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Decision Support Systems

¥ An intelligent system is a computer program able to
emulate intelligent performances.

% Computer program:
v" A mechanical (effective) procedure.

¥* Intelligent performances (pragmatic definition):

v The performance we expect to require
Intelligence.

¥* Emulate/Simulate:
v Emulate means to achieve the same objectives.

v Simulate means to reproduce the same behavior.
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Components

Knowledge: Representation of domain knowledge.
& You may regard this knowledge as axioms.

Inference: Domain independent procedures to handle
knowledge in order to achieve these tasks.

& You may regard these procedures as inference
rules.

Inference

Knowledge
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Knowledge Representation

% Knowledge/Information

Anemia
v Knowledge is not just Hemoglobin=low
Information.
v" Knowledge is structured
Information.

Thalassemia Iron Deficiency Others

Hematocrit=low Serum Iron=low

Attribute=value

¥ Ontology is the structure of
the domain knowledge.

v A classification of
medical disorders: a
hierarchy prototype
definitions.

v A network of causal @\ -

. . Iron Defici
relationships and o
Influences.

Hemoglobin=low

Serum Iron=low
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Inference and Reasoning

% Once knowledge is represented, it must be used.

* Inference: The operation able to draw conclusions.
Sound: draw only true conclusions.
Complete: draw all the true conclusions.
@ The truth, the whole truth, and nothing but the truth.

% Reasoning: Application of inference to knowledge.
Truth preservative: draw true from true.

Monotonic: the conclusions drawn are always valid (!).

© The first 33 theorems of Euclid’s Elements are drawn
without the Fifth Axiom but they still hold after it.
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Problem Solving

Knowledge/inference compilation:
> If (the infection is meningitis)
(the type is bacterial)
(therapy is corticosteroids)
(only circumstatial evidence)
then
klebsiella (0.2), e.coli (0.4) 5
or pseudomonas (0.1)

v Knowledge (1 2 3 5 6) and inference (2).
v" Difficult to acquire, maintain, and update.

WD

(o)}

Deep systems:
v Knowledge flows in the opposite direction.
v Inference must reverse this natural path of knowledge.
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Logical Representation

¥ Logical knowledge representation (axioms):

» (meningitis = corticosteroids)
(corticosteroids = bacterial_infection)
(klebsiella = bacterial _infection)
(e.coli = bacteria_infection)
(pseudomonas = bacterial_infection)

é  (circumstantial evidence)
(0.2) (0.4) (0.1)

Meningitis » Klebsiella Meningitis Klebsiella
A 4
Infection » E.coli J Infection }Qz E.coli
a
C.steroids » Pseudomonas C.steroids Pseudomonas
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Logical Reasoning

* Inference rules (e.g. modus [ponendi] ponens)
v Metalinguistic inference rules:
T o=
(04
AN
v Axiom schema:
“(a=B) Aa=P
v Example:
= AXioms:
» (cat = mammal); cat
= Application of the inference rule:

> cat = mammal
cat
-, mammal
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Example

¥ Axioms

» (meningitis = corticosteroids)
(corticosteroids = bacterial_infection)
(klebsiella = bacterial _infection)
(e.coli = bacterial_infection)
(pseudomonas = bacterial_infection)

% Observations:
» meningitis

* |Inference
“meningitis = corticosteroids = bacterial_infection

@® But how do we infer the type of bacteria?
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Limits

¥* Representation of uncertainty:

v How do we represent uncertainty about
knowledge?

= Meningitis may cause brain damage.

¥* Abductive inference:
v How do we get the bacteria?

» cat = mammal
mammal
c.cat &

» e.coli => bacteria
bacteria
- e.coli

© This pattern is called Fallacy of Affirming the Consequent.

6.872/HST 950



---‘ Harvard Medical Massachusetts Institute
tay School of Technology

Probability

% Let’'s consider our propositions as events
v Probabillity is a function mapping an event to [0 1].

