 1+n0  -73 X 12 17

10

Notice that the x2

steps are the same

is the same as

for

in example A. It would appear that the

401
2 12 7 11 49

r2 - - -1 Atr2 -3 1 m 27- n, 1+nl - + 3o x3 -1 Ana.

-W2 -11

From a comparison of examples A and B it would appear that the latter

is superior numerically since it was much easier to compute. This is

something for experience to settle.

C. Skew symmetric matrix

It will be recalled that a simple orthogonalization scheme was presented

for skew symmetric matrices. This procedure can be used in even-order

skew symmetric simultaneous equations by evaluating all the even-subscripted

approximations. The reason that the odd-subscripted approximations are

not evaluated is simply because the iteration formula for xk+l is
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B. A non-symmetric matrix with the procedure introduced at the beginning

of this chapter.

For comparison the problem of example A will be taken.

1 1 -1 1 0 -[1 -3 3
A- 2 -2 0 y- 0 . 0 - a r 1 0 A r- -1 mo 1

1 0 1 2 0 -2 -1 1

35
-3 no



k+1 - -l+rk, and setting k = 0, one needs x to evaluate x Thus

x1, x3 , etc., cannot be evaluated. This is all right since only even-ordered

systems have answers, if then.

The procedure: x

r - Sx - y
0 0

r - Sr
1 0

r r
o

X2  xo+m r 1

r 2 =x 2 -y

r r

m2 r r2

r3 -rl+m2Sr2

r r
0 0

3 r3 r 3

x- x2+m3 r , etc.

An example: Sx = y where

0 2 -1 0 1 0 -1 -h

-2 0 2 1 1 0 -1 6 3 3S * x = r9 - r 1 = mx 1
1 -2 0 -1 -2 0 0 r 2 1 1

0 -1 1 0 0 0 0 3 3



2

8

5

-15-

312
m2 = 3 r3 5

43

13

28

22

m3 =5m3 93 x4 = An.

The characteristic equation for S can be obtained from the following procedures

P0 = 1, P= k+ k='k- N Pk. When the values of mk above are used,

one obtains P 0 = 1, P, = P2 = 1+ 3 2 $ 3 114X + ,
02 31 '3 73

p = 1 + 11 + X4

4.0 Inverting a Matrix

As indicated by Fox, Huskey, and Wilkinson, a matrix may be inverted

by these procedures by solving N problems, with

1 0 0
0 1 0

Y1 . O y2 * a * " * * N = 0 .Each answer constitutes

-0. 0 ~ -

a column of A-a

1r 2 31T
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CHAPTER VI

EXPERIMENTS WITH LINEAR EQUATIONS, ROUNDOFF ERROR

The N-step procedures have some selling points which the author would

like to review. So far as iteration procedures go, those which converge

in N steps seem to be the best. The author's procedure pays no attention

to symmetry and is convenient in this regard.

As far as the number of operations is concerned, the elimination

methods are best. The N-step procedures have from three to six times as

many multiplications, but nevertheless have other advantages. It is clear

to the author that if a problem were to be solved by a hand computer, an

elimination procedure is easiest. Since it takes so much time to perform

an operation by hand, the time is worth money. On a high-speed computer,

however, the difference in time may only be a matter of ten seconds. This

is still worth money, but there are other advantages.

Elimination methods generally triangularize the original matrix, thus

destroying it or requiring additional storage space. In many machines

storage is more important than time. If, as a result of error accumulation

due to the finite number of digits carried by the computer the answer obtained

is not good, there is not much that can be done. The iteration methods

have a distinct advantage in this regard. The matrix is not destroyed,

and any answer can be checked.

The real problem involved here is to know in advance whether a set

of equations is ill-conditioned. This last term warrants explanation.

First, one assumes that the matrix A and the known vector y are

known accurately. If this is not true, then the whole problem is one of

guesswork unless the matrix A is well-behaved or well-conditioned,



It is possible to have a set of equations and an approximation to the

answer for which the residuals are very small, i.e.,

Axy- y - rk, where rk is small compared to y. At the same

time ek = Xk - x the error in this approximation - is large. For example,

let

11 1

33.33x11 + 100 x21 = 133.33.

12.000 0.0002
Here x -Let xk 0.66 , then rk L 000.01

Most individuals would be quite satisfied that xk = x if they did

not know x, simply because rk is small compared to y. Evidently small

residuals are not always an indication of good results.

In the process of analyzing this, we note that

rk - Aek, and

Irki - rk rk ' 'k A Aek. Hence the square of the ratio

of the magnitude of the residual to the error is

Irkl 2 ekAtAek

ek e ktek

This is known as the Rayleigh Quotient of A A and is known to be

bounded above by the largest characteristic number of A A and below by

the smallest characteristic number of A tA. Hence, if Xn is the largest

and X the smallest characteristic numbers of A tA (which is positive

definite and symmetric) 2rk 2

1 lekI

55- -
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Apparently n and have some influence on iterative procedures.

It is known that if all the characteristic numbers were equal, convergence

would be obtained in one step. Hence, the ratio n is a figure of

merit for a matrix with regard to an iterative procedure.

It would appear that the number of equations would somehow enter into

the picture also. This is reasonable since the more multiplications the

greater the accumula ted error.

1.0 Diagonal Matrices

Some interesting results have been obtained by using the author's

procedure on diagonal matrices. Since an iterative procedure cannot

differentiate between matrices, a diagonal matrix is just as hard to solve

as any other. It has distinct advantages for testing purposes.

It will be shown that only two things influence roundoff error in an

iterative scheme: one, the spread of the characteristic numbers of A A,

and two, the size of the component in the error vector, e0 , which is parallel

to the eigenvector corresponding to the smallest characteristic number.

A diagonal matrix has its characteristic numbers and its eigenvectors

in evidence. For these reasons it is possible to evaluate the effects of both

the spread of characteristic numbers as well as that due to the initial

error vector, e . In all the examples below the initial guess is the null
o

vector, the characteristic vectors are the coordinate axes, and the answer

is the vector whose components are all unity. In six dimensions, for example

x = 0 0 0 0 0 0], xt 111 1 1,and so

e-+[ 1 1 1 1 lJ.
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If the eigenvectors have unit

V -

vitV -

V5t -

0 ,

01 ,
0] ,

A moment's reflection will show

e- -(v1

Thus, with the above choice for

all compotents of e0 parallel to the

magnitude. and are denoted by v :

v2 - 0
S- 0

4t *
V 6t [o1

0 0

0 1

0 0

0]

0i,

the reader that

+ V 2 + v 3 + v4 + V5 + v 6 *

x and x , one has a situation in which

eigenvectors are equal in magnitude.

Five examples of this type wdre done on the digital computer at

M.I.T. - Whirlwind I. In each case the procedure was used four times;

i.e., after x6 was obtained, it was used as an initial guess and the

procedure was used again in an effort to improve the answer. The x12

thus obtained was used as an initial guess again, etc. If we denote

each of the following matrices by D3, j some number, then the problems

solved were D x = y , where the answer to be sought, x, was six ones.

Since the diagonal matrix has its characteristic numbers on the diagonal,

i.e.,

D M

0

0

0

0

0

0

X2
0

0

0

0

0

0

X3
0

0

0

0

0

0

0
0

0

0

0

0

0

>6

... . .......
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the problem is totally specified by writing down the characteristic numbers.

Since the answer is a group of ones, the vector y is merely the column

matrix of the characteristic numbers, and so in the examples below, y, x6'
x , x18, and x. are given. The reader is to remember that x18 (say)

is obtained by using x1 as an initial guess.

Example I

103 .9994 .9996 .9997 .999986

102 1.0016 1.0014 .9908 1.000073

1 1,0100 .5950 1.0049 .749853
.1 ±12 m118 x214 - 721
.1 "6 .0101 45100 .5151 2762821

.01 .0001 .0052 .0053 .010336

.001 .000001. .00005 .00005 .00010 4

Ratio of largest to smallest characteristic number of D D = D : 1012

The computer carried 24 binary digits (about 7.2 decimal) and used floating

point operations. Only those digits which are significant were written

above, although the machine gives eight digits on the print-out.

Notice that the components of e0 along the eigenvectors v , v2, and

V3 were removed almost completely in the first six steps. In the next

six steps some of the v3 was lost in an effort to remove more of v4.

Judging from the last two steps v5 and v6 might be removed from the error

vector, if one wanted to wait long enough. Conclusion: the method is not

of much use with a 10 ratio, This, of course, is not strictly true.

For example, if the initial guess were

x0 =[0 0 0 1 1 1] it is clear good results would
t

be obtained, probably in the first six steps. This is the same thing
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as knowing half the answer, which is, of course, wishful thinking.

Even though the xt is not what one might deem a good answer, the

residual r.4 is

r [ -. 01373 .00725 -.25014 -.02371 -. 00989 -. 00099]

Example II

100 .990559 1.04992 .998395 1.01132

10 .999987 1.00102 .999997 1.00058

5 .999998 .691472 .999996 .973295
W .5 X6 w 1.039188 i2 .84994 118 1.007805 3r24 .908011

.1 .042162 .85871 .864738 .941039

.01 .000422 .00922 .009639 .015247

Ratio of largest to smallest characteristic number of D2: 10 .

Notice how the procedure seems to destroy some of the good answers in

an attempt to improve some poor ones. Again one can hardly be overjoyed

at the results.

Example III

100 .99902 .99336 1.00073 1.00101

50 1.40453 .92994 1.05557 1.20335

10 .99921 .97285 .99867 .97624

5 6 001198 Xe .97390 1.02052 4 .97721

1 .78848 1.0191& 1.01161 .95638

.1 .00807 .01957 .02359 .07241

Ratio of largest to smallest characteristic number of D2 1 106



-64-

Example IV

100 l.21394 1.00186 1.04098 1.00051

70 .94053 1.00171 .99995 .99999

ho .99409 1.00004 .99780 .99996
y - x6 M s1 2  x24 W

10 .99683 .71797 .99907 .91747

5 1.04826 .71767 1.01412 .91736

1 .10856 .71761 .73912- .91735

Ratio of largest to smallest characteristic number of D2 : 100

Example V

It has probably occurred to the reader by now that one large point has

been overlooked, viz., who on earth would ever solve a problem with such

a large discrepancy in element size? The answer to this comes in the next

example. The point is that a matrix may appear to have elements of

uniform size, and yet its characteristic numbers have a large spread or ratio

To demonstrate this, let us take the matrix of example IV and simply rotate

axes. Thus, the problem will be changed only because our point of view

is changed. To affect this, the author chose an orthogonal matrix L, where

1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1

16 6 2 2 2V' 2J

1 1 1 1 -1 -1

116 - 6 2 2 2J32f3
L-

1.. 1 0 0 1 1

1 -1 - 1 1 -1
_o o ---



The new matrix A was constructed by setting

A - L tDL, where D is the diagonal matrix of example

IV. Thus, LAL = D, and so A has the same characteristic numbers as D,

and since A is symmetric, A tA - A2 has the same characteristic numbers

as D To seven significant figures A is

37.66667 10.66667 0 -24.49490 -24.51304 -6.12826

10.66667 37.66667 -24.49490 0 -6.12826 -24.51304

0 -24.49490 55. 15. 0 17.32051

-24.49490 0 15. 55. 17.32051 0

-42.51304 -6.12826 0 17.32051 20.33333 6.33333

-6.12826 -24.51304 17.32051 0 6.33333 20.33333

If xt - 1 1 1 1 1] , then

y- E6.O286 -6.80286 62.82561 62.82561 13.34587 13.34587 .

