
Biomedical Computing


Decision Support Systems 
November 3rd, 2005 

6.872 / HST 950


Harvard-MIT Division of Health Sciences and Technology 
HST.950J: Engineering Biomedical Information: From Bioinformatics to Biosurveillance 
Course Directors: Dr. Isaac Kohane, Dr. Marco Ramoni 



Decision Support Systems


Ò An intelligent system is a computer program able to 
emulate intelligent performances. 

Ò Computer program: 
9 A mechanical (effective) procedure. 

Ò Intelligent performances (pragmatic definition): 
9 The performance we expect to require 

intelligence. 
Ò Emulate/Simulate: 
9 Emulate means to achieve the same objectives. 
9 Simulate means to reproduce the same behavior. 
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Components


Knowledge: Representation of domain knowledge. 
& You may regard this knowledge as axioms. 

Inference: Domain independent procedures to handle 
knowledge in order to achieve these tasks. 
& You may regard these procedures as inference 

rules. 

Knowledge 

Inference 

Task 
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Knowledge Representation


Ò Knowledge/Information 
9 Knowledge is not just 

information. 
9 Knowledge is structured 

information. 
Ò	 Ontology is the structure of 

the domain knowledge. 
9	 A classification of 


medical disorders: a 

hierarchy prototype 

definitions.


9	 A network of causal 

relationships and 

influences.


l low 

l

Anemia 
Hemog obin=

Thalassemia 
Hematocrit=low 

Iron Deficiency 
Serum Iron= ow 

Others 
Attribute=value 

Anemia 

Iron Deficiency 

Serum Iron=low 

Hemoglobin=low 
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Inference and Reasoning


Ò Once knowledge is represented, it must be used. 
Ò Inference: The operation able to draw conclusions. 

Sound: draw only true conclusions. 
Complete: draw all the true conclusions. 
& The truth, the whole truth, and nothing but the truth. 

Ò Reasoning: Application of inference to knowledge. 
Truth preservative: draw true from true. 
Monotonic: the conclusions drawn are always valid (!). 
& The first 33 theorems of Euclid’s Elements are drawn 

without the Fifth Axiom but they still hold after it. 
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Problem Solving


Knowledge/inference compilation:

¾ if (the infection is meningitis) 1


(the type is bacterial) 

then 


2

(therapy is corticosteroids) 3


(only circumstatial evidence) 4


klebsiella (0.2), e.coli (0.4) 5

or pseudomonas (0.1) 6


9 Knowledge (1 2 3 5 6) and inference (2).

9 Difficult to acquire, maintain, and update.


Deep systems: 
9 Knowledge flows in the opposite direction. 
9 Inference must reverse this natural path of knowledge. 
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Logical Representation


Ò Logical knowledge representation (axioms): 
¾ (meningitis ⇒ corticosteroids) 

(corticosteroids ⇒ bacterial_infection) 
(klebsiella ⇒ bacterial_infection) 
(e.coli ⇒ bacteria_infection) 
(pseudomonas ⇒ bacterial_infection) 
0(circumstantial evidence) 

(0.2) (0.4) (0.1)

Klebsiella 

Infection 

Meningitis 

E.coli 

Meningitis Klebsiella 

E.coliInfection 

Pseudomonas C.steroids Pseudomonas C.steroids 
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Logical Reasoning


Ò Inference rules (e.g. modus [ponendi] ponens) 
9 Metalinguistic inference rules: 
)α⇒β 

α 
∴β 

9 Axiom schema:

)(α⇒β) ∧ α  ⇒  β 


9 Example:

)Axioms:

¾ (cat ⇒ mammal); cat


)Application of the inference rule:

¾ cat ⇒ mammal


cat

∴ mammal
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Example


Ò Axioms 
¾ (meningitis ⇒ corticosteroids) 

(corticosteroids ⇒ bacterial_infection) 
(klebsiella ⇒ bacterial_infection) 
(e.coli ⇒ bacterial_infection) 
(pseudomonas ⇒ bacterial_infection) 

Ò Observations: 
¾ meningitis 

Ò Inference 
)meningitis Ö corticosteroids Ö bacterial_infection 

/ But how do we infer the type of bacteria? 
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Limits


Ò Representation of uncertainty: 
9 How do we represent uncertainty about

knowledge? 
)Meningitis may cause brain damage. 