0=p(a) =1

= The probability that tomorrow will rain is 0.4: p(rain)=0.4.

%* Properties:
v' Complementation:

0(a) +p(—a) =1
0(—a) =1-p(a)

= The probability that tomorrow will not rain: p(—rain)=0.6
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And and Or

¥ And (A) Is set intersection: p(aab)

¥ Or (v) Is set union: p(avb)

¥* If the Intersection Is empty, the union is the sum:
p(anb)=0 =p(avb)=p(a)+p(b)
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Exhaustivity and Exclusivity

Exclusivity: a and b cannot be both true.

p(a Ab) =0

When it rains, it may never be the case it is not raining.

Exhaustivity: Events exhaust all the possibilities:

p(a) +p(b) =1

Either it is raining or it is not raining.

rain

0 0.5 1
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Axiom 1: p(a)=0

v The probability of an event cannot be negative.
Axiom 2: p(QQ)=1

v The probability of an exhaustive set is 1.

= p(rain)+p(—rain)=1

v This, together with Axiom 1, implies 0 < p(a) < 1.
Axiom 3: p(avb)= p(a)+p(b) if p(anb)=0.

v Theorem: p(avb)= p(a)+p(b) - p(arb).
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Variables

A variable is a symbol A with a set of J possible values

{a,,..., a;}.
v A state a; Is the assignment of a value to the variable.

v A variable can take just one value at the time.
v" A variable must take at least one value.
v" A variable is a set of exclusive and exhaustive states.

= The variable Bacteria has values: {klebsiela, e.coli,
psedumonas}.

= There are three states, such as Bacteria= klebsiela.
v Our propositions are variables with just two states.

= The variable Rain can take two values: {true,false}.

=" Rain has two states: Rain=true and Rain=false.
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Probability Distribution

% We can associate a probability value to each state.

%* The set of probabilities associated to a variable is
called Probability Distribution.

v' Since the states are exhaustive, they sum up to 1.

v Since the states are exclusive, their intersections
are 0. 0.5-

0.45-
0.4

0.351

‘ 0.3

0.251
| 0.2]

0 0.5 1 0.1

0.05-
o_

Klebsiella Pseudomonas E.Coli
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Cumulative Distributions

cumulative distribution is given by the sum of

probabilities of some states.

0.57
0.45+
0.4
0.35+
0.3
0.25+
0.21
0.15+
0.11

0.05+

= The variable N Number of assignments per course.
» p(N=0)=0.05; p(N=1)=0.40; p(N=2)=0.50;
p(N=3)=0.04; p(N=4)=0.01; p(N>5)=0.00.
= The Cumulative Distribution of N.

> pP(N<0)=0.05; p(N<1)=0.45; p(N<2)=0.95;
199: p(N<4)=1.00-

0.8
0.7
0.6
0.51
0.41
0.3
0.21
0.11

0,
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Joint Probability

Conjunction is represented as joint probability.

» p(cloudy A rain) = 0.60 1
p(cloudy A —rain) = 0.15 2
p(—cloudy A rain) = 0.15 3
p(—cloudy A —rain) =0.10 4

Imagine joint events as percentages of days in a
year. Note that they sum up to 1.

Inference (marginal probability):
»p(cloudy)=1+2=0.60+0.15=0.75
p(rain) =1+ 3=0.60+0.15=0.75
p(—cloudy) =3 +4=0.15+0.10=0.25
p(—rain) =2 +4=0.15+0.10 = 0.25
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Conditioning

¥ Modus ponens needs a conditional statement.

¥ Inference needs conditional statements but we
cannot use standard implication (=):

p(a=b)=0.7 = p(—-avb)=0.7 = p(b)<0.7 and p(a)<0.3 é"
% We need a probabilistic conditioning.
% Fortunately, we have conditional probability:

-y _ P(anb)
plalo) ="

¥* [t Is read the probability of a given b.
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Conditional Probability

% Conditional probabilities represent the intension:
=|f it is cloudy it is more likely to rain
» p(rain|cloudy)=0.8; p(—rain|cloudy)=0.2
= |f it is not cloudy it is more likely not to rain.
» p(rain|—cloudy)=0.6; p(—rain|-cloudy)=0.4

% The conditional probability is the probability of an
event when another event is happening.

