
Intelligent Layout for Information Display:
An Approach Using Constraints and
Case-based Reasoning

by Grace Elizabeth Colby

B.S., Design

Illinois Institute of Technology

Chicago, Illinois

1985

Submitted to the Media Arts and Sciences Section,

School of Architecture and Planning,

in partial fulfillment of the requirements of

the degree of Master of Science at the

Massachusetts Institute of Technology,

June 1992

@ Massachusetts Institute of Technology 1992. All Right Reserved

Signature of the author

M edia Arts ciences 7 0 /
May 1,

Murie uth Cooper, B.F.A.

Professor of Visual Studies, Thesis Supervisor

A A

Accepted by

Stephen A. Benton Rotch
Chairperson, Departmental Committee on Graduate Students MASSACHUSETTS INSTITUTE

OF TFCHNOLOGY

AUG 0 6 1992
LIBRARIES

Intelligent Layout for Information Display:
An Approach Using Constraint and
Case-based Reasoning

by Grace Colby

Submitted to the Media Arts and Sciences Section, School of Architecture

and Planning, on May 8, 1992 in partial fulfillment of the requirements of the

degree of Master of Science at the Massachusetts Institute of Technology.

Abstract

There is an increasing need for computer systems that contain graphic design

intelligence. Current electronic information technology creates situations

where the expertise of a graphic designer is sorely needed but the information

is transferred and displayed so rapidly that the involvement of a graphic

designers is precluded. This thesis presents an approach to representing
graphic design intelligence in a system that automatically generates layouts
for text and image information. The approach uses two artificial intelligence

techniques: constraints and case-based reasoning. The approach also includes
use of a general design knowledge base that contains knowledge of layout
elements. grids and rules of legibility. The system makes design decisions
based on layout content structure. The prototype system can generate new
layouts as well as modify layouts in a dynamic display environment. The
contribution of this research lies in culling layout design knowledge that can

be represented using existing artificial intelligence technology and
demonstrating how this knowledge can be used to solve layout problems
automatically.

Thesis Supervisor: Muriel Cooper, BFA
Title: Professor of Visual Studies

This work was supported in part by Bitstream, Digital Equipment Corporation,
Hewlett-Packard, Hitachi, NYNEX, Sony and the Rome Air Development Center
(RADC) of the Air Force System Command the Defense Advance Research Projects
Agency (DARPA) under contract No. F30602-89-0022. The views and conclusions in
this document are those of the author and should not be interpreted as necessarily
representing the official policies, express or implied, of the Rome Air Development
Center (RADC) of the Air Force Systems Command, the Defense Advanced
Research Projects Agency (DARPA), or the United States Government.

Intelligent Layout for Information Display

Intelligent Layout for Information Display:
An Approach Using Constraints and
Case-Based Reasoning

by Grace Colby

The following people have served as readers for this thesis.

Henry Lieberman, H.D.R

Researci S'l tist, MIT Media Laboratory

/

Jock Mackinlay, Ph.D.

Member of the Research Staff, Xerox PARC

Intelligent Layout for Information Display

Acknowledgments

Many people have contributed to this work. I would especially like to like to
thank Muriel Cooper for providing an environment where I could grow both

as a designer and as an encoder of design.

I would also like to thank:

Ron MacNeil, Henry Lieberman, Louie Weitzman, and David Small for

their advice and assistance throughout this project.

Those outside of the Media Lab who have taken time and interest in this

project: Jock Mackinlay and Joe Marks.

My fellow graduate students at the Visible Language Workshop - Didier

Bardon, Michelle Fineblum, Steve Librande, Laura Scholl, Bob Sabiston,

David Young.

Members of CGWII for their effort in encoding layout cases - Karen

Donoghue, Craig Kanarick, B.C. Krishna, Alice Lei, and Alan Turransky.

Michael Johnson for the development of "BWI."

Amy Freeman for those last minute Fed-exes.

Linda Peterson for all her help.

Paula White for her editorial assistance.

Elizabeth Glenewinkel for her moral support.

My family: Coco, Gene, Caspar, Ogg, Judy, Mig, Skeeter, Daniel-Guy, and

Cincy for their tremendous support throughout this endeavor.

Intelligent Layout for Information Display

Contents

Chapter 1
Introduction

Chapter 2

System Capabilities

Chapter 3
Approach

Chapter 4

Related Research

Chapter 5
How It Works

Chapter 6
Evaluation and Conclusion

Bibliography

Intelligent Layout for Information Display

6

12

20

32

36

66

75

Chapter 1 Introduction

There is an increasing need for computer systems that contain graphic design

intelligence. This thesis presents an approach to representing graphic design

knowledge in a computer system that can automatically generate layouts of text

and image information. This document describes the approach and a prototype

system that was developed to demonstrate it's utility.

Problem and Motivation
Current electronic information technology provides the ability to generate,

transfer, customize, and display visual information rapidly. News information

can be customized for the individual and delivered electronically [BACK 83].

Hypermedia documents can be edited on the fly to accommodate a user's

interests and cognitive skills [ROBN 91] [FINB 91], and users can manipulate

real-time data. These new capabilities present a plethora of visual

communication problems including illegible text and poorly organized

information. Traditional graphic design is rich with methods for solving these

visual communication problems. Unfortunately, the many variables implicit in

this new technology preclude the involvement of a graphic designer to

formulate the necessary individual solutions [COOP 89]. This predicament

points to the need for computer systems that contain graphic design knowledge

and can automatically generate well designed displays of information.

A number of researchers have investigated the problem of encoding graphic

design knowledge for the automatic generation of visual information displays.

Most of this work [MACK 86] [MARK 90] has focused on chart and diagram

design. The research presented in this thesis focuses on encoding knowledge

about the layout of text and image information to be displayed on a computer

screen.

The layout of text and image information is traditionally referred to as "page

layout." Good page layout design is critical to the communication effectiveness

of visual information. Although the research presented in this thesis is applied

to information that will be displayed on a computer screen, the graphic design

knowledge that is used has its roots in page layout.

In traditional print media, graphic designers take the given content of a book or

magazine and lay out each page to make the information understandable and to

Intelligent Layout for Information Display

communicate the appropriate overall message. The designer carefully chooses

the color, size, and position of individual elements such as photographs and

text to: visually structure the information so that it reflects the content structure,

ensure legibility, and create an overall look that conveys the nature of the

information. These characteristics are certainly desirable in the presentation of

information on computer displays.

There are many aspects of generating layouts for text and image information.

For instance, the information itself must be developed appropriately for the

given audience and intended message and an appropriate interaction strategy

must be developed if the information is to be interactive. In addition, the visual

appearance of the information must be specified. This thesis concentrates on

this last aspect of generating layouts for text and image information displays:

designing the visual layout of the information.

Approach
This thesis presents an approach to representing graphic design knowledge

about text and image layout. The prototype system, LIGA (Layout Intelligence

for Graphics Automation), was developed by the author to demonstrate this

approach. The system contains graphic design knowledge and can use this

knowledge to generate layouts as well as adapt layouts in the event the display

environment changes. Figure 1.la-c shows an example of what the system can

produce. Figure 1.1 a shows text and image content that needs to be laid out.

Figure 1. 1b shows the layout that LIGA generated for the content. Figure 1. lc

shows the layout that LIGA generated when the display area was reduced.

Virtual Frame Buffers -
and Tiled Displays h -

Presentation Agenda ...D..p..

6000x200 Display u

Adaptive Layout

Real ti New Display A:b.

World Weather Data....

Managing Visual Compexity
High LvlInterfa: M
Multi-layered Map Data

Adaptive Text and Graphics

Intelligent Graphics
Multimedia Editing

and Designing
Designing by Example

(a) Content to be laid out (b) Layout generated by LIGA (c) Modified layout

Figure 1.1 a-c Shows an example of what the LIGA system can produce.

Intelligent Layout for Information Display

The approach to representing design knowledge for generating layouts is four-

fold. The approach uses case-based reasoning, constraints, a general design

knowledge base, and knowledge of layout content structure. Figure 1.2 shows

how these approaches are related in the prototype system.

Constraint System Display

Figure 1.2 The components of the LIGA prototype correspond to the approach. The
approach uses a case library, constraints, a general knowledge base, and layout
content knowledge.

Case-based reasoning

Case-based reasoning has been included in this approach because it is a good

match to the natural layout design process where knowledge is best expressed

as specific examples rather that as general rules. Case-based reasoning is a

problem solving method that makes decisions based on prior examples or

"cases." In LIGA, example layouts are used as cases.

Constraints
The second approach of this thesis is to use constraints to represent the

arrangement of layout elements. Constraints are an artificial intelligence

Intelligent Layout for Information Display

technique that specifies values as relationships rather than hard-coded

numbers. This technique has been used successfully by other researchers to

encode graphic design knowledge. [MACN 90], [WEIT 88]. Figure 1.3

shows some relationships in a layout that can be expressed using constraints.

Xtype p
.

2X

............ ~. 4~

X

2X

/ 2X

Figure 1.3 The layout elements have proportional relationships that can be

represented in the system using constraints. Reproduced from [CART 85].

General Design Knowledge

The third aspect of this thesis approach is to represent general knowledge

about layout design. Because it is difficult to express design knowledge as

general rules, this knowledge is limited. This limited set of knowledge

includes properties of graphic elements and layout grids, and rules of text

legibility. A taxonomy of layout elements has been developed as part of this

research. The taxonomy contains descriptions of the type of elements that win

a layout and the properties of these elements. Figure 1.4 shows the taxonomy

and graphic element properties. This design knowledge is based on the

author's experience, anecdotal evidence, and cited references.

Intelligent Layout for Information Display

basic visual element

x1, x2, yl, y2,
width, height, area

text-element rule-bar-element image-element white-space

red, green, blue, red, green, blue, width-height-ratio (no unique slots)
transparency transparency image-path-name

typeface
point-size
leading
style
letter-space
text-file

font-anatomy-mixin

legibility-mixin

Figure 1.4 The taxonomy of layout elements that is represented in LIGA.

This information is stored in LIGA's general knowledge base. This general

design knowledge proves to be very powerful in the system. It allows the

representation of expert graphic design knowledge. In particular, the

representation of layout grid properties and methods for constructing grids are

included in the system. These layout grids will have knowledge of the

information that is placed on them.

The general knowledge base also includes detailed descriptions of typographic

letterform. This information is often used by expert designers to make design

decisions. Figure 1.5 shows the properties of letterforms that are represented

in the prototype system.

Intelligent Layout for information Display

M
meanline

stroke baseline
width

Figure 1.5 The properties of typographic letterform that are represented in LIGA.

Knowledge of content

The fourth part of this approach is to make layout decisions based on the

logical structure an information types of the layout content. This approach,

too, has been used successfully by other researchers in this field [MACK 86],

[FEIN 88]. This content information is used as criteria for selecting a layout

case that will be used to solve a new layout problem.

Document structure
This thesis includes the following. Chapter 2 presents an example of the

prototype system capabilities. Chapter 3 gives a rationale for the approach.

Relevant research is reviewed in Chapter 4. A technical explanation of how

LIGA works is given in Chapter 5. Finally, the approach is evaluated in

Chapter 6.

Intelligent Layout for Information Display

Chapter 2 Overview of Project

System Capabilities

The prototype system, LIGA, demonstrates the use of case-based reasoning

and constraints for representing layout design knowledge. The goal of the

system is to produce layouts that reflect the logical structure of the content and

are legible for the given viewing context. The system can generate effective

layouts of information as well as adapt layouts on the fly to accommodate

changes in the presentation environment. Such changes might occur when a

display window is resized by a user. An additional goal of the system is to

ensure that an adapted layout is consistent in style with the original.

LIGA generates new layouts by modifying example layouts from its case

library. Example layouts, or cases, are represented in the system using

constraints. The constraints describe the visual relationship between the

elements within the layout. The cases are not mere templates but robust

representations of the underlying relationships between design elements. The

cases also contain information about the logical structure and information types

of the layout content. The system uses this content information to find an

appropriate case for a new layout problem. The LIGA system adapts layouts

by retracting dimensions that have changed in the layout, establishing new

values for those dimensions, and recalculating values for the layout

components based on the case constraints. The system has a general

knowledge base that contains rules of text legibility and grid design. This

knowledge ensures that text is readable and that the information will fit within

the allotted area. The case constraints maintain an effective visual structure as

well as the consistent style of a layout.