Ò Abductive inference: 
9 How do we get the bacteria? 

¾ cat ⇒ mammal 
mammal 
∴ cat 0 
¾ e.coli => bacteria 

bacteria 
∴ e.coli 0 

& This pattern is called Fallacy of Affirming the Consequent. 

6.872/HST 950




Probability


Ò Let’s consider our propositions as events: 
9 Probability is a function mapping an event to [0 1]. 

(
0 ≤ a p ) ≤1

)The probability that tomorrow will rain is 0.4: p (rain)=0.4. 

Ò Properties: 
9 Complementation: 

( ( ¬
a p ) + a p ) =1


( ¬ (
a p ) =1 − a p ) 
)The probability that tomorrow will not rain: p (¬rain)=0.6. 
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And and Or


Ò And (∧) is set intersection: p(a∧b)


a b 

Ò Or (∨) is set union: p(a∨b) 

a b 

Ò If the intersection is empty, the union is the sum: 
p(a∧b)=0 ⇒p(a∨b)=p(a)+p(b) 

a b 
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Exhaustivity and Exclusivity


Exclusivity: a and b cannot be both true.


(a p ∧b ) = 0

When it rains, it may never be the case it is not raining. 

Exhaustivity: Events exhaust all the possibilities: 

( (
a p ) + b p ) =1 
Either it is raining or it is not raining. 

rain ¬rain 

0 0.5 1 
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Axioms


Axiom 1: p(a)≥0 
9 The probability of an event cannot be negative. 

Axiom 2: p(Ω)=1 
9 The probability of an exhaustive set is 1. 
)p(rain)+p(¬rain)=1 

9 This, together with Axiom 1, implies 0 ≤ p(a) ≤ 1. 
Axiom 3: p(a∨b)= p(a)+p(b) if p(a∧b)=0. 
9 Theorem: p(a∨b)= p(a)+p(b) - p(a∧b). 

a b a b 
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Variables


A variable is a symbol A with a set of J possible values 
{a1,…, aJ}. 
9 A state aij is the assignment of a value to the variable. 
9 A variable can take just one value at the time. 
9 A variable must take at least one value. 
9 A variable is a set of exclusive and exhaustive states. 
)The variable Bacteria has values: {klebsiela, e.coli, 

psedumonas}. 
)There are three states, such as Bacteria= klebsiela. 

9 Our propositions are variables with just two states. 
)The variable Rain can take two values: {true,false}. 
)Rain has two states: Rain=true and Rain=false. 
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Probability Distribution


Ò We can associate a probability value to each state. 
Ò The set of probabilities associated to a variable is 

called Probability Distribution. 
9 Since the states are exhaustive, they sum up to 1. 
9 Since the states are exclusive, their intersections 

are 0. 0.5 
0.45 
0.4 

Klebsiella E.ColiPseudomonas 
0.35 
0.3 

0.25 
0.2 

0.15 
0.1 0 0.5 1 

0.05 
0 

Klebsiella Pseudomonas E.Coli 
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Cumulative Distributions


Ò The cumulative distribution is given by the sum of 
probabilities of some states. 

)The variable N Number of assignments per course. 
¾ p(N=0)=0.05; p(N=1)=0.40; p(N=2)=0.50; 

p(N=3)=0.04; p(N=4)=0.01; p(N≥5)=0.00. 
)The Cumulative Distribution of N. 
¾ p(N≤0)=0.05; p(N≤1)=0.45; p(N≤2)=0.95; 

p(N≤3)=0.99; p(N≤4)=1.00.0.5 1 
0.45 0.9 
0.4 0.8 

0.35 0.7 
0.3 0.6 

0.25 0.5 
0.2 0.4 

0.15 0.3 
0.1 0.2 

0.05 0.1

0
 0 

0 1 2 3 4 5 0 1 2 3 4 5 
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Joint Probability


Conjunction is represented as joint probability. 
¾ p(cloudy ∧ rain) = 0.60 1 

p(cloudy ∧ ¬rain) = 0.15 2 
p(¬cloudy ∧ rain) = 0.15 3 
p(¬cloudy ∧ ¬rain) = 0.10 4 

Imagine joint events as percentages of days in a 
year. Note that they sum up to 1.


