Harvard-MIT Division of Health Sciences and Technology HST.950J: Engineering Biomedical Information: From Bioinformatics to Biosurveillance Course Directors: Dr. Isaac Kohane, Dr. Marco Ramoni

Children's Hospital Informatics Program \mathbf{a}_{i}

Harvard Medical School

Human Variations

Marco F Ramoni, PhD September 15th, 2005

Biomedical Computing 6.872 / HST 950

Outline

Properties of the Genome

Basics

- 80s revolution and HGP;
- Genetic polymorphisms;
- Evolution and selection;

Genetic diseases

- Tracking genetic diseases;
- Traits and complex traits;

Genomic diseases

- Blocks of heredity;
- Tracking blocks.

The Genetic Study of the Future

Candidates identification

- Find the genes;
- Find the SNPs;

Study design

- Case/control studies;
- Pedigree studies;
- Trios, sibs and TDT;

Study analysis

- Single gene association;
- Multivariate association;
- Validation.

The context: Sickle cell anemia is a monogenic disorder due to a mutation on the β-globin (HBB) at 11p15.5.

- The problem: SCA phenotype ranges from asymptomatic to early childhood death.
- The phenotype: SCA subjects have an increased risk of stroke (6-8%) before 18 yrs.
- The hypothesis: Other genes modulate this risk of stroke.

The Problem

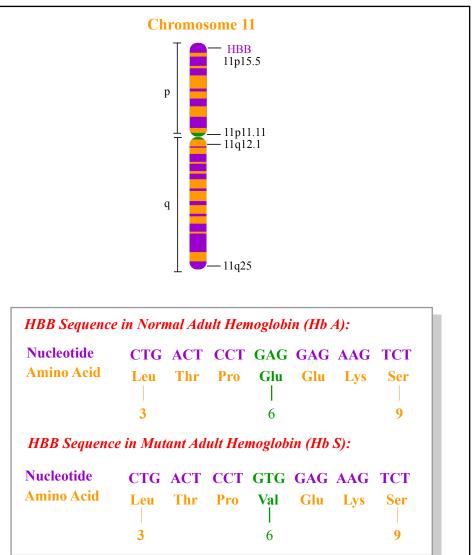


Figure by MIT OCW.

Finding Candidate Genes

Rationale: Bar a genome-wide scan you need likely culprits.

Start: OMIM (NCBI/NIH)

Extend:

- ✓ Literature;
- ✓ Regions;
- ✓ Microsatellites;
- Mechanisms of actions (pathways);

Refinement: Cast a large net and run a wide scan on a subset of patients. See the OMIM, Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Finding The Right SNPs

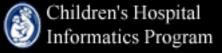
Option 1. Finding the causative SNP:

Rationale: Find the cause, select if there is a functional role. Drawback: What is functional? Exons, promoter, splicing, etc.

Option 2. Finding related SNPs:

Rationale: Chose SNPs that represent the gene through LD. Drawback: Tough to get the causative root.

Figure removed due to copyright reasons.


Hunting Causative SNPs

- Strategy: Select the SNPs on the basis of their role.
- Options: Non synonymous, in exons, in promoter, in other regulatory region.
- Source: dbSNP (NCBI/NIH).
- Faster: Portal SNPPER.
- Bonus: Primer design.
- Example: Select all the SNPs in CST3 located on exons.
- Filtering: From 146 to 26.
- Problem: Uncovered regions.

🕘 CHIP Bioinformatics View gene	- Microsoft Internet Explorer	
<u>File Edit View Favorites Tools H</u>	lp	
🚱 Back 🝷 📀 🕤 🖹 🛃 🏠	🔎 Search 🤺 Favorites 🚱 😥 - 嫨 🔜 - 🛄 🗳	\$
Address 🕘 http://snpper.chip.org/bio/find-	gene	🛩 🔁 Go
dip SNP	Goldenpath: hg17 dbSNP: build 123 Login: ipga	IIPGA
Home	Directory Preferences Feedback Help! Logout	
Gene: CST3		
Name:	cystatin C (amyloid angiopathy and cerebral hemorrhage)	XmlXport

SNPset: SS3784 Source: Gene CST3 03/07/2005 23:09:38 Created on: SNPs: 26 (avg dist: 926) Filter: Exon Export: SNPset data Genotype data xons total: AmLXport **E** Internet

Courtesy of Dr. Alberto A. Riva. Used with permission.