A specific example of interaction and results

The LIGA system can take text and image information as input and generate a

layout for that information. Figure 2.1 shows some text and images that need

to be laid out. This information describes the agenda for a Visible Language

Workshop presentation attended by research sponsors. Figure 2.2 shows the

layout that LIGA generated for this content. LIGA goes through two basic

steps in solving a layout problem. These steps are: finding an appropriate

Intelligent Layout for Information Display

example layout in the case library and applying the knowledge of that case to

the content of the layout problem. The remainder of this section gives a

description of the process that the LIGA system went through to generate this

layout. An example is also given of how LIGA adapted the layout to

accommodate a reduction in available display area.

Virtual Frame Buffers

and Tiled Displays

Presentation Agenda

6000x2000 Display

Adaptive Layout

Real-timre News Display

World Weather Data

Managing Visual Complexity

High Level Interface

Multi-layered Map Data

Adaptive Text and Graphics

Intelligent Graphics

Multimedia Editing

and Designing

Designing by Example

Figure 2.1 The text and image content for the Presentation Agenda layout problem.

Virtual

Frame Buffers

Tied Displays
and~~ gen.......................Til.d.Displays...

........1 1 1
........

............. I ..

.. a y .. .

..........I ..W... ... a..
........

...............................---

ge
.............

..................................... _I _ _ .. - 1. -
.. - - -

r:,Mrg and
01111161anirv

...........

tY
ExwnOe..........

............

. .. . LI v e
.. n... r.. a c..

.... J ...

... y.. red...
M.p .D

Ad...pt..ve.
Text and..........

.. r. . p.... .. e

Figure 2.2 The layout that LIGA generated for the Presentation Agenda.

Intelligent Layout for Information Display

Presentzson Agenda

Input data
Before LIGA can solve the layout problem, it must be provided with the

following data: the logical structure and information types of the content, the

size of the available layout area, and the context in which the information will

be viewed. The logical structure of the content describes the hierarchical and

relevancy relationships between content elements. Information type specifies

whether a piece of content is an image or text. The content of the Presentation

Agenda consists of a title, a subtitle, and three categories of text with

accompanying images. The logical structure of the content is a four-level

hierarchy with relevancy relationships between specific text and image

elements at the third and fourth levels. Figure 2.3 shows the logical

representation of the Presentation Agenda content structure. The available

layout area for the Presentation Agenda is 3500 x 2048 pixels. The layout will

be part of a presentation - viewers will stand about six feet away from the

display. Viewing context information is used by the rules of text legibility to

determine readable text sizes.

Virtual Frame Buffers
and Tiled Displays

9
Presentation Agenda

6000x2000 Display

Adaptive Real-time World
Layout News Weather

Display Data

Managing Visual
Complexity

High Multi-layered Adaptive
Level Map Data Text and
Interface Graphics

Intelligent Graphics

Multimedia
Editing and
Designing

Figure 2.3 The logical structure of the Presentation Agenda layout content is a four-
level hierarchy with relevant text and image pairs at the third and fourth levels.

Intelligent Layout for Information Display

Designing
by
Example

Selecting a case

The first step in solving the layout problem is to search through the case library

for a case that can be modified to the new content. LIGA searches for a layout

with a logical structure and information types similar to the layout problem.

The case library for this example contains five different layouts. Figure 2.4

shows the example layouts in LIGA's case library.

"P- IW"tin DataPro Newsletter bp of
Systm -- ~~~ 0""

2-

26=-- -

Case #4aCase##

Figure 2.4 The a t e L ' s r Caase #2

u mases. T eC ase h

Fure 2 4 he% laotcssiFaG' aelbay

problem. LIGA selects the third case as appropriate to solve the problem. This

case also has a three level hierarchy and uses text with accompanying images.

Intelligent Layout for Information Display

Applying case knowledge
Once a solution case has been found, the knowledge from the case is applied to

the unformed content. This knowledge consists of functions that generate a

layout grid and graphic objects, and apply constraints to the attributes of those

objects. The constraints, along with the system's general knowledge of text

legibility, calculate the size, color, and position for each element in the layout.

Following are two examples of the constraints that are part of the knowledge

for case #3. The LIGA system uses constraints to encode typical geometric

relationships as well as relationships that are unique to graphic design. The

relationships am maintained when a case knowledge is applied to a new

problem and when a layout is adapted for a new display area. For example,

figure 2.5 shows a typical geometric relationship in which image size is a

function of the grid column width. Figure 2.6 shows a visual relationship that

is unique to graphic design: the case layout specifies that the height of the

graphic rule equals the width of the stroke of the title text. The LIGA system

contains detailed representations of typographic letterform enabling refined

design knowledge to be encoded.

rbJW
FrnT*Eluffem 1 Ai

led Displays

Figure 2.5 The underlying grid of the original (left) and adapted (right) layouts. The
sizes of the images in the layout are constrained to the grid column width.

Virtual Presentation Agenda
Frame Buffers

Figure 2.6 An example of a refined design constraint. The height of the graphic rule
equals the width of the stroke of the title text.

Intelligent Layout for Information Display

Displaying a layotA

When graphic objects have been generated for all pieces of the content, the

layout is displayed. Figure 2.2 shows the layout that was generated by

applying the knowledge from case #3 to the content of the Presentation

Agenda.

Adapting a layout

The LIGA system can also adapt a layout if the display environment for that

layout changes. In this example, that layout of the Presentation Agenda is

displayed next to an enlarged image form the agenda. Figure 2.7 show this

display. During the presentation to research sponsors, an additional image

from the project list is enlarged and displayed on the screen. Figure 2.8 shows

that this image occupies one half of the area formerly used for the project list.

The layout area has been reduced and its proportions have changed; it is now

tall and narrow rather than long and wide.

...
.................V irw al

....Frarne Buff wend r-Z-7 , F777Tiled Displays i -.....
.......... -LA-A 1,404-
....

...

L J L J I - -Ado"I -- -.-- -11 ---............... --........... --.................................. ... -............ --......................... ---...................... -...........
Figure 2.7 The Presentation Agenda is displayed alongside an enlarged image from
the agenda.

..........
.............................I ...-...E7 E7 0 C = X-1 -X............ -................................... ---................... -....... 11 --..........I --........0-...... --....... -...... --..... -........ --...... -... ... -........... ---.... -....... -.....DOW --............... --- - --....... ... --....-..0 U -- -...... I.- I -........ -...... -........ -....I -... -... -..... -.......-------------- J

Figure 2.8 When a new image is enlarged and added to the display, the available area
for the Presentation Agenda layout is reduced.

Intelligent Layout for Information Display

The LIGA system adapts the layout by retracting the values from width and

height of the layout area, and replacing them with the new dimensions. This

causes other dimensions in the layout to change. Initially the rules of text

legibility reduce the text size so that information will fit in the smaller area. The

system is careful not to reduce the size below the minimum threshold of

legibility for the given viewing context. The rules of legibility are also

responsible for reducing the number of columns in the grid from four to three.

This change was made to ensure a wide enough column for legible text. The

size and position of all other layout elements are then adjusted according to the

case constraints. The constraints ensure that important design relationships are

maintained, for example, the red rule is still the width of columns that have

information underneath it, and the relative position of images with text labels is

the same. The case knowledge along with the rules of legibility can redesign

the layout to accommodate the reduction in display area. Figure 2.9 shows the

resulting layout.

Vhl _____________
Fraie Bufhe
and
Tibd MIap" .,X

Figure 2.9 LIGA generated this layout to accommodate the reduction in display area.

Although the adapted layout is different fmm the original, the system has

adhered to the goals of maintaining legibility, visual structure, and design

style. The text size and positions of images have changed, but the visual

structure still shows that there are three major categories of information. The

graphic style of the layout has been maintained - the use of typeface, graphic

rule, and white space is consistent with the original layout.

Intelligent Layout for Information Display

The case library in this example contains five layout cases. This number of

cases is sufficient to demonstrate the use of content logical structure and

information types for finding a case solution. The cases show a variety of

logical structures and use of text and images. But the variations are not so

disparate that the matching strategy is not challenged. Full implementation of

such an automatic layout system would require the development of a more

extensive case library. Chapter 6, "Evaluation and Conclusion," discusses

how the matching strategy might be further developed to sort through a very

large case library.

A detailed description of how LIGA generated the layouts that are presented in

this chapter can be found in Chapter 5, "How It Works."

Intelligent Layout for Information Display

Chapter 3 Approach

A number of researchers have investigated the problem of encoding graphic

design knowledge for the automatic generation of visual information displays.

Most of this work has focused on chart and diagram design. The research

presented in this thesis focuses on encoding knowledge about the layout of text

and image information.

Encoding graphic design knowledge Is difficult

The need for computer systems that contain design knowledge was identified

as soon as the technology was developed to generate, transmit, and display

information rapidly. Researchers have found it difficult to develop expert

systems that contain visual design knowledge. Expert systems are developed

by obtaining knowledge from a human expert about a particular domain and

encoding that knowledge into a form that a computer can use to solve problems

[LUGE 89]. This development process "breaks down" for domains, such as

graphic design, that involve visual knowledge [COOP 89] [LIEB 88]. A

predominant type of expert system is a rule-based system where knowledge is

represented at a high level in the form of if-then rules. For example, a car

repair expert system contains the rule "if the engine is getting gas, and the

engine will turn over, then the problem is the spark plugs" [LUGE 89].

Although expert graphic designers can easily generate and critique visual

examples, it is difficult for them to formulate their knowledge into if-then rules

like the one above. Many design rules are context dependent. The rule "if the

text is more important, then make it bigger" would not alone solve a layout

problem. Other factors such as color, position, weight, and amount of text

would also affect decisions about how to specify more important text.

There have been attempts by designers to formalize design knowledge. These

attempts often come in the form of books which, just like the experts that are

interviewed in person, present interesting visual examples but do not offer a

cohesive theory or methodology. The authors of these books will offer design

principles but this knowledge is not prescriptive advice that can be encoded

into an expert system [CASN 91].

The difficulty for designers in formulating higher level rules stems from both

the visual nature and the maturation of the discipline. Graphic designers use

Intelligent Layout for Information Display

visual knowledge that is complex and not well understood even by visual

perception researchers. In addition, graphic design as a profession is relatively

young. The entire history of the field can be spanned by living memory. Many

of the founders of graphic design, some of who are still practicing, did not

acquire their knowledge through formal graphic design training but by a

combination of training in fine arts, talent, and intuition [HURL 77]. It is just

within the last decade that the graphic design profession has started to move

toward formalizing its theories and methodologies. One impetus for this move

toward formalization is the advent of information and artificial intelligence

technologies [COOP 89].

The Approach

This thesis presents an approach to representing graphic design knowledge

about text and image layout. The primary computational techniques used in this

approach are case-based reasoning and constraints. Case-based reasoning is a

problem solving method that makes decisions based on prior examples or

"cases." This method is particularly appropriate for domains such as graphic

design where it is difficult to represent knowledge as discrete rules. In the

approach presented here, example layouts are used as the cases. The visual

knowledge for each layout case is represented by using constraints.

Constraints are an artificial intelligence method for representing relationships

between variables. This technique is appropriate for representing the modular

visual relationships in a layout. A case-based reasoner requires that features of

the input problem and cases be characterized. These features are used to match

problems with appropriate case solutions. The approach is to represent the

logical structure and information types of the input problem content. The

approach also represents general knowledge about layout design. This general

knowledge includes rules of text legibility, knowledge of layout grids and

knowledge of the types of graphic elements that will appear in a layout. The

general knowledge is used in conjunction with the specific layout examples to

solve new layout problems.

Case-based reasoning

Graphic design is not the only discipline that uses knowledge that is difficult to

express at a higher level. Many domains involve knowledge that is either too

difficult to acquire from an expert or is too complex to be formalized as rules.

Intelligent Layout for Information Display 21

An artificial intelligence technique, case-based reasoning, has been developed

by Schank, Kolodner, and Reiesbeck [RIES 89] to address these difficult

knowledge acquisition and representation problems. Case-based reasoning is a

problem solving method that reasons, or makes decisions, based on prior

examples. A case describes a problem and an appropriate solution. New

problems are solved by identifying relevant cases from a case library and

adapting them to the new situation. MacNeil [MACN 90] proposed the use of

case-based reasoning to represent design knowledge and asserts that this

method is a good match to the natural processes used in design.

For this research, the cases are example layouts of information. In order for a

case-based reasoner to find the appropriate case, the system must know what

features of input problems and cases to compare when searching for an

appropriate match. When an appropriate case is found, the knowledge from

that case is applied to solve the new problem. The approach of this research is

twofold: to represent the case-specific design knowledge using constraints,

and to match input problems to cases based on the logical structure and

information types of the layout content.