Inference (marginal probability): 
¾ p(cloudy)= 1 + 2 = 0.60 + 0.15 = 0.75 

p(rain) = 1 + 3 = 0.60 + 0.15 = 0.75 
p(¬cloudy) = 3 + 4 = 0.15 + 0.10 = 0.25 
p(¬rain) = 2 + 4 = 0.15 + 0.10 = 0.25 
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Conditioning


Ò Modus ponens needs a conditional statement. 
Ò Inference needs conditional statements but we 

cannot use standard implication (⇒): 
p(a⇒b)=0.7 ≡ p(¬a∨b)=0.7 ≡ p(b)≤0.7 and p(a)≤0.3 0 

Ò We need a probabilistic conditioning. 
Ò Fortunately, we have conditional probability: 

b a p )( | )( b ∧ = a p 
b p )( 

Ò It is read the probability of a given b.
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Conditional Probability


Ò Conditional probabilities represent the intension: 
)If it is cloudy it is more likely to rain 
¾ p(rain|cloudy)=0.8; p(¬rain|cloudy)=0.2 

)If it is not cloudy it is more likely not to rain. 
¾ p(rain|¬cloudy)=0.6; p(¬rain|¬cloudy)=0.4 

Ò The conditional probability is the probability of an 
event when another event is happening. 

Ò It is a set zoomed in another set. 

cloudy rain 

0 0.5 1
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Bayes’ Theorem


Bayes’ Theorem is the solution to abduction: 

b a p )
( |
 )( b ∧ = a p 
b p )( 

9 Since p(a ∧ b) = p(a | b) × p(b) = p(b | a) × p(a): 

( (a p ∧ b ) + a p ¬ ∧ b ) 
)()|()|( = b p b a p a b p 

9 Invert p(a | b) into the posterior probability p(b | a).


( | ) ( ( )b p b a p ) + a p | ¬ p b ( ¬ b )

)()|()|( = b p b a p a b p 
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Exhaustive

Ò The bacteria are values of a single variable B: 

� p(B=k)=0.4;p(B=e)=0.3;p(B=p)=0.3 

� p(I=t|B=k)=.9;p(I=t|B=e)=.8;p(I=t|B=p)=.8 
p(I=f|B=k)=.1;p(I=f|B=e)=.2;p(I=f|B=p)=.2


Ò Posterior probability p(B=k|I=t) 

= 
=×== )()|( k B p k B t I p 

( = | = ) × ( = ( = | = ( = ( = | = ) × ( =k B p k B t I p ) + e B t I p ) × e B p ) + p B p p B t I p ) 
9.0 × 4.0 .0 36= = = .0 428

9.0 × 4.0 + 8.0 × 3.0 + 8.0 × 3.0 .0 84

.0 24 .0 24
( | =
B p = t I e ) = = .0 286 B p = t I p ) = = .0 286( | = 
.0 84 .0 84


( | = ( | = ( | =
B p = t I k ) + B p = t I e ) + B p = t I p ) = .0 428 + .0 286 + .0 286 =1 

6.872/HST 950 

Infection Bacteria 



Independent

The bacteria are independent binary variables:


� p(K=t)=0.4;p(E=t)=0.3;p(P=t)=0.3 

� p(I=t|K=t∧E=t∧P=t)=1;p(I=t|K=t∧E=t∧P=f)=.9; 
p(I=t|K=t∧E=f∧P=t)=.9;p(I=t|K=f∧E=t∧P=t)=.8; 
p(I=t|K=t∧E=f∧P=f)=.8;p(I=t|K=f∧E=t∧P=f)=.7; 
p(I=t|K=f∧E=f∧P=t)=.7;p(I=t|K=f∧E=f∧P=f)=.1. 

Solution: Transform the antecedents in a single variable: 
antecedents defines a set of mutually exclusive and 
exhaustive states and Apply Bayes’ Theorem. 
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Graph


Ò A graph (network) G(N,L) is defined by: 
9 A finite set N = {A,B,...} of nodes (vertices). 
9 A set L of links (edges): ordered pair of nodes 

(A,B). 
& The set L is a subset of all possible pairs of nodes 

in N. 
)N={A,B,C} A 

B 

C 

A 

C 

B 

A 

B 

C 

L={(A,C),(B,C),(B,A)} L={(A,C),(B,C)} L={(A,C),(B,C),(B,A),(C,A),(C,B),(A,B)}
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Types of Graph
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l Pol

