
 
 

Design and Fabrication of Precision Carbon Nanotube-Based Flexural Transducers 
 

by 
 

Michael A. Cullinan 
 

S.M. Mechanical Engineering 
Massachusetts Institute of Technology, 2008 

 
B.S. Engineering 
B.A. Economics 

Swarthmore College, 2006 
 

Submitted to the Department of Mechanical Engineering  
in Partial Fulfillment of the Requirements for the Degree of 

  
Doctor of Philosophy in Mechanical Engineering 

 
at the 

 
Massachusetts Institute of Technology 

 
February 2011 

 
 

 2011 Massachusetts Institute of Technology 
All rights reserved. 

 
 

Signature of Author………………………………………………………………………………… 
Department of Mechanical Engineering 

January 20, 2011 
 
 

Certified by………………………………………………………………………………………… 
Martin L. Culpepper 

Associate Professor of Mechanical Engineering  
Thesis Supervisor 

 
 

Accepted by……...………………………………………………………………………………… 
David E. Hardt 

Professor of Mechanical Engineering 
Graduate Officer 



 2 

  



 3 

Design and Fabrication of Precision Carbon Nanotube-Based Flexural Transducers 
 

by 
 

Michael A. Cullinan 
 

Submitted to the Department of Mechanical Engineering 
on January 20, 2011 in Partial Fulfillment of the 

Requirements for the Degree of  
Doctor of Philosophy in Mechanical Engineering 

 

ABSTRACT 
As mechanical devices move towards the nanoscale, smaller and more sensitive force and 

displacement sensors need to be developed. Currently, many biological, materials science, and 
nanomanufacturing applications could benefit from multi-axis micro- and nanoscale sensors with 
fine force and displacement resolutions. Unfortunately, such systems do not yet exist due to the 
limitations of traditional sensing techniques and fabrication procedures. Carbon nanotube-based 
(CNT) piezoresistive transducers offer the potential to overcome many of these limitations. 
Previous research has shown the potential for the use of CNTs in high resolution micro- and 
nanoscale sensing devices due to the high gauge factor and inherent size of CNTs. However, a 
better understanding of CNT-based piezoresistive sensors is needed in order to be able to design 
and engineer CNT-based sensor systems to take advantage of this potential.  

The purpose of this thesis is to take CNT-based strain sensors from the single element 
test structures that have been fabricated and turn them into precision sensor systems that can be 
used in micro- and nanoscale force and displacement transducers.  In order to achieve this 
purpose and engineer high resolution CNT-based sensor systems, the design and manufacturing 
methods used to create CNT-based piezoresistive sensors were investigated. At the system level, 
a noise model was developed in order to be able to optimize the design of the sensor system. At 
the element level, a link was established between the structure of the CNT and its gauge factor 
using a theoretical model developed from quantum mechanics. This model was confirmed 
experimentally using CNT-based piezoresistive sensors integrated into a microfabricated test 
structure. At the device level, noise mitigation techniques including annealing and the use of a 
protective ceramic coating were investigated in order to reduce the noise in the sensor. From 
these investigations, best practices for the design and manufacturing of CNT-based piezoresistive 
sensors were established. Using these best practices, it is possible to increase the performance of 
CNT-based piezoresistive sensor systems by more than three orders of magnitude.  

These best practices were implemented in the design and fabrication of a multi-axis force 
sensor used to measure the adhesion force of an array of cells to the different material’s surfaces 
for the development of biomedical implants. This force sensor is capable of measuring forces in 
the z-axis as well as torques in the θx and θy axis. The range and resolution of the force sensor 
were determined to be 84 µN and 5.6 nN, respectively. This corresponds to a dynamic range of 
83 dB, which closely matches the dynamic range predicted by the system noise model used to 
design the sensor. The accuracy of the force sensor is better than 1% over the device’s full range. 
 
Thesis Supervisor:  Martin L. Culpepper 
Title:   Associate Professor of Mechanical Engineering  



 4 



 5 

ACKNOWLEDGEMENTS 
 

 

I would like to thank my advisor Professor Martin Culpepper for providing valuable help 

in selecting and performing the research for this project. Without him none of this work would 

have been possible. Also, I would like to thank my committee members Professor Carol 

Livermore and Professor Michael Strano for providing valuable feedback on various aspects of 

the project throughout the research process. I would especially like to thank Paul Barone and 

Andrew Hilmer from Professor Strano’s group for providing me with purified samples of (6,5) 

CNTs for some of the testing performed in this thesis. 

I would also like to thank my fellow members of the Precision Compliant Systems 

Laboratory at MIT for help and advice throughout this project. I would especially like to thank 

Christopher DiBiasio for his help when I was starting this project and Robert Panas for working 

with me on the noise modeling and electronics designs presented in Chapter 2 of this thesis. In 

addition I would like to thank the LMP students in room 35-135 for providing a collegial 

atmosphere and discussing various research problems with me. 

I would also like to thank the various technicians and staff members who made this 

project possible. First, I would like to thank Richard Brickman and David Rodriguera for 

providing the administrative support for this project. Also, I would like to thank Pat McAtamney 

and Bill Buckley for helping me with machining various parts in the machine shop. In addition, I 

would like to thank Dave Terry, Dennis Ward, Kurt Broderick, and Bernard Alamariu for help 

with the design and microfabrication of the MEMS test structures and force sensors. Finally, I 

would like to thank Shiahn Chen and Yong Zhang from the MIT Center for Materials Science 

and Engineering for their help with the electron microscopy equipment. 



 6 

  



 7 

CONTENTS 
 

 

Abstract .....................................................................................................................................3 

Acknowledgements ....................................................................................................................5 

Contents .....................................................................................................................................7 

Figures ..................................................................................................................................... 13 

Tables....................................................................................................................................... 19 

Chapter 1 ................................................................................................................................. 21 

1.1 Introduction ............................................................................................................... 21 

1.1.1 Outline of Thesis .................................................................................................... 24 

1.2 CNT Background ....................................................................................................... 25 

1.3 Scaling Sensors Down to the Nanoscale ..................................................................... 28 

1.3.1 Introduction............................................................................................................ 28 

1.3.2 Need for NEMS and Nanoscale Sensors ................................................................. 28 

1.3.3 Scaling MEMS Sensors Down to the Nanoscale ..................................................... 30 

1.3.3.1 Capacitance Sensors ........................................................................................ 30 

1.3.3.2 Piezoresistive Sensors...................................................................................... 32 

1.3.3.3 Hall Effect Sensors .......................................................................................... 33 

1.3.3.4 Piezoelectric Sensors ....................................................................................... 34 

1.3.3.5 Inductance Sensors .......................................................................................... 35 

1.3.3.6 Interferometry ................................................................................................. 35 

1.3.3.7 Comparison ..................................................................................................... 37 

1.3.4 Novel Sensors for the Nanoscale ............................................................................ 38 

1.3.4.1 CNT-Based Piezoresistors ............................................................................... 39 

Review of CNT-Based Piezoresistive Sensors ............................................................ 39 

Scaling of CNT-Based Piezoresistors ......................................................................... 41 

1.3.4.2 Resonance Sensors .......................................................................................... 44 

Introduction to Resonance Sensors............................................................................. 44 



 8 

Resonance-based Mass Sensors ................................................................................. 45 

Resonance Based Strain Sensors ................................................................................ 46 

1.3.4.3 Tunneling Sensors ........................................................................................... 48 

1.3.5 Sensor Selection for Case Study ............................................................................. 49 

1.4 Prior Art .................................................................................................................... 50 

1.4.1 CNT Assembly....................................................................................................... 50 

1.4.1.1 Grow-in-Place ................................................................................................. 50 

1.4.1.2 Pick-and-Place................................................................................................. 51 

1.4.1.3 Dielectrophoresis ............................................................................................. 52 

1.4.1.4 Transfer Printing ............................................................................................. 53 

1.4.2 Sorting of CNTs ..................................................................................................... 53 

1.4.3 Multi-Axis MEMS Force Sensors........................................................................... 54 

1.5 Scope ......................................................................................................................... 55 

1.5.1 Technical Approach ............................................................................................... 55 

1.5.2 Case Study: 3-Axis Force Sensor with CNT-Based Piezoresistors .......................... 58 

Chapter 2 ................................................................................................................................. 61 

2.1 Introduction ............................................................................................................... 61 

2.2 Background ............................................................................................................... 61 

2.3 DC Piezoresistive Sensor System Model .................................................................... 63 

2.3.1 System Layout and Model ...................................................................................... 63 

2.3.2 Flexure Model ........................................................................................................ 65 

2.3.3 Wheatstone Bridge Model ...................................................................................... 66 

2.3.4 Instrumentation Amplifier Model ........................................................................... 67 

2.3.5 Source Voltage Model ............................................................................................ 68 

2.3.6 Bias Voltage Model................................................................................................ 68 

2.3.7 Power Supply Model .............................................................................................. 69 

2.3.8 Digital Model ......................................................................................................... 69 

2.3.9 Dominant Noise Sources and System Characteristics ............................................. 70 

2.3.10 Performance Metrics ............................................................................................ 71 

2.4 Insights from the Model ............................................................................................. 72 

2.4.1 Electronic Sources .................................................................................................. 72 



 9 

2.4.2 Mechanical Sources ............................................................................................... 73 

2.4.3 Thermal Sources .................................................................................................... 73 

2.5 Johnson and Flicker Noise ......................................................................................... 73 

2.6 Experimental Measurements and Model Verification ................................................. 74 

2.7 Piezoresistive Sensor Design and Optimization .......................................................... 76 

2.7.1 Reduced Piezoresistive Sensor System Model ........................................................ 76 

2.7.2 Optimization Process.............................................................................................. 78 

2.7.3 Analytical Optimization ......................................................................................... 80 

2.8 Computational Optimization ...................................................................................... 83 

2.9 Conclusion................................................................................................................. 86 

Chapter 3 ................................................................................................................................. 87 

3.1 Introduction ............................................................................................................... 87 

3.2 Prior Art .................................................................................................................... 88 

3.3 Theoretical Model...................................................................................................... 89 

3.3.1 Background on Tight-Binding Model ..................................................................... 89 

3.3.2 CNT Gauge Factor Model ...................................................................................... 93 

3.4 Model Evaluation ...................................................................................................... 97 

3.5 Design of a Device that Uses Many CNTs in Parallel ............................................... 100 

Chapter 4 ............................................................................................................................... 105 

4.1 Test Setup ................................................................................................................ 105 

4.2 Fabrication of CNT Test Structures .......................................................................... 107 

4.3 Results for Multiple Chirality Experiments .............................................................. 108 

4.4 Results for Single Chirality Experiments ................................................................. 109 

4.4.1 Predicted Results .................................................................................................. 109 

4.4.2 CNT Enrichment .................................................................................................. 110 

4.4.3 Measured Gauge Factor of Enriched (6,5) CNT Sample ....................................... 112 

4.4.4 Monte-Carlo Simulation for Enriched (6,5) CNT Sample ..................................... 113 

4.4.5 Electrical Breakdown of CNTs in Sensor ............................................................. 115 

4.4.6 Results for Electrical Breakdown Experiments ..................................................... 116 

4.5 Discussion ............................................................................................................... 119 



 10

Chapter 5 ............................................................................................................................... 121 

5.1 Sources of Performance Limitations ........................................................................ 121 

5.1.1 Flicker Noise ........................................................................................................ 121 

5.1.2 Contact Resistance ............................................................................................... 123 

5.2 Noise Measurement ................................................................................................. 124 

5.3 Noise Mitigation Techniques and Results ................................................................ 126 

5.3.1 Increasing Number of CNTs ................................................................................. 126 

5.3.2 Coating CNTs ...................................................................................................... 127 

5.3.3 Annealing CNTs .................................................................................................. 129 

5.4 Methods to Reduce Contact Resistance .................................................................... 131 

5.4.1 Effect of Electrode Material ................................................................................. 131 

5.4.2 Platinum Coating.................................................................................................. 131 

5.4.3 Annealing............................................................................................................. 132 

5.5 Conclusions about Best Practices ............................................................................. 133 

5.5.1 Design and Manufacturing ................................................................................... 133 

5.5.2 Materials Selection ............................................................................................... 133 

5.6 Comparison to Conventional MEMS Piezoresistors ................................................. 133 

Chapter 6 ............................................................................................................................... 137 

6.1 3-Axis Force Sensor ................................................................................................ 137 

6.1.1 Introduction.......................................................................................................... 137 

6.1.2 Need and Description ........................................................................................... 138 

6.1.3 Design of a Three-Axis Force Sensor ................................................................... 139 

6.1.3.1 Functional Requirements ............................................................................... 139 

6.1.3.2 Polysilicon Piezoresistor Force Sensor Design ............................................... 140 

6.1.3.3 CNT-Based Piezoresistive Force Sensor Design ............................................ 141 

6.1.3.4 HexFlex Motion Stage ................................................................................... 143 

6.1.3.5 System Dynamics .......................................................................................... 147 

6.1.4 Fabrication ........................................................................................................... 148 

6.2 Testing..................................................................................................................... 153 

6.2.1 Setup .................................................................................................................... 153 

6.2.2 Calibration Procedure ........................................................................................... 155 



 11

6.3 Calibration Results .................................................................................................. 156 

6.4 Results ..................................................................................................................... 157 

6.4.1 Range ................................................................................................................... 157 

6.4.2 Resolution ............................................................................................................ 158 

6.5 Possible Improvements ............................................................................................ 158 

6.5.1 Recommended Changes in Design and Manufacturing ......................................... 158 

6.5.2 Estimates of Future Device Performance .............................................................. 159 

Chapter 7 ............................................................................................................................... 161 

7.1 Summary ................................................................................................................. 161 

7.2 Best Practices for Design and Manufacturing ........................................................... 162 

7.3 Use in Non-photolithographic MEMS ...................................................................... 164 

7.3.1 Introduction.......................................................................................................... 164 

7.3.2 Test Structure Design ........................................................................................... 165 

7.3.3 Fabrication ........................................................................................................... 166 

7.3.4 Results ................................................................................................................. 169 

7.3.4.1 Metal Trace Deposition ................................................................................. 169 

7.3.4.2 Gap Fabrication with Tungsten Wire ............................................................. 169 

7.3.4.3 Gap Fabrication with FIB & CNT Deposition ................................................ 171 

7.3.5 Test Structure Performance .................................................................................. 172 

7.3.6 Conclusions and Future Work for Non-photolithographic MEMS ........................ 174 

7.4 Possible Future Applications .................................................................................... 174 

7.4.1 Heated Center Stage Tests .................................................................................... 174 

7.4.2 Self Sensing Nanoscale Bearings .......................................................................... 176 

References.............................................................................................................................. 179 

Appendix A ............................................................................................................................ 199 

A.1 Variable Definitions................................................................................................. 199 

Appendix B ............................................................................................................................ 203 

B.1 Mask 1 – Polysilicon Piezoresistor ........................................................................... 203 

B.2 Mask 2 – Aluminum Bond Pads ............................................................................... 204 

B.3 Mask 3 – Frontside DRIE ........................................................................................ 206 



 12

B.4 Mask 4 – Backside DRIE ......................................................................................... 208 

 



 13

FIGURES 
 

 

Figure 1.1: (a) CNT-based linear motion stage (b) CNT-based tunable resonator....................... 24 

Figure 1.2: Chiral vector definition on a graphene sheet [9]. ...................................................... 25 

Figure 1.3: Zig-zag (a) and armchair (b) carbon nanotube chiralities [11]. ................................. 27 

Figure 1.4: (a) comb drive and (b) parallel plate capacitive sensors. .......................................... 31 

Figure 1.5: Piezoresistive displacement sensor. ......................................................................... 32 

Figure 1.6: Large range Michelson-type heterodyne interferometer for 6-DOF position 

measurement [42]. ..................................................................................................................... 36 

Figure 1.7: Comparison of sensor dynamic ranges versus size for MEMS sensing. .................... 38 

Figure 1.8. (a) CNT film strain gauge [65] (b) Single suspended CNT displacement sensor [66] 

(c) Pressure sensor with CNT piezoresistors [66] ...................................................................... 40 

Figure 1.9: Sensor dynamic ranges versus size for piezoresistive various sensing materials. ...... 44 

Figure 1.10: CNT-Based Resonating Strain Sensor.................................................................... 47 

Figure 1.11: Natural Frequency vs. Strain for CNT Resonator. .................................................. 48 

Figure 1.12: Sensor Comparison for Case Study. ....................................................................... 50 

Figure 1.13: Experimental test structure. ................................................................................... 56 

Figure 1.14: Flowchart of technical approach. ........................................................................... 58 

Figure 1.15: (a) Polysilicon piezoresistor based force sensor (b) Force sensor/HexFlex assembly

 ................................................................................................................................................. 59 

Figure 2.1.  Schematic layout of DC piezoresistive sensor system. ............................................ 63 

Figure 2.2.  Block diagram layout of full system model. ............................................................ 64 

Figure 2.3. Block diagram representation of signal domain with main signal propagation path 

highlighted in bold .................................................................................................................... 64 

Figure 2.4. Block diagram representation of flexure domain with main signal propagation path 

highlighted in bold .................................................................................................................... 65 

Figure 2.5. Block diagram representation of flexure domain with main signal propagation path 

highlighted in bold. ................................................................................................................... 66 



 14

Figure 2.6. Block diagram representation of the amplifier domain with main signal propagation 

path highlighted in bold. ............................................................................................................ 67 

Figure 2.7. Block diagram representation of the source voltage domain with main signal 

propagation path highlighted in bold. ........................................................................................ 68 

Figure 2.8. Block diagram representation of the bias voltage domain with main signal 

propagation path highlighted in bold. ........................................................................................ 68 

Figure 2.9. Block diagram representation of the power supply domain with main signal 

propagation path highlighted in bold. ........................................................................................ 69 

Figure 2.10. Block diagram representation of the digital domain with main signal propagation 

path highlighted in bold. ............................................................................................................ 69 

Figure 2.11.  Spectral distribution of signal and relevant noise. ................................................. 71 

Figure 2.12.  Polysilicon piezoresistive sensor noise spectrum compared to predictions. ........... 74 

Figure 2.13.  Measurement of noise spectral densities with and without thermal shielding. ........ 75 

Figure 2.14.  Optimization process for maximizing sensor system performance......................... 78 

Figure 2.15.  Comparison of PR sensor materials given conditions described in the example case.

 ................................................................................................................................................. 79 

Figure 2.16.  Dynamic range vs. resistance plot for amplifier and Johnson noise co-dominated 

system where metal film piezoresistors are used. ....................................................................... 81 

Figure 2.17.  Operating surface of constraint based optimization.  Constraints are mapped to this 

surface. ..................................................................................................................................... 84 

Figure 2.18.  Dynamic range vs. resistance plot for flicker noise dominated system where 

polysilicon piezoresistors are used. ............................................................................................ 85 

Figure 3.1.  Band structure of graphene. .................................................................................... 91 

Figure 3.2.  Γ-Κ axis projection. ................................................................................................ 92 

Figure 3.3.  Γ-Μ axis projection. ............................................................................................... 93 

Figure 3.4: (a) CNT chiral vectors (b) Graphene first Brillouin zone with allowed electronic 

states. ........................................................................................................................................ 94 

Figure 3.5. Gauge factor vs. strain for CNTs with diameters of 1.38 nm. ................................... 98 

Figure 3.6.  Resistance vs. strain for CNTs with diameters of 1.38 nm....................................... 99 

Figure 3.7.  MEMS multi-axis force sensor with CNT-based strain sensors. ............................ 101 



 15

Figure 3.8.  Resistance vs. strain for a 100 CNT resistor network, with segregated contributions 

from metallic and semiconducting CNTs. ................................................................................ 102 

Figure 3.9. Gauge Factor vs. strain for a 100 CNT resistor network consisting of metallic, 

semiconducting or all CNTs. ................................................................................................... 103 

Figure 4.1.  CNT parallel resistor network between two electrodes on the test structure. .......... 105 

Figure 4.2.  CNT resistor network between two electrodes on the test structure. ...................... 106 

Figure 4.3.  Measured change in resistance vs. strain for CNT resistor networks. .................... 108 

Figure 4.4.  Predicted ΔR/R vs. Strain for (6,5) CNT. .............................................................. 109 

Figure 4.5.  Enrichment of (6,5) CNT sample. ......................................................................... 110 

Figure 4.6.  UV-vis-nIR absorption spectrum for (6,5) enriched CNT Sample. ........................ 111 

Figure 4.7.  Measured ΔR/R vs. Strain for enriched (6,5) CNT sample. ................................... 112 

Figure 4.8.  ΔR/R vs. Strain predicted from Monte-Carlo simulations of enriched (6,5) CNT 

sample. .................................................................................................................................... 113 

Figure 4.9. Measured results from enriched (6,5) CNT sample overlaid on theoretical prediction 

from Monte-Carlo simulations with 0.2% strain offset............................................................. 114 

Figure 4.10. Measured results from low-strain electrical breakdown of enriched (6,5) CNT 

sample overlaid on theoretical prediction from Monte-Carlo simulations with 0.2% strain offset.

 ............................................................................................................................................... 117 

Figure 4.11. Measured results from high-strain electrical breakdown of enriched (6,5) CNT 

sample overlaid on theoretical prediction from Monte-Carlo simulations with 0.2% strain offset.

 ............................................................................................................................................... 118 

Figure 5.1.  Experimental setup consisting of (1) a Wheatstone bridge, (2) a precision bridge 

circuit with a precision voltage reference and instrumentation amplifier, (3) a DC power supply 

and (4) an analog-to-digital converter. ..................................................................................... 125 

Figure 5.2.  Test Structure with SWCNTs connected between the two central electrodes. ........ 126 

Figure 5.3.  Power spectral densities of CNT-based piezoresistive sensors with dielectrophoresis 

deposition times of 5 and 10 minutes. ...................................................................................... 127 

Figure 5.4. Power spectral densities of as deposited, Al3O2 and annealed CNT-based 

piezoresistive sensors. ............................................................................................................. 128 

Figure 5.5.  Power spectral densities of CNR-based sensor annealed at 525 °C. ....................... 130 

Figure 5.6.  I-V Curve for CNT-based sensor showing ohmic contact...................................... 132 



 16

Figure 5.7.  Performance of various piezoresistive materials.................................................... 134 

Figure 6.1.  Exploded view of Hexflex-force sensor assembly. ................................................ 139 

Figure 6.2.  3-axis force sensor with polysilicon piezoresistors. ............................................... 141 

Figure 6.3.  3-axis force sensor with CNT-based piezoresistors. .............................................. 142 

Figure 6.4.  HexFlex with polysilicon piezoresistive sensors. .................................................. 143 

Figure 6.5.  (clockwise from top) Al 1100 HexFlex being machined in the micromill, Al 1100 

HexFlex, Al 6061-T6 HexFlex. ............................................................................................... 145 

Figure 6.6.  Hardware setup for micromilling HexFlex nanopositioners. .................................. 146 

Figure 6.7.  First resonant mode of force sensor. ..................................................................... 147 

Figure 6.8.  First resonant mode of Hexflex - force sensor assembly. ....................................... 148 

Figure 6.9.  Fabricated 3-axis force sensor with CNT-based piezoresistors. ............................. 153 

Figure 6.10.  Force sensor stiffness testing setup with top and side view. ................................ 154 

Figure 6.11.  Force sensor calibration setup. ............................................................................ 155 

Figure 6.12.  Calibration curve for each CNT-based sensor on the force sensor. ...................... 157 

Figure 7.1. Test Structure Schematic (Units in Inches). ........................................................... 166 

Figure 7.2.  Shadow Mask with Tungsten Wire. ...................................................................... 167 

Figure 7.3.  Test Structure with Metal Trace. ........................................................................... 168 

Figure 7.4.  Flaking of Pd wire on Aluminum Beam. ............................................................... 169 

Figure 7.5.  Trace fabricated with tungsten wire on the top of shadow mask. ........................... 170 

Figure 7.6.  Trace fabricated with tungsten wire on the bottom of shadow mask. ..................... 170 

Figure 7.7.  Test structure with gap cut with FIB. .................................................................... 171 

Figure 7.8.  CNTs deposited on test structure. ......................................................................... 172 

Figure 7.9.  Results for FIB Cut and Tungsten Wire Gaps. ...................................................... 173 

Figure 7.10.  Force Sensor assembly with heated central stage. ............................................... 175 

Figure 7.11.  Force Sensor assembly with heated central stage. ............................................... 175 

Figure 7.12.  Nanoscale linear motion bearing with CNT-based flexures/sensors. .................... 176 

Figure 7.13.  Deformation of CNT in linear motion bearing. ................................................... 177 

Figure B.1.  Mask 1 defining polysilicon piezoresistors. .......................................................... 203 

Figure B.2.  Blowup of alignment mark in mask 1. .................................................................. 204 

Figure B.3.  Mask 2 defining aluminum bond pads and electrodes. .......................................... 205 

Figure B.4.  Electrode pattern for CNT-based force sensor in mask 2. ..................................... 206 



 17

Figure B.5.  Mask 3 defining frountside photoresist pattern. .................................................... 207 

Figure B.6.  Frontside alignment mark in mask 3..................................................................... 208 

Figure B.7.  Mask 4 defining backside photoresist pattern. ...................................................... 209 

Figure B.8.  Backside alignment mark in mask 3. .................................................................... 210 

 



 18

  



 19

TABLES 
 

 

Table 1.1: Bearing functional requirements. .............................................................................. 37 

Table 2.1: Common forms of flexure gain, εF ............................................................................ 65 

Table 4.1: Estimated chiral distribution of enriched sample from absorption spectrum. ........... 111 

Table 4.2: Resistance normalized to (6,5) CNT resistance for CNTs in enriched CNT sample at 

various strain levels. ................................................................................................................ 116 

Table 5.1: Measured noise and dynamic range for CNT-based sensors produced under various 

processing conditions. ............................................................................................................. 129 

Table 5.2: Measured noise as a function of annealing time and temperature. ........................... 130 

Table 6.1: Force Sensor Functional Requirements. .................................................................. 140 

Table 6.2: CNT-Based Force Sensor Design............................................................................ 143 

Table 6.3: Process parameters for HexFlex machining............................................................. 146 

Table 6.4: Processing steps for force sensor fabrication. .......................................................... 150 

Table 6.5: Results for each piezoresistor in the force sensor. ................................................... 158 

Table 7.1: Comparison of Potential performance of Microfabricated and Machined Hexflex 

Designs. .................................................................................................................................. 174 

Table A.1: Nomenclature for System Design Section .............................................................. 199 

 



 20

  



 21

CHAPTER 

1 
INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

As mechanical devices move towards the nano-scale, smaller and more sensitive force 

and displacement sensors become necessary. Currently, many biological, materials science, and 

nano-manufacturing applications could benefit from multi-axis micro- and nano-scale sensors 

with fine displacement resolution (nanometers) and/or force resolution (piconewtons).  

Unfortunately, because of the limitations of traditional sensing techniques and fabrication 

procedures, such sensing systems do not yet exist.  

Traditional sensing techniques become increasingly impractical at the micro/nano-scale 

due to scaling constraints.  For example, the resolution of capacitance sensors scales with sensor 

area, making high resolution sensors too large for many micro/nano-scale sensor systems.  

Similarly, interferometry becomes impractical at the micro/nano-scale because of the relatively 

large optics required.  High resolution silicon-based piezoresistive sensing techniques work well 

for meso-scale devices, but become increasingly hard to fabricate in micro/nano-scale devices 

due to the constraints of photolithography and ion implantation.   

Carbon nanotube-based (CNT) piezoresistive transducers offer the potential to overcome 

the limitations of traditional sensing systems in high resolution micro- and nano-scale sensing 

systems.  CNTs have been shown to have piezoresistive gauge factors in excess of 2900 [1], 

which is about an order or magnitude larger than silicon-based piezoresistors.  Nanoscale 

fabrication of CNT-based transducers is also not limited by the same fabrication difficulties as 

other sensors, since CNTs are inherently nanoscale materials. These properties make CNTs ideal 

sensors for fine resolution micro/nano-scale flexural transducers. 
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 Previous research has shown the potential for the use of CNTs in high resolution sensing 

devices.  However, much more work needs to be done in order to be able to design and engineer 

CNT-based sensor systems to take advantage of this potential.  The purpose of this research is to 

take CNT-based strain sensors from the single element test structures that have been fabricated, 

and develop them into high precision sensor systems that can be used in micro- and nano-scale 

force and displacement transducers.  Several steps are necessary to be able to engineer such 

CNT-based high resolution sensor systems: 

 

1. A clear link between the CNT’s structure and its strain sensitivity must be 
established.  

 
2. The mechanical and electrical interactions between the substrate/electrodes and 

CNTs must be tested and modeled in order to optimize the strain sensitivity of the 
CNT-based sensor system.   

 
3. Noise models based on experimental data for the CNTs and CNT-based sensors 

must be developed in order optimize the device design and CNT system-level 
integration.   

 
4. The effects of temperature on the resistance and gauge factor of the CNT sensors 

must be characterized to enable the design of a bridge circuit that can compensate 
for these temperature effects.  

  

The ability to engineer CNT-based strain sensors is necessary in order to design 

integrated microelectromechanical systems (MEMS) and nanoelectromechanical systems 

(NEMS) devices that have large range and fine resolution.  The ratio of range to resolution is 

important because it sets the fundamental limits of device performance.  Flexure-based devices 

with integrated strain sensors can be designed to achieve a specific range or resolution by 

changing the device stiffness.  However, these devices cannot be designed to achieve a range and 

a resolution requirement simultaneously.  This is because there is a tradeoff between range and 

resolution based on sensor sensitivity and the yield strain of the flexure material.  In order to 

increase the dynamic range of the MEMS/NEMS device it is necessary to either increase the 

sensitivity of the sensor or increase the yield strain of the flexure material.  These requirements 

make CNT-based sensors ideal for high dynamic range devices due to their large failure strain 

(>25% [2]) and high gauge factor.  The large failure strain allows the CNTs to be subject to large 

displacements before failure.  This means that the flexure itself, and not the CNT, will be the 
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range- limiting element in CNT-based sensor systems. This is in contrast with other sensing 

techniques such as capacitance or tunneling where the sensor is the range-limiting element.  

