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Abstract Redundant robots have received increased
attention during the last decades, since they provide so-

lutions to problems investigated for years in the robotic

community, e.g. task-space tracking, obstacle avoidance

etc. However, robot redundancy may arise problems
of kinematic control, since robot joint motion is not

uniquely determined. In this paper, a biomimetic ap-

proach is proposed for solving the problem of redun-

dancy resolution. First, the kinematics of the human

upper limb while performing random arm motion are
investigated and modeled. The dependencies among the

human joint angles are described using a Bayesian net-

work. Then, an objective function, built using this model,

is used in a closed-loop inverse kinematic algorithm for
a redundant robot arm. Using this algorithm, the robot

arm end-effector can be positioned in the three dimen-

sional (3D) space using human-like joint configurations.

Through real experiments using an anthropomorphic

robot arm, it is proved that the proposed algorithm
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is computationally fast, while it results to human-like
configurations compared to previously proposed inverse

kinematics algorithms. The latter makes the proposed

algorithm a strong candidate for applications where an-

thropomorphism is required, e.g. in humanoids or gen-
erally in cases where robotic arms interact with hu-

mans.

Keywords Inverse kinematics · Biomimetics · Redun-

dant Robots · Graphical Models · Anthropomorphic

Motion

1 Introduction

Robot configuration plays a very significant role in a
growing number of robot applications. In certain com-

plex industrial tasks, stable, fast and accurate robot

positioning is required, while in a number of nonin-

dustrial tasks (e.g. domestic robotics, robotic-assisted

surgery etc) dexterity and intelligent positioning is re-
quired to avoid obstacles [1], joint limits [2] or singu-

lar configurations [3]. For all those reasons, redundant

robots have received increased attention during the last

decades, along with their associated problem of com-
plex kinematics. Since their joint configuration is not

determined uniquely, a set of kinematic and dynamic

criteria have been introduced to achieve a unique so-

lution [4]. During the last decade though, the robots

are getting closer to humans, introducing thus the need
for anthropomorphic motion to allow improved inter-

action. Towards this goal, the multijoint coordination

of the human arm should be analyzed and modeled. If

joint angles dependencies are modeled, then incorporat-
ing those synergies in the inverse kinematics algorithms

results to a biomimetic approach of the kinematic con-

trol of redundant robot arms.
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The investigation of human arm motion, in order to

infer laws for biomimetic trajectory planning and robot

inverse kinematics, has been reported in the past [5]. Es-

pecially for everyday life tasks (e.g. drawing, handwrit-

ing), approaches of mimicking the human arm move-
ments have been proposed [6]. Some studies have been

also done in order to generate human-like motion by

imitating human arm motion as closely as possible. In

most of these studies, the human motion is measured
using a motion capture system and then converted to

motion for a humanoid robot arm [7]. In [8] a method

is proposed to convert the captured marker data of

human arm motions to robot motion using an opti-

mization scheme. The position and orientation of the
human hand, along with the orientation of the upper

arm, were imitated by a humanoid robot arm. However,

this method was not able to generate human like mo-

tions, given a desired three dimensional (3D) position
for the robot end-effector. Similarly, most of the previ-

ous works on biomimetic motion generation for robots

are based on minimizing posture difference between the

robot and the human arm, using a specific recorded

data set [7]. Therefore, the robot configurations are ex-
clusively based on the recorded data set. In this way,

the method can not generate new human-like motion,

which is quite important for the kinematic control of an-

thropomorphic robot arms and humanoids, where the
range of possible configurations should not be limited

to the ones recorded from humans.

Cost functions have been also proposed to model

motion principles of human arm movements [9]. How-

ever these functions are quite complex to be used for
the inverse kinematics of robots, while they are usually

addressing not only the kinematic, but also to the dy-

namic level. Other kinematic or dynamic criteria were

proposed in the past [20], [21], however they were not

addressing arm motion in the 3D space. Moreover, Hid-
den Markov Models (HMM) were used in the past for

modeling arm motion towards robot imitation [22], [23],

[26], [28], however most of the works are based on cost

functions and optimization techniques that drive the
robots based on a finite recorded set, while the models

are not able to generalize. A set of nonlinear dynam-

ical systems and discrete control policies were intro-

duced in [24], a finite set of primitives were used to con-

trol a humanoid in [25], while similar control strategies
based on primitives were used in [29]. Motion graphs

were used in [27], however the probabilistic character-

istics were used to connect certain patterns of motion

with an existing database of recorded arm movements.
Finally, a partitioning of the human-like motion gen-

eration problem in robots has been proposed in the

past [10]. The upper arm joints values are first cal-

culated for positioning the robot elbow, and then us-

ing that, the rest of the joints are evaluated. Such an

approach though can not be easily applied to robots

having a kinematic structure different from that of the

human upper limb.

In this paper a biomimetic approach for solving the
inverse kinematic problem of redundant robot arms is

proposed. The idea of using the analysis of the human

arm multijoint coordination, in order to synthesize mo-

tion patterns for robot arms, is utilized. Human arm
motion during everyday life tasks, like reaching objects

or wiping a surface, is recorded and analyzed. The mo-

tion analyzed here excludes the wrist motion, there-

fore accounts for 5 degrees of freedom (shoulder and

elbow), which suffice for arm tasks in the 3D space. A
Bayesian Network is used for the probabilistic descrip-

tion of the human arm multijoint coordination. Then

an objective function is defined based on the inter-

joint dependency described by the probabilistic model.
This function is incorporated into a closed-loop inverse

kinematics algorithm for a redundant robot arm. Using

the proposed method, an anthropomorphic redundant

robot arm is kinematically controlled in end-effector po-

sitioning tasks. The computational time of the inverse
kinematics is negligible while the resulting robot arm

configuration is anthropomorphic, as assessed through

the comparison of joint angle profiles with the previ-

ously recorded human arm data. Moreover, the pro-
posed model can generate new human-like robot arm

motions, that are not limited to the repertoire of mo-

tions initially recorded from the human arm.