Singl
) 

i

lic 

A 

B C 

ED 

A 

B C 

ED 

A 

B C 

ED 

A 

B C 

ED 

A 

B C 

D E 

A 

B C 

ED 

Simp e Tree ytree 

y Connected 
(Tree

Mult ply Connected 

Acyclic Cyc

Connected Disconnected 

Directed Undirected 

Graph 



&

Independence

Ò Two variables are independent (I(A,B)) if knowing one does not 

affect our belief in the other: 
p(A|B)=p(A) 

Ò The conjunction is exactly the Boolean conjunction, since 
p(A∧B)/p(B)=p(A) 

therefore: 
p(A∧B)=p(A)×p(B) 

)p(Rain)=0.2 p(Sprinkler)=0.9 

p(Rain∧Sprinkler)=0.18

p(Rain)=0.2 p(¬Sprinkler)=0.1 

p(Rain∧¬Sprinkler)=0.02

p(¬Rain)=0.8 p(Sprinkler)=0.9 

p(¬Rain∧Sprinkler)=0.72

p(¬Rain)=0.8 p(¬Sprinkler)=0.1 
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Conditional Independence


Ò When two variables are independent given a third, they are said 
to be conditionally independent. 

p(A|B ∧ C)=p(A ∧ B ∧ C)/p(B ∧ C)=p(A|C) 

T-shirt size of kids affect their literacy skills.

Both T-shirt size and literacy skills depend on age


Literacy Literacy 
T-shirt Yes No Age T-shirt Yes No 
Small 0.32 0.68 <5 Small 0.3 0.7 
Large 0.35 0.65 <5 Large 0.3 0.7 

>5 Small 0.4 0.6 
>5 Large 0.4 0.6 
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Bayesian Networks


Ò Bayesian networks use graphs to capture these statement 
of conditional independence. 

Ò A Bayesian network (BBN) is defined by a graph: 
Nodes are stochastic variables. 
Links are dependencies. 
& Absence of a link denotes independence given a 


parent.

Ò There are two components in a BBN: 

Qualitative graphical structure. 
Quantitative assessment of probabilities. 

T-shirt Literacy 

Age 
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Decomposition


Ò The power of BBNs is to decompose the joint probability 
distribution using the graphical structure of conditional 
independence. 

p(A|B ∧ C)=p(A|C) ≡ p(A∧B |C)=p(A|C) × p(B|C) 
Ò Therefore, the graphical structure factorizes the joint 

probability distribution: 
p(A∧B ∧ C)=p(A|C) × p(B|C) × p(C) 

BA 

C 
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Example


Background knowledge: General rules of behavior. 
p(Age=<5)=0.3 
p(T-shirt=small| Age=<5)=0.5 
p(T-shirt=small|Age=>5)=0.3 
p(Literacy=yes|Age=>5)=0.6 
p(Literacy=yes|Age=<5)=0.2 

Problem: Observation p(T-shirt=small) 
Solution: The posterior probability distribution of the unobserved nodes 

given problem: p(Literacy| T-shirt=small) and p(Age| T-shirt=small) 
p(Age=<5,T-shirt=small,Literacy=yes)
p(Age=<5,T-shirt=small,Literacy=no)
p(Age=<5,T-shirt=large,Literacy=yes)
p(Age=<5,T-shirt=large,Literacy =no)
p(Age=>5,T-shirt=small,Literacy=yes)
p(Age=>5,T-shirt=small,Literacy=no)
p(Age=>5,T-shirt=large,Literacy=yes)

p(Age=>5,T-shirt=large, Literacy=no)
 T-shirt Literacy 

Age 
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Brute Force


Ò The brute force solution: 
� Compute the Joint Probability Distribution: 

p(a,b,c,d,e,f,g)= p(a)p(b)p(c|d)p(d|a,b)p(e)p(f|d)p(g|d,e) 
� Marginalize out the variable of interest:


p(d)=Σ p(a,b,c,e,f,g) 
9 Note we have replace ∧ with , 
9 Cost: we need to sum 2n probabilities (26 = 64). 

4500 
4000 
3500 
3000 
2500 
2000 
1500 
1000 
500 

0 
2 4 6 8 10 12 
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Knowledge


Ò Components of a problem: 
Knowledge: graph and probabilities. 
Problem: ε={c and g}. 
Solution: p(d|c,g)=?. 