Also, if it becomes possible to design and engineer CNT-based sensor systems, CNT-based 

strain sensors are capable of achieving at least an order of magnitude better resolution than 

silicon-based sensors due to their higher gauge factor.  

 CNT-based strain sensors may be useful in many fields including biology, 

nanomanufacturing, aerospace, and nano-scale electromechanical systems.  One possible medical 

application, for example, involves measuring how well bone cells  adhere to newly developed 

medical implants in order to choose the best implant materials, surface coatings and surface 

textures for the implant, and to estimate how the strength of the joint will develop over time. At 

present, the state-of-the-art in this field is for researchers to visually observe the behavior of the 

cells and to infer from certain visual cues, such as the shape of the cell on the surface, the quality 

of the cell-surface bonding [3].  There are no instruments that can measure the adhesion force 

between an array of cells and the surface.  This type of instrument would require piconewton 

resolution, micronewton range, and the ability to operate in an aqueous environment.  These 

requirements eliminate conventional sensing techniques such as capacitance, tunneling, and 

interferometry.  Similarly, silicon-based strain sensors would not be able to meet the range and 

resolution requirements for this application simultaneously, since the best silicon-based strain 

sensors are typically limited to dynamic ranges of less than 80 dB at 1 kHz [4].  A properly 

engineered CNT-based sensing system, however, should be able to achieve all of the 

requirements of this device. The case study explored in this research is the design and 

manufacturing of a force sensor to meet the requirements of this type of application.   

 Other conventional MEMS devices could also be improved markedly by incorporating 

CNT-based strain sensors.  For example, MEMS-based nanopositioners for nanomanufacturing 

such as the HexFlex [5] could improve their range and/or resolution by using CNT-based strain 

sensors.  This would result in improved quality and higher throughput of products manufactured 

using such positioners.  CNT-based strain sensors could be incorporated with AFM cantilevers to 

achieve atomic scale resolutions without the need for expensive optics or time consuming laser 

adjustments [6].  In addition, CNT-based AFM cantilevers could be used to reduce the cost and 

improve the rate of AFM-based nanomanufacturing techniques such as dip-pen lithography [7]. 
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(a) (b) 

Figure 1.1: (a) CNT-based linear motion stage (b) CNT-based tunable resonator 

 

CNT-based strain sensors will become important in NEMS devices that are too small for 

conventional sensing systems. For example, the NEMS device in Figure 1.1a is a linear motion 

stage that incorporates CNTs as the flexural bearings [8]. These bearings could be used to sense 

the strain in the device, thereby turning the linear motion stage in to a nano-scale force sensor or 

positioner.  The resonator in Figure 1.1b uses a CNT as the resonating element.  A set of thermal 

actuators is used to stretch the CNT, which causes a shift in the CNT’s resonant frequency, 

allowing the resonator to be tuned to a specific frequency.  In addition to being used as a 

resonator, the CNT could also be used as a strain sensor to measure its own pretension as well as 

its vibration amplitude and frequency.  This would help ensure that the resonator was operating 

correctly without the need for additional electronics and sensors that would increase the cost and 

size of the device. 

1.1.1 Outline of Thesis 

This thesis focuses on the development of CNT-based piezoresistive strain sensors for 

micro- and nanoscale force and displacement measurements. Chapter 1 introduces this topic, 

provides background on CNT properties, manufacturing methods and mechanical sensors, and 

discusses why CNT-based piezoresistive sensors were chosen for this project.  Chapter 2 goes 

over the system-level design of a piezoresistive sensor, and discusses the major noise sources in 

the system and the optimization of the piezoresistor design.  Chapter 3 focuses on the theory of 

CNT-based piezoresistors and presents a quantum mechanical model which can be used to 

predict the behavior of the CNTs based on their chiral indices.  Chapter 4 presents the 

experimental setup and gauge factor measurements for both random chirality and single chirality 

CNT-based piezoresistive sensors. These gauge factor measurements are used to verify the 
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theoretical models presented in Chapter 3. Chapter 5 discusses manufacturing techniques that 

can be used to reduce the amount of noise in the CNT-based piezoresistive sensors. Chapter 6 

presents the design, fabrication, and results from the 3-axis force sensor case study.  Finally, the 

conclusions and possible future research directions of this work are discussed in Chapter 7. 

1.2 CNT Background 

CNTs are carbon molecules that are a member of the fullerene structural carbon family.  

They may be thought of as rolled up sheets of graphene.  Graphene is a single planar sheet of 

carbon atoms whose lattice consists of carbon atoms arranged in a hexagonal structure.  This 

hexagonal structure means that each carbon atom is bonded aromatically to its neighboring 

atoms via sp2 hybridized bonds with a bond length of 0.142 nm.  The C-C sp2 bond configuration 

is one of the strongest found in nature, which gives CNTs excellent mechanical properties.   

 

 
Figure 1.2: Chiral vector definition on a graphene sheet [9]. 
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In the CNT structure, each carbon atom is bonded to three other carbon atoms by σ bonds with 

120° of spacing.  The carbon atom’s fourth valence shell electron forms a delocalized π bond 

which is oriented perpendicular to the plane of carbon-carbon σ bonding.   

A single-walled CNT (SWCNT) may be thought of as graphene sheet rolled along some 

chiral vector, C
�

, as shown in Figure 1.2. The chiral vector is a linear combination of two base 

vectors, 1a
�

 and 2a
�

, which are oriented at 60° from each other. The chiral vector may be used to 

define the diameter of a SWCNT, dcnt, of a carbon nanotube, as shown in Equation (1.1) [10], 

where aguc is the distance between the centers of two unit cells and n and m are the lengths of the 

basis vectors. 

 

 

2 2
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+ +
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The energy per atom required to roll a graphene sheet into a CNT, Ur, is inversely proportional to 

the square of the CNT diameter [10], as shown in Equation (1.2), where Eg is the elastic modulus 

of graphene and tg is the thickness of a graphene sheet. 
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In general, CNTs may be classified into three types: 1) zig-zag, 2) armchair, and 3) chiral.  The 

zig-zag and armchair types are shown in Figure 1.3. Zig-zag CNTs have m = 0, leading to a 

wrapping angle of 0° and diameters that are directly proportional to n.  Armchair nanotubes have 

m = n, leading to a wrapping angle of 30° and diameters that are proportional to n3 .  Chiral 

nanotubes thus have wrapping angles between 0° and 30°. 
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(a) (b) 

Figure 1.3: Zig-zag (a) and armchair (b) carbon nanotube chiralities [11]. 

Reprinted with permission from Elesvier Copyright 2003 

 

The structure of the CNT also has a large effect on the electrical properties of the CNT.  

For example, electrically conductive tubes or metallic tubes always have a difference of their 

basis indices equal to an integer, q, multiple of three, as shown in Equation (1.3) [10].  This 

means that armchair nanotubes are always conductive. 

 

,...2,1,0where3 =−= qmnq  (1.3) 

 

If the difference between the basis indices is not equal to an integer multiple of three,  the tube is 

semiconducting, with a band gap, Ugap, that is proportional to a hopping parameter, γ, as is 

shown in Equation (1.4) [12]. 
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For multi-walled CNTs (MWCNT) each wall may be treated as a resistor in parallel.  This means 

that MWCNTs with many walls will likely be conducting because each shell has a one-in-three 

chance of being conductive.   

1.3 Scaling Sensors Down to the Nanoscale 

1.3.1 Introduction 

As mechanical devices are scaled down to the nanoscale, it becomes difficult to measure 

and control their motion.  Nanoscale mechanical devices offer the potential to overcome many of 

the speed and sensitivity limitations of macro- and microscale devices. However, traditional 

MEMS sensing techniques are not adequate for many nanoscale sensing applications, because 

MEMS sensing techniques generally suffer from poor resolution or become  difficult to fabricate 

when scaled down to the nanoscale. Therefore, new sensors must be developed in order to meet 

the requirements of nanoscale sensing. 

Nanoscale mechanical devices typically rely on flexure beams to guide their motion and 

set the stiffness of the system.  Based on the stiffness of the flexure it is generally possible to 

trade range for resolution.  For example, compliant flexures are generally good for high 

resolution force measurements but tend to fail at relatively low forces. Therefore, it is the ratio of 

range to resolution, known as dynamic range, which is the best metric of nanoscale sensor 

performance. Throughout this thesis the viability of different sensor systems is judged on the 

basis of the dynamic range of the sensor. Typically, nanoscale sensing applications require a 

minimum dynamic range of at least 40 dB (range to resolution ratio of 100:1).  However, 

dynamic ranges of greater than 80 dB are desirable for many positioning [13] and force sensing 

applications [14]. 

1.3.2 Need for NEMS and Nanoscale Sensors 

Nanoelectromechanical systems (NEMS) offer a promising area of research due to their 

small size and potential to operate at high speeds.  NEMS can operate in locations that larger 

machines can generally not fit into, such as inside the human body.  Also, because of their size, 

NEMS can outperform their macro-scale counterparts in terms of speed and resolution.  

Microelectromechanical systems (MEMS) are already being used in a number of consumer 
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applications such as accelerometers in car airbags, microphones in cell phones, ink jets in 

printers, and micromirrors in televisions.  The ability of MEMS to accurately position fiber 

optics have also allowed for the creation of communication systems that perform tasks that were 

not previously possible at the macro-scale.  MEMS have allowed devices to become smaller and 

lighter without reducing performance benefits.  In fact, MEMS have helped increase the 

resolution of ink jet printers and the picture quality of televisions that rely on digital light 

processing.  Also, MEMS have helped reduce the cost of many devices due to their small 

materials costs and the ability to fabricate many MEMS devices at once.  NEMS have the 

potential to build upon the benefits of miniaturization that were seen for MEMS by further 

increasing the performance and reducing the cost of such devices.  

 Another major advantage of NEMS devices is that they eliminate the scale mismatch 

problem that is often seen when macro- and micro-scale devices are used to perform nano-scale 

tasks.  In order for macro- and micro-scale devices to interact with nano-scale systems, it is 

typically necessary to de-amplify the motion of the macro- and micro-scale mechanisms because 

the displacement and force outputs of the macro- and micro-scale mechanisms are at least three 

orders of magnitude larger than the intended output motion for nano-scale systems.  Flexures are 

commonly used to de-amplify force and displacement outputs from an actuator, but in order to 

de-amplify an actuator displacement input, the flexure’s compliance must be a small fraction of 

the actuator’s compliance.  Unfortunately, adding a high compliance flexure lowers the natural 

frequency of the system because the frequency scales with the square root of the system’s 

effective spring constant.  This may be a problem because it leads to an increase in the system’s 

sensitivity to low frequency vibrations such as floor vibration, fan vibration in electronics, 

footsteps, and electrical noise.  This sensitivity to low frequency vibrations can introduce large 

errors into the system (nanometers to microns) which can easily cause nano-scale structures to 

fail.  Fortunately, these vibration problems caused by scale mismatch may be avoided by using 

stiff nano-scale devices to perform nano-scale tasks.  Overall, this elimination of the scale 

mismatch problem could allow nano-scale devices to have a large impact on a number of fields 

where nano-scale phenomena are important, such biology, chemistry, physics, and nano-fluidics, 

by allowing machines to interact with individual molecules.   

 Another big advantage of NEMS is that they have a small footprint, which allows many 

devices to be packed into a small area, thereby increasing information density.  For example, 
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NEMS transistors, relays, and non-volatile memory could help increase how many processors 

may be fitted on a chip.  Such chips would also consume less power due to the high Q factor of 

NEMS and thus would not become as hot as current electronic processors, allowing more 

processors to fit into the chip without the chip melting.  Denser fiber optic interconnections could 

also be made using NEMS devices, which would have a large impact on the communications 

industry.   

One of the greatest challenges for mechanical devices as they move towards the 

nanoscale is the incorporation of sensors.  Sensors are critical in numerous mechanical 

applications because the ability to measure and control forces and displacements in mechanical 

systems can greatly improve device performance.  This thesis will examine the potential of 

scaling down traditional MEMS sensing techniques to the nanoscale and new measurement 

techniques only available at the nanoscale. 

1.3.3 Scaling MEMS Sensors Down to the Nanoscale 

1.3.3.1 Capacitance Sensors 

Capacitance sensors are widely used at the macro-, meso-, and micro-scale for measuring 

displacements on the order of nanometers [15-17].  There are two architectures for capacitive 

sensors at the MEMS scale [18], comb drive fingers and parallel plate capacitors, as shown in 

Figure 1.4. Comb drives produce a linear change in capacitance in response to a change in 

displacement, while parallel plate capacitors produce a nonlinear change. The dynamic range, 

DR, of a parallel plate capacitor can be found from Eq. (1.5) [18]. 

 

A
DR

g C

ε ⋅
=

⋅∆
 (1.5) 

 

In Eq. (1.5), g is the initial gap size, δ is the resolution of the sensor, ε is the permittivity of the 

medium, A is the area of one of the parallel plates, and ∆C is the change in capacitance at 

maximum range due to a change of δ in position. At large ranges (gap sizes), the sensitivity, 

∆C/δ, of the sensor decreases.    The main noise source in capacitive sensors is stray capacitance 

in the environment which can vary from 1 fF [16] to 180 pF [19] depending on system shielding.  

Because the dynamic range of parallel plate capacitive sensors is dependent on the sensor area, 
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these types of sensors do not scale down well to the nanoscale. For example, in order to achieve 

an 80 dB dynamic range, large sensor areas are required (10’s of mm2 to 10’s of cm2). 

 

 
Figure 1.4: (a) comb drive and (b) parallel plate capacitive sensors. 

 

The dynamic range in a comb drive sensor can be found from Eq. (1.6) [18]. 
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In Eq. (1.6), N is the total number of comb fingers, L is the overlapping length of the comb 

fingers, and t is the device thickness.  Equation (1.6) shows that as the range of the sensor is 

increased the sensitivity, ∆C/δ, is not changed.  In order to achieve an 80 dB dynamic range, a 

large number of fingers per axis are necessary (103 to 108).  Typically in MEMS devices the 
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fingers are on the order of 10 microns wide and are an order of magnitude longer than the 

overlapping area each axis. These sensors, therefore, have a best case footprint of 1 cm x 100 

microns in order to achieve an 80 dB dynamic range. Again because the dynamic range of these 

sensors scales with sensor area, comb drive sensors become impractical at the nanoscale. 

1.3.3.2 Piezoresistive Sensors 

Piezoresistive sensors are commonly used to measure displacements on the micro- and 

nano-scale due to their small size [20-22].  The electrical resistance of piezoresistive sensors 

changes as strain is applied to the sensor, and is typically measured using a Wheatstone bridge.  

This measurement of the strain in the sensor, and thus the strain in the beam, makes it possible to 

determine the displacement of the beam.  A typical application of a piezoresistive sensor is 

shown in Figure 1.5. 

 

 
Figure 1.5: Piezoresistive displacement sensor. 

 

The major noise sources in piezoresistive sensors are flicker noise caused by conductance 

fluctuations and Johnson noise caused by thermal agitation of electrons in the conductor [23,24].  

The total noise, σV, is the sum of the squares of the Johnson and flicker noise, as seen in Eq. (1.7) 

where kb is the Boltzmann constant, T is the temperature, R is the bridge resistance, f is the 

frequency in Hertz, α is the Hooge constant, N is the number of charge carriers, and Vs is the 

voltage across the resistors. 
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The dynamic range of a piezoresistive sensor is given by Eq. (1.8) where εy is the maximum safe 

strain of the flexure (usually 1/3 the yield strain), Nε is the bridge strain number, and GF is the 

gauge factor. 
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For doped silicon piezoresistors, the dynamic range can be on the order of 106 [4].  However, 

both the resistance and gauge factor of piezoresistors are sensitive to thermal variations.  

Therefore, it is critical to either include thermal compensation, such as span temperature 

compensation [25] and a thermally symmetric bridge design [21], or to precisely control the 

temperature of the environment, in order to make high accuracy measurements. As piezoresistive 

sensors are scaled down to the nanoscale, flicker noise becomes the dominant noise source and 

the sensor’s dynamic range starts to scale with the inverse of the square root of the resistor 

volume.  This typically limits the performance of nanoscale piezoresistors to less than 60 dB 

dynamic range. 

1.3.3.3 Hall Effect Sensors 

Hall Effect sensors have also been used to measure sub-micron displacements in MEMS 

devices [26,27].  Equation (1.9) shows the sensitivity of the Hall Effect sensor output voltage, 

VH, to motion of the sensor, δ.  This sensitivity scales with an applied magnetic field, B(x), which 

varies as a function of the distance, x, from the magnet. In Eq. (1.9), Rh is the Hall coefficient, Is, 

is the energizing current, and t is the sensor thickness [28]. 
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The main sources of noise in a Hall effect sensor are Johnson noise and 1/f noise [26,28], as 

described by Eq. (1.7)  Typically these noise sources range from 100’s nV to microvolts [28].  

The maximum Hall coefficient in doped silicon is approximately 1.4x10-3 m3/C with a doping 

concentration of n=4.5x1015 cm-3 [28].  For a MEMS sensor with a thickness of approximately 

100 microns and a typical current of roughly 1-10 mA [26,29] the sensor's minimum detectable 
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field is approximately 7 µT.  The dynamic range of this sensor can be approximated by Eq. 

(1.10), assuming linearity of the field over the range, r, of the sensor. 
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In Eq. (1.10) rs is the separation of the sensor from the field source, σV is the electronic noise in 

the system, and fr is the fraction of the sensor to magnet separation over which the field gradient 

falls within the desired bounds for the sensor to function effectively.  Note that there may be 

significant variation in the magnetic field gradient over the range of the sensor.  A common 

bound is that a minimum sensitivity as calculated through Eq. (1.9) must be met over the whole 

sensor range, giving the gradient a lower bound.  Magnetic fields used for Hall effect sensing 

typically decay at a high (2nd, 3rd) power and thus the gradient condition is met at all 

displacements up to a maximum, rs and thus fr approaches unity [29].  The main challenge in 

implementing Hall Effect sensors in nanoscale systems is minimizing the nonlinear stray 

magnetic field from the environment as a positioning stage moves through a work volume.  If 

these fields exceed the minimum detectable magnetic field they can adversely affect the sensor 

accuracy and/or resolution. 

1.3.3.4 Piezoelectric Sensors 

Piezoelectric sensors are not good candidates for many nanoscale sensing applications 

because they are not capable of making static measurements [30].  This is because the electric 

potential generated in the piezoelectric material by a static force results in a fixed amount of 

charge generated. Therefore, a static load generates a potential that decays until all the free 

electrons in the material are dissipated via the sensor’s internal impedance.  The lower frequency 

cutoff limit for measurement is given by Eq. (1.11). 
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A 1.8x1.8 mm, 40 µm thick PZT sensor corresponds to a lower cutoff of roughly 10 Hz [31].  

MEMS piezoelectric accelerometers have been known to go as low as 0.5 Hz [32]. 
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1.3.3.5 Inductance Sensors 

There are two types of inductance sensors that are commonly used to measure 

displacements, linear variable differential transformers (LVDT) and eddy current proximity 

sensors [33].  In order for LVDT’s to achieve nanometer resolution the motion in the other 

orthogonal axes must be minimized.  Therefore, multi-degree-of-freedom devices are difficult to 

implement with LVDT sensing.  In eddy current proximity sensors, an AC current is driven over 

a reference coil to generate a sensing magnetic field.  This field induces eddy currents in the 

target, which itself produces a magnetic field in opposition to the sensing field.  The opposing 

field, which is a function of the coil to target separation, alters the effective inductance of the 

reference coil.  The coil inductance can be measured by the sensing electronics to determine the 

coil to target separation [33].  MEMS eddy current sensors have been shown to have resolutions 

of 100’s of nanometers [34-36] when used with metallic targets.  MEMS eddy current sensors 

have also been shown to be sensitive to motion in the axes orthogonal to the measurement axis 

[34-36].  Due to their reliance on magnetic fields for accurate location measurement, eddy 

current sensors are sensitive to magnetic interference.  At the nanoscale eddy current sensors 

become hard to fabricate and the maximum current in the coil decreases significantly, which 

limits the sensor resolution. Therefore, eddy current sensors are not practical for nanoscale 

sensing applications. 

1.3.3.6 Interferometry 

Optical Interferometry is mainly used in fine precision equipment, especially in cases 

which require both large range and fine resolution displacement measurement [37-42].  The basic 

form for this method of sensing relies on splitting coherent light into two beams, arranging the 

beam paths such that one path length is dependent on the displacement of interest and 

recombining the beams to generate an interference pattern [37,42-44].  This pattern will vary 

with the displacement measurement, and can be measured to infer the change in the path length.  

A common interferometry setup is the Michelson Type Heterodyne interferometer [37,40,42,43], 

which passes lasers of different frequencies along the measurement and reference optical path, 

combining them at the end to generate a signal at the beat frequency determined by the frequency 

difference between the two beams.  The lower frequency beat signal allows for greater range and 

is more easily measured by the electronics, resulting in reduced noise [37,43]. 
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Figure 1.6: Large range Michelson-type heterodyne interferometer for 

6-DOF position measurement [42]. 

 

Optical Heterodyne Interferometers are extremely sensitive to environmental conditions 

such as temperature and pressure, both of which change the optical properties of the medium 

through which the beam travels [37,42,44].  The range of measurement of an optical heterodyne 

interferometer is effectively decoupled from its resolution because the relative phase 

measurement cyclically shifts only through 0 to 2π as the displacement value changes.  

Interferometers are generally limited in range by either a scaling of error due to environmental 

sensitivity or the spatial coherence of the interferometer [37,42].  High performance 

interferometers are capable of reaching ranges of multiple meters [37,40,42,45].  Interferometry 

position sensors are only capable of accurate displacement measurement up to a maximum 

velocity on the scale of a 1-3 m/s [37,42], however, above which the fringe count rate exceeds 

the ability of the electronics to perform accurate counting.  The displacement resolution, d, of an 

optical heterodyne interferometer can be written as a function of the phase resolution capability 

of the electronics, ϕmin, lasing wavelength, l, and number of reflections of the beam through the 

measurement arm, N, as [37,42,45]: 
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State of the art interferometry systems are capable of resolving down to roughly 1 part in 

5000 of the lasing wavelength [37,40-42,45], of which a He:Ne laser is a common choice [37], 

with a wavelength of around 630 nm.  The resulting resolution is roughly 130 pm.  Multi-axis 

interferometry setups generally utilize a single high precision large lasing source which is 

multiplexed to allow multiple degree-of-freedom measurements [40-42].  This requires a large 

optical layout on the order of .01-1 m on a side [39,41,42].  The complexity of the optical setup 

increases rapidly as the number of measured axes is increased, resulting in increased system 

environmental sensitivity.  The cost for a single axis optical heterodyne interferometer is in the 

range of $10,000, and can rise upwards of $100,000 for a complex multi-axis system [37].  A 

state-of-the-art optical heterodyne laser interferometer is capable of reaching and exceeding 180 

dB dynamic range.  However, the cost and size of interferometry setups limit their utility at the 

nanoscale. 

1.3.3.7 Comparison 

The MEMS sensors described above are compared in Table 1.1 based on the general 

categories of Resolution (Res), Dynamic Range (DR), Cost, Size, Bandwidth (BW), Sensitivity 

to Environment (Env.) and Sensitivity to Temperature (Temp).   

 

Table 1.1: Bearing functional requirements. 

Sensor Type Res 
(nm) 

DR 
(dB) 

Cost per Axis 
($) 

Size 
(µm2) 

BW 
(kHz) 

Sensitivity 

Env. Temp 

Capacitive 0.1 100 100 108 E High Low 
Inductance 600 70 600 107 1-100 High Low 
Hall Effect 500 60 200 107 100 High Low 

Piezoelectric 0.1 120 100 108 0.2-100 Low High 
Piezoresistive 0.1  120  100 102 E Low High 
Interferometer 0.1 215 10,000 109 30 High High 

E = electronics limited bandwidth (~30 kHz) 

 

As shown in Table 1.1, interferometry is the most effective sensing system if cost and 

system complexity are not a concern.  On the low cost end, if size is not a large concern, 
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capacitive sensors are the most effective, as their DR will scale with their area.  However, for 

nanoscale sensing systems where size is a major restriction, piezoresistive sensors become the 

most effective sensing system.   

 

 
Figure 1.7: Comparison of sensor dynamic ranges versus size for MEMS sensing. 

 

1.3.4 Novel Sensors for the Nanoscale 

As shown in the previous section, most traditional MEMS sensor systems do not scale 

down well to the nanoscale due to noise, sensitivity and fabrication limits.  Therefore, new types 

of sensors and sensing systems must be investigated to improve sensing at the nanoscale.  For 

example, nanoscale materials such as carbon nanotubes and quantum phenomena such as 

electron tunneling can be used to vastly increase the dynamic range of nanoscale sensors.  
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1.3.4.1 CNT-Based Piezoresistors 

Review of CNT-Based Piezoresistive Sensors 

The first experiments that showed the potential of using CNTs as high quality strain 

sensors involved using an atomic force microscope (AFM) tip to push down on a suspended 

CNT.  This method was used by Tombler et al. to show that the conductance of a CNT can 

change by up to two orders of magnitude when strain is applied to the CNT [46].  Similarly, 

using this method Minot et al. showed that the band structure of a CNT can be altered by the 

application of strain to the CNT [47]. However, simulations have shown that these results may 

have been due to local deformations in the CNT structure around the AFM tip as opposed to 

uniform strain in the CNT [48,49]. More recently, experiments that have uniformly strained the 

entire CNT have showed that the CNT gauge factor could be as high as 2900 [1].  The CNT 

gauge factor has also been shown to vary widely based on the electrical structure of the CNT 

[50].  For example, Grow et al. showed that the CNT gauge factor could be either positive or 

negative based on the CNT structure [51].  This result offers the interesting possibility that a full 

Wheatstone could be formed at one location on a MEMS flexure using CNTs that increase and 

CNTs that decrease resistance as the flexure is strained.   

Theoretical modeling and simulations have been used to understand the link between 

CNT structure and gauge factor.  These models and simulations typically are used to estimate the 

change in the band-gap of different types of CNTs.  The band-gap changes are then related back 

to CNT resistance to obtain an estimate of the gauge factor.  For example, Chen et al. showed 

that a 1 percent strain of a (12,0) CNT should result in a 6.4 percent decrease in resistance [52]. 

Similarly, Yang et al. [53] used tight-binding models to show that CNT band-gap could increase 

or decrease depending on the chirality of the CNT, confirming the qualitative result given by 

Grow et al.  Unfortunately, there has been little quantitative work used to link specific CNT 

geometries to specific gauge factors.  Also, there has been little theoretical or experimental work 

done to understand how interactions between the CNT and the substrate/electrodes affect the 

properties of the CNT-based strain sensor. 

Several prototype devices have been fabricated using CNTs as strain sensors.  The most 

common devices use films of randomly oriented films of CNTs as the sensing element.  These 

films are popular due to their ease of assembly and large size.  These properties allow CNT-
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based film sensors to be integrated into many macroscale sensor systems [54-57]. CNT-based 

films also offer the advantage that they can easily be integrated into rubber and polymer-based 

composites [58-64].  Such composites are commonly used in microfluidic systems, structural 

health monitoring, artificial skin, and acoustic wave diagnostics. Overall, these CNT-based 

piezoresistive films tend to show good linearity but generally have low gauge factors due to the 

random orientation of the CNTs in the films and the poor transmittance of the strain in the 

substrate to the CNTs in the films [65].   

 

 

  

Figure 1.8. (a) CNT film strain gauge [65] (b) Single suspended CNT displacement 

sensor [66] (c) Pressure sensor with CNT piezoresistors [66] 

 

There have been several devices fabricated using individual or a small number of CNTs 

as the sensing elements. For example, CNT-based piezoresistive sensors have been used to 

measure the force applied to meso-scale beams [6,9,67-69] and the strain applied to flexible 

substrates [70,71]. In these devices strain is applied to the CNTs through the bending or 

stretching of the substrate. MEMS pressure sensors have also been fabricated using CNT 

piezoresistors as the sensing element [72].  These CNT-based pressure sensors are capable of 

pressure resolutions of about 1 psi.  These devices are fabricated by dispersing a random 

 (b) 

(c) (a) 
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assortment of SWCNTs on a surface and then selecting a few to pattern the MEMS device 

around, as seen in Figure 1.8. When pressure is applied to the substrate, the CNTs are strained 

and their resistance changes, making it possible to measure the pressure.  Force and displacement 

sensors have also been fabricated by suspending individual CNTs between electrodes and 

attaching a beam to the center of the CNT [73].  When the beam is deflected, the CNT is 

stretched, causing the resistance to change.  Such devices are capable of sub-nanonewton force 

resolution. In addition to these devices based on applying tension to the CNT, several CNT-

based piezoresistive devices have been demonstrated where compression [74] or torsion [75] is 

applied to the CNT. 

Scaling of CNT-Based Piezoresistors 

As piezoresistive sensors are scaled down to the nanoscale, flicker noise becomes the 

dominant noise source.  This is because the conductance fluctuations of the piezoresistor are 

dependent on the number of charge carriers in the resistor. The number of charge carriers in the 

resistor is, in turn, dependent on the carrier concentration and the volume of the piezoresistor. 

For most classic piezoresistor materials such as silicon, polysilicon, and metals, flicker noise 

scales with the square root of the resistor volume, as shown in Equation (1.13) where CC is the 

carrier concentration and Ω is the resistor volume.  Also, since dynamic range is inversely 

proportional to the sensor noise, dynamic range will scale with Ω-1/2. 
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The noise in carbon-nanotube-based piezoresistive sensors, however, scales with the number of 

CNTs in the sensor [76,77] as well as the geometry of the CNTs [78,79]. Therefore, the dynamic 

range of CNT-based piezoresistive sensors will not scale with Ω-1/2. 