One of the main differences that this work has, com-

pared to previous ones, is that it doesn’t depend on
robots mimicking a pre-defined set of human arm mo-

tion. Furthermore, the work is not based on any algo-

rithm that tries to minimize the differences between the

robot motion and the pre-recorded human motion. In

contrary to the previous works, the method proposed
in this paper tries to mathematically model the an-

thropomorphic characteristics of human arm motion.

Based on the resulted model, a closed-loop inverse kine-

matic method is used in order to create anthropomor-
phic configurations for the robot arm, without directly

mimicking pre-recorded human arm motions. Moreover,

through the model trained, new1 anthropomorphic robot

arm motions are generated, proving not only the abil-

ity of the proposed method to effectively describe an-
thropomorphic arm motions but also the generalization

properties of the proposed model.

The rest of the paper is organized as follows: the

proposed methodology is presented in Section 2. The

1 New arm motions are considered those that are different from
a continuous finite set recorded during model training.
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experimental procedure assessing the method efficiency

is reported in Section 3, while Section 4 concludes the

paper.

2 Methodology

2.1 Human Arm Motion Analysis

There is no doubt that the kinematic structure of the

human upper extremity is quite efficient, while very
complex. Narrowing our interest down to the upper

limb and not considering finger motion, the kinematics

of the arm can be modeled with 7 degrees of freedom. In

this study, we focused on the principal joints of the up-
per limb, i.e. the shoulder and the elbow. The wrist mo-

tion was not included in the analysis for simplicity. The

proposed method was used for the control of an anthro-

pomorphic robot arm, equipped with rotational joints

that mimic the degrees of freedom of the human arm,
as shown in Fig. 1. Therefore, 5 degrees of freedom were

analyzed; shoulder abduction-adduction, shoulder flex-

ion extension, shoulder external-internal rotation, el-

bow flexion-extension and forearm pronation-supination,
which can be simulated by 5 corresponding joint angles,

i.e. q1, q2, q3, q4, q5 for the human arm and q1R, q2R,

q3R, q4R, q5R for the robot arm respectively, as shown in

Fig. 1. A training session was conducted, during which

motion data from the human arm performing random
motions in the 3D space were recorded. Motion data

were then used for building a model describing human

arm multi-joint dependencies, that was used in the pro-

posed approach for the robot inverse kinematics. Four
subjects at the age range of 25-29 participated at the

experiments.

In order to record the motion of the upper limb

and then extract the joint angles of the 5 modeled de-

grees of freedom, a magnetic position tracking system
was used. The system was equipped with two position

trackers and a reference system, with respect to which,

the 3D position and orientation of the trackers were

provided. In order to compute the 5 joint angles, one
position tracker was placed at the user’s elbow joint

while the other one at the wrist joint. The reference

system was placed on a solid surface above the user’s

shoulder. The surface was properly aligned with re-

spect to the subject sagittal and coronal plane, so the
planes of the tracker reference system were aligned to

the corresponding planes of the user. Moreover the users

had their back attached to a chair’s back by means of

elastic straps, in order to prevent motion of the torso
while moving the arm. The proper computation on the

tracker measurements were done in order to “virtually”

transfer the center of the tracker reference system as

Fig. 1 Human and robot joint angles. The equivalence of the
human and robot degrees of freedom is shown. The two position
trackers are placed on the user elbow and wrist joint, while the
tracker reference system is placed on the user’s shoulder.

close as possible to the center of the shoulder joint. The
setup is shown in Fig. 1, where the “virtual” tracker

base reference system is shown on the user’s shoulder.

The kinematic analysis is summarized in the following

paragraph, while for more details the reader should re-

fer to Appendix A.

Let T1 =
[

x1 y1 z1

]T
, T2 =

[

x2 y2 z2

]T
denote

the position of the trackers with respect to the tracker
reference system. Measurements of T1, T2 were pro-

vided by the position tracking system at the frequency

of 60 Hz. By solving the inverse kinematic equations

the human joint angles were given by:

q1 = arctan 2 (±y1, x1)

q2 = arctan 2
(

±
√

x2
1 + y2

1 , z1

)

q3 = arctan 2 (±B3, B1)

q4 = arctan 2
(

±
√

B2
1 + B2

3 , B2 − L1

)

q5 = arctan 2 (M, Λ) + arctan2
(

1 ±
√

K2

M2+Λ2 , K√
M2+Λ2

)

(1)

where

B1 = x2 cos (q1) cos (q2) + y2 sin (q1) cos (q2) − z2 sin (q2)

B2 = −x2 cos (q1) sin (q2) − y2 sin (q1) sin (q2) − z2 cos (q2)

B3 = −x2 sin (q1) + y2 cos (q1)

K = tan (φ) (cos (q2) cos (q4) − cos (q3) sin (q2) sin (q4))

Λ = sin (q2) sin (q3)
M = cos (q3) cos (q4) sin (q2) + cos (q2) sin (q4)

(2)
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where φ was the roll angle measured from the posi-

tion tracker 2 and L1 was the length of the upper arm.

The length of the upper arm was computed from the

distance of the first position tracker from the base ref-

erence system, i.e. L1 = ‖T1‖ =
√

x2
1 + y2

1 + z2
1 . Like-

wise, the length of the forearm L2 was computed from

the distance between the two position trackers, i.e. L2 =
√

(x2 − x1)
2

+ (y2 − y1)
2

+ (z2 − z1)
2
.

