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In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both
in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we
compute the dependence of the exact Casimir force between the arrays under both lateral translations and rotations.
Although typically the force between such structures is well characterized by the proximity force approximation
(PFA), we find that in the present case the microstructure modulates the force in a way qualitatively inconsistent
with PFA. We find instead that effective-medium theory, in which the slabs are treated as homogeneous, anisotropic
dielectrics, gives a surprisingly accurate picture of the force, down to separations of half the period. This includes
a situation for identical, fluid-separated slabs in which the exact force changes sign with the orientation of the
wire arrays, whereas PFA predicts attraction. We discuss the possibility of detecting these effects in experiments,
concluding that this effect is strong enough to make detection possible in the near future.
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I. INTRODUCTION

Casimir forces are usually attractive interactions measur-
able at small separations, but recent theoretical works [1–8]
have predicted a variety of situations in which these forces can
be modified by using complex microstructures. In addition, by
utilizing different choices of materials the Casimir force can
be changed in both magnitude [9] and sign [10–12]. However,
with some exceptions [7,8], the qualitative aspects of these
effects can be explained through a combination or competition
of forces calculated using some form of the proximity force
approximation (PFA, a common heuristic description of the
Casimir force as pairwise interactions between parallel surface
patches) [13]. It is therefore of interest to consider situations
in which geometry not only allows the Casimir force to be
modulated (e.g., by reducing or changing the sign of the force),
but also creates effects that cannot be accounted for by PFA.

In this paper, we introduce and examine a geometry that
exhibits both of these qualities. We examine the configuration
shown in Fig. 1, consisting of two identical microstructured
slabs consisting of periodic arrays of dielectric nanowires. We
compute the exact Casimir force for this geometry using a
combination of existing scattering theory techniques [14–16],
to be described below. We find that the microstructure of
the slabs leads to a number of interesting qualitative effects:
the force between the slabs can be dramatically modulated
by rotating the two slabs at fixed surface-surface separation.
In vacuum, the force between the slabs can be significantly
reduced (more than halved as the rotation angle changes), and
if the slabs are immersed in a fluid, the sign of the force can
flip. It turns out that, even at moderate separations d/a ∼ 1,
PFA (an uncontrolled approximation) cannot capture either of
these effects. Specifically, consider the behavior of the Casimir
force between the slabs as they undergo lateral translations y

(at y = 0 the slabs are mirror symmetric) and rotations θ . At
θ = 0, the slab microstructures are aligned, as shown in Fig. 1

(top), while for θ = π/2 the slabs are crossed, as shown in
Fig. 1 (bottom). As y and θ are varied, the slab surface-surface
separation d is kept fixed. From a simple geometric argument,
it is clear that for vacuum-separated wires PFA predicts the
following bound on the Casimir force between two identical
slabs:

Faligned,y=a/2 � Fcrossed � Faligned,y=0 (1)

(a positive force is attractive). Here Fcrossed denotes the force
when θ = π/2. This bound is insensitive to the details of
the exact PFA used, and simply relies on the fact that the
wire surface-surface separations are minimized at θ = 0,

y = 0 and maximized when θ = 0,y = a/2. Although a PFA
prediction must be valid as d/a → 0, for the systems examined
in this work we find that the bound Eq. (1) is violated even at
moderate distances d/a ∼ 1. For vacuum-separated metallic
or dielectric (e.g., gold or silica) nanowires and no substrate,
this implies that changing the orientation of the wire arrays
(i.e., their geometry) plays a stronger role in reducing the force
than simply reducing the pairwise surface-surface separation
between the slabs. In another case to be discussed, in which
the wires are gold, the substrate silica, and the fluid ethanol,
the bound equation (1) is also valid. However, we find from
exact calculation that while PFA predicts Fy=a/2 < 0 and
Fcrossed > 0, the opposite is in fact true, i.e., aligned slabs
are always attracted to each other, while crossed slabs are
repelled. Therefore, in our case at d/a ∼ 1 the sign of the
force can therefore be modulated by rotating the slabs (but not
translating them), an interesting possibility for experiments
that we discuss later.

To understand these effects qualitatively, we find that
a much more suitable framework is the effective medium
approximation (EMA), in which the microstructured slabs
of Fig. 1 are describable as a homogeneous medium with a

given anisotropic permittivity tensor
↔
ε= diag(ε||,ε⊥,ε⊥) (here
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FIG. 1. (Color online) Configuration examined in the text. Each
slab consists of a single periodic array of cylindrical wires embedded
in a semi-infinite substrate; the goal is to create an effective
anisotropic medium for each slab. Of interest here is the change
in the force from when the wires are aligned (top) and when they are
crossed (bottom). When the medium between the plates is a properly
chosen fluid, we show that the force switches sign as a function of
orientation for certain separations.

and below,
↔
ε , ε||, and ε⊥ will be used to denote effective,

homogenized permittivities). We are able to compute the
effective ε tensor for this configuration from our scattering
method [17], and we find that for the gold-silica-ethanol con-
figuration, the deduced effective-medium parameters follow an
ascending sequence ε⊥ < εfluid < ε||. This ascending sequence
is known to lead to repulsion [18] for uniform, isotropic
materials, and we find below that the effect is also present for
anisotropic materials and individual polarizations (although
in this case, as discussed below, an ascending sequence is
not sufficient for repulsion). One expects the EMA to be
strictly valid as d → ∞, however, in our case it turns out,
somewhat surprisingly, to be qualitatively accurate down to
d/a <∼ 1. (A mathematical proof of why the EMA holds at
such short separations, at least for crossed slabs, is given
in Appendix B.) Further, we find that for realistic materials
(gold wires, silica substrate, immersed in an ethanol fluid)
and geometry parameters, this orientation-induced repulsion
at fixed surface-surface separation between the two slabs holds
down to separations d/a ∼ 0.5.

