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We compute the entropy density of the confined phase of QCD without quarks on the lattice to very

high accuracy. The results are compared to the entropy density of free glueballs, where we include all the

known glueball states below the two-particle threshold. We find that an excellent, parameter-free

description of the entropy density between 0:7Tc and Tc is obtained by extending the spectrum with

the exponential spectrum of the closed bosonic string.
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I. INTRODUCTION

The phase diagram of QCD is being actively studied in
heavy ion collision experiments as well as theoretically. A
form of matter with remarkable properties [1] has been
observed in the Relativistic Heavy Ion Collider (RHIC)
experiments [2–5]. It appears to be a strongly coupled
plasma of quarks and gluons (QGP), but no consensus on
a physical picture that accounts for both equilibrium and
nonequilibrium properties has been reached yet. On the
other hand, below the short interval of temperatures where
the transition from the confined phase to the QGP takes
place [6–9], it is widely believed that the most prominent
degrees of freedom are the ordinary hadrons. From this
point of view, the zeroth order approximation to the prop-
erties of the system is to treat the hadrons as infinitely
narrow and noninteracting. We will refer to this approxi-
mation as the hadron resonance gas model (HRG). The
HRG predictions were compared with lattice QCD ther-
modynamics data in [6,10], and lately they have been used
to extrapolate certain results to zero temperature [7]. The
HRG is also the basis of the statistical model currently
applied to the analysis of hadron yields in heavy ion
collisions [11], and recently the transport properties of a
relativistic hadron gas have been studied in detail [12].

Since any heavy ion reaction ends up in the low-
temperature phase of QCD, it is important to understand
its properties in detail in order to extract those of the high-
temperature phase with minimal uncertainty. In this paper
we study whether the HRG model works in the absence of
quarks, in other words in the pure SUðN ¼ 3Þ gauge the-
ory, where the low-lying states are glueballs. There are
reasons to believe that if the HRG model is to work at any
quark content of QCD, it is in the zero-flavor case. First,
the mass gap in SU(3) gauge theory is very large,M0=Tc ’
5:3. As we shall see, the thermodynamic properties up to
quite close to Tc are dominated by the states below the two-
particle threshold, which are exactly stable. Furthermore,
because of their large mass, neglecting their thermal width
should be a good approximation. Second, the scattering
amplitudes between glueballs are parametrically 1=N2

suppressed while those between mesons are only 1=N

suppressed [13]. This means that the glueballs should be
free to a better approximation than the hadrons of realistic
QCD.
An additional motivation to study the thermodynamics

of the confined phase of SU(3) gauge theory is that it is a
parameter-free theory, simplifying the interpretation of its
properties. Its spectrum is known quite accurately up to the
two-particle threshold [14,15]. By contrast, in full QCD
calculations, lattice data calculated at pion masses larger
than in Nature are often compared out of necessity to the
HRG model based on the experimental spectrum [6,7].
Finally, calculations in the pure gauge theory are at least
2 orders of magnitude faster, which allows us to reach a
high level of control of statistical and systematic errors; in
particular, we are able to perform calculations in very large
volumes.

II. LATTICE CALCULATION

We use Monte-Carlo simulations of the Wilson action
Sg ¼ 1

g2
0

P
x;�;�Trf1� P��ðxÞg for SU(3) gauge theory [16],

where P�� is the plaquette. The lattice spacing a is related

to the bare coupling through g20 � 1= logð1=a�Þ. The tem-

perature T is set by the extent of the (periodic) Euclidean
time direction, 1=T ¼ N�a, where N� is an integer. We
calculate the thermal expectation value of � � T��, the

(anomalous) trace of the energy-momentum tensor T��,

and of �00 � T00 � 1
4�. In the thermodynamic limit,

Ts ¼ eþ p ¼ 4
3h�00iT; e� 3p ¼ h�iT � h�i0: (1)

Here e, p, s are, respectively, the energy density, pressure
and entropy density. The operator �00 ¼ 1

2 ð�Ea � Ea þ
Ba �BaÞ requires no subtraction, because its vacuum ex-
pectation value vanishes. The choice of �00 and � as
independent linear combinations is convenient because
they both renormalize multiplicatively. We use the
‘‘HYP-clover’’ discretization of the energy-momentum
tensor introduced in [17,18]. The normalization of the
�00 operator differs from its naive value by a factor that
we parametrize as Zðg0Þ�ðg0Þ. The factor Zðg0Þ is taken
from [19] and rests on the results of [20]; its accuracy is
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about 1%. The factor �ðg0Þ is obtained by calibrating our
discretization to the ‘‘bare plaquette’’ discretization in the
deconfined phase at Nt ¼ 6 [17]. We find, for 6=g20 be-

tween 5.90 and 6.41, �ðg0Þ ¼ 0:1306 � ð6=g20Þ � 0:1865
with an accuracy of half a percent. For the lattice beta-
function that renormalizes �, we use the parametrization
[21] of the data in [22] and the same calibration method.