 When flicker noise is the dominant noise source in the piezoresistive sensor system, the 

optimal size of the piezoresistor will tend to scale with the flexure size.  For example, when 

flicker noise is the dominant noise source, the optimal length of the silicon, polysilicon, or metal- 

based piezoresistor is 1/3 of the beam length for a cantilever beam [23].  Therefore, the volume 

of the piezoresistor scales in direct proportion to the length of the flexure beam.   
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 Similarly, the thickness of the piezoresistor is generally set by the thickness of the flexure 

beam.  For example, for a silicon-based piezoresistive sensor, the optimal maximum ion 

implantation depth is 1/3 of the beam thickness [23].  For piezoresistors that sit on top of the 

flexure beam, such as metal and polysilicon piezoresistors, the maximum resistor thickness is 

generally set to be less than 1/10th of the flexure thickness. This thickness ensures that the 

performance of the flexure is not affected significantly by the presence of the piezoresistor. 

Therefore, the volume of the piezoresistor scales linearly with the thickness of the flexure.  

Finally, the maximum width of the piezoresistor is set by the width of the flexure beam, since the 

piezoresistor cannot exist outside the confines of the flexure.  These scaling rules mean that 

when flicker noise is the dominant noise source, the volume of the piezoresistor scales with the 

flexure volume.  Therefore, noise in these sensors scales with the flexure volume to the 1/2 

power. 

 Carbon-nanotube-based sensors, however, are not subject to the same scaling laws.  The 

size of high performance CNT-based piezoresistors is generally set by the inherent size of the 

CNTs.  CNT-based piezoresistors are a single monolayer of CNTs, so their thickness is a set 

constant no matter what the beam thickness is.  Further, CNT-based piezoresistive sensors are 

generally less than 1 μm in length to ensure that each CNT is connected between two electrodes.  

This eliminates the need for CNT-CNT connections, which can significantly decrease the 

sensor’s strain sensitivity [65], and allows the CNTs to behave as ballistic conductors [80,81].  

Therefore, the size of the CNT-based sensor is not affected as the flexure length is scaled down 

until the flexure beam is a few microns in length.  Even when the length of the CNT-based 

sensors is reduced, the noise in the sensor should not be affected.  This is because flicker noise in 

ballistic conductors is not affected by the number of charge carriers in the resistor [82].  The 

number of charge carriers only plays a central role in the noise of diffusive conductors where the 

scattering of different carriers is uncorrelated.  However, this scattering is not relevant in devices 

where the length of the device is below the mean free path length of the electrons.  Therefore, the 

noise in the ballistically conducting CNT-based piezoresistive sensors should not be dependent 

on the sensor length. 

 The width of the flexure, however, will have an effect on the noise in the CNT-based 

piezoresistor.  This is because the width of the flexure controls the width of the sensor, which in 

turn sets the number of CNTs which can fit in parallel in the sensor.  Each CNT acts as a 
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conduction channel through which electrons can flow.  Therefore, decreasing the sensor width 

reduces the number of conduction channels, which increases the noise in the sensor system [76]. 

This means that the noise in CNT-based piezoresistive sensors scales with the square root of the 

sensor volume.  Overall, these factors make CNT-based piezoresistive sensor systems much less 

sensitive to sensor size than traditional silicon, polysilicon, and metal thin film piezoresistors.  

 Using these scaling equations and basic material properties, it is possible to estimate the 

performance of silicon, polysilicon, metal thin films and CNT-based piezoresistive sensors as a 

function of flexure size.  If we assume a constant 10:10:1 length to width to thickness ratio 

flexure system, it is possible to plot the optimal performance of each type of piezoresistive 

sensor. As shown in Figure 1.9, the ideal CNT-based piezoresistors have the potential to 

outperform traditional piezoresistive sensors at most size scales if their strain sensitivity can be 

optimized by selecting the CNT chiralities with the highest strain sensitivities for the 

piezoresistive sensor [9]. This difference between ideal CNTs and traditional piezoresistors is 

magnified when the flexure is less than about 10 μm in length, as a result of differences in sensor 

scaling. Currently, CNT-based piezoresistors are capable of outperforming silicon based sensors 

when the flexure length is less than about 1 micron, and polysilicon sensors when the flexure 

length is less than about 100 microns.   

The silicon piezoresistors are competitive with ideal CNT-based piezoresistors for flexure 

lengths of about 100 μm.  At larger flexure lengths, the silicon piezoresistors are limited by 

Johnson noise and their dynamic range stops increasing.  At lower flexure lengths, the silicon- 

based piezoresistor’s performance drops off significantly as a result of the sensor scaling rules 

discussed previously. The polysilicon sensors perform similarly to the silicon piezoresistors, 

except that they have a lower gauge factor and greater Hooge constant, so their performance 

starts to drop off when the flexure length decreases below about 1 mm. The metal thin film 

piezoresistors have a dynamic range limited to about 80 dB because of their low gauge factor.  

They, however, do not start to see a drop off in performance in dynamic range until the flexure 

length decreases below about 10 μm due to their high carrier concentration. The metal thin film 

piezoresistors are, therefore, able to outperform current CNT-based piezoresistors for flexure 

lengths between 1 and 100 microns, as seen in Figure 1.9.  
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Figure 1.9: Sensor dynamic ranges versus size for piezoresistive various sensing materials.  

 

Overall, therefore, as piezoresistive sensors are scaled down to the nanoscale, CNT-based 

piezoresistors are the only viable option for high-dynamic-range sensing. However, more work 

needs to be done to improve these sensors and to optimize their performance before they can be 

incorporated into real high-dynamic-range nanoscale sensor systems. 

1.3.4.2 Resonance Sensors 

Introduction to Resonance Sensors 

Resonant NEMS sensors are a promising new class of sensors that have been made 

possible at the nanoscale by the small mass, high natural frequency and high quality factor of 

nanoscale resonators. The small mass of NEMS devices allows such devices to operate at high 

frequencies.  As was seen in Equation (1.14), the natural frequency of the device is inversely 

proportional to the square root of the mass.   
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Therefore, by reducing the mass of the device, the device may be run at much higher speeds.  For 

example, while micro-scale devices typically run in the 10 kHz to 10 MHz range [83], NEMs 

devices can run at frequencies that are greater than 1 GHz [84].  This increased natural frequency 

can improve signal processing speeds and increase the sensitivity of nanoscale sensors and 

transducers that rely on the resonance of a beam. 

 The small mass of NEMS devices also makes the amount of power dissipated by NEMS 

devices small, thus giving NEMS devices high quality or Q factors.  The Q factor is defined in 

Equation (1.15), where ω is the angular frequency, m is the mass, K is the stiffness, and R is the 

mechanical resistance.   
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The Q factor of NEMS devices may be hundreds of times better than similar high frequency 

electrical resonators [85]. NEMS are intrinsically low power devices due to these high Q factors.  

The fundamental power scale is defined by the thermal energy divided by the response time, 

which equals the Q factor divided by the natural frequency.  For NEMS devices, this value is 

typically in the 10-18 watts range.  This means that even if the NEMS device is only driven with a 

picowatt of power, the signal to noise ratio is still on the order of 106.  Therefore, NEMS devices 

have the ability act as fine precision sensors because of their high damping and signal to noise 

ratios. 

Resonance-based Mass Sensors 

Resonance-based mass sensors work by creating a frequency shift, ∆f, that is directly 

proportional to the change in mass. When mass is added to a resonating beam the natural 

frequency of the beam changes, as described by Equation (1.16) [86]. 
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Nanoscale resonators are ideal for such sensors due to their extremely low mass and high natural 

frequency.  The sensitivity of these sensors is generally limited by thermomechanical noise, 

which is caused by energy exchange between the flexure and the environment [87]. These 

thermomechanical vibrations generally limit the dynamic range of resonant mass sensors to 

about 60 dB [88]. 

Nanoscale resonators, however, are still capable of high mass sensitivity.  For example, 

silicon-based nanoscale cantilevers and doubly clamped beams have been used to measure 

masses down to an attogram [20,89]. In addition, carbon nanotube-based nanomechanical 

resonators have been proposed that would be capable of mass resolutions of up to a zeptogram 

[90]. 

Resonance Based Strain Sensors 

Resonance-based strain sensors are based upon the principle of strain stiffening.  For 

small strains, the pseudo-rigid-body large-deflection beam bending model given by Equation 

(1.17) can be used to predict the strain stiffening behavior of a clamped-clamped flexure beam 

[8]. Equation (1.17) relates the applied force, F, to the change in length of the beam, ∆L, via the 

initial clamped-clamped beam length,  L0, the position along the beam, x, the stiffness coefficient 

Kθ, the characteristic radius factor, γ, flexural rigidity, (EI)bend, and (EA)axial. 
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When tension is applied to the beam, the beam elongates and ∆L increases, which causes the 

stiffness to increase. This increase in stiffness then results in a higher natural frequency of the 

beam.  This increased natural frequency can be described by Equation (1.18) where µ is the mass 

per unit length of the flexure and ε is the axial strain applied to the flexure [91]. 
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Therefore, based on the change in natural frequency of the resonating beam, it is possible to 

measure the strain applied to the beam. 

Resonant strain sensors are not as commonly used as macroscale strain sensors because 

of the range limitations created by the low failure strains of most macroscale materials.  

However, CNT-based resonant strain sensors have recently been shown to be able to overcome 

some of these limitations [91-94].  A schematic of a CNT-based resonant strain sensor is given in 

Figure 1.10. 

 
Figure 1.10: CNT-Based Resonating Strain Sensor. 

 

 Carbon nanotubes are ideal for resonance-based strain sensors due to their high elastic 

modulus [95], high strength [96], and failure strain of greater than 20 percent [2].  These 

properties give CNT-based resonant strain sensors a high natural frequency and a large range. 

For example, based on molecular dynamics simulations of a 15.28 nm long, (5,5) single walled 

carbon nanotube, CNT-based resonant sensors can have a strain sensitivity of about 1 picostrain 

per hertz, as seen in Figure 1.11.  For the 15.28 nm long, (5,5) CNT this translates to a force 

sensitivity of approximately 1 pN/MHz and a displacement sensitivity approximately of 10 

pm/GHz, with a range of approximately 3.7 nm. These sensors can therefore be very good at 

measuring small strains over nanoscale displacement ranges. 
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Figure 1.11: Natural Frequency vs. Strain for CNT Resonator. 

 

1.3.4.3 Tunneling Sensors 

Tunneling sensors have had great success in measuring subatomic displacements, but 

have been limited at the macroscale due to their lack of range.  Tunneling sensors generally 

consist of a sharp tip placed within a nanometer of a moving surface.  As the gap between the tip 

and the surfaces changes, the tunneling current changes, as shown in Equation (1.19), where V is 

the DC bias voltage, κ is decay constant for the electron wave-function within the gap, and d is 

the gap size [97]. 
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This results in a high displacement sensitivity but small range, because of the exponential decline 

in tunneling current as the gap size increases. For example, an electronic circuit with 1 percent 
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variation in a 1 nA current from a 100 MΩ source is capable of detecting displacements as small 

as 0.3 pm, but has a range of less than 1 nm [98]. In order to improve these range limitations, 

feedback control systems are often used to maintain a fixed gap distance over a range of 

displacements [99].   These feedback sensors, however, are not able to maintain the fine 

displacement resolution of the tunneling sensor over the full range of the device, since large 

motions must be measured by an external sensor on the feedback platform. 

 While non-feedback tunneling sensors are limited at the macro and micro scales, they 

may have some utility at the nanoscale.  As devices are scaled down to the nanoscale, the 

necessary range of these devices tends to decrease as well.  Therefore, the limited range of the 

tunneling sensors may not be that limiting in nanoscale sensing.  Non-feedback tunneling sensors 

are also scalable down to the nanoscale, since the tunneling occurs between the nearest pair of 

atoms on each side of the tip-surface gap [99].  Therefore, the tunneling sensor does not need to 

be any larger than a few atoms and the sensor range and resolution do not scale with the sensor 

size. This makes tunneling sensors ideal for nanoscale sensing applications that require high 

resolution but that do not have a large range. 

1.3.5 Sensor Selection for Case Study 

For the case study examined in this thesis, CNT-based piezoresistors were selected for 

the sensing element.  CNT-based piezoresistive strain sensors were chosen because of their 

ability to meet the footprint and dynamic range requirements of the case study, as seen in Figure 

1.12.  Also, CNT-based piezoresistive strain sensors are easy to integrate into multi-axis sensors 

and are inexpensive to fabricate. This combination of sensor properties makes CNT-based 

piezoresistive sensors the ideal choice for the 3-axis MEMS force sensor case study presented in 

Section 1.4.3. 
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Figure 1.12: Sensor Comparison for Case Study. 

 

1.4 Prior Art 

1.4.1 CNT Assembly 

Accurate and reliable assembly of CNTs into micro- and nanoscale devices is critical in 

order to maximize the performance of these devices.  This section reviews several techniques 

used to assemble CNTs into MEMS/NEMS devices and discusses their advantages and 

disadvantages. 

1.4.1.1 Grow-in-Place 

Several methods have been used to guide the direction of growth of CNTs on a substrate.  

These techniques typically focus on structuring the substrate to promote growth between specific 

locations or using an electric field to direct the growth of the CNTs.  For example, suspended 
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CNTs have been fabricated by growing the CNTs on top of pillars and allowing them to form 

bridges between neighboring pillars [100,101]. Similar methods have been used to connect CNTs 

between an electrode and a cantilever beam to create a CNT-based strain sensor [102].  In 

addition, researchers have demonstrated the growth of CNTs across trenches to produce sensors 

[103] and electronic circuits [104,105]. In order to enhance CNT placement accuracy, electric 

fields are commonly used to direct the direction of CNT growth [106,107]. The electric field 

induces a dipole in the growing CNT parallel to the CNT’s principal axis. The electric field then 

exerts a torque on this induced dipole. The torque exerted on the CNT by the electric field is 

given by Equation (1.20), where αZZ is the polarizability tensor,  E is the electric field intensity, L 

is the length of the CNT, and ϕ is the angle between the CNT and the electric field [108]. 
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This torque causes the CNTs to align along the direction of the electric field. Therefore, by 

controlling the direction and intensity of the electric field during CNT growth, the placement of 

CNTs onto a structure can be accurately controlled. The main advantage of the growth-in-place 

assembly technique is that it can be done in parallel to facilitate the fabrication of a large number 

of devices at the same time.  However, it can be difficult to control the exact location, type and 

number of CNTs in the device.  Also, the high temperatures required for growth of CNTs are not 

compatible with the fabrication of many types of materials and devices. 

1.4.1.2 Pick-and-Place 

The typical pick-and-place setup consists of a three degree-of-freedom nanopositioning 

stage inside a scanning electron microscope (SEM) [109-111]. The nanopositioner system 

typically has a range of 10’s of millimeters and sub-nanometer resolution [112]. The SEM is 

used to image the CNT while the nanopositioner is used to direct a probe into contact with the 

CNT. Once in contact with the probe, the CNTs are then welded to the probe using electron 

beam-induced deposition of a carbon or organometallic compound [112,113]. Alternatively, 

microfabricated grippers have been used instead of a probe to pick-and-place CNTs inside an 

SEM [114,115]. Once the CNT has been secured to the nanomanipulator, the nanopositioner can 

be used to move the CNT to the desired location, where it can be welded in place and the 
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nanomanipulator can be removed. This process allows great control over the exact position and 

type of CNT placed onto the device.  However, pick-and-place assembly is a slow, serial 

fabrication process, making it impractical for large scale manufacturing of devices.  

1.4.1.3 Dielectrophoresis 

In assembly by dielectrophoresis, CNTs are dispersed in an aqueous or alcohol-based 

solution [116] and directed into a desired location through the use of an alternating electric field 

[117,118]. In dielectrophoresis, a non-uniform electric field is applied with unequal field strength 

around a particle, leading to imbalanced forces on the induced dipole.  This drives the CNT 

towards the field maximum and results in a torque that aligns the CNT with the electric field. 

The force and torque on the CNT can be calculated using Equations (1.21) and (1.22), where r is 

the radius of the CNT, l is the length of the CNT, εp and εm are the complex dielectric 

permittivities of the CNT and the medium, and E is the electric field [119]. 
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Process parameters such as the CNT concentration, the magnitude of the electric field, and the 

deposition time all affect the assembly of CNT by dielectrophoresis. For example, experiments 

have shown that the number of assembled CNTs increases with concentration of the CNT 

solution, the magnitude of the applied voltage, and the duration of the electric field [120].  In 

addition, experiments have shown that higher frequency alternating currents tend to result in 

better alignment of the CNTs to the electric field [121]. Also, depending on the processing 

conditions it is possible to control whether both semiconducting and metallic or just metallic 

CNTs are deposited onto the device [122-124]. 

 The major advantage of dielectrophoretic assembly is that many carbon nanotubes can be 

assembled into a device at the same time at room temperature [125,126].  Using 

dielectrophoresis, millions of CNTs can be assembles onto a single device in a matter of minutes 

[127].  This is critical for the nanomanufacturing of nanoscale, CNT-based devices [128]. In 
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addition, individual CNTs can be assembled onto NEMS devices by measuring the magnitude of 

both the direct and low frequency current to determine when a nanotube has made electrical 

contact and to halt the dielectrophoretic process [129].  Using these dielectrophoretic assembly 

techniques, several different types of nanoscale sensors and electronics components have been 

fabricated [130,131]. 

1.4.1.4 Transfer Printing 

Transfer printing can be used to remove CNTs from the substrate on which they were 

grown or deposited and assemble them into nanoscale devices.  In this process a 

polydimetholsiloxane (PDMS) stamp is laminated against a donor substrate and is quickly peeled 

away, pulling the CNTs from the donor substrate onto the stamp. The stamp is then brought into 

contact with the receiving substrate and slowly peeled away, transferring the CNTs to the 

receiving substrate.  This works because the peeling rate determines the strength of adhesion and, 

therefore, the direction of transfer [132,133]. This technique can be used to print CNTs with a 

wide variety of shapes and sizes on to virtually any smooth surface [134-136]. Overall, transfer 

printing is a quick and simple method to assemble CNTs onto a substrate. Unfortunately, the 

utility of this method is limited because the CNTs must already have the correct relative spatial 

location and orientation before the transfer printing process can be preformed. 

1.4.2 Sorting of CNTs 

The ability to sort CNTs by diameter, chirality, electronic structure and handedness is 

required for numerous sensor and electronic applications. CNTs can be sorted either through 

precise control of the growth conditions [137] or through post-growth separation [138].  

Controlled growth of CNTs has been successful in setting the length, diameter, and number of 

walls in the CNT [139-146]. However, precise control of chirality has proven more difficult, 

with only a few limited successes [147,148].  

Post-growth sorting generally relies on chemical reactions that vary as a function of the 

physical or electronic structure of the CNT [149].  The first step in these post-growth sorting 

methods is to disperse the CNTs in solution [116]. Then electrophoresis, chromatography, or 

ultracentrifugation techniques can be used to separate CNTs by specific physical or electrical 
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properties. Electrophoresis and chromatography have mainly been used to separate CNTs into 

semiconducting and metallic varieties [149-151].  

Density-gradient ultracentrifugation (DGU), however, is commonly used to separate 

CNTs by size and chirality [149]. In DGU, CNTs are distributed into a density gradient that is 

formed in a centrifuge tube. A centrifuge is used to produce a driving force that causes the CNTs 

to move towards the point where the buoyant density of the SWCNT matches the local density 

gradient of the centrifugal field. Specific types of CNTs can then be extracted from the 

centrifugal field.  In order to increase the density difference between different types of CNTs, the 

CNTs are commonly attached to other molecules [152,153]. For example, co-surfactant mixtures 

of sodium cholate and sodium dodecyl sulfate (SDS) have been shown to be successful in 

separating CNTs by diameter or electronic structure [154]. In addition this method has been used 

to isolate specific CNT enantiomers by taking advantage of the fact that some surfactants bind 

preferentially to either left-handed or right handed CNTs [155-158].  Recently, it has been 

demonstrated that specific strands of DNA will attach preferentially to specific chiralities of 

carbon nanotubes, making it possible to effectively sort CNTs by their (n,m) chiral indices [159-

161]. 

1.4.3 Multi-Axis MEMS Force Sensors 

MEMS force sensors tend to rely on one of three sensing methods: capacitive sensing, 

optical detection, and piezoresistive sensing. Several multi-axis force sensors have been 

developed using capacitive sensors [17,162-165]. Two degree-of-freedom capacitive force 

sensors have been demonstrated that rely on interdigitated fingers to measure displacement and 

transduce force. These sensors are capable of achieving sub-µN resolutions and mN ranges 

[162]. Six-axis force sensors have also been demonstrated that rely on both comb drive and 

parallel plate capacitive sensors [163]. In general, multi-axis capacitive force sensors are difficult 

to fabricate and require relatively large sensor areas (mm2) for each axis in order to achieve high 

force resolution.  This makes capacitive sensing impractical for small, inexpensive, multi-axis 

force sensors. 

Optical sensors are commonly used in single-axis MEMS force sensors.  For example, 

photodiodes are used in atomic force microscopes (AFM) to measure the deflection of an AFM 

cantilever beam.  In this process, a laser beam is directed at the end of the cantilever and is 
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reflected to a photodiode. When the cantilever is deflected, the angle at which the laser is 

reflected changes, which can be measured by the change in the photodiode current [166]. From 

this deflection measurement it is possible to calculate the force applied to the cantilever based on 

the cantilever stiffness.  In addition, other optical methods such as measuring the displacement of 

a stage using optical gratings in an SEM and laser interferometry have been used in force sensing 

applications [167,168]. However, optical methods have rarely been used to make multi-axis 

force measurements at the microscale. 

 To date, most MEMS force sensors have used piezoresistors as the active sensing element 

[22]. Piezoresistors offer the advantages of small size and low cost. For example, silicon-based 

piezoresistors have been used to make nanonewton level single axis force sensors [4,169] and 

AFM cantilevers [21]. In general, the design of these sensors is optimized by the proper selection 

of piezoresistive material, sensor geometry, and fabrication procedure [170-172].  

 However, the design and fabrication process becomes significantly more challenging for 

multi-axis piezoresistive sensors [14]. There are two common configurations for two-axis silicon 

based force sensors. These sensors can either be fabricated by putting two sensors in series and 

using sidewall ion implantation to measure lateral forces [173] or by placing the piezoresistors 

off the neutral axis of the beam so that they change resistance when both vertical and lateral 

loads are applied [174-176]. These sensing methods, however, significantly increase the 

complexity of the fabrication process and result in significantly worse resolution in one direction 

relative to the other.  Multi-axis silicon-based piezoresistive sensors have the added complexity 

that the piezoresistivity of silicon is dependent on its crystallographic orientation.  Therefore, for 

multi-axis force sensors, other piezoresistive materials such as polysilicon and metals are 

commonly used [13,14,20]. 

1.5 Scope 

1.5.1 Technical Approach 

In order to be able to engineer high quality, CNT-based piezoresistive strain sensors, 

work needs to be done in three areas: the CNT sensing element itself, integration of the CNT 

sensing element into MEMS/NEMS devices, and overall system level design and optimization.  

As discussed in the background section, previous research has shown that there can be a wide 
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variance in the CNT gauge factor depending on the structure of the CNT, but there has been no 

quantitative link established between CNT structure and gauge factor.  The purpose of this thesis 

is to establish such a link so that it is possible to select the optimal CNT structure for a given 

sensing application.   

In order to examine the link between CNT structure and gauge factor, a MEMS test 

structure, which is used to measure CNT gauge factor, has been designed and fabricated.  As 

seen in Figure 1.13, this test structure consists of a fixed-fixed flexure beam with electrodes 

connected to the base of the flexure.  The outer four sets of electrodes are connected to 

polysilicon piezoresistors, while the inner two electrodes are left empty so that CNTs can be 

connected across them.  These central electrodes are spaced 1 micron apart.  This architecture 

allows the strain in the flexure to be measured simultaneously by both the polysilicon and CNT 

piezoresistors. The center of the flexure has a locating hole where weights can be placed to load 

the structure and strain the CNTs. 

 

 
Figure 1.13: Experimental test structure. 

 

 CNTs are deposited on to the test structure by dielectrophoresis.  The (n,m) chiral indices 

of the CNTs placed on the test structure are set through a pre-deposition sorting process.  By 

determining both the electromechanical response of the CNTs and their chiral indices, it is 

possible to obtain a better understanding of the physics relating the two.  In addition to 

CNTElectrodes



 57

measuring the electromechanical response of the CNTs to strain, the temperature sensitivity of 

resistance and gauge factor is also measured.  This is done by placing the test structure in a 

furnace and measuring how the resistance and gauge factors of the CNTs change as the structure 

is heated and cooled.  Polysilicon piezoresistors which have well-known thermal properties are 

used to isolate the CNT temperature effects from the thermal effects on the test structure itself.  

Knowing the thermal coefficients for different CNT chiralities makes it possible to mitigate the 

effects of temperature fluctuations in the CNT-based strain sensors by implementing span 

temperature compensation and proper Wheatstone bridge design. 

 At the device level, the test structure is used to test the mechanical interactions between 

the CNT and the substrate/electrodes.  For example, it is important to determine how well the 

strain in flexures is being transferred to the CNTs.  This can be done by looking for stick-slip 

during the device loading and for changes in the orientation of the CNT before and after loading.  

Also, different anchoring techniques are used to fix the CNT in place on the substrate to see if 

the strain response changes.  The information gained from these tests is used in combination with 

theory and simulations to optimize the strain transfer from the substrate to the CNT and to 

improve the device performance.    

 In addition to the mechanical interactions between the CNT and the MEMS device, the 

electrical interactions between the CNTs and the electrodes are investigated.  For example, 

contact resistance between CNTs and the electrodes can be large depending on the electrode 

material [177,178] and anchoring technique [179,180].  Bench level tests are performed using the 

MEMS test structures to determine the effect of using different techniques and materials to 

anchor the CNTs to the electrodes.  These results were used to create CNT/electrode contact 

resistance models and establish “best practice” techniques for manufacturing CNT-based sensor 

systems. 

 At the system level, the biggest concern limiting device performance is noise.  In order 

optimize the sensor performance a system-level noise model is developed that includes the noise 

from both the sensors and the electronics.  This is done by measuring the noise from each 

component and feeding this noise through the electronic circuit.  This makes it possible to 

determine the major noise sources in the system. The sensor system is then redesigned to reduce 

this noise by changing things such as the number of CNTs in the sensor. A flow chart of the 

technical approach is given in Figure 1.14. 
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Figure 1.14: Flowchart of technical approach. 

 

1.5.2 Case Study: 3-Axis Force Sensor with CNT-Based Piezoresistors 

The purpose of the case study undertaken for this research is to use the knowledge gained 

in the technical approach section to design and manufacture a 3-axis force sensor with pN 

resolution and µN range that can be actuated using the HexFlex nanopositioner.  The 3-axis force 

sensor is designed to fit on top of the HexFlex’s central stage, as seen in Figure 1.15.  In theory 

this may seem simple, but the knowledge gained from this research is necessary for the 

development of such a sensor because traditional sensing techniques cannot meet all of the 3-axis 

force sensor’s functional requirements.  Sensors such as capacitive comb drives and laser 

interferometry are too bulky to fit onto the central stage of the HexFlex nanopositioner.  Silicon-

based piezoresistors would fit into the space requirement but are not capable of achieving both 

the force range and resolution requirements due to their limited dynamic range.  Also, silicon-

based piezoresistors are sensitive to crystallographic orientation.  This means that silicon 
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piezoresistors do not work well on structures that have nonparallel beams such as the 3-axis 

force sensor because the beams have different crystallographic orientations. Therefore, the CNT-

based piezoresistors developed in this study are the only sensor system available that has the 

potential to meet all of the requirements of this sensing system.  

 

  
(a) (b) 

Figure 1.15: (a) Polysilicon piezoresistor based force sensor (b) Force sensor/HexFlex 

assembly 

 

One application of this device is to perform the cell adhesion tests described in Section 

1.1.  In these tests, the HexFlex will be used to bring the stage of the force sensor into contact 

with the cells on the test surface. The force sensor will measure the force applied to the cells in 

the z-axis.  Also, the measurements of the torques around the θx and θy rotations will be fed back 

to the HexFlex nanopositioner to ensure that constant pressure is maintained across the surface.  

This will allow the sensor to accurately and precisely measure the interaction between the array 

of cells on the surface and the surface itself. With the knowledge gained from this device, 

researchers may more rapidly assess how new materials, material surface designs/textures, and 

drug coatings improve the performance of a biomedical device. As a result, they will be able to 

set biological standards that will allow them to more rapidly weed-out less promising 

designs/materials and thereby reduce the time to market of biomedical implants. 
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CHAPTER 

2 
SYSTEM LEVEL DESIGN 

2.1 Introduction 

Piezoresistors are widely used in microsystem sensing due to their low cost, small size, 

low phase lag, and large dynamic range.  They have been used to create MEMS 

nanomanipulators [181], biocharacterization instruments [169], pressure sensors [182], inertial 

sensors [183], mass sensors [20], and elements of high-speed atomic force microscopes (AFMs) 

[20,21,23].  Designers often consider only the performance of the transducing element in the full 

sensing system, leading to the perception that these sensors are ‘too noisy’ for precision 

applications.  However, excellent performance may be obtained if the design properly manages 

the tradeoffs between size, bandwidth, resolution, power, and dynamic range.  This requires the 

ability to accurately predict the effect of all relevant noise sources on the performance of the full 

sensing system. 

This chapter presents a systems approach that makes piezoresistive sensor system 

optimization possible.  The emphasis here is on the conceptual layout of a system model, the 

technical details of modeling the noise sources associated with its components, and the insights 

and results that come from integrating the individual components to form an overview of the 

system’s performance.  The systems approach is a reinforcement of best practices that are 

familiar to precision engineers, but less common for microsystem/MEMS designers. The 

variables used in this chapter are defined in Appendix A of this thesis.  