¥* |t Is a set zoomed In another set.

B |

0 0.5 1
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Bayes’ Theorem

Bayes’ Theorem is the solution to abduction:

palb) = P& "

p(b)
v Since p(a Ab) =p(a| b) x p(bb) :[:I)O(b | &) x p(a):
s(bla)=  P@IPIP(D)
p(a Ab) +p(a A—Db)

v Invert p(a | b) into the posterior probability p(b | a).

o(b|a) = p(a|b)p(b)
p(a|b)p(b) +p(a| —b)p(—b)
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Exhaustive

% The bacteria are values of a single variable B:
p(B=k)=0.4;p(B=e)=0.3;p(B=p)=0.3
p(I=t|B=k)=.9;p(I=t|B=e)=.8;p(I=t|B=p)=.8

p(I=£f|B=k)=.1;p(I=£f|B=e)=.2;p(I=£f|B=p)=.2

% Posterior probability p(B=Kk|I=t)

p(l =t|B=k) xp(B=k) _
p(l =t|B=k)*p(B=k) +p(l =t|B=e)>*p(B=e)+p(I =t|B=p)>*p(B=p)
0.9x0.4 ~0.36

= = =0.428
0.9x0.4+0.8x0.3+0.8x0.3 0.84
0.24 0.24
B =¢e|| =t) = =0.286 B=p|l =t) = =0.286
p( | ) 0.84 p(B=p| ) 0.84

p(B =k |l =t) +p(B =e|l =t) +p(B =p| I =t) =0.428 +0.286 +0.286 =1

Infection ’* > Bacteria

6.872/HST 950




$E2S Harvard Medical Massachusetts Institute
£y School of Technology

Independent

The bacteria are independent binary variables:
p(K=t)=0.4;p(E=t)=0.3;p(P=t)=0.3

Hp(I=t
p(I=t
p(I=t
p(I=t

K=tAE=tAP=t)=1;p(I=t|K=tAE=tAP=£f)=.9;
K=tAE=fAP=t)=.9;p(I=t|K=fAE=tAP=t)=.8;
K=tAE=fAP=f)=.8;p (I=t|K=fAE=tAP=f)=.7;
K=fAE=fAP=t)=.7;p(I=t |K=£AE=fAP=f)=.1.

Solution: Transform the antecedents in a single variable:
antecedents defines a set of mutually exclusive and
exhaustive states and Apply Bayes’ Theorem.

»  Klebsiella

Infection ’- > E. Coli

»
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Graph

¥* A graph ( ) G(N,L) is defined by:
v A finite set N = {A,B,...} of nodes ( ).
v A set L of links ( ). ordered pair of nodes
(A,B).
= The set L is a subset of all possible pairs of nodes
In N.

‘QN:{A,B,C}
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Types of Graph

/'\.
/ |
aV,

Singly Connected g Multiply Connected ‘
(Tree)

T /Q\‘

Ao Ao IV
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Independence

%* Two variables are independent (I(A,B)) if knowing one does not
affect our belief in the other:

P(A|B)=p(A)
¥ The conjunction is exactly the Boolean conjunction, since

P(AAB)/p(B)=p(A)
therefore:

P(AAB)=p(A)xp(B)
#p(Rain)=0.2 p(Sprinkler)=0.9
p(RainASprinkler)=0.18
p(Rain)=0.2 p(—Sprinkler)=0.1
p(RainA—=Sprinkler)=0.02
p(—Rain)=0.8 p(Sprinkler)=0.9
p(—=RainASprinkler)=0.72
p(—Rain)=0.8 p(-=Sprinkler)=0.1
p(—RainA—Sprinkl&fjZ608
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Conditional Independence

% When two variables are independent given a third, they are said
to be conditionally independent.