It will be noticed that the eigenvectors of A are the rowsof L, and it

might be interesting to compute e0 in terms of these rows.

e - .76 v 1 - 12,4 v 3 - 1.97 v5

Notice that three of the eigenvectors, including the smallest, are

missing. This then is equivalent to solving the first problem with an

initial guess of x0  = [1.76 1 -. 24 1 -.97 1] It is clear

that the answer should be good, and it is. For the matrix A above, the

sixth step yields:

6 - [1.0000001
X6t I

.99999976 .99999994 1.0000001.. .99999988 .999999821

It is clear at this point that the spread in characteristic numbers,

if large, must be accompanied by a shrewd guess at the answer for an initial

step if good results are to be expected. Two points have not been covered
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as yet: the effect of dissymmetry, and the effect of roundoff due to the

additional multiplications when the matrix is not diagonal.

The first question can be answered easily. A new matrix A' was

constructed from A of the previous example by interchanging the first and

third equations, and the sixth and fourth equations.. This gives A' as

0 -24.49490 55. 15. 0 17.32051

10.66667 37.66667 -24.49490 0 -6.12826 -24.51304

37.66667 10.66667 0 -24.49490 -24.51304 -6.12826
At W

-6.12826 -24.51304 17.32051 0 6.33333 20.33333

-24,51304 -6.12826 0 17.32051 20.33333 6.33333

-24o49490 0 15. 55. 17.32051 0

It will be demonstrated below that the characteristic numbers of A' A'

are the same as those of A or D (in example Iv), and the eigenvectors

of A' A' are almost the same as those for A 2. Hence, no change in results

should be expected, and this is corroborated by the results:

x6 . ' Il0000002 .99999964 .99999934 1.0000004 .99999940 1.0000001
t

In the product of two n-dimensional vectors, n products are formed.

Assume that -in' each of these the first k significant figures are retained

and the rest discarded. Let @ represent the error due to rounding.

Th.s will be less than one half a unit in the last place, or, if k stands

for decimal digits, E : .5 x 10 ~, assuming that the product is between

.1 and 1.0. For example, if the product were .23760, and this were rounded

to three figures (k = 3) yielding .238, the error is .4 x 10"M or .4 x 10-k

Now the worst possible situation would arise if all n errors were cumulative,

-kyielding a total error of .5n x 10 0 For n -10, then, one would obtain
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the same accuracy with ten multiplications using k digits as with one

multiplication with k-1 digits. This would occur if all product terms

were of equal size. If one product term dominates, then its error is

roughly the error of the total.

It would appear that the worst situation is not very serious, since

even if one had 100 equations, only the last two digits would be, in effect,

wasted. So far as a computer goes, it is generally not difficult to get

around this by changing the arithmetic used. Of course, for machines with

a small number of digits, this could be a problem.

2.0 Non-Diagonal Matrices

A few examples were done with matrices which were not diagonal.

Some were symmetric, some non-symmetric. It hardly seems necessary to

include them since they were used merely to demonstrate the fact that

the procedure works and are contained in Memorandum M-2229, Digital

Computer Laboratory Report, dated June 11, 1953, and written by the

author. Some of the results were good, some very bad. The experiments

are, however, of little scientific value since it is felt that the

characteristic numbers, eigenvectors, etc., should be known in advance.

One conclusion can be drawn, but cannot be based on fact. It appears

that the number of equations does not have too much to do with the efficiency

of the procedure. If the number of equations Is large, it is possible

to have a greater number of small characteristic numbers. This possibility

plus the accumulation of roundoff errors would have some effect on the

speed of convergence.
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In order that the author's method might be compared to that of

Stiefel and Hestenes, two examples which they used in their paper24

are given below as well as one simple fourth order non-symmetric matrix.

Example I (by Stiefel)

.263879 -.014799

-.014799 .249379

A - .016836 .028164

.079773 .057757 -

-4020052 -. 056648

-.011463 -.134493

y= [.337100 .129960

xt= [1 1 1 1 1 i

.016836

.028764

.263734

.033628

.012128

.084932

.079773

.057757

-. 033628

*215331

-. 090696

-.037489

.348510 .372440

x 0 0 0

-. 020052

-.056648

=.012128

.090696

.324486

-. 022484

.011463

-. 134493

.084932

-. 037489

-. 022484

.339271

.303870 .2412001

0 00 0 0.

Again with twenty-four binary digits:

x6  * [1.0000004 1.0000001 .99999934 1.0000014

Ratio of largest to smallest characteristic numbers of A A:

1.0000019

61.6.

099999910].

Example II (by Stiefel)

6 13 -17]

A = 13 29 -38

-17 -38 50

This example was done twice.

and x6 was obtained.

-1.0646319

x3 -r1*9835417

-1.9039863

Ratio of largest to smallest

10

y j2 x -3 x =[ 0
-3 -02 0

The x3 below was used as an initial guess

.99999475
and x6 - -2.9999986 I

[-2.0000007 J
characteristic numbers of A AS 2.075 x 106
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Example III (by the author)

1 1 1 1 0 1 0 1.00000041

1 -1 1 -1 4 -1 0 -.99999922

A 1 -1 2 2 2 1 0 1.0000058

2 1 2 -2 5 1 0 -. 99999594

Ratio of largest to smallest characteristic numbers of A A: 282.

3.0 A Priori Error Analysis

The large and unanswered question is, how does one know in advance

whether the answers are good or bad? If this could be answered in one

sentence, then iteration procedures would be unnecessary. The following

sections talk about this problem, but no definite conclusions are drawn,

While this may sound like heresy, the author would like to raise

this point. Why would anyone want an answer to a set of ill-conditioned

equations? If the unknown which corresponds to the eigenvector associated

with the smallest characteristic number is so ill-defined by the equations,

what matter what it is? If this were a physical system, it would be a

very unstable one, and hence the inability to get an answer gives a measure

of the stability of the system.

Physicists have often remarked that they do not really want the

solution to the matrix A anyway, since its elements are not accurate. Such

an individual is usually the first to complain about the inefficient

solutions. If one's mathematics or physics are sloppy, one cannot expect

impeccable results.

With an iteration procedure, ill-conditioning can be discovered quite

simply. Merely try two opposing initial guesses and compare results. If

they are close, it is probably a good answer. If not, the opposite conclusion

may be drawn.
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Still, someone may insist on the solution of the set of equations.

They must allow the computer to change the equations, for an ill-conditioned

set can be made well-conditioned with a little efforto If this is done,

some of the advantage of the iteration procedure over the elimination

procedure is lost, but not the most important advantage, that which enables

one to evaluate the answer.

The author and the reader would be happy at this point if such a

procedure could be outlined. Some solution to this must be obtained in

the near future, but the task is not simple. The author has a few suggestions

which he will offer but he will not at this time vouch for them.

The equations should be rearranged so that the largest elements fall

on the main diagonal. It is not necessary to do this; it is only necessary

that the largest element of each row be in a different column from the

largest element of the other rows. If this cannot be done, the equations

are most likely ill-conditioned. The variables should now be changed

in such a way as to affect a dominant diagonal. It might be appropriate

to show at this point that the interchanging of rows of equations does

not affect the characteristic numbers of A A.

Shuffling rows or columns of A does not have any effect on the characteristic

numbers of A.A . This can be shown by realizing that shuffling rows of A is

the same as shuffling columns of A t Since A A and AA have the same

characteristic numbers, it is true that interchanging rows of A is permissible

if it is permissible to interchange columns. Since any change of columns

can be broken down into a finite number of single interchanges, it is only

necessary to show that if the ith and jth columns of A are interchanged,

then the characteristic numbers of A tA are unchanged. Let the columns
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UNUi UNtu u

0 0

At A' = u , U...uu

Att t u UU 1it U 2 0 0 UtU UtU 000 U .UN

u t u2 . . u u u u . u u N

UN t Uj UN t ui

Thus the determinants IA tA - XII and AtA' -\I are identical if

the i-j columns and rows are interchanged. But the interchange of rows

and columns does not affect the value of a determinant - it merely changes

its sign. Thus two changes of rows and/or columns do not even change

the sign (which is unimportant anyway since the determinant is to be

equated to zero). Hence the determinants are equal and so are the characteristic

numbers. This should not be suprising, for it is clear almost intuitively
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of A be called u1, U2, 0., uN. Then the PQ element of A A is up u Q
th th

Now interchange the i and j columns of A. This new matrix is to

be called A, and its columns are the vectors U1, ... , u., U. , .. , uN'

Then the PQ element of A' A' is up u for all P and Q different from i

and j. Writing out the matrices A A and A't A' and indicating only the

ith and jth columns and rows of each:

t t t t
0 0

A tA U.itU 20 a U.tU. U tU. 000 U i U N

U itu1 U itU.2 * 0 U tU Ui 0 u o.
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that one can expect little help from an interchange of rows or columns.

There are two tricks remaining. One is to multiply the ith row

th
by a constant and add it to the j row. In A A this will mean multiplying

th ththe i row and column by the constant, and adding them to the j row

and column respectively. The only elements that will be affected are

those in the jth row and column. When X is subtracted from all the
th

elements on the trace of At A, and then the i row and column are multiplied

th
by c and added to the j row and column, the result is not the same as

when X is subtracted from the diagonal elements of A' tA'. Indeed, X
appears in some of the off-diagonal elements. Hence, as expected, the

characteristic numbers of A A are changed by such a manipulation. How

much and in what way one must investigate.

The other trick is to multiply one of the rows or columns by a constant.