Previous works [17,19] have discussed the possibility of
using geometry to create artificial constitutive relations (e.g.,

effective permeability | ↔
µ | > | ↔

ε | [under a suitable matrix
norm] to obtain Casimir repulsion or chirality κ �= 0 to achieve

force reduction). However, it has been rigorously proven [20]

that no such media with
↔
µ>

↔
ε can be constructed from

metallic/dielectric constituents so as to exhibit repulsion in
vacuum, and computations involving the exact microstructures
[21] have shown that chirality effects are only present at
separations so large that they cannot conceivably be detected.
Therefore, while in some circumstances EMA can be a useful
qualitative guide (and rigorously accurate in certain limits),
it must be used with caution—ideally, as a supplement to
exact calculations. Orientation dependence (and the resulting
Casimir torque) between slabs has previously been considered
for two birefringent plates with weak anisotropy [22–24], and
for corrugated metallic plates [2]. Although the torques in these
systems are in principle measurable, the change in the force
with orientation is small, and the forces are always attractive.
reference [25] showed a large orientation dependence for
theoretical uniaxial conductors, and suggested a possible
realization via nanowire arrays, but without calculation in the
latter case and without changing the sign of the force.

In the present work, we analyze this effect for periodically
patterned, vacuum-separated suspended membranes (which
form a potentially promising medium for Casimir force
measurements [26]) and for gold wires on silica substrate,
immersed in ethanol. In both cases, we find Eq. (1) is
violated down to d/a ∼ 1. In the former case, we find that
the force is 70% lower for crossed slabs compared to aligned
slabs (for any y) at large separations, while at separations
comparable to the unit cell (e.g., 100 nm) there is a more
modest, but still significant, 30% reduction. For the latter
system, we find that aligned slabs are attractive for all y

down to d/a ∼ 0.5 while crossed slabs are repulsive in
this range. These examples demonstrate a system in which
effective-medium theory is correct and gives predictions that
differ from PFA in a highly nontrivial way. Given that nanowire
arrays below 15 nm can be fabricated with current technology
[27] and that for these dimensions the predicted effects occur
down to sub-100-nm-length scales, these effects should be
experimentally accessible. After presenting these results, we
argue how they may be experimentally detectable (assuming
suitable fabrication techniques) and estimate force magnitudes
in the hypothetical case where one of the slabs is replaced by
either a sphere or cylinder with a wire pattern stamped on its
surface.

II. METHOD

In this work, we perform Casimir force calculations with a
semianalytic scattering method using a combination of results
from Refs. [14–16], which efficiently computes the exact
Casimir force between periodic arrays with one dimension of
translation invariance. Our implementation differs somewhat
from previous scattering methods (e.g., Refs. [28] and [29]) in
that it is particularly well suited to unit cells with objects of
compact cross section, such as the wires in Fig. 1 (rather than,
e.g., extended rectangular gratings). While we are primarily
interested in objects of circular cross section in the current
work, the present method can be extended in a straightforward
manner to treat unit cells with arbitrarily shaped compact
objects using an existing boundary-element method [30,31].
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In addition, we have checked the results with a brute-force
finite-difference time-domain (FDTD) [32,33] method and
found good agreement, and additionally, these computations
show similar results for square wires. Also, the effects are not
significantly different at zero temperature and 300 K, so we
work exclusively in the former limit.

The two plates are separated from each other by a distance d

in the x direction, and the slab is termed y directed if the wires
are along the y axis (similarly for z). The slabs are aligned if
both slabs are y or z directed, and crossed if they are not. The
zero-temperature Casimir interaction energy for a q-directed
slab displaced by x from a q ′-directed slab (q,q ′ = y,z) is

E = h̄c

2π

∫ ∞

0
dξ

∫
d2kyz

4π2
ln det

(
I − R(q ′)

1 U †R(q)
2 U

)
, (2)

where R1,2 are the scattering matrices of plane waves for the
two slabs,U (x) is the plane-wave translation matrix for relative
displacement x between the slabs, and the integral of transverse
wave-vector components ky,kz is over the first Brillouin zone.
See Ref. [16] for a detailed derivation and a partial review
of precursors [34–36]. For the present work, we require
an efficient method of computing the scattering matrices
from periodic arrays, which we describe in more detail in
Appendix A1.

For sufficiently large distances, the relevant frequencies and
wave vectors are unable to probe the structure of the arrays
and consequently, an effective-medium approximation should
produce good results. In our case, such an effective medium
should have a much larger conductivity in the direction of the
wires as compared to the other orthogonal directions, even in
the static limit (this being one of the motivations for the current
configuration), so it is clear that an anisotropic EMA is called
for. Fortunately, Casimir interactions between anisotropic
homogeneous media have been studied by several authors
[17,37–40], allowing us to build upon their results. We use
the method of Ref. [17] (outlined in Appendix A 2) to obtain

the scattering matrices assuming a known permittivity
↔
ε . In

the subsequent analysis, we also require the inverse procedure:
given the scattering matrices (computed using the method of
Appendix AA) of the exact structure, retrieve the best-fit EMA
↔
ε . This procedure quickly becomes intractable if arbitrary

↔
ε

and
↔
µ are allowed. Instead, we assume µij = δij and

↔
ε xx=↔

ε yy

exhibit no dependence on k⊥ aside from its polarization. For
|k⊥| → 0 the scattering matrices for each polarization reduce
to the standard Fresnel formula for reflection off isotropic
interfaces. Their inversion then yields the effective dielectric
tensor

ε||(iξ ) = εfluid

(
1 − R||
1 + R||

)2

, ε⊥(iξ ) = εfluid

(
1 + R⊥
1 − R⊥

)2

.