Since the position trackers were placed on the skin
and not in the center of the modeled joints (which would

be impractical), the lengths L1, L2 could slightly vary

as the user moved the arm. A variance of approximately

0.01m was observed for the lengths L1, L2. Moreover,
for all subjects, the measured lengths’ values were very

close2 to the actual anatomical ones. However, very ac-

curate measurements for human joint angles is not a

critical factor for the proposed method. The paper pro-

poses a methodology for modeling anthropomorphism
in human arm motion, and using this model for the in-

verse kinematics of a robot arm. Therefore, small errors

in joint angle measurements do not affect the method’s

efficiency. A more accurate system for measuring arm
motion could be used, without affecting the proposed

method.

Since four subjects were used for recording arm mo-

tion, the variability of measurements across subjects

was important. In Fig. 2, the histograms of each of

the 5 modeled joint angles for the four subjects are
shown. The histograms were constructed by using equal

in number of samples experiments for each subject. As

it can be seen, all subjects exhibited similar variabil-

ity with respect to their arm motion in joint space. In
the following section, the inter-joint variability across

subjects is also analyzed.

2.2 Modeling Human Arm Movement

The modeling of human arm movement has received in-

creased attention during the last decades, especially in

the field of robotics [11] and graphics. This is because
there is a great interest in modeling and understand-

ing underlying laws and motion dependencies among

the degrees of freedom of the arm, in order to incor-

porate them into robot control schemes. Most of the

previous works in this area focus on the definition of
motor primitives [12], or objective functions that are

minimized during arm motion. These models lack the

ability to describe dependencies among the degrees of

freedom of the arm though. In this paper, in order to

2 Deviation of the mean measured values for L1 from the ac-
tual anatomical ones was 5%, 4%, 6%, 5% for the four subjects
respectively. Likewise for L2, it was 3%, 2%, 2%, 2%.

Fig. 2 Histograms of each joint angle across all subjects, for 4000
samples per subject.

model the dependencies among the degrees of freedom

of the arm during random 3D movements, graphical

models were used.

2.2.1 Graphical Models

Graphical models are a combination of probability the-

ory and graph theory [30]. They provide a tool for

dealing with two characteristics; the uncertainty and

the complexity of random variables. Given a set F =
{

f1 . . . fN

}

of random variables with joint probabil-
ity distribution p (f1, . . . , fN), a graphical model at-

tempts to capture the conditional dependency structure

inherent in this distribution, essentially by expressing

how the distribution factors as a product of local func-

tions, (e.g. conditional probabilities) involving various

subsets of F. Directed graphical models, is a category

of graphical models, also known as Bayesian Networks.

A directed acyclic graph is a graphical model where

there are no graph cycles when the edge directions are
followed. Given a directed graph G = (V, E), where V

the set of vertices (or nodes) representing the variables

f1, . . . , fN , and E the set of directed edges between

those vertices, the joint probability distribution can be
written as follows:

p (f1, . . . , fN ) =

N
∏

i=1

p (fi |a (fi) ) (3)
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where, a (fi) the parents (or direct ancestors) of node

fi. If a (fi) = ∅ (i.e. fi has no parents), then p (fi |∅ ) =

p (fi), and the node i is called the root node.

An advantage of graphical models is that the di-
rected edges can be used to explicitly model causal-

ity. By inspecting the arrows in such models, it is easy

to determine which variables directly influence others.

Moreover, using (3) we can compute the joint probabil-
ity for a set of variables to have a specific value, taking

into account their dependencies learned from the train-

ing data. However, eq. (3) requires the parents of each

variable, i.e. the structure of the graphical model. This

can be learned from the training data, using the algo-
rithm presented below.

2.2.2 Building the Model

A version of a directed graphical model is a tree model.

Its restriction is that each node has only one parent.
The optimal tree for a set of variables is given by the

Chow-Liu algorithm [13]. Briefly, the algorithm con-

structs the maximum spanning tree of the complete

mutual information graph, in which the vertices cor-
respond to the variables of the model and the weight

of each directed edge fi → fj is equal to the mutual

information I (fi, fj), given by

I (fi, fj) =
∑

fi,fj

p (fi, fj) log
p (fi, fj)

p (fi) p (fj)
(4)

where p (fi, fj) the joint probability distribution func-

tion for fi, fj, and p (fi), p (fj) the marginal distribu-
tion probability functions for fi, fj respectively. Mu-

tual information is a unit that measures the mutual

dependence of two variables. The most common unit

of measurement of mutual information is the bit, when

logarithms to the base of 2 are used. It must be noted
that the variables

{

f1 . . . fN

}

are considered discrete

in the definition of (4). Details about the algorithm of

the maximum spanning tree construction can be found

in [13].

Variables {q1, q2, q3, q4, q5} correspond to the joint

angles of the 5 modeled degrees of freedom of the arm.

They were rounded to the nearest integer, therefore,

with a maximum rounding error of 0.5 deg, joint vari-
ables were essentially discretized enabling the simplifi-

cation of the directed graphical model based training

and inference algorithm without essential loss of infor-

mation due to discretization. Using joint angle data
recorded during the training phase from all the sub-

jects, we could build the tree model. The resulting tree

structure is shown in Fig. 3. Therefore, using (3), we

Fig. 3 The directed graphical model (tree) representing nodes
(i.e. joint angles) dependencies. Node i corresponds to qi. i → j

means that node i is the parent of node j, where i, j = 1, 2, 3, 4, 5.
The mutual information I (i, j) is shown at each directed edge
connecting i to j. The value of the mutual information quantifies
the information gained if we describe two variables through their
dependency, instead of considering them as independent. Its value
is in bits.

defined the joint probability of the 5 variables repre-

senting joint angles by

p (q1, q2, q3, q4, q5) =
5

∏

i=1

p (qi |a (qi) ) (5)

where a (qi) are the parents of variable qi. Therefore,
from the tree structure (see Fig. 3) it is

p (q1, q2, q3, q4, q5) = p (q1 |q3 ) p (q3 |q5 ) p (q4 |q5 ) p (q2 |q5 ) p (q5) (6)

where p (qi |qj ), i, j = 1, 2, 3, 4, 5, the conditional proba-

bility distribution of qi, given its parent qj . Each condi-
tional probability was given by the following equation:

p (qi |qj ) =
p (qi, qj)

p (qj)
(7)

where p (qi, qj) the joint probability distribution of qi

and its parent qj and p (qj) the marginal probability

distribution of qj . A similar Bayesian framework for

modeling human arm motion was also used by the au-
thors in [14].