Our results for the entropy density from Nt ¼ 8 and
Nt ¼ 12 simulations are shown on Fig. 3. The displayed
error bars do not contain the uncertainty on the normaliza-
tion factor, which is much smaller and would introduce
correlation between the points. This factor varies by only
7% over the displayed interval and so to a first approxima-
tion amounts to an overall normalization of the curve. Our
data is about 5 times statistically more accurate than that of
previous thermodynamic studies [23,24], which were pri-
marily focused on the deconfined phase. Just as impor-
tantly, we kept the finite-spatial-volume effects under good
control, in particular, very close to the deconfining tem-
perature Tc.

We use periodic boundary conditions in all three spatial
directions, the extent of which is L. Figure 1 shows the size
of finite-volume effects as a function of L in units of 1=T,
for T fixed. For instance, at 0:985Tc the conventional
choice LT ¼ 4 leads to an overestimate of the entropy
density by a factor three. The fact that the Nt ¼ 12 data
fall on the same smooth curve as the Nt ¼ 8 is strong
evidence that discretization errors are small. We parame-
trize the volume dependence empirically by a Aþ Be�cLT

curve, and use it to convert the Nt ¼ 12 data to LT ¼ 8. At
0:929Tc, there is no statistically significant difference be-
tween LT ¼ 6 and 8 and we do not apply any correction. It
is the corrected Nt ¼ 12 data that is then displayed on
Fig. 3.

In [25], formulas for the leading finite-volume effects on
the thermodynamic potentials were derived in terms of the
energy gap of the theory defined on a ð1=TÞ � L� L

spatial hypertorus. Close to Tc, this gap corresponds to
the mass of the ground state flux loop winding around the
cycle of length 1=T. If �sðT; LÞ � sðT;1Þ � sðT; LÞ, the
formula then reads

�sðT; LÞ ¼ e�mðTÞL

2�L

�
m2ðTÞ þ 3

2
T@Tm

2ðTÞ
�
: (2)

Using the calculation of mðTÞ described below, the pre-
dicted asymptotic approach to the infinite-volume entropy
density for 0:985Tc is displayed on Fig. 1. While the sign is
correct, the magnitude of the finite-volume effects is not
reproduced for LT � 8. We conclude that the asymptotic
approach to infinite volume sets in for very large values of
LT. Since mðTÞL is only about 4 when LT ¼ 6, it is not
implausible that flux-loop states with high multiplicity
dominate the finite-volume effects at that box size.
Next we obtain the correlation length �ðTÞ of the order

parameter for the deconfining phase transition, the
Polyakov loop. The method consists in computing the
two-point function of zero-momentum operators, designed
to have large overlaps with the ground state flux loop,
along a spatial direction. We fit the lattice data for mðTÞ �
1=�ðTÞ displayed on Fig. 2 with the formula

�
mðTÞT
T2
c

�
2 ¼ a0 � a1

�
T

Tc

�
2 � a2

�
T

Tc

�
4

(3)

and find, either fitting a2 or setting it to zero,

a0 ¼ 5:76ð15Þ; a1 ¼ 4:97ð65Þ; a2 ¼ 0:55ð54Þ (4)

a0 ¼ 5:90ð9Þ; a1 ¼ 5:62ð10Þ; a2 ¼ 0 (5)

with in both cases a �2=dof of about 0.3. We remark that
the parameters ai are not far from the Nambu-Goto string
[26] values a1 ¼ 2�

3
	
T2
c
¼ 5:02ð5Þ [27] and a2 ¼ 0 (	 is the

tension of the confining string). By open-closed string
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FIG. 1 (color online). Finite volume effects on the entropy
density at two (fixed) temperatures close to Tc.
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FIG. 2 (color online). The mass of the temporal flux loop as
calculated from Polyakov loop correlators, and the fit (5). The
Nt > 11 data are from [40], the Nt ¼ 5 data from [27].
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duality,mðTÞT is also the effective string tension governing
the linear rise with distance of the free energy of two static
charges. As in [28], we define the ‘‘Hagedorn’’ temperature
as the point where this effective string tension vanishes. We
thus obtain from the second fit