D(A|B A C)=p(A A B A C)/p(B A C)=p(A|C)

T-shirt size of kids affect their literacy skills.
Both T-shirt size and literacy skills depend on age

Literacy Literacy

T-shirt ~ Yes No Age T-shirt  Yes  No
Small  0.32 0.68 <5 Small 03 0.7
Large  0.35 0.65 <5 Large 0.3 0.7
>5 Small 0.4 0.6

>5 Large 04 0.6
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Bayesian Networks

% Bayesian networks use graphs to capture these statement
of conditional independence.

% A Bayesian network (BBN) is defined by a graph:
Nodes are stochastic variables.
Links are dependencies.
= Absence of a link denotes independence given a
parent.

% There are two components in a BBN: ‘
Qualitative graphical structure.
Quantitative assessment of probabilities.

©«-®
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Decomposition

%* The power of BBNs is to decompose the joint probability
distribution using the graphical structure of conditional
iIndependence.

P(AIB A C)=p(A|C) = p(ArB |C)=p(A|C) x p(BIC)

¥ Therefore, the graphical structure factorizes the joint
probability distribution:

P(AAB A C)=p(A|C) x p(B|C) x p(C)

(e)
/\
® ®
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Example

Background knowledge: General rules of behavior.
pP(Age=<5)=0.3
pP(T-shirt=small| Age=<5)=0.5
pP(T-shirt=small|Age=>5)=0.3
p(Literacy=yes|Age=>5)=0.6
p(Literacy=yes|Age=<5)=0.2

Problem: Observation p(T-shirt=small)

Solution: The posterior probability distribution of the unobserved nodes
given problem: p(Literacy| T-shirt=small) and p(Age| T-shirt=small)

pP(Age=<5,T-shirt=small,Literacy=yes)
pP(Age=<5,T-shirt=small,Literacy=no)

p(Age=>5,T-shirt=small,Literacy=yes) / \
p(Age=>5,T-shirt=small,Literacy=no)
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Brute Force

% The brute force solution:
* Compute the Joint Probabillity Distribution:

p(a,b,c.d,e,1,9)= p(a)p(b)p(c|d)p(d|a,b)p(e)p(f|d)p(g|d.e)
Marginalize out the variable of interest:

p(d)=X p(a,b,c,e,f,g)
v Note we have replace A with
v Cost: we need to sum 2" probabilities (2° = 64).

4500+
4000+
3500+
3000+
2500+
2000+
1500+
1000+
500
0-
2 4 6 8 10 12
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Knowledge

% Components of a problem: % f
Knowledge: graph and probabillities.
Problem: e={c and g}. ‘ f

Solution: p(d|c,g)=".

0.3 0.6
0.7 0.4
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Method

* In a polytree, each node breaks the graph into two

Independent graphs and we can deal separatelye:
E*: evidence coming from the parents (E* = {c}).

E-: evidence coming from the children (E- = {g}).
% Task: p(d|c,9): p(d| E*,E):

 p(d| E*,E")= p(E",E’[d)p(d)/p(E",E’)=
=k p(E*|d)p(E’|d)p(d)= k p(E*,d)p(E"|d)=
=K A (d)p(d).