Representing visual relationships via constraints
The visual relationships between elements within a case layout are represented

using constraints. Although it may be difficult for a designer to explain why

she made a certain image a particular size and placed it in a particular position,

the visual decisions are not arbitrary. The size and placement of graphic

elements are often based on some sort of modular system. A module is a unit

of measure that is combined and repeated to create a whole. Modular

relationships can be found in molecular, crystal, and cellular structures.

Designers try to create a similar order in layout design [GERS 73]

[MEGG 89]. When designing a layout, a designer will try to create an orderly

combination of related parts. The order may be based on an underlying grid or

on a relationship among the graphic elements themselves. Figure 3.1 shows

the underlying modular relationship between the elements in a layout. The

basic module is "x." The size and placement of other elements in the layout are

a function of this module. The height of the stroke of the letter "T"' is two times

the module "x," the distances between lines of text are "x" and "2x," and the

upper part of the letter "R" is "2x."

Intelligent Layout for Information Display

Figure 3.1 The elements in this layout have underlying modular relationships.
Reproduced from [CART 85].

An existing artificial intelligence technique that can be used to represent these

kinds of modular visual relationships is constraints. Constraint systems allow

one to represent relationships between variables and the relationships can be

viewed in several ways. For example, the relationship "a + b = c" is also

viewed by the system as "a = c - b" and "b = c - a." When any two of the three

values are available to the system, the third will be computed.

The following shows how constraints can be used to represent the design of

layout elements. Figure 3.2 shows a text element and image element from a

layout case. The text lies on top of the image and is placed in the upper left

hand comer of it. The layout of these two elements can be described by the

following relationships:

- the left edge of the text = the left edge of the image + 1/2 the width of the

image.

- the top of the text element = the top of the image element plus the text size

of the text element.

- the right edge of the text element = the right edge of the image element.

- the bottom of the text element = the bottom of the image element.

- image width = image height.

Intelligent Layout for Information Display

1/2 width -

... .text size

.....pl y t e x t s iz e

width x

~height - x

Figure 3.2 A text and image from a layout case. The visual relationship between the
two elements can be described by constraints.

If these relationships were encoded into a system as constraints, the system

would be able to maintain the design relationships when the size of the text or

the size of the image changed. This research proposes the use of constraints to

represent the visual relationships between graphic elements.

Logical structure and information types of layout content

In order for a case-based reasoner to find a solution case, the input problem

must be characterized. The relevant features of the problem must be made

explicit. The system must also know how to compare the features of the input

problem to the cases in order to find an appropriate solution. The approach of

this research is to represent the logical structure and the information types of

the layout content and use these characteristics to match input layout problems

to case solutions. Logical structure describes the hierarchy and relevancy

relationships between content components. Hierarchy describes superior and

subordinate relationships. Relevancy describes which pieces of content are

relevant to one another. Images will often have relevancy relationships to the

pieces of text that describe them. Figure 3.3 shows two layout elements that

have a relevancy relationship. The image is neither superior nor subordinate to

its label, but is relevant to it. Information type is also used to describe input

content. Information type specifies whether a piece of content is text or an

image.

Intelligent Layout for Information Display

This text and
image are
relevant to

one another.
IFaI4kwu

SY ma D.ta Exmple

=., Textand
Data Gtaphice

Figure 3.3. This text and image have a relevant relationship, not a hierarchical
relationship.

A designer uses information about content logical structure and information

types to make layout decisions. One goal of layout design is to make the visual

structure of the layout reflect the logical structure of the information. The

designer also handles text and images differently in a layout so it is important

to represent this information.

There are other attributes of content such as subject matter and appearance of

images, that designers use to make layout decisions. These aspects of content

will not be addressed in this thesis.

General design knowledge
Although most graphic design knowledge is context dependent, there is some

higher level knowledge about information layout design. This knowledge

includes knowledge of layout grids, rules of text legibility, and knowledge of

the types of graphic elements that will appear in a layout. Although this

knowledge cannot be expressed as if-then rules, it is applicable to many layout

situations and can be represented independently from the layout cases.

Grids
Graphic designers use grids as an ordering system to organize the presentation

of visual information. A grid is a common method for creating modular

relationships in a layout. A grid divides a two-dimensional space into equal

columns and equal rows. The rows and columns are separated by an

intermediate space, or gutter, so that columns of text do not touch each other

and legibility is preserved. The use of the grid makes it easier for a designer to

Intelligent Layout for Information Display 25

give the layout a rational organization. This orderliness helps the viewer

perceive the information as being credible. "Information presented [clearly and

logically] will not only be read more quickly and easily but the information will

also be better understood and retained in memory." [MULL 81].

A grid used for layout design has unique properties so it is necessary and

useful to represent this knowledge. The general definition of a grid is "a

pattern of horizontal and vertical lines forming squares of uniform size..."

[WEBS 85]. A layout grid has more specific attributes than those described in

the dictionary definition. Figure 3.4 shows a typical layout grid. In addition to

a pattern of horizontal and vertical lines, a layout grid has margins, gutters,

columns and/or rows. The grid units are not required to be square, and there

are not necessarily both horizontal and vertical grid divisions. Although layout

grids vary in proportion and in the number of horizontal and vertical divisions,

the grid components and method of construction remain constant for all layout

grids.

Figure 3.4 A typical layout grid provides margins and divides the layout area into units
of equal measure.

Text legibility

The legibility of text is affected by many factors. Some of these factors are

letter size, line length, color, line spacing, letter form, justification, and

audience. The term legibility, as used hem, describes not only whether letters

and words can be discerned, but how comfortable the text is to read. Poorly

laid out text can cause the reader fatigue or interfere with comprehension of the

material. [CRAG 71]. This research focuses on two factors that affect

Intelligent Layout for Information Display

legibility: letter size and line length. These two aspects are chosen because the

rules of legibility for these factors are well established and can be represented

with existing artificial intelligence technology.

Text size

The readable size of text depends on the viewing context of the layout. For

example, the text size used for magazine and newspaper articles is usually

between 9 to 12 point. The text sizes that would be readable for a poster would

be larger. The approach of this research is to represent the ranges of acceptable

text sizes for different viewing contexts. Two viewing contexts have been

defined for this research. These am "demo" and "application." The "demo"

context refers to a situation where the information is presented to a group of

viewers. This viewing context assumes a viewing distance of six to eight feet.

The "application" context refers to a situation where the viewer is at a distance

of about 12 inches, like that of someone using an application on a desktop

computer. In general, the allowable text sizes for the "demo" context are larger

than that of the "application" context, therefore input must specify the viewing

context of the layout problem. This data about acceptable letter sizes is part of

the general design knowledge base.

Line length

Line length affects how comfortable it is to read text. Lines of text must not be

too short or too long. Lines that are too long require the reader to actually

move his head to read the entire line. This causes fatigue and creates

interruptions of thought while moving from line to line. Lines that are too short

often break up words or phrases that are generally read as a unit.

There are no measurements for the minimum and maximum lengths of a line.

The rules of legibility for line length concem the number of characters per line,

not the actual measurement of the line. For print material, the maximum

number of characters per line for readable text is 65. This figure is based on

perceptual studies [CRAG 71]. A rule of thumb that designers use for

minimum line length is to set a line at no less than x picas wide for type size x.

For example, the minimum line length for 12 point type is 12 picas. This rule

can be translated as a minimum of 27 characters per line. The minimum line

length for a heading or title would be less than 27 characters per line.

Intelligent Layout for Information Display

Although these rules are based on knowledge of text legibility for print

material, they are still applicable to text displayed on a computer scmen.

Further studies may reveal that the exact thresholds for legibility may be

different for light display rather than a reflective display, but letter size and

characters per line will still affect legibility [RUBE 88]. The specific thresholds

can be adjusted based on conclusive research for a light display legibility, but

the method of implementing these rules will be the same.

Knowledge of layout elements
Included in the general knowledge about text and image layout is knowledge of

what types of visual elements appear in a layout. The elements that will appear

in a layout will be one of three types: text, image, or abstract mark. The

general knowledge includes the properties of each of these kinds of elements.

Although this knowledge seems like common sense, it needs to be made

explicit in an intelligent computer system. The system needs to know that a

color can be assigned to a piece of text or a graphic bar but not to a

photograph. Likewise, an image will have a proportion that needs to be

maintained regardless of desired modular relationships, but a graphic bar does

not. Text has a typeface, but other layout elements do not have this property.

In fact, text has many more properties than the other types of layout elements.

Text will appear in a layout as typographic letterforms. The general knowledge

includes detailed knowledge of typographic letterforms. The purpose of having

this information available in the system is to allow the expression of modular

relationships based on these letterform properties. Designers often make size

and placement decisions of layout elements based on the measurements of the

typographic letterforms being used in the layout. For example, in the layout

shown in figure 3.5, the designer has specified that the height of the graphic

bar is equal to the width of the stroke of the title text. Figure 3.6 shows a

layout in which the image is aligned with the top of the lower-case letters of the

accompanying text. The designer chose to align by this measums because the

stronger horizontal axis of the text is created by the top of the lower-case

letters, not the upper-case letters. The lower-case letters appear more

frequently than the upper-case letters. These types of decisions are made to

create visual unity within a layout and are consistent with the concept of visual

modularity that was discussed earlier in this chapter.

Intelligent Layout for Information Display

features r. How to Pick the PE
Camera Bag

A guide to features, materials, and
Hit Us Wh Your Best Shot so you can bag the best.

eye light get your work onto these pages. *0

RN.:

Figure 3.5. In this layout, the designer has specified that the height of the rule is
equal to the width of the stroke of the large numbers.

I I.

Figure 3.6 In this layout, the designer has specified that the top of the lower-case
letters aligns with the top of the accompanying image.

Figure 3.7 shows the parts of the letterform that are represented in system.

Below are definitions of each of these parts of the letterform.

,meanline

stroke
width

Figure 3.7 The parts of the typographic letterform.

Intelligent Layout for Information Display

I he Chrysler ullding in New
York was frowned on by the
functionalists of design, but
its ornament and chromium
surfaces were the apex of Art
Deco architectural style.

..........

Capital height - the height of the capital letter of a typeface.

X-height - refers to lower-case letters only. It is the height of the main element

of the lower-case letterform and is equivalent to the lower-case "x." X-height

is significant because it creates the strongest horizontal axis in a line of text that

is set in upper and lower case.

Meanline - the top of the lower-case letters.

Stroke-width - the thickness of the stroke of the letterform. This measure is

used primarily for sans serif faces where the stroke is more nearly uniform in

thickness. This is equivalent to the width of a lower-case "i."

Baseline - the line where the base of the letter sits.

Body-height - the distance between the tallest ascender and the longest

descender. No individual letter fills the entire body of type. Traditionally, the

point size of type is equal to the body height. Current digitized and outline

typefaces do not always follow this convention, so it is necessary to represent

this value independently of type size.

Role of the case library

The approach described here uses case-based reasoning to represent layout

knowledge. A case library will contain several example layouts. It is important

to consider what types of layouts are represented in the case library. The

choice of example layouts will depend upon the use of the intelligent layout

system. If the system was being used to generate personalized newspapers, the

style of all the layouts that the system produced should be the same. If the

system was being used by a designer to get ideas of how to solve a layout

problem, then the case library should have a variety of styles among the case

layouts.

A layout style is the consistent use of grid structure, typography, colors, and

position of key elements. A layout style will be developed by a designer to

unify a series of layouts and help identify them as being related. A commonly

known use of a visual style is corporate graphic program. The example shown

in Chapter 2 uses a case library where the case layouts all share the same style.

Although graphic style is not represented explicitly in this research, the

organization of case libraries with layouts of the same styles approaches this

Intelligent Layout for Information Display

issue. In fact, when layout cases share the same style, they can sometimes

share the same specific knowledge. Figure 3.8 shows two example layouts

that are used as cases. The layouts display different content but both have a

title with a subtitle. The same graphic conventions are used in both layouts to

show the title and the subtitle. This layout knowledge about the title and

subtitle can be represented once in the system and shared by more than one

case. This is a way of representing the design knowledge that the designer

intended the title/subtitle format to be used in several situations.

virtulI __________________A_____.__

Frame Buffters
and

Y:.-... .i ~
Tild is las ::::: :: ftvU

.. - 0 '

...............

Figre3 8Boh o teselaous ue he am.foma.toshw.he.ite.ad.ubtt..o
the......... content.......