Eq (6) was essentially describing the dependencies

between the joint angles, as identified by the graphi-

cal model. For each joint angle, this dependency could
be described by the conditional probability distribution

function with its parent, i.e. p (qi |qj ), i, j = 1, 2, 3, 4, 5.

However, this function was based on the finite measure-

ments during the human arm motion experiments, i.e.
it was represented by a 2D histogram matrix. A way

to conclude to a continuous representation of this func-

tion, was to fit this 2D histogram with a continuous
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function. This function was a Gaussian Mixture Model

(GMM) [15]. A GMM is actually a weighted sum of

Gaussian distribution functions, that can describe quite

efficiently complex and non-smooth probability distri-

bution functions. In general, for a N-dimensional GMM
probability distribution function is given by:

p (Q) =

h
∑

k=1

πkN (Mk,Sk) (8)

where h is the number of mixture components, while

N (Mk,Sk) is a N-dimensional Gaussian distribution

function with mean matrix Mk and covariance matrix

Sk respectively. Details about the GMMs and their fit-
ting procedure (Expectation Maximization (EM)) can

be found in [15].

At this point it must be noted that the model pre-

sented previously was created using all the arm motion
recorded from all the subjects. However, it would be

of interest to show the inter-joint relationship for each

subject separately. In other words, if a unique graph-

ical model is trained to map anthropomorphism for
each subject, it should be similar to the (global) model

trained with data for all subjects, if the efficiency of

the proposed method is to be assessed. For the latter

to be proved, four different models were trained, each

one using data from an individual subject. The models
were proved to have the same structure as the global

one shown in Fig. 3. This was due to the fact that simi-

lar inter-joint relationship were observed across all sub-

jects. In order the latter to be quantified, a (5× 5) mu-

tual information matrix I
(n)
m including all the mutual

information indexes across the joint angles was com-

puted for each subject n, n = 1, 2, 3, 4. Each (i, j) el-

ement of this matrix, i, j = 1, . . . 5, is the mutual in-

formation index between the joint angles qi and qj , as
computed by (4). This matrix was obviously symmetric,

while the diagonal terms corresponded to the entropy

of each joint angle. In Fig. 4 the mutual information

matrices for each subject are graphically depicted. The
patterns of the four matrices were very similar, which

essentially proved that the inter-joint relationships were

similar across subjects. Consequently, this observation

proved that the method could capture robustly enough

the global characteristics of anthropomorphism in hu-
man arm movements.

2.3 Biomimetic Approach on Robot Inverse

Kinematics

2.3.1 Inter-joint Dependencies

The graphical model shown in Fig. 3 along with (6)

essentially described the dependencies among the joint

Fig. 4 Mutual information matrices for each of the four subjects.
Same pattern of values was observed across subjects. Diagonal el-
ements of matrices correspond to individual joint angle entropies,
which are certainly higher than any mutual information index of
two different joint angles. Values of elements (5, 2), (5, 3), (5, 4),
(3, 1) (as well as their symmetric with respect to the diagonal ele-
ments) are higher than the other non-diagonal values, as expected
from the structure of the model in Fig. 3.

angles of the human arm. These dependencies could be

formulated as an objective function for a closed-loop
robot inverse kinematic scheme, concluding to human-

like robot configurations, since human multi-joint de-

pendencies would have been taken into account.

For achieving the latter, we defined a function gi

for each of the joint angles qi, i = 1, 2, 3, 4, 5, which

was actually a probability density function (PDF) of a
GMM, fitted on the data representing the conditional

probability distribution function of the joint angle i

given its parent joint angle j, j = 1, 2, 3, 4, 5. There-

fore, using (7), the functions gi for each joint angle qi,

i = 1, 2, 3, 4, 5, were defined as shown below:

g1 = p (q1 |q3 ) = p(q1,q3)
p(q3) =

n13
P

k=1

π
(1,3)
k

N
“

M
(1,3)
k

,S
(1,3)
k

”

n3
P

k=1

π
(3)
k

N
“

µ
(3)
k

,σ
(3)
k

”

g2 = p (q2 |q5 ) = p(q2,q5)
p(q5) =

n25
P

k=1

π
(2,5)
k

N
“

M
(2,5)
k

,S
(2,5)
k

”

n5
P

k=1

π
(5)
k

N
“

µ
(5)
k

,σ
(5)
k

”

g3 = p (q3 |q5 ) = p(q3,q5)
p(q5) =

n35
P

k=1

π
(3,5)
k

N
“

M
(3,5)
k

,S
(3,5)
k

”

n5
P

k=1

π
(5)
k

N
“

µ
(5)
k

,σ
(5)
k

”

g4 = p (q4 |q5 ) = p(q4,q5)
p(q5) =

n45
P

k=1

π
(4,5)
k

N
“

M
(4,5)
k

,S
(4,5)
k

”

n5
P

k=1

π
(5)
k

N
“

µ
(5)
k

,σ
(5)
k

”

g5 = p (q5) =
n5
∑

k=1

π
(5)
k N

(

µ
(5)
k , σ

(5)
k

)

(9)

where π
(i,j)
k , M(i,j), S(i,j) were the components weights,

mean and covariance matrices for the 2-dimensional

Gaussian distributions fitted to joint distributions of
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Fig. 5 Joint and marginal distribution functions after fitting the
Gaussian Mixture Models. The non-uniform shape of the distri-
butions justifies the choice of fitting them with GMMs.