(3)

III. RESULTS

In the configuration of Fig. 1, the wires have radius
r = 0.3 a and period a; we take the wire centers to be
in the substrate and the wire surface to be tangent to the
substrate surface to maximize the wire-wire interactions. The
permittivities of wires, substrate, and fluid are, respectively,

ε1(iξ ), ε2(iξ ), and ε3(iξ ) for imaginary frequency ξ . The
materials used for the wires, substrate, and fluid are gold,
ethanol, and silica, respectively. For gold, we use a plasma
model with ξp = 1.36 × 1016 rad/s (the addition of a small
loss term does not change the results significantly). For silica
and ethanol we use standard oscillator models [41,42].

A. Vacuum-separated slabs

We first compute the Casimir forces when the intervening
medium is vacuum (ε3 = 1), comparing the force Faligned(y)
for aligned slabs with the force Fcrossed for crossed slabs. In the
aligned case, the force can depend on y (leading to a lateral
component of the force), and in this case Faligned refers only to
the normal component of this force. In the crossed case θ =
π/2 there is no y dependence. Although there is no sign change
for vacuum-separated slabs, this configuration is of interest
because it can be fabricated as a single suspended-membrane
structure for each orientation [26], and may be easier to work
with than a fluid system. Figure 2 shows results for wires
composed of perfect metal, gold, and heavily doped silicon,
the latter being more conventional for fabrication. We plot the
ratio Fcrossed/Faligned(y) (the shaded regions indicate the full
range of this ratio as y is varied), which serves two purposes.
First, it indicates the required relative accuracy in a force
measurement needed to discern the orientation dependence of
the force in an experiment. Second, it indicates the transition
from the PFA to the EMA regimes via Eq. (1): if the force
is determined as a sum of pairwise interactions, then the
total force is maximized when the pairwise surface-surface
distances are minimized. A simple geometric argument shows
that the net distance is maximized for θ = 0, y = a/2. On the
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FIG. 2. (Color online) Ratio of the Casimir force between crossed
wire arrays (Fcrossed) over aligned wires [Faligned(y)] between vacuum-
separated nanowires of perfect metal, gold, and doped silicon (dopant
density 1020/cm3). a → ∞ corresponds to using nondispersive
ε(iξ → 0) for all materials (because ξ is in units of c/a). Shaded
regions indicate the range of values that Faligned takes over all relative
lateral displacements y of the wire centers, with their higher (lower)
boundary indicating the force for y = 0 (y = a/2). PFA predicts, via
Eq. (1), that the maximum of this ratio should exceed 1, which is
only true for Si at d/a ∼ 0.6, and for gold/perfect metal at lower
separations. Inset: details of the configuration examined.
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other hand, this distance is minimized for θ = 0, y = 0. The
bound equation (1) then follows. It turns out that the force is
always attractive in this situation, so we have the further bound
Faligned(y = a/2) > 0. Therefore, PFA predicts that there is
a range of y such that Fcrossed(y)/Faligned > 1. By contrast,
EMA predicts the inequality Fcrossed < Faligned (there is no y

dependence in this approximation). This inequality stems from
the following scattering-theory argument: for d/a � 1, the
exponential suppression of ky,kz �= 0 inU [16] implies that the
force is dominated by the scattering of plane waves at normal
incidence (ky = kz = 0). For normal incidence, the reflection
matrix R(z) is anisotropic but diagonal in polarization, and
can be computed from an effective anisotropic dielectric

tensor,
↔
ε (iξ ):

↔
ε (iξ ) = diag(εxx,εyy,εzz) ⇒ R ≈ diag(R||,R⊥), (4)

where R|| and R⊥ are the matrix elements for incident light
polarized parallel and perpendicular, respectively, to the wires.
For normal incidence, εxx does not contribute, and we define
ε|| = εzz and ε⊥ = εyy . Due to the high permittivity of the
wires and the low permittivity of the substrate, we expect
|R⊥| � |R||| and R⊥R|| � 0 [note that R(iξ ) is real]. When the
wires are aligned, the relevant product of scattering matrices
in the energy integrand is (R2

|| + R2
⊥) ≈ R2

||, and when they are
crossed the term is 2R||R⊥, implying Fcrossed < Faligned. From
Fig. 2, this bound is clearly violated in doped Si for d/a < 0.6,
and for other materials at smaller d. Note that this includes a
region d/a < 2 for which there is still a strong y dependence
of this ratio, indicating that while EMA is not strictly valid, it
still has more predictive power than PFA.

As d/a → ∞, the force ratios should approach a constant

determined by
↔
ε (ξ → 0): this ratio is ≈0.29 for all three

materials. However, this limit is approached very slowly
[O(d−1/2) for perfect metal/gold wires]. The EMA d de-
pendence is due both to constituent material dispersion and

an effective geometric dispersion in
↔
ε (iξ ) induced by the

geometry of the wires. As ξ → 0, ε|| → ε1(iξ ) and ε⊥ →
ε2(iξ ). The former limit follows from the 1/ξ 2 divergence of
ε1 as ξ → 0 (if we add a dissipative term to ε1, the divergence
is only 1/ξ but this crossover occurs at frequencies too low
to affect the present results). The latter limit follows from the
fact that the static polarizability of the wires in the transverse
direction is finite, implying that their contribution to the
scattering amplitude vanishes as ξ → 0. Therefore, as ξ → 0,
ε⊥ depends only on the substrate, which has semi-infinite
extent; we have checked this relation numerically and found
good agreement. limd→∞ Fcrossed/Faligned can then be obtained
by computing the force between two anisotropic plates, with
ε|| = ∞ and ε⊥ = ε2(0).

