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Functional Genomics


– the overall enterprise of de-constructing


the genome to assign biological functions


to, or uncover interactions between gene


subsets.


Transcriptomics


– as above but focusing on subset of the


genome that is “expressed”


System specific




Lecture Outline


 Review: Measuring the transcriptome. Microarrays 

 Assumptions and questions in transcriptomics 

 Granularity of questions 

 Paradigm shift relative to traditional biology 

 Prototypical experiment designs 

 Workflow in microarray-driven experimentation 

 Analysis and modeling of transcriptome data, 

 Mathematical formulation of problem 

 “Correcting” noise and measurement variation / bias 

 Uncovering coherent geometries and dominant variance structures 
intrinsic to data 

 Likelihood of coherent structures / math results arising from chance 

 Squaring math results with a priori biological knowledge. Figure of merit 

 User-friendly References 



Review: Measuring the transcriptome


●	 Assay platform = microarray 

 Measures ~103-4 mRNA species levels at once 

 Principle: Nucleic acid complementarity – binding 

 Technical assumption I: Uniform RNA degradation and hybridization rate – independent 

of RNA species 

 Technical assumption II: Fluorescence intensity is proportional to expression level – 

independent of RNA species 

Figures removed due to copyright reasons. 

Please see:


Pevsner, Jonathan. Bioinformatics and Functional Genomics. Hoboken, NJ: Wiley-Liss, Inc., 2003. 
ISBN: 0471210048.



Transcriptomics: Assumptions


●	 Central dogma holds 

●	 Phenomenological (phenotypic, cellular) events of interest necessarily 

engage transcriptomic mechanisms, or are reflected in the 

transcriptome 'cDNA (later) 

Splicing (eukarya) 

Genotype Phenotype 

Figure 1.7 in Isaac S. Kohane, Alvin T. Kho, and Atul J. Butte. From Microarrays for an Integrative Genomics.

Cambridge, MA: MIT Press, 2003, p. 28. ISBN: 026211271X Courtesy of MIT Press. Copyright 2003. Used with permission.




Transcriptomics: Questions


●	 Granularity of questions – 3 molecular scales or levels 

 Single: Identify individual molecules associated with (possibly underwriting) a biological 

phenomenon


 Network: Identify molecular networks associated with a biological phenomenon


 System: Transcriptomic / global state or characterization of a biological system


●	 Paradigm shift relative traditional biology 

 Traditional: Whole = Sum of its parts 

 Functional genomics: Whole ≥ Sum of its parts 

●	 Prototypical experiment designs 

 2-group comparisons 

 Sequential profiling – parametrized by a continuously-varying scalar variable 

 Hybrid of 2-group and sequential profiling 



Transcriptomics: Granularity of questions


●	 Prototypical questions – 3 molecular scales or levels 

	 Single: Identify individual molecules associated with (possibly underwriting) a biological 
phenomenon 

	 Network: Identify molecular networks associated with a biological phenomenon 

	 System: Transcriptomic / global state or characterization of a biological system 

●	 Example questions that can be practically asked given transcriptome 

profiling technology 

	 Given known clinically-distinct disease conditions, what is the minimal gene set (their 

expression profiles) that distinguishes between these conditions with a reasonably high 

specificity and sensitivity? 

	 Is there a transcriptomic (or its subset) signature that correlates with survival outcome of 

stage I lung adenocarcinoma patients? 

	 Are the set of genes upregulated by cells C under morphogen M significantly enriched 

for specific functional or ontologic categories? 



Transcriptomics: Paradigm shift


●	 How transcriptome profiling technologies change the way we think 

about and model biological systems, problems 

●	 Traditional biology / genetics:  Whole = Sum of its parts 

 Microarrays as a highly efficient large-scale application of northern blots, PCR 

●	 Functional Genomics: Whole ≥ Sum of its parts 

 Practical to think about combinatorial effect, leverage on multi-factorial effects. 



Transcriptomics: Paradigm shift example

● Combinatorial effects example. Say we measure 2 genes G1, G2 in 30 

disease X, and 30 control O subjects. Neither G1, G2, by themselves 

discriminate X from O. But (sign of) G1 – G2 does.  G1 – G2 is the 

disease discriminant here.