This will also change the characteristic numbers of A tA. Then it is possible

to improve the ill-conditioning of a set of equations by either of these

two tricks. These are the only really simple maneuvers at one's disposal.

Just what rule one should follow is debatable. One procedure would

be to rearrange the equations so that as many large numbers appear on the

main diagonal as possible. These can be made approximately the same size

by suitable multiplication, and the large off-diagonal elements remaining

can be minimized by manipulating the equations.

Example: -2 3 -3 76 -36 84

A - 6 -2 6 A A -36 22 -42

6 -3 7 84 -42 94

The characteristic numbers of A are 1, -2, 4. The characteristic numbers

of A A are 188.1, 3.9, .0853. The spread in characteristic numbers of

A tA is 2200 to one,
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If rows one and two of A are interchanged, the matrix becomes symmetric,

but with large off-diagonal elements. This matrix can be helped by adding

twice the first row to the second and third rows. If this is done, the

new characteristic numbers of A A are 37, 18.9, and .092 with a spread

of 400 to one. This is not a large improvement, it is true, but it is

surely an improvement. If the above operation is performed and the first

and third columns are then interchanged, then

-03 3 -2

A' = 4 21 whose off-diagonal terms are smaller,

1l 3 2j

but still not small enough. If the first row is now added to the second

and subtracted from the third, one obtains

-3 01

A' 10 4 2 . This looks as though it might be

1l 4 1]

an improvement, but one has to stop and think about what he is doing.

It is to be remembered that operations on rows are simple because

one is actually attempting to solve a linear set of equations. These

are lined up in rows to begin with; hence it is simple to multiply one

equation by something and add it to another. It is also simple to rearrange

columns since this amounts to a redefinition of the unknown x by simply

rearranging its elements. But when columns are added, the x is changed,

perhaps beyond recognition. For example, if the first column is added

to the second, the new unknown x21 is now the sum of 1 which has not

changed and the old x210 This really amounts to a linear transformation

and may involve the solution of another set of equations. This is not



too serious for many of these transformations are trivial, and some are

orthogonal. This means that the transpose of the transformation is its

inverse, and hence it should be a simple matter to change from one set

of variables back to the original set. See Guillemin 1, page 54 et seq.

In any event there are some things one can do to improve the equations.

The only other thing left at his disposal is an improvement of his first

guess. Oddly enough it is not necessary that his first guess be near the

answer; it is only necessary that the error vector, e , contain small

components of the eigenvectors corresponding to the small characteristic

numbers. This can be seen from the previous examples or from the two

dimensional ellipse. If the ellipse is long and thin like a cigar or

worse, like a needle, then the gradient will be in the direction of the

largest eigenvector, almost regardless of one's position on the ellipse

excepting, of course, the very ends. Since A rk is the gradient of

ek A tk at xk, one is alsmot certain to wind up on one of these needles.

Once there, the residuals are so small that the procedure falls to pieces.

This will not matter if the component of the error along the long axis

(the one corresponding to the smaller characteristic number) is small.

This really does not help much since one does not know this vector.

It is too difficult to find, and once found would not be of any use

since one presumably does not know where the answer is. It does help

one in this sense though; if one initial guess proves to give miserable

results, then try another. Specifically, if all zeros are used for the

first guess and the answers oscillate about plus ones, then try all

twos as a first guess. It might be possible to bracket the answer in

this fashion.
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An approximate way to get the number of digits in the ratio of the

largest to smallest characteristic numbers would prove helpful. It can

be shown (see Hildebrand 26, pages 49-50, Section 1.18) that the sum of

the characteristic numbers of a symmetric matrix is equal to the sum of

the elements on the trace. Since the elements of the trace of A A

are the squares of the lengths of the vectors represented by the rows

of A, then the sum of the characteristic numbers of At A is equal to

the sum of the squares of the elements of A. Since all characteristic

numbers are positive, this is an upper bound on the characteristic numbers

of A tA. Thus one can obtain some estimate of the size of the largest

characteristic number. Also, if the first estimate x is not near one

of the longer axes of the ellipse, then 1/m ^ . Actually 1/m

will always be smaller than the largest characteristic number; hence

one has an upper and lower bound on this numbei-. As for the smallest

characteristic number, one encounters much more difficulty. Since the

product of all the characteristic numbers is the square of the determinant

of A, then usually Xmin I Aj max. This is rather hit or miss,

but it is as simple a method as the author can devise.

Example: -2 3 -3

A - K 13 6 . The sum of the squares of all elements

-6 -3 7

is 192, which is almost exactly the largest characteristic number.

|A|2 - 64, and 64/192 - .333 which is about four times the smallest

characteristic number. This gives a ratio of 578 instead of 2200, but

the number of digits is only off by unity.
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Another examples

1 1 1 1

1 -1 1 -1

A= 1 -1 2 -2 The sum of the squares of the

2 1 2 -2

elements is 31, and the largest characteristic number is 16.95. JA|2 - 36,

so 36/31 = 1.16 while the smallest characteristic number is about .06.

Here the ratio is 27 instead of 282. Again, the largest error seems to

come from the smallest characteristic number.

3.0 More Equations than Unknowns

If there are fewer equations than unknowns, then it is not likely

that any solution exists. Certainly no unique solution exists since several

of the variables can be chosen arbitrarily, and different answers can be

obtained.

If there are more than N equations and only N unknowns, then A is

a MxN matrix with M > N. In many instances solutions of a type exist.

In any event both the case for M > N and M <N can be covered along with

the singular case.

An MxN matrix with M < N can be made a NxN matrix by adding N-M rows

of zeros to the bottom. One now obtains a matrix which is square, non-symmetric,

and of rank less than or equal to M. This problem is now seen to be identical

with the one in which A was an NxN matrix at the start, but of rank M ( N.

The two problems differ only in that the latter matrix can be symmetric

while the former obviously cannot.
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If A is of order N and rank M and symmetric (read AtA for A if it is

not symmetric), then there exist N-M eigenvectors of A which are mutually

orthogonal to all the other eigenvectors of A, such that A times these

vectors yields zero. In general an initial guess x- will contain these
0

eigenvectors as will the right side of the equation y. Ax will not possess

these eigenvectors as components, however, and so the residual r0 - Ax - y

will contain as many of these eigenvectors as -y and in the same amount.

It will now be recalled that r1 - r - mAr,, and so r1 will have these

same components of the original eigenvectors as -y. These eigenvectors

proceed right through the procedure, so that the last residual is not

zero, but contains these components of the null eigenvectors that -y had.

Since x, - x - m0 r 0, and x and r0 have components of these eigenvectors

in general, then it is seen that something happens to these components

in the approximations xk. Just what happens to them depends on which

procedure is used.

If A is non-symmetric, the correction to x is given by A trk The

problem that is really being solved is A Ax - A y. If Rk is defined ast

A rk A A - Aty, then RN contains the same null eigenvectors as -A y

and will not always be zero. It is to be understood that if the y or

A y is deficient in one or more of these null eigenvectors, the procedure

will terminate prematurely since r, or R contain less than N independent
,0 0

eigenvectors. Also, rN can equal zero if the y (or A y) is completely

deficient in these eigenvectors. This last will always happen if there

are fewer equations than unknowns.



To discover what happens to the null eigenvectors in xo by the time

it becomes xN, one starts out as follows:

r, r- r - mfr, (read A A for A if A is not symmetric, and R for r)

or r1 - ( - mA)r, r2 = r - m1Ap1 - - mmAr -r

or r2 - (I m1A)r1 - miE Ar - -(ml+m,+m F, ,)A mm A2] r

and so on until

rN [Im(m,+m+...+mhN-1ml o+m2 1+ ... MN-1 N-2 plus

more terms)A, plus terms in A2 up to AN ro.

Now in the following, the small xk and rk will. not be the entire

approximation xk or the entire residual rk as previously used, but only

the components of these in the null eigenvectors of A. That is, let

x - cle1+c2e2 for a two-dimensional example, the c's being constants

and e's being eigenvectors of A. If e2 is a null eigenvector of A, i.e.,

Ae2 - 0, and e1 is not a null eigenvector, then the new x0 about which

the next paragraph will deal is simply x0 - c2e2. One desires at this

point to trace only these components through the procedure, hence the

artifice. Since all residuals have the same components of these null

vectors, then under our new definition, r - r - ... rN'

X, x, - m 0r0

x2 - mp 1 - x 0 m0r - m1 r1 - m E or

o0 1(m+m +m18 0)r 0

Should one continue in this manner, one would discover that

xN a x0 - Cr where C is the coefficient of A in the

polynomial in A above.
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A2 - 1, v 2 - 10 , >\- 2, v3 - 1.

One can verify by substitution that y - - +r + v2  v3, and so the

null component of y (or -rk) is - 1jv. Then the final approximation x2

(since A is of rank 2) should contain C(-Jv). If the work is carried

out, x2  - L2 -2 2 , which is a poor answer, and x. - 2v, - 2v l

and C is seen to be 4.

On the other hand, if A t - A ty - Ax- Ay were solved using the

procedure for non-symmetric equations, the answer would be x2 4 k 119
which is the mean square solution. Aty - Ay = v2 + v3, and so with the

initial guess of zero for x0, the answer should have no vi in it and

it does not: x2 - 3 2 '
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One now sees exactly what happens to the null components of the

initial guess. They are merely changed in magnitude by a constant amount,

depending only on A and y. Thus the answer obtained depends entirely on

the initial guess. The last residual will depend on the initial guess.

Thus, the residuals are not minimized in the mean square sense when A

is symmetric.

An example of this might be interesting.

1 1 0 1 0

A - 1 01 x a 0 e Choosing x -fa 0 it is evident that x

0 0 1 1 0 -

can have no component of the null eigenvector in it. If - V 1

the null vector [
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It is now seen that the simpler procedure is almost valueless, but

that the longer one is practical. How does the author's procedure behave

under these circumstances?

The author's procedure is based on minimizing the error. Since there

is no answer, this naturally leads to havoc. When the authar's procedure

was used on the above example, the result was x2 [1/6 1/6 10/61

While this is nearer the mean square answer than that obtained by the

method of Stiefel and Hestenes, a surprising thing occurs when this

answer is used to get a better approximation. The procedure simply retraces

its steps and gives a new x of [0 0 0]. In other words, it2 t
oscillates. This does not occur with Stiefel and Hestenes'simpler procedure

for if x -2 -2 2] is used, the new x2  is L4 -4 0]. This

is seen to be -4v 1, and the answer is increased by another -2v 1  Thus

the answer grows arithmetically.