Table 1 Number of mixing components used at the fitted
GMMs.

n13 n25 n35 n45 n3 n5

Number of

components
4 4 6 6 3 3

joint angles qi, qj , and π
(i)
k , µ

(i)
k , σ(i) were the com-

ponents weights, mean and variance values for the 1-

dimensional Gaussian distributions fitted to marginal

distributions. nij , ni were the numbers of the compo-
nents used for fitting the GMMs to each distribution.

Table 1 summarizes the number of mixture components

used for each GMM. The number of the components

was determined using the Akaike Criterion [16].

The gi functions could take values from 0 to 1, since

they were based on joint and marginal probabilities,

while they were maximized if the corresponding joint

coordination was frequently observed during the hu-
man arm motion. For example, g1 was maximized to-

wards a value for q1 that was most frequently observed

during human arm movements, for any given value for

q3. In this way, the gi functions were maximized if the
multi-joint configuration is anthropomorphic. This is

also shown in Fig. 5, where the gi functions are plot-

ted for all the joint angles. The previously defined gi

functions were used in a closed-loop inverse kinematics

scheme for solving the inverse kinematics of the robot

arm.

2.3.2 Bio-mimetic closed-loop inverse kinematics

Since only the first 5 degrees of freedom of the robot

arm were used, the robot joint angle vector was defined

as:

qR =
[

qR1 qR2 qR3 qR4 qR5

]T
(10)

To solve the inverse kinematics problem, qR must be

computed starting from the (4 × 1) pose vector pd =
[

xd yd zd rd

]T
, where xd, yd and zd the desired 3D po-

sition of the robot end-effector, and rd the desired roll

orientation angle. Only these four variables can be con-
trolled using the first 5 degrees of freedom of the robot

arm, and therefore, the problem was still redundant [4].

An effective way to compute the inverse kinematics was

that of resorting to the differential kinematics equation:

ṗd = J (qR) q̇R (11)

mapping the joint space velocity q̇R into the task space

velocity ṗd, where J (qR) is the (4×5) Jacobian matrix.

This mapping may be inverted using the pseudo-inverse
of the Jacobian matrix, i.e.,

q̇R = J† (qR) ṗd (12)

where J† = JT
(

JJT
)−1

is a (5 × 4) matrix, which

corresponds to the minimization of the joint velocities

in a least-squares sense [4]. Finally, the redundancy of
the system can be further exploited using a task prior-

ity strategy corresponding to a solution of the inverse

kinematics of the form:

q̇R = J† (qR) ṗd +
(

I5 − J† (qR)J (qR)
)

q̇a (13)

where I5 is the (5×5) identity matrix, q̇a is an arbitrary

joint velocity vector and the operator
(

I5 − J† (qR)J (qR)
)

projects the joint velocity vector in the null space of

the Jacobian matrix. This solution generates an inter-

nal motion of the robotic system (secondary task) which

does not affect the motion of the robot arm end-effector

(the primary task). The joint velocity vector q̇a can be
used to move the robot joints in preferred regions, with-

out affecting the robot end-effector position. In order to

do that, the joint velocity vector q̇a can be chosen to

be aligned with the gradient of an objective function
G (qR), i.e.:

q̇a = ka

∂G (qR)

∂qR

(14)
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with ka > 0, in order to achieve a function optimiza-

tion3 for G (qR). Finally the problem of inverse kine-

matics can be solved by defining (13) in a closed-loop

form; given the desired pose vector pd, the joint space

velocity q̇R can be computed by:

q̇R = J† (qR)Ke +
(

I5 − J† (qR)J (qR)
)

q̇a (15)

where

K =









k1 0 0 0
0 k2 0 0

0 0 k3 0

0 0 0 k4









(16)

where k1, k2, k3, k4 > 0 and e the position error vector,

i.e. e = pd −p. The desired velocity of the end-effector

is defined as zero, i.e. ṗd = 0.
In order to incorporate the human-like robot config-

uration, we defined the objective function for each joint

equal to the gi function analyzed previously:

G (qR) =
[

g1 g2 g3 g4 g5

]T
(17)

In this way, the closed-loop inverse kinematics will tend

to give solution that maximize the objective function

G (q), and consequently maximize gi functions defined

in (9). Due to the latter, the resulting robot arm con-
figurations will be human-like, since the inverse kine-

matics will tend to result to robot configurations that

describe the inter-joint dependencies learned from the

human arm motions.

2.4 Generation of Anthropomorphic Arm Motions

Using the previously analyzed graphical model, we could
also generate anthropomorphic arm motion. This was

done by using inference algorithms for the graphical

model, given a set of known variables of the model. In

other words, since we were interested in generating mo-
tion, we could choose a value for the root joint angle

(i.e. q5), and then propagate through the structure of

the tree and the conditional probabilities described by

its edges, in order to calculate values for the other joint

angles. This procedure is called probabilistic inference

and is generally used in Bayesian Networks (like the

graphical models) for the estimating the values of hid-

den nodes, given the values of the observed nodes [30].

In our case, we chose the root node (q5) to be known
(since we assigned a value for it), and through a message-

passing algorithm, called junction tree, we could calcu-

late the values for the other joint angles. For details on

the inference algorithm, the reader should refer to [17].
It must be noted that the values of q5 are not randomly

3 The robot should converge to anthropomorphic configura-
tions that essentially (locally) maximize G (qR).

chosen, but they are in the range of the values observed

during training. In this way, we used the human inter-

joint dependencies described by the graphical model in

order to generate new motion for the robot arm. The

generated anthropomorphic robot arm trajectories are
analyzed in the Results section.

3 Results

3.1 Hardware and Experiment Design

The proposed architecture was assessed through the
control of a redundant robot arm. The robot arm used

was a 7 DoF anthropomorphic manipulator (PA-10,

Mitsubishi Heavy Industries). The robot arm servo con-

troller was interfaced with a PC through the ARCNET
protocol, while the communication frequency was 500

Hz. The PC was senting desired joint velocity at each

robot joint. Details on the modeling of the robot arm

can be found in [18]. For building the model of the hu-

man arm movement, a magnetic position tracking sys-
tem was used for recording human arm motion. The po-

sition tracking system (Isotrak II, Polhemus Inc.) was

connected with a PC through serial communication in-

terface (RS-232). The size of the position sensors was
2.83(W) 2.29(L) 1.51(H) cm.