Although~~.......... the aprochprsete.i. tisthsi.oe.nt.ttmp.t.rprset.l
types~ ~ ~............ of........ laotdsg.nwege.h. nweg ht srpeetdcnb

used to generate good layouts....Chptr..HowItWoks".iscsss.owth
layot kowldgetha wasdesribd i ths capte.isencdedint th
protoype ystemand ow te sysem slveslayou.prolems

Intelligent Layout for Information Display

Chapter 4 Related Research

Other researchers have investigated the problem of encoding graphic design

knowledge for the automatic generation of effective visual presentations. Most of

this work has focused on chart and diagram design. Exemplary works on the

encoding of knowledge about chart and diagram include: [KOSA 91] [MARK 90]

[MACK 86] and [KAMA 91]. These researchers have taken many different

approaches to the problem of encoding graphic design knowledge. The approaches

range from the application of language theory to the development of genetic

algorithms that generate diagram layouts.

Although this research shows successful methods for representing graphic design

knowledge for generating network diagrams and bar charts, it is difficult to apply

these strategies directly to page layout design. The design conventions used in page

layout are not as well matched to mathematical methods, such as the Least Squares

Method, as are the design conventions for network diagrams, flow charts, and bar

charts. In addition, these domains have content relationships and graphic

conventions that are mom readily defined using existing artificial intelligence

technology. The purpose of most charts is to show quantitative relationships which

are a natural for computational representation and manipulation. Text and image

layout rarely convey quantitative relationships.

There are three pieces of research that are more closely related to the problems of

page layout design: [BEAC 83] [MACN 90] and [FEIN 88]. The following section

describes some of these different approaches.

Marks and Reiter: "Avoiding Unwanted Conversational Implicatures in Text and

Graphics"
Marks and Reiter [MARK 90] describe their Automated Network-Diagram

Designer (ANDD). The system takes the content of a diagram as input and assigns

appropriate visual attributes to the components. A theory of language conversation

is used as a model for evaluating and correcting the design. This model's goal is to

avoid "unwanted Gricean implicatures." These unwanted implicatures, as applied

to graphics, are redundant visual attributes that imply meaning but have none. This

implied but unintended meaning can confuse the interpreter of a diagram. This

model served as a successful method for encoding the proper use of graphics to

generate effective network diagrams.

Intelligent Layout for Information Display

Kosak, et al: "New Approaches to Automating Network-Diagram Layout"

Kosak, Marks, and Shieber [KOSA 91] present a parallel genetic algorithm which

generates alternative layouts for network diagrams. Design alternatives are

generated and mated until a near optimal layout is found. The mating is directed by

a worth ranking. Alternate layouts are ranked on syntactic, organizational, and

aesthetic criteria. This ranking is used to determine which layouts should be mated

in the hopes of successively producing improved layouts. Although this approach

does not guarantee that an optimal layout will be generated, the worth ranking

proved to be a "robust mechanism" for directing the search.

Weitzman: "Designer: A Knowledge-Based Graphic Design Assistant"

Weitzman's "Designer" [WEIT 88] is a system that critiques the design of a two-

dimensional interface and suggests design alternatives. The alternatives are meant

to improve the design by making it more consistent and visually more effective.

The system uses knowledge of visual communication principles to link visual

relationships to content relationships. For example, "Designer's" principle of

significant difference requires that if two elements are significantly different in

meaning, the visual representation of the elements should also be significantly

different. The principles are applied by using constraints. The system uses both

continuous and discrete constraints. Discrete constraints restrict a variable to be one

value. Continuous constraints allow a variable to span a range of values.

Kamada and Kawal: "A General Framework for Visualizing Abstract Objects and

Relations"
Kamada and Kawai [KAMA 91] describe their visualization framework which

determines a layout of graphical objects under geometric constraints. The

importance of this work resides in the approach to resolving constraint conflicts.

This research introduces the concepts of rigidity of constraints. "Rigid" constraints

must be satisfied exactly, "pliable" constraints may be satisfied approximately.

Conflicting constraints are resolved using the Least Squares Method on the pliable

constraints. Kamada and Kawai show how this method can be applied to constraint

conflicts in tree and network diagrams. Although the Least Squares Method works

for such diagrams, it is not an appropriate strategy for solving constraint conflicts

in page layout problems.

Intelligent Layout for Information Display

Mackinlay: "Automating the Design of Graphical Presentations of Relational

Information"
Mackinlay [MACK 86] describes his APT (A Presentation Tool) which generates

effective charts and graphs. The approach draws on the graphic design principles

of Bertin and on perceptual studies to define graphical languages. These languages

describe the "effectiveness" and "expressiveness" of a graphical presentation by

associating visual properties with a ranking of their most effective use. For

example, size is more effective than color for expressing quantity. This higher level

approach of encoding design knowledge is useful when applied to chart and graph

design. It would be more difficult to apply these principles effectively to the design

of text and image presentations, which do not have as clearly defined relationships

between elements. Although this approach alone would not serve to solve page

layout problems, it would be interesting to discover what complementary

knowledge is needed to do so.

Beach and Stone: "Towards High Quality Illustration"

Beach and Stone [BEAC 83] describe their system for generating scientific

illustrations. This research extends the concept of typographic style sheets to the

format of illustrations. A hierarchical structure is used to describe the semantic

components of an illustration, then varying graphic styles can be applied to it. This

research addresses the issue of viewing context by providing a different style for

different media output. For example, the x and y axes in a graph illustration will be

drawn with a thicker line weight for a 35mm slide than for a journal article. The

approach presented in this thesis also uses knowledge of viewing context to

influence the design choices.

MacNeil: "Adaptive Perspectives: Case-Based Reasoning with TYRO, the

Graphic Designer's Apprentice"
MacNeil [MACN 90] proposes the use of case-based reasoning to represent

graphic design knowledge. His research focuses on how a designer might enter

and refine case knowledge. MacNeil describes a system, TYRO, that allows a

designer to present and revise a design, helping the system to properly generalize

case knowledge. The example design domain used is the layout of a subway map.

MacNeil uses a smaller granularity for case representation than that proposed in

this current thesis. In TYRO, each case contains knowledge of how to do a specific

kind of task for the map layout problem. For example, a case would have

knowledge of adding a new stop to an existing subway map. The underlying

Intelligent Layout for Information Display

representations of visual relationships in the cases are constraints. MacNeil's use

of case-based reasoning served as an important inspiration for the development of

the approach described in this thesis.

Feiner: "A Grid-based Approach to Automating Display Layout"

Feiner [FEIN 88] addresses the problem of encoding page layout expertise in a

prototype that uses knowledge of a layout grid. The system knowledge resides in a

grid prototype that handles text and image content of a certain structure and uses

rules of legibility and viewing context to determine an appropriate column width

and text size for the layout. This thesis shares many approaches with Feiner's

work. The approach presented in this thesis also uses knowledge of layout grids,

text legibility and viewing context, adding knowledge of typographic letterform,

and the encoding of design styles through the layout cases. In addition, LIGA can

alter the number of columns in a grid depending on text legibility criteria.

When evaluating his system, Feiner notes that his system cannot produce a layout

in a situation where the minimum text size has been reached and the text blocks are

still too large to fit within the display area. In its current implementation, LIGA

would also fail in this situation. Future work in this area would include

incorporating knowledge of design compromises.

Intelligent Layout for Information Display

Chapter 5 How it Works

Overview

The prototype system, LIGA demonstrates the use of case-based reasoning

and constraints for representing knowledge of text and image layout. LIGA

consists of six components: a component that represents content structure, a

general knowledge base, a case library, a matching components, a constraint

system, and a display component. The constraint system and display

components were existing, all other components were developed by the author

for this research. Figure 5.1 shows the components of the system and how

they relate to one another.

General
Knowledge
Base

- graphic
elements

- grids

- text
legibility

Content
Knowledge

logical Input
structure
information
types

FCase Library Matching

4- - search
library for
appropriate
case

- apply case
knowledge

Constraint System

Figure 5.1 The system components of LIGA.

Display

Intelligent Layout for Information Display

I

Implementation
LIGA is implemented in an object oriented programming language which

provides a hierarchical structure for object class definitions. This allows the

definition of classes and subclasses where subclasses inherit both attributes, or

"slots," and behaviors, or "methods." The LIGA system is written in Common

LISP and CLOS (Common LISP Object System), and runs on a UNIX

workstation. Layouts are displayed using BadWindows, a C-based system

developed at the Visible Language Workshop. Information is transferred from

the LIGA system to the display system through a LISP-C interpreter.

How it works
Input to the system is the content and context of an unsolved layout problem.

The matching rules and retrieval functions search the case library for a layout

case that has content attributes that are similar to the layout problem. The

general knowledge base contains knowledge of graphic elements, layout grids,

and text legibility. This knowledge, along with the constraint system, is used

to represent the specific design knowledge of the layout cases. When an

appropriate layout case is retrieved, the knowledge from that case is applied to

the layout problem, and specifications for a new layout are generated. The new

layout is then displayed.

A specific example
The remainder of this chapter gives a detailed explanation of the steps that

LIGA goes through to solve a layout problem. The layout problem and

solution that were described in Chapter 2 are used as the example for this

section. Chapter 2 describes a layout problem in which some text and images

need to be laid out for a presentation agenda. Figure 5.2 shows the original

content for the Presentation Agenda, the layout that LIGA generates for it, and

the layout that LIGA generates to accommodate a smaller display area.

Intelligent Layout for Information Display

Virtual Frame Buffers
and Tiled Displays

Presentation Agenda

6000x2000 Display
Adaptive Layout
Real-tie NewsDisplay
World Weathr Da'ta

Managing Visual Complexity
High Level Interface
Multi-layered Map Data
Adaptive Teat and Graphics

Intelligent Graphics
Multimedia Editing

and Designing
Designing by Example

. . . .

Figure 5.2 The content for the Presentation Agenda and the layout that LIGA
generated for it.

The following aspects of how the system works are described in this chapter:

1. Input to the system

2. Finding an appropriate case

3. Case knowledge representation

4. Generating a new layout

5. Adapting an existing layout

6. Displaying a layout

Intelligent Layout for Information Display

VVImd _ _ _ _ _ _ _ _ _ _ _

Frwis. RA M
mide~*

.....-.....

T~dDM

XX:
X.

X
X

1. Input to the system

LIGA requires the following information as input to solve a layout problem:

the display area dimensions, the viewing context for the new layout, and the

actual content for the layout. The content must include information about its

logical structure and information types.

The available display area for the Presentation Agenda is 2048 x 3500 pixels.

The viewing context is "demo" - the information is to be viewed by a group

standing six feet away from the display. The logical structure of the content

is a four-level hierarchy of text with relevant text at the third and fourth

levels.

Viewing context
LIGA allows one of two viewing contexts to be specified. These are "demo"

and "application." The "demo" context refers to a situation where the

information is presented to a group of viewers. This viewing context assumes

a viewing distance of six to eight feet. The "application" context refers to a

situation where the viewer is at a distance of about 12 inches; like that of

someone using an application on a desktop computer. A class is defined

which stores maximum and minimum legible sizes for a particular viewing

context. Instances of these objects are part of the general knowledge base and

serve to represent some of the system's knowledge of text legibility. In

general, the allowable text sizes for the "demo" context are larger than that of

the "application" context. The slots and values of the "demo" viewing

context object are shown below.

demo <viewing-context object>
:context "Demo"
:min-size 30
:max-size 80
:default-size 50

Layout content knowledge
The case-based reasoning method that is used in this system requires that

input problems be characterized and that this information be used to find

appropriate case solutions in the case library. The matching strategy for

LIGA is to find a case that has content logical structure and information

types similar to the input problem. This strategy requires that the content

attributes, logical structure and information type, be represented in the

Intelligent Layout for Information Display

system for both the unsolved layout problems and layout cases. A class,

information-unit, is defined which describes the necessary properties of a

discrete piece of content. Both the input content and layout case content are

represented as a hierarchy of these units. The information-unit class has

methods that make inferences about the slot attributes of the information-unit.

Information-unit
The information-unit class is used to describe both unsolved layout problems

and layout cases. An information-unit represents a discrete part of the layout

content. The complete content of a layout is made up of many information-

units. For example, in the layout shown in Figure 5.3, each discrete piece of

text and each image would be represented by an information unit. Note that

the graphic bar under the words "Presentation Agenda" would not be

represented by an information-unit as it is not part of the original content. These

information-units form a hierarchy that describes the content logical structure.

Virtual Pr--natonAguna

Frane Buff e
and...... iv
Tiled plays . . y

Information-units aig"ini"' Eng

tiLmy MapData Exarnpl

works a*daptv
WeatherTextand

Dan Grapiaa

Figure 5.3 Each discrete piece of text and each image is represented by an
in formation-unit.

The information-unit provides a complete description of a layout component. It

contains the content itself as well as information about the content structure

and graphic representation. Below are the slot attributes of an information-unit.