For all d/a � 1.5, the orientation dependence of the
force is quite strong (�30%). In this range, the absolute
pressure is approximately 2% of the corresponding pres-
sure between two homogeneous perfect metal plates. As
differences of this magnitude between vacuum-separated
plates have been measured on the 100-nm-length scale, we
are hopeful that this departure from PFA can be detected
experimentally.

B. Fluid-separated slabs and tunable repulsion

In the previous example the force is always attractive,
because ε1(iξ ),ε2(iξ ) � ε3(iξ ) for all ξ [20]. However, if
the medium between the slabs is a fluid such that ε1(iξ ) >

ε3(iξ ) > ε2(iξ ), the above EMA analysis predicts that the force
in the crossed configuration should be repulsive as d/a → ∞
since by the Fresnel formula at ξ = 0, R⊥R|| < 0, leading to
the well-known Casimir repulsion for an ascending sequence
of ε for each polarization [11]. By contrast, in the aligned
configuration the force is attractive when y = 0 due to mirror
symmetry [43], and the intuition that this attraction holds
for nonzero y is confirmed by calculation. However, strong
corrections to this argument occur at finite separations: waves
with nonzero ky and kz contribute, and are not in general
polarized along the y or z axes. These waves will couple to
both ε|| and ε⊥ on each reflection. The sign of the resultant
reflection coefficient will usually be the same for both z- and
y-directed slabs, leading to attractive contributions. Further,
the microstructure can also lead to significant corrections,
possibly eliminating the effect for separations comparable
to the unit cell a [21]. As such separations are necessarily
required for experiments, we require exact results to verify
that this effect persists in experimentally accessible regions.

The exact results are shown in Fig. 3; as in Fig. 2, shaded
regions show the y dependence. The results show a clear
attractive-repulsive transition as the slab orientation is varied
between the aligned and crossed configurations. This effect
persists for both the ideal case of perfect metals (a → ∞) and
dispersive materials at a = 100 nm; both show qualitatively
similar behavior. For crossed slabs, the repulsion is fairly flat
over an ∼40 nm range. At first sight, it is tempting to ascribe
the repulsive force observed for crossed wires to PFA-line
interactions between opposing areas where metallic wires face
a dielectric substrate and thus feel a repulsive force. However,
if this were the case, then by the same argument [and Eq. (1)],
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FIG. 3. (Color online) Casimir pressure for the same parameters
as the inset of Fig. 2, with a silica substrate and ethanol between
the two slabs. Positive values indicate an attractive force, negative
values (shaded) repulsive. Both a → ∞ and a = 100 nm are shown.
As in Fig. 2, shaded regions denote the range of y displacements.
When the wires are aligned (blue), the force is always attractive, but
when the wires are crossed (red), the force turns repulsive at a critical
separation d > dc, which depends on a.
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Faligned(y = a/2) should exhibit an even stronger repulsion.
This is clearly not the case in Fig. 3 for d/a > 0.5; rather, the
results for repulsion are consistent with the EMA argument
given above. To estimate the magnitude of this repulsion,
for a = 100 nm the repulsive pressure is approximately
1% of the pressure between parallel perfectly conducting
plates separated by a comparable distance d in vacuum, e.g,
∼0.13 pN/µm2. Repulsive forces in fluids on this order of
magnitude have been measured [11], therefore these forces are
potentially within reach of current or near-future measurement
techniques (the force in more realistic sphere-plate and
cylinder-plate geometries will be considered in Sec. III D
below). Interestingly, when the wires are crossed and d varies
there is an attractive-repulsive transition at a critical separation
d = dc. This leads to an unstable equilibrium with respect to d.
(The crossed configuration is always unstable with respect to
orientation.) This transition, as mentioned above, is attributed
to the eventual dominance of attractive forces as separation
goes to zero. However, we will see below that such a transition
is predicted by EMA as well, and is therefore not due entirely
to proximity effects.

Before continuing, it is interesting to see what the PFA
prediction for the force in this system is. We simplify matters
by computing the PFA assuming instead wires of a square
r × r cross section, with centers a distance r/2 beneath the
substrate surface (by minimizing the amount of curved surface,
we expect this to maximize the range of separations for which
PFA is accurate). Using FDTD computations [32,33], we
have found that this system exhibits behavior qualitatively
similar to that of Fig. 3. The results for a = 100 nm are
shown in Fig. 4 (taking a → ∞ yields a qualitatively similar
curve). Inspection reveals that the PFA prediction exhibits
the opposite behavior for the sign of the force as the full
numerical calculations: the PFA force is exclusively attractive
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FIG. 4. (Color online) Forces computed for the configuration
of Fig. 3 using the proximity force approximation (PFA), for
a = 100 nm. For convenience in applying the PFA, square wires
of width r are used instead of circular wires (the exact results are
not qualitatively changed). We see that the behavior of Fig. 3 is not
qualitatively captured: the force is always attractive for crossed wires,
and the bound Eq. (1) is strictly satisfied. Similar results are obtained
for a → ∞.

for crossed wires, but for aligned wires shifted by y = a/2 the
force becomes repulsive.

Although PFA fails qualitatively and quantitatively to
predict the results of Figs. 2 and 3, we have not yet examined
the quantitative accuracy of EMA. In the next section, we
will examine a description of the force in terms of the EMA,
rigorously valid in the regime (d/a → ∞). We will see that
EMA gives qualitatively correct predictions for the magnitude
and sign of the forces down to separations comparable to the
unit-cell size.