Fishing Across Genes

- Rationale: Find the optimal coverage for the entire gene.
- Problem: We need to know how SNPs are transmitted together in the population.

Source: HapMap.org

- Hapmap: Genotype of 30 trios in 4 populations every 5k bases.
- Strategy: 1) Identify blocks of LD and 2) Choose the SNPs that represent these blocks.

Figure removed due to copyright reasons.

Genome Wide Scan

- Technologies for genotyping:
- By SNP (individual primer);
- By Sample/Locus;
- Genome-wide: GeneChip® Mapping 100K Set (soon 500k) using a technology similar to expression arrays.
- \$ 500k means 1 SNP every 6, close to the resolution of the HapMap.

Figure removed due to copyright reasons.

Study Design

Classification by sampling strategy:

Association: Unrelated subjects with/out phenotype. Case/Control: Two sets of subjects, with and without. Cohort: Natural emergent phenotype from study.
Pedigrees: Traditional studies focused on heredity. Large pedigree: One family across generations. Triads: Sets of nuclear families (parents/child). Sib-pairs: Sets of pair of siblings.

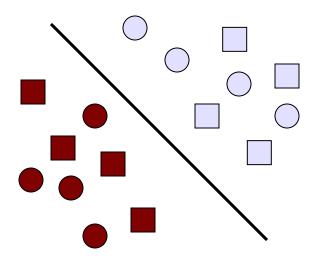
 Classification by experimental strategy: Double sided: Case/control studies. Single sided: e.g trios of affected children.

Analysis Methods

- Study designs and analysis methods interact.
- We review five main analysis types: Association studies: Case/control association.
 Linkage analysis: Traditional analysis of pedigrees.
 Allele-sharing: Find patterns better than random.
 TDT: transmission disequilibrium test.
- * Typically, these collections are hypothesis driven.
- * The challenge is to collect data so that the resulting analysis will have enough power.

Association Studies

Method: Parametric method of association.


Strategy: Traditional case vs control approach.

Test: Various tests of association.

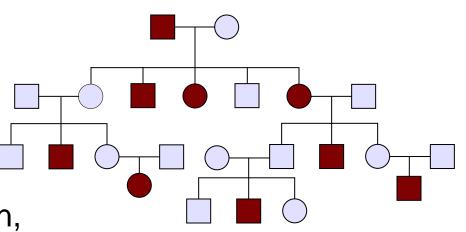
Sample: Split group of affected/unaffected individuals.

Caveats: Risk of stratifications (admixtures) - case/control split by populations.

Advantages: Easily extended to complex traits and ideal for exploratory studies.

Linkage Analysis

Method: Parametric model building.

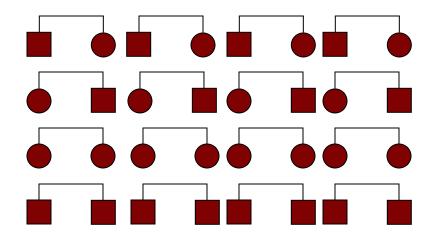

Strategy: Compare a model with dependency between phenotype and allele against independence model.

Test: Likelihood ratio - or lod score log(LR).

 $LR = \frac{p(Data \mid M_1)}{p(Data \mid M_0)}$

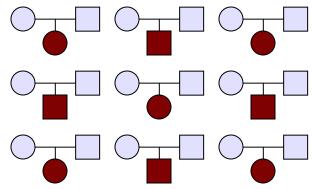
Sample: Large pedigree or multiple pedigrees.

Caveats: Multiple comparison, hard for complex traits.

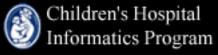


Allele Sharing

Method: Non parametric method to assess linkage.