2.2 Background 

High-resolution micro–sensor systems are typically based upon piezoresistive, capacitive, 

or optical sensing methods.  Optical methods are capable of high dynamic ranges (>200 dB [37]) 

but tend to be too large and expensive (>$10,000 [37]) for low-cost microsystems.  Capacitive 
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sensors are orders of magnitude less expensive than laser interferometers, but require large 

sensor areas to achieve a high dynamic range.  For example, the force sensor developed by 

Beyeler et al. has a footprint of approximately 100 mm2 [163] and exhibits a dynamic range of 

57 dB at 30 Hz. A comparable piezoresistive sensor with the same dynamic range could be three 

orders of magnitude smaller.  This type of comparison must be made in order to ‘squeeze’ every 

ounce of performance from piezoresistive systems.  Such optimization is only possible, in turn, if 

all aspects of the systems are modeled, allowing the designer to assess the best ways to tune all 

components relative to each other.  System models also provide more certainty in the design 

process, thereby reducing guesswork as well as the time required to converge on a best design. 

In those applications where piezoresistive sensors can replace capacitive and optical 

methods, the designer must determine which type of piezoresistive material will best fit the 

intended use.  The most common materials that are used in microsystems are single crystal 

silicon, polysilicon and metal film piezoresistors.  Single crystal silicon piezoresistors typically 

have the highest dynamic range due to their high gauge factors (20 to 100 depending on doping 

concentration [4,171]) and low flicker noise.  The gauge factor of single crystal silicon depends 

upon crystallographic orientation [184], however, and  therefore this material is typically only 

used in single axis, cantilever-type force sensors [4,21,171].  

 For multi-axis devices, polysilicon and metal piezoresistors are typically used, given that 

their gauge factors are largely isotropic [14].  Polysilicon piezoresistors tend to have a lower 

gauge factor (10-40 depending on doping [184]) and higher flicker noise than single crystal 

silicon, due to the effect of grain boundaries [185,186].  Metal film piezoresistors have a 

significantly lower gauge factor (~2) than single crystal and polysilicon piezoresistors but also 

have nearly non-existent flicker noise due to their higher carrier concentration [20].  The optimal 

material choice is dependent on the measurement frequency, type of device and device footprint.  

the following sections discuss the information needed to make good material and 

geometry/design decisions that yield the best device performance. 
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2.3 DC Piezoresistive Sensor System Model 

2.3.1 System Layout and Model 

The layout in Figure 2.1 is used in this study to model the limits that noise imposes upon 

the sensing system.  A typical piezoresistive sensor system contains a voltage source that 

energizes a span-temperature-compensated (STC) Wheatstone bridge and a piezoresistive 

element within the bridge.  An instrumentation amplifier is used to boost the bridge signal, which 

is nulled with a bias voltage and read by an Analog-to-Digital Converter (ADC).  This layout 

may be used to model sensors that measure a force or displacement that is applied to a compliant 

element.  

 

 

Figure 2.1.  Schematic layout of DC piezoresistive sensor system. 

 

The system model includes the relevant thermal, electrical and mechanical noise sources.  

These noise sources are included in the model for each subsection, as shown in Figure 2.3-2.10.  

The subsections are arranged as shown in Figure 2.2 to create the full system model.  These 

figures are a visual representation the characteristic equation of each part of the sensor system.  

The Laplace transform of all filters, F(s), in the model are assumed to be non-dimensional and to 

have unity, steady-state gain.  All n noise sources, σn, are considered to be unbiased, 

uncorrelated, and normally distributed with spectral densities, Sn(f). 
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Figure 2.2.  Block diagram layout of full system model. 

 

The following inputs are applied to the compliant element: (i) a force or displacement 

signal, ΨM, (ii) mechanical noise, σMv, e.g. vibrations, and (iii) thermomechanical noise, σMt, with 

the spectral density [187]: 
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The mechanical noise scaling factor, Λ, is used to convert between displacements and forces.  

This factor has a unity value for displacement signals or a value of k for force signals. 

 

 

Figure 2.3. Block diagram representation of signal domain with main signal propagation path 

highlighted in bold 
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2.3.2 Flexure Model 

 

Figure 2.4. Block diagram representation of flexure domain with main signal propagation path 

highlighted in bold 

 

The flexure acts as a (a) mechanical filter and (b) transducer that converts a force or 

displacement into a strain.  The flexure behavior is therefore integrated as a gain, εF, within the 

model. The appropriate gain depends upon the intended use of the sensor (force vs. displacement 

sensing) and the grounding of the flexure (fixed-guided or fixed-free boundary).  Table 2.1 lists 

the gains that should be used for commonly used flexures in both force and displacement 

sensing. 

 

Table 2.1: Common forms of flexure gain, εF 
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The strain geometry gain factor is obtained via Equation (2.2). 
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This value is based upon an average of the strain field that is directly sensed by the piezoresistor. 

The strain field constant, γ, captures the effect of different flexural end conditions and has value 

of 1 for fixed-guided, or 2 for fixed-free boundary conditions. 
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2.3.3 Wheatstone Bridge Model 

 

Figure 2.5. Block diagram representation of flexure domain with main signal propagation path 

highlighted in bold. 

 

The signal is transformed from the mechanical domain to the electrical domain via a 

Wheatstone bridge.  The bridge’s sensitivity depends upon the bridge type.  The type is defined 

as the number of strain sensitive resistors within the bridge divided by 4.  The bridge thermal 

type determines how the bridge output changes with temperature and is calculated by averaging 

the directional (±) normalized thermal sensitivity for each of the piezoresistors mounted on the 

device.  The normalization is carried out using the characteristic thermal sensitivity of the 

piezoresistors mounted on the device, αRw.  The off-bridge thermal type is calculated in the same 

manner, but for the resistors located off the device such as the resistors in the electronics. 

The sensor noise is composed of Johnson and flicker noise.  The spectral density [23,188] of this 

noise source is: 
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The bridge voltage is attenuated by the gain of the STC, which describes the loss in 

bridge voltage caused by the STC resistors in series with the bridge.  This gain is specifically set 

to have a thermal sensitivity that cancels out the thermal sensitivity of both the piezoresistors and 

flexure. 
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The STC gain has a thermal sensitivity intended to passively cancel the gauge factor and 

flexure gain thermal sensitivities [25]. 
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The STC and bridge resistors may be separated by some distance; therefore they may 

experience different temperatures.  The bridge thermal filter can be used to characterize this 

frequency-dependent effect.  Thermal variations occurs at relatively low frequencies, therefore 

the bandwidth of FT(s) is normally large enough to approximate as unity over the frequencies of 

interest. 

2.3.4 Instrumentation Amplifier Model 

 

Figure 2.6. Block diagram representation of the amplifier domain with main signal propagation 

path highlighted in bold. 

 

The Wheatstone bridge output signal is boosted via the instrumentation amplifier in order 

to scale it to the full usable range of the ADC.  The required amplifier gain is calculated by 

constraining the maximum input to the ADC to υ, which is generally 0.9, or 90% of the ADC’s 
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full voltage range.  The maximum signal is found by inputting the maximum strain safely 

achievable in the flexure after the flexure gain. 
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2.3.5 Source Voltage Model 

 

Figure 2.7. Block diagram representation of the source voltage domain with main signal 

propagation path highlighted in bold. 

 

The source voltage chip provides a steady energizing voltage to the Wheatstone bridge.  

It is subject to electronic and thermal noise, but a filter may be used to attenuate this noise on the 

DC signal.  Any variation in the source voltage will erroneously appear as a force or 

displacement signal.   

2.3.6 Bias Voltage Model 

 

Figure 2.8. Block diagram representation of the bias voltage domain with main signal propagation 

path highlighted in bold. 
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The signal can be adjusted to the center of the operating range through the use of the bias 

voltage.  This voltage simply provides a steady state offset for the output of the instrumentation 

amplifier.  A filter may likewise be used to attenuate electrical or thermal noise. 

2.3.7 Power Supply Model 

 

Figure 2.9. Block diagram representation of the power supply domain with main signal propagation 

path highlighted in bold. 

 

The power supply can produce variations in the force or displacement signal by varying 

the voltage supply to the main chips in the piezoresistive sensor circuit: the source voltage, the 

bias voltage and the instrumentation amplifier.  These effects are in general highly attenuated 

through power supply rejection ratios in each of the chips.  A low pass filter may be used to 

further attenuate the electronic and thermal noise in the power supply. 

2.3.8 Digital Model 

 

Figure 2.10. Block diagram representation of the digital domain with main signal propagation path 

highlighted in bold. 
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The ADC reads the signal into the digital domain, where it is passed through a digital 

filter which can be adjusted to attenuate noise outside of the signal spectrum.  The signal is 

scaled by a calibration coefficient which is found by enforcing equality between ΨM and Ψ, 
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When multiple sensors are used to obtain multi-axis measurements, uncorrelated noise from each 

sensor is attenuated by the averaging effect of combining the multiple sensor readings, which 

may be written as a vector to calculate the performance of the j axes of interest.  The coordinate 

transform matrix acts on the vector of sensor readings to produce the coordinates of the device in 

the desired axes. 
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2.3.9 Dominant Noise Sources and System Characteristics 

Partial derivatives of the model yield the sensitivity of system to noise sources.  The 

noise spectrum is obtained by considering the effect of all noise sources. Partial derivatives for 

the dominant noise sources, σVw, σVai, σTw, are listed below. 
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(2.9) 

The spectral densities from each of the n noise sources are scaled by their respective 

frequency dependent sensitivities and geometrically summed to obtain the full system noise 

spectral density: 



 71

 

2

(2 )
( ) ( )M

Ψm n

n n

Ψ if
S f S f

π

σ

∂
=

∂
∑

 

(2.10) 

 

The act of zeroing the sensor at the start of operation will cause attenuation of the low 

frequency noise.  This effect may be modeled as a high-pass filter with pole frequency at √12 fm.  

The noise spectrum lies between fm and fn as seen in Figure 2.11.  At frequencies greater than fn, 

anti-aliasing filters heavily attenuate the noise [189]. 

 

 

Figure 2.11.  Spectral distribution of signal and relevant noise.   

 

The signal spectrum defines the bandwidth over which a useful signal may occur.  In 

real-time operation, oversampling by roughly 20x - 100x higher than the signal bandwidth results 

in minimal phase delay.  The noise between fsig and fn is attenuated by the placement of a digital 

filter, generally located roughly 10x higher than the signal bandwidth to minimize phase delay in 

the signal [189]. 

2.3.10  Performance Metrics 

The system spectral noise density is integrated over the frequency range to produce an 

estimate of the noise variance.  The sensor accuracy is considered the pseudo-steady state 

measurement error (ΨM-Ψ), namely error which remains relatively constant over changes in the 

signal.  The sensor resolution is considered the high frequency measurement error, which 

changes faster than the signal.  From the spectral analysis viewpoint, the noise below fsig is a 

measure of accuracy and noise above fsig is a measure of resolution.  The spectral range of the 

sensor accuracy is set 100x below fm to ensure the estimate is within 5 percent of the actual value, 

up to fsig. 
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The spectral range of the sensor resolution is set from fsig up to fn. 
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2.4 Insights from the Model 

2.4.1 Electronic Sources 

The model is generalized so that it may be used with a wide range of applications.  This 

model allows insights on best design of general and specific sensor systems.  The model assumes 

the use of high-performance electrical components – instrumentation amplifier (Analog Devices 

AD624), voltage source and bias (Texas Instruments REF50xx series), and ADC (National 

Instruments 9215 ADC).  This is essentially a best practice that ensures that these electronics are 

not a significant source of noise.  The relevant noise values for these components are provided in 

the references.  As shown below, sensor noise is the dominant noise source in well-designed 

sensing systems; therefore AC bridges are only rarely required to reduce amplifier noise.  

Amplifier noise is typically only dominant in metal film sensor systems that have strict 

limitations on power dissipation at the sensor.  Metal film sensors require high amplification and 

show low flicker noise, allowing the amplifier noise to be dominant in these cases.  An AC 

bridge will attenuate this noise, but adds new noise sources to the system and the secondary 

sources are often not far below the amplifier noise, meaning little gain in dynamic range. 

When the resistance of the piezoresistor is low, noise from the instrumentation amplifier 

may become significant.  The input noise from the amplifier is added to the signal before the 

signal is amplified, therefore reducing the signal output by the bridge may make the amplifier 

input noise the dominant source.  If the signal is small, thermomechanical noise, i.e. random 

vibration in the beam caused by energy exchange between the flexure and environment, may 

become a major noise source once propagated through the electronics. 
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2.4.2 Mechanical Sources 

The mechanical noise sources do not significantly contribute to the overall noise in most 

well-designed sensor systems because this is attenuated by physical filters (e.g. via optical 

tables) before reaching the sensor. 

2.4.3 Thermal Sources 

Errors caused by thermal fluctuations can generally be avoided by proper system design.  

The Wheatstone bridge may be thermally balanced by placing the bridge resistors close together 

so that they are subject to the same temperature.  Similarly, STC resistors may be used to make 

the gauge factor and flexure gain effectively thermally insensitive. 

Bridge offsets generated by manufacturing inaccuracies are compensated for by the bias 

voltage.  The thermal sensitivity of the bridge offset, however, is unaffected by the bias voltage, 

as may be discerned from Equation (2.9).  STC compensation is therefore only beneficial when 

the signal offset is less than the signal range.  Thermal fluctuations can be minimized through the 

use of insulation or active temperature controls in cases where the manufacturing inaccuracies 

are large.  This type of thermal control is not necessary in most cases, since relative 

manufacturing inaccuracies are typically small in MEMS.  The noise in the piezoresistor itself 

generally limits the resolution of the sensor system. 

2.5 Johnson and Flicker Noise 

The noise in the sensor may be separated into two dominant sources: (1) Johnson noise 

caused by the thermal agitation of electrons in a conductor and (2) flicker noise caused by 

conductance fluctuations that manifest during the capture and release of charge carriers in the 

piezoresistor [188].  Dopant concentration affects resistivity, gauge factor and carrier 

concentration of silicon piezoresistors, therefore silicon piezoresistors may be Johnson- or 

flicker-noise dominated.  There is a tradeoff between noise and sensitivity as dopant 

concentration is varied.  Optimization for CC as an extra variable may be performed if the link 

between dopant concentration, gauge factor, resistivity, and carrier concentration are known. 

In the case where the performance of the sensor is limited by flicker noise, an optimal 

sensor length and thickness will exist.  As the length and thickness of the sensor increases, the 

sensor volume and therefore number of carriers increases.  This acts to decrease flicker noise.  
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The average amount of strain in the sensor also decreases as the length and thickness of the 

sensor increase.  In balancing these two effects, optimal length and thickness may be found.  The 

optimal sensor to flexure length ratio is γ/3.  The fixed-guided condition and other boundary 

conditions are often found in multi-axis flexures.  The optimal sensor to flexure thickness ratio 

for sensors embedded in the flexure is 1/3, which is consistent with prior force sensor work [23]. 

2.6 Experimental Measurements and Model Verification 

The noise characteristics of a simple quarter bridge (Ne = 1/4) polysilicon piezoresistive 

sensor was compared to model predictions as shown in Figure 2.12.  The sensor and electronics 

are shielded from external noise sources.  The sensor is located on a large aluminum thermal 

reservoir within a Faraday cage.  The flicker noise characteristics of the polysilicon 

piezoresistive sensor were experimentally determined.  The spectral density of the noise was 

measured from 0.01 Hz to 5 kHz, corresponding roughly to the common range of operation for 

such sensors.   

 

 

Figure 2.12.  Polysilicon piezoresistive sensor noise spectrum compared to predictions.   
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The model indicates that the sensor flicker noise should be the dominant source over the 

full range of measurement when the bridge is energized at 10 V.  This prediction is verified by 

the measured spectral density.  The predicted and measured noises are 77 mV and 78 mV 

respectively.  The model also correctly predicts the change in noise spectral density resulting 

from a reduction in the bridge energizing voltage from 10 V to 3 V.  In the reduced voltage 

scenario, the predicted and measured noises are 23 mV and 21 mV respectively. 

In the third scenario studied in the experiment, the electrical and thermal shielding 

surrounding the polysilicon piezoresistor was removed to expose the sensor to random 

temperature variations (‘Exp. Data’).  The spectral density of these temperature variations was 

measured and propagated through the system model to predict the effect of exposing the sensor 

on the noise spectral density.  The electrical noise prediction was unaffected by this change, 

however the noise component of the prediction due to thermal effects rose significantly to 

become a dominant source over the low frequencies (0.01 to 1 Hz) as shown in Figure 1.13.  

This effect was observed in the measurements of the spectral densities with and without thermal 

shielding.  This indicates that thermal effects on system noise can effectively be integrated into a 

cohesive model as described in the previous sections. 

 

 

Figure 2.13.  Measurement of noise spectral densities with and without thermal shielding.   
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2.7 Piezoresistive Sensor Design and Optimization 

2.7.1 Reduced Piezoresistive Sensor System Model 

One of the most important system parameters is the dynamic range, that is, the ratio of 

range to resolution of the system.  The range and resolution are functions of the flexure geometry 

but the dynamic range is typically dependent only on the piezoresistor itself.  Therefore, it is 

generally good practice to optimize the sensor system to achieve the highest practical dynamic 

range. 

From the model it was determined that the three largest noise sources were the Johnson 

noise, flicker noise and instrumentation amplifier noise.  In the reduced model, only these three 

noise sources are passed through the system to create a simplified expression for the resolution 

of the sensor.  The dynamic range of the sensor is given in Equation (2.13), 
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(2.13) 

 

The serpentine factor, Nr, describes the number of segments in the resistor.  For example, 

Nr = 1 corresponds to a resistor with current flow from end to end, while Nr = 2 corresponds to a 

resistor with current flowing in a U shape through the same volume.  This U-shaped flow is 

formed by cutting a line through nearly the full length of the piezoresistors, such that the current 

enters and leaves the piezoresistors on the same side.  The resistor volume is the same in both 

cases, but the resistance has been roughly quadrupled. 

The bandwidth of the noise may be written as a function of the signal frequency where 

the pole of the software first order, low pass filter is located at a multiple of the signal frequency.  

The approximation of this bandwidth is given by Equation (2.14) [188]. 
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This simplified model makes it possible to optimize the dynamic range of the sensing 

system for most cases.  However, when extremely small forces or displacements are being 

measured, the thermomechanical noise may become greater than the noise from the 

instrumentation amplifier and must be added as a fourth term to the dynamic range expression.  

This term is dependent only on the flexure geometry, so will require a computational 

optimization, as described below. 

Optimization of the sensor system may be carried out using a constraint based 

maximization procedure.  In the general case, the objective function is the maximization of the 

dynamic range as given by Equation (2.13).  However, alternate objective functions such as 

minimization of the force resolution may also be used.  The objective function is subject to 

several sets of constraints.  The maximization of the objective function is performed by adjusting 

the values of the seven system variables: Lf, hf, bf, Lr, hr, br, and Vs.  The doping concentration is 

another variable that may be set for some types of materials such as doped silicon. 

The constraints on these variables fall into four major categories: (i) fabrication 

constraints, (ii) geometric constraints, (iii) voltage constraints, and (iv) performance constraints.  

Fabrication constraints set limits on the minimum dimensions of the flexure beams and 

piezoresistors.  Some common geometric constraints are the device footprint, which sets the 

maximum size of the flexures, and flexure geometry, which sets limits on the size of the 

resistors.  Voltage constraints are composed of power and voltage limits.  Power limits are based 

on how much heat may be dissipated by the resistors on the flexure.  This limit is used to help set 

the supply voltage and the resistance of the resistors in the Wheatstone bridge.  Voltage limits 

are based on the limitations of the voltage source.  Performance constraints are based on the 

desired operation of the device.  Several common performance constraints are minimum 

stiffness, minimum natural frequency, maximum displacement, and maximum force.   

The constraint-based solver uses a search procedure to find the maximum dynamic range 

for the given constraints.  This is done by adjusting the values of the geometry and voltage 

variables.  As may be seen from Equation (2.13) and the constraints, there are clear tradeoffs 

between variables.  For example, by increasing the resistor length, the flicker noise and GSG term 

decrease but the Johnson noise increases.  The dynamic range may either increase or decrease 

depending on the supply voltage, Hooge constant, carrier concentration and temperature.  Similar 

tradeoffs occur when the dimensions of the flexure are varied, since many of the resistor 
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constraints are directly linked to the flexure dimensions.  A computer-based solver is used to 

optimize the sensor design due to the coupling of the resistor and flexure geometries.  However, 

in the analytical case, a simple procedure may be used to optimize the sensor design.   

2.7.2 Optimization Process 

The flexure geometry may be coupled or decoupled with the sensor performance 

depending on the sensor system.  A flow chart is shown in Figure 2.14 to illustrate the overall 

optimization process.  The first step in the optimization is to define the basic parameters of the 

sensor system, fsig, Pmax, and Vmax.  The signal frequency is set by defining the signal of interest, 

while Pmax and Vmax are set by design limits.  The initial values chosen for these limits should lie 

safely within the present constraints of the full design.  For example, Pmax is initially set such that 

the power generated at the sensor can be safely dissipated in the MEMS structure. 

 

 

Figure 2.14.  Optimization process for maximizing sensor system performance.   
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was calculated using the assumptions that Pmax = 100 mW, Vmax = 10 V and that the volume limit 

is defined by the layout of a three-axis sensor with a footprint of 100 mm2 [14].  Variations in 

these assumptions will result in slight changes in the materials' relative performance.  The proper 

piezoresistive material for use in a particular application may be identified from Figure 2.15.  

The optimal dynamic range for each material and signal frequency was calculated using the 

optimizing process defined in this chapter.  The Johnson noise-limited regime of the chart is 

represented by the sloped sections of the lines and scales with √Pmax.  The amplifier-limited 

regime of the chart, which creates a limit parallel to the Johnson noise limit, scales with Vmax.  

The flicker noise-limited regime is represented by the flat regions of the lines and scales with 

√Ω.  The majority of the other parameters in Equation (2.13), including the yield strain and 

bridge strain type, scale the material curves equally over all frequencies. 

 

 

Figure 2.15.  Comparison of PR sensor materials given conditions described in the example case.   
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Carbon Nanotubes (CNTs) have the lowest performance but offer the greatest design freedom 

due to their scale and post-fabrication assembly.  Also, if multiple CNTs may be combined into a 

single piezoresistor with the same properties demonstrated by individual CNTs, they have the 

potential to outperform the dynamic range of doped silicon by up to an order of magnitude, due 

to their high gauge factors [9]. 

Two different regimes of optimization exist, analytical and computational.  In the 

computational case, the sensor is flicker noise-limited.  The piezoresistor size is increased up to 

the bounds defined by the flexural geometry to reduce flicker noise, but this creates a coupling 

between the flexure geometry and dynamic range of the sensor.  In the analytic case the flexure 

geometry does not affect the dynamic range of the sensor as the piezoresistor size is significantly 

below the bounds defined by the flexure geometry.  If the system is not flicker noise-limited, 

then a range of resistor volumes is possible, all of which generate roughly the same performance.  

The range is bounded on the lower end by the resistor volume becoming small enough that the 

sensor is again flicker noise-limited.  The range of volumes means that the flexural geometry is 

decoupled from performance in this resistor volume range.  A near-optimal solution can thus be 

worked out using a significantly simpler graphical process in the analytic case.  The general 

optimization process will still provide a design with maximum performance, but may result in a 

more complex design process than necessary. 

2.7.3 Analytical Optimization 

An estimate of the resistor volume must be made to provide a rough calculation of flicker 

noise so that the dominant noise source can be identified.  The volume estimate is found through 

assuming that the resistor is γ/3 times the length of the flexure, as wide as possible to fit the 

number of active resistors on the flexure and roughly 1/10 the thickness of the flexure for thin 

film resistors or 1/3 if the piezoresistor is fabricated in the flexural material.  As with power and 

voltage limits, this produces a volume upper limit which satisfies the constraints of the present 

design.  The upper limit on the piezoresistor length was found through maximizing for the 

tradeoff of volume based performance gains versus the reduction in the strain geometry gain.  

Length ratios above γ/3 will show overall reduced dynamic range due to GSG attenuation. 

The volume, power and voltage limits provide sufficient information to generate a plot of 

the dynamic range versus the resistance for each of the three dominant terms.  The voltage term 
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in the Johnson and amplifier noise expressions is maximized until either the power or voltage 

limit is reached.  Both of these expressions show a transition from power-limited to voltage- 

limited operation at the regime crossover resistance. 
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= max
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max
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R

P  
(2.15) 

 

The chart generated by Equation (2.13) is shown in Figure 2.13 for the example case 

described above.  The dynamic range limits of each noise source are independently graphed.  

The dynamic range of the full piezoresistive sensor system traces out the limiting factor at each 

resistance, and at the crossover from one limiting source to another it will fall about 3 dB below 

the asymptotic approximations. 

 

 

Figure 2.16.  Dynamic range vs. resistance plot for amplifier and Johnson noise co-dominated 

system where metal film piezoresistors are used.   
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asymptotic line up.  Amplifier noise produces an increasing dynamic range of slope +1 in the 

power-limited regime, and then holds at a constant dynamic range in the voltage-limited regime.  

When this is the dominant factor, the design should be reanalyzed with the goal of raising Vmax, 

which will shift the amplifier noise asymptotic line up.  Flicker noise produces a constant 

dynamic range limit over all resistances.  When this is the dominant term, computational analysis 

is required because any further improvement in performance requires adjustment of the flexural 

geometry.  It is usually the case that a single noise source is dominant and thus defines either a 

single value or a range of resistances over which nearly optimal dynamic range may be found.  In 

the case of the example however, the volume and power limits happen to make amplifier and 

Johnson noise co-dominant.  Therefore, both Vmax and Pmax would need to be raised to further 

increase the performance of the sensor. 

After each change in the design parameters, the chart is redrawn to determine the new 

dominant noise source at maximum performance.  If this noise source is still Johnson or 

amplifier noise after all possible design changes have been made, then an analytical optimization 

is possible.  The optimal sensor design meets all three of the underlying requirements: (i) the 

resistance should lie on the peak or plateau of maximum dynamic range in Figure 2.16, (ii) the 

piezoresistor dimensions must lie within the limits described by the flexural dimensions, and (iii) 

the piezoresistor volume must be lie between Ωmin and Ωmax.  The minimum piezoresistor volume 

is defined by the resistor volume at which the flicker noise rises to become equal to that of the 

present dominant noise source--amplifier or Johnson. 
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The variables Lr, br, hr, CC and Nr are used in this optimization.  There may be a range of 

solutions for near optimal performance since this is no longer an optimization process: any 

solution which fits within the resistance, volume and geometric bounds is adequate.  One method 

to check for possible solutions is to map the volume range, using Equation (2.17), to an effective 

resistance range, Rmin to Rmax, and compare these with the range of resistances for the optimal 

dynamic range described in condition (ii) above.  The intersection of these two sets contains the 
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resistance values which meet all criteria for a valid solution.  If there is no intersection between 

these two sets or if the solution is otherwise infeasible, then the computational optimization 

method is required.  The serpentine factor in Equation (2.16) should be set to the minimum and 

maximum values available to the designer to find the resistance bounds. 
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2.8 Computational Optimization 

The solution to the sensor optimization is dependent on the imposed constraints when 

flicker noise is dominant.  The type and number of constraints are unique to each design.  A 

constraint-based solver is used to maximize the dynamic range of the sensor system. 

In the flicker noise-limited regime, the dynamic range of the sensor system may be 

rewritten as a function of R and Lr.  The term GSG reduces to a constant because optimal resistor-

to-beam length and thickness ratios exist for the flicker regime.  This simplification removes the 

dependence of Equation (1.13) on Lf and hf.  The resistor volume may be written as a function of 

both the R and Lr variables as shown in Equation (2.18).  The supply voltage is also a function of 

R and is set by either the voltage limit of the voltage source or the power limit of the resistor. 
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The removal of the two flexural variables in the flicker noise regime simplifies the 

dynamic range expression sufficiently to allow the operating surface of the optimizer to be 

visualized for the example design, as shown in Figure 2.17. 
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Figure 2.17.  Operating surface of constraint based optimization.  Constraints are mapped to this 

surface.   
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directly linked to the volume.  In Figure 2.16 it was assumed that Lr << Lf so that Lr could be 

freely varied to effectively decouple R and Ω.   In the coupled flicker noise regime, Lr is not 

necessarily able to change, as it is optimized to a maximum.  This results in an apparent inverse 

relationship between R and Ω. 

The optimal value on this surface is found by mapping all of the constraints onto this 

surface.  Unfortunately, far more than two variables are needed to define the constraints, so these 

boundaries cannot be plotted on a three dimensional surface plot.  It is possible to see from the 

surface plot that the maximum dynamic range in the flicker noise-dominated regime trends 

towards the low resistance corner at the intersection of flicker and amplifier noise asymptotes.  

The constraint-based solver will tend towards the lower resistance end of the plateau defined by 

the flicker noise line in Figure 2.18 to increase the volume of the resistor and thus boost the 

sensor dynamic range. 
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Figure 2.18.  Dynamic range vs. resistance plot for flicker noise dominated system where polysilicon 

piezoresistors are used.   

 

A measure of decoupling may be gained in the design through Nr.  This is because Nr may 

be used in Equation (2.18) to increase the resistance without further reducing the piezoresistor 

volume.  The benefit of this increase is that raising R up to Rcross increases the dynamic range of 

the sensor by reducing the subordinate noise sources.  However, care needs to be taken when 

adjusting Nr in the optimization process since highly folded resistor geometries can significantly 

increase the complexity of the MEMS fabrication process, while only resulting in small 

performance gains.   

A successful computational optimization will always result in a higher-performance 

device than the analytical optimization.  The analytical optimization is focused only on 

minimizing the dominant noise source when used for Johnson- and amplifier-limited systems.  In 

fact, the subordinate flicker noise still marginally contributes to the dynamic range.  The 

computational optimization takes this into account and maximizes the dynamic range of both the 

dominant and subordinate noise sources.  The tradeoff between the two optimizations is between 

the level of coupling/complexity in the design and the performance.  In the flicker noise-limited 

regime there is a strong link between these two, so large gains in performance may be found 

through increasing the complexity of the design process.  In the other two regimes the link may 
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be very weak such that little performance is gained for the same increase in the design process 

complexity. 