C. Comparison with EMA

In this section, we examine the extent to which the EMA
analysis given above in Sec. III A predicts the correct results,
using the method of Appendix A 2. We use a simplified EMA,

assuming that
↔
µ (iξ ) = 1 and

↔
ε (iξ ) is isotropic in the plane

perpendicular to the wires. In this case, ε|| and ε⊥ are the only
EMA parameters involved; these are retrieved by applying
Eq. (3) to the scattering matrices computed from the exact
structure. The EMA-predicted force is then computed from the
method of Appendix A2. A plot of the retrieved parameters
for a = 100 nm is shown in Fig. 5. Shown for reference in
Fig. 5 are ε(iξ ) of the constituent materials ethanol, silica, and
gold. As expected, ε⊥ approaches εsilica for low ξ , while for
higher ξ the wires increase the effective permittivity. In ε||,
we see a significant geometric dispersion: in fact, at low ξ ,
ε||(iξ ) ∼ 1 + (ξ ′

p/ξ )2, where ξ ′
p ∼ 0.36 ξp is a new, effective

plasma frequency for the gold wires. This is similar to an
argument presented in Ref. [44], where the effective dielectrics
of square arrays of wires along the wire axis can be described
by a plasma model with a reduced plasma frequency (as we
have only included a single row of wires, the result of Ref. [44]
cannot be directly applied, but its basic idea remains). A similar
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FIG. 5. (Color online) Effective-medium parameters for the
system of Fig. 3 derived from scattering data for a length scale
a = 100 nm. ε|| is the effective dielectric parallel to the wires (black),
and ε⊥ is the effective dielectric perpendicular to the wires (blue). The
dielectrics of the constituent materials gold, silica, and ethanol are
shown for reference. These dispersions will be used to compute the
Casimir force in the effective-medium approximation below.
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FIG. 6. (Color online) Results for the force computed in the
effective-medium approximation (EMA) using an effective homoge-

neous, anisotropic permittivity tensor
↔
ε , via the method described

in Appendix A2. As in Fig. 3, results for both a infinite (i.e.,
nondispersive materials) and a = 100 nm are shown, for both crossed
and aligned configurations. Although quantitatively inaccurate over
the range plotted, the EMA does qualitatively capture the behavior of
the force as opposed to PFA. Also shown are dc, the location of the
attractive-repulsive transitions for the crossed wires (dc = 0.18a for
a → ∞ and is not shown).

effect holds when the wires are perfect conductors, where
ξ ′
p = 7.9. This accounts for the d dependence in the EMA

regime of Fig. 2: the geometry introduces an effective length
scale into the system, given by ξp.

We use the retrieved ε|| and ε⊥ to compute R and hence the
Casimir force for the fluid-separated geometry. Computation
of the force with the EMA parameters for the vacuum-
separated slabs in the limit d → ∞ is in agreement with
the results of Fig. 2. The results for the fluid-separated case
are shown in Fig. 6. We find that, as opposed to PFA, EMA
gives qualitatively accurate (i.e., the same order of magnitude)
predictions for both the magnitude and sign of the force.
In particular, EMA predicts attractive-repulsive transitions at
some d = dc, where for d < dc the force for crossed slabs is
attractive. The fact that ε||(ξ ) is a rapidly decreasing function of
ξ , while ε⊥ increases, indicates that within the EMA the force
should receive attractive contributions from higher ξ (which
dominate at small separations). Further, the decrease of both
ε|| and ε2 with decreasing a also contributes to a reduction in
repulsion. This explains why the repulsion for a = 100 nm is
lower than for a → ∞. With our simplified EMA the predicted
values of dc are very inaccurate: dc ≈ 0.18 a for a = ∞ and
dc ≈ 1.05 a when a = 100 nm. However, the y-independent
regimes of Figs. 2 and 3 suggest that some EMA must be
valid in those regimes, and in this case a more accurate EMA
would involve both εxx �= ε⊥ as well as an anisotropic effective
↔
µ. A more general model of dispersion would allow for a
translation-invariant but k-dependent permittivity. Fitting an

effective
↔
ε (k) is somewhat complicated in this framework;

rather, to explore the validity of this “specular” approximation
we compute the force with all nonspecular (i.e., terms not
conserving k⊥ + G⊥, where G⊥ is a reciprocal lattice vector)

terms in the scattering matrix R removed. We find the sur-
prising result that, while this specular approximation does not
give significantly different predictions for the force for aligned
wires, it gives much more accurate predictions for dc and the
magnitudes of the force for crossed wires. This indicates that
nonspecular scattering events are suppressed when the wires
are crossed, even at relatively small separations d/a ∼ 0.5.
We give a rigorous proof of this result in Appendix B, using
a recently developed diagrammatic expansion for the Casimir
energy [45].

D. Forces for other geometries

Parallel-plate configurations involving suspended mem-
brane structures show potential for new sets of experimental
Casimir force measurements for vacuum-separated geometries
[26]; such measurements detect the Casimir force (or force
gradient) through a shift in either the optical spectrum or
the resonance frequency of the upper membrane. However,
to measure the sign change in the force predicted here a
measurement between fluid-separated objects must be per-
formed, where fluid damping is prohibitive. Instead, a force
measurement involving an object (e.g., a sphere) mounted on
an atomic force microscope (AFM) tip [11] is more realistic.
In this case, alignment issues favor the use of one spherical
and one planar object [46,47], rather than the two planes
considered here. For our purpose, a pattern of wires similar
to Fig. 1 would need to be stamped on the surface of the
object. In this section, we give force predictions for both
sphere-plate and cylinder-plate geometries. The latter case
has more difficult alignment issues, but is still simpler than
plate-plate alignment, and in this case the Casimir force is
much larger than for sphere-plate setups [48]. For both cases,
the radius of curvature R is many orders of magnitude larger
than the surface-surface separation d (e.g., R = 200 µm and
d ∼ 100 nm). Because d,a � R, it is appropriate to use a
hybrid PFA/exact method in which each unit of surface on
the sphere or cylinder feels the exact pressure (as computed
in Sec. III B) between a plate-plate configuration of the same
surface-surface separation. The result is asymptotically exact
in the limit R → ∞ for fixed d and a.

