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Threat Assessment Design for Driver Assistance System at Intersections

Georges S. Aoude, Brandon D. Luders, Kenneth K. H. Lee, Daniel S. Levine, and Jonathan P. How

Abstract— This paper considers the decision-making problem
for a human-driven vehicle crossing a road intersection in the
presence of other, potentially errant, drivers. Our approach
relies on a novel threat assessment module, which combines an
intention predictor based on support vector machines with an
efficient threat assessor using rapidly-exploring random trees.
This module warns the host driver with the computed threat
level and the corresponding best “escape maneuver” through
the intersection, if the threat is sufficiently large. Through
experimental results with small autonomous and human-driven
vehicles, we demonstrate that this threat assessment module can
be used in real-time to minimize the risk of collision.

I. INTRODUCTION

The field of road safety and safe driving has witnessed
rapid advances due to improvements in sensing and com-
putation technologies. Active safety features like anti-lock
braking systems and adaptive cruise control have been
widely deployed in automobiles to reduce road accidents [1].
However, the US Department of Transportation (DOT) still
classifies road safety as “a serious and national public health
issue.” In 2008, road accidents in the US caused 37,261
fatalities and about 2.35 million injuries. A particularly
challenging driving task is negotiating a traffic intersection
safely; an estimated 45 percent of injury crashes and 22
percent of roadway fatalities in the US are intersection-
related [2]. A main contributing factor in these accidents is
the driver’s inability to correctly assess and/or observe the
danger involved in such situations [3].

This data suggests that driver assistance or warning sys-
tems may have an appropriate role in reducing the number
of accidents, improving the safety and efficiency of human-
driven ground transportation systems. Driver assistance sys-
tems can be classified into two categories: infrastructure-
based systems, such as intelligent vehicle highway systems
(IVHS), and vehicle-based systems, such as car-to-car (C2C)
communications [4]. Vehicle-based systems are expected to
become available more quickly on commercial vehicles,
compared to their infrastructure-based counterparts [5]. Such
systems typically augment the driver’s situational awareness,
and can also act as collision mitigation systems. This re-
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search is focused on threat assessment algorithms that can
be applied to vehicle-based systems.

Research on intersection decision support systems has
become quite active in both academia and the automotive
industry. In the US, the federal DOT, in conjunction with
the California, Minnesota, and Virginia DOTs and several US
research universities, is sponsoring the Intersection Decision
Support (IDS) project [3]. In Europe, the InterSafe project
was created by the European Commission to increase safety
at intersections. The partners in the InterSafe project include
European vehicle manufacturers and research institutes [6].
Both projects try to explore the requirements, tradeoffs,
and technologies required to create an intersection collision
avoidance system, and demonstrate its applicability on se-
lected dangerous scenarios [3], [6].

Several measures have been proposed to characterize the
threat level of dynamic road situations. These approaches
typically measure collision risk by time-to-collision (TTC)
and its variants [7], such as headway time [8] or required de-
celeration [9]. However, these measures are tailored to frontal
collision warning systems, where the unpredictable danger-
ous driver is leading the host driver, and cannot typically be
applied to intersection scenarios where the dangerous driver
may approach from a variety of angles. Ref. [5] investigated
a collision mitigation system for intersection-like scenarios
using a time-to-react (TTR) measure. However, it is assumed
that the system has a prediction model of the dangerous
vehicle’s future motion, which is unlikely to be available
for a driver behaving erratically and thus unpredictably.

In this paper, we are interested in assisting human drivers
with negotiating busy intersections in the presence of pos-
sibly errant drivers with uncertain intentions. We propose a
novel design for a threat assessment module, which com-
bines a learning-based intention predictor with an efficient
sampling-based threat assessor to compute the threats of
errant drivers in real-time. This threat data is used to evaluate
the safety of several possible escape paths, which may be
proposed to the human driver if evasive maneuvers are war-
ranted. The approach is demonstrated through experimental
results in the RAVEN facilities [10].