Th=Tc ¼ 1:024ð3Þ: (6)

This extraction amounts to assuming mean-field exponents
near Th (it is not clear which universality class should be
used [29]). The result is stable if the fit interval is varied,
and also if a2 is fitted with a0 and a1 constrained to the
known values of ð	=T2

c Þ2 and 2�
3

	
T2
c
. We note that a direct

extraction of the Hagedorn temperature [30] from the
asymptotic density of glueball states is technically more
difficult, and somewhat ambiguous at finite N. The authors
of [30] find a much larger Hagedorn temperature, which we
attribute to a preasymptotic, slower growth of the density
of glueball states—an interesting fact by itself. In Sec. III
we will instead assume that the two definitions coincide.
(We expect them to coincide in the large-N limit; it would
be very valuable to test this expectation by a direct calcu-
lation, although identifying highly excited states is numeri-
cally challenging.) Now that we have determined Th for the
gauge group SU(3), we can ask whether treating N ¼ 3 as
large leads to a good description of the thermodynamic
properties of the theory.

As a check on the normalization of the operators �00 and
�, we calculate the latent heat Lh in two different ways.
The latent heat is the jump in energy density at Tc. Since
the pressure is continuous, we obtain it instead from the
discontinuity in entropy density or the ‘‘conformality mea-
sure’’ e� 3p. We obtain s and e� 3p on either side of Tc

by extrapolating LT ¼ 10 data from the confined (decon-
fined) phase towards Tc. The result is

�s

T3
c

¼ 1:45ð5Þð5Þ; �ðe� 3pÞ
T4
c

¼ 1:39ð4Þð5Þ; (7)

where the first error is statistical and the second comes
from the uncertainty in the extrapolation (taken to be the
difference between a linear and quadratic fit). The com-
patibility between these two estimates of Lh=T

4
c is strong

evidence that we control the normalization of our opera-
tors. They are in good agreement with previous calcula-
tions of the latent heat performed on coarser lattices
[27,31]. We have also verified more generally that the
thermodynamic identity T@Tðs=T3Þ ¼ ð1=T3Þ@Tðe� 3pÞ
is satisfied within statistical errors.

III. INTERPRETATION

In infinite volume the pressure associated with a single
noninteracting, relativistic particle species of mass M with
n	 polarization states reads

p ¼ n	
2�2

M2T2
X1
n¼1

1

n2
K2ðnM=TÞ (8)

where K2 is a modified Bessel function. By linearity, the
knowledge of the glueball spectrum leads to a simple

prediction for the pressure and entropy density s ¼ @p
@T ,

which is expected to become exact in the large-N limit.
Since only the low-lying spectrum of glueballs is known, it
is useful to consider how the density of states might be
extended above the two-particle threshold 2M0, where M0

is the mass of the lightest (scalar) glueball. The asymptotic
closed bosonic string density of states with b degrees of
freedom is given by [32]


ðMÞ ¼ 1

Th

�
�b

3

�
bþ1

�
Th

M

�
bþ2

eM=Th (9)

(for instance, b ¼ 24 for a string living in 26 dimensions).
In the string theory, the Hagedorn temperature Th is related
to the string tension, T2

h ¼ 3	
2� , corresponding to Th=Tc ¼

1:069ð5Þ [33]. Below we use this value as an alternative to
the more direct determination (6).
On Fig. 3, we show the entropy contribution of the

glueballs lying below the two-particle threshold 2M0.
The curve is just about consistent with the smallest tem-
perature lattice data point, but clearly fails to reproduce the
strong increase in entropy density as T ! Tc. The figure
also illustrates that the two lowest-lying states, the scalar
and tensor glueballs, account for about three quarters of the
stable glueballs’ contribution. We have used the
continuum-extrapolated lattice spectrum [14,34].
Adding the Hagedorn spectrum contribution, Eq. (9)

with Th given by Eq. (6) and b ¼ 2, leads to the solid
curve on Fig. 3. It describes the direct calculation of the
entropy density surprisingly well, particularly close to Tc.
(We note that, based on Fig. 1, the data point closest to Tc

may still be affected by an upward finite-volume effect at
the one-sigma level.) By contrast, other integer values of b
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lead to values of the entropy near Tc that are much further
away from the lattice data: at 0:9855Tc, the solid curve
would go through s=T3 ¼ 0:421, 0.239, 0.195, 0.191 for
b ¼ 1, 2, 3, 4, respectively. This is a striking conclusion,
since there is a large body of numerical evidence ([35] and
Refs. therein) that on distances r � T�1