2.9 Conclusion 

As shown in this chapter, the piezoresistor itself is generally the limiting element in the 

piezoresistive sensor system when proper modeling and optimization procedures are used to 

design the systems.  In order to improve the performance of piezoresistive sensor systems, better 

piezoresistors should be developed.  Novel materials, such as carbon nanotubes, offer the 

potential to increase sensor performance by more than an order of magnitude due to their high 

gauge factors [9].  However, more research needs to make these types of sensors feasible for 

MEMS piezoresistive sensor systems. 
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CHAPTER 

3 
CNT PIEZORESISTOR THEORY 

3.1 Introduction 

As mechanical devices move towards the nano-scale, smaller and more sensitive force and 

displacement sensors are required to measure and control their behavior. For example, multi-axis 

micro- and nano-scale sensors with nanometer displacement resolution and/or piconewton force 

resolution are needed in many biological, materials science, and nanomanufacturing applications.  

Unfortunately, these resolutions are difficult to achieve given the size, sensitivity and fabrication 

limitations associated with existing small-scale sensing techniques. Carbon nanotube-(CNT) 

based strain sensors are attractive as force and displacement sensors since they are not subject to 

the same limitations.  However, CNT-based sensors cannot be realized in a practical way unless 

their performance in strain sensing systems can be modeled and predicted. 

The physics and fabrication of traditional MEMS sensing technologies do not scale 

favorably with geometric downscaling.  Therefore, the practical utility of traditional sensing 

technologies is limited at the micro/nanoscale.  For example, the resolution of capacitive sensors 

scales with sensor area, making fine resolution sensors too large for many micro/nanoscale 

sensor systems.  Similarly, interferometry becomes impractical at the micro/nanoscale because of 

the relatively large optics that are required.  Fine resolution, silicon-based piezoresistive sensing 

techniques are easily fabricated within meso-scale devices, but are difficult to realize in nano-

scale devices due to limitations associated with photolithography and ion implantation. 

These factors foster the need to identify technologies that are less problematic and advance 

their performance via new approaches.  The dominant physics of CNT-based strain sensors do 

not preclude practical utility at the micro- and nano-scales.  Nanoscale fabrication of CNT-based 

transducers is not limited by lithography or ion implantation since CNTs are inherently 

nanoscale materials.  Also, CNTs have characteristics that yield increased performance and 
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sensitivity.  CNTs have been shown to have gauge factors in excess of 2900 [1].  This is about an 

order of magnitude larger than silicon-based piezoresistors.  These properties make CNTs the 

optimal sensors for fine resolution micro- and nanoscale flexural transducers. 

A better understanding of the link between applied strain and resistance is required in order 

to realize the potential of CNT-based transducers.  This chapter presents a theoretical model of 

CNT gauge factor that is based upon tight binding and zone-folding approximations.  With this 

model, it is possible to (i) identify the types of CNTs that are most sensitive to strain and 

therefore best-suited for use in high-resolution CNT-based flexural transducers, and (ii) evaluate 

the piezoresistance of CNT films. 

3.2 Prior Art 

Early experiments have showed that CNTs have the potential to be high quality strain 

sensors.  For example, Tombler et al. [46] used AFM tips to depress, and therefore strain, a 

suspended CNT.  Using this method they showed that the conductance of a CNT may change by 

two orders of magnitude when strain is applied.  Simulations showed that this result may have 

been the result of local deformations in the CNT structure around the AFM tip as opposed to 

uniform strain in the CNT [48,49]. However, later experiments that uniformly strained the entire 

CNT showed that CNT gauge factor could be as high as 2900 [1].  Also, gauge factor has been 

shown to vary widely with the electrical structure of a CNT [47,50,51].  For example, Grow et al. 

showed that CNT gauge factor could be positive or negative [51].  Given the sensitivity and 

variability of gauge factor with structure, the creation of practical devices can only happen if one 

has the ability to specify the CNT that is best suited for a specific sensing application. 

Theory and simulation have been used to predict the relationship between structure and 

gauge factor.  These models and simulations are typically used to estimate the change in band-

gap between different types of CNTs.  Gauge factor is then found by relating the band-gap to 

CNT resistance.  For example, Chen et al. showed that a 1 percent strain of a (12,0) CNT should 

result in a 6.4 percent decrease in resistance [52].  Yang et al. [190] used tight-binding models to 

show that CNT band-gap could increase or decrease depending upon the chirality of the CNT.  

These results have been confirmed using more detailed molecular mechanics simulations [191] 

and first principles calculations based on the generalized gradient approximation which includes 
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effects due to σ*-π* hybridization [192].  Unfortunately, little quantitative work has been 

undertaken to link specific CNT geometries to gauge factors. 

3.3 Theoretical Model 

3.3.1 Background on Tight-Binding Model 

In general, there are two approximation methods that can be used to calculate the 

electronic energy bands in a material: free-electron approximation and tight binding 

approximation. In the free-electron approximation, electrons are allowed to move as free 

particles in the crystal,  subject only to the periodic potential produced by the atoms in the crystal 

lattice and interacting only with other electrons. This approach allows the electrons to be 

modeled as plane waves and starts from the parabolic dispersion of a free particle. In the tight 

binding approximation, electrons are assumed to be tightly bound to the atoms in the solid and to 

be spaced at periodic atomic distances. This causes the valence electrons in different atoms to 

interact because of the overlap between electronic wave functions from different atoms. Because 

of these interactions, electronic bands are formed in the solid which can be used to predict the 

electronic structure of the material. For carbon based materials such as graphene and CNTs, the 

tight-binding approximation works exceptionally well and is commonly used to calculate the 

valence and conduction bands [193]. 

Since CNTs are rolled-up sheets of graphene, it is useful to look at the tight-binding 

description of graphene.  In graphene, electronic wave functions from different carbon atoms 

overlap when they are placed in the hexagonal lattice of graphene. However, the pz orbital does 

not overlap with the s, px, or py orbitals because the pz orbital is out of the plane of the graphene 

sheet while the other orbitals are in its plane. Therefore, the pz orbital can be treated 

independently from the other orbitals. This is important because it is the pz orbital which forms 

the π-bonds in graphene and is responsible for the electronic structure of graphene. 

In order to find the electronic band structure of the graphene π-orbitals it is necessary to 

solve Schrodinger’s equation   

 

( ) ( )( )H EΨ = Ψk k k
 

(3.1) 
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where H is the Hamiltonian, E(k) are the eigenvalues at wave vector k, and Ψ(k) are the 

eigenfunctions. The eigenfunctions can then be written as a linear combination of Bloch 

functions Φ(k). 

 

( )
l l

l

CΨ = Φ∑k
 (3.2) 

 

 When the tight-binding approximation is employed, the Bloch functions can be written 

for each sub-lattice (A or B) in the unit cell as linear combinations of the atomic wave functions 

for each unit cell as seen in Equation (3.3), where N is the number of unit cells in the solid, R is a 

lattice vector and φ(r) is the isolated 2pz orbital in the carbon atom. 

 

( ),

1 i

A B
e

N
ϕ⋅Φ = −∑ A

A,B

k R

A,B

R

r R
 (3.3) 

 

 To solve Equation (3.1), we can substitute in the linear combination of the Bloch 

functions as described in Equation (3.2) and solve for the determinant of the Hamiltonian and 

overlap matrix. If we assume that only the nearest neighbor atoms interact with each other, then 

we can solve for the electronic band structure as shown in Equation (3.4), where kx and ky are 

reciprocal lattice vectors, ε2p is the energy of the 2pz orbital modified by the periodic potential of 

the crystal Hamiltonian, γ0 is the carbon-carbon interaction energy known as the tight-binding 

integral, s0 is the overlap integral and fxy(k) is given by Equation (3.5). This nearest neighbor 

approximation is only valid for the small part of the Brillouin zone near the Κ point. 
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( ) ( ) 0 0
0

3
, 3 2 cos 4 cos cos

2 2
xy x y

a a
f k k a y x y

   
= + +        

 
(3.5) 

 

Based on these equations the band structure of graphene can be calculated as shown in Figure 

3.1. 
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Figure 3.1.  Band structure of graphene. 

 

From the band structure of graphene, the electronic properties of CNTs can be found by 

utilizing the zone-folding approximation.  In this approximation, the electronic band structure of 

the nanotube is given by the graphene electronic energies along allowed wave vectors. In the 

carbon nanotube, the allowed wave vectors around the nanotube circumference are quantized and 

only take discrete values while along the nanotube axis the wave vectors are continuous. This 

means that the length, number and orientation of the allowed wave vectors in the carbon 

nanotube depend on the chiral indices of the CNT. The band structure of a carbon nanotube can 

be found by tracing the allowed wave vectors on Brillouin zone of graphene. For example, the 

projection of the valence and conduction bands of a zigzag CNT is found by setting kx=0 as 

shown in Figure 3.2.   
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Figure 3.2.  Γ-Κ axis projection.   

 

From Figure 3.2, it can be seen that for zigzag CNTs the band gap is maximized at the Γ 

point (kx =0, ky=0) and is equal to 6γ0.  Also, for zigzag CNTs the band gap is zero at the Κ point 

(kx =0, ky=2/3). Similarly, the band structure of armchair CNTs can be found from the graphene 

projection along the Γ-Μ axis by ky to zero as shown in Figure 3.3. From Figure 3.3 it can be 

seen that the band gap is maximized at the Γ point (kx =0, ky=0), where it is equal to 6γ0 and is 

minimized at the Μ point (kx =
1

3
0, ky=0), the band gap is reduced to 2γ0. These representative 

band structures show why zigzag CNTs are always metallic while armchair CNTs can be 

semiconducting. 
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Figure 3.3.  Γ-Μ axis projection.   

 

3.3.2 CNT Gauge Factor Model 

The approach used in this study is based upon the tight binding model Mintmire and White 

[194,195] use to predict the electronic structure of an undeformed CNT near the Fermi level.  

Yang and Han [53] showed that this model could be extended to relate chiral angle and strain to 

the shift of the Fermi point, kF, away from Brillouin zone vertices.  The CNT may be thought of 

as a graphene sheet rolled up into a cylinder along the lattice vectors a1 and a2, as shown in 

Figure 1a.  

The electronic states near the Fermi point may be analyzed using the first Brillouin zone of 

graphene as defined by the reciprocal lattice vectors K1 and K2.  In an undeformed lattice, the 

Fermi points lie on the vertices of hexagonal Brillouin zone. The allowed electronic states, given 

by the Born-von Karman boundary condition, lie on parallel lines, k, which are perpendicular to 

the lattice vector C, as seen in Figure 3.4b.  The variations in electronic states that are induced by 
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strain may be found by measuring how the Fermi point moves with respect to the lines as strain 

is applied. 

 

 
 

(a) (b) 

Figure 3.4: (a) CNT chiral vectors (b) Graphene first Brillouin zone with allowed electronic 

states. 

 

The Fermi point may be found by solving the tight-binding equation: 
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⋅= ∑ iR

 (3.6) 

                                                   

where r0 is the original bond length, ri is the deformed bond length, t0 is the tight-binding overlap 

integral and Ri is the deformed bond vector.  Yang et al. [190] solved this equation and showed 

that 

( )0 1 cos3 sin3Fk r ν ε θ γ θ∆ = + +  (3.7) 

 

where ν is the Poisson’s ratio, θ is the chiral angle, ε is the axial strain and γ is the torsional 

strain.  The dispersion relation of the deformed graphene may then be found by expanding E(k) 

at kF:     
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( ) 0 0

3

2
E t r− = ± −F Fk k k k  

(3.8) 

 

When Equations (3.7) and (3.8) are combined, the change in band gap for small strains may be 

calculated, as shown in Equation (3.9).  The sign of the band gap change is determined by the 

chiral indices such that p = -1,0, or 1 depending on the value of mod(n-m,3) [53].  

 

( ) ( )0sgn 2 1 3 1 cos3 sin 3
gap

E p t ν ε θ γ θ∆ = + + +    (3.9) 

 

This equation works well for semiconducting and armchair CNTs with diameters larger than 1 

nm [196].  For smaller CNTs and for primarily metallic CNTs, curvature may play a large role in 

the gauge factor and therefore must be accounted for in the band-gap theory [197-199].  In this 

case a similar, nearest neighbor tight binding approach is used that captures the intrinsic 

curvature of the CNT.  For primarily metallic CNTs, Kleiner and Eggert [200] showed that:  

 

2

0

2

3 3
sgn cos3

4 2 2
gap

t a ab ab
E

d
ε θ

 
∆ = − − 

 
 (3.10) 

 

where a is the length of the graphene lattice unit vector, d is the diameter of the CNT, and b is 

the change in the transfer integral with change in bond length. 

 The change in electrical resistance due to strain can be calculated based on band-gap 

changes.  The resistance of a CNT can be accurately modeled by considering electron transport 

to occur by thermal activation [47].  This model is given in Equation (3.11), where |t|2 is the 

transmission probability that electrons with |E-EF| > EGap  will cross the energy barrier, Rc is the 

contact resistance, h is Plank’s constant, e is the charge on an electron, k is Boltzman’s constant 

and T is temperature in degrees Kelvin.  
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The zero strain band gap, 0

GapE , is [10]  
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for a semiconducting CNTs and [198]  
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(3.13) 

 

for a metallic CNTs. 

 The gauge factor for any set of chiral indices may be calculated using Equations (3.11)-

(3.13).  Gauge factor for any material is defined by Equation (3.14).  

 

F

R
G

R
ε

∆
=  

(3.14) 

 

When Equation (3.11) is substituted into Equation (3.14), it can be shown that when Rc << R:  
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 (3.15) 

 

where ε0 is the pretension strain. Using this equation, the gauge factor for a specific CNT may be 

calculated by inserting Equations (3.9) and (3.12) for semiconducting CNTs, or Equations (3.10) 

and (3.13) for metallic CNTs, into Equation (3.15). 

3.4 Model Evaluation 

Equation 10 predicts an exponential dependence of gauge factor upon strain, which is 

consistent with observations [1].  From Equations (3.9)-(3.15), it may be seen that (i) the 

maximum magnitude of gauge factor occurs in zig-zag (n,0) CNTs and (ii) the gauge factor 

decreases as the chiral angle increases, until a gauge factor of zero is reached for armchair CNTs 

(n,n). This trend, seen in Figure 3.5, shows the behavior for five CNTs with diameters of ~1.38 

nm. 

The CNTs in Figure 3.5 show two distinct trends.  The gauge factors of CNTs where p=1 

are positive and increase towards infinity with increasing strain.  This trend is consistent with the 

results observed by Stampfer et al [1].  The gauge factors of the CNTs where p=-1 are negative 

and increase towards zero with increasing strain.  This is consistent with results observed by 

Grow et al [51].  These two trends are the result of the exponential term in Equation (3.15), 

where the sign of dEGap/dε determines whether the exponential increases toward infinity or 

approaches zero.  Also, Figure 3.5 shows that the (10,10) CNT has a gauge factor of zero for all 

strains.  This result is consistent with previously results for armchair CNTs [201]. 

 



 98

 

Figure 3.5. Gauge factor vs. strain for CNTs with diameters of 1.38 nm. 

These trends may be better understood by examining how resistance changes with strain.  

From Figure 3.6 it may be seen that the resistance of (17,1) and (12,8) CNTs increases 

exponentially with strain, while the resistance of (15,4) and (11,9) CNTs decreases exponentially 

with strain.  These trends give rise to the observed exponential dependence of gauge factor with 

strain as seen in Figure 3.5.  It is also important to note the magnitude of the slope of resistance 

vs. strain in Figure 3.6.  The magnitude decreases as the chiral angle increases.  This is 

responsible for the differences in gauge factor sensitivity to strain that was shown in Figure 3.6.  

In general, the constant gauge factor approximation (i) holds over large strain ranges as the chiral 

angle increases and (ii) is more accurate for metallic CNTs than semiconducting CNTs with 

similar chiral angles. 
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Figure 3.6.  Resistance vs. strain for CNTs with diameters of 1.38 nm. 

 

Overall, near zero strain the maximum gauge factor for a semiconducting CNT is 362 

while the maximum gauge factor for a metallic CNT is 292. These values are much lower than 

the measured gauge factors reported by Stampfer et al [1], Cao et al [50] and Grow et al [51].  

There are three likely explanations for these differences. 

A small pretension on a CNT results in large increases in gauge factors when the CNT has 

a small chiral angle.  Pretension could be induced during fabrication or within experimental 

setups.  For example, the substrate the CNT is placed upon can induce a strain due to van der 

Waals interactions.  Molecular mechanics simulations and experimental measurements have 

estimated deformations as large as 2-3 percent for a CNT on a SiO2 surface [202,203]. This level 

of pretension would cause higher-than-expected gauge factors. 

Another possibility is that previous experiments may have unknowingly measured the 

characteristics of CNT bundles rather than individual SWCNTs.  The CNTs measured by Grow 

et al. [51] ranged from 2-6 nm in diameter, therefore it is likely that some of the larger diameter 
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CNTS were bundles of smaller SWCNTs.  Bundling reduces band gap of semiconducting CNTs, 

opens a secondary band-gap in metallic CNTs, and changes electronic dispersion [77]. 

Some of the difference could be a result of effects that are not captured by the model.  

Increased electron scattering and changes in the Schottky barrier may also affect gauge factor, 

though at this point it is unclear how large the effect is. Isolating the magnitude of error 

associated with the possible causes will require a larger study that links chiral indices to 

resistance and gauge factor at different temperatures.  This is a rather involved study that will be 

taken up in the future.  As will be seen in Chapter 4, the model presented matches experimental 

results for networks of CNTs with less than 7 percent error. 

3.5 Design of a Device that Uses Many CNTs in Parallel  

The theory discussed in section 3.3 may be used to design devices with CNTs, for example 

the force sensor shown in Figure 3.7.  This sensor consists of three flexural beams that are used 

to measure out-of-plane forces and torque about an axis that is normal to the plane of the device 

and aligned with its axis of symmetry.  In this design, several CNTs are placed in a parallel 

resistor network upon the flexure beams.  When the beams strain, the CNTs also strain, and this 

may be used to measure force and/or displacement. 

The resolution of a strain sensor is set by sensitivity of the device output to strain (i.e. 

gauge factor) and noise.  In CNT-based strain sensors, the dominant noise source is flicker noise 

[77].  Flicker noise is caused by the capture and release of charge carriers in localized trap states 

within the CNT [188].  The flicker noise in a CNT is given by Equation (3.16), where α is the 

Hooge constant, Vs is the source voltage, f is the frequency, and N is the number of charge 

carriers in the resistor. 
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From this equation, it is possible to decrease the flicker noise by increasing the number of 

charge carriers in the resistor.  This may be accomplished, without reducing sensitivity, by 

replacing a single CNT sensor with a network of parallel CNTs [76]. 

 

 

Figure 3.7.  MEMS multi-axis force sensor with CNT-based strain sensors. 

 

The feasibility of this design was investigated via a Monte-Carlo simulation of a 100 CNT 

resistor network.  In this simulation, the carbon nanotubes are modeled as independent resistors 

in parallel with equal amounts of strain applied to each CNT.  The Monte-Carlo simulation was 

run 10,000 times at strain intervals of 0.1 percent from 0 percent to 5 percent strain. Each of the 

CNT’s chiral indices was randomly selected from the pool of CNTs with diameters between 0.5 

nm and 4 nm with each chiral index given equal weighting.  The average resistance and gauge 

factor results of these simulations at each strain level are presented in Figure 3.8 and Figure 3.9.     

For small strains, the network resistance is dominated by the metallic CNTs because they 

have a lower resistance.  Initially, the change in resistance is small and slightly negative.  This is 

due to the closing of the secondary band gap in the metallic CNTs.  At approximately 0.3 percent 

strain, the band gap in the metallic CNTs is zero and a new energy gap starts to open, thereby 

causing the band-gap to increase. This results in the observed increase in resistance between 0.3 

percent and 2 percent strain.  Over this range, the change in resistance is close to linear with an 

R2 of 0.997 and a gauge factor of 78.5 ± 0.4.  This is close to the results reported in the literature 

of gauge factors of 79 to 134 for aligned CNT films [6].  At 2.5 percent strain, the contributions 

from the semiconducting CNTs become significant and the resistance starts to decrease.  In 
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practice, most devices are likely to work within the linear regime between 0.3 percent and 2 

percent strain due to the initial strain imposed on the CNT through interactions with the substrate 

or through other pretensioning effects [202,203]. 

 

 

Figure 3.8.  Resistance vs. strain for a 100 CNT resistor network, with segregated contributions 

from metallic and semiconducting CNTs. 

 

These resistance trends are the cause of the nonlinear gauge factor vs. strain curves seen in 

Figure 3.9.  The network gauge factor follows the metallic CNT behavior closely until 

approximately 2.5 percent strain.  This is when the contributions from semiconducting CNTs 

become relevant.  Initially, the semiconducting CNTs have a gauge factor of zero because the 

p=1 CNTs increase in resistance with increasing strain, while the p=-1 CNTs decrease in 

resistance with increases in strain.  These effects cancel out initially, but as strain increases, the 

behavior of the p=-1 CNTs start to dominate.  This occurs because increasing strain causes more 

of the current in the network to be carried through the lower resistance, p=-1 CNTs.  At high 

strains, the semiconducting CNTs act as p=-1 CNTs. 
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Figure 3.9. Gauge Factor vs. strain for a 100 CNT resistor network consisting of metallic, 

semiconducting or all CNTs. 

 

From Figure 3.8 and Figure 3.9 it is clear that the gauge factor of unsorted CNTs or CNTs 

sorted only into metallic and semiconducting CNTs is at least an order of magnitude smaller than 

for individual CNT sensors.  A small number of p=0, p=-1 or other low gauge factor CNTs can 

significantly reduce the sensitivity of the network. Therefore it is important to sort CNTs by 

chirality before constructing the networks if low noise and high strain sensitivity are desired 

[153,158,159,161]. 
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CHAPTER 

4 
EXPERIMENTAL SETUP AND RESULTS 

4.1 Test Setup 

A MEMS test structure was designed and microfabricated in order to test the predictions 

made in Chapter 3.  This test structure was incorporated into an experiment to measure the gauge 

factor of CNTs.  As seen in Figure 4.1, the test structure consists of a fixed-fixed flexure beam 

and electrodes connected to the base of the flexure.  The outer four sets of electrodes are 

connected to polysilicon piezoresistors while the inner two electrodes are left empty so that 

CNTs may be connected across them.  These central electrodes are spaced 1µm apart.  This 

architecture allows strain to be measured simultaneously and independently with the polysilicon 

and CNT piezoresistors. The center of the flexure has a locating hole where small, known 

weights may be placed, thereby loading the structure and straining the CNTs. 

 

 

Figure 4.1.  CNT parallel resistor network between two electrodes on the test structure. 
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CNTs were deposited onto these test flexures via dielectrophoresis.  A droplet of a 3 µg/mL 

solution of SWCNTs in deionized (DI) water was placed on the middle electrodes of the test 

structure and a 5 MHz, 5V peak-to-peak AC voltage was used to direct the deposition of the 

SWCNTs.  After 5 minutes, the test structure was rinsed with DI water and dried.  The results of 

this deposition process are shown in Figure 4.2. 

 

 

Figure 4.2.  CNT resistor network between two electrodes on the test structure. 

 

A low noise sensor system was connected in order to measure the gauge factor of the CNT 

network.  The noise in the sensor electronics was more than an order of magnitude lower than the 

noise in the CNT sensor itself. The CNT network was incorporated into a DC Wheatstone bridge 

in a quarter bridge configuration.  An instrumentation amplifier was used to boost the signal 

from the bridge, which is nulled with a bias voltage and read by an Analog-to-Digital Converter 

(ADC).   
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4.2 Fabrication of CNT Test Structures 

The CNT test structures were fabricated using standard microfabrication procedures. For 

the microfabrication a Silicon-on-Insulator (SOI) wafer with a 10 µm handle layer, a 500 nm 

insulating layer and a 500 µm handle layer was used. First, a 300 nm layer of SiO2 was grown on 

the SOI wafer by wet oxidation. This layer provides electrical insulation between the wire traces 

and the silicon wafer. Next, polycrystalline silicon was deposited on the SOI wafer by low 

pressure chemical vapor deposition (LPCVD). This polysilicon layer was then patterned into 

piezoresistors that can be used to give an independent measurement of the strain on the test 

structure.  

After the polysilicon piezoresistors were patterned by photolithography and etching, 

aluminum was sputtered onto the SOI wafer. This aluminum layer was then patterned by 

photolithography and etched to create the wire traces that connected the polysilicon 

piezoresistors to the bond pads.  In addition, in the center of each chip, a separate set of traces 

were patterned for the CNT-based piezoresistors.  

After the aluminum traces were patterned, the front side of the silicon wafer was etched 

to define the flexure geometry in the device layer. The device layer was then coated in 

photoresist to protect it during the backside etch. For the backside etch the wafer was mounted to 

a quartz wafer so that once the backside etch was complete the wafer would not fall apart. The 

backside etch was performed using deep reactive ion etching (DRIE), and was used to release the 

flexures in the device layer and separate the chips. Finally, the SOI wafer was released from the 

quartz wafer and diced into individual devices.  

After the test structures had been fabricated, they were taken to the focused ion beam 

(FIB) where a small gap was cut between the wire traces in the center of the flexure. The gap 

was cut using 0.92 nA beam current and a 1.5 µm beam depth with an aluminum setting. This 

small 500nm gap is where the CNT-based piezoresistors are placed during dielectrophoresis. 

  The dielectrophoresis process, as described in the previous section, consists of placing a 

drop of a solution with CNTs suspended in it on the wire traces, then running an alternating 

electrical current through the traces.  This causes the CNTs to align with the electrical field and 

produce CNT suspended across the gap the FIB cut in the electrical traces. Using this method, 

test structures with both CNT-based and polysilicon piezoresistors were fabricated. 
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4.3 Results for Multiple Chirality Experiments 

The change in normalized resistance vs. the change in strain was measured using the test 

structure setup.  The change in strain is used since the exact strain is unknown due to the 

pretension strain imposed on the CNT through its interaction with the SiO2 substrate.  Based on 

molecular mechanics simulations and experimental measurements, this pretension strain is 

estimated to be approximately 0.2 percent for our setup [202,203].  The maximum change in 

strain that could be measured with this test setup was 0.1 percent because of the fracture limit of 

the silicon beams.  Using this test setup, the gauge factors of three different CNT resistor 

networks were measured, as shown in Figure 9.  Each of these resistor networks was produced 

using the same dielectrophoresis process conditions described above. Sample 1 was measured to 

have a gauge factor of 73 ± 9, while samples 2 and 3 were measured to have gauge factors of 82 

± 9 and 70 ± 6, respectively. Overall, the average gauge factor of the three samples was 

calculated to be 75 ± 5.  This result is within experimental error of the predicted value of 78.5 ± 

0.4 that was presented in the last chapter.   

 

Figure 4.3.  Measured change in resistance vs. strain for CNT resistor networks. 
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This result indicates that the theory and models presented in Chapter 3 accurately capture 

the performance of CNT-based piezoresistors. This is important because using the theory and 

models from Chapter 3 it is possible to predict which CNTs will make the best piezoresistive 

sensors. In addition, the verification of the theory and models from Chapter 3 makes it possible 

to analyze and predict the performance of samples with a distribution of CNTs. This is useful in 

cases where pure samples are not available or when determining the effect of a small number of 

impurities in a sample. Therefore, the use of the Monte-Carlo simulations to predict the 

performance of CNT-based piezoresistive sensors can help to determine the sensitivity-limiting 

factors and suggest ways to improve the performance of the sensors. 

4.4 Results for Single Chirality Experiments 

4.4.1 Predicted Results 

In order to further analyze the accuracy and reliability of the theory and models presented 

in Chapter 3, experiments were performed on enriched samples of (6,5) CNTs. (6,5) CNTs were 

chosen because there has been a great amount of success in enriching (6,5) CNT samples from 

bulk samples. (6,5) CNTs are predicted to have a gauge factor of 57, as shown in Figure 4.4. 

 

 

Figure 4.4.  Predicted ΔR/R vs. Strain for (6,5) CNT. 
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4.4.2 CNT Enrichment 

 For this experiment, the (6,5) CNTs were enriched from a solution of SWCNTs 

suspended in water with a sodium cholate surfactant.  The (6,5) CNTs were separated out using 

density gradient ultracentrifugation. Overall, this method produces enriched (6,5) CNT samples 

that are about 85 percent pure. The results of the ultracentrifugation process are shown in Figure 

4.5. 

 

Figure 4.5.  Enrichment of (6,5) CNT sample. 

 

 In order to determine the purity of the enriched (6,5) CNT sample, the absorption of the 

sample was measured over the ultraviolet (UV), visible (vis) and near-inferred (nIR) spectrums. 

From this absorption spectrum it is possible to determine the chiralities of the CNTs in the 

sample as well as the concentration of each type of CNT [204,205]. Based on the absorption 

spectrum, it was determined that the sample contained several other types of CNTs including 

(7,5), (7,6), (9,1), (6,4), (8,3), (8,4), and (9,2) CNTS as shown in Figure 4.6. 
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Figure 4.6.  UV-vis-nIR absorption spectrum for (6,5) enriched CNT Sample. 

 

 From this absorption, the percentage of each type of CNT in the sample was calculated 

by integrating the area under each of the absorption peaks and dividing the area for each type of 

CNT by the total area under the curve. The results of this calculation are presented in Table 4.1 

along with the gauge factor predicted from theory for each of the CNT chiralities. Overall, the 

sample contains 82.6 percent (6,5) CNTs. 

 

Table 4.1: Estimated chiral distribution of enriched sample from absorption spectrum. 
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4.4.3 Measured Gauge Factor of Enriched (6,5) CNT Sample 

Based on the high purity of the sample it might be expected that the CNT-based 

piezoresistors made from the enriched sample of (6,5) CNTs should behave like (6,5) CNTs in 

isolation since the number of (6,5) CNTs in the sample is at least an order of magnitude greater 

than any of the other types of CNTs in the sample. However, as shown in Figure 4.7, the 

measured gauge factor for the enriched (6,5) sample is -22.7 as opposed to the predicted gauge 

factor of 57 for a pure (6,5) sample. This result indicates that even a small number of impurities 

can have a substantial impact on both the sensitivity and sign of the CNT-based piezoresistor.  