Information-unit :
content
information-type
supertopic
subtopic
relevant-to
layout-function
layout -obj ect

Intelligent Layout for Information Display

The content slot contains the actual text string or image file of the piece of

content. The value of the information-type slot will be one of the following:

text, paragraph, or image. The supertopic, subtopic, and relevant-to slots are

used to describe the logical structure of the content. The value of these slots

will be a list of information-units. The supertopic and subtopic slots describe the

hierarchical structure of the layout content.

The value of a layout-function slot will be a function that knows how to create

a constrained layout element for its information unit. The resulting element is

then stored in the layout-object slot. Layout cases have values for the layout-

function and layout-object slots. A problem layout only has a value for these

slots after the layout has been solved. Figure 5.4 shows the logical structure

of the input layout content. Each node on the tree represents an information-

unit.

Virtual Frame Buffers
and Tiled Displays

Presentation Agenda

Managing Visual
6000x2000 Display Complexity Intelligent Graphics

Adaptive Real-time World High Multi-layered Adaptive Multimedia Designing
Layout News Weather Level Map Data Text and Editing and by

Display Data Interface Graphics Designing Example

Figure 5.4 The logical structure of the Presentation Agenda content.

Relationship Inferences

The system makes inferences about relationships between information-units.

For example, if information-unit A is the value of the supertopic slot of

information-unit B, then the inference is made that A is a subtopic of B.

Information-unit A is then added to the subtopic list of information-unit B. There is

Intelligent Layout for Information Display

also an inverse relationship for the relevant-to slot. This inferencing allows

one to specify only one direction of the hierarchy when initially instantiating

the layout content. The inferencing on content structure relationships is

necessary because matching is based on all content relationships for each

information-unit.

Intelligent Layout for Information Display

2. Finding an appropriate case

LIGA's first step in solving a layout problem is to search through the case

library for a case that can be modified for the new content. LIGA's case

library contains five example layouts. For the Presentation Agenda layout

problem, LIGA rejected the first two cases in the library and selected the

third case to solve the layout problem.

The case library
The layout cases are organized in the library as a simple list. Figure 5.5

shows the organization of the cases and the case library. Because the

information-units for an individual case are structured hierarchically, the entire

case can be accessed through the top-level information-unit of the case. This list

organization is sufficient for the current implementation of the system. As the

number of cases increases, a more sophisticated organization of the case

library will be required. Cases might be organized by information type, for

example, -so that it would be easier to find cases that contain images. Cases

might also be organized by similar logical structure.

Figure 5.5 The case library is organized as a list of the top-level information-units of
each case. The cases contain a hierarchy of information-units and a set of layout
functions.

Intelligent Layout for Information Display

Searching through the case library
Because the library is organized as a list, the library search function simply

goes through the list linearly. Searching stops when the first matching

solution is found. A case matches a layout problem if the contents of both

have an equal number of hierarchical levels and the information-units on each

level match on information-type, supertopic, subtopic, and relevant-to slots.

Comparing input problem and layout case
When comparing a problem and a case, the search starts at the top of the

hierarchy of the layout and continues down one branch until a test fails or the

bottom of the tree has been reached. In this implementation, the matching

function compares only one branch of the problem to one branch of the case

hierarchy. This requires that the branches within the layout content hierarchy

be of equal depth. This is a rudimentary matching function which could

certainly be further developed to be able to search multi-depth hierarchies.

Comparing information-units
At each level of the hierarchy the information-units are compared. If any pair of

information-units does not match, the case is rejected. The information-units are

compared on the information-type, supertopic, subtopic, and relevant-to slots.

Information-type slots match if their values are equal. That is, the information-

units must be of the same information-type. Supertopic, subtopic, and relevant-to

slots match successfully if they are both "nil" or both have values. The length

of the subtopic slot list, for example, in each information-unit is not considered

in the matching process. This means that a three-level hierarchy with two

nodes on the second level will match a three-level hierarchy with four nodes

on the second level.

Intelligent Layout for Information Display

The specific example
The case library for this example contains five layout cases. Figure 5.6 shows

the example layouts in the library. While searching for a solution to the

Presentation Agenda problem, LIGA rejects case #1 and case #2. LIGA

selects case #3 as the solution.

ftm a "''"'n"" DataPro News #ltr a .

System U e ..-... -

... ,, ..-.- - -g _

t ue

........,,......--.. ..-....

20 ---- === -

Case #4Cae# C.Lase #

Figue 5.#h1 xrpe yusi IA' aelbay

Intelligent Layout for Information Display

Reject case #1
LIGA rejects case #1 because although both this case and the problem have

four-level hierarchies of text, the first case does not have relevant images at

the third and fourth levels. The search fails when the information-units at the

third level of the hierarchy are compared. Figure 5.7 shows the search path

for this case. The case information-unit does not have a value for the relevant-to

slot while the problem information-unit does. Figure 5.8 shows the information-

units that fail to match.

matches b

match

Case #1 Problem

Figure 5.7 The search on case #1 failed at the third level when the information-units did not match.

CASE #1: Level 3 INFO-UNIT PROBLEM: Level 3 INFO-UNIT

"Obstructions"
TEXT
<INFO-UNIT>
(<INFO-UNIT> <INFO-UNIT>)

RELEVANT-TO NIL 4-failed match - op
LAYOUT-FUNCTION

#<Standard-Generic-Function

LAYOUT-BULLETED-LIST (1)>

LAYOUT-OBJECT NIL

CONTENT "6000x2000 Display"

INFO-TYPE TEXT
SUPERTOPIC <INFO-UNIT>
SUBTOPIC (<INFO-UNIT> <INFO-UNIT>

<INFO-UNIT>)
RELEVANT-TO <INFO-UNIT>
LAYOUT-FUNCTION

NIL

LAYOUT-OBJECTNIL

Figure 5.8 For case #1, the information-units fail to match on the relevant-to slot.

Intelligent Layout for Information Display

CONTENT
INFO-TYPE
SUPERTOPIC
SUBTOPIC

Reject case #2

Because case #1 failed, the system goes onto the next case in the library list.

Case #2 also fails to match; it uses a different information type than the

problem content at the third level of the hierarchy. This search fails at the

third level of the hierarchy because the case information-type slot is paragraph

while the problem's information-type is text. Figure 5.9 shows the search path

for this case. This case would have also failed to match because the logical

structure is different that the problem. The case information-unit does not have

a value for the subtopic slot while the problem information-unit does. Figure

5.10 shows the information-unit that fails to match for case #2.

matches b

match

Case #2 Problem

Figure 5.9 The search on case #2 failed at the third level when the information-units did not match.

CASE #2: Level 2 INFO-UNIT PROBLEM: Level 3 INFO-UNIT

"Current research. ."

PARAGRAPH4-- failed match -

<INFO-UNIT>
NIL

RELEVANT-TO NIL
LAYOUT-FUNCTION

#<Standard-Generic-Function
LAYOUT-PARAGRAPH-LIST (1)>

LAYOUT-OBJECT NIL

CONTENT "6000x2000 Display"

INFO-TYPE TEXT

SUPERTOPIC <INFO-UNIT>
SUBTOPIC (<INFO-UNIT> <INFO-UNIT>

<INFO-UNIT>)
RELEVANT-TO <INFO-UNIT>
LAYOUT-FUNCTION

NIL
LAYOUT-OBJECTNIL

Figure 5.10 For case #2, the information-units fail to match on the information-type slot.

Intelligent Layout for Information Display

CONTENT
INFO-TYPE

SUPERTOPIC

SUBTOPIC

Select case #3

LIGA selects case #3 as appropriate to solve the layout problem. The

information-units at each level match on logical structure and information type.

Both the case and the problem are four-level hierarchies of text with relevant

images at the third and fourth levels. Figure 5.11 shows the search path for

this case. Note that the logical structures of the problem and case do not have

to be identical. The problem has eight node pairs at the fourth level while the

case has nine. Figure 5.12 shows the information-units that are compared at the

last level of the hierarchy. When the bottom of the tree is reached without a

failed match, case #3 is selected to solve the layout problem.

matches 1

matches 0

-4- matches r

Case #3 Problem

Figure 5.11 Case #3 matched the problem at all four levels of the hierarchy.

CASE #3: Level 2 INFO-UNIT

CONTENT "Rain and Humidity"

INFO-TYPE TEXT 4 I

SUPERTOPIC <INFO-UNIT> 1

SUBTOPIC NIL 4 am

RELEVANT-TO <INFO-UNIT> IN-

LAYOUT-FUNCTION
#<Standard-Generic-Function

LAYOUT-PARAGRAPH-LIST (1)>
LAYOUT-OBJECT NIL

PROBLEM: Level 3 INFO-UNIT

CONTENT "World Weather Data"

INFO-TYPE TEXT
SUPERTOPIC <INFO-UNIT>
SUBTOPIC NIL
RELEVANT-TO <INFO-UNIT>
LAYOUT-FUNCTION

NIL

LAYOUT-OBJECTNIL

Figure 5.12 For case #3, the information-units at the bottom of the tree match on all necessary slots.

Intelligent Layout for Information Display

3. Case knowledge representation

LIGA selected case #3 to solve the layout problem. The following section

describes the knowledge representation for this case. In LIGA, the case

specific design knowledge is represented as a set of functions that create a

grid and as well the visual elements that will appear in the new layout. The

functions also place constraints on the slots of those elements. The

constraints describe the relative size, position and color of the layout

elements. The cases use the general knowledge base and case specific

constraint definitions to represent the design knowledge for a particular

layout case.

Layout functions
The most detailed design knowledge in the system resides in the layout case

functions. A single layout case may have 10 layout functions. The layout

functions are organized hierarchically and each layout function generates a

component of the layout. The design knowledge for case #3 is contained in

six such functions: make-constrained-grid, make-title-with-subtopic, make-heading-

with-rule-below, make-text-over-bitmap-list, make-supertopic-image-text, and make-

subtopic-image-text. The make-constrained-grid function generates a grid and has

constraints that describe the relationship between the margins, column

gutters, and the standard text size of the layout grid for that particular layout

case. The general knowledge base contains a class definition for a layout

grid.

The remaining functions generate the actual graphic elements that will appear

in the layout. Figure 5.13 shows the components of the layout that these

functions generate. In general, these layout functions generate layout

elements for one level of the hierarchy and impose constraints on the

elements of its immediate subtopic. For example, make-title-with-subtopic

generates the piece of text for the title and has constraints between the title

text and the subtitle's text and the graphic rule below it.

Intelligent Layout for Information Display

heading-with-rule-below

title-with-subtopic ..and et...- supertop c-image-text

image-lis- subtopic-image-text

Figure 5.13 The case layout is broken down into five layout functions. Each function
is responsible for generating a unique component of the layout.

The layout functions reside in the information-units that represents the case

layout. The layout function make-title-with-subtopic resides in the inform ation-

unit that represents the content for the title of the layout. This information-unit

is shown below. The value of its layout-function slot is make -title-with-

subtopic.

< INFO-UNIT "Virtual Fra" 274349038>
is an instance of the class INFO-UNIT:

The following slots have allocation :INSTANCE:

CONTENT "Virtual Frame Buffers and Tiled Displays"
INFO-TYPE TEXT
SUPERTOPIC NIL
SUBTOPIC (< INFO-UNIT "Presentation Agenda" 274349142>)
RELEVANT-TO NIL
LAYOUT-FUNCTION #<Standard-Genric-Function

MAKE-TITIE-WITH-SUBTOPIC (1)>
LAYOUT-OBJECT NIL

The layout functions may appear more than once in the hierarchy of case

information-units. For example, the make-text-over-bitmap-list, function appears

in each of the information-units at the third level of the hierarchy.

Each layout function has an associated class definition as well as constraint

definitions. The class and function definitions for the title-with-subtopic

element are shown below. The value of the subtopic slot for this class would

be an object generated by make-heading-with-rule-below. The title-with-subtopic

Intelligent Layout for Information Display

class has constraints with the grid, so it has a layout-area slot for the layout-

area object.

(defclass title-with-subtopic
()

((layout-area :initform nil ;a layout-area object
:initarg :layout-area
:accessor layout-area)

(text :initform nil ;the title
:initarg :text
:accessor text)

(subtopic :initform nil ;a heading-with-rule element
:initarg :subtopic
:accessor subtopic))

(:documentation "This is an example of a Title with one
subtopic."))