# k=1/p(E*,E’) (Normalizing constant)
n(d)= p(E*,d) (Parents messages)
A(d)= p(E’|d) (Children messages)

< p(d| E*,E)=k n(d)A(d)
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sSummary
p p p A p p
0.3 0.3 0 0.6 1.0 0.6 0.6
0.7 | 07 04 | 1.0 [ 04 | 06
z

a p A b| p A
0 0.3 1.0 0| 0.6 1.0
1 : 0.7 1.0 1| 04 1.0
/

p P p
0.425 | 0.425 Ol 0.462 | 1.0 | 0.462 0.1
0.575 | 0.575 0.538 1.0 | 0.538 0.9

AN
d p A d
0[0462| 1.0 0
1}538 1.0 1

A p
0.531| 1.0 | 0.531 | 0.531 opn 0.419 | 1.
0.469| 1.0 | 0.469 | 0.469 (g 0.581 | 1.0 | 0.581 | 0.581
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sSummary
p p p A p p
0.126 | 0.273 ol 0.6 | 0.540 | 0.324 | 0.701
0.336 | 0.727 0.4 | 0.345 | 0.138 | 0.299
z

p A b| p A

0.3 | 0.42 0| 0.6 | 0.540

0.7 | 0.48 Il 0.4 | 0.345

N

I!I p A B p I!I P A B p
0.432 O 01 | 1.0 | 0.1 | 0.1
0.568 0.0 | 1.0 | 0.0 0.0 @ 09 | 1.0 | 09 | 0.9
p A d| p
1.0 | 1.0 0| 1.0

z
d A e p A
0 . . . 1.0 0| 0.1 |0.462
1| 0.0 1.0 1| 0.0 1.0 1| 0.9 | 0.462

A p P A p P
08 | 1.0 | 0.8 0.8 0.72 | 1.0 | 0.72 | 0.72
0.2 | 1.0 | 0.2 0.2 gy 028 | 1.0 | 0.28 | 0.28
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Multiply Connected BBN

When the BBN is a Multiply connected graph
The associated undirected graph contains a loop.
Each node does not break the network in two parts.
Information may flow through more than one paths.
Pearl’s Algorithm is no longer applicable.

%% e
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Example

A Multiply connected BBN
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Conditioning

¥* Loop cutset: {A}.
%* p(B=0)=p(B=0|A=0)p(A=1) +p(B=0|A=1)p(A=1).

1.000
0.000

0.200
0.800

0.000
1.000

0.500
0.500

Ve

0.100
0.900

_|_

0.372

0.240
0.760

0.628

0.340
0.660

0.210
0.790

0.450
0.550

0.250
0.750

0.300
0.700

0.190
0.810

g

0.410
0.590

0.219
0.781
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Decision Problems

¥ A Decision Problem has three components:
v" A set of chance variables.
v" A set of possible alternative decisions.
v" A utility function ranking the possible outcomes.

¥* A set of possible decisions is called a strategy

= An antibiotic is given together vitamins: dosage of
antibiotics is one decision, dosage of vitamin
another, the strategy identifies the two dosages
together.

¥ The solution Is the strategy that maximizes the
expected (value of the) utility. This is called Maximum
Expected Utility (MEU) Principle.
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Expected Value

¥ When values are numerical, a BBN can be used to
predict the expected value given the evidence:
E(A)=%; (p(A=a) x &)
that is, the sum of each possible value a, of A times
its probability p(A=a;) of being assigned to A:
1. Propagate the evidence in the BBN.
2. Apply the formula to calculate expected value.

w— F(A)=(0.2x0)+(0.1x1)+(0.3x2)+(0.1x3)+(0.3x4)=2.2
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Influence Diagrams
* Influence diagram are BBN with 3 kinds of nodes:

Chance nodes: stochastic variables (oval)

Decision nodes: variables to be set the value
(square).
Utility nodes: variables ranking the outcomes.

w
OD ﬁ
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Making Decisions

% The solution of a decision problem is the decision
that maximizes the expected utility, and expected
utility is the expected value of a utility node.

0.9 0.1
0.3 0.7

Medication | Side Effect [

(0.2 0.9 100)+(0.2 0.1 80)+(0.8 0.9 10)+(0.8 0.1 -100)

(0.6 0.3 100)+(0.6 0.7 80)+(0.4 0.3 10)+(0.4 0.7 -100)
. v
Disease

: 0.8
0.6 0.4

6.872/HST 950