 

 

Figure 4.7.  Measured ΔR/R vs. Strain for enriched (6,5) CNT sample. 
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overall resistance of the sample is dominated by the CNTs with the highest current, which are the 

lowest resistance CNTs. In this sample, the lowest initial resistance CNTs are the (7,6), (7,5) and 

(8,4) CNTs. Both the (7,6) and (8,4) CNTs have positive gauge factors and thus increase 

resistance as the sample is strained. However, the (7,5) CNTs have a negative gauge factor and 

thus decrease in resistance when strained. Therefore, the presence of (7,5) CNTs in the sample 

might help to explain the measured negative gauge factor of the sample. 

4.4.4 Monte-Carlo Simulation for Enriched (6,5) CNT Sample 

 In order to determine the overall theoretical effect of the impurities in the enriched (6,5) 

sample a Monte-Carlo simulation was created.  The Monte-Carlo simulation was setup much like 

the Monte-Carlo simulation presented in Chapter 3 for the random assortment of CNTs in a 

parallel resistor network, except that uniform probability distribution across all chiralities of 

CNTs used to select each CNT in the sensor was replaced by the measured probability 

distribution function of the CNT chirality content of the sample. The results of this simulation 

are given in Figure 4.8. 

 

 

Figure 4.8.  ΔR/R vs. Strain predicted from Monte-Carlo simulations of enriched (6,5) CNT sample. 
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 Overall, the predicted results from the Monte-Carlo simulation of the enriched (6,5) CNT 

sample show that the gauge factor of the sample should be negative and the magnitude of the 

gauge factor depends on the initial strain on the sample. Based on the fabrication methods and 

molecular dynamics simulations of CNT interacting with an SiO2 surface it is estimated that the 

initial pretension strain on the CNTs is approximately 0.2 percent.  The results of the Monte 

Carlo simulation with an initial strain offset of 0.2 percent are given in Figure 4.8 along with the 

experimental measurements from the piezoresistors fabricated with the enriched (6,5) CNT 

solution. 

Figure 4.9. Measured results from enriched (6,5) CNT sample overlaid on theoretical prediction 

from Monte-Carlo simulations with 0.2% strain offset. 
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factor for the enriched (6,5) CNT sample as well as its deviation from the theoretical gauge 

factor for a pure (6,5) CNT sample. 

4.4.5 Electrical Breakdown of CNTs in Sensor 

In order to produce sensors with the maximum strain sensitivity it is necessary to 

eliminate the low resistance and low gauge factor CNTs that limit the strain sensitivity of the 

sensor. As was shown in the previous section, a small number of these CNTs can have a large 

effect on the strain sensitivity of the sensor since most of the current in the parallel resistor 

network runs through these CNTs.  This high amount of current causes the lower resistance 

CNTs to heat up much more than the higher resistance CNTs that make up the majority of the 

CNTs in the sample. This Joule heating of the low resistance CNTs can be used to eliminate 

these CNTs through a process known as the electrical breakdown technique [206]. This 

technique takes advantage of the increased reactivity of CNTs at high temperature to create a 

rapid oxidation of the low resistance CNTs in the sample. This process creates a break in the 

CNT structure and eliminates the low resistance CNTs from the sample. The resistances of each 

of the chiralities of CNTs in the enriched (6,5) CNT sample normalized to the resistance of the 

(6,5) CNT are given in Table 4.2. 

From these normalized resistances it is clear that at low strains, the (7,6), (7,5), (8,4) and 

(9,2) CNTs all have resistances that are at least an order of magnitude less than the (6,5) CNTs.  

Therefore, using the electrical breakdown technique it should be possible to eliminate these 

CNTs from the sensor. For large strains some of the CNTs increase in resistance and some of the 

CNTs decrease in resistance, changing the normalization between the (6,5) CNTs and the rest of 

the CNTs in the sample. For example, at 1% strain, the (7,6), (7,5) and (8,4) CNTs are still all an 

order of magnitude lower resistance than the (6,5) CNTs while the (9,2) CNTs are now higher 

resistance than the (6,5) CNTs. In addition, the (9,1) and (8,3) CNTs  now have a resistance that 

is an order of magnitude lower in resistance than the (6,5) CNTs. Therefore, by performing an 

electrical breakdown at both low and high strains it should be possible to eliminate all of the 

CNTs in the sample except for the (6,5) CNTs and the (6,4) CNTs. 
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Table 4.2: Resistance normalized to (6,5) CNT resistance for CNTs in enriched CNT sample at 

various strain levels. 

CNT Diameter 

Normalized Resistance for a 

Given Strain 

0% 0.2% 0.3% 1% 

(6,5) 0.76 nm 1 1 1 1 

(7,6) 0.89 nm 0.003 0.003 0.003 0.003 

(7,5) 0.83 nm 0.037 0.027 0.023 0.007 

(9,1) 0.76 nm 1.000 0.444 0.296 0.017 

(8,4) 0.84 nm 0.023 0.030 0.035 0.092 

(6,4) 0.69 nm 36.76 25.69 21.48 6.13 

(9,2) 0.80 nm 0.101 0.169 0.218 1.333 

(8,3) 0.78 nm 0.301 0.162 0.119 0.014 
 

 

  

4.4.6 Results for Electrical Breakdown Experiments 

The electrical breakdown technique was used to eliminate some of the impurities from 

the sensor created from the enriched (6,5) CNT sample. First, electrical breakdown was 

performed on the enriched (6,5) sample with no load applied to the flexure. 17.7 volts was 

applied between the two electrodes in order to cause the electrical breakdown of the (7,6), (7,5), 

(8,4) and (9,2) CNTs and to eliminate them from the sensor.  
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Figure 4.10. Measured results from low-strain electrical breakdown of enriched (6,5) CNT sample 

overlaid on theoretical prediction from Monte-Carlo simulations with 0.2% strain offset. 
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18.1 ± 0.4 for the low strain electrical breakdown sensor to 34  ± 1 for the high strain electrical 

breakdown sensor. 

 The increase in resistance and the change in sign of the gauge factor indicate that most of 

the low resistance and low gauge factor CNTs were removed during the two electrical 

breakdown steps. However, the Monte-Carlo simulations for the (6,5) enriched samples after the 

(7,6), (7,5), (8,4), (9,2), (9,1) and (8,3) CNTs are removed from the probability distribution 

function significantly overestimate the gauge factor of the sensor, as shown in Figure 4.11. This 

indicates that the while the electrical breakdown technique was successful in eliminating most of 

the unwanted CNTs in the sample, it was not capable of completely removing all impurities from 

the sensor.   

 Overall, the results from this section show that the performance of the CNT-based 

piezoresistors created from enriched samples of single chirality CNTs can be significantly 

improved through the use of the electrical breakdown technique.  This makes it possible to 

achieve near-optimal results from enriched samples even if the samples are not initially 100 

percent pure 

 

Figure 4.11. Measured results from high-strain electrical breakdown of enriched (6,5) CNT sample 

overlaid on theoretical prediction from Monte-Carlo simulations with 0.2% strain offset. 
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4.5 Discussion 

CNT-based piezoresistors offer the potential to become versatile, high resolution sensing 

systems.  Existing CNT-based piezoresistive sensor systems are competitive with metal strain 

gauges in terms of performance.  The theory and modeling approach presented here enables the 

prediction of gauge factor in general CNTs.  The theoretical framework presented in Chapters 3 

and 4 suggests that the performance of CNT-based piezoresistive sensor systems could be 

improved by almost an order of magnitude if it becomes possible to accurately sort CNTs by 

chirality [23-26].  This would allow CNT-based piezoresistive sensor systems to overcome many 

limitations presently found in micro- and nanoscale sensor systems. 

However, this work shows that even a small number of low resistance or low gauge factor 

CNTs in the CNT-based sensor system can have a large effect on the performance of the sensor.  

Therefore, it is critical to be able to produce pure enriched samples of single chirality CNTs or to 

be able to remove these unwanted CNTs after the sorting process is finished. As shown in this 

chapter, it is possible to remove many of the unwanted CNTs from the sensor system using the 

electrical breakdown technique. Using this method it is possible to both increase the sensitivity 

of the sensor system and to change the sign of the gauge factor from negative to positive. Using 

similar methods it should be possible to create CNT-based piezoresistive sensor systems with 

gauge factors in excess of 300. In order to accomplish this goal, however, it is necessary to 

improve both the sorting techniques and the electrical breakdown technique in order to ensure 

that only the highest gauge factor CNTs are present in the sensor system. 

The theoretical framework presented in Chapters 3 and 4 could also be extended to other 

types of systems such as graphene sheets and nanoribbons. The theoretical framework, which is 

based on tight binding calculations for strained graphene sheets, suggests that graphene sheets 

and nanoribbons could be used to produce high gauge factor strain sensors.  The primary 

difference in the theoretical analysis of carbon nanotubes and graphene sheets is that the band 

gap created by the curvature of the graphene sheet must be accounted for in the analysis of 

carbon nanotubes where as curvature does not have to be accounted for in the analysis of 

graphene sheets and nanoribbons.  Also, in order to properly analyze the effects of strain on the 

electronic structure of graphene sheets and nanoribbons, the Born-Von Karman boundary 

condition around the circumference of the carbon nanotube would need to be replaced by a 
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particle in a particle-in-a-box-like boundary condition.  Both of these changes to the theoretical 

framework could have a major impact on the sensitivity of the strain sensing element.  Therefore, 

more work needs to be done in this area to determine the ultimate viability of graphene sheets 

and nano-ribbons as high quality strain sensors. 
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CHAPTER 

5 
CNT INTEGRATION AND NOISE 

5.1 Sources of Performance Limitations 

5.1.1 Flicker Noise 

Carbon nanotube-based piezoresistive strain sensors have the potential to outperform 

many traditional MEMS force and displacement sensors due to their high strain sensitivity [1]. 

However, CNT-based sensors typically suffer from large amounts of flicker noise which limits 

the resolution of these sensors [77]. Flicker noise is believed to be caused by the capture and 

release of charge carriers in localized trap states in the CNT [188].  The flicker noise in a CNT is 

given by Equation (5.1), where α is the Hooge constant, Vs is the source voltage, f is the 

frequency, and N is the number of charge carriers in the resistor. 
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Overall, the Hooge constant for CNT-based sensors has been measured to be similar to 

other semiconducting materials such as polysilicon [79]. However, as sensor systems are scaled 

down to the nanoscale, the number of charge carriers is reduced and flicker noise increases.  

Therefore, due to the small number of charge carriers in the CNT-based devices, the noise in 

these devices tends to be dominated by flicker noise.  

In general, the amount of noise in the CNT sensor scales with the resistance of the sensor 

[77]. However, the total amount of noise in the in the CNT-based sensor system is highly 

dependent on a number of sources related to the design of the sensor system and the conditions 

under which the sensor is manufactured and tested. For example, the amount of flicker noise in 
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the sensor is higher when the sensor is exposed to the environment compared to when it is tested 

in a vacuum [207]. This indicates that molecules that are absorbed onto the surface of the CNT 

can act as extra scattering sites and significantly increase the noise in the sensor [208]. Similarly, 

the gate voltage used during testing can have a significant effect on the sensor noise by altering 

the number of charge carriers in device [209,210]. Even the surface on which the CNTs are 

deposited can have a significant effect on the noise in the sensor since the motion of charged 

defects in the dielectric surface or at the dielectric/CNT interface can result in increased noise in 

the CNT [211].   For example, it has been shown that CNTs on a SiO2 substrate have 10-20 times 

greater flicker noise than suspended CNTs [212,213]. 

In addition, the type of CNTs in the sensor can have a significant effect on the sensor 

noise. For example, metallic CNTs have been shown to have up to two orders of magnitude less 

flicker noise than semiconducting CNTs [214]. Also, if the CNTs are longer than the ballistic 

conduction length, the length of the CNT can also affect the amount of noise in the sensor 

[82,209,210]. Finally, the temperature at which the CNT-based sensors are tested can have a 

significant effect on the flicker noise. For example, samples tested at room temperature can have 

up to three orders of magnitude greater noise power than samples tested at 8° K [215].  It is 

thought that this decrease in noise power can be attributed to reduced noise in the contact 

between the electrode and the CNT [216]. 

In general, sensors based on CNT network films tend to have higher 1/f noise than single 

CNTs, due to the noise from tube-tube junctions [217]. Therefore, the percolation process is the 

primary physical mechanism influencing the noise level in a CNT film and percolation theory 

can be used to describe the noise in these films [218]. This means that the noise in CNT films is 

sensitive to the disorder of the film and the quality of the film [219,220]. For example, it has 

been shown that the signal-to-noise ratio of CNT network films can be increased by up to two 

orders of magnitude by improving the alignment of the CNTs within the film [221]. In addition, 

it has been shown that flicker noise in CNT films scales inversely with the device size for a given 

resistance [78].  

In order to reduce the amount of flicker noise in CNT-based sensors and transistors, 

several noise mitigation techniques have been investigated. For example, one of the major 

sources of flicker noise in CNT sensors is the adsorption and desorption of gas molecules on the 

surface of the CNT [222].  This adsorption and desorption of gas molecules changes the number 



 123 

of mobile carriers in the carbon nanotube, which leads to a change in electron mobility, resulting  

in increased flicker noise. This source of flicker noise can be reduced in CNT-based sensors and 

transistors by encapsulating the CNTs in a ceramic coating in order to protect the CNTs from the 

outside environment. For example, it has been shown that encapsulating CNTs in 100 nm of 

atomic-layer-deposited aluminum oxide can increase device stability and decrease noise by 

almost an order of magnitude [223]. Similar results have been demonstrated for top-gated 

transistors where the ceramic encapsulation layer is used as the gate dielectric and passivation 

layer [224,225].  

In addition to adding an encapsulation layer, annealing has also been used to reduce noise 

in the sensors. Annealing improves both the inter-tube coupling and the CNT-electrode coupling.  

These improvements can lead to an order of magnitude decrease in flicker noise in CNT-based 

sensors [226,227]. Similarly, increasing the number of CNTs in the sensor has been shown to 

reduce the noise power, since the noise power scales with the number of carriers, which is 

proportional to the number of CNTs in the sensor [76]. Finally, the amount of flicker noise in a 

CNT-based sensor is also a function of the gate bias voltage [228]. As the gate bias is increased, 

the flicker noise tends to decrease, since more charge carriers are injected into the device. 

However, the gauge factor of the CNT-based piezoresistor decreases as the gate bias voltage 

increases due to the decrease in the piezoresistive effect. Therefore, the signal-to-noise ratio of 

such sensors tends to be maximized when the device is in the off-state [229]. 

5.1.2 Contact Resistance 

The contact resistance of the carbon nanotubes to the electrodes can have a large effect 

on the resolution of the sensor system.  This is because the contact resistance tends to remain 

approximately constant as the CNT is strained. Therefore, a high contact resistance can 

significantly reduce the sensitivity of the sensor system. Contact between the electrodes and the 

CNTs can either be Schottky or ohmic, depending on the contact metal and the processing 

conditions [230].  For example, thermal annealing can be used to create ohmic contacts and to 

decrease the contact resistance between the CNT and the electrode by up to three orders of 

magnitude [231]. In general, ohmic contact is preferred to Schottky contact in CNT-based 

piezoresistive strain sensors because the current in ohmic contacts is linear with voltage and 

ohmic contacts tend to have lower contact resistances due to the lack of a Schottky barrier.  The 
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Schottky barrier is a potential barrier between the CNT and the electrode, which prevents free 

flow of electrons between the CNT and the electrode due to potential energy differences between 

them.  The height of the Schottky barrier is set by the difference between the work functions of 

the CNT and the electrode as well as the diameter of the CNT [232]. 

Overall, the contact resistance is a function of the difference in work functions between 

the metal electrodes and the CNT as well as the wettability of the electrode [233].  The quantum 

coupling between the CNT and the metal electrode depends on the contact area, CNT diameter, 

CNT chirality, and whether the CNT is side or end contacted [234,235]. In addition, coupling 

between the d-orbitals in the metal and the π-orbital in the CNT plays an important role in 

determining both the cohesive and the electronic interactions at the contacts [177].  Therefore, 

metals with good quantum coupling to CNTs, good wettability and work functions similar to 

CNTs such as titanium tend to produce the best contacts. 

5.2 Noise Measurement 

In order to measure the noise in the CNT-based piezoresistors, a precision bridge circuit 

was set up.  The bridge circuit consists of (1) a precision voltage reference, (2) a Wheatstone 

bridge and (3) an instrumentation amplifier. The voltage reference in the bridge circuit is used to 

convert the noisy supply voltage from the power supply into a low noise input reference for the 

Wheatstone bridge.  The Wheatstone bridge is set up in a quarter bridge configuration with the 

CNT-based piezoresistor acting as the active element and three metal film resistors used to 

complete the bridge. The instrumentation amplifier is used to scale the output signal of the 

Wheatstone bridge so that the signal can be read accurately by an analog-to-digital converter 

(ADC). Both the electronics and the Wheatstone bridge are placed in metal boxes in order to 

shield them from electromagnetic interference, as shown in Figure 5.1. Overall, this bridge 

circuit design results in less than 2 µV of noise in the electronics. This is much lower than the 

noise in the CNT-based piezoresistors.  Therefore, it is possible to get an accurate measurement 

of the noise in the CNT-based piezoresistive sensor using this experimental setup. 
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Figure 5.1.  Experimental setup consisting of (1) a Wheatstone bridge, (2) a precision bridge circuit 

with a precision voltage reference and instrumentation amplifier, (3) a DC power supply and (4) an 

analog-to-digital converter. 

 

A MEMS test structure was designed and microfabricated in order measure the noise and 

gauge factor of the CNT-based piezoresistors.  The test structure consists of a fixed-fixed flexure 

beam and electrodes connected to the base of the flexure, as seen in Figure 5.2.  The outer four 

sets of electrodes are connected to polysilicon piezoresistors while the inner two electrodes are 

left empty so that CNTs may be connected across them.  These central electrodes are spaced 1µm 

apart.  This architecture enables independent measurement of strain with both the polysilicon and 

CNT-based piezoresistors. The center of the flexure has a locating hole where small, known 

weights may be placed, thereby loading the structure and straining the CNTs.  
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Figure 5.2.  Test Structure with SWCNTs connected between the two central electrodes. 

 

CNTs are deposited onto these test flexures via dielectrophoresis.  In the typical 

deposition process used for these tests, a droplet of a 3 µg/mL solution of SWCNTs in deionized 

water was placed on the middle electrodes of the test structure and a 5 MHz, 5V peak-to-peak 

AC voltage was used to direct the deposition of the SWCNTs.  After 5 minutes, the test structure 

was rinsed with DI water and dried.  The results of this deposition process are shown in Figure 

5.2. 

5.3 Noise Mitigation Techniques and Results 

5.3.1 Increasing Number of CNTs 

Several different design and fabrication methods were investigated in order to determine 

their effects on flicker noise in the CNT-based piezoresistive sensor. First, the effect of the 

number of CNTs in the sensor system was investigated. In order to increase the number of CNTs 

in the sensor, the deposition time in the dielectrophoresis process was increased from 5 minutes 

to 10 minutes.  This should approximately double the number of CNTs in the sensor. As can be 

seen in Figure 5.3, this change in the manufacturing process resulted in a two-fold decrease in 
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the flicker noise in the sensor. This result is consistent with Equation (5.1), where the noise 

power is inversely proportional to the number of charge carriers. Increasing the number of CNTs 

in the sensor system should increase the number of charge carriers in the sensor since the number 

of CNTs is directly related number of carriers. Therefore, doubling the number of CNTs in the 

sensor should reduce the power spectral density by a factor of two and result in lower flicker 

noise.  

 

 

Figure 5.3.  Power spectral densities of CNT-based piezoresistive sensors with dielectrophoresis 

deposition times of 5 and 10 minutes. 

 

5.3.2 Coating CNTs 

In addition to increasing the number of CNTs in the sensor system, several other 

manufacturing methods were investigated to reduce the flicker noise in the CNT-based 

piezoresistive sensor system.  First, electron beam evaporation was used to coat the devices in 

500 nm of aluminum oxide in order to isolate the CNTs from the outside environment.  This 
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aluminum oxide coating helps to prevent molecules in the air from absorbing onto the surface of 

the CNT where they can become additional scattering sources and increase the noise in the CNT-

based sensor. After the CNTs are coated in aluminum oxide, the samples are annealed at 500° C 

for 30 minutes.  This annealing process helps both to reduce the contact resistance between the 

CNTs and aluminum electrodes and to remove some of the adsorbates from the surface of the 

CNTs. The effect of coating the CNTs in aluminum oxide and annealing the devices on the noise 

in the sensor is shown in Figure 5.4. 

 

 

Figure 5.4. Power spectral densities of as deposited, Al3O2 and annealed CNT-based piezoresistive 

sensors. 

 

 By coating the CNT-based piezoresistors in a layer of aluminum oxide and annealing 

them it is possible to reduce the total noise in the sensors by almost two orders of magnitude, as 

shown in Table 5.1. This reduction in noise also results in a significant improvement in the 

dynamic range of the CNT-based piezoresistive sensors. For example, coating the CNTs in 

aluminum oxide increased the dynamic range by 14 dB, while annealing the samples increased 

As Deposited
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the dynamic range by another 15 dB. Overall, this demonstrates that through the use of proper 

design and manufacturing procedures, the resolution of CNT-based piezoresistive sensors can be 

significantly improved. 

 

Table 5.1: Measured noise and dynamic range for CNT-based sensors produced under various 

processing conditions. 

 
 

5.3.3 Annealing CNTs 

In order to determine the optimal annealing conditions for the CNT-based piezoresistive 

sensors, a simple design-of-experiments (DOE) was set up to test the effects of annealing time 

and temperature on the noise in the sensor. A full factorial DOE was used with four temperature 

levels between 475 °C and 550 °C and time intervals of 30 minutes and 1 hour. Initially, as the 

time and temperature were increased the flicker noise in the sensors decreased, as seen in Table 

5.2. This decrease in noise is likely due to improved CNT-electrode contacts and removal of 

adsorbed molecules. However, at high temperatures and long annealing times the flicker noise 

started to increase due to the degradation of the CNTs in the sensors. Overall, the optimal 

annealing conditions for the CNT-based piezoresistor in this test were determined to be an 

annealing temperature of 525 °C and an annealing time of 30 minutes. Using these processing 

conditions it is possible to reduce the flicker noise in the sensors by a factor of 229 over as 

deposited samples. 

 

 

 

 

Total 

Noise (µV)

α/N Dynamic 

Range (dB)

As Deposited 1000 8x10-9 50

Coated 200 3x10-10 64

Annealed 36 1x10-11 79
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Table 5.2: Measured noise as a function of annealing time and temperature. 

 
 

 By using the optimal annealing conditions it is possible to start to hit the Johnson noise 

limit for these sensors, as shown in Figure 5.5.  

 

-  

Figure 5.5.  Power spectral densities of CNR-based sensor annealed at 525 °C. 

 

The crossover frequency between the measured flicker noise and the Johnson noise limit 

predicted from theory is approximately 7 Hz. This indicates that for measurements that take less 

Temp

Time 
475 °C 500 °C 525 °C 550 °C

30 Minutes 370 µV 190 µV 4.37 µV 49.7 µV

60 Minutes 150 µV 34.3µV 44.9 µV 99.5 µV

Johnson 

Noise Limit

Flicker 

Noise Fit
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that 1/10th of a second, flicker noise is negligible and the Johnson noise becomes the dominant 

noise source. However, for longer experiments, flicker noise is still the dominant noise source. 

5.4 Methods to Reduce Contact Resistance 

5.4.1 Effect of Electrode Material 

The selection of the electrode material can have a significant impact on both the 

magnitude and the type of contact resistance.  For example, electrode materials with low work 

functions can sometimes produce Schottky-type contact resistances.  This type of contact 

resistance is undesirable because it is nonlinear and can reduce the sensitivity of the sensor 

system. In addition, oxidation of the electrode material can increase the contact resistance and 

result in Schottky-type contact barriers.  

For this study, aluminum, titanium and platinum contacts were tested.  Both the titanium 

and platinum electrodes generally resulted in low resistance, ohmic contacts.  However, the 

aluminum contacts sometimes resulted in Schottky-type resistors.  This is because aluminum has 

a low work function and oxidizes easily. In order to overcome these limitations, the aluminum 

contacts were typically coated in platinum and annealed to produce low resistance ohmic 

contacts. 

5.4.2 Platinum Coating 

The platinum coating of the aluminum electrodes was performed using the gas injection 

system in the focused ion beam (FIB).  In this process, the platinum organometallic gas is 

injected into the FIB vacuum chamber where it is chemisorbed onto the surface of the device. 

When the desired deposition area is scanned with the ion beam, the precursor gas is decomposed 

into volatile and non-volatile components.  The non-volatile component of the gas, such as the 

platinum, remains on the surface while the volatile reactants are released back into the vacuum 

chamber. Through this process it is possible to coat both the CNTs and the aluminum electrode 

with platinum.  This helps to improve the contact resistance by increasing the work function of 

the electrode, increasing the contact area between the CNT and the electrode, and by preventing 

oxidation of the contact area. 



 132 

5.4.3 Annealing 

After the platinum deposition, the aluminum contacts with the CNTs attached to them are 

typically annealed in order to reduce the contact resistance and improve the linearity of the 

contact.  Annealing can be used to remove surface contaminants such as water molecules that 

can adhere to the electrode surface.  In addition, annealing can create a composite structure 

between the electrode and the CNT which can significantly decrease the contact resistance and 

create an ohmic contact between the electrode and the CNT. A typical current-voltage curve for a 

CNT with the aluminum electrode after platinum deposition and annealing is shown in Figure 

5.6. From this curve, it is clear that good ohmic contact has been achieved between the CNT and 

the aluminum electrode due to the linearity of the curve. 

 

 

Figure 5.6.  I-V Curve for CNT-based sensor showing ohmic contact. 
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5.5 Conclusions about Best Practices 

5.5.1 Design and Manufacturing 

This study found that in order to minimize the amount of noise in the CNT-based 

piezoresistive sensors, five basic rules should be followed. 

1. Always maximize the size of the CNT-based piezoresistor. 

2. Maximize the number of CNTs in the piezoresistive sensor. 

3. Coat the sample CNT-electrode interface in platinum to minimize contact resistance. 

4. Use ceramic coating to protect the CNT-based piezoresistor. 

5. Anneal the CNT-based piezoresistive sensor at 525 °C for 30 minutes to reduce noise 

and improve contact resistance. 

Through the use of these simple design and manufacturing rules of thumb it is possible to reduce 

the noise in the CNT-based piezoresistive sensors by almost three orders of magnitude. 

5.5.2 Materials Selection 

In general, in order to ensure low contact resistance and ohmic contact between the CNTs 

and the electrodes, electrode materials should be selected that have high work functions and that 

do not oxidize.  However, these considerations must be weighed against fabrication 

considerations. For example, gold and palladium both have high work functions and do not 

oxidize easily. However, these materials tend to delaminate from the device structure and can 

contaminate microfabrication equipment.  Alternatively, aluminum is easy to pattern and etch 

and does not create contamination issues. However, aluminum suffers from a low work function 

and it rapidly forms a surface oxide. Therefore, for much of this project aluminum as selected as 

the electrodes material but at the electrode-CNT interface platinum was added to ensure good 

ohmic contact. 

5.6 Comparison to Conventional MEMS Piezoresistors 

Overall, through the use of theory and experimentation this project has been able to 

increase the performance of CNT based piezoresistive sensors by more than three orders of 

magnitude over previous results [1]. These improvements make CNT-based piezoresistive 

sensors very competitive with more conventional MEMS piezoresistors such as metal, silicon 
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and polysilicon, as shown in Figure 5.7.  However, more work still needs to be done on the 

sorting of CNTs in order to reach the theoretical maximum performance characteristics of CNT-

based piezoresistive sensors. 

 

Figure 5.7.  Performance of various piezoresistive materials. 

 

As can be seen in Figure 5.7, for flexures on the scale of the flexures in the force sensor 

case study, current CNT-based piezoresistors outperform metal gauges for signal frequencies 

greater than 10 Hz.  In addition, CNT-based piezoresistors perform about as well as optimized 

designs for polysilicon piezoresistors.  Silicon based piezoresistors would outperform CNTs in a 

single axis device but are not capable of high performance on multi-axis devices due to the 

crystallographic orientation-dependent gauge factor of single crystal silicon.  For smaller 

devices, the performance of CNT-based piezoresistors will continue to improve in comparison 

with silicon and polysilicon due to the scaling laws presented in Chapter 1.  On the other hand, 

for larger devices polysilicon and silicon based piezoresistors are probably the best material 

selections.  For slow measurements, metal gauges become a feasible option.   
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Based on this analysis, CNT-based piezoresistors are currently the best material for the 

force sensor case study. In addition, they have the potential to significantly increase in 

performance as chirality sorting technology improves. 
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CHAPTER 

6 
CASE STUDY 

6.1 3-Axis Force Sensor 

6.1.1 Introduction 

Multi-axis force sensing is required in biology, materials science and nanomanufacturing.  

Unfortunately, few fine-resolution, multi-axis MEMS force sensors exist because their creation 

involves substantial design and manufacturing challenges.  In this chapter, the design, 

fabrication, and calibration of a multi-axis force sensor with integrated CNT-based piezoresistive 

sensors is presented as a case study for the development of such a sensor.  