II. PROBLEM STATEMENT

We now define the road intersection threat assessment
problem that is analyzed in this paper.

Definition 1 (Intersection Threat Assessment Problem):
Consider a host vehicle HV approaching an intersection
involving one or more other possibly errant vehicles OVs;
compute the escape maneuver u∗ that minimizes the threat
level T that the HV incurs over a fixed time horizon Th.
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In this work, we assume the region of interest is localized
to a finite volume around the host vehicle, called the active
region and represented by a detection radius. This assumption
bounds the number of vehicles affecting decision making,
and partially represents the limitations of the sensors and
wireless communications systems likely to be installed on
the vehicles (Section III-B).

We consider HV to be safe if it avoids colliding with
all other vehicles, denoted here as OVi, i = 1 . . . N . This
constraint can typically be written in the form

min
t0≤t≤tf

‖ps(t)− pri(t)‖ > ε ∀i = 1 . . . N, (1)

where ri(t) is the state of vehicle i at time t, ps(t) is the
position vector corresponding to s(t), pri(t) is the position
vector corresponding to ri(t), ε is the minimum allowed
distance between the HV and the OVs, and tf = t0 + Th.
We say that HV is in collision with OVi if the tuple
(ps(t), pri(t)) enters the closed “collision” set Ωi, whose
boundary is given by the scalar equation

‖ps(t)− pri(t)‖ = ε. (2)

In typical (i.e. uncertain and/or non-cooperative) driving
scenarios, the future trajectories ri(t), t ∈ [t0, tf ] of the
OVs are not known bythe HV . Moreover, some realizations
of ri(t) may cause (1) to become infeasible for every
admissible escape maneuver. Let u : [t0, tf ] 7→ U denote
the set of all admissible control sequences. To maximize the
safety of HV , we compute the admissible escape maneuver
u∗ that minimizes the threat level T , defined below, for all
possible realizations of ri(t), i = 1 . . . N .

Definition 2 (Threat Level): Define the threat level Ti(u)
corresponding to vehicle OVi and escape maneuver u as
inversely proportional to tci , the earliest possible time of
collision:

Ti(u(.)) =
1

tci(u(.))
,

tci(u(.)) = inf{t | (ps(t), pri(t)) ∈ Ωi}.
(3)

The threat level T corresponding to escape maneuver u is
then defined as

T (u(.)) = max
i∈1...N

Ti(u(.)). (4)

Definition 3 (Best Escape Maneuver): The best escape
maneuver u∗ is defined as

u∗ = arg min
u∈U
T (u(.)). (5)

Note that in (3), ps(t) is generated by the escape path u.

III. SOLUTION APPROACH

The proposed threat assessment provides assistance to the
host vehicle HV in navigating dynamic environments pop-
ulated by multiple other vehicles with uncertain intentions.
The approach is demonstrated in intersection scenarios, but
can be generalized to arbitrary road geometries. The assess-
ment is computed in a threat assessment module (TAM) that
is designed as a black box (Figure 1), allowing it to be
easily incorporated in a driver assistance system. The TAM

Fig. 1. High-level architecture of the Threat Assessment Module (TAM).
The inputs of the TAM are the measurement history z of the OVs and the
set of control escape sequences U generated for the HV . The IP computes
the intention vector b for each OV , used by the TA to identify the threat
level T and best escape maneuver u∗.

presented in this paper is an adaptation of the architecture
developed in Ref. [11] to generate safe trajectories for
autonomous vehicles.

A. High-level Architecture
The TAM consists of two main components, an intention

predictor (IP) and a threat assessor (TA). The IP incorpo-
rates high-level reasoning in modeling the intentions of the
OVs, and uses observations to make a prediction of future
behaviors. Such a predictor might, for example, classify the
threat posed by other vehicles based on whether or not their
modeled intentions conform to “typical” driving behavior
[12], [13]. The TA converts this prediction into a set of
potential paths that the OV is likely to follow. The threat
level can then be evaluated for each candidate HV escape
maneuver, in order to identify the best escape maneuver.