G1 G1 + G2

G1 – G2G2

??

Rotation



Transcriptomics: Prototypical experiment designs


●	 Prototypical experiment designs 

 Are not conceptually different from commonplace scientific experiment designs. 

 2-group comparisons: disease vs. control, treated vs. non-treated 

 Sequential profiling – parametrized by a continuously-varying scalar variable: time 

course, dosage-varying study


 Hybrid of 2-group and sequential profiling




Typical steps in microarray-driven experimentation


●	 Experimental design involving biological system under investigation. 

Replicates – biological and measurement / technical 

●	 RNA target / probe preparation: Extract mRNA. Convert (to single strand 

cDNA typically). Label with fluorescence. 

●	 Probe hybridization. Fluoresence scan. 

●	 (Fluorescence) Image analysis 

●	 (Post image) Data analysis and modeling to generate more focused 

hypotheses. 

●	 Biological validation 



Workflow in microarray-driven experimentation


Biological system 

Appropriate tissue, 
condition, 

experiment design 

Chip hybridization 
and scanning 

Extract RNA 

Image analysis Data analysis 

Biological validation 

Our focus 
expanded next ... 



Data analysis: Math applied to transcriptome domain


●	 Mathematical formulation of the biological / physical problem 

 Data representation. Modeling. Mapping physical problem into a metric space. 

●	 “Correcting” noise and systematic measurement variation / bias 

 “Pre-processing”. Normalization. Replicate measurements. 

●	 Uncovering coherent geometries and dominant variance structures 
intrinsic to data 

 “Supervised” and “unsupervised” math techniques. E.g., clustering, machine learning 

●	 Likelihood of coherent structures / math results arising by chance 

 Statistics 

●	 Squaring math results with a priori biological knowledge. Figure of merit 

 Statistics 

●	 “Reverse engineering”. Correlation vs. causality 

 Graph and network theory. 



Data analysis: The beginning


● Almost always microarray data analysis / modeling starts off with a 

spreadsheet (data matrix) post image analysis ... 

Image processing (black box?)


EntrezID Symbol Day1-1 Day3-1 Day5-1 Day7-1 Day10-1 Day15-1 

13008 Csrp2 -2.4 74.6 25.5 -30.7 14.6 -50.1 

17121 Mxd3 126.6 180.5 417.4 339.2 227.2 -76.2 

17859 Mxi1 2697.2 1535 2195.6 3681.3 3407.1 1648.3 

67255 Zfp422 458.5 353.3 581.5 520 348 106.3 

18109 Nmyc1 4130.3 2984.2 3145.5 3895 2134.3 597.1 

13555 E2f1 1244 1761.5 1503.6 1434.9 487.7 98.3 

11921 Atoh1 94.9 181.9 268.6 184.5 198 -246.2 

97165 Hmgb2 9737.9 12542.9 14502.8 12797.7 8950.6 458.9 

18504 Pax2 379.3 584.9 554 438.8 473.9 565.2 

21418 Tcfap2a 109.8 152.9 349.9 223.2 169.1 -115.3 

21419 Tcfap2b 4544.6 5299.6 2418.1 3429.5 1579.4 2862.4 

This is “Data” 



Data analysis: Math formulation
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Data analysis: Math formulation


●	 Any gene × sample data matrix can be viewed as, 

 Genes in Sample space 

 Samples in Gene space 

 Typically for transcriptome data, # Genes >> # Samples 

 These spaces may have different similarity measures 



Data analysis: Noise and measurement variations


●	 How to detect existence of “noise” or systematic measurement biases / 

variations? 

	 What is Noise? Deviations from a logical or scientific axiom / assumption. This deviation 

may be expressed / reflected in the (numerical) data. Clearly, if detection limit is gross 

the expression of noise is minimized. 

	 Example of logical axiom: Replicate measurements of a system-state should be similar 

in given metric space. 

●	 How to correct for noise? Normalization 

	 Normalization is a math transformation to minimize noise, while preserving gene


expression variation resulting from biologically relevant transcriptome activity.