c , the QCD string
has b ¼ 2 (transverse) degrees of freedom. On distance
scales r ¼ OðT�1

c Þ, it is thought, in part based on the AdS/
CFT paradigm, that additional, massive degrees of freedom
play a role (see for instance [36–38]). The integral over M
that leads to the prediction for s=T3 is dominated by very
massive states, for which one might think that the massive
string modes play an important role. For instance, at
0:9855Tc, 17% of the total integral comes from the region
M> 5M0. A possible explanation is that the cost of excit-
ing one such massive mode is numerically significantly
greater than Th.

The dominant uncertainty in comparing s=T3 is firstly
the matching prescription between the lattice spectrum and
the Hagedorn spectrum (about 5%), and secondly the value
of Th. One should also bare in mind that Eq. (9) is an
asymptotic expression based on the Hardy-Ramanujan
formula, which overestimates the density of states.

At the lower temperatures, the displayed curve for b ¼ 2
tends to underestimate somewhat the entropy density. This
is likely to be a cutoff effect. Indeed, at fixed Nt lower
temperatures correspond to a coarser lattice spacing, and
the scalar glueball mass in physical units is known to be
smaller on coarse lattices with theWilson action [39]. If we
use the stable glueball spectrum calculated at g20 ¼ 1 in-

stead of the continuum spectrum, the agreement of the
noninteracting glueballþ Hagedorn spectrum with the lat-
tice data at the lower four temperatures is again excellent.
This difference provides an estimate for the size of lattice
effects.

To summarize, we have computed to high accuracy the
entropy of the confined phase of QCD without quarks. The
low-lying states of the theory are therefore bound states
called glueballs, and their spectrum is well determined
[14,15]. If the size N of the gauge group is increased, the
interactions of the glueballs are expected to be suppressed
[13]. To what extent the glueballs really are weakly inter-
acting at N ¼ 3 is not known precisely. Some evidence for
the smallness of their low-energy interactions was found
some time ago by looking at the finite-volume effects on
their masses [40]. But it seems unlikely that glueballs well
above the two-particle threshold would have a small decay
width. We have nevertheless compared the entropy density
data to the entropy density of a gas of noninteracting
glueballs. While restricting the spectral sum to the stable
glueballs leads to an underestimate by at least a factor two
of the entropy density near Tc, extending the spectral sum

with an exponential spectrum 
ðMÞ � expðM=ThÞ, sug-
gested long ago by Hagedorn [41], leads to a prediction
in excellent agreement with the lattice data for the entropy
density (Fig. 3). This is remarkable, since the analytic form
of the asymptotic spectrum is completely predicted by free
bosonic string theory, including its overall normalization
[Eq. (9)]. Therefore, since we also separately computed the
temperature (identified with Th) where the flux loop mass
vanishes, no parameter was fitted in the comparison with
the thermodynamic data. By contrast, the entropy density
is not nearly as well described if the Nambu-Goto value of
Th is used, see Fig. 3, or if the number of degrees of
freedom of the string b is taken to be different from two.
With detailed and precise data at larger N, the interpreta-
tion proposed here could potentially be put on a more solid
footing, since glueball interactions are 1=N2 suppressed.
And one could search more systematically for evidence of
massive string modes in the glueball spectrum.
The success of the noninteracting string density of states

in reproducing the entropy density suggests that once the
Hagedorn temperature has been determined directly from
the divergence of the flux-loop correlation length, the
residual effects of interactions on the thermodynamic po-
tentials are small. It may be that thermodynamic properties
in general are not strongly influenced by interactions when
a large number of states are contributing. A well-known
example is provided by the N ¼ 4 super-Yang-Mills
theory, whose entropy density at very strong coupling is
only reduced by a factor 3=4 with respect to the free theory
[42]. In this interpretation, the main effect of interactions
among glueballs on thermodynamic properties is to
slightly shift the value of the Hagedorn temperature Th

with respect to its free-string value. A possible mechanism
is that the string tension that effectively determines Th is an
in-medium string tension that is�8% lower than at T ¼ 0.
Returning to full QCD, our results lend support to the

idea that the hadron resonance gas model can largely
account for the thermodynamic properties of the low-
temperature phase. Whether the open string density of
states reproduces the entropy calculated on the lattice can
also be tested at quark masses not necessarily as light as in
Nature using a simple open string model [43].
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