Results are shown in Fig. 7 for R = 200 µm and are plotted
in units of piconewtons. The sphere-plate force has a peak
repulsion of ∼10 pN, which although below the detection
limit of current measurement techniques in fluids, may be
observable in the near future. We also note that, although
the presence of Casimir repulsion may be experimentally
challenging, Eq. (1) can be verified with much less sensitivity
(e.g., ∼50 pN at d = 50 nm). For the cylinder plate, we take
a length L = 16 µm in order for the force to be comparable
in magnitude to the sphere-plate force. However, it is clear
that if we instead take L ∼ R, we can obtain both repulsive
and attractive forces on the order of 103 pN, well within
current experimental detection ranges. Therefore, this system
seems most attractive for detection of an attractive-repulsive
transition with orientation in a fluid if techniques similar to
those of Ref. [49] to align the long axis of the cylinder
relative to the plane can be extended to fluid-separated
objects.
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FIG. 7. (Color online) Forces for sphere-plate (red) and cylinder-
plate configurations, for a = 100 nm. In both cases, the wire pattern
of Fig. 1 is stamped onto the surface of both objects, which have
radii of curvature R = 200 µm. The cylinder length is chosen to be
L = 16 µm so that the two force curves have comparable magnitude;
however, the cylinder-plate force is proportional to L and so will be
much larger in magnitude for a more realistic L ∼ R.

IV. CONCLUSIONS

We have presented an example system, consisting of
microstructured slabs, in which PFA fails at relatively small
separations. Instead, EMA qualitatively describes the behavior
of the Casimir force, including the case in which the force
can be switched from attractive to repulsive as the slabs are
rotated. We have discussed the prospects for detecting these
forces in experiments. One issue arising in an experiment,
not discussed here, is the increased complexity of the elec-
trostatic calibrations. Conceivably, these complications can
be eliminated in the fluid-separated case by the addition of
electrolytes to the fluid. This should also reduce or eliminate
the effect of accumulated surface charges on the gold-silica
interface, due to contact potentials [50,51]. For the case of
vacuum-separated doped silicon, a more involved calibration
procedure is required.

Although not examined here, we also note that orientational
attractive-repulsive transitions may also occur using naturally
anisotropic materials. We have confirmed this for the case of
lithium niobate slabs immersed in ethanol at zero temperature;
although here dc > 7 µm (implying that finite-temperature
effects must be taken into account), transitions at smaller
separations may be possible with appropriate materials.
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APPENDIX A: DETAILS OF COMPUTATIONAL METHODS

1. Scattering from periodic arrays

There are numerous computational and semianalytical
methods from classical electromagnetic scattering that can
be adapted to Casimir calculations [52]. For example, there
are computational techniques based on generic grids/meshes,
e.g., finite-difference methods [32,33,53,54]. There are also
Casimir methods [28,29] based on classical cross-section
methods (rigorous coupled-wave analysis [55], also called
eigenmode expansion [56]), which divide the geometry
into slices with constant cross sections and match modal
expansions between slices. Alternatively, there are spectral
integral-equation methods tracing their roots to classic Mie
scattering and related problems [57]: one divides the geometry
into high-symmetry objects such as spheres and cylinders,
computing the scattering matrix for each object in a specialized
basis (e.g., spherical waves), and then combining the matrices
from different objects to match the boundary conditions.
These methods have been adapted to Casimir problems for
geometries consisting of a finite number of isolated objects
[16,34–36] and corrugated surfaces [58]. Here, we adapt sim-
ilar methods to periodic arrays of isolated objects (cylinders)
by exploiting classical lattice-sum scattering methods [15].
For completeness, and because our formulation is directly in
imaginary frequency and our normalization conventions differ
from other applications [14,15], we outline the derivation in
this section.

The scattering matrix T0 from a single circular cylinder can
be computed analytically in the basis of cylindrical multipoles,
using the basis functions [16]

|E〉p,reg/out
kz,n

(iξ,x) = Lp
[
φ

reg/out
kz,n

(iξ,x − xj )ẑ
]
, (A1)

where the linear differential operators Lp (p = M,N are
the transverse electric and transverse magnetic polarizations,
respectively) are

LM = 1√
k2
z + ξ 2

∇ × ,

LN = 1

ξ
√

k2
z + ξ 2

∇ × ∇ × ,

and the cylindrical wave functions are

φ
reg
kz,n

(iξ,x) = In

(√
k2
z + ξ 2

√
x2 + y2

)
eikzz+inθ ,

φout
kz,n

(iξ,x) = Kn

(√
k2
z + ξ 2

√
x2 + y2

)
eikzz+inθ .

In and Kn are the modified cylindrical Bessel functions,
and xj gives the coordinate origin. The calculation of T0 is
straightforward and we omit it here. We note that although the
present method is simplified by the semianalytic calculation of
the scattering from circular cylinders, methods exist that can
compute the scattering matrices of noncircular cylinders of
arbitrary cross section [31]; such a hybrid method allows for ef-
ficient scattering computations from general two-dimensional
arrays of compact objects.