Several distinct representations have been proposed to
model intentions for humans and autonomous systems; here
we adopt the Ecological Recogniser architecture introduced
by Ref. [14] and shown in Figure 2. Using the language of
the figure, the HV is the recognising agent, while each OV is
an intending agent. It is implicitly assumed that the list of
intentions fully partitions the space of all possible behaviors
for the intending agents. We will also follow the abstract
definition that these intentions are directly responsible for the
actions or activities executed by the intending agents [14].
Intentions may be desired plans (e.g., following a straight
path) or other high level intention states (e.g., not following
the rules of the road).

Let the M -vector bi denote the intention vector of OVi;
the jth entry bji corresponds to the belief OVi is operating
under the jth intention. The definition of the threat level (4)
is modified to embed the expectation of each vehicle’s threat
over all possible intentions,

T (u(.)) = max
i∈1...N

 ∑
j∈1...M

bjiTij(u(.))

 (6)

where Tij is the threat value of the trajectories followed by
OVi as a realization of its jth intention.

B. Agent Model
Each agent is modeled using the standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ =
v

L
tan (δ), v̇ = a,

(7)
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Fig. 2. The intentional behavior of the Intending Agent and the intention
recognition of the Recognizing Agent [14].

where (x, y) is the rear axle position, v is the forward speed,
θ is the heading, L is the wheelbase, a is the forward
acceleration, and δ is the steering angle (positive counter-
clockwise). The state of the vehicle is s = (x, y, θ, v) ∈ S,
while the input is u = (δ, a) ∈ U , including the constraints
amin ≤ a ≤ amax and |δ| ≤ δmax.

In the work that follows, we make several assumptions
to constrain the focus on uncertainty in the prediction
of obstacles or other agents. We assume that the current
states and models of the HV and the OVs are perfectly
known by the HV within the active region, and that all
sensor measurements are noise-free. While this assumption
is somewhat unrealistic, the addition of estimation filters on
noisy measurements should have a minimal effect on the
TAM architecture. The focus of this paper is on the planning
subproblem, rather than sensing; future implementations will
relax these assumptions. Additionally, the TAM is provided
with a complete map of the environment a priori, excluding
any dynamic obstacles or agents. Finally, the number of
escape control functions of the HV is assumed to be finite.
Since the HV typically follows the rules of the road, it is
reasonable to predefine some typical escape maneuvers that
a “good” host driver might follow, e.g., maximum braking
or an increase in throttle.

IV. DEVELOPED ALGORITHMS

This section describes the implementation of the differ-
ent components of the TAM, tailored specifically for the
road intersection problem. The IP component is based on
the Ecological Recogniser architecture presented in [14].
The TA component combines knowledge of the intentions
produced by the IP and domain-specific information of the
environment to quickly propagate reachable paths for the
moving vehicles using a reachability-based algorithm. Then,
for each admissible escape maneuver, it evaluates the threat
generated by these paths. It finally returns the maneuver with
the lowest threat level over all vehicles. The result is an
intention-reasoning TAM that runs efficiently and is suitable
for real-time implementation.

A. Intention Predictor (IP)

The IP translates observations that HV makes of the other
OVs into a prediction of their intentions. Instead of using

low-level reasoning to predict future trajectories, the IP
uses higher-level logic to provide the TAM with predicted
future intentions, which is key to more timely and accurate
prediction of collisions. Each intention can then be translated
to a richer set of future paths that exploit domain-specific
knowledge using the TA (Section IV-B).