If A A is singular, then in three dimensions the map ek A tAek is

a set of tubes or pipes which are elliptical in cross section. Using

the author's method no additional components of the null eigenvectors

are introduced in the new approximations (x2 above - 1/6 v3 + 10/6 v2),

which means that all motion from approximation to approximation is in a

plane normal to Vi,.

This is so similar to a wave guide at cutoff that the author cannot

resist making the analogy. It will be recalled that an electromagnetic

wave of wave length X can pass through a rectangular wave guide if, and

only if, X /2 is less than d, where d is the length of the longer dimension

of the guide's cross section. Moreover, the smaller the wave length,

the more rapid the transmission along the guide.
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If the relation

>min-- r 1 - is written, one can see
2d Amax

that if X is zero, the iteration procedure will oscillate, and alsomin

the wave guide will oscillate as a cavity resonator. In both instances

no information will come out the other end. If, however, the ratio of

characteristic numbers is large, i.e., near unity, the iteration procedure

will converge rapidly, and the wave guide will transmit the wave at

almost top speed.

It was stated that the null vector components of x appeared in the

same magnitude in all successive xk. This oc curs for a very interesting

reason. The null eigenvectors of AA (which is the matrix used in the

author's procedure) are also the null eigenvectors of A .

Proof: Let v be a null eigenvector of AA .

AA v - 0, so

v tAA v = 0, or

A tv12 - 0. Since the magnitude of a vector is zero only

if all its components are, A v - 0 Q.E.D.

All corrections in the author's method to the xk are by vectors

A tpk, and hence all null eigenvectors of AA in p disappear.

In the case where y contains no null eigenvectors of A, then the

simpler Stiefel-Hestenes procedure is of much value in these cases.

In the event there are more equations than unknowns, i.e., if A

is MxN and M > N, the longer Stiefel-Hestenes procedure is still the

best. It gives a mean square solution which is unique if at least one set

of N equations out of the M form an independent set. This is usually

probablE.



CHAPTER VII

NOR-LINEAR EQUATIONS

It is the purpose of this chapter to discuss ways of using the author's

procedure for the solution of non-linear equations. Some examples are

worked out, and an engineering problem concerned with the field of control

is solved.

1.0 Approximate Minimized Error Technique for Non-Linear Simultaneous Equation

A. One desires that group of numbers X1 , X~, 0000., for which

the N equations below are simultaneously satisfied.

f 1~ X .o o a ) = 0

f2(X1 , X2 1 ' 00000 -1) 0

0

0

fW(x11, x21 ' 0**2 X* ) n 0

Let xt - X1 x21  X31  * * . xNJ represent the solution, and

xk the k approximation to the solution. Let pk be a vector which will

be used as before for obtaining Xk+l from xk'

As in the Newton-Raphson procedure of Appendix IIs

f 1 1  f1/X 21  0 0 1 1

f2 X1 f 2/ 2 02 1  * 0 2 l
A ki

0 00

/fNl x 1  fN X 0 0 N 1

It is understood that all the partial derivatives are evaluated at xk'



One now sets

r

and proceeds to write

and so on up. to

1k= fl(xk)

1 k =f ?(xk)
0 6

0 a

ka fN (Xk)

k

x11 k g 1(rk)
lk ik

21k g2  k

xNlk =Nk)

rk t lk r21k
. . rN 1 0

While it may not be possible in most cases to write the xk in terms

of the rk explicitly, the first set of equations implies the second. One

now defines

G k

g I

382/ b r11

g1/ 6r21

og 2 r21

c gN/ r11

* * 
2/ 

0rl

o 0 2 N

a

0 0 N N

evaluated at rk'

83 -

where

gN 21 r.
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It is approximately true that

xk -x 0a Gkrk'

Proofs For any component x of Xk

x j jk -M 3 (rk -j g(0) . A Taylor expansion of g (0)

about rk Yields

gi(O) - gj(rk) Pg J/ rix(-r) + ...... + g / rx(-r )]

(plus terms of higher order.)

If the higher order partial derivatives are small, or if the residuals are

small, then

gJ(rk) ( 0 ) r r i r 1  ...... r g / cg r .

thThe right side is evidently the j row of Gkrk, hence

xk - x A G rk QoEoD.

It is also useful to note that

GkAk - I, the unit matrix. (See pages 112 and 113, Osgood .)

Proof: The ijth element of the product Gk, call it i-j, will be the

th k th
scalar product of the i column of Gk and the jth row of A or

i-j - gy/ ri og 2 / 1r, . . AgN/ brl x A

f J/ X21

x
f gi + ' f 9 + f 6 0

0 7gr
X11 *
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But g1 - , g2 = '21, etc., and f - r , hence the right hand side is

M- N r ax

. = r / r. . That is, all the terms

d1~~ x dr ~ jatl theM -1

on the right combine to give simply the partial derivatives of the jth

residual with respect to the ith which is unity when i - j, and zero otherwise0

Hence the product matrix is the unit matrix, which was to be proved.

B. The procedure

Let

Xk+l -k mkk k

Choose mk so that |ek,1I is a minimum:

iek lI e e -e e -me2k+1 2 k+Lt k+l k k - k t k tkPk*k tpk~k k

Differentiating and setting the derivative with respect to mk equal to zero

one obtains for

ek k
e ~k pAk

k t k

Sinceek k - x '3 Gkrk

rk Gk k rk k

ktktkP A k)t(Ak iJ Pk)A t t

Now one sets pk - rk 8 k-lk-l Postmultiplying the transpose

of this by k-1 Pk-1 and choosing 6 k-1 so that (Apk )t (A k-l ) - 0,

rk AkAk-l Pk-lt te~ ~ ~ "kk k-k-l_______Pk-~l k kit

Unfortunately the expression for E k- cannot be readily simplified.



C. Newton-Raphson procedure

If a high-speed digital computer is available, it seems expedient

to use the Newton-Raphson procedure with the author's iterative scheme,

using the scheme to solve the simultaneous equations which arise at each

step. If the process is to be done on a hand calculator, it is possible

to do this also, but the additional work involved in using the procedure

of part B on the preceding page does seem simpler since convergence is

much more rapid. Simple examples are given below.

2.0 Two Equations in Two Unknowns

l 
21 - .368 a 0

-2x3 1
x1-x2 - .135 - 0

(It is realized that this problem is simply solved by dividing the

two equations, but the author wishes to ignore this.)

The answer is
1

x M .

Solution

A -
Mx2

-Xje

1

-2x e2C1

The first guess will be

A-
04t 0 0.
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r .-368

ot 0

-.135

A 0tr . 5 03

0=.605

6 -. 6o5E03 f0
1 b.:305  %6Loj

t - 10

-086A

r .-- 063

r L .170

Ir - -. 503j 0 -1. 947
0 *.213

r +

IL

I -,:L4:LI,.14:L
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x1d

.305
. 7 3 0 J

Continuing in this manners

.954
x3

.954

.[921J

0

Alp 043

- 17.8

-I (4 /
'I

Evidently convergence is quite good, as indicated by the figure

at the upper right.

B. To compare this procedure with the Newton-Raphson procedure, the

example worked out in Appendix II will be worked for two steps. It will

be recalled that the solution was , 1 and .[ The first two

steps (one step in the procedure,, but two equations in two unknowns had

to be solved) yielded as an approximation /i. Below is shown

the results of the first two steps of the

x2 0

3/h

author's procedure.

2~ 2
( - )(xN2 + 1) -1 - 0

(X1 - 2) 2 + (x l/2) 2 _ , 0

'X= j
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2(x21+1)

A 1

00

Ar -. 6

t 1.8

X21

r5

mn - .05

r -

I .L -4,
SO 

= -. 197L -297
p1

0O991

ti-

In,~ m 327

2L

*, i'y 4

r F.69] Ar 4*

/1
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If the two solutions are compared, one sees that the second is better

than that obtained by the Newton-Raphson procedure whose error was .354,

and the error by the latter method .286. Though this is an improvement,

it is questionable just how much and whether the improved accuracy is worth

the additional work.

3.0 The Impulse Response

Suppose the engineer is confronted with the problem of determining

the impulse response of a black box. It will be assumed that the contents

of the box are unknown to him, but that the box behaves in a linear fashion

in the range desired. (If it is non-linear, the impulse response is of

little value.) The linearity may be checked by experiment by exciting the

box with similar signals of varying amplitudes and observing the response

of the box to each of these. If the responses are similar and vary in

amplitude with the input, then it can be assumed that the system is reasonably

linear.

The impulse response of a linear

will be called h(t). Thus

h(t) = x1le + x31'4

where the unknowns x are constants,

the presence of a complex coefficient

by another term whose coefficient and

Thus h(t) is a real function of time.

system is a sum of exponentials and

t +51,"
6 1 t

real or complex. In physical systems

or exponent is always accompanied

exponent are conjugate to the first.

In general, however, the xj1 are

otherwise unrelated. The real parts of the exponents x2nl are zero or

positive.
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In most engineering work it is not necessary to obtain the entire

impulse response. Indeed, this is not possible with the knowledge of

present day servomechanisms. Usually the location of three terms is sufficient,

but this number is, of course, open to conjecture. Some consideration

needs to be made concerning the type of signal that is to be fed into the

box. If, for example, it is to be run by a W40-cycle alternator, evidently

the response is needed in this frequency range. If, on the other hand,

it is a control mechanism, then the lower frequency range is the more

important. It will be assumed that the engineer answers these questions

as adequately as he can before attempting a solution to the problem.

The Laplace Transform of the impulse response above will be called

H(s), thus

H(s) = +++ x. .

G+x 1 +Xl ff+x61

It is now apparent that the constants sought are residues and poles of the

transform which is in turn the transfer function of the black box.

It is possible to obtain a graphic picture of the impulse response by

other means. These means are not accurate, and moreover, give the answer

to the problem in just the form that is almost valueless. The real desire

of the engineer is to have a transform on which he can rely for use in

analysis and control work. He might wish to draw a simplified equivalent

circuit. All these require the exponential form. In addition, the

exponential form can be manipulated easily in convolution, etc.

The question now arises, what if there are really five important

poles and the engineer assumes but three for his solution? It is clear

that none of the poles the engineer finds will be the correct ones since



his three must approximate five. How much does this matter? This is an

interesting problem and not part of this thesis. It is the author's feeling,

however, that the location of the poles is not generally critical, and

not much variation in response would be observed if these were moved around

a little. Some appreciation for this can be observed by taking a simple example.

Let h(t) - e _t, then H(s) - 1/(s+l). H(s) has a pole at s a -1.