C 

GF 

D 

A B 

E 

A p(A) 
0 0.3 
1 0.7 

B p(B) 
0 
1 

E p(E) 
0 0.1 
1 0.9

 A C 
0 0 0.25 
0 1 0.75 
1 0 0.50 
1 1 0.50

 D F p(F|D) 
0 0 
0 1 
1 0 
1 1 

A B D p(
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

D E G p(G|D,E) 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

0.6 
0.4 

p(C|A) 
0.80 
0.20 
0.30 
0.70 

D|A,B) 
0.40 
0.60 
0.45 
0.55 
0.60 
0.40 
0.30 
0.70 

0.90 
0.10 
0.70 
0.30 
0.25 
0.75 
0.15 
0.85 
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Method


Ò In a polytree, each node breaks the graph into two 

independent graphs and we can deal separatelyε:

E+: evidence coming from the parents (E+ = {c}).

E-: evidence coming from the children (E- = {g}).


Ò Task: p(d|c,g): p(d| E+,E-): 
� p(d| E+,E-)= p(E+,E-|d)p(d)/p(E+,E-)=


=k p(E+|d)p(E-|d)p(d)= k p(E+,d)p(E-|d)=


GF 

D E

C D

A B 

=k λD(d)πD(d).

� k=1/p(E+,E-) (Normalizing constant)


π(d)= p(E+,d) (Parents messages)

λ(d)= p(E-|d) (Children messages)


� p(d| E+,E-)=k π(d)λ(d) 
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Summary

A 

a ρ λ β p 
0 0.3 1.0 0.3 0.3 
1 0.7 1.0 0.7 0.7 

B 
b ρ λ β p 
0 0.6 1.0 0.6 0.6 
1 0.4 1.0 0.4 0.6 

a ρ λ 
0 0.3 1.0 
1 0.7 1.0 

a ρ λ 
0 0.3 1.0 
1 0.7 1.0 

b ρ λ 
0 0.6 1.0 
1 0.4 1.0 

C 
C ρ λ β p 
0 0.425 1.0 0.425 0.425 
1 0.575 1.0 0.575 0.575 

D 
d ρ λ β p 
0 0.462 1.0 0.462 0.462 
1 0.538 1.0 0.538 0.538 

E 
b ρ λ β p 
0 0.1 1.0 0.1 0.1 
1 0.9 1.0 0.9 0.9 

d ρ λ 
0 0.462 1.0 
1 0.538 1.0 

d ρ λ 
0 0.462 1.0 
1 0.538 1.0 

e ρ λ 
0 0.1 1.0 
1 0.9 1.0 

F 
f ρ λ β p 
0 0.531 1.0 0.531 0.531 
1 0.469 1.0 0.469 0.469 

G 
C ρ λ β p 
0 0.419 1.0 0.419 0.419 
1 0.581 1.0 0.581 0.581 
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Summary

A 

a ρ λ β p 
0 0.3 0.42 0.126 0.273 
1 0.7 0.48 0.336 0.727 

B 
b ρ λ β p 
0 0.6 0.540 0.324 0.701 
1 0.4 0.345 0.138 0.299 

a ρ λ 
0 0.3 1.0 
1 0.7 1.0 

a ρ λ 
0 0.3 0.42 
1 0.7 0.48 

b ρ λ 
0 0.6 0.540 
1 0.4 0.345 

C 
C ρ λ β p 
0 0.432 1.0 0.432 0.432 
1 0.568 1.0 0.568 0.568 

D 
d ρ λ β p 
0 1.0 1.0 1.0 1.0 
1 0.0 1.0 0.0 0.0 

E 
b ρ λ β p 
0 0.1 1.0 0.1 0.1 
1 0.9 1.0 0.9 0.9 

d ρ λ 
0 1.0 1.0 
1 0.0 1.0 

d ρ λ 
0 1.0 1.0 
1 0.0 1.0 

e ρ λ 
0 0.1 0.462 
1 0.9 0.462 

F 
f ρ λ β p 
0 0.8 1.0 0.8 0.8 
1 0.2 1.0 0.2 0.2 

G 
C ρ λ β p 
0 0.72 1.0 0.72 0.72 
1 0.28 1.0 0.28 0.28 
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Multiply Connected BBN


When the BBN is a Multiply connected graph

The associated undirected graph contains a loop. 
Each node does not break the network in two parts.

Information may flow through more than one paths.