The chosen Ecological Recogniser architecture [14] is
applicable to our problem because it is designed for an
intelligent agent trying to recognize the intention of other
agents with access to their state data but not actions. Ad-
ditionally, this architecture can handle intentions which are
not easily described by a simple set of rules, as can be the
case in this problem. The Ecological Recogniser architecture
has two key components, a pattern matcher and a reasoning
module. The pattern matcher is a classifier that is trained
offline to recognize the different intentions by observing
agent trajectories, and operates online by continuously giving
an estimate of the intentions over time. The reasoning module
filters these estimates of intentions, along with knowledge of
previous encounters with the agent, to give a final estimate
of the intention vector b.

Since we are interested in estimating the intentions of ve-
hicles near intersections, we use the specific implementation
of the Ecological Recogniser that is based on an approach
previously developed and demonstrated in simulation [13]
for classifying other agent intentions using support vector
machines (SVM) and Bayesian filtering. Even before con-
sidering autonomous vehicles, the human driver intention
classification problem is very complex because of the various
nuances of human behaviors. SVM is a suitable method
for the IP because it has been shown to be a robust and
efficient approach for classification problems [15], such as
lane-change detection [16]. The IP design consists of an
SVM combined with a Bayesian filter that uses the SVM
outputs over a specific time period to compute the intention
vector b. SVM-BF also includes a threshold detector, so the
final b vector is a unit basis vector specifying the most likely
intention according to the threshold value. The SVM-BF
was trained using human driving data collected in RAVEN
[10]. For more details about the SVM-BF approach, please
refer to [13]. Based on experimenting with different kernel
functions and several combinations of features, the best
results were obtained using the Gaussian radial basis function
and combining the following three features:
• the relative distance ∆x between the OVi and the

entrance of the intersection it is approaching;
• the speed of the OVi;
• the longitudinal acceleration of the OVi.

Note that the SVM-BF algorithm is only activated when
the distance between the OVi and the HV is within some
danger radius, and both vehicles are approaching the same
intersection, which is representative of a limited computation
budget and restricted knowledge of the world.

B. Threat Assessor (TA)

The TA (Algorithm 1) computes a threat value of a candi-
date escape maneuver for the HV given a knowledge of the
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Algorithm 1 Intention-based-Threat-Assessment (u)
1: Ti ← 0 ∀i
2: for each agent OVi do
3: Reach-Set ← Eval-Intention-Reachability (bi)
4: for each intention ej with probability bji do
5: Ti ← Ti + bji · Eval-Threat(Reach-Set,OVi, ej , u)
6: end for
7: end for
8: return maxi=1...N Ti

current states of the OVs. It combines a fast sampling-based
reachability method with intention prediction information
provided by the IP (Section IV-A) to efficiently estimate
the threat level. A similar version of the TA algorithm
that assumes worst-case behavior for the other drivers was
developed by the authors in [17]. The threat assessor has
a finite time horizon, limiting the HV lookahead horizon
of the possible future paths of the other OVs, in order
to focus calculations on imminent threats. This choice is
domain-specific, but it should be long enough to allow
the HV sufficient time to react in a dynamic environment.
To obtain the best escape maneuver u∗, the TAM calls
Algorithm 1 for each each maneuver u in the set of escape
maneuvers, and returns the maneuver with the minimum
threat level.

Algorithm 1 first calls the Eval-Intention-Reachability
subroutine (Algorithm 2) on line 3 to create the reachability
set for each OVi. The resulting sets are biased based on
the perceived intentions of the OVs. For each intention ej
of each OVi, Algorithm 3 is called to compute the threat
incurred by the HV escape maneuver u in the region reached
by the paths that correspond to the intention ej . Note that
the earliest time to collision is converted into a threat value
using (3) (line 3 of Algorithm 3). This value is weighted
by the probability bji provided by the IP. Finally, the threat
returned is computed as the maximum value of all threats
created by each OVi (line 8 of Algorithm 1). Note that, in
practice, the computed reachability sets for each OVi are
saved between successive calls to Algorithm 1.