The focus of this case study is the design and fabrication of a 3-axis force sensor to 

measure the adhesion forces between an array of cells and a surface.  This is important in the 

development of biomedical implants, for example, because it will allow researchers to determine 

the suitability of different types of materials in both areas where cell growth is desired and in 

areas where there should be no cell growth. Currently, this type of determination is done by 

looking at the cells in a microscope and seeing whether they tend to spread out on the surface or 

ball up [3,236]. However, this type of measurement is inaccurate and better measurement 

techniques are needed in order to optimize materials selection for biomedical implants. The 

development of the 3-axis force sensor described in this chapter will enable researchers to 

measure the adhesion of arrays of cells to surfaces more precisely and, therefore,  to select the 

optimal materials for biomedical implants. The design and fabrication techniques presented in 

this case study build upon the theoretical and experimental results presented in Chapters 2-5 of 

this thesis. 

MEMS force sensors tend to rely on one of three sensing methods: capacitive sensing, 

optical laser detection, and piezoresistive sensing. Several multi-axis force sensors have been 
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developed using capacitive sensors [163,164]. These sensors are difficult to fabricate and require 

relatively large sensor areas (mm2) for each axis in order to achieve high force resolution.  This 

makes capacitive sensing impractical for small, inexpensive, multi-axis force sensors. 

  Optical sensors are widely used in atomic force microscopy (AFM) to make high 

resolution force measurements in one axis. Optical sensors are rarely used in applications of 

interest due to the difficulty and cost of integrating multiple sets of optics into a small region.  

Also, optical sensors require relatively large lasers which make it impossible to miniaturize the 

force sensing system to the micro-scale.  

Piezoresistive sensors offer the most promise at the micro-scale due to their small size 

and relative ease of integration into MEMS devices.  Piezoresistive transducers are commonly 

found in MEMS devices such as pressure sensors, accelerometers, and AFM cantilevers [237].  

Several dual-axis MEMS cantilevers with nN-level resolution have previously been 

demonstrated [173,175]. The modeling and design work in this case study will focus on 

piezoresistive sensing techniques. 

6.1.2 Need and Description 

The multi-axis force sensor presented in this chapter is designed to fit on top of the 

standard Hexflex architecture. The HexFlex is designed so that bond pads on the center stage of 

the HexFlex connect to the bond pads on the force sensor. The force sensor is held in place by a 

steel plate and a magnetic preload.  In addition, rectangular magnets are placed on the tabs 

connected to the center stage of the HexFlex. These magnets are used in combination with a set 

of six Lorenz coils to actuate the center stage of the HexFlex.  An exploded view of this setup is 

presented in Figure 6.1. 

In this setup, the HexFlex nanopositioner is used to precisely move the multi-axis force 

sensor. The precise, six degree-of-freedom motion of the HexFlex is necessary to properly 

position the force sensor into place and align the center stage of the force sensor with the surface 

of the cells.  The HexFlex can then be used to lower the force sensor stage into contact with the 

cells and to make sure even pressure is applied over the entire cell array. After the cells bond to 

the center stage of the force sensor, the HexFlex can be used to slowly retract the force sensor 

from the surface to which the cells are adhered. Using feedback from the force sensor, the 

HexFlex can be used to compensate for any torques that might be applied to the cells during this 
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retraction phase and to ensure that only the direct force normal to the cell surface is being 

measured. Overall, this setup and procedure should make it possible to accurately and precisely 

quantify the adhesion forces between cells and different types of surfaces. 

 

 

Figure 6.1.  Exploded view of Hexflex-force sensor assembly. 

 

6.1.3 Design of a Three-Axis Force Sensor 

Multi-axis, precision force sensing is needed to measure adhesion forces between cells 

and various material surfaces. For example, these measurements enable one to know (i) how well 

cells bond to different types of biomedical implant materials and (ii) the effects that drug 

coatings have on the prevention/promotion of adhesion. This type of measurement is necessary 

where the mechanical properties of the cell-implant interface are critical [3]. 

6.1.3.1 Functional Requirements 

Accurate measurement of cell adhesion forces between surfaces requires multi-axis 

sensing to make sure that the surfaces are suitably positioned and oriented, thereby ensuring that 

load is applied evenly over the surfaces during testing. Cellular adhesion forces are typically on 

the scale of nN [238]. When thousands of cells are arrayed on the surface being tested, the 

adhesion force is on the order of 100’s of µN.  Therefore, to be useful, the force sensor must 
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have 100’s of µN range, nN resolution. The natural frequency of the force sensor was set to 1 

kHz in order to ensure that it was capable of operating at least 1 order of magnitude faster than 

the HexFlex, which has a natural frequency of ~100 Hz. This ensures that the force sensor can be 

used in feedback mode with the HexFlex, even when the HexFlex is operating at its maximum 

speed. In addition, in order to ensure that the force sensor is applying an uniform force over the 

entire cell array, the force sensor must be capable of measuring forces in a direction parallel to 

the normal to the plane of contact (Z) and torques about axes that are parallel to the planes of 

contact, (θx, θy). Also, the force sensor must fit on the central stage of the Hexflex and the force 

sensor must be low cost (<$100) so that it can be replaced after each test. 

 

Table 6.1: Force Sensor Functional Requirements. 

Functional Requirement Value 
Measurement Axis Z, θx, θy 

Range 100’s of µN 
Resolution ~ 1 nN 

Natural Frequency 1 kHz 

Cost < $100 
Footprint < 1 mm2 

 

 

6.1.3.2 Polysilicon Piezoresistor Force Sensor Design 

The noise model presented in Chapter 2 was used to design both a polysilicon 

piezoresistive sensor and a CNT-based piezoresistive sensor 3-axis force sensor that are intended 

to satisfy functional requirements for measuring cell adhesion forces.  These force sensors are 

designed to fit on top of a HexFlex nanopositioner system [5].  This makes it possible for the 

force sensor to be accurately positioned and oriented while minimizing the cost of the total 

system.  Figure 6.2 shows the polysilicon-based piezoresistive force sensor, which is comprised 

of three coplanar flexures with integrated piezoresistors at the base of the flexures.  The 

piezoresistors are in a half bridge arrangement.  A full Wheatstone bridge was not used due to 

fabrication and thermal heating constraints.  The piezoresistors are n-doped polycrystalline 

silicon deposited by chemical vapor deposition and are connected to aluminum contact pads on 
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the outer base of the force sensor via aluminum traces.  The sensors are placed at the base of the 

structure to maximize the strain imposed upon the resistors. 

 

 

Figure 6.2.  3-axis force sensor with polysilicon piezoresistors. 

 

The flexures in the force sensor are fabricated using deep reactive ion etching (DRIE) of 

a silicon-on-insulator (SOI) wafer.  The flexures are connected to a 1 mm diameter central stage 

which is meant to contact the cells during testing. The flexures’ lengths are limited to 2.5 mm 

due to device footprint constraints. The flexures’ widths and thicknesses are set to meet both the 

range and resolution functional requirements using the noise flow model.  A 70 µm beam width 

and 10 µm beam thickness were chosen.  

6.1.3.3 CNT-Based Piezoresistive Force Sensor Design 

The design of the CNT-based piezoresistive force sensor was based on the design of the 

multi-axis force sensor with polysilicon piezoresistors presented in the previous section. Several 

small design changes were incorporated in the CNT-based piezoresistive force sensor in order to 

account for the differences between the polysilicon and the CNT-based piezoresistors. For 

example, the half-bridge in the polysilicon-based piezoresistor design was replaced by a quarter-
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bridge in the CNT-based piezoresistor design due to concerns about the uniformity in resistance 

between CNT-based piezoresistive sensors.  The uniformity in resistance is important because if 

the two resistors in the half-bridge do not have the same resistance, it is difficult to balance the 

bridge and make a good measurement. By replacing the half bridge with a quarter-bridge, the 

sensitivity of the sensor system was reduced by a factor of two. Therefore, the width of the 

flexure beam was reduced by a factor of two in order cut the stiffness in half and to maintain the 

same resolution between the two sensors when the same resistors are used. A schematic of the 

CNT-based piezoresistive force sensor is given in Figure 6.3. 

 

Figure 6.3.  3-axis force sensor with CNT-based piezoresistors. 

 

The final flexure dimensions of the force sensor are a beam length of 2.5 mm, a beam 

width of 35 µm and a beam thickness of 10 µm. Based on this design it was estimated that the 

CNT-based piezoresistive force sensor should have a force resolution of approximately 100 µN 

and a resolution of approximately 7 nN. This works out to a dynamic range of 83 dB. In addition, 

the estimated natural frequency was approximately 1000 Hz. These design properties are 

presented in Table 6.2: CNT-Based Force Sensor Design.Table 6.2. 
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Table 6.2: CNT-Based Force Sensor Design. 

 

6.1.3.4 HexFlex Motion Stage 

The HexFlex consists of (1) six bent beams with integrated piezoresistive sensors, (2) 

three sets of magnets, and (3) a flex circuit with mm-scale coils.  The bent beams enable the 

stage to move in 6 DOF and the piezoresistors enable six-axis displacement sensing.  The magnet 

arrays and flex circuit are used to create six Lorentz force actuators that control the motion of the 

nanopositioner. The force sensor is placed onto the central stage of the HexFlex. The bond pads 

on the force sensor are aligned to pads on the HexFlex so that the signal from the piezoresistors 

in the force sensor may be ported out of the sensor. 

Figure 6.4.  HexFlex with polysilicon piezoresistive sensors. 

 

Property Value

Beam Length 2.5 mm

Beam Width 35 µm

Beam Thickness 10µm

Max Force 100 µN

Natural Frequency 1000 Hz

Dynamic Range 83 dB
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 The mesoscale HexFlex has been traditionally fabricated using standard microfabrication 

procedures. First a thermal oxide insulation layer is grown on a 400 µm thick silicon wafer. 

Then, low pressure chemical vapor deposition is used to deposit doped polysilicon onto the 

wafer. Next, the polysilicon layer is patterned into piezoresistors using photolithography and 

etching. After the piezoresistors are fabricated a layer of aluminum is deposited onto the wafer. 

This aluminum layer is patterned into wire traces using photolithography and etching. These wire 

traces connect the polysilicon piezoresistors to bond pads so that the read out of the 

piezoresistive sensors can be made. Next, the physical structure of the Hexflex is created by 

mounting the wafer to a quartz handle wafer and using deep reactive ion etching (DRIE) to etch 

through the entire wafer. Finally, the Hexflex devices are released from the quartz handle wafer 

using an acetone bath [239]. 

 Overall, this procedure produces HexFlex devices that have a range of about 20 µm and a 

resolution of 20 nm in each axis.  However, this fabrication process can take months to complete 

and costs $10’s of thousands of dollars per batch. In addition, the yield on this fabrication 

technique is extremely low due to the brittleness of the silicon. Therefore, the cost per HexFlex 

device can be as high as several thousand dollars. In order to improve the yield and lower the 

cost of the mesoscale HexFlex, micromilling has been used to fabricate several HexFlex devices. 

These HexFlex devices have the same dimensions as the microfabricated HexFlex devices but 

are not brittle and take only a few minutes to fabricate. The main drawback of the micromilled 

HexFlex devices is the lack of piezoresistive sensing elements integrated into the structure. In 

chapter 7, I will present some preliminary research showing how CNT-based piezoresistive 

sensors may be incorporated into micromilled structures. 

In this project, a Microlution 363-S 3-axis horizontal micro-milling machine was used to 

fabricate several HexFlex devices out of Aluminum 6061-T6 sheet stock and Aluminum 1100 

shim stock. Pictures of the machined HexFlexes are shown in Figure 6.5. 
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Figure 6.5.  (clockwise from top) Al 1100 HexFlex being machined in the micromill, Al 1100 

HexFlex, Al 6061-T6 HexFlex. 

 

Unlike conventional end-mills, this milling device has no vise to quickly secure parts and 

no edge-finding/zeroing process to specify a zero with respect to a desired datum surface on the 

workpiece. For this research, a sacrificial fixture was developed specifically for HexFlex 

fabrication that screws onto the micromill pallet via four 10-32 socket-head cap screws. The 

fixture is machined out of 6061-T6 Aluminum and has four 4-40 threaded holes lining the 

periphery that secure the piece of raw stock to the fixture. Double-sided adhesive is placed in 

between the stock and the sacrificial fixture to provide viscous damping. FEA simulations 

determined that the HexFlex’s first 3 modes of vibration are around 400 Hz. As micromilling 

necessitates spindle speeds between 10,000 RPM and 50,000 RPM (166 Hz – 833 Hz), 

unrestrained vibration is a potential concern. The adhesive also serves to minimize large-scale 
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deflection of the thin (200 µm) flexural blades against normal cutting forces. The separate 

components and the entire pallet-fixture-stock assembly are shown in Figure 6.6. 

 

Figure 6.6.  Hardware setup for micromilling HexFlex nanopositioners. 

 

Toolpaths were generated and post-processed using HSMWorks, a CAM package 

developed by Dassault systems. The process consists of five steps: (1) cutting to depth (thickness 

of stock minus desired part thickness) and roughing out the hexagonal shape, (2) roughing out 

the interior pockets, (3&4) finishing the interior contours, and (5) finishing the hexagonal 

contour and separating the finished part from the uncut stock. The post-processed G-code was 

uploaded into the Microlution control panel using the process parameters summarized in Table 

6.3. 

 

Table 6.3: Process parameters for HexFlex machining. 

Step 1 2 3&4 5 

Toolpiece Diameter [mm] 3.175 1.016 0.381 3.175 

Spindle Speed [RPM] 17,000 36,000 50,000 17,000 

Cutting Feed [mm/min] 254 229 127 254 

Axial DOC [mm] 0.30 0.15 0.06 0.30 

Final Depth [mm] -0.553 -0.953 -0.953 -0.953 

Machining Time [min:sec] 13:55 16:58 28:12 3:16 
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6.1.3.5 System Dynamics 

In order to analyze the dynamics of the force sensor system, several finite element 

dynamics simulations were carried out on both the force sensor structure and the force sensor – 

HexFlex assembly. The results for the first resonant mode of the force sensor are given in Figure 

6.7. 

 

 

Figure 6.7.  First resonant mode of force sensor. 

 

In the dynamic simulation of the force sensor the outside structure is grounded and the 

center stage is free to move. The first resonant mode of the force sensor is the vibration of the 

center stage in the z-axis. The natural frequency of this mode is 1269 Hz, which is slightly higher 

than the predicted natural frequency of ~1000 Hz from the lumped element model used in the 

design of the force sensor.  

Dynamic simulations were also performed on the overall Hexflex-force sensor assembly 

in order to determine the natural frequency of the overall structure. The results of this simulation 

are presented in Figure 6.8.  
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Figure 6.8.  First resonant mode of Hexflex - force sensor assembly. 

 

In this simulation, the outer structure of the Hexflex is grounded while the flexures and 

the center stage are free to move and deform. The weights of the magnets, steel plate, and force 

sensor are included in the simulation and are added to the center stage of the Hexflex. Overall, 

the finite element dynamic simulation predicts that the first mode of the HexFlex-force sensor 

assembly is the displacement of the center stage in the z-axis, and that the natural frequency of 

the HexFlex-force sensor assembly is 181 Hz.  Therefore, the natural frequency of the HexFlex 

assembly is approximately equal to the design value of 100 Hz for the Hexflex and is about an 

order of magnitude lower than the natural frequency of the force sensor.  This means that it 

should be possible to operate the HexFlex-force sensor assembly in force feedback mode even 

when the HexFlex is operating near its natural frequency. 

6.1.4 Fabrication 

The MEMS force sensors for this case study were fabricated using conventional 

microfabrication techniques, as described in Table 6.4. The process starts with a 150 mm silicon-

on-insulator (SOI) wafer with a 10 µm device layer, a 500 µm handle layer, and a 1 µm oxide 

layer. First, an RCA clean is used to remove any contaminants from the wafer surface. This is 

important because it ensures that the thermal oxide will be grown properly. After the RCA clean, 
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the wafer is placed in the oxide furnace and 300 nm of thermal oxide is grown on the wafer. Next 

the wafer is placed in the low-pressure chemical vapor deposition (LPCVD) furnace and 500 nm 

of polysilicon is grown on the wafer. This polysilicon is used as the piezoresistive material for 

half of the force sensors on the wafer. The rest of the force sensors are left blank so that CNT-

based piezoresistors can be deposited after the microfabrication process is complete. After the 

polysilicon is deposited it is placed in an annealing furnace to improve the resistivity of the 

polysilicon and to ensure that the dopants are evenly distributed throughout the film. 

After these high temperature processing steps are completed, a protective photoresist 

coating is applied to the front side of the wafer and the back side polysilicon is removed. Next 

photolithography with mask 1 is used to define the pattern of the polysilicon on the wafer and 

reactive ion etching is used to remove the polysilicon from the unwanted areas.  The masks for 

this fabrication process are presented in Appendix B. After the polysilicon piezoresistors are 

defined, the wafer is cleaned using an asher to remove the photoresist and a piranha clean to 

remove any other contaminates, before 500 nm of aluminum is sputtered onto the wafer. Again, 

photolithography mask 2 is used to define the wire traces and bond pads while etching is used to 

remove the excess aluminum from the wafer. 

Next, a protective photoresist is applied to the front side of the wafer so that it is not 

damaged while a buffered oxide etch (BOE) is used to remove the thermal oxide from the back 

side of the wafer. After this step, photolithography with mask 3 is used to define the flexure 

structure on the front side of the wafer. A BOE is used to remove the oxide from the front side of 

the wafer and deep reactive ion etching (DRIE) is used to create the flexures in the handle layer. 

The asher is used to remove excess photoresist from the front side of the wafer. 

Finally, photolithography is used to pattern the back side of the wafer using mask 4. The 

front side of the wafer is then mounted to a quartz handle wafer. This handle wafer acts as both a 

protective layer for the front side as well as a mechanical structure that holds the wafer together 

after the DRIE step.  DRIE is used to etch the back side of the wafer and to release the flexures 

from the handle layer of the SOI wafer. DRIE is also used to etch through the entire wafer in 

order to separate the wafer into devices. After the DRIE step, a vapor hydrofluoric acid (HF) step 

is used to remove the excess oxide from the insulating layer of the SOI wafer and the wafer is 

placed into an acetone bath to separate the chips from the quartz wafer. In the end, a laser 

ablation system is used to separate any chips that may still be attached to each other. 
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Table 6.4: Processing steps for force sensor fabrication. 

Step Lab Machine Description Comment  

1 ICL RCA RCA Clean SOI Wafer 

 

2 ICL Tube 5C Thermally 
grow 300 nm 

oxide 

 

 

3 ICL Tube 6A LPCVD 
deposit 500 
nm Poly-Si 

 

 
4 ICL Tube 5B Anneal Poly-

Si 
 

 
5 ICL Coater6 Protective 

layer 
Photoresist 

protective layer 

 

 
6 ICL LAM490 Poly Dry Etch Remove 500 nm 

Poly-Si on back 

 
7 ICL Asher Ash Remove resist 

 
8 ICL/ 

TRL 
coater6, 

HMDS-TRL, 
EV1, coater6 

Lithography 
(frontside) 

Mask 1, positive, 
DF 

 

 
9 ICL LAM490 Poly Dry Etch Remove 1 µm 

Poly-Si 

 
10 ICL Asher Ash Remove resist 

 
11 ICL Premetal-

Piranha 
Pre-metal 

clean 
 

 
12 ICL Endura Sputter 500 

nm Al 
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13 ICL/ 
TRL 

coater6, 
HMDS-TRL, 
EV1, coater6 

Lithography 
(frontside) 

Mask 2, positive, 
DF 

 
14 ICL Rainbow Etch 500 nm 

Al 
 

 
15 ICL Asher Ash Remove resist 

 
16 ICL/ 

TRL 
coater6, 

HMDS-TRL, 
EV1, coater6 

Lithography 
(frontside) 

Photoresist 
protective layer 

 
17 ICL Oxide-etch BOE Removal of 

backside oxide 

 
18 ICL Asher Ash Remove Resist 

 
19 ICL/ 

TRL 
coater6, 

HMDS-TRL, 
EV1, coater6 

Thick resist 
lithography 
(frontside) 

Mask 3, positive, 
DF 

 
20 ICL Oxide-etch BOE Remove oxide 

 
21 TRL STS1 DRIE 10 µm, through 

device layer. 

 
22 TRL Asher Ash Remove Resist 

 
23 TRL HMDS-TRL, 

coater, 
prebake, EV1, 

postbake 

Thick resist 
lithography 
(backside) 

Mask 4, positive, 
DF 

 
24 TRL coater, 

prebake 
Mount handle 

wafer 
Spin thick PR, 
quartz handle 
wafer mount 
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25 TRL STS1 DRIE 500 µm, through 
handle layer. 

 
26 TRL Acidhood Vapor HF Removal of 

oxide. 

 
27 TRL Photo-wet Acetone 

release 
24h acetone bath 
to release handle 

wafer 
 

28 TRL Asher Ash Remove Resist 

 
29 ICL Resonetics Laser Ablation Separate Chips 

 
 

After the microfabrication is complete, CNT-based piezoresistors are deposited onto the 

blank CNT force sensors using dielectrophoresis. A droplet of a 3 g/L CNT solution is placed on 

the gap between the electrodes on the force sensor structure. A 5V peak-to-peak ac voltage with 

a frequency of 5 MHz is used to align the CNTs between the two electrodes. This deposition 

process is continued for 15 minutes in order to ensure that the maximum number of CNTs are 

deposited on the force sensor structure. After the sensors are deposited by dielectrophersis, they 

are coated in an aluminum oxide protective layer and annealed at 525 °C for 30 minutes as 

described in Chapter 5 in order to minimize the amount of noise in the sensor. The final result of 

this fabrication process is shown in Figure 6.9. 
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Figure 6.9.  Fabricated 3-axis force sensor with CNT-based piezoresistors. 

 

6.2 Testing 

6.2.1 Setup 

Two different setups are used to measure the stiffness of the force sensor and to calibrate 

the force sensor. The stiffness of the force sensor is measured using the Hysitron TriboIndenter. 

The force sensor is mounted in a test setup which allows contact to be made to the piezoresistive 

sensors on the flexural elements. The nanoindenter is used to deflect the center stage of the force 

sensor which is located in a 0.762 cm diameter hole 1 mm below the top surface of the setup, as 

shown in Figure 6.10.  In this test, the nanoindenter is used to indent an array of points on the 

center stage to find the center of stiffness.  The nanoindenter is then used to deflect the stage 

with a known force load at the center of stiffness and measure displacement of the center stage. 

Using this method it is possible to get an accurate measurement of the force sensor stiffness. 
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Figure 6.10.  Force sensor stiffness testing setup with top and side view. 

 

The calibration setup is similar to the stiffness measurement setup except that a 

micrometer is used to actuate the center stage of the force sensor.  The micrometer has a digital 

readout with a resolution of 1 µm. Spring pins are used to connect the bond pads on the force 

sensor to wires that run to the Wheatstone bridge circuit. These spring pins provide a preload to 

the force sensor to hold it in place during testing and ensure that all of the bond pads are in 

contact during testing. A small 1 mm diameter ball is connected to the tip of the micrometer head 

in order to ensure a small contact area and to prevent torques from being transmitted to the center 

stage from the rotation of the micrometer head.  This setup allows the force sensor to be 

calibrated over a much larger range since the micrometer can travel through the full range of the 
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force sensor while the nanoindenter is only capable of displacements of up to 5 µm. A picture of 

this setup is given in Figure 6.11. 

 

 

Figure 6.11.  Force sensor calibration setup. 

 

6.2.2 Calibration Procedure 

The CNT-based force sensor was calibrated using the test setup described in the previous 

section.  First the CNT-based force sensor was placed in the testing setup and fixed into place.  

Then the spring pins were brought into contact with the bond pads on the force sensor and a 

preload was applied using three bolts. Next, the micrometer was brought into contact with the 

center stage of the force sensor and zeroed. Finally, the readout from each of the sensors was 
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amplified though the Wheatstone bridge circuit and read into Labview. The noise in each sensor 

was measured at a measurement frequency of 1000 Hz over a time period of 1000 seconds.  

An initial measurement for all three sensors was taken in Labview, then the micrometer 

was actuated by 1 micron and a new set of measurements was recorded. This process was 

continued for 35 µm or until the force sensor reached about 1/3 of its predicted maximum 

displacement. The output of each sensor was recorded for each 1 micron displacement.  These 

data were then used to create calibration curves for each piezoresistor in the force sensor. 

6.3 Calibration Results 

The calibration results for each sensor are presented in Figure 6.12. Sensor 1 has a 

sensitivity of 0.79 mV per µN, while sensors 2 and 3 have sensitivities of 0.64 mV per µN and 

0.59 mV per µN respectively. Each of these calibration curves explains over 95 percent of the 

variance in voltage with the increase in force applied to the structure. Therefore, these curves are 

an accurate representation of the sensors' response to a force input.  The differences in force 

sensitivities could be due to either the differences in the gauge factors of the sensors or to 

asymmetric loading of the structure by the micrometer. Previous results with the test structures 

have shown that the gauge factor of CNT-based piezoresistive sensors can vary by up to 12 

percent. This explains about half of the variation between the sensors. Asymmetric loading of the 

force sensor by the micrometer could also contribute to the difference in measured sensitivities 

by imposing torques onto the force sensor as well as z-axis displacement.  These torques would 

cause some of the flexure beams to be strained more than others, which would result in the 

higher readouts from these sensors.   

For example, a positive torque around the x-axis would result in an increased strain on 

sensor 1 but a decreased strain on sensors 2 and 3.  Such a torque could be created if the location 

of the actuation was moved in the positive y-direction from the center of stiffness of the force 

sensor. Such an offset could either be created by small fabrication errors that result in the center 

of stiffness not being at the same location as the geometric center or by the actuator not pushing 

directly on the geometric center of the force sensor. Either way, this type of torque about the x-

axis could help explain the remaining discrepancy between the measured sensitivities of each of 

the sensors. 
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Figure 6.12.  Calibration curve for each CNT-based sensor on the force sensor. 

 

In addition to the to the linear calibration curves, each sensor appears to have a sinusoidal 

component. This component is likely due to thermal variations over the testing period. The total 

test took about 20 minutes, which is approximately equal to the thermal period of the room.  

Therefore, we would expect to see about 1 full thermal period in each sensor due to thermal 

variations of the room. 

6.4 Results 

6.4.1 Range 

The total range of the system was measured by increasing the displacement of the 

micrometer head until a sharp change in the sensor readout was observed.  This sharp change 

was caused by the fracture of one of the flexure beams, which caused the readout from the sensor 

on that flexure beam to return to its original value, since the strain on the CNT-based 

piezoresistors decreased to zero.  Overall, the range of the sensor was measured to be about 60 
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microns.  The stiffness of the force sensor measured from the nanoindentation tests was 1.4 N/m. 

therefore the force range of the force sensor was measured to be 84 µN.  

6.4.2 Resolution 

The resolution of each sensor was calculated by dividing the noise in each sensor by the 

sensitivity of each sensor. The measured resolution for sensor 1 was 9.5 nN and it was 11.8 nN 

and 6.7 nN for sensors 2 and 3, respectively. The results for each sensor along with the 

corresponding measured dynamic ranges for each sensor are presented in Table 6.5. 

 

Table 6.5: Results for each piezoresistor in the force sensor. 

 
 

The overall resolution of the force sensor is calculated by taking the weighted sum of 

squares of each of the three sensors in the force sensor structure. Based on this calculation, the 

resolution of the force sensor is approximately 5.6 nN. This corresponds to a dynamic range of 

83 dB and matches the predicted dynamic range for the sensor of 83.2 dB with less than 0.25% 

error.  The accuracy of this prediction indicates that the system optimization method presented in 

Chapter 2 can be used to improve the design of the sensor system. 

6.5 Possible Improvements 

6.5.1 Recommended Changes in Design and Manufacturing 

There are three main improvements that can be made to the force sensor system: (1) 

incorporate higher gauge factor CNTs, (2) increase sensor size, and (3) change the flexural 

material.  In order to incorporate higher gauge factor CNT into the force sensor device it is 

Sensor 1 Sensor 2 Sensor 3

Sensitivity 790 V/N 640 V/N 590 V/N

Noise 7.5 µV 7.5 µV 4 µV

Dynamic 
Range

78.4 dB 76.5 dB 81.3 dB
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necessary to improve our ability to sort CNT by chirality.  If it become feasible to sort out the 

highest gauge factor CNTs, it will be possible to increase the gauge factor of the piezoresistive 

CNT-based sensors from 75 to over 350. 

Increasing the sensor size will help to reduce the noise in the sensor since the CNT-based 

piezoresistive sensors are flicker noise-dominated. By decreasing the thickness of the flexure 

beam by an order of magnitude it should be possible to increase the width of the flexure beam by 

up to 3 orders of magnitude while still maintain the same stiffness and range. This increase in 

sensor area could help reduce the noise in the sensor system by a factor of 30. 

In addition, changing the flexural material could help improve the dynamic range by 

increasing the yield strength or reducing the elastic modulus of the flexure. Single crystal silicon 

is a good flexural material due to its yield strength the elastic modulus ratio. However, silicon 

utility in practice is limited due to its brittleness. Therefore, changing flexural material to a 

metallic glass or 7075 aluminum could significantly increase the dynamic range of the sensor. 

However, in order to achieve this increase in dynamic range it is necessary to develop new 

microfabrication methods for material other than silicon. 

6.5.2 Estimates of Future Device Performance 

Overall, the dynamic range of the force sensor can be improved through redesign of the 

force sensor system to decrease the flexure beam thickness and increase the flexure width as well 

as the incorporation of high gauge factor CNTs into the sensor. Based on these design changes, 

the force sensor optimization presented in Chapter 2 predicts that the dynamic range of the force 

sensor can be increased to 111 dB. Therefore, the sensor could achieve a resolution of about 100 

pN while maintaining the same range as the current CNT-based force sensor. 
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CHAPTER 

7 
CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

Smaller and more sensitive multi-axis micro- and nanoscale sensors need to be developed 

for many biological, materials science, and nanomanufacturing applications. Unfortunately, such 

systems do not yet exist due to the limitations of traditional sensing techniques and fabrication 

procedures. For example, because the resolution of capacitive sensors scales with sensor area, 

high resolution capacitive sensors are generally too large for use in multi-axis micro/nanoscale 

sensor systems. Similarly, interferometry is impractical at the micro/nanoscale due to the 

relatively large optics required. High resolution silicon-based piezoresistive sensors work well in 

mesoscale devices, but become increasingly hard to fabricate in micro- and nanoscale devices 

due to the constraints of photolithography and ion implantation. Carbon nanotube-based (CNT) 

piezoresistive transducers offer the potential to overcome many of these limitations due to their 

high gauge factor and inherent nanoscale size. However, a better understanding of CNT-based 

piezoresistive sensors is needed in order to be able to design and engineer sensor systems that 

can capitalize on this potential.  