- Test: An allele is transmitted in affected individuals more than it would be expected by chance.
- Sample: It uses affected relatives in a pedigree, counts
 - how many times a region is identical-by-descent (IBD) from a common ancestor, and compares this with expected value at random.
- Caveats: Weak test, large samples required.

Transmission Disequilibrium Test


- Method: Track alleles from parents to affected children.
- Strategy: Transmitted=case / non transmitted=controls.
- Test: Transmission disequilibrium test (TDT).
- Sample: Triads of affected child and parents.
- Caveats: Test is not efficient and is prone to false negatives.
- Advantages: Powerful test and stratification not an issue.

Stroke Study Design

- Design: Nation-wide cohort study of over 4000 African American in 26 centers.
- Subjects: 1392 SCA subjects with at least one complication from SCA (92 with stroke, 6.2%).
- Genes: 80 candidate genes involved in vaso-regulation, inflammation, cell adhesion, coagulation, hemostasis, proliferation, oxidative biology and other functions.
- SNPs: Coverage selected with bias to function (256).
- **Risk factors:** α -thalassemia, history, age, gender.
- Filtering: Missing data and Hardy-Weinberg on unaffected reduces the set to 108 SNPs on 80 genes.

Single Gene Association

Method: One SNP at the time.

Analysis: Test statistics (like we had an hypothesis).

Style: Observational by pseudo hypothesis-driven.

Results: A list of SNP/genes.

Validation: Replication.

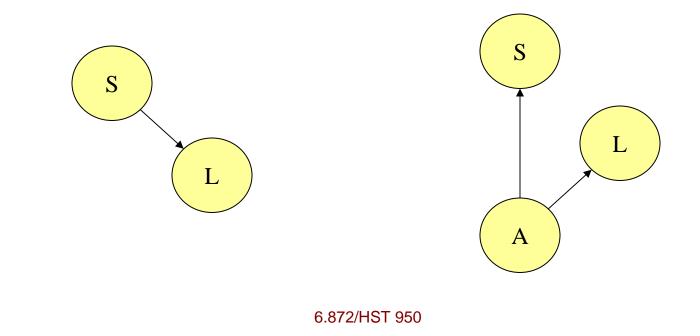
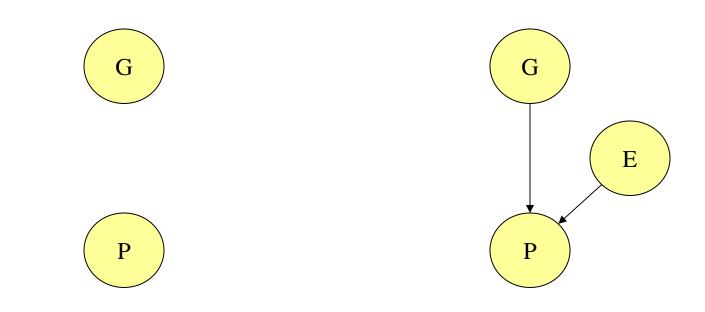

Table removed due to copyright reasons. Please see:

Table 2 in Hoppe, C., et al. "Gene interactions and stroke risk in children with sickle cell anemia." *Blood* 103, no. 6 (Mar 15, 2004): 2391-6. *Epub* (Nov 13, 2003.)

Spurious Association/Confounding


- * Association of shoe size (S) and literacy (L) in kids.
- If I act on S, I will not change L: If you buy bigger shoes, will your kids learn more words?
- No: age (A) make S and L conditionally independent.

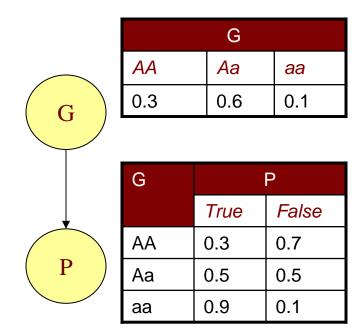
Missed Associations

Gene environment interaction:

No association between genotype and phenotype

Association appears conditional on an environmental factor

Bayesian Networks


Definition: Direct acyclic graph (DAG) encoding conditional independence/dependence.