At t - T, where T >>1, one cuts the above impulse response off and obtains

a new impulse response h1(t) which, for all practical purposes is the same

as h(t), thus

h,(t) = et [u(t) - u(t-T . u(t-a) is the unit step

function at t - a. If T is very large, little difference can be detected

between the two impulse responses. Indeed, if T is greater than 4 seconds,

the error is only about two per cent. But look what happens to the transforml

-T(s+l)
Hs(s) m -l has no poles at all in the entire

s-plane but has an essential singularity at infinity. While. nothing very

important happened to h(t), its transform was really pushed around. For

this reason and others the author feels that pushing the poles around is

legitimate sport and not something to be frowned upon. The reader should

not infer from this that the author feels the transform is not of much

value. If this were the case, less effort would be spent trying to obtain

it. It might be an interesting thesis to try to determine how accurate

the location of poles need to be to give the engineer enough information

to proceed.

A. Test signals

D.C. If the black box is excited by a d-c source of one volt (or

one ampere depending on the manner of excitation), the steady-state response

- 92 -
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d
Od-c

is given by using the final value theorem on the output transform:

0 -lim ( . . )l/s
d-c s-O s+2l

'l1 x31 51.
X21 xki x61

Since this response should be simple to measure, one has obtained an equation

relating the variables.

Sinusoid. If the box is now excited by a voltage cos wt, the steady-state

response can be obtained from the residues of the poles at s - + jo, where

lim
s->jo

(s-jcO)( 'll + . . . )
1 a 24,2

1/2(_ jco + x31
x 21+Jm x+J

. .

The conjugate expression yields the residue at s - -jo. If the observed

response is A sin cot + B cos ct, then its transform may be written

L(Q ) - m Bs - 1/2 j 1/2 B jA
a-0 s + CO a + s- j0 s + jo

Equating residues gives

B - joAa - ~ +
'21 jo

B + jwA - 1

Again the asterisk is to be

x31 + x51 + ...
1~ + J( x61 J

31 51

41 WCD + 61-j + ..

read "conjugate."

(2)

(3)
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There are two cases to consider.

Case one: All x are real. Thus the asterisks may be dropped

in Equation (3) and addition and subtraction of the equations gives

B - XlX2  0 22 * * *(4
'21 1 xhl + ' x61 *w

1 X 31 X51moA - 2 2 -2 2 + 2 2 . . . (5)
x21 +0 x 61 +W

Case two: There are one or more conjugate pairs. If x31 is

comple3; then x5l must be its conjugate. Also if x is complex,

x61 ' Jc41, and so Equations (2) and (3) on the preceding page may be

written:

B -jaa = ~ + 31 , *51 + 0 0
I 2 1  x41 , 6 1 j

B +jcoA '11 + '211 +
x 2 R x6130) x 4 -jo)

where and x21 are assumed to be real, and any other conjugate pairs

are treated as these were. These equations are now seen to be the same

as (2) and (3) but with the conjugates dropped, and hence solving for B

and coA will again yield Equations (4) and (5). Equations (1), (4), and

(5) can now be used to obtain as many relations as are necessary to solve

the problem. Other relations can be obtained from the transient response,

if necessary, but these yield poor results in general. The transient

response is usually helpful in determining a reasonable first giess to

the solution. In the example that follows, excitations of 1 - cos cot

and 1 - cos 2wt will be used, and it can be determined from the transform
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that the entire response to the first is given by

a 0(t) - - A sin wt - B cos t -C e - D e-E e61
0d-c

where Equations (1), (W), and (5) yield 9 , B, and A respectively, and

C, D, E, etc., are givpn by

2 2
m 31C - .1 D '3, etc.

(21a 2 2) 2 20

Setting t - 0 yields no valuable information, but setting t at some positive

values will yield equations. These are more difficult in form and harder

to work with. They are not very accurate for large t, and hence constitute

an ill-conditioned set. One such equation is more than necessary.

B. A specific problem

Suppose, for this example, the exact answer is known, viz.

h(t) - e~ +- (--(32(1+h) -3/2(1-j)t,

Thus one has an impulse response with four exponentials, and the transform

has four poles. What happens whep. one assumes h(t) is. composed of only

three exponentials?

The equations to be solved are

1. + +-.167
21 41 X61

2. 2 ~ X 31 X51 182
l+z21 l+X41 l61

1+ 1x 41x61

1+X, 1+1x61
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'11 2 . 31 4 x516 2 - -144
4+x21 +x 4+61

5. + 31*mf12 * 052 - .294

21 41

6. xll + x31 * 1  * 0.

These equations are obtained simply by exciting the box with functions

1 - cos t ahd 1 - cos 2t. The response is a d-c plus a sinusoid whose

phase can be determined. Since the output is usually recorded on graph

paper, the constants on the right side of the above equations cannot be

obtained any more accurately than to three significant figures.

Equation 6 will not always be true. This relationship among

the residuals means that the response to an impulse starts at zero. This

means the box is very sluggish at the outset. If the device is complicated,

as is a guided missile, this assumption is not bad.

The first approximation should be a good one. It is reasonable to

suppose that two of the poles are complex conjugates, the third being real.

This implies that two of the unknowns are real and the other four complex.

If just the first two equations are taken, and only the first terms of

each, one finds that l - .07 + j1.37, and x21 -. 46 * j8.22. Since

these are complex, one should take half of x11 since the equations are

linear in x. Thus x~l = j.7 and x21 - .5 + j8 are an indication of the

magnitude of two of the unknowns. These assume that the other residual

is zero, which it probably is not. If these values are substituted in

equation 3, one obtains

151161
- -. *402

1 + 261
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If the same substitution is made in equation 4 one obtains

h+x61

Solving these two equations for x51 and x61 gives respectively -. 87

and 1.5. From equation 6 the real parts of gi and x 31 should be about

.44. Going back to the experimental results, the transient seems to have

a frequency of about one or two radians per second, so choose as an initial

guess:,

xo .5 + j.7 .5 + 1.5 .5 - J.7 5 - J1.5 -1 1,5]

One now evaluates the residuals:.

r [.206 -. 050

1 1

21 1+x2 1 
2

41 1+211

x21 (1+x2122

1 1

X61 l+x6l

-x51 ~*51 61

X61 (1+x 6 1 )

1.27 .64 .062 O .

x21

1+x 21 2

x1 (x 212)

l+x21

x 31 (l-xhl_2

x6 1

1+x 2*61 2

(1+x 6 1 2

1

1X21
-2x 1 1 x21

1

= 2x

2x31 l

(*x 4 2 ) 2

1

612x x
(4xl 61)

x21

'21

1l(- 212

(h.x 2 1 2

11hxhl

x31 (4_X1 2 )

x61

61 2

(4+x61
2)2

One look at the residuals tells the engineer that these could be made

smaller by just choosing x, x x51 = o. Actually this is a more

intelligent guess since the signs of the residues can be positive or negative,

Akt
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while the real parts of the poles have to have negative values. Then a

more intelligent guess is

x = 0 .5 +J.5 0 .5 - 31.5 0 1.51
ot

r - [-.167 -.182 .227 .14 .294 03 which is evidently

better than before.

.2+j.6  -.308+j.462 .538+j.693 .32+j.24 .52-J.36 1

0 0 0 0 0 0

*2-j.6 -.308-j.h62 .538-j.693 .320j.24 .52+j.36 1
0

0 0 0 0 0 0

.667 .307 .461 .16 *24 1

0 0 0 0 0 0

Note that this is singular and that the Newton-Raphson method will

not work. This does not affect the author's procedure for at the next

approximation the matrix will change.

After thirty steps the last approximation (using slide rule, hence

three significant figures) one obtains2

x30  - [-.853-J.533 1.227+Jl.52 -.853+j.533 1.227-J1.52 1.706 l.5l]

with residualss

r30t - (-.013 .027 -.037 .024 .039 0 .

In the course of the solution several short cuts were taken, such as

using [ 4 r /rk-1 instead of the more complicated formula, and the matrix

A* was used about four or five times before a new one was computed. Totalkt

computing time by hand about forty hours. It turns out that slide rule

accuracy will not improve the answer appreciably. This is not too important

since the example is merely for demonstration purposes.
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If the two impulse responses are plotted on the same graph, one

would notice that the original is about one-third larger, but that they

are essentially the same shape. One need not be too disappointed at this for

there was no reason to anticipate that the three-pole approximation would

have a graph identical to the four-pole original.

Another plan of attack is to obtain the step response from the measured

data by subtracting out the steady-state sinusoid. One can fit two or three

exponentials to this curve in a rather simple manner. Again there is no

reason to suppose that the response obtained in this fashion would satisfy

the original equations unless the correct number of poles are assumed.

In any event the solution of a problem of this sort is hardly an

exact business, and much judgment should go into the use to which the results

are put.



APPENDIX I

MATRIX ALGEBRA

It is the author's belief that the study of simultaneous equations

is most easily done from the viewpoint of geometry. Much use, hawever, is

made of Matrix Algebra, and it is felt that a review of the more important

theorems of this study will assist the reader in comprehending the thesis.

Even if the reader is conversant with the algebra, it is suggested that

this section be given at least a cursory glance.

1. Definition: A matrix is a rectuangular array of numbers. It

will be denoted simply by a single letter as

a al2 al3

a21  a22  a23
A=

a a a
31 32 33

_a a 2 '43.

The letters with double subscripts will be called the elements of the

matrix, the first subscript representing the row in which this element appears,

and the second, the column. Thus a is the element in the ith row and jth

column. The matrix A above is called a four by three matrix (abbreviated

4x3) indicating that it contains four rows and three columns.

The matrix consisting of one column is called a column matrix or

vector. The notion of a vector is borrowed from geometry. Thus the vector

x1l

x = x21

- X31-
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is the directed line joining the origin (0,0,0) and (x.lz 21,x31). Though

the human mind is confined to visualising only three dimensions, it is a

trivial matter to write a vector consisting of forty elements. *rhis is

imagined as being a vector in forty-dimensional space.

2. Addition (Subtraction) of Matrices. Only matrices which have

the same number of rows and columns may be added. If aij is the ijth element

of A, and b the ijth element of A, then the ijth element of A+B is simply

aj + bj.

3. Multiplication of a Matrix by a scalar. A matrix is multiplied

by a scalar if all its elements are multiplied by the scalar.