 Which transformation? Depends upon reference logical / scientific axiom violated 

 Normalization example: Equalize the mean transcriptome levels across samples. 

● Replicates are critical to characterize noise, measurement variation 



Data analysis: Noise and measurement variations


● Different concepts of a Replicate 

 Scatter plots of reported transcriptome levels between replicates 

l 

S1 S2 S2 S2S1 

S1 

Poo

S1 S1 

Biological variation + 
Measurement variation Measurement variation Measurement variation 

S2S2 S2 

S1 S1 S1 



Data analysis: Intrinsic coherent structures


●	 Given a normalized data set. Recall that we can view the data as 

 Genes in Sample space 

 Samples in Gene space 

●	 Question: Might these be coherent geometries and dominant variance 
structures intrinsic to data 

 Aim to create variationally meaningful data subsets (structure) from the mix of all 
features 

 Do coherent structures exist?


 “Supervised” and “unsupervised” math techniques. E.g., clustering, machine learning


●	 Unsupervised = sample labels are not used by method. Supervised = 
sample labels are necessary input into method. 

●	 Many math methods exist, most ported from physical and engineering 
science. Which is “best”? 2 rules of thumb 

 Scientific question should guide choice of method. Not other way around


 Upon deciding on a method, do simulation exercise. Figure of merit




Data analysis: Intrinsic coherent structures example


● Graphical examples of internal geometries / regularity in genomic data 
at multiple scales 

Bi i ifi

Zoom out 

Zoom out 

Zoom out 

o s gn cance? 



Data analysis: Coherent structures example


● Example: Mouse cerebellar development 6K genes at 9 time stages 
(duplicate). 
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Data analysis: Coherent structures example
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Data analysis: Coherent structures example

● Example: Mouse cerebellar development 6K genes at 9 time stages 
(duplicate).

 Samples in Gene space I. Euclidean space

Tim
e

PC1

PC1

P
C

2
P

C
3

D
o configurations say anything bio 

m
eaningful?

Time
PC1

PC2

PC2



Data analysis: Coherent structures example

● Example: Mouse cerebellar development 6K genes at 9 time stages 
(duplicate).

 Samples in Gene space II. Correlation space
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Data analysis: How likely are coherent structures due to chance?


●	 Squaring math results with chance 

 Statistics 

●	 Assumptions about null hypothetic distribution 

●	 Permutation testing: Permute data. Run similar analyses to extract 

coherent structures. Examine result relative to original unperturbed case 



Data analysis: How well does model mirror physical system?


●	 Squaring math results with a priori biological knowledge. Figure of merit 

	 Statistics 

●	 Coherent / dominant mathematical structures that are uncovered via 

math from data should ideally have a physical or extra-math correlate. 

●	 There are many analytic methods and attendant models that can be 

applied onto 1 dataset. Which best mirrors physical system? 

●	 1 physical system --> 1 data set -->  >1 possible models --> 1 physical 

system? 

	 How to pick? 

	 Well-definedness 

	 Reality checks. How likely is this data and methods 



Data analysis: Math applied to transcriptome domain


Biological 
system	 Prediction. Inferential statistic. 

Hamilton's principle – minimizing 
an energy functional 

Transcriptome	 Correlation vs causality 

Chance modeled by null hypothesis 
Statistics 
Permutation analyses 
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User-friendly references


	 These readings don't refer to microarrays per se, but capture the ethos of applied 

math in science, biology 

	 E. Wigner. The unreasonable effectiveness of mathematics in the natural 

sciences. Comm. In Pure and Applied Math. 13 (1), 1963 

http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html


	 A. Turing. The chemical basis of morphogenesis. Phil Trans Royal Soc London 

(Series B), 641 (237), 1952 http://www.turingarchive.org/browse.php/B/22 (not 
easy read but enlightening, DNA structure was resolved in 1954. Computer 

science founder ...) 

	 Good luck! 

	 The discoveries that one can make with the microscope amount to very little, for one sees with the mind's eye and 

without the microscope the real existence of all these little beings. Georg­Louis Leclerc de Buffon (of the Buffon 

needle problem, and 44­volume Histoire Naturelle) 