Algorithm 2, sometimes referred to as the RRT-Reach
algorithm, extends the rapidly-exploring random tree (RRT)
[18], [19] algorithm, which grows a tree by randomly sam-
pling points toward which dynamically feasible trajectories
are simulated. In particular, we use the closed-loop RRT
(CL-RRT) algorithm of Ref. [20], which samples inputs to a
controller rather than the vehicle itself. The algorithm thus
maintains the exploration bias of traditional RRT algorithms,
while allowing for generation of smooth trajectories more
efficiently. A key advantage of the RRT algorithm is the
scalability of the planning tree to use whatever computational
resources are available.

Unlike traditional RRT approaches, the RRT-Reach tree is
not used to identify some path that reaches a goal location.
Rather, the entire tree is analyzed to find the maximum
threat along each of the trajectories. The choice of samples is
designed to be biased towards regions corresponding to the
learned intentions of the OVs. It is done through sampling

Algorithm 2 Eval-Intention-Reachability (b)
1: Measure current vehicle state and environment
2: repeat
3: Take sample for input to controller using bias from intention

probability vector b
4: repeat
5: Update time range in time heuristics
6: Find list of nearest neighbors using time range
7: Sort list using distance heuristics
8: for each sorted node do
9: Call propagation function

10: if propagated portion is collision free then
11: Add sample to Tree break
12: end if
13: end for
14: until timestamp reaches time horizon and no collision free

portion was found
15: until time limit for growing tree is reached
16: return Tree

Algorithm 3 Eval-Threat (Reach-Set, OV , e, u)
1: for each path pathk in Reach-Set that ends in a region of

intention e do
2: tk ← compute earliest time of collision of pathk with

HV escape maneuver u within time horizon Th

3: Tk ← 1
tk

4: end for
5: return maxk Tk

some percent of the time in regions corresponding to the
component ej of intention e. The remaining percent of the
time is spent sampling uniformly in the environment.

Algorithm 2 includes several additional extensions to
the RRT approach introduced in Ref. [20], based on time
parameterization of the RRT tree. The extensions tailor the
RRT algorithm to the efficient computation of intented paths
by the OVs.

First, since we are interested in both approximating the
vehicle’s fixed-horizon reachability set and checking for
collision between moving vehicles, a “timestamp” has been
explicitly added to the state of the vehicle to track the time
along each generated trajectory. While propagating, if the
timestamp reaches the time horizon tf , where tf = t0 + Th,
the propagation is interrupted and the current portion of the
trajectory is checked for feasibility. Also, when searching
for nearest neighbors, the algorithm skips any node with a
timestamp already equal to tf .

Second, a time-based heuristic is introduced in the nearest
neighbor selection; only neighbors with a timestamp lying
in a specified time range are eligible to be considered in the
nearest neighbor calculation. This time range is initialized to
[troot, troot + tincrement], and the k-nearest neighbors inside this
time range are considered for feasibility check. If none of
them leads to the creation of a feasible path, the time range
is increased to [troot + tincrement, troot + 2 × tincrement], and so
on, until a feasible path is found, or the time range reaches
tf , in which case the sample is ignored, and a new sample is
taken. Simulation results have suggested that the use of such
heuristics can result in better approximation of the natural
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expected paths of the OVs.
Finally, we note that RRT-Reach does not include a

completeness guarantee on the reachability set; there may be
some feasible trajectories which are not included when work
on constructing the reachability set is completed. However,
the problem of computing the full reachability set in real-
time is computationally intensive when subject to complex
dynamics and complex, dynamic environments. The RRT-
Reach algorithm is designed to rapidly approximate the
reachability set and improve the approximation with more
available time, regardless of the current problem complexity.
Future work will consider the reachability set completeness
problem in further detail.