(defmethod make-title-with-subtopic ((content info-unit))
(let ((unit (make-instance 'title-with-subtopic

:text (make-text-element
:text-string (content content)
:typeface *swiss*

:subtopic (subtopic content)
:layout-area *case3-layout-area*)))

(make-constraints unit)
unit))

Note that make-title-with-subtopic calls the function make-text-element. This

function is defined in LIGA's general knowledge base. The general

knowledge base contains class definitions of basic layout elements and

functions for generating instances of those classes. The make-title-with-subtopic

function creates an instance of a text-element and places constraints on the

slots of that element by calling its own method make-constraints. LIGA's

constraint system and general knowledge base of layout elements are

described below.

Constraint System
LIGA uses constraints to represent the visual relationships between layout

elements. The constraint system underlies both the general knowledge base

and the case library of the system. The constraints are primarily responsible

for generating the specifications for a new layout.

The constraint system used in this research is based on the constraint system

described by Abelson and Sussman [ABEL 85]. The system provides the

capabilities of typical constraint systems: the expression of relationships

between variables, local propagation, and nondirectionality of computation.

In LIGA, the constraint system is implemented as an object oriented system.

Intelligent Layout for Information Display

The constraint system has the capability of defining arbitrary constraints

between variables that are functionally related. For example, an "adder" can

be defined that represents the relationship a + b = c. These definitions are

referred to as constraint primitives. The plan of the constraint system is to

combine the primitives to express more complex relationships. These

combinations are referred to as "constraint networks:" the primitives

compute values locally based on available data, and the direction of

computation is determined dynamically [STEL 80].

The constraint system did not originally include relaxation capabilities, but

the system was general enough that it was possible to extend it. A new

method, relax-value, was added to the constraint system as part of this

research. The relaxation method was developed in order to implement the

rules of text legibility. This method allows special constraints to be written

that test a value, rather than compute a value. If the value does not pass the

test a relax-value method is called that adjusts the value until the constraint is

satisfied.

Representation of grids and layout elements
The general knowledge base contains class definitions for layout grids and

the visual elements that will typically appear in a layout. These elements are:

text-element, image-element, rule-bar-element (traditionally called rules and/or

bars in graphic design), and white-space. These class definitions are used as

building blocks for the layout cases. The case layout functions create

instances of these classes. The purpose of defining these object classes is to

provide consistency of elements between cases, and to avoid redundant class

definitions. It is not necessary to redefine element attributes for each case.

The general knowledge base has a class definition basic-element which

describes the properties of all two-dimensional elements. The grid and layout

element classes inherit form this class. The slots for this class are: x1, x2,

width, yl, y2, height, and area. Figure 5.14 shows the dimensions to which

these slots refer. Three methods are also defined for the basic-element class.

These methods describe the geometric relationships that are common to any

two-dimensional object. The relationships are implemented as constraints.

The methods and the relationships they describe are listed below.

Intelligent Layout for Information Display

method-name

- basic-height-constraint

- basic-width-constraint

- basic-area-constraint

x1, yl

yl + height = y2

xl + width = x2

width * height = area

x2

height

Figure 5.14 The basic-element class has slots for x1, yl, x2, y2, width, height, and
area.

Layout grid representation
Designers use grids to help organize the information in a layout. Because a

layout grid is unique to layout design, it is necessary and useful to represent

this information in the system. Although layout grids vary in proportion and

in number of horizontal and vertical divisions, the properties of a grid and the

method of constructing grids remain constant for all layout grids. In LIGA,

the grid object also has knowledge of the layout viewing context and of the

standard text size for the layout. This information is used in the system to

ensure that text placed on the grid is legible. To represent knowledge of the

layout grid, the general knowledge base contains a set of class definitions,

constraints on grid components, and functions for creating grid-component

objects.

A class definition layout-area holds all information about the grid and has

slots for margins, gutters, and row and column measures. Figure 5.15 shows

Intelligent Layout for Information Display

relationship

how these slots correspond to the layout grid. Other class definitions

associated with the grid include active-area, column, and row. The active-area

represents the area within the margins. The layout-area, active-area, column, and

row classes inherit slots and basic geometric constraints from the basic-

element class. The layout-area class also has slots that describe the viewing

context of the layout.

column

top margin

left right

margin margin

gutter - -1E

row- -

active area

bottom margin

Figure 5.15 These properties of a layout grid are represented as slots in the layout-
area class.

Grid constraints

The constraints specified for the grid in the general knowledge base are

common to all layout grids. The constraints relate top and bottom margins to

the active-area height, left and right margins to the active-area width, and

number of columns and gutter width to column width. When the slots for

number-of-columns, gutter-width, and column-width have values, a function

is called that creates the appropriate number of column objects and propagates

the x and y positions of the columns via constraints. The column object stores

information about its own x and y coordinates, width, height, and column

number. These column objects are placed in the column-list slot of the layout-

area. There are analogous constraints and functions for generating the row-list.

Intelligent Layout for Information Display

Viewing-context and Basic-text-size
The slots of the layout-area class that are used to describe the viewing context

of the layout are basic-text-size and viewing-context. The basic-text-size slot of

the layout-area class represents the standard or common text size for that

particular case layout. It represents what is often called the "body copy" of a

layout. In a magazine page layout, the basic-text size would be the text size

of the paragraphs of the articles. This information about basic-text-size is used

by the rules of text legibility to ensure that the size of text will be large

enough to read. The basic-text-size slot of the layout-area is constrained to be

equal to the text size of a specific text-element in the layout case. This text-

element is referred to as the basic-text-element and will be different for every

case. In the layout shown in figure 5.16, the basic-text-element is the category

title that lies on top of the larger images.

Virtual Pre-rnine--sna
Frame Buffers
and oco trf egeTiled Displays ,

The
basic-text-element
for this layout case. h Mum

Designing

DmaphyMap Dan E xample

WOM Adaptive

we

Figure 5.16 The basic-text-element for this case is the category element that lies on
top of the larger images.

Knowledge of layout elements

The general knowledge base includes representations of the graphic elements

that will appear in a layout. Four types of basic layout elements are defined.

T hey are text-element, image-element, rule-bar-element, and whit- space.

Both class definitions of the basic layout elements and constraints that

express inherent geometric relationships, reside in the general knowledge

base. A database of typeface letterform ratios, and constraints for expressing

the letterform relationships, are also included.

Intelligent Layout for Information Display

The four categories of layout elements inherit both the attributes and methods

from the basic-element class. Figure 5.17 shows the taxonomy of layout

elements as it is defined in LIGA.

basic visual element

x1, x2, yl, y2,
width, height, area

text-element rule-bar-element image-element white-space

red, green, blue, red, green, blue, width-height-ratio (no unique slots)
transparency transparency image-path-name

typeface
point-size
leading
style
letter-space
text-file

font-anatomy-mixin

legibility-mixin

Figure 5.17 The taxonomy of basic layout elements. The layout elements inherit
slots from the class basic-visual-element and have their own unique slots. The
slots for each class are listed.

The four classes of basic layout elements inherit the attributes of the basic-

element class and have their own attributes that further define each class. For

example, the text-element and rule-bar-element have a color attribute while the

image-element does not. It is assumed that an image might have many colors,

but a color cannot be assigned to an image as it can to a piece of text or a

graphic bar. The image element has a unique attribute: width-height-ratio. This

ratio expresses the proportion of width to height of a given image.

The slots for each of the basic layout element types are listed in the

taxonomy shown above in Figure 5.17. The text-element class has the greatest

number of unique attributes. These additional slots are required to describe

Intelligent Layout for Information Display

the specifications used in displaying text, such as typeface and line spacing.

The text-element class also has two mixin classes, font-anatomy-mixin and

legibility-mixin. The legibility-mixin has slots that are used to store information

about the minimum and maximum size and characters per line of a text-

element.

Font-anatomy-mixin

The font-anatomy-mixin provide slots for the detailed knowledge of

typographic letterform. The purpose of having this information available in

the system is to allow the expression of constraint relationships based on

these attributes. Designers often make size and placement decisions of layout

elements based on the measurements of the typographic letterforms being

used in the layout. The slots of the font-anatomy-mixin are listed below. The

terms used for the slot names were defined in Chapter 3, "Approach." Figure

5.18 shows the parts of the letterform that correspond to the slot names.

font-anatomy-mixin:
body-height
cap-height
x-height
meanline
baseline
stroke-width

meanline

gh " ih

~stroke Kbaseline
width

Figure 5.18. The parts of the letterform that are represented as slots in the font-
anatomy-mixin.

A set of constraints, along with a database of letterform ratios, are used to

calculate the values of the cap-height, x-height, stroke-width, body-height, and

meaniine slots for each instance of a text-element. The value of the letterform

slots is dependent on the text-size and typeface slot values of the text-element.

The letterform values are dependent on typeface because the proportions of

the letterform attributes vary from typeface to typeface. The use of

constraints to express these relationships allows the slot values to be

calculated dynamically and changed dynamically when the type size or

typeface changes.

Intelligent Layout for Information Display

The general knowledge base includes a database of letterform ratios for each

typeface available in the system. A class is defined which has slots for the

ratio of text-size to cap-height, x-height, etc., for each typeface. The object that

contains the ratios for the typeface Swiss is listed below.

SwISS
#<Font-Anatomy-Ratios #X104B8706>

is an instance of the class FONT-ANATOMY-RATIOS:

The following slots have allocation :INSTANCE:

TYPEFACE-NAME "Swiss"

CAP-HEIGHT-RATIO 73/100

X-HEIGHT-RATIO 96/100
BODY-HEIGHT-RATIO 11/100

STROKE-WIDTH-RATIO 11/100
CHARS-PER-PIXEL-RATIO 15/100

Intelligent Layout for Information Display

4. Generating a new layout

When a solution case is selected form the case library, the knowledge from

the layout case is applied to the layout problem. Knowledge is applied by

copying the values of the layout-function slots of the layout case's information-

units into the layout-function slots of the problem layout information-units. A top

down search is conducted, this time covering all nodes of the problem layout.

As each node is passed, the layout function from the same level of the layout

case information-unit is copied into the layout-function slot of the problem

layout. Finally, to create the layout objects for the newly solved layout

problem, the layout functions are called. The grid is instantiated and then the

remaining layout functions are called from the bottom up.

To generate the layout for the Presentation Agenda, the grid object is made

by calling make-constrained-grid, and the input values for display width and

height, and viewing context, are set. Initially there are no values for margins,

gutter-width, or column-width slots of the layout-area. All of these values are

dependent on the basic-text-size and will not be set until the basic-text-element

is identified.

After the grid object has been made, the layout functions are called from the

bottom up as supertopic functions may have subtopic layout objects as

arguments. The bottom-up generation of layout elements has also been used

by Feiner [FEIN 88] and Kamada [KAMA 91]. The argument for the layout

function is its own information-unit. The functions for this example are called

in the following order: make-subtopic-image-with-text, make-text-over-bitmap-list,

make-heading-with-rule, and make-title-with-subtopic.

Direction of propagation
The cases contain enough knowledge to generate values for the size, position,

and color of all layout elements when given the width and height of the

display area and the viewing context of the layout. For case #3, propagation

of these values will not begin until the basic-text-element has been identified.

This does not occur until the make-text-over-bitmap-list function is called. The

first few function calls do not result in any constraint propagation. The

objects are simply created and constraints are placed on their slots. None of

the values for the image and text elements can be propagated until basic-text-

size and column-width are known. Both of these values are dependent on the

Intelligent Layout for Information Display

text-size of the basic-text-element. The remaining values will not be

propagated until after the basic-text-element has been identified.

The basic-text-element is identified by calling the function identify-basic-text-

element. This function call is part of the case specific knowledge. This

function relates the basic-text-element to the basic-text-size slot of the layout-

area and places the constraint check-chars-per-line on that text-element. Check-

chars-per-line tests the current value of the text-element's text size and number

of characters per line. If the values are not within the established limits, a

relax method is invoked. One of the arguments to the relax method is a flag

whose value is "over" or "under." The flag is used to determine which

direction to adjust the value in order to adhere to the constraints.

The size of the basic-text-element is initially set to the default size for the

viewing context of the layout. In this example, the viewing context is "demo"

and the default text size is 50. The maximum and minimum size slots of the

basic-text-element are set to the maximum and minimum sizes of the viewing-

context object. Figure 5.19 shows the function definition for identify-basic-text-

element.

(defmethod IDENTIFY-BASIC-TEXT-ELEMENT ((text-unit title-element)

(layout-unit layout-area))
(set-basic-text-size text-unit layout-unit)
(set-value! (point-size text-unit) ;sets text size to default

(value (default-text-size
(viewing-context layout-unit))) 'user)

(CHECK-CHARS-PER-LINE text-unit layout-unit) ;legibility const.

Figure 5.19 The function definition identify-basic-text-element.