Qualitative:

Node: stochastic variables (SNPs, phenotypes, etc). Arcs: Directed stochastic dependencies between parents and children.

Quantitative:

CPT: Conditional probability tables (distributions) that shape the dependency.

Learning Networks

Processes: Data are generated by processes.

Probability: The set of all models is a stochastic variable \mathcal{M} with a probability distribution $p(\mathcal{M})$.

Selection: Find the most probable model given the data.

$$p(M \mid \Delta) = \frac{p(\Delta, M)}{p(\Delta)} = \frac{p(\Delta \mid M)p(M)}{p(\Delta)}$$

Estimation: Probabilities can be seen as relative frequencies:

$$p(x_i \mid \pi_i) = \frac{n(x_i \mid \pi_i)}{\sum_j n(x_i \mid \pi_i)}$$

$$p(x_{j} | \pi_{i}) = \frac{a_{ij} + n(x_{j} | \pi_{i})}{\sum_{j} a_{ij} + n(x_{j} | \pi_{i})}$$

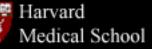


Figure removed due to copyright reasons.

Prognostic Modeling

- Prediction: The method used for the predictive validation can be used to compute the risk of stroke given a patient's genotypes.
- Prognosis: We can build tables of risks for patients and predict the occurrence of stroke in 5 years.
- Extension: How about this risk scheme as a model of stroke in the general population?

Risk	ANXA2.6	BMP6.10	BMP6.12	SELP.14	TGFBR3.10	ERG.2	Ν
	hCV26910500	rs267196	rs408505	rs3917733	rs284875	rs989554	
0.007 (0;0.03)	AG	TT	TT	СТ	СТ	AG	1
0.06 (0;0.38)	AG	TT	TT	СТ	CC	AG	4
0.185 (0.09;0.30)	AA	TT	СТ	CC	CC	AA	50
0.727 (0.61;0.83)	AA	TT	CC	CC	CC	AA	64
0.868 (0.70;0.97)	GG	TT	CC	CC	CC	AA	21
0.968 (0.79;1)	GG	TT	CC	СТ	CC	AA	8

Predictive Validation

Cross Validation: 98.8% Validation: Stroke prediction of 114 subjects in different population (not the cohort). Accuracy: 98.2%: TPR=100%; TNR=98.1% (2 errors). regression: Logistic Identify regressors at p-value < 0.05. Model: 5 (SELP/BMP6) & HbF. Accuracy: 88% accurate: TPR: 0.57% (3 errors); TNR: 0.9% (10 errors).

Figure removed due to copyright reasons.

Why we do not find the causes for complex traits?

- Because we look at one gene at the time.
- Genes work together (need more than one gene to get the phenotype) but also in a redundant way (phenotype through alternative paths).
- Long distance disequilibrium, reveals more complex structures in the population.
- Prediction is necessary.

Gene Symbol	Position	Single Gene	
		Accuracy	Cont
ADCY9	16p13.3	71.93%	2%
ANXA2	15q22.2	43.86%	2%
BMP6	6p24.3	83.33%	5%
CSF2	5q23.3	50.88%	1%
ECE1	1p36.12	13.15%	0.2%
ERG	21q22.2	42.98%	1%
MET	7q31.2	23.68%	1%
SCYA	17q11.2	55.14%	1%
SELP	1q24.2	80.70%	7%
ТЕК	9p21.2	8%	1%
TGFBR3	1p22.1	50.88%	2%
HbF.P		72.81%	1%

A Holistic System

Take Home Messages

There are two types of science: physics and stamp collecting. *Ernest Rutherford*

- Revolution: The –omic scale changes the way of biomedical sciences, makes it predictive/quantitative.
 Discovery: The genome is too complex for simple hypothesis, hypotheses have to be discovered.
- Proof: The burden of proof has to be based on prediction, as we expect from good science.
- Potential: The potential of this changes goes beyond the still fantastic power to understand and heal.