Pearl’s Algorithm is no longer applicable. 

C 

GF 

D 

A 

E 

B 

C 

GF 

D 

A 

E 

B 
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Example


A Multiply connected BBN 

B 

FE 

C 

A 

D 

A p(A) 
0 0.3 
1 0.7

 A B ) 
0 0 
0 1 
1 0 
1 1 

A C 
0 0 
0 1 
1 0 
1 1 

B D 
0 0 
0 1 
1 0 
1 1 

C F p(F|C) 
0 0 
0 1 
1 0 
1 1 

p(B|A
0.4 
0.6 
0.1 
0.9

p(C|A) 
0.2 
0.8 
0.50 
0.50

p(D|B) 
0.3 
0.7 
0.2 
0.8

0.1 
0.9 
0.4 
0.6 

B C E p(E|B,C) 
0 0 0 0.4 
0 0 1 0.6 
0 1 0 0.5 
0 1 1 0.5 
1 0 0 0.7 
1 0 1 0.3 
1 1 0 0.2 
1 1 1 0.8 
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Conditioning


Ò Loop cutset: {A}.

Ò p(B=0)=p(B=0|A=0)p(A=1) +p(B=0|A=1)p(A=1).


A 
0 1.000 
1 0.000 

A 
0 0.000 
1 1.000 

CB 
0 0.100 
1 0.900 

0 0.500 
1 0.500 

CB 
0 0.400 
1 0.600 

0 0.200 
1 0.800 + 

E 
0 
1 

F 
0 
1 

E 
0 
1 

D 
0 
1 

F 
0 
1 

D 
0.240 0.372 0.340 0.210 0.450 0.250 
0.760 0.628 0.660 0.790 0.550 0.750 

0 
1 

A 
0 
1 

B C D E F 
0.300 0 

1 
0.190 0 

1 
0.410 0 

1 
0.219 0 

1 
0.427 0 

1 
0.277 

0.700 0.810 0.590 0.781 0.573 0.723 
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Decision Problems

Ò A Decision Problem has three components: 
9 A set of chance variables. 
9 A set of possible alternative decisions. 
9 A utility function ranking the possible outcomes. 

Ò A set of possible decisions is called a strategy

)An antibiotic is given together vitamins: dosage of 

antibiotics is one decision, dosage of vitamin 
another, the strategy identifies the two dosages 
together. 

Ò The solution is the strategy that maximizes the 
expected (value of the) utility. This is called Maximum 
Expected Utility (MEU) Principle. 
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Expected Value


Ò When values are numerical, a BBN can be used to 
predict the expected value given the evidence: 

E(A)=Σ (p(A=a ) × a )i i i

that is, the sum of each possible value a of A times
i 
its probability p(A=a ) of being assigned to A:i

1. Propagate the evidence in the BBN.
2. Apply the formula to calculate expected value.

Ε(Α)=(0.2×0)+(0.1×1)+(0.3×2)+(0.1×3)+(0.3×4)=2.2 

A p(A) 
0 0.2 
1 0.1 
2 0.3 
3 0.1 
4 0.3 
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Influence Diagrams


Ò Influence diagram are BBN with 3 kinds of nodes: 
Chance nodes: stochastic variables (oval) 
Decision nodes: variables to be set the value 

(square).

Utility nodes: variables ranking the outcomes.


Medication 

Disease 

Value 

Side Effect 

Symptom

 Sy SE V 
0 0 100 
0 1 80 
1 0 10 
1 1 -100 

6.872/HST 950




Making Decisions


Ò The solution of a decision problem is the decision 
that maximizes the expected utility, and expected 
utility is the expected value of a utility node. 

Medication 

Disease 

Side Effect 

Symptom
 Sy SE V 
0 0 100 
0 1 80 
1 0 10 
1 1 -100 

M ) p ) 
0 0.9 
1 0.3 

M ) 
0 0.2 
1 0.6 

M E(V) 
0 
1 

Value 

p(SE=0 (SE=1
0.1 
0.7 

p(Sy=0 p(Sy=1) 
0.8 
0.4 

(0.2 0.9 100)+(0.2 0.1 80)+(0.8 0.9 10)+(0.8 0.1 -100) 
(0.6 0.3 100)+(0.6 0.7 80)+(0.4 0.3 10)+(0.4 0.7 -100) 

6.872/HST 950