V. EXPERIMENTAL RESULTS

This section presents experimental results which validate
the effectiveness of the TAM in assisting human drivers
approaching intersections with errant drivers, subject to real-
world uncertainty. These results verify that the TA can
accurately identify drivers who do not observe a stop sign
and enter the intersection out of turn, constituting a violation
of the rules of the road. The results also show that the IP
is capable of providing the human driver with the correct
course of action, based on the intention and likely paths of
the errant driver.

Including a human driver in the experiment helps to
validate the TAM, since it will ultimately be used to assist
human drivers. For example, the response to TAM alerts can
be measured to determine the appropriate notification time.
The autonomous driver can also be used to emulate a variety
of human driving behaviors acquired from actual urban traffic
data within the testbed.

The hardware results are presented after an overview of
the experimental infrastructure, including testbed, hardware,
and software. A video showing several different experimental
scenarios, including the results below, is available at http:
//acl.mit.edu/ITSC10TAM.mov.

A. Testbed

Hardware demonstrations were performed in the Real-time
indoor Autonomous Vehicle test ENvironment (RAVEN),
a testbed designed for the rapid prototyping of decision-
making and control algorithms for unmanned aerial and
ground vehicles [10]. Vehicle state data is collected using
motion-capture cameras [21], which detect each vehicle via
a unique pattern of attached reflective dots. Many different
configurations can be tested with minimal setup effort, yield-
ing high-fidelity state data for potentially dangerous driving
scenarios without risk of injury.

We have constructed a representative road network within
the RAVEN testbed, including multiple intersection types
and road signs, to emulate a real-world driving environ-
ment for testing the TAM (Figure 3). The road network is
11.2 × 5.5 m2 in size, and is capable of accommodating
multiple intersection types and as many as 10 vehicles
running simultaneously.

B. Hardware Infrastructure

All vehicles in this experiment use the iRobot Create plat-
form [22]. The vehicle is a 2-wheeled, skid-steered vehicle
with a maximum speed of 0.5 m/s and near-instantaneous
acceleration. A software wrapper imposes rate limits in ac-
celeration and wheel speed differences, such that the vehicle
emulates traditional automative dynamics (7).

Each experiment consists of one human-driven vehicle
and one autonomous vehicle. The human-driven vehicle is
controlled through a wireless steering wheel [23], including
acceleration and brake pedals. The mapping of the steering
and pedal inputs to the vehicle motion has also been tuned
to emulate traditional control of an automobile, including
turning, acceleration, and braking behaviors. The human
driver may steer their vehicle through direct visual inspection
of the testbed, or via a “virtual dashboard” interface which
simulates the first-person driving perspective (Figure 4). Two
cameras mounted onboard the human-driven vehicle provide
real-time visual feedback in both the forward and rear
directions (Figure 3), while a world map “GPS” guides the
driver through the desired sequence of navigation waypoints.
The autonomous vehicle is controlled through an off-board
wrapper (Section V-C).

C. Software Implementation

The TAM is implemented across three software modules
for the host vehicle. The Intention Predictor classifies each
driver according to the observed behaviors. The Threat
Assessor determines the likely paths of those vehicles based
on the perceived behaviors. Finally, if a vehicle poses a
threat, the Escape Path module calculates suitable evasive
trajectories for the human driver and offers the best course of
action given the errant driver’s paths. A vehicle is perceived
to be a threat if three conditions are satisfied: (1) the IP
module has classified the vehicle’s behavior as errant; (2)
the vehicle is sufficiently close to the host vehicle (within
the black circle in Figure 5); and (3) both vehicles are
approaching the same intersection.

The Intention Predictor module accesses observations of
the states of each vehicle on the road network and provides
these inputs to the classifier. Depending on the high-level
behaviors, the classifier determines the most probable intent
of each vehicle in the environment. In this paper, classifi-
cation is performed on an autonomous vehicle; the same
classification process is performed on a human-driven vehicle
in Ref. [11].