4. The Transpose of a matrix will be the matrix with the rows and

columns interchanged. Hence, if the subscript "t" indicates the transpose

then if

1 a12 a13 all a21

A - r it follows that A - a12  a22
a 21 a 22 a 23a

-a13 a23

5. The scalar produqt of two vectors is defined as the sum of the

products of corresponding elements. For example

xy 1  21 31  2 1  (x 1y1 1 .x21y21.x31y31)*

Y31

The transposed column matrix or vector, x, above is called a row matrix.

It will always be understood that a product involving a transposed vector,

and a vector indicates the scalar product.
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6. A non-column or non-row matrix will be thought of as a double vector

set. If A is a NxM matrix it may be imagined as a set of N-M-dimensional

vectors transposed (the rows) or a set of M N-dimensional vectors (the columns).
th

Let v be the first row of the matrix A, and v. the i row. Let u, be

I th
the i column of a matrix B. If these vectors have the same number of elements,

then the scalar product of v u will, by definition, be the i-jth element
itj

of the product AB. Then, to obtain the product of two matrices, the number

of columns of the first must equal the number of rows of the second, and the

elements of the product are obtained by taking the scalar products of the rows

of the first with the columns of the second. The matrix representing the

product will have the same number of rows as the first, and the same number

of columns as the second. Thus, if

V,

A = 2 and B= [u1  u2  u3  u] then

3t -

v1tu v1 u2  v1 u3 V1 u

AB = v2tu1 v2 u2 v2 u v2 u 4

v3 1 32 v uh

It is now evident that an NxM matrix times an MxL matrix yields an NxL

matrix. It must be pointed out that the multiplication depends on the order

in which the matrices appear, and that AB / BA in general.
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Example [[

[1 -21 - 1x1-2x2 - -3]

1~ 121 1 1 -2

L2 '2A1 -2x2 -2 -4

7. The transpose of a product is the product of the transposes in the

reverse order, i.e.,

(ABCD)t - DtCBtAt.

8. A Symmetric Matrix is a matrix which is identically equal to the

transpose, hence

A - At implies that A is symmetric.

9. A matrix is said to be singular if there is some vector v such that

Aw - 0. Since the matrix A consists of N vectors transposed (rows), this implies

that each of these rows is a vector perpendicular to v. If A is not square,

it is always singular. If it is square, A = 0 implies that the rows of A

do not span N-dimensional space, and hence at least one of these rows is a

linear combination of all the others. Determinant theory indicates that in

this event, the determinant of A is zero, and hence if the determinant of

a matrix is nonzero, the matrix-is nonsingular. -

10. The main diagonal of a matrix consists of the elements on the diagonal

beginning in the upper left and proceeding to the lower right of a square

matrix. All elements whose column number and row number are equal lie on
*

the main diagonal or trace.

11. A diagonal matrix is a square matrix all elements of which are

zero except those on the trace. The unit matrix is a diagonal matrix whose

trace consists solely of ones. The property of the unit matrix is that for
* 26

This is a generalization it appears. Hildebrand calla the s-un of the
diagonal elements the "trace."



- lo4 -

any matrix C

IC - CI - C, I being the unit matrix.

12. The order of a square matrix is the number of rows or columns.

13. A square non-singular matrix A always possesses a matrix A"-

called its inverse such that

A 1A = A A-1 = I, where I is the unit matrix of the same

order as A. It can also be shown that the inverse of a product of matrices

is the product of the inverses in the reverse order, viz.

(ABCD)I n- D-1 C" B~1 A1 .

14. A square matrix is skew symmetric if it is equal to the negative

of its transpose. The trace of a skew-symmetric matrix consists of zeros.

In equation form S a -S implies S is skew symmetric.

15. A square matrix with complex elements is called Hermitian if it

is equal to the conjugate of its transpose. That is,

H - H implies that H is Hermitian. The superscript *

is to be read "conjugate."

16. Latent roots or characteristic values. A square matrix A possesses

the property of transforming certain vectors into themselves, i.e., if v

is a vector and ) a number and

Av - X v,
then the vector v is called a characteristic (or eigen) vector of A, and X

a latent root (or characteristic value) of A. Evidently if

Av = X v, then (A - X I)v - 0.

The matrix (A - X I) is therefore singular, and hence the determinant is

zero. The determinant A - X I when evaluated is a polynomial in k of

the Nth degree. Hence there are N X for which A - A I is singular, and

generally, N vectors for which (A - X I)v - 0.
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It is a simple matter to show that the latent roots of a symmetric of

Hermitian matrix are real, and that the roots of a skew-symmetric matrix are

imaginary.

17. The Cayley-Hamilton Theorem. The characteristic equation of a

square matrix defined by A - A If=o, as stated before, is a polynomial

of Nth degree in X . The Cayley-Hamilton Theorem states that the matrix

A satisfies this equation0

Example: Find the characteristic polynomial of

1 -1
A =

2 0

I1-A -1

(1 A_ ( A + 2 =X 2 - + 2.

According to the Cayley-Hamilton Theorem then

A2 - A + 21 should vanish.

A -
2 0 -2 0 2 -2

or A21 LI 1L 2 0 0 0
2 -2- 2 0 0 2- 0 0-

18. Quadratic forms. If x is an unknown column vector and A any

square matrix, then the product xtAx is known as a quadratic form. Since

this is a multiplication of a lxN by an NXN by a Nxl matrix, the product

is a scalar. Therefore the transpose of a quadratic form equals the quadratic

form or

x tAX = x A x.
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This quadratic form admits of a geometric interpretation. The equation

xtAx = c, where c is a constant, is a quadric surface composed of N-dimensional

ellipses or hyperbolae. Any matrix (square) can be expressed as the sum

of a symmetric matrix B and a skew-symmetric matrix S, i.e.,

B a 1/2(A+A t) and S = 1/2(A-A t),

and A - B+S.

The quadratic form of a skew-symmetric matrix and a vector x is zero

since xtSx = xtS x = -x Sx. Therefore x Ax - x Bx.t t t t t

It can be shown that the quadric surface given by the equation xVAx - 1

is one whose axes are given by the eigenvectors of B, and the reciprocal of

the squares of the lengths of the semiaxes of this surface are the characteristic

values of B. The surface, by the way, is centered at the origin, and hence

there always exists a linear change in variables which will rotate the axes

x so that the quadratic form is reduced to a sum of squares.

The change in variables may be expressed in matrix notation as

x = L x', where L is a matrix whose columns are the

normalized eigenvectors of B (by normalized is meant the sum of the squares

of the components is unity). This matrix L is usually called the normalized

modal matrix of B, and is such that

x2Ax = xt'L E A - Alg + 2X21 ****** 0NL *

- x 'Ax' .

This places the Xk of B in evidence. It may also be noted that A is

the diagonal matrix of the characteristic numbers of B and not A, unless A

is symmetric.
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If all the characteristic numbers of B are positive, then the quadratic

form is always positive for any non-zero x. In this case x Ax is a positive

definite quadratic form. In this event, the matrix A will be considered to

be positive definite if and only if the characteristic values of its symmetric

part are all positive. For other definitions see Sch~nhardt.o2

19. Rayleigh Quotient. The quadratic form x Ix = x will be referred

to as the squared magnitude of the length of the vector x. The ratio

xAx xtBx

xtx xtx

is called the Rayleight Quotient of A and is bounded above by the largest

characteristic value of B and below by the smallest characteristic value of B.

20. The characteristic values of A and A are identical. This follows

from a knowledge of the fact that the value of a determinant is unchanged if

its rows and columns are interchanged.

21. If A is a non-singular matrix, then the characteristic values of

A A are the same as those of AA 0 (Note: A A and AAt, with this one

exception, have nothing in common. They are neither equal nor transposes

of one another.) The proof of this amounts to a recognition of the fact that

the determinant of a product of matrices is equal to the product of the

determinants, hence

IA(AtA - I)Al -- t 01
The theorem is probably true even if A is singular, but fortunately

this need not be shown for the work which follows deals with non-singular

matrices.

I



APPENDIX II

HISTORY OF ITERATION PROCEDURES

An iteration procedure is understood to be a rule or set of rules

the repeated application of which will yield an answer or improved approximations

to the answer of a mathematical problem.

In general, problems are solved by first guessing an answer. In the

linear system no particular rules are stated for this first guess, but in

non-linear systems some shrewdness is necessary. After the first guess,

an automatic application of the rules of the procedure should produce the

answer or an "improved" approximation to the answer.

Evidently the procedures must converge, that is, the engineer or

mathematician must be certain that his work is fruitful. This would mean

not only assured convergence, but rapid convergence. It is not enough to

tell a man he will arrive at his destination unless he knows how long it

will take. If it takes too long, he may not have the time, desire, or energy

to make the trip.

1.0 History of the Problem

From the time of Newton until 1929, iteration procedures were the

plaything of mathematicians. With little practical incentive, not much was

done in this field. In 1929 Hardy Cross3 brought forth a moment distribution

scheme for the solution of trusses which excited wide interest. Since then

much work has been done.

A. The Newton-Raphson method is- familiar to all college sophomores

in calculus. It is used to determine zeros of functions, or, in its

extended form, to solve non-linear simultaneous equations. Though it may
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well be classed as the first iteration procedure of note chronologically,

it has been the first in order of importance also. The reason is its

rapid convergence.

In addition to the simplicity of the method, it has a geometric

interpretation. Essentially it linearizes a non-linear problem in the vicirity

of the approximation and obtains a new approximation by solving the linear

set obtained.

For example, let y = f(x). Suppose it is desired to find a zero of

f(x). With some restrictions it is possible to guess an x such that f(x)
0 0

is small. Assuming that the curve represented by y = f(x) is nearly linear

in the vicinity of the zero, one passes a straight line through the point

(x, f(x0 )) tangent to the curve at this point. The intersection of this

straight line and the x-axis is assumed to be a better approximation to the

zero of f(x) than x 0 . Usually this is the ease, and when near the answer

this procedure converges with increasing speed at each step.

This procedure has been so important to the work of the author that he

wises to emphasize it further. An example will make it clearer.

Let y = x2 - 2.

2
It is desired to firid the zero of x -2 which the reader will note is the square

root of two. The slope of the tangent to this curve at any point x is given

by the derivative, namely 2x. Thus, for any point xk' Yk = - 2, and the
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slope of the tangent is 2xk. From the figure at the right

it can be seen that the tangent line

erected at (xkyk) intersects the x-axis

a distance of &x - yk/2xk from xk'

Hence a new approximation x3, 1 can be

obtained from xk by subtracting Ax,

i.e., y

xk.1 - Xk - (xk -2)/2xk X

Suppose we let x0  2, then

x = 2 - 2/h - 1.5 -

x2 = 1.5 - .25/3 - 1.4167

x3 = 1.4167 - .007/2.833 - 1.4142

This answer is already correct to five significant figures since to

seven significant figures - = 1.414214.