We now derive the scattering matrix T for a periodic array
of cylindrical scatters in a uniform medium (the fluid interface
will be added later). T is defined to be the scattering matrix
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from each cylinder j in the basis given by Eq. (A1) with origin
xj = jaŷ, in the presence of the entire array of cylinders. This
array has period a in the y direction and is translation-invariant
in z, and only a single layer in the x direction. In other words,
for an incident field |E〉in, the scattered field emitted by currents
on cylinder j is

|E(j )〉scatt = eikyjaT |E〉in. (A2)

Here we have assumed that the incident field |E〉in is a plane
wave with transverse wave-vector components ky and kz, and
have normalized it with respect to the origin. Then using the
translation matrices [16] for the basis functions of Eq. (A1),
the scattered field from object j , converted to the basis at the
origin (j = 0), is given by

p,reg
kz,n

〈E(j=0)|E(j )〉 =
∑
n′′,n′

S(j )
n−n′e

ikyja(−1)n
′
Tp,p′

n′,n′′
p′

n′′ 〈E|E〉in,

(A3)

where the elements of the lattice sum S are given by

S(j )
m = Km

(|x|
√

k2
z + ε2ξ 2

)
e−imθj (A4)

and θj = sgn(j )π
2 ; and this transformation is diagonal in

polarization p. Using linearity of the scattering process to sum
over all incident cylindrical waves, the total incoming field at
the origin x0 for a plane wave |E〉in is obtained by summing
the incident fields and the scattered fields from all cells j �= 0:

|E〉in,total =
[

1 +
( ∑

j �=0

eikyjaS(j )

)
AT

]
|E〉in

= (1 + SAT )|E〉in.

The matrix S is formally defined as the infinite sum of all S(j )

(in imaginary frequency this sum is well defined due to the
exponential decay of Kn), and An,n′ = (−1)nδn,n′ . The field
scattered from the cylinder at x = x0, in the presence of the
array of cylinders, is then

|E(j=0)〉scatt = T0(1 + SAT )|E〉in = T |E〉in,

where the last equality follows by the definition of T . Because
this equation holds for arbitrary incident field vectors |E〉in, the
equation holds for the operators as well, allowing us to solve
for T :

T = [1 − T0SA]−1T0. (A5)

Although both S and A are diagonal in polarization p, in
general, T0 is not and different polarizations will couple to
the periodicity via Eq. (A5). The scattering matrix from the
entire array is a sum of T over all unit cells. This sum is
more naturally expressed in a plane-wave basis, using the wave
conversion matricesD for cylindrical waves [16] (here we have
absorbed the normalization factors Cp, defined in Appendix B
of Ref. [16], into the definition of D), from which we find the
plane-wave scattering matrix:

Rk = D†
kTDK. (A6)

Here k is the reduced Bloch vector, and the matrix Rk couples
all vectors k + mπ ŷ for all integer m.

The incorporation of multiple interfaces in the x direction
is achieved via a standard transfer-matrix approach, e.g., Ref.
[15]. For the case of a uniform medium ε3 outside of the plates,
the Fresnel formula is combined in a straightforward manner
with the matrix T above to finally give the full scattering
matrix R for the objects of Fig. 1.

For numerical computations, ten cylindrical multipole
moments in the single-cylinder scattering matrix, 10/ξ terms
in the lattice sum of Eq. (A5), and a simple exponential
extrapolation from only 7 × 7 Brillouin zones for Eq. (A6)
were sufficient for <1% error.

2. Effective-medium approximation

In this section we outline the method used to predict the

scattering matrices R from a specified
↔
ε . The method is given

in full detail in Ref. [17].
In an anisotropic EMA, we assume that the ith object is de-

scribed by a homogeneous (position-independent) permittivity
tensor

↔
ε=

⎡
⎢⎣

εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎥⎦ , (A7)

where the frequency dependence is left implicit and we
used the fact that the permittivity tensor is symmetric on
its spatial indices [59]. The relatively symmetric character
of our setup leads to a very useful simplification in Eq. (A7)
that becomes apparent in a coordinate system with its z axis
perpendicular to the slab interfaces: it is clear that regardless
of the in-plane orientation of the wires there is no mixing with
the z component, and so

εxz = εyz = 0. (A8)

In addition, for our simplified EMA we make the further
approximation that εxx = εyy ≡ ε⊥. This symmetry implies
that the ε tensor is diagonal in the x,y,z coordinate system of
Fig. 1 (top) and is of the form

↔
ε=

⎡
⎢⎣

ε⊥ 0 0

0 ε⊥ 0

0 0 ε||

⎤
⎥⎦ . (A9)

Consider a plane wave of transverse wave vector k⊥ = (ky,kz)
impinging on the slab, and let φ be the angle k⊥ makes with
the z axis. For our purpose, the scattering problem is best
solved in the coordinate system (x ′,y ′,z′) of the plane wave,

where x ′ = x and z′ is parallel to k⊥. In this basis, the
↔
ε tensor

becomes

↔
ε=

⎡
⎢⎣

ε⊥ 0 0

0 ε⊥c2 + ε||s2 (ε|| − ε⊥)sc

0 (ε|| − ε⊥)sc ε||c2 + ε⊥s2

⎤
⎥⎦ ,

where c = cos φ and s = sin φ.
We can now proceed to determine the scattering matrices

of plane waves for the isotropic-anisotropic flat interface.
After a considerably long algebraic calculation (for details see
Ref. [17], but note the change in coordinate systems between
our Fig. 1 and their Fig. 3, and that for us c = cos φ and the
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speed of light is set to 1), it is possible to show that the four
reflected/incident amplitude ratios are given by

rTE,TE(iξ,k⊥) = det M1

det M

∣∣∣∣ ω→iξ

kz′ →k⊥
,

rTM,TE(iξ,k⊥) = det M2

det M

∣∣∣∣ ω→iξ

kz′→k⊥
,

rTE,TM(iξ,k⊥) = det M3

det M

∣∣∣∣ ω→iξ

kz′→k⊥
,

rTM,TM(iξ,k⊥) = det M4

det M

∣∣∣∣ ω→iξ

kz′→k⊥
,

where

M =

⎡
⎢⎢⎢⎣

−1 0 α(1) α(2)

qin/ω 0 −β(1) −β(2)