The Threat Assessor module (Algorithm 1) predicts paths
for each vehicle, based on the perceived intentions, using
the Compute-Intention-Reachability module (Algorithm 2).
This latter module is embedded in the external planner as a
separate thread which runs asynchronously for each vehicle
OVi in the environment. Over fixed time intervals (1 s), the
algorithm grows a new reachability tree based on the current
OV position in the testbed. At the end of each time interval,
the reachability tree is relayed to the host vehicle thread,
which then calls the Escape Path algorithm (Section IV-B)
if the threat conditions are met.
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Fig. 3. The road network constructed within the RAVEN testbed to test the TAM algorithm. Here both a human-driven vehicle (front-right) and autonomous
vehicle (back-left) are approaching a four-way, stop-sign intersection. The rear-mounted camera, one of two, is clearly visible on the human-driven vehicle.

Fig. 4. Human interface for the human-driven vehicle, including real-time video feeds of the forward (left) and rear (top-center) directions of the vehicle,
a dialog box (top-right), and a world map “GPS” guiding the driver to their next waypoint.

The Escape Path module (Algorithm 3) generates evasive
maneuvers by simulating multiple possible actions of the hu-
man driver for sufficiently long time intervals (here 6 s), and
determining whether and/or when the resulting trajectories
enter the time-parameterized reachable set of the errant vehi-
cle. In the current implementation, three possible actions are
evaluated for the human driver – maintaining current speed,
maximum acceleration (up to 0.4 m/s), or maximum braking.
Escape paths are measured against the intention-reachability
paths to determine the time to a potential collision, with
the minimum-threat escape maneuver identified via (5). If
the best escape maneuver requires acceleration or braking,
the human driver is alerted to do so; no alert is provided if
the driven can safely maintain their current speed over the
prediction time horizon.

The autonomous vehicle is controlled via an offboard,
multi-threaded Java implementation of the standard CL-RRT
algorithm [20]. This is the same framework as used for au-
tonomous vehicles in Ref. [11], but without the threat-aware
components; only the human-driven vehicle is assessing the
threat level of other vehicles. Instead, the autonomous agent
simply treats other vehicles as static obstacles to avoid. The
vehicle is controlled via pure pursuit steering control [24]
and proportional-integral speed control. When approaching

each intersection, a weighted coin flip within the autonomous
vehicle logic determines whether or not the vehicle will
properly decelerate and come to a stop.

A top-level navigator module is used in both vehicles’
software packages to provide a sequence of geographic
waypoints. The navigator module leverages a sparse repre-
sentation of the RAVEN road network, constructed using
the Route Network Data File (RNDF) specification from
the 2007 DGC [25]. This representation includes the loca-
tion, size, and connectivity of lane segments and “zones”
(e.g., parking lots); intersections are implicitly defined by
the exit-entrance connections between lane/zone endpoints.
An A∗ implementation is used to select the shortest-distance
waypoint path in the graph between the current and desired
waypoints, respecting lane directionality constraints [7]. As
the vehicle (whether human or autonomous) approaches each
intermediate or desired waypoint, the navigator selects the
next waypoint on the list as the new target. An arbitrary
list of desired waypoints is provided for each vehicle; the
ultimate objective is to observe the vehicles’ interactions at
intersections. The diagram at bottom-right in Figure 4 shows
the RNDF for the RAVEN road network, constructed from
a simple .txt file. Figure 5 shows the display representation
of the world used in the results below.
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Fig. 5. Display representation of the RAVEN road network, including the
host vehicle (blue chevron; detection radius in black), autonomous vehicle
(red chevron), and reachability tree (brown edges, orange nodes). In this
figure, the human driver has been alerted to stop to avoid an imminent
collision. See Figure 6 for a full legend.

Given the geographic waypoint sequence, each escape path
is constructed through forward simulation of the vehicle
model connecting these waypoints, in a manner similar to
the RRT algorithm.