The speed of this method is amazingl Note that the new approximation

is obtained from the old by subtraction of a correction.

Suppose now, one is confronted with two functions in two unknowns

and wishes to find the values of these unknowns which will reduce both functions

to zero. That is, let z - f1(x,y) and z2 2 (xy)* As in the case

of the one unknown, each of these functions can be represented as surfaces

in three dimensions. The intersections of these surfaces and the x-y plane

will be curves, and the point of intersection of these curves is the point

desired. The Newton-Raphson method suggests that one guess at the answer

as before.

One then proceeds to erect at the point corresponding to this guess

a tangent plane to surface number one and a tangent plane to surface number



- 111 -

two. These tangent planes intersect the x-y plane in straight lines, and

the intersection of these straight lines is to be the new approximation to

the answer.

Without going into the details the mechanics of this procedure are as

follows: If h is the correction to be applied to xk, and q the correction

to be applied to yk, then h and q are found by solving the pair of linear

simultaneous equations,

af 1 /ax * h + af/ ay q f 1 (Xyk)

af,/cx * h + af 2 /y q f2(xkyk)

where it is to be understood that the partial derivatives are evaluated

at the point (xk'k). The new approximation then is

x+1 a k - h and yk+ 1  yk - q.

Again it is felt that an example with pictures will prove helpful.

Let z - f1 (x,y) - (x-l)2 2 (y1) -

2 f 2 (x,y) - (x-2) + (y/2)2 -1.

If these surfaces are plotted on three-dimensional

Cartesian coordinates as at the right, Z

they are paraboloids with circular ard

elliptical cross sections.
I I
I /
I I
II
I /

/1/7 A
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The second figure, on the right, shows

the intersections of the surfaces f1 and f2

and the x-y plane, where it is evident at

a glance that one solution is (1,0).

However, the first guess will be chosen

as (0,0).

Tangent planes are now constructed

to each of these paraboloids which

intersect the x-y plane in the two lines

shown, the point of intersection of these

lines being the new approximation (1/h, 3/h). The reader will note that

this new approximation is a great improvement over the first guess. The

computations have been omitted purposely since it is the geometry that the

author wished to emphasize.

The generalization of this method to N unknowns is simple. If the

N unknowns to be found are x11' '2 '**'* XN, and the N functions of these

N variables are f, f2  ''0.' fN, one begins by defining the matrix of the

Jacobian of these functions evaluated at the kth approximation as

f f / 21 * * *a

~0 0 0

afN2 x1 f2/c)x21 *) *2 * N 1

and rk as the vector given by

rk a [f 1 (k) f2('k) *N k
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It is to be understood here that xk is a matrix or vector composed

tthof all the components of the k approximation.. f (xk) is intended to

mean f (g, ... , x) evaluated at the kth approximation.

Then the simultaneous equations representing the corrections may be

written in matrix form as

A k& Xk am rk, or

-1
AXk k rk.

Thus the iteration procedure may be summed up by writing

-1
Xk Xk -Ak rk'

B. The Spark of Life. Surprisingly little was done before

1929. In 1847 Cauchy2 presented an iteration procedure as did Seydel

in 1874. In 1929, however, Hardy Cross3 presented a paper to the A.S.C.E.

entitled, *Analysis of Continuous Frames by Dist*-ibuting Fixed-end Moments,"

His is really an application of the Seydel (Seidel) procedure to structural

frames, but it has the advantage that it appealed to engineers of the day

in a psuedo-physical way. To give some indication of its appeal, the

paper by Cross is eleven pages long and following this are 127 pages of

discussion. Evidently it was thought important then, even as it is now,

since almost no paper on iteration omits mention of the work.

In 1939 Templeh wrote a masterful paper discussing SouthwellP and

iteration in general. The Method of Descent is discussed, and amplification

6of Temple's work can be found in Hem,

The first attempt at a geometric visualization was made by Synge.

in 1944, and this is certainly well written in Ham.

C. N-Step Procedures. An N-step procedure is a method which,

starting with a wild guess at the answer to a set of N simultaneous equations,
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this guess can be reduced to the exact answer in N iterations.

8
In 1948 Fox, Huskey, and Wilkinson presented an N-step procedure

for linear simultaneous equations. Though this is probably not the first

such procedure of its type, it is the first reference of recent years.

Lanczos 9 in 1950 presented an N-step procedure for the solution of the

20 10
eigenvalue problem. Hestenes in 1951 and Stiefel in 1952 presented

a method based on Descent.
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THE AUTHOR'S PROCEDURE EXTENDED TO COMPLEX MATRICES

This section deals with the author's procedure entirely. The procedure

is extended to include linear complex simultaneous equations, and a procedure

for evaluating the characteristic equation of any real or complex matrix.

A proof is given for the general case which is long and difficult. It

is felt that orily those readers who are particularly interested need to

go through this. It is included simply because the work would be incomplete

without it.

1.0 Complex Equations

Let the problem to be solved be

Ax-

where A is a non-singular, complex, square matrix, x an unknown complex

column matrix to be found, and y a known column matrix.

Then a procedure which will yield x in N steps is given by the formulaes

+ -k - kk tPk *

(The asterisk is to be read "conjugate.")

k a rk k-l k-1

rk f xUky

r k rk

Mk * * which is real and
(A tpk t(A tpk)

*
rk r k

k-1 * which is also real.
rk--k-rkl, rk-

t
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2.0 The Characteristic Equation of A

If A is a non-singular complex matrix, the characteristic equation

of A can be obtained by the following double iteration procedure:

Choose e arbitrarily.

Let e'- e and
0 0

ek k

k+ E klPkl.

elk+1

e k

p 0
p - Ae,

e e k - k

*
-A t e'k +

-A e '

k
* k-I

k- k_-1_

* *

ek Pk p k

t t

k t k

k-1t t k-1

Once the k and ek-1 are all- found, the iterative scheme

P0 al , Q -1

Pk+1 = k - MkA

Qk+1 - Pk+l * k k *

where P and Qk are polynomials in A of the kth degree, yields PAk k N

as the characteristic equation of A. If, however, the process terminates

before the Nth step, PM is a factor of the characteristic equation of A.

It is readily admitted that this is a somewhat complex procedure.

It is practically valueless if A is not Hermitian since some of the k

may become infinite otherwise.

ek+1 -

Pk
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If the mk and 6 k are obtained by using the procedure of Stiefel

and Hestenes and used with the two polynomial difference equations on the

preceding page, one does obtain the characteristic equation of A as a

by-product of the solution of the set of equations. If the mk and 6 k

are obtained from a solution of a set of equations using the author's

procedure, the equation obtained is that of the characteristic equation

*
of AA if A is real, and AA if A is complex.

It is the author's opinion that Lanczos' procedure is superior to

these. His procedure does not even require A to be nonsingular, and hence

should be easier.

3.0 General Proof

Let A be a non-singular complex square matrix of order N,

x a column matrix, and

y,y',p,p',r,r', etc. be column matrices.

Ax - y (1)

x = A~1y

A *tx= A A =

Define xk as the kth approximation to the answer x of the problem

Ax - y, and xk' as the kth approximation to the answer x of the problem

A *tx = y', where x is the same in both instances. If ek = xk - x and

ek I xk' - x then

rk Aek
* (2)

and rk' -A e'
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Let x - x=1 so that e - e' (3)

+1 -k - mkk and x'k+l xk -k Pk (4)

pk - Aek k-1Pk-1 and pk Ae * k-1E'-ik- k tk k 1pk-1

e~ ek-fl~ and et -el m(6)k+1 k k anpe k+1 k k k(6)

mk is now chosen so that ek+1  k+1 is stationary, and Ek-1 so

that *1

One sets p -Ae and p ' e . , . (7)
0 0 0 to0

(a) mk

* **
ek*lt *k+1 (k - DIpkt)(e 'k m mk1Ik

When this is multiplied out and the first derivative is taken with respect

to mk and set equal to zero, one obtains

* *
pkt e k + ek k

nk - 2 *pkp k

Assume here that the denominator does not vanish, and if it does, one

starts over with a new x and hopes for the best.

It is now desired to demonstrate that

Pk *k a k k for-all k.
t t

Proof: (by induction)

Setting k - 0, and noting that e - e

p e' * (Ae ) e -e Ae
0 0to o0t t 0

* 1* 0* *and e p ' - e0 (Ate ) - e Ae .
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So it is true for k - 0.

Assume that it is true for k - k.

Pk k 6 k

From equations (5) and (6)

Pk+1 8 k+1 = (Ae k+l kk)t(e *k - MkPk)

Pk41 te *k.1 - e k~l A te k # ,* ek * k - Xe'k+l A t P'k
*k~ * * *

and k +lP 1 (ek - mkpk)t(Ate k.k k 'k)
*

ek e *-'+ t A te'*Ik~l + e tP e

- tkkk k *

nm k kAp k - k k -Pc Ae'

tt
- ~ek A e k+1 - k k + *1 k k

The coefficient of is zero by assumption. Takng the first and last

terms on the right together, and the second and third:

e 1t e k+1 p e*k+1w (ek - k Ae*lk+ 1 A e

+ mk tk+1 t k k Ae k+ k

ae *

t t

-k+1 A, e, 'k+1 k+1 A e, 'k+1 0

I *
so ek+31 k+ - k+1 k+ Q.E.D.



- 120 -

and
ek k Pk ek
- - t

pk kb) &t

(b) Ek-1

One chooses ,ki so that

Ek uk-1
*

k p k-1i

Postmultiplying (5) by p*1yl and p

pk k-1 k t Atpk-1

* *

p 'k k-1 e Ap k-

*

ek Atp I

so ek- *1
~k-1 p

*

k- t-1 k1
- 0

*
ek-1 k-1 ok-i 0.

e 'k Ap1k
or - * k-i

t- -

It is not apparent that the above expressions for

To show this it must be demonstrated that

ek Atp 'k-l

(9)

6 k-1 are equivalent,

k * k-1

Proof: (by induction)

Setting k a 1

* *
81 Ap' - ei AtAe e

e -i 0 e *11AAe, .

(8)

= 0.

and
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But e1 -e -

A2, 
*

'p and e' - e m* pt

A e - MP* A2, *o A e - m e A3e

and el A e
= e A e - mp A 2 * eA 2e * - m e A e 0

so e A p* - e ' Ap .
t

It is true for k = 1.