Now that the basic-text-size is known, all other values for the layout can be

propagated. Figure 5.20 shows the values of the layout-area after the basic-text-

element has been identified. The margins, column-width, and gutter-width slots

have values. In addition, the column objects are generated and placed in the

column-list slot. After the values for the layout-area are propagated, all other

values for the layout can be propagated.

Intelligent Layout for Information Display

Describing #<Layout-Area #X1076D676>

RED 0
GREEN 0
BLUE 0
TRANSPARENCY 0
X1 0
Y1 0
X2 1000
Y2 600
WIDTH 3500
HEIGHT 2040
AREA NIL
RELATIVE-X1 0
RELATIVE-Y1 0
TOP-MARGIN 100
BOTTOM-MARGIN 50
LEFT-MARGIN 100
RIGHT-MARGIN 100
ACTIVE-AREA #<Active-Area #X1076D7DE>

NUMBER-OF-COLUMNS 4
NUMBER-OF-ROWS NIL
GUTTER-WIDTH 100
COLUMN-WIDTH 600

ROW-HEIGHT NIL
GUTTER-HEIGHT NIL
COLUMN-LIST (#<Column-Element #X10424AA6> #<Column-Element

#X10413E4E> #<Column-Element #X104031F6> #<Column-Element

#X103ECB5E>)
ROW-LIST NIL
BASIC-TEXT-SIZE 50
VIEWING-CONTEXT #<Legibility-Context-Sizes #X1076778E>

Figure 5.20 The values of the layout-area after the basic-text-size has been identified.

Rules of legibility check line length
The check-chars-per-line constraint does not become active until the basic-text-

element has values for its text-size and width slots. In this example, the basic-

text-element has an acceptable number of characters per line using the default

text size for the "demo" viewing context. The rules of legibility will adjust

the layout though, when it needs to be adapted to fit into a smaller area.

Intelligent Layout for Information Display

5. Adapting a layout

The LIGA system can adapt a layout in the event that there is a change in the

available display area. In this example, during the presentation to research

sponsors, an image from the project list is enlarged and displayed on the

screen. The available area for the layout is reduced from 3500 x 2048 pixels

to 1500 x 2048 pixels. Figure 5.21 shows the adapted layout that LIGA

generates for this situation.

Vistud *.............

Figure 5.21 The adapted layout that LIGA generates for the reduced display area.

Change width and height
The only input values LIGA requires to adapt a layout are the width and

height of the new display area. The layout case functions, along with the

rules of legibility, contain enough knowledge to generate an adapted layout

from this data alone. To adapt the layout, the original values for width and

height are retracted and set with the new values. Retracting the width and

height causes all dependent values to also be retracted. Essentially all widths,

heights, x-positions, and y-positions of the layout elements are somehow

dependent on the width and height of the layout area. All of these values are

retracted. When the new values for the display width and height are set, the

values for all widths, heights, x-positions, and y-positions are repropagated.

The two values that are not immediately affected by the change in display

dimensions are the number of columns in the grid and the size of the basic-

text-element.

Intelligent Layout for Information Display

Check legibility of text
When all layout elements have new values based on the new display

dimensions, the grid still has four columns. This results in a column width

that is much smaller than in the larger layout. Figure 5.22 shows the resulting

four column grid. The basic text size has not changed from the larger layout;

it is still 50. At this point in the process the rules of legibility notice that there

are too few characters per line. The check-chars-per-line constraint calls the

relax-value method with the flag "under." This method decreases the text size

by one and checks the characters per line again. The constraint continues to

decrement the text size until the rule is satisfied or the minimum size for the

viewing context has been reached.

Figure 5.22 When the layout dimensions are reduced, the grid initially still has four
columns.

In this example, the text size is decreased from 50 to 30, the minimum

allowable size. Each time the text size is decreased, most values for the

layout elements are retracted and recalculated. The grid margins and gutters

for this layout are dependent upon the basic-text-size of the layout.

Consequently, all text sizes, positions, widths, and heights, of all elements in

the layout, are changed when the basic-text-size is changed.

When the minimum size for the viewing context is reached and the number

of characters per line is still too few, the line length of the text must be

increased to create a legible number of characters per line. This increase in

line length is achieved by decreasing the number of columns in the grid

which will in turn increase the width of the columns.

Intelligent Layout for Information Display

Because the text size is at the minimum for this example, the number of

columns is reduced by one. This creates fewer columns of greater width,

increasing the line length for text elements. The value for number-of-columns

slot is retracted. This retracts the value for column-width and all values

dependent on that. The values for the grid are repropagated using three

columns instead of four. All positions and sizes of layout elements are

subsequently repropagated. This change in the column width results in an

acceptable line length for the text and the system displays the final layout.

Although the adapted layout is different from the original, the system has

adhered to the goals of maintaining legibility, visual structure, and design

style. The text size is reduced but still legible for the viewing context. The

size and position of images are changed, but the visual structure still shows

that there are three major categories of information. The graphic style of the

layout is maintained - the use of typeface, graphic rule, and white space is

consistent with the original layout.

After all of the values for the layout elements are generated and legibility

constraints are satisfied, the layout is displayed.

Intelligent Layout for Information Display

6. Display

Layout descriptions generated by LIGA are displayed graphically using

BadWindows [ALAV 91], a C-based system developed at the Visible

Language Workshop, MIT Media Laboratory. LIGA represents graphic

elements as LISP/CLOS objects. The specifications for these objects are

transferred from LIGA to the graphic display system through a LISP-C

interpreter.

This extra step of transferring data from LISP to C is done to take advantage

of the high quality graphics available in BadWindows and the ability to

display graphics on several platforms including a 2000 x 6000 display

[MASU 92]. The representation of layout specifications in LIGA is

independent of the display system.

The display component includes a library of LISP functions that correspond

to the BadWindows functions. The functions in this library use one foreign

function call to send the name of the BadWindows function and the

appropriate arguments to the BadWindows Interpreter (BWI). This data is

sent as a string data type. BWI parses the strings sent from LISP, casts data

to the appropriate types, and calls the corresponding BadWindows function.

The layout object then appears graphically on a screen. Any necessary return

values from the BadWindows functions are received in LISP as integers. The

interpreter takes advantage of "appcom," the applications communication

library, which is a socket-based message passing library written as part of

"Build-a-Dude." [JOHN 91]. This message passing system eliminates the

need to send and receive complex foreign data types such as C-pointers to

Window structures.

Intelligent Layout for Information Display

Chapter 6 Evaluation and Conclusion

This research identifies important knowledge about layout design, proposes a

way of representing that knowledge, and shows how it can be implemented in

a system that generates layouts. The approach of using case-based reasoning,

constraints, a general knowledge base, and logical content structure works

well. The system finds an appropriate case and applies case knowledge to

produce a good layout. Some of the components of LIGA could be improved

and extended to solve more complex layout problems and to represent more

sophisticated design knowledge. The following section evaluates each aspect

of the approach, proposes extensions to the system, and discusses areas of

further research that are needed to more fully address the problem of

representing layout design knowledge.

Case representation

In LIGA, case knowledge is generalized from the original example. The

knowledge contained in the layout cases is sufficient to generate a layout for

varying display areas, viewing contexts and amounts of content. An input

layout problem does not have to be exactly like the original case in order to

apply the knowledge and generate a new layout. Unfortunately, the case does

not contain all of the knowledge that was used to design the original example

layout.

The purpose of using case-based reasoning is to be able to represent

knowledge that is too complex to be represented as discrete rules. This strategy

works well to represent the combined use of color, size and position of a

typographic hierarchy layout. Unfortunately, important design knowledge,

such as reuse of layout components and visual balance, is not represented in

the cases.

Reuse of layout components
Designers will often develop a set of layout formats that can be used in

combination. In LIGA's representation of layout cases, the layout functions

are organized modularly so that they can be used across cases. The system

knows how to use formats in combination only because the specific example is

given. Ideally, the system should have knowledge of which layout

Intelligent Layout for Information Display

components can be combined. Further research is required to determine how to

represent this knowledge of format combinations.

Visual balance
Knowledge of visual balance is difficult to capture and describe. Figure 7.1

shows the layout that LIGA adapts to accommodate a change in available

display area. Although the adapted layout satisfies the goals of logical

structure, legibility, and style consistency, it would not satisfy an expert

designer's goal of visual balance. The layout is considered imbalanced because

the third column is partially empty. The designer's original strategy for the

case layout was that the three columns under the red rule-bar should be full, or

nearly full, while the first column below the title should remain empty. This

empty space in the first column draws attention to the title. Any other empty

column voids the functionality of the empty space in the first column.

Figure 7.1 Although this layout satisfies the goals of logical structure, legibility, and
style consistency, it would not satisfy an expert designer's goal of visual balance
because the third column is partially empty.

LIGA does not contain knowledge of visual balance. The system can be

extended to include some knowledge of visual balance, by having the case

check its columns and decide which columns should be full. If the columns are

not full, the solution will be rejected and LIGA will continue searching through

the library for a case that will solve the layout problem completely. If another

layout cannot be found, the system could combine layout components to

produce a good solution.

The proposed method of representing visual balance described above does not

address all issues relevant to representing visual balance. Visual balance

Intelligent Layout for Information Display 67

depends not only upon occupied space but also upon the scale, shape, and tone
of layout elements. This design knowledge is dependent on complex human
visual processes and is difficult to describe and encode. Further research is

required to address this representation problem.

Constraints

Constraints prove to be an effective way to represent many of the visual

relationships that exist between layout elements. However, the use of

constraints could be improved by using both discrete and continuous

constraints. Discrete constraints restrict a property to be a specific value.

Continuous constraints allow a value to range between a maximum and

minimum [WEIT 88]. The original constraint system used in LIGA provides

only discrete constraints. The incorporation of continuous constraints into the

layout case representation would allow more sophisticated design knowledge

to be represented. For example, a designer may specify a range of text sizes

that could be used for a title. The specific size used might depend upon the

number of words in the title. Continuous constraints could be used to represent

this kind of design knowledge. The implementation of the rules of legibility in

LIGA uses the concept of continuous constraints by having a maximum and

minimum legible text size, and then a relax method that knows when to adjust

text size within that range. This concept could be extended and used to
represent the design knowledge for the layout cases.

Match on logical structure and information type

The matching strategy for identifying appropriate case layouts based on logical
content structure and information types works well. The logical structure and

information types are identifiable properties of the content. The matching

strategy could be made more sophisticated by also checking the number of

subtopics or relevant items that an information-unit has.

This system assumes that the branches in the content hierarchy are even

because of the simplicity of the matching function. Many content structures

would not have even hierarchies. The searching and matching methods could

certainly be further developed to allow for content structures that did not have

an even hierarchy.

Intelligent Layout for Information Display

Additional content properties
There are content properties in addition to logical structure and information

type that designers consider when making design decisions. LIGA's

representation of the input layout problem could be extended. For example, the

communication function of the content elements could be described. Some

pieces of content serve as descriptive information and others as directive.

Designers often use visual attributes to differentiate between descriptive and

directive information [ICHI 88].

There are other factors in addition to content characteristics that affect layout

design decisions. Designers will use different visual arrangements depending

upon the intended connotation of the layout. Two layouts can have similar

content structure and information types but the arrangement of the visual

elements will convey different moods. For example, one layout may be

conservative while another is avant garde. The connotation that a layout design

is intended to convey could be represented in the layout cases. This

information could be used to further identify appropriate solution cases for

input problems.

General knowledge base

LIGA's general knowledge base contains a limited set of general knowledge

about information layout and is used in conjunction with the layout case

information to solve layout problems. This approach reduces the amount of

code required to represent the case layouts, and avoids redundant

representations in the system. The representation of general knowledge could

be refined and extended.

Layout grids
The current implementation of LIGA assumes that grid units will be of equal

measure. The grid constraints currently specified in the general knowledge

base are common to all layout grids of this type. A specific layout may include

additional constraints on the attributes of the grid. For example, a designer

may specify that there is a relationship between sizes of the margins, or a

relationship between gutter width and column width. These types of

constraints are specified at the case level.

Intelligent Layout for Information Display

Although this system supports only grids with units of equal measure, there

are well designed layouts that do not hold to this convention. Figure 7.2

shows a layout that appears to have a three column grid where the widths of

the three columns are equal. In fact, the first column is slightly narrower than

the second two. The first column is just wide enough to provide an adequate

line length for the text. This narrower first column provides more space for the

images which are the focus of the layout. Future work on this system would

include developing ways to represent this type of grid design.

Figure 7.2 This layout appears to use a grid with three equal columns but in fact the
first column is slightly narrower that the other two. Reproduced from [SUTT 86].