For building the model of the human arm motion,

the position tracker sensors were placed on the human
arm, as shown in Fig. 1. The users were instructed to

perform random 3D arm movements for about 5 min-

utes. Moreover, everyday life tasks were also performed,

e.g. reaching and grasping objects on a table, or writ-

ing on a vertically positioned whiteboard. The position
tracker measurements were collected and appropriately

processed in order to construct the model describing

human-like motion, analyzed previously. The process-

ing of the data collected for 5 minutes lasted less than
2 minutes.

3.2 Robot Inverse Kinematics using the Biomimetic

Approach

We first assessed the proposed method by controlling

the end-effector position of the robot arm, using the
previously analyzed approach for the inverse kinemat-

ics. The 3D position of the human hand4, with re-

spect to the shoulder, was recorded for 1 minute, while

the user was performing random movements in the 3D
space. Having the 3D position of the human hand, we

assessed the proposed inverse kinematics approach by

4 The human wrist point is actually analyzed here.
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commanding the robot arm in joint space, in order to

reach with its end-effector the same 3D point, with re-

spect to its shoulder, i.e. the robot base. However, since

the links of the human and robot arm had different

length, the human hand 3D points should be appro-
priately transformed, in order for the robot arm to be

able to reach them, with the same joint configuration.

In other words, if the human arm reaches a point P
in the 3D space with a configuration Q, then a new
(equivalent) point P ′ should be computed in order for

the robot to reach it with the same configuration Q.

3.2.1 Computation of Equivalent 3D Points

The computation of the equivalent points for the robot

arm end-effector was based on the hypothesis that these

would be the points where the human hand would reach,

if the length of the human links (i.e. the upper arm and

the forearm) would be equal to the respective robot
links length. The hypothesis is illustrated in Fig. 6. For

this reason, the position of the human elbow and wrist,

already recorded using the position tracking system,

were described using spherical coordinates, as shown

in Fig. 6. If
[

x1 y1 z1

]T
, the Cartesian coordinates of

the human elbow point, then its description in spherical

coordinates was defined by:





r1

ϕ1

θ1



 =









√

x2
1 + y2

1 + z2
1

atan2 (y1, x1)

acos

(

z1√
x2
1+y2

1+z2
1

)









(18)

where r1 was the radial (Euclidean) distance from the

origin to the elbow, θ1 was the inclination angle be-

tween the zenith direction and the line formed between
the origin and the elbow point, while ϕ1 was the az-

imuth angle between the reference direction on the cho-

sen plane and the line from the origin to the projection

of the elbow point on the plane. Virtually extending the
upper arm to meet the length requirement of the robot

arm, it would move the elbow point to a new position,

that was described by Cartesian coordinates as follows:

x′
1 = R1 cosϕ1 sin θ1

y′
1 = R1 sin ϕ1 sin θ1

z′1 = R1 cos θ1

(19)

where R1 was the length of the upper arm of the robot,

as shown in Fig. 6. The human wrist point with respect

to the human elbow point was described in spherical

coordinates by:





r2

ϕ2

θ2



 =











√

(x2 − x1)
2

+ (y2 − y1)
2
+ (z2 − z1)

2

atan2 (y2 − y1, x2 − x1)

acos

(

z2−z1√
(x2−x1)

2+(y2−y1)
2+(z2−z1)

2

)











(20)

Fig. 6 Virtual elongation of the human upper arm and forearm
to meet the robot links length requirements.

where r2, θ2 and ϕ2 were defined similarly to r1, θ1 and

ϕ1 respectively and
[

x2 y2 z2

]T
was the wrist position

vector in Cartesian coordinates. Using the two orien-

tation angles θ2, ϕ2 of the human forearm we could
define the new wrist point for the robot arm, using as

origin the new elbow point and the length requirements

of the robot forearm. Finally, the Cartesian coordinates

of the new wrist point, with respect to the base frame

located at the shoulder, meeting the robot link length
requirements, were given by:

x′
2 = R2 cosϕ2 sin θ2 + x′

1

y′
2 = R2 sin ϕ2 sin θ2 + y′

1

z′2 = R2 cos θ2 + z′1

(21)

where R2 was the length of the robot forearm, as shown

in Fig. 6. These new coordinates of the wrist point were

used as desired position for the robot end-effector. The
roll orientation angle of the human arm was not affected

by the virtual extension of the human links.

3.2.2 Methodology Assessment

The biomimetic approach of the inverse kinematics pro-

posed, was tested using the equivalent point of the wrist,
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i.e. P ′
2 =

[

x′
2 y′

2 z′2
]T

, for the desired position of the

robot end-effector. A continuous trajectory of the hu-

man hand was used and the resulted robot joint angle

profiles were compared to the corresponding joint an-
gle profiles of the human arm. Moreover, the method

was also compared with the traditional closed-loop in-

verse kinematics method [4], which was defined by (15).

However, since the robot was redundant, multiple so-
lutions could be computed. For such robots, the most

usual technique is to formulate the joint velocity vec-

tor q̇a, such that the inverse kinematics converge to

solutions that are away from the joint mechanical lim-

its and also avoid singular configurations. The formu-
lation of this problem is out of the scope of this paper

and is analyzed in [4]. Therefore, our biomimetic ap-

proach was compared with the traditional closed-loop

inverse kinematics formulated in a way to avoid joint
limits and singular configurations. With this compar-

ison, the effect of the proposed model that described

the dependencies of the human arm movements on the

robot inverse kinematics was illustrated.