Assume it is true for k - k, i.e., that

* *
ek k-1 e k k-1

From equations (5) and (6)

ek+1 * k (ek Vk )A t(At e* k + k-lp* k-1)

and ,*1 Apk * - mk* t)A(Aek + kPk.1)

Multiplying these out and subtracting and cancelling like terms, one

obtains

ek+ tt k
e k+1t APk - mk( k A k e k-1' ktApk-l - Pk At e

*
- k-1 k Atp 'k-1i

- e*IktAp *tk-1)k-1e kA 'k-1

The last term on the right is zero by assumption, so

*

"kt k
* * r * *
e1 Ap - nk(p'k A IAe* k-1 - kA A e k -1 k- )k~i k ic 1%L -k~ tt [*k* c-i- *k-ij)

- mk1 k

or e Aptk+l t t 'k

k -k kAtp ) - 0.

= 1k+1 Apk . I

so e

(10)
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(c) It van now be shown that

Sk j W 0

e**k j A c e kt ' - 0

To prove this, one first shows that

for j k

for j /

* *
~k+1 k-1 p1 k+1 k-1 - 00

Proof : (by induction)

Postmultiplying (6) by p k' and using (8)

e k+lt k

and similarly

ek Pk g

ek t k

k+l Pk a 0.

Postumltiplying (6) by p k-1I

*
ek+l1

e *k1 k-1

e k t k- 1

-e* k tk-1

*

- %Vk k 'k-1

- N k Ic Pk-1

The right-hand members of both equations are all zero by equations (11)

and (12) so

ek+l 'k-1 e k+1 k-1 - 0.

Premultiplying (5) by *' 2

(13)

e k+1 k ek+ Aek+ k-1 k+1 k-1

ek+P1t k+ A e 'k-1ek+1 k-l't t .t

pkt
and

Pk t k

(12)

and

and

I
I
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The left-hand quantities are zero by (12), and the coefficients of

6k-1 are zero by (13) so

e 'k+1 Aek = ek+1 tA e k (iii)

Postmultiplying (6) by Aek-1

e* e ' -e Aek
tk~ t k-i kt k-1

and
k+1 tA e k-1 kt t k-1

- k Aek-1

~ pk t k-l'

The first terms on the right are zero by (14) so

e tA e k-1 k A e 'k-1

and e 'k+1 Aek-1 k Aek-1

Setting k - 1 one obtains

e Ae M -m Ae

and e A e *1 - -1mp tAe .

But Ae - p0 and A 0 - p so

* *
e '2Ac - -mp'p -O

and e A e 0

From equations (6):

- -,ap p1 - 0 by equation (11).

p I (ek e
k Mk k+1

p*' k+1*p k( k ek+1

(15)

(16)
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From equations (5)

k+2 - Aek+2 k+1 k+l

and p*,k+2 = Ate k+2 + k+1k+1'

Combining these two equations:

A
e *k+2 At

Pk+2t N k k+1

and *

e'k+ A

P k+2 k k ek+l)

When multiplied out, the last term on the right is zero by (14) so

Pk+2 ' ek+2 A e *k

(17)
ad *, 1 * A

P k+2 k ek2 Aek

Setting k - 0, equation (16) indicates that

Pk+2 Pk = *k+2' k - 0 for k - 0.
t t

Assume it is true for k = k, i.e.,

Pk+2 k w *k+2 tk - 0.

From equation (5)

Aek+1 - Pk+l kpk and At e *k+ k+1 k k

From equation (15):

e *k+3 Aek+I rnk+2pk+2 Aek+1 2* k+2 t (k+1 k k

- -mk+2 k+2 tk+1 + mk+2 Ekp k+2 k
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and similarly

e A*t *~
ek*3t A t k+1 * +2k*2t k+1 + mk+2 k k+2 k*

But the first terms on the rigit of each equation is zero by (11) so

**
e k+3 Aek+1 -mk+2F k'k+2 Pk

ek*3 t k+1 -k+2 rkk+2 k k

Equation (17) is now substituted in (18), increasing k by 1

* 1 * mk2 k*

k3 k+1 W -k+3 A e' mk*I +1 k+2 k

Since the right-most term is zero by assumption,

Pk+3tp* k+1 *

In a similar way one shows that p* k+3Pkl - 0 so

pk+2 *k *k+2 Pk - 0 for all k Q.E.D.

From (18) one sees that

. **k+2 Aek a ek+2 At k also.

This equation is similar to (14), hence one may proceed with the

proof of ,k. . -.
p r o o o f k + 3 t * k = k + 3 t k a 0

in exactly the same way, and so forth. Hence it is true then that

p e k kAt e Ae -0

for j k.

(18)

(19)

(20)
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(d) The pn and p'n form an independent set if for no k

pk *k O.

This can be shown by assuming that this is not true, that is, by assuming

one p is a linear combination of the others. Premultiplying this by

p k yields a contradiction.

(e) Thus pN N - 0, and eN and e N a Oa

(f) If A is Hermitian (or symmetric if real), convergence is

assured, and double iteration unnecessary for the mk and E k are real,

and all the primed quantities are therefore equal to the unprimed

quantities. That the mk and E k are real can be most easily seen by

noting that if they are real, the unprimed quantities equal the primed

quantities, and that if this is true, the constants must be real. A

proof of this is a simple matter and can be done by induction.
* *' * *

If A - A and since e -e' then p - A e - p .

Surely then, m0 is real and e1 - eil so 0 is real. It follows

therefore that p1 = p'1 and so forth.

(g) ek  k k t k no matter what A is.

pk 't A e*Ip * *Since p* - A e + p k -

k k k A k k-1 k k-1
t k kt k kltklh

The last term is zero by equation (12), so

ekp k k AeI k as asserted.
tI
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Thus mk can be rewritten in light of this and equation (8)

ek tt k

k k t k
t

(hi) Using e* = et + m *

one shows that ek t Ae1 = 0 implies that

- ekAe

m = for k j j-1.

Multiplying this by equation (9) yields

e e*?

ek1 -l A * by set t in g j k .

kk-l k-l

Using equation (8) for k1 , and the result of (g) above

k-l
e ktAeI '
k-1 t k-1

40 Rgsume

The procedure then can be written alternatively as

e-

ek+1 = ek - mk-

pk - Aek* 6k-lk-1

e =e
0 0

p0 = Ae9; p = A e

k+1 k

*k = t k

(21)

(22)

* c k
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e Ae'

ekt k

pk k

ek At~k

Uk-l - *
ek-t Ate 'k-1

If, in this procedure, A is replaced by A *tA, and pk by *tpk, the

procedure reduces to that of Section 1 in this chapter. Since AtA is

Hermitian, then only one iteration is necessary, as asserted.

5.0 Further Examples of these Procedures

A. Non-symmetric, hon-hermitian complex matrix.

Ax - y where

S 1 11+j 0 -1-

-1 1+j 1-J y- 3 where j=- Let x - 0 r- -3

0 j 2 2,J1 0 -2-

2+j -2-J 39-253

A* Fr - - m -= 3 r8 1 -19+16j . Note
-8-61 8+6j 14+15J

that the residuals are not orthogonal, but the conjugate of one is

orthogonal to the other.

j,

253-2033 7-367J

o 1 - -210+114i A*tpi - 75+171J ml - 199x57

50+82j 29-135j

~~~1
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-489+l,0493]

x 435 - 5973J

1, 757+1,8651

-5l2-876j

r2 - 178-1,1033

L-393+1,64031

6
1

- 572x12,869

5 2x3312 A

p2 = 199 .
52x331'

2 5331
m2*17x199

12, 103-20,h13j

-12,100-1,801 j

-35+18,942J

I3

1+j

Using the constants in the polynomial iteration scheme, one obtains

the characteristic equation of AA I

P -1, Q -1, -1- X, Q - ,3P48 857 57' 57 S99,009
57x1655

,1_99_ 2
1655

52x331 212,869x31 99,009x1655+572x2, 869 ,199 2

5 x331 57x5 x331 1655

P3 - 1 - + 2 -17 , or multiplying by -17, X--13 X2 4h3A

B. The characteristic equation of A, where A is nonsymmetric and

nondefinite.

For purposes of comparison, the same matrix will be used as in

Examples 1 and 2 of Chapter V.

1 1

A - 2 -2

1 ;0

0 .This is a double iteration procedure, as previously

A*tp 2  2
5 x3 31

-Ana.

-17.
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indicated, and curiously enough a choice of e - O causes p p'- 0,

-0
i.e., the procedure does not work for this initial guess. If e 0 is

chosen as

[01
1 it works fine.

0J

0 ~12

e - 1 PO .2 p' - -2

oi 0

Ae - 0 Ae'l- 0j

1 -2

6
- [i]

-2

2e - -1

o3

2
F0 9

12 2

0 l 0

p- 9

0
Ae2 -0

-13

f- 2 3
-3

4
3

0

At e2 -0

6

- 2 m2

Using the constants nk and Ek in the polynomial

as before, one obtains

0

63 a * 3 0 *

0

iteration scheme

7 + , P2P - 1, Q 1, P 1

Q 424 2 2 p 2 .1
Q2w 3'a2, 3 35 + Multiplying P3

by 6 gives the characteristic equation of A, vi. 3 -4 + 6.

2 1 1 9 2 -i
-224



BIOGRAPHICAL NOTE

Edward J. Craig was born in Springfield, Massachusetts, -on July 17,
1924, the son of an uncommonly good portrait photographer with an uncommonly
good sense of humor, and the son of a brilliant and lovable mother.

Perhaps the simplest way to convey a picture of Frank and Lillian
Craig is to remark that if their son has done anything well in this world
it was no accident.

The author was graduated from the Holy Name Grammar School in
Chicopee, Mass., in 1937. He attended Cathedral High School in Springfield,
Mass., for three years, transferring to the Albany High School, Albany,
New York, in 1940. He was graduated from the latter in 1941 and entered
Union College in September of that year.

The Army beckoned in June 1943, and over three years were spent
in the Army and Army Air Corps. In November 1944 he was commissioned
as a navigator on a bomber and was finally released in September 1946
as a first lieutenant.

Studies were resumed at Union College, and graduation came in 1948.
He then spent a year in the Mathematics Department of Union College as an
Instructor and in 1949 entered the Massachusetts Institute of Technology
as a graduate student and teaching assistant. He is now serving as
Assistant Professor at Northeastern University.

He has one older brother, Frank, Jr., and a younger sister, Lillian.
He was married June 14, 1947 to Jeanne M. McDonald and is the father of
Theresa, 5, and David, 3.
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