Taxonomy of layout elements
The taxonomy of layout elements used in this system is quite simple. The

taxonomy could be extended by specifying subcategories of the text, rule-bar,

and image categories. Such an extension would allow the encoding of more

intelligence in the system. For example, subsets of text might be title, heading,

body, and caption. These four types of text might have slightly different rules

Intelligent Layout for Information Display

of legibility. Caption text might have a smaller minimum allowable size than

body text, for example. The rule-bar category could be changed to "abstract

marks" with subsets being rule, bar, and bullet. The image category could be

broken down into continuous-tone image, symbol (or icon), illustration, and

diagram. Again there might be usage rules, and rules of legibility, that differ

for bullet and rule, or diagram and icon. Figure 7.3 shows how the taxonomy

of basic layout elements might be extended.

basic visual element

text-element rule-bar-element image-element white-space

title paragraph caption bullet rule symbol continuous diagram
tone

Figure 7.3 The taxonomy can be extended to further define properties of layout elements.

Rules of text legibility

LIGA's rules of text legibility that concem characters per line have the ability

to change the number of columns in a grid. This change is made to increase or

decrease the column width and achieve an acceptable number of characters per

line. For some layout cases, this change in number of columns may violate the

designer's original intention. and result in a poorly designed layout. For

example, a designer may choose a five column grid to ensure asymmetry in the

layout. Reducing the number of columns from five to four would destroy the

asymmetry. In other layout cases, it may be perfectly appropriate to change the

number of grid columns. additional knowledge is needed both in the cases and

the rules of legibility to allow the system to make more informed decisions

about adjusting the number of columns in a grid. This additional knowledge

might include specification of a range of values for the gutter width. The rules

Intelligent Layout for Information Display

of legibility could then try to achieve a legible line length by first adjusting the

gutter width, then moving to the more extreme change of adjusting the number

of columns.

The rules of legibility allow LIGA to adapt a layout to different display area

sizes. However, LIGA cannot produce a layout if the display space is too

small and the type size is at its minimum. Additional knowledge is needed in

the system to deal with such situations. A human graphic designer would solve

such a problem by either editing the content so that there is more room, or by

violating some of the legibility rules. Knowledge of these design compromises

[FEIN 88] is needed in order for the system to be able to handle a larger

variety of display situations.

Extend knowledge base
Although there is a limited amount of general knowledge of layout design in

the world, there is current research in the field. As more of this knowledge is

developed, it can be incorporated into the general knowledge base of the

system. For example, knowledge of color legibility could be included at the

general level. Although there are rules of thumb about color usage in layout,

such as "don't put yellow text on a white background," this information is too

general to be encoded into an intelligent system. The computer would not have

common sense knowledge of yellow or white. Current research that encodes

knowledge of color properties [BARD 92] could eventually be included in a

general knowledge base for an intelligent layout system.

System usability

Capturing and encoding design knowledge
The current implementation of LIGA proved to be usable by others to encode

design knowledge. Five people selected existing layouts, analyzed them for the

design relationships, and encoded those relationships using the constraint

system and the general knowledge base provided in LIGA. Two of these

encoded layouts were used in the case library described in Chapters 2 and 5.

They are case #4 and case #5.

Although it is possible to encode case layouts using LIGA's components, the

process of writing a line of LISP code for each of the 60 to 100 constraints that

are required to describe a layout is somewhat tedious. In addition it is difficult

Intelligent Layout for Information Display

to determine design constraints simply by observing an existing layout. This

information is best gotten from the original designer of the layout or another

experienced designer. These difficulties in encoding and determining design

relationships point to two areas of further research: developing tools for

designers to easily express visual relationships and developing systems that

can detect design relationships.

Current research in sketch recognition and Programming by Example

[LIEB 91] could be used to develop an interface that would allow a designer to

graphically specify important design relationships. The second area of research

is to develop a system that can, given a layout, detect design relationships and

automatically generate constraints [KURL 91]. A system could have

knowledge of typical relationships and could infer the relationships of a given

layout. For example, a title and subtitle will always have relationships to each

other that need to be expressed. In addition, a system might be able to find the

grid and margins of a layout and infer constraint relationships between the

layout elements and the grid.

Developing content and layout simultaneously
The approach presented in this thesis assumes that content is developed and

well structured before information is laid out. Often content and layout are

developed simultaneously because the visual relationships in the layout effect

the meaning of content. The content may even change during the layout

process because the visual layout reveals inconsistencies or new relationships

within the content. Although LIGA, in its current implementation, could not be

used in situations where content and layout are developed simultaneously, the

approaches of case-based reasoning and constraints could be incorporated into

a layout tool. Cases could be used as points of departure in the design.

Constraints could be used as a tool for the designer, the designer could

establish and change constraints during the design process.

Multimedia and dynamics

The need for computer systems that contain graphic design intelligence arises

from current advances in electronic information technology. These advances

include the ability to display multimedia and real-time information. Although

the layout examples used in LIGA's case library display two dimensional static

information, the approach presented in this thesis could be extended to and

Intelligent Layout for Information Display

applied to layout problems that use multimedia and dynamics. A case could

represent a layout of multimedia information that includes video and sound or a

layout of three dimensional information that can be changed dynamically by the

user. LIGA's general knowledge base could be extended to include

representations of three dimensional objects as well as video clips, sound

bites, and "buttons." Constraints could be applied to both the visual and

temporal properties of these elements. The information types that LIGA uses

for matching could include these new media types. Research in the application

of case based reasoning to the design of multimedia information is currently

being conducted by MacNeil [MACN 91].

Conclusion

The number of research issues involved in developing systems that can

automatically generate well-designed displays of information is vast. This

current research addresses a limited set of those issues, namely the

representation of design knowledge for information layout. The contribution of

this research lies in culling design knowledge that can be represented using

existing artificial intelligence technology and in creating a prototype that shows

to what extent this knowledge can be used to solve information layout

problems.

Intelligent Layout for Information Display

Bibliography

[ABEL 85]

[ALAV 91]

[BARD 92]

[BEAC 83]

[BACK 83]

[CART 85]

[CASN 91]

[COOP 89]

[CRAG 71]

[FEIN 88]

Abelson, H. and Sussman, G. J. (1985). Structure and Interpretation of

Computer Programs. Cambridge, The MIT Press.

Alavi A., et al., (1991). BadWindows Reference Manual. Internal

document, Visible Language Workshop, Media Laboratory,

Massachusetts Institute of Technology, Cambridge, Massachusetts.

Bardon, Didier. (1992). "Adaptive Color in Dynamic Mapping: A

Method for Predictable Color Modifications." S.M. Thesis, Media Arts

and Sciences, Massachusetts Institute of Technology. Cambridge

Massachusetts.

Beach, R. and Stone, M. (1983). "Graphical Styles Towards High

Quality Illustrations." Computer Graphics:, Proceedings of

SIGGRAPH '83. Vol. 17, No.3.

Backer, David. (1983). "Personalized Electronic Publications."

Proceedings of the National Computer Graphics Association, Chicago.

Carter, R. et al., (1985). Typographic Design: Form and

Communication. New York, Van Nostrand Reinhold.

Casner, S. M., (1991). "A Task-Analytic Approach to the Automated

Design of Graphic Presentations," ACM Transaction on Graphics,

Vol. 10, No. 2. New York, Association for Computing Machinery.

Cooper, M. (1989). Design Quarterly 142. Cambridge, The MIT Press.

Craig, J. (1971). Designing With Type. New York, Watson-Guptill

Publications.

Feiner, S. (1988). "A Grid-Based Approach to Automating Display

Layout," Proceedings of Graphics Interface '88. Palo Alto, Morgan

Kaufmann.

Intelligent Layout for Information Display

[FINB 91]

[GERS 73]

[HURL 77]

[ICHI 88]

[JOHN 91]

[KAMA 91]

[KOSA 91]

[KURL 91]

[LEB 88]

Fineblum, M. (1991). "Adaptive Presentation Styles for Dynamic

Hypermedia Scripts." S.M. Thesis, Media Arts and Sciences,

Massachusetts Institute of Technology. Cambridge, Massachusetts.

Gerstner, K. (1973). Think programs: Synopsis of the exhibit

'Designing Programs/Programming Design.' New York, Museum of

Modem Art.

Hurlburt, A. (1977) Layout: the design of the printed page. New York,

Watson-Guptill Publishers.

Ichikawa, Tomoko. (1988). "An Application of Sign Systems in

Instructional Manuals: Correlating Information Types and Sign

Systems," M.S. Thesis, Institute of Design, Illinois Institute of

Technology, Chicago.

Johnson, M. B. (1991). "Build a Dude," S.M. Thesis, Media Arts and

Sciences, Massachusetts Institute of Technology. Cambridge,

Massachusetts.

Kamada, T. and Kawai, S. (1991). "A General Framework for

Visualizing Abstract Objects and Relations," ACM Transaction on

Graphics, Vol. 10, No. 1. New York, Association for Computing

Machinery.

Kosak, C., Marks, J. and Sheiber, S. (1991). "A parallel genetic

algorithm for network-diagram layout." Proceedings of the Fourth

International Conference on Genetic Algorithms, UCSD, California.

Kurlander, D. and Feiner, S. (1991). "Inferring Constraints from

Multiple Snapshots." Technical Report 008-91. Computer Science

Department, Columbia University, New York.

Lieberman, H. (1988). "Communication of Expert Knowledge in

Graphic Design." Internal document, Visible Language Workshop,

Intelligent Layout for Information Display

[LIEB 91]

[LUGE 89]

[MASU 92]

[MACK 86]

[MACN 90]

[MACN 91]

[MARK 90]

[MEGG 89]

Media Laboratory, Massachusetts Institute of Technology, Cambridge,

Massachusetts.

Lieberman, H. (1991). "Mondrian: A Teachable Graphical Editor."

Internal document, Visible Language Workshop, Media Laboratory,

Massachusetts Institute of Technology, Cambridge, Massachusetts.

Luger, G. F. and Stubblefield, W. A. (1989). Artificial Intelligence and

the Design of Expert Systems . Reading, Massachusetts, The

Benjamin/Cummings Publishing Company, Inc.

Masuishi, T. et al., (1992). "6000x2000 Display Prototype."

Proceedings of the SPIEIIS&T Symposium on Electronic Imaging

Science and Technology, San Jose.

Mackinlay, Jock. (1986) "Automating the Design of Graphical

Representations of Relational Information." ACM Transactions on

Graphics, Vol. 5, No.2. New York, Association for Computing

Machinery.

MacNeil, Ron. (1990). "Adaptive Perspectives: Case-based Reasoning

with TYRO, the Graphic Designer's Apprentice" Proceedings. of the

1990 IEEE Workshop on Visual Languages.

MacNeil, Ron. (1991). "Generating Multimedia Presentations

Automatically using TYRO, the Constraint, Case-Base Designer's

Apprentice," Proceedings of the IEEE 1991 Workshop on Visual

Languages, Tokyo.

Marks, J. and Reiter, E. (1990). "Avoiding Unwanted Conversational

Implicatures in Text and Graphics" Proceedings. Eighth National

Conference on Artificial Intelligence.

Meggs, P. B. (1989). Type and Image. New York, Van Nostrand

Reinhold.

Intelligent Layout for Information Display

[MULL 81]

[RIES 89]

[ROBN 91]

[RUBE 88]

[STEL 80]

[SUTT 86]

[WEBS 85]

[WEIT 88]

Muller-Brockman, Josef. (1981). Grid systems in graphic design. New

York, Hastings House Book Publishers, Inc.

Riesbeck, C. and Shank, R. (1989). Inside Case-Based Reasoning.

Hillsdale, New Jersey, Lawrence Erlbaum Associates.

Robin, Laura. (1991). "Temporal Adaptation of Multimedia Scripts,"

Proceedings of the 1991 SPIE Symposium on Electronic Imaging, San

Jose, CA.

Rubenstein, Richard. (1988). Digital Typography: An Introduction to

Type and Composition of Computer System Design. Reading,

Massachusetts, Addison-Wesley.

Steele, G. L. Jr. (1980). "The Definition and Implementation of a

Computer Programming Language Based on Constraints," Technical

report 595, Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, Cambridge, Massachusetts.

Sutton, A. and Sutton, M. (1986). Eastern Forests The Audubon

Society Nature Guides. New York, Alfred A. Knoph.

Webster's Ninth New Collegiate Dictionary. (1985). Merriam-Webster

Inc.

Weitzman, L. (1988). "Designer: a Knowledge-Based Graphic Design

Assistant." MCC Technical Report Number ACA-017-88. Austin,

Microelectronics and Computer Technology Corporation.

Intelligent Layout for Information Display