The purpose of this research was to take CNT-based strain sensors from the single 

element test structures that have been fabricated and turn them into precision sensor systems that 

can be used in micro/nanoscale force and displacement transducers. In order to achieve this 

purpose and engineer high resolution CNT-based sensor systems, the design and manufacturing 

methods used to create CNT-based piezoresistive sensors were investigated. At the system level, 

a noise model was developed in order to be able to optimize the design of the sensor system. At 

the element level, a link was established between the structure of the CNT and its gauge factor 

using a theoretical model developed from quantum mechanics. This model was confirmed 

experimentally using CNT-based piezoresistive sensors integrated into a microfabricated test 
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structure. At the device level, noise mitigation techniques including annealing and the use of 

protective ceramic coatings were investigated in order to reduce the noise in the sensor. From 

these investigations, best practices for the design and manufacturing of CNT-based piezoresistive 

sensors were established. Using these best practices, it is possible to increase the performance of 

CNT-based piezoresistive sensor systems by more than three orders of magnitude over previous 

results.  

These best practices were also implemented in the design and fabrication of a multi-axis 

force sensor used to measure the adhesion force of an array of cells to the different material’s 

surfaces for the development of biomedical implants. This force sensor is capable of measuring 

forces in the z-axis as well as torques in the θx and θy axis. The range and resolution of the force 

sensor were determined to be 84 µN and 5.6 nN, respectively. This corresponds to a dynamic 

range of 83 dB, which closely matches the dynamic range predicted by the system noise model 

used to design the sensor. The accuracy of the force sensor was measured to be better than 1% 

over the device’s full range. 

7.2 Best Practices for Design and Manufacturing 

Several best practice rules have been created based on the work presented in this thesis. 

First, in the design of MEMS sensor systems it is necessary to take account of all of the possible 

noise sources in the sensor system in order to maximize the performance of the system.  For 

mechanical sensor systems, the correct figure of merit to use when evaluating sensor 

performance is dynamic range. This is because it is often possible to trade range for resolution in 

mechanical sensor systems. Therefore, it is the ratio of the range to the resolution which is 

important in evaluating sensor performance.  Once the effects of each of the noise sources are 

quantified, it is possible to eliminate all but the few largest noise sources. This type of 

simplification makes it possible to set up a constraint based optimization system for the design of 

the sensor, as shown in Chapter 2.  This type of optimization procedure can be used to maximize 

the dynamic range of the sensor while ensuring that other fabrication and design parameters such 

as natural frequency, maximum load, maximum footprint and minimum beam dimensions are 

met. 

In addition to this type of systematic design optimization, the performance of the CNT-

based sensors can be improved through the proper selection of CNT chirality, as shown in 
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Chapter 3. For example, CNTs with a low chiral angle will tend to have greater strain sensitivity 

than CNTs with high chiral angles. The gauge factor of an armchair CNT with a chiral angle of 

30° is zero, while gauge factor can be as high as 362 for a zig-zag CNT at 0 percent strain. In 

addition, CNTs with p = 0 or 1 where p = mod(n-m,3) have a positive gauge factor, while p = -1 

CNTs have a negative gauge factor.  Therefore, it is possible to maximize the sensitivity of CNT-

based strain sensors by selecting only zigzag CNTs with p = 1 for the CNT sensors. 

Unfortunately, it often proves difficult to sort out only the desired CNTs from a solution 

with many types of CNTs.  Even when this type of sorting can be performed, it may only 

possible to significantly enrich the desired CNT species without completely eliminating all other 

CNT species. However, as shown in Chapter 4, it is possible to use the electrical breakdown 

technique to eliminate many of the unwanted types of CNTs in the sensor after the CNTs have 

been deposited. Using this method it is possible to eliminate low resistance and low gauge factor 

CNTs by running high currents through these types of CNTs, causing them to heat up and 

rapidly oxidize. By eliminating these low performance CNTs, it is possible to both increase the 

sensitivity of the sensor and change the sign of the gauge factor of the sensor. 

In addition to increasing the sensitivity of the CNT-based strain sensor it is possible to 

improve the dynamic range of the sensor by decreasing noise. As shown in Chapter 5, the noise 

in CNT-based is flicker noise-dominated. This means that the noise in the sensor system can be 

reduced either by decreasing the Hooge noise coefficient, α, or by increasing the number of 

carries in the sensor.  The easiest way to increase the number of carriers in the sensor is to 

increase the number of CNTs in the sensor, since carriers scale linearly with number of CNTs.  

This can either be done by increasing the density of CNTs on the parallel resistor network by 

increasing the deposition, or by increasing the area of the resistor through design changes. In 

addition to increasing the number of CNTs, the Hooge coefficient can be reduced by coating the 

CNTs in a ceramic protective layer and annealing them in an inert atmosphere at 525 °C for 30 

minutes. This procedure removes the absorbed molecules from the surface of the CNTs and 

protects the CNTs from having additional molecules absorb or desorb from the CNT surface. 

This procedure reduces the noise in the CNT-based piezoresistors by almost three orders of 

magnitude. Overall, through the use of the optimized design and manufacturing processes 

presented in this thesis it is possible to increase sensor dynamic range by up to 4 orders of 
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magnitude and to create a multi-axis force sensor with nN level force resolution and a range of 

up to 100’s of µN.  

7.3 Use in Non-photolithographic MEMS 

In addition to the design and manufacturing best practices presented in this thesis, further 

improvements can be made to mesoscale MEMS sensor systems if traditional microfab-based 

fabrication procedures can be replaced by machining and forming operations. By eliminating 

cleanroom microfab, it is possible to significantly reduce the fabrication cost and fabrication time 

associated with these types of sensors. In addition, moving out of the microfab increases 

flexibility in the selection of the flexural materials used to build the sensor. This section will 

present the use of non-cleanroom fabrication techniques to produce CNT-based sensor systems.  

7.3.1 Introduction 

Current MEMS manufacturing techniques are based on IC chip fabrication techniques, 

such as photolithography and deep reactive ion etching (DRIE), which have been developed over 

the last half century.  These techniques offer high dimensional resolution but are generally 

limited to silicon processing, which results in brittle MEMS devices. IC fabrication equipment 

also is extremely expensive, on the scale of $100’s millions to billions for a fabrication line.  

This makes MEMS manufacturing prohibitively expensive, since MEMS devices are typically 

produced in much smaller quantities than IC chips.  Prototyping alone can cost $10’s of 

thousands of dollars in an IC MEMS facility and require months to a year to complete [240]. 

Therefore, new fabrication techniques need to be developed to meet the needs of MEMS 

prototyping and manufacturing if these techniques are to be cost-effective. 

 This section will present the initial work towards a method that enables the design and 

fabrication of flexure-based, meso- and micro-scale force/displacement sensors fabricated using 

non-photolithographic micro-machining processes. In these sensors, CNTs are used as 

piezoresistive sensing elements. Piezoresistive sensors transduce strain in a flexing element into 

a resistance change. This resistance change may be used to measure the force on and 

displacement of a flexible element, e.g. a flexure beam. Silicon-based piezoresistive sensors are 

commonly found in small-scale pressure sensors, accelerometers, AFM probes and 
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nanopositioners. These sensors are typically fabricated via conventional IC processing 

techniques within dedicated microfabrication facilities/labs. 

The approach discussed here eliminates the need to use cost- and time-intensive 

photolithographic fabrication processes to create small-scale force/displacement sensors and 

thereby reduces cost and lead times for prototypes. Non-photolithographic micromachining 

processes are also attractive as they offer designers more flexibility in materials and geometry. 

These processes are not limited to IC microfabrication-compatible materials and 2½D 

geometries.  This process integrates CNTs with the flexure elements, thereby taking advantage of 

the CNTs' relatively high gauge factor, which equates to greater sensitivity. CNT-based 

piezoresistors have been measured to have gauge factors that are an order of magnitude larger 

than silicon-based piezoresistors [1]. CNTs are also attractive for use as they may be assembled 

onto existing flexure structures and therefore do not require photolithography-based 

microfabrication processes. These characteristics make CNTs promising transduction elements 

for use with micromachining to produce fine resolution, small-scale force and displacement 

sensors. 

7.3.2 Test Structure Design 

The design and fabrication of a cantilever test structure showcases the potential 

capabilities of non-photolithographic MEMs manufacturing techniques. These small cantilever 

test structures are designed for use in testing CNT-based strain sensors. In these test structures, a 

1.5 mm (0.6”) long cantilever beam is attached to a 2 mm (0.082”) thick base.  Two 3.25 mm 

(0.128”) diameter mounting holes are drilled in the base to attach the test structure to the testing 

jig.  A secondary 1.57 mm (0.062”) diameter hole for hanging weight on the beam is made at the 

end of the cantilever.   

A conductive wire trace is deposited on to the top surface of the beam in order to allow 

CNT-based strain sensors to be placed onto the beam. These wire traces start at a contact pad on 

the stationary base and run out a short length of the beam before returning to a another contact 

pad next as seen in Figure 7.1.  A small gap is made across the trace so that carbon nanotube 

resistors can be deposited onto the beam.  These CNTs stretch between over the gap in the trace 

and complete the electrical circuit between the two electrodes. When the beam deflects, the 
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carbon nanotubes are strained and their resistance changes.  By measuring the change in 

resistance, it is possible to determine the force or displacement applied to the end of the beam.  

  

 

Figure 7.1. Test Structure Schematic (Units in Inches). 

 

The base material for the test structure is variable since non-photolithographic 

manufacturing methods are suitable for many different types of materials.  For the first set of 

tests, 6061-T6 aluminum was used for the beam, alumina was used as an insulating material 

between the beam and trace, titanium was used for the trace, and steel shim stock was used for 

the mask.  Subsequent beams were made of acrylic.  This allows the alumina deposition step to 

be eliminated and proof-of-concept polymer MEMS device to be created. 

7.3.3 Fabrication 

The test cantilever beams were cut from 1.52 mm (0.060”) 6061-T6 aluminum stock 

using an Intellitek Benchman MX Desktop Mill.  The toolpath was designed for a 1.59 mm 

(1/16”) endmill running at 10,000 rpm.  This allowed all features to be machined without a tool 

change.  Total manufacturing time for each beam was 5 minutes. A jig was also made for 

mounting the cantilever to an optical table. 

The placement of the CNT-based strain gauge onto the beam requires an electrical trace 

to be deposited onto the base of the beam. A physical ~5 µm gap must be created in the trace 

measuring so that CNT-based piezoresistors can be integrated into the sensor.  To this end, a 

shadow mask was manufactured using a Microlution 363-S micromill.  The mask was cut from 

0.127 mm (0.005”) thick steel shim, using a 0.076 mm (.003”) endmill running at 50,000 rpm. A 
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feed rate of 30 mm/min was used to cut the 100 µm wide trace path.  A 1.59 mm (1/16”) tool was 

then used to cut the mask from the stock material and to cut mounting holes in the mask so that 

the mask could be affixed to the cantilever beam.   

In order to make the ~5 µm gap in the wire traces, a tungsten wire tip was placed over the 

wire trace on the shadow mask.  The tungsten wire tip was made by etching a 150 µm diameter 

tungsten wire. The tungsten wire was placed into a hole in a stainless steel fixture and etched 

using a 2M NaOH solution. A 2 VDC voltage was applied between the tungsten wire anode and 

the stainless steel cathode.  The etching process takes several minutes and produces a long 

conical point on the wire coming to a final tip radius of ~100nm.  The wire is then placed across 

the trace using a microscope to get alignment correct.  Finally, the wire is fixed in place using 

tape on both sides of the mask as shown in Figure 7.2. 

Trace deposition begins by smoothing the surface of the cantilever beam with a 3M 

microfine sanding paper.  The beams are then cleaned using Terg-A-Zyme detergent in an 

ultrasonic cleaner.  Finally they are washed with methanol and blown dry with nitrogen.   

 

 

Figure 7.2.  Shadow Mask with Tungsten Wire. 

 

For metal deposition, the cantilevers are placed into an electron beam evaporator and 

pumped down to 10-5 torr.  The cantilevers are first coated with 500 nm of aluminum oxide at a 
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rate of 0.5 nm/s.  This provides an insulting layer between the metal trace and the aluminum 

substrate.  Next, the shadow mask is affixed to the cantilever beam using standard nuts and bolts. 

100 nm of titanium is then deposited through the shadow mask at a rate of 0.3 nm/s. The parts 

are then cooled under vacuum for 10 minutes and are removed from the chamber.  Finally, the 

mask is unbolted and removed, and the traces inspected for defects. This method produces 

titanium traces on top of the insulating alumina layer on the cantilever beam, as shown in Figure 

7.3.  Prior tests in which the alumina was deposited through the shadow mask resulted in poor 

insulation between the conducting traces and the underlying aluminum due to unsatisfactory 

coating of the beam surface.   

 

 

Figure 7.3.  Test Structure with Metal Trace. 

 

 After the test structure fabrication is completed, CNTs are deposited across the gap in the 

wire traces. CNTs are deposited onto these test flexures via dielectrophoresis.  A droplet of a 3 

µg/mL solution of SWCNTs in deionized water is placed on the electrodes of the test structure 

and a 5 MHz, 5V peak-to-peak AC voltage was used to direct the deposition of the SWCNTs.  

After 5 minutes, the test structure is rinsed with DI water and dried. Finally, the structure is 

coated with a thin ceramic layer to protect the sensor and mitigate noise [223]. 
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7.3.4 Results 

7.3.4.1 Metal Trace Deposition 

Several different types of metals including gold, palladium, and titanium were tested for 

use in the metal traces.  These metals were chosen because of their ohmic contact with CNTs 

[241]. Unfortunately, the gold and palladium contacts showed the tendency to flake off after 

deposition, as shown in Figure 7.4. However, the titanium contacts did not suffer from this 

flaking tendency.  Therefore, titanium ultimately was chosen as the wire trace material due to its 

superior bonding to aluminum and its low Schottky barrier with carbon nanotubes.  

 

 

Figure 7.4.  Flaking of Pd wire on Aluminum Beam. 

 

7.3.4.2 Gap Fabrication with Tungsten Wire 

The quality of the gap in the metal trace on the test structures is completely determined 

by the tungsten wire placement and geometry.  When the tungsten wire is placed on top of the 

mask, and further away from the beam surface, it creates a blurred edge to the gap in the trace, as 

some atoms diffuse in after passing the wire.  In fact, when the deposition thickness is great 

enough the gap can disappear entirely, as shown in Figure 7.5.   
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Figure 7.5.  Trace fabricated with tungsten wire on the top of shadow mask. 

 

When the tungsten wire is placed between the mask and the beam, a sharply defined gap 

is produced.  The dimensions of the gap match that of the wire closely. This can be seen in 

Figure 7.6 where the gap in the metal trace matches the shape of the tungsten tip.  Thus, with a 

long, narrow etching of the tungsten wire a well-controlled gap can reliably be produced in the 

trace, allowing robust placement of carbon nanotube strain gauges onto a MEMS device of any 

material. 

 

 

Figure 7.6.  Trace fabricated with tungsten wire on the bottom of shadow mask. 
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7.3.4.3 Gap Fabrication with FIB & CNT Deposition 

Gaps in the metal traces can also be fabricated using a focused ion beam.  The FIB is 

capable of producing precise and uniform gaps in the metal traces, as shown in Figure 7.   

 

 

Figure 7.7.  Test structure with gap cut with FIB. 

 

 However, the use of the FIB to fabricate the gaps doubles both the fabrication cost and 

time. Using the gaps fabricated with the FIB, it was possible to deposit CNT-based sensors onto 

the test structures, as shown in Figure 8. 
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Figure 7.8.  CNTs deposited on test structure. 

 

7.3.5 Test Structure Performance 

The cantilever test structures were tested by hanging weights off the end of the cantilever 

and measuring the deflection. The strain on the sensor was then calculated based on the force and 

the displacement applied to the cantilever beam. Results for both the cantilevers with the FIB cut 

gap and the gap created using the tungsten wire are presented in Figure 7.9. The measured gauge 

factor for the FIB cut gap of 73 is within experimental error for the measured gauge factor for the 

CNT test structures discussed in Chapter 4.  This indicates that this fabrication procedure 

produces sensors that are nearly identical to the sensors produced using cleanroom 

microfabrication procedures. However, the gauge factor of the sensor produced using the 

tungsten wire is significantly lower than the measured gauge factor for the CNT test structures in 

Chapter 4. This is likely because the gap fabricated using the tungsten wire is more than 10 µm 

wide.  Therefore, CNTs cannot directly connect one electrode to another.  In order to span the 

gap, CNT to CNT connections must be made.  These inter-tube connections tend to be high 

resistance, which reduces the overall sensitivity of the system. In addition to these inter-tube 

connections, the strain transfer to the CNTs in this large gap may not be as good as that for the 

CNTs that span the entire electrode gap. This could help to reduce the strain sensitivity of these 

piezoresistive sensors.  
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Figure 7.9.  Results for FIB Cut and Tungsten Wire Gaps. 

 

Even with the limitation that a FIB must be used to cut the gap in the electrodes, this non-

cleanroom fabrication method offers several advantages over traditional microfab methods for 

product such as the HexFlex nanopositioner, where low volume production of mesoscale MEMS 

devices is required. For example, the lead time in the production of the first device is reduced 

from 3 months to 3 days using this new fabrication method. In addition, average cost of a device 

in a 36 device batch is reduced from about $500 to $20. These gains in fabrication time and cost 

are made without sacrificing performance. In fact, the CNT-based piezoresistive HexFlex should 

have a dynamic range that is slightly higher than the silicon based HexFlex devices that have 

been fabricated in recent years [239]. A comparison of Hexflex devices fabricated using 

traditional clean room processes and the non-lithographic process described in this section is 

presented in Table 7.1. 
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Table 7.1: Comparison of Potential performance of Microfabricated and Machined Hexflex 

Designs. 

 
 

7.3.6 Conclusions and Future Work for Non-photolithographic MEMS 

This work shows that carbon nanotube-based sensors can be fabricated on mesoscale 

devices without the use of expensive IC fabrication equipment. This reduces the prototyping cost 

of such sensors from around $10-30k to less than $100 and reduces the fabrication time from 

about 3-6 months to less than 3 days.  However, more work still needs to be done to improve the 

sensor fabrication using tungsten wire shadow masks. These improvements in device fabrication 

will help to increase device quality while reducing the fabrication cost and time. 

7.4 Possible Future Applications 

7.4.1 Heated Center Stage Tests 

Heated stages are used in a variety of metrology and fabrication applications such as the 

measurement of the thermal conductivity of nanomaterials or the positioning of localized 

chemical reactions. These types of experiments offer a challenge for positioner designs that 

incorporate silicon or polysilicon piezoresistors. This is because the piezoresistive gauge factor 

of these sensors starts to significantly decrease after the temperature of the sensor increases 

above 80 °C. As shown in Figure 7.10 and Figure 7.11, when the central stage of the HexFlex 

force sensor is heated up to approximately 530 °C, there is a significant temperature gradient 

Fabrication 

Cost

Fabrication 

Time

Gauge 

Factor
Noise

Silicon Hexflex with 
Polysilicon 

Piezoresistors
$500 3 Months 18 30 µVRMS

Non-Lithographic 
Hexflex with CNT 

Piezoresistors
$20 3 Days 73 200 µVRMS
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over the length of the flexure beams. This is because the thermally grounded base of the flexure 

experiences virtually no change in temperature.  

Figure 7.10.  Force Sensor assembly with heated central stage. 

 

Figure 7.11.  Force Sensor assembly with heated central stage. 
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Typically, in an optimized design involving silicon or polysilicon piezoresistors, the 

piezoresistors extend up to 1/3 of the beam length from the base of the flexure. Therefore, these 

piezoresistors can experience significant temperature gradients over their structure. However, 

CNT-based piezoresistors only extend a few microns onto the flexure beam. Therefore, the CNT-

based piezoresistors experience virtually no change in temperature when the central stage is 

heated.  This means that the performance of the CNT-based piezoresistors is unaffected by the 

heating of the central stage, which makes it possible to implement this type of heated stage 

design in real devices. 

 

7.4.2 Self Sensing Nanoscale Bearings 

As mechanical devices move towards the nanoscale, force and displacement sensing 

become challenging due the limitation of traditional sensing techniques such as capacitive 

sensing and interferometry. Carbon nanotubes offer the potential to overcome these limitations 

due to their nanoscale size. In addition, carbon nanotubes are attractive as flexural materials at 

the nanoscale due their high elastic modulus and yield strength. These properties give CNT-

based flexures a large range and high natural frequency. For example, the linear flexural bearing 

shown in Figure 7.12 is capable of deformations of up to 25 percent of the device size. 

 

 

Figure 7.12.  Nanoscale linear motion bearing with CNT-based flexures/sensors. 

F
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 In addition to guiding the motion to the central linear stage, the nanoscale CNT bearings 

can also be used to determine the displacement of the central stage.  This can be done by 

measuring the change in resistance of the CNTs as the stage is deflected. When the central stage 

is deflected, the CNT is subject to both localized bending and localized stretching, as 

demonstrated in Figure 7.13. 

 

Figure 7.13.  Deformation of CNT in linear motion bearing. 

 

 This bending and stretching of the CNT as the central stage is displaced should result in a 

significant change in the electrical resistance of the CNT due to the piezoresistive nature of 

CNTs. This change in resistance can be calibrated to provide a measurement of the force on the 

central stage or the displacement of the central stage.  In fact, due to the small size of such 

devices, sensing using CNT-based piezoresistors may be one of the few integrated sensing 

options available as we move towards these types of NEMS devices. 
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APPENDIX 

A 
VARIABLE DEFINITIONS 

 

A.1 Variable Definitions 

Table A.1: Nomenclature for System Design Section 

Symbol Units Definition Symbol Units Definition 

δ m 
Displacement of compliant 

structure 
υ -- 

Active fraction of ADC 
voltage range 

F N 
Force on compliant 

structure 
Vrange V 

Full voltage range of 
ADC  

VS V Source voltage σy Pa 
Flexural material yield 

stress 

ΨM m,  
Signal output of sensor 

system 
η -- 

Flexural material safety 
factor to yield 

Ψ m, N 
Signal input to sensor 

system 
VB  Bias voltage  

σMv M 
Ambient vibration 
displacement noise 

σTb C 
Bias voltage chip 
temperature noise 

σMt M 
Thermomechanical 
displacement noise 

σVb V Bias voltage noise 

SMt(f m2/Hz 
PSD of thermomechanical 

noise 
PSRRB(s) -- 

Bias voltage power 
supply rejection ratio 

Laplace transform kB 
m2kg/K

s2 
Boltzmann’s constant 

T  Ambient temperature αVb 1/C 
Bias voltage thermal 

sensitivity 

k N m 
Compliant structure 

stiffness 
FB(s  

Bias voltage filter 
Laplace transform 

ζ -- 
Compliant structure 

damping ratio 
σVai V 

Amplifier input voltage 
noise 

ωn Rad/s 
Compliant structure natural 

frequency 
σVao V 

Amplifier output 
voltage noise 
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f Hz Frequency ∆Vai V 
Amplifier input voltage 

offset 

Λ 
- , 
N/m 

Mechanical noise scaling 
factor 

∆Vao V 
Amplifier output 

voltage offset 

FF(s -- 
Flexure mechanical filter 

Laplace transform 

αVai V 
Amplifier input offset 

thermal sensitivity 

αVao V 
Amplifier output offset 

thermal sensitivity εF m-1, N-1 Flexure gain 

Lf m Flexure length 
CMRR(s) -- 

Amplifier common 
mode rejection ratio 
Laplace transform 

bf m Flexure width 

hf m Flexure thickness 
PSRRA(s) -- 

Amplifier power supply 
rejection ratio Laplace 

transform 
E Pa 

Flexural material Young’s 
Modulus 

Nb -- 
Number of flexures in 

parallel 
VP V Power supply voltage 

αεF 1/C 
Flexure gain thermal 

sensitivity 
αVp 1/C 

Power supply voltage 
thermal sensitivity 

σTw C Bridge temperature noise σTp C 
Power supply thermal 

noise 

GSG -- Strain geometry gain σVp V 
Power supply voltage 

noise 

ε(x,y) -- Strain field over flexure σVr V 
Power supply ripple 

voltage noise 

x m 
Distance along length of  

flexure 
RR -- 

Power supply ripple 
rejection ratio 

y m 
Distance off neutral axis of 

flexure 
FP(s) -- 

Power supply filter 
Laplace transform 

Lr m Piezoresistor length σVc V ADC voltage noise 

hr m Piezoresistor thickness αVc 1/C 
ADC voltage thermal 

sensitivity 

γ -- Strain field constant σTc C ADC temperature noise 

L0 m 
Piezoresistor offset from 

flexure boundary 
∆Vc V ADC voltage offset 

Nε -- Bridge strain type FD(s) -- 
Digital noise filter 
Laplace transform 

GF -- Piezoresistive gauge factor  
(m, 

N)/V 
Calibration coefficient 

αGF 1/C 
Gauge factor thermal 

sensitivity 
A - 

Coordinate transform 
matrix 

NTw -- Bridge thermal type M -- 
Axis noise summation 

vector 

αTw 1/C 
Bridge resistors thermal 

sensitivity 
SΨM(f) 

m2/H
z, 

PSD of signal output 
from sensor system 
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NTr - Off-bridge thermal ty e 
N2/H

z 

αTr 1/C 
Off-bridge resistors thermal 

sensitivity 
fm Hz Measurement frequency 

∆Rw -- Bridge imbalance fs Hz Sampling frequency  

σVw V 
Bridge piezoresistor voltage 

noise 
fn Hz Nyquist frequency 

SVw(f) V2/Hz PSD of piezoresistor noise ffilter Hz 
Digital filter bandwidth 

frequency 

R Ω Piezoresistor resistance fsig Hz 
Signal bandwidth 

frequency 

α -- 
Hooge constant for 

piezoresistor 
σAcc m, N 

Sensor system accuracy 
st. dev. 

CC 1/m3 
Carrier concentration for 

piezoresistor 
σRes m, N 

Sensor system 
resolution st. dev. 

Ω m3 Piezoresistor volume D -- 
Dynamic range of 

sensor system 

GSTC -- 
Span temperature 

compensation (STC) gain 

ρ Ωm 
Resistivity of 

piezoresistive material 

B Hz 
Bandwidth of sensor 

system 

αSTC 1/C 
STC gain thermal 

sensitivity 
SVai V2/H 

PSD of amplifier input 
voltage noise 

αRstc 1/C 
STC resistance thermal 

sensitivity 
r -- 

Sensor to signal 
bandwidth ratio  

FT(s) -- Bridge thermal filter Pmax W 
Maximum power 

dissipated at sensor 

αVs 1/ 
Source voltage thermal 

sensitivity 
Vmax V 

Maximum sensor 
source voltage 

σTs C 
Source voltage chip 
temperature noise Rcross Ω 

Voltage/power regime 
boundary resistance 

σVs V Source voltage noise 

PSRRS(
s) 

-- 
Source voltage power 
supply rejection ratio 

Laplace transform 

Ωmin m3 
Minimum piezoresistor 

volume 

Ωmax m3 
Maximum piezoresistor 

volume 

FS(s) -- 
Source voltage filter 
Laplace transform 

Nr -- 
Piezoresistor serpentine 

factor 

G -- 
Instrumentation amplifier 

gain 
br M Width of resistor 

αG  /C 
Amplifier gain thermal 

sensitivity 
Rmin Ω 

Minimum piezoresistor 
resistance 

σTa  
Amplifier chip temperature 

noise 
Rmax Ω 

Maximum piezoresistor 
resistance 
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APPENDIX 

B 
MASKS FOR MICROFABRICATION 

B.1 Mask 1 – Polysilicon Piezoresistor 

Mask 1 is used to define the polysilicon piezoresistors in the CNT test structures and the 

polysilicon based MEMS force sensors. The overall mask is shown in Figure B.1 while a close-

up of the alignment features is given in Figure B.2. 

 

Figure B.1.  Mask 1 defining polysilicon piezoresistors. 
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Figure B.2.  Blowup of alignment mark in mask 1. 

 

B.2 Mask 2 – Aluminum Bond Pads 

Mask 2 is used to define the aluminum bond pads and wires in the CNT test structures 

and the MEMS force sensors. The overall mask design for the bond pads is given in Figure B.3 

while Figure B.4 presents as close up of the electrode pattern for the CNT-based MEMS force 

sensor. 
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Figure B.3.  Mask 2 defining aluminum bond pads and electrodes. 
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Figure B.4.  Electrode pattern for CNT-based force sensor in mask 2. 

 

B.3 Mask 3 – Frontside DRIE 

Mask 3 is used to pattern the frountside of the SOI wafer. This mask is used to define the 

flexure structure in the CNT test structures and the MEMS force sensors. In addition, this mask 

is used to define the boundaries between the chips. Figure B.5 gives an overview of the pattern in 

mask 3 while Figure B.6 shows a close up of the frountside alignment marks. 
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Figure B.5.  Mask 3 defining frountside photoresist pattern. 
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Figure B.6.  Frontside alignment mark in mask 3. 

 

B.4 Mask 4 – Backside DRIE 

Mask 4 is used to define the pattern on the backside of the SOI wafer. This backside 

pattern is used to release the flexures in the frountside pattern and to separate the various chips 

within the wafer. Figure B.7 gives an overview of the pattern in mask 4 while Figure B.8 shows 

a close up of the backside alignment marks. 
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Figure B.7.  Mask 4 defining backside photoresist pattern. 
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Figure B.8.  Backside alignment mark in mask 3. 

 

 