0 qin/ω 1 1

0 −1 γ (1) γ (2)

⎤
⎥⎥⎥⎦ ,

M1 =

⎡
⎢⎢⎢⎣

1 0 α(1) α(2)

qin/ω 0 −β(1) −β(2)

0 qin/ω 1 1

0 −1 γ (1) γ (2)

⎤
⎥⎥⎥⎦ ,

M2 =

⎡
⎢⎢⎢⎣

−1 1 α(1) α(2)

qin/ω qin/ω −β(1) −β(2)

0 0 1 1

0 0 γ (1) γ (2)

⎤
⎥⎥⎥⎦ ,

M3 =

⎡
⎢⎢⎢⎣

0 0 α(1) α(2)

0 0 −β(1) −β(2)

qin/ω qin/ω 1 1

1 −1 γ (1) γ (2)

⎤
⎥⎥⎥⎦ ,

M4 =

⎡
⎢⎢⎢⎣

−1 0 α(1) α(2)

qin/ω 0 −β(1) −β(2)

0 qin/ω 1 1

0 1 γ (1) γ (2)

⎤
⎥⎥⎥⎦ .

Here qin ≡
√

ω2 − k2
⊥; the coefficients in the matrices above

are defined by

α(p) = (q(p))2 − ω2A

ω2C1
,

β(p) = −ω
L31

q(p)
− ω

L32

q(p)
α(p), (A10)

γ (p) = −ω
L41

q(p)
− ω

L42

q(p)
α(p),

where p = 1,2 and also

q(p) = q(±) = ω
1√
2

√
A + B ±

√
(A − B)2 + 4C, (A11)

i

Gy,GzGy,GzGy,Gz Gy,Gz

Gy,Gz Gy,Gz Gy,Gz Gy,Gzi

FIG. 8. Feynman rules for the diagrammatic expansion of the
Casimir energy, following Ref. [45]. In our notation, plane-wave
states are indexed by their reciprocal lattice vector G⊥ = (Gy,Gz);
frequency, polarization, and the conserved reduced Bloch vector k⊥
are suppressed as our focus is on nonspecular (i.e., G⊥ not conserved)
reflections. Here U is the free-space translation matrix, and Ri is the
scattering matrix for object i (= 1,2 for our case). Primes on the
polarizations (e.g., y ′) denote distinct wave vectors.

with

A = L14L41, B = L23L32, C = L14L42L23L31.

Finally, the elements Lij are defined in terms of the permittivity
tensor as

L14 = k2
z′

ω2
ε|| − 1, L23 = 1,

L31 = −L42 = (ε⊥ − ε||)sc,

L32 = − k2
z′

ω2
+ ε⊥c2 + ε||s2,

L41 = −ε||c2 − ε⊥s2.

A careful analysis shows that Eqs. (A10) become singular
at φ = nπ

2 for integer n. In this case, we take the limit φ → nπ
2

numerically.

APPENDIX B: SUPPRESSION OF
NON-SPECULAR SCATTERING

In this section we give a proof that nonspecular scatterings
(i.e., those not conserving the perpendicular wave vector k⊥ +
G⊥) are greatly suppressed for crossed slabs relative to aligned
slabs. This explains the wide range of validity for the specular-
reflection approximation for crossed slabs. The proof is a

Z1 Z2

Gy,Gz

Gy,Gz Z1

Gy,Gz

Gy,Gz

Gy,Gz

Gy,Gz

Y2 Z1

Y2

Wires Aligned Wires Crossed

FIG. 9. Lowest-order diagrams representing the contribution of
nonspecular scattering events to the Casimir energy, constructed using
the rules of Fig. 8. Because we are measuring the energy of interaction
between two objects, successive interaction vertices must involve
different objects. On the left, when both objects 1 and 2 are directed
along the z axis, a nonspecular event can occur in a two-vertex
diagram. However, when the wires are crossed, the lowest-order
allowed nonspecular process involves a four-vertex diagram.
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straightforward application of a recently developed diagram-
matic expansion for the Casimir force [45]. In this framework,
the log det expression of Eq. (2) is reexpressed as Tr log and
expanded in a power series. Each term in the power series can
be computed via a set of Feynman rules, shown in Fig. 8. For
sufficiently large separations, this series is rapidly convergent.

Each scattering event is represented as the process
|Gx,Gz〉 → |G′

x,G
′
z〉, where Gx,Gz represent the perpendic-

ular wave vector of the plane wave. We suppress both the
frequency and reduced Bloch vector k⊥ (which are both
conserved in the scattering process), and the polarization
p (which is not relevant to our analysis of nonspecular
reflection). Each object is represented as a pair indicating the
object alignment (Y,Z) and object index (1,2). The key point
is that, due to translation invariance, the scattering matrix for
a Z object is proportional to δ(Gz − G′

z), and for a Y object is

proportional to δ(Gy − G′
y). Further, the free-space propagator

is diagonal in the plane-wave basis and thus conserves both
Gy and Gz. Successive interaction vertices in a diagram must
involve distinct objects as external insertions; therefore, for the
crossed configuration, a plane wave must scatter twice as many
times to return to its original state in the lowest-order diagram
relative to the aligned configuration. Example lowest-order
diagrams are shown in Fig. 9. We find that for aligned (e.g.,
ZZ) slabs, the lowest-order diagram involving nonspecular
reflection involves two vertices, while for crossed slabs it
involves four vertices. Since each propagator represents an ex-
ponential attenuation, and each scattering event multiplication
by a number of magnitude less than unity, this implies that
nonspecular interactions are greatly suppressed for crossed
slabs.
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