D. Results

The following results demonstrate the TAM providing a
human driver with feedback during a simulataneous intersec-
tion approach with another driver. In this hardware demon-
stration, both the human-driven vehicle and autonomous
vehicle are navigating through the RAVEN road network
simulataneously, following a random sequence of waypoints.
While the human driver is to respect all rules of the road, the
autonomous vehicle may choose to not stop at an intersection
and instead enter it out of turn (Section V-C). In this case,
the TAM should identify the autonomous driver as errant
based on observed behaior, and use the reachability tree to
alert the human driver if a corrective action is necessary.

Figure 6 shows four successive timesteps, or phases, of a
representative scenario where the human driver interacts with
an autonomous driver at one of the RAVEN intersections.
Figure 7 shows the threat levels incurred by executing either
the “same speed,” “accelerate,” or “stop” escape maneuvers
at each. In this scenario, both the human and autonomous
vehicles are attempting to enter the southbound lane of the
intersection: the human driver is approaching from the left
and making a right turn, while the autonomous vehicle is
approaching from the right and making a left turn.

The human driver reaches the intersection first, and has
right-of-way to proceed into the intersection (Figure 6(a)).
The autonomous driver behavior is classified by the IP as
normal, and the TAM does not post any warnings because
the autonomous vehicle is outside the host vehicle’s detec-
tion radius. After stopping for several seconds, the human
driver accelerates into the intersection, anticipating that the
autonomous driver will decelerate. However, the IP observes
the autonomous driver is actually accelerating into the inter-
section, and classifies the driver as errant (Figure 6(b)). The
TA module generates the autonomous driver’s reachability
tree, and the escape path module determines the threat of
either proceeding at the same speed, accelerating, or stop-
ping. Since stopping minimizes the threat level (Figure 7),

Fig. 7. Threat levels for the possible escape paths during each phase of
Figure 6.

the TAM alerts the human driver to stop. (Even though the
reachability tree does not reach the human-driven vehicle,
the escape paths—which are not shown—do intersect with
the set.) As the autonomous driver continues to move, the
human driver stops within a few seconds, in response to the
TAM’s recommendation (Figure 6(c)). Once the errant driver
clears the intersection, the TAM determines that all actions
are safe, causing the alert to switch off (Figure 6(d)).

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a new approach for human driver
assistance planning at road intersections. It is based on
combining an intention predictor (IP), threat assessor (TA),
and escape paths to create a threat assessment module
(TAM) which runs efficiently and is suitable for real-time
implementation. The IP performs classification on vehicle
state information to determine threat levels via high-level
logic, including the Ecological Recogniser, support vector
machines, and Bayesian filtering. The TA performs efficient
sampling-based reachability computations, via RRT, to iden-
tify possible future paths of surrounding vehicles. Finally,
the escape paths are evaluated to maximize time to collision
and thus minimize the threat level. The TAM has been
demonstrated and validated in the RAVEN testbed, using
both human-driven and autonomous vehicles.

Future experiments will increase both the variety and
complexity of interactions between vehicles at intersections,
including different intersection types. We will consider multi-
vehicle intersection interactions, simulating multiple drivers
at busy intersections. The algorithm will be tasked to si-
multaneously classify behaviors of multiple vehicles, build
reachability trees, construct escape paths, and post alerts,
all in real time. Additionally, future work will study human
drivers’ response times to different alerts, so that the response
time can be appropriately factored into the alert generation.
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(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Fig. 6. Zoomed-in display view of a representative interaction between the human-driven host vehicle (blue chevron) and autonomous vehicle at an
intersection; each figure shows a successive snapshot of this interaction. The autonomous vehicle is classified in real-time as safe (green chevron) or errant
(red chevron). If the autonomous vehicle is perceived to be a threat, the reachability tree darkens, and the outer ring around the host vehicle indicates the
alert type (grey = maintain speed, red = brake, green = accelerate). Escape paths are not shown.
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