In Fig. 7 the joint angle profiles of the human arm
were compared to the robot joint angle profiles com-

puted from the proposed inverse kinematics biomimetic

approach and the traditional closed-loop inverse kine-

matics algorithm, for an arm movement of 12 sec. As it
can be seen, the robot configuration using the proposed

algorithm mimics the one of the human arm, while the

traditional algorithm results to non-human like config-

urations. It must be noted that the proposed algorithm

converged to the minimum error defined for the closed-
loop inverse kinematics5 in a comparable6 number of

loops to those needed by the the traditional algorithm.

Snapshots of the human and robot configurations re-

sulted from both algorithms, during this test, are shown
in Fig. 8.

3.3 Generation of Anthropomorphic Robot Arm
Motions

As mentioned in the section 2, the generation of anthro-

pomorphic robot arm motions was based on the graph-

ical model of multi-joint dependencies, and its ability

to infer values for each node, given a starting value for

at least one node. A continuous trajectory7 for the root

5 A minimum error of 1 mm for each axis (x, y, z) and 1 deg
for the roll angle was defined for both algorithms.

6 An approximately 10% increase in the number of loops
needed for convergence was noticed for the proposed algorithm,
compared to the number of loops needed for the traditional in-
verse kinematics convergence.

7 A ramp was chosen, that was appropriately designed to meet
the probability distribution characteristics of this joint angle, as
observed during training.

Fig. 7 Joint angles for the 5 robot joints as computed by the
proposed method, compared to the corresponding human joint
profiles and the profiles calculated by the traditional closed-loop
inverse kinematics.

node (q5) was commanded and the corresponding val-
ues for the other joint angles were computed through

the inference algorithm of the model. Video snapshots

of the robot arm performing the anthropomorphic tra-

jectory are shown in Fig. 9, while the video of the robot
arm movement is uploaded on the internet (see Fig. 9

caption). The resulted joint angle trajectories are shown

in Fig. 10.

4 Conclusions and Discussion

A biomimetic approach in the inverse kinematics prob-

lem of redundant manipulators has been proposed. The
resulted robot joint trajectories were based on a closed-

loop inverse kinematic algorithm, augmented by a sec-

ondary factor that accounts for the biomimetic char-

acteristic of the resulted robot arm configuration. This

factor depends on a set of probability distributions that
describe the correlations between the corresponding hu-

man joint angles. A graphical model was used to de-

scribe the human joint angle dependencies, by using

training data collected offline from human arm move-
ments in the 3D space. The proposed method was com-

pared to a traditional closed-loop inverse kinematics

scheme, and it was proved that by using the proposed
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Fig. 8 Snapshots of the human arm performing random 3D motions and the robot arm driven by the proposed method and the
traditional closed-loop inverse kinematics. 5 robot degrees of freedom are actuated. First line: The human performing random 3D arm
motions. Second line: The robot arm driven by the proposed biomimetic inverse kinematics. Third line: The robot arm driven by the
traditional inverse kinematics. Corresponding points are indicated with red and blue dots.

Fig. 9 Consecutive (1-6) snapshots of the generated anthropomorphic robot arm motion. 5 robot degrees of freedom are actuated.
The video can be found in the Research section at the corresponding author’s website (http://web.mit.edu/partem/www), or can be
downloaded directly from the following link http://web.mit.edu/partem/www/Site/Research files/PA10 Biomimetic.MP4

method, biomimetic robot arm motions are being pro-
duced. Moreover, the core of the biomimetic character-

istic of the proposed method, i.e. the graphical model,

was able to generate new anthropomorphic motions, not

previously seen on training data.

The main novelty of the proposed method lies on

two features; firstly, the method was not based on a

finite set of human motion data, that should be re-
produced by the robot arm, as described in previous

works [7], [8]. Our method is not limited by the amount

of training data and the resulting robot arm configura-

tions are not restricted to identically mimic (i.e. copy)
human arm configurations. Moreover the method is not

based on optimizing algorithms and therefore there are

no limitations due to computational cost. Indeed, it was

shown that a closed-loop inverse kinematics scheme was

able to converge slightly slower when it was augmented
by the proposed method, than when it was used without

it. The second novel feature of the proposed method is

its ability to generate new motions. It was shown that

anthropomorphic robot arm movements were generated
by making use of the graphical model that describes hu-

http://web.mit.edu/partem/www
http://web.mit.edu/partem/www/Site/Research_files/PA10_Biomimetic.MP4
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man multi-joint coordination. Furthermore, the nature

of the graphical model does not assume a specific robot

arm kinematic structure, while the computations of the

joint angles are not affected by the robot arm kinemat-

ics, as seen in previous works [10]. In other words, the
method can be used with “non-human-arm like” robotic

devices, if the appropriate correspondence between the

human and robot joints is defined.

Most of the previous works in inverse kinematics for
redundant manipulators focus on the minimization of

objective function or task-defined criteria, as discussed

above. This practice limits the number of possible solu-

tions for the inverse kinematics, and in some cases, in-
sufficient training data can significantly limit the range

of application. In our work, the inverse kinematics solu-

tions do not depend on the minimization of task-specific

criteria, while the algorithm dependency on the train-

ing data is not explicit, allowing inverse kinematics to
be solved, even if the specific task was never observed

during training. In other words, the specific structure

methodology allows for generalization, a feature that

guarantees the existence of a solution to inverse kine-
matics. Finally, the proposed methodology can be used

on learning a robot to move under a larger (or more

specific) perspective. For example, using the proposed

methodology a robot can be trained to move while han-

dling hazardous materials, or in cluttered environments
avoiding obstacles or specific configurations. Therefore,

the proposed methodology can be used in a wide range

of applications, in which a definition of an objective

function for the solution of the inverse kinematics prob-
lem is not realizable. Using our method, a person can

train, for example using a virtual reality environment,

the robot to move in a specific manner, and then have

the robot similarly perform the task in the real envi-

ronment, which might be inaccessible or unknown for
the user.

The value of the anthropomorphic robot motion can

be assessed if a systematic survey on the new gen-

eration of robots is to be conducted. Anthropomor-
phic robot arm and hands, prosthetic or orthotic limbs,

humanoid robots, service robots, surgical robots and

much more, constitute a significantly growing area of

advanced robots nowadays developed and used both for

research reasons and every-day life applications. There-
fore, and since robots are getting closer to humans, the

necessity of behaving in an anthropomorphic way is get-

ting larger. The authors strongly believe that anthro-

pomorphism both in terms of design and control is a
significant feature that robots should incorporate, in

order to interact and help human every-day life in a

safe and efficient perspective.

Fig. 10 Anthropomorphic robot joint angle profiles generated
by the graphical model.

The proposed method can be useful in a wide range

of robot arms that interface with human and are op-

erated in human-cluttered environments. Especially in

humanoid robots, the method can be directly used in
order to result to anthropomorphic arm motions, while

it can be easily extended to dual arm configurations,

describing the joint angle dependencies in dual arm

robotic systems. Future work will be devoted to add

force capabilities and to extend the method to a robot
arm-hand system.

A Human Arm Kinematics

As shown in Fig. 1, the arm is modeled as a 5 DoF mechanism,
with 5 rotational joints, three at the shoulder and two at the el-
bow. The axes of joint 1, 2 and 3 are perpendicular to each other.
Likewise, the axes of joints 4 and 5 are also perpendicular. The
kinematics will be solved using the modified Denavit-Hartenberg
(D-H) notation [19]. We assign frames at each rotational joint and
then we can describe the relation between two consecutive frames
i − 1 and i by using the following homogeneous transformation
matrix

T i−1

i
=

2

6

6

4

cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

3

7

7

5

(22)

where c, s correspond to cos and sin respectively, and θ, α, a and
d the modified D-H parameters for the arm model given in Table
2, where L1, L2 the length of the upper arm and forearm respec-
tively. Those lengths are calculated using the position tracker
measurements as described in Methods section. The frames as-
signment, the base reference system placed on the shoulder, as
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Table 2 Arm model modified D-H parameters

i αi−1 ai−1 di θi

1 0 0 0 q1

2 −90◦ 0 0 q2

3 90◦ 0 L1 q3

4 −90◦ 0 0 q4

5 90◦ 0 L2 q5

Fig. 11 Frames assignment, base reference system and position
trackers along with modeled human joints.

well as the modeled joints and links are all shown in Fig. 11.
Therefore, the transformation from the shoulder (frame 0) to the
wrist (frame 5) is given by:

T 5

0 = T 1

0 T 2

1 T 3

2 T 4

3 T 5

4 (23)

where the matrices T are defined according to (22). Measurements
of the 3-dimensional (3D) position of the first position tracker
provide the position of the frame 3, as shown in Fig. 11. The
position and orientation of the frame 3 can be described by the
following homogenous matrix:

T 3

0 = T 1

0 T 2

1 T 3

2 (24)

where all matrices are defined through (22). The fourth column of
the T 3

0
matrix is the 3D position of the frame 3, which coincides

with the 3D position of the position tracker 1. Therefore, equating
the fourth column of each side of (24) to the position vector of the

position tracker, i.e.
ˆ

x1 y1 z1 1
˜T

, we get the q1 and q2 joint
angles as described in the following equations:

q1 = arctan 2 (±y1, x1) (25)

q2 = arctan 2

„

±
q

x2

1
+ y2

1
, z1

«

(26)

Using (23) and using the fact that the position of the 2nd position

tracking sensor T2 =
ˆ

x2 y2 z2

˜T
coincides with the center of

the 5th frame, the matrix T 5

0
can be written as follows

T 5

0 =

»

R3x3 T2

03x1 1

–

(27)

where R3x3 the rotation matrix describing the orientation of the
5th frame and 03x1 a zero-element matrix with size 3 × 1. From
(23) it is
`

T 2

1

´

−1 `

T 1

0

´

−1
T 5

0 = T 3

2 T 4

3 T 5

4 (28)

Solving (28) by using (27) and equating the first 3 elements of
the 4th column of both sides, it is

x2c1c2 + y2s1c2 − z2s2 = L2c3s4 (29)

x2c1s2 + y2s1s2 + z2c2 = L1 + L2c4 (30)

y2c1 − x2s1 = L2s3s4 (31)

where ci, si correspond to cos (qi), sin (qi), i = 1, 2, 3, 4 respec-
tively. From (29) and (31) it is

q3 = arctan 2 (±B3, B1) (32)

where

B1 = x2c1c2 + y2s1c2 − z2s2

B3 = y2c1 − x2s1

(33)

From (29), (30) it is

q4 = arctan 2

„

±
q

B2

1
+ B2

3
, B2 − L1

«

(34)

where

B2 = x2c1s2 + y2s1s2 + z2c2 (35)

Finally, since the reference system of the second position tracker is
aligned with the frame 5, we can use one of the three orientation
angles (i.e. the roll angle) in order to compute the joint angle
q5. The roll angle can be computed from (23) by the following
equation:

φ = a tan 2 (r32, r33) (36)

where r32, r33 are the (3,2) and (3,3) elements of the matrix R

defined in (23) respectively, and φ the roll angle measured from
the position tracker [4]. Solving (36) for q5 using (23), it is:

q5 = a tan 2 (M, Λ) + a tan 2

0

@1 ±

s

K2

M2 + Λ2
,

K√
M2 + Λ2

1

A (37)

where

K = tan (φ) (c2c4 − c3s2s4)
Λ = s2s3

M = c3c4s2 + c2s4

(38)

It must be noted that whenever more than one solutions for joint
angles are provided from the above equations, one of them is
finally selected, based on human joint limits and the definition of
the joint angle directions.
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