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Abstract

This thesis is dedicated to the application of a large-scale first-principles approach to
study the electronic structure and quantum conductance of realistic nanomaterials.
Three systems are studied using Landauer formalism, Green's function technique and
maximally localized Wannier functions. The main focus of this thesis lies on clari-
fying the effect of chemical modifications on electron transport at the nanoscale, as
well as on predicting and designing new type of molecular and nanoelectronic devices.

In the first study, we suggest and investigate a quantum interference effect in the

porphyrin family molecules. We show that the transmission through a porphyrin
molecule at or near the Fermi level varies by orders of magnitude following hydrogen
tautomerization. The switching behavior identified in porphyrins implies new appli-
cation directions in single molecular devices and molecular-size memory elements.

Moving on from single molecules to a larger scale, we study the effect of chemical
functionalizations to the transport properties of carbon nanotubes. We propose sev-
eral covalent functionalization schemes for carbon nanotubes which display switchable
on/off conductance in metallic tubes. The switching action is achieved by reversible
control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3  8 sp 2 rehy-
bridization it induces; this leads to remarkable changes of conductance even at very
low degrees of functionalization. Several strategies for real-time control on the con-
ductance of carbon nanotubes are then proposed. Such designer functional groups
would allow for the first time direct control of the electrical properties of metallic
carbon nanotubes, with extensive applications in nanoscale devices.

In the last part of the thesis we address the issue of low electrical conductivity
observed in carbon nanotube networks. We characterize intertube tunneling between
carbon nanotube junctions with or without a covalent linker, and explore the possi-
bility of improving intertube coupling and enhance electrical tunneling by transition
metal adsorptions on CNT surfaces. The strong hybridization between transition



metal d orbitals with the CNT ir orbitals serves as an excellent electrical bridge for
a broken carbon nanotube junction. The binding and coupling between a transition
metal atom and sandwiching nanotubes can be even stronger in case of nitrogen-
doped carbon nanotubes. Our studies suggest a more effective strategy than the
current cross-linking methods used in carbon nanotube networks.

Thesis Supervisor: Nicola Marzari
Title: Associate Professor of Materials Science and Engineering
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Chapter 1

Introduction

Molecular electronics is an emerging field of research aiming at replacing tradi-

tional semiconductor circuitry with individual molecules, which are hundreds of times

smaller and could circumvent the ultimate limitations of silicon-based device minia-

turization. The idea of using single molecules as discrete electronic building blocks,

initiated by the proposal of a single molecular rectifier [1], has attracted increasing

attention during the past decades, and to date numerous single molecule electronic

devices have been constructed [2, 3, 4]. Experimentally, a primitive metal-molecule-

metal (MMM) configuration is usually realized by methods of MCBJ (mechanically

controllable break junction) [5], c-AFM (conductive atomic force microscopy) [6], or

STM (scanning tunneling microscopy) [7].

Despite the enthusiasm and effort invested in the field, molecular electronics is still

far from any industrial application. Current issues for the realization of molecular

electronics include the development of reproducible and robust experimental setups.

In recent reviews [8] it was shown that the experimental measurements of the same

system could easily differ by several orders of magnitude [9]. The variation in the

measured conductance of molecular junctions mainly comes from the difference of

local structures of the metal-molecule (typically Au-S linkage) contact in different

junctions. Due to the lack of specific chemistry between the metal electrode and

the linker group of the molecule, it is extremely difficult to fabricate a well-defined



metal-molecule contact in real experiments.

Single wall carbon nanotubes (CNTs) present an attractive alternative for single-

molecule junctions. The 1-D ballistic transport property in metallic CNTs implies

low power dissipation over long distances. Their stable chemical structure and strong

covalent bonds allow for high mechanical and thermal stability, and the use of CNTs

as molecular contacts avoids the problems associated with metal electrodes using

thiol chemistry. The molecule can be connected to the CNT electrode by a covalent

bond and the attachment chemistry is well defined. It is now possible to fabricate a

CNT-molecule-CNT contact structure by precise oxidative cutting of a CNT followed

by molecular bridge formation via amide linkages [10]. One experimental focus is

now dedicated to synthetic strategies to couple the ir system in the CNT directly to

the 7r system of the conducting molecule for good contact transparency. From the

application point of view, the CNT electrodes are of the same physical scale as the

conducting molecules, which is essential for future molecular scale electronics.

The past twenty years have witnessed multiple experimental breakthroughs of

single molecule electronics; in the meanwhile, the theory of electronic transport in

mesoscopic systems has also flourished [11, 12]. Extensive theoretical studies have

been carried out on metal-molecule-metal junctions [13, 14], providing an in-depth

understanding of the coupling between individual molecular structures to macroscopic

electrodes. Theoretical transport calculations have been shown to play an important

role in clearing up uncertainties and providing direct links between the measured

electrical conductivities and atomic-scale details. Nevertheless, the real power of the-

oretical studies is nothing but their capability to predict undiscovered properties, to

design novel nanoelectronic elements, and to screen vast number of systems before

tedious experimental work is attempted.

The main theme of this thesis is electron transport in nanoscale materials, and in

particular carbon-nanotube electronic devices. The outline of this thesis is the follow-



ing: Chapter 1 provides the background knowledge this thesis is based on. Chapter 2

reviews the fundamentals of the electronic structure theory and the machinery of the

most widely used, state-of-the-art first-principles method, i. e. the density functional

theory. Chapter 3 introduces the basics of quantum transport theory, the Landauer

approach, and the Green's function method for treating an open, infinite system such

as the lead-molecule-lead junctions that we are interested in.

The major part of the thesis is devoted to the application of quantum transport

theory to various systems ranging from single molecules to nanocomposite matrices.

We are mainly interested in the effect of chemistry modifications and the capability

to control molecular functionalities. The motivation for theoretical studies on molec-

ular transport, other than providing explanations to experimental observations, is to

acquire further insight into the mechanisms of electron transport and to help design

new types of molecular devices. In Chapter 4 we study the intriguing phenomenon

that has been a recent focus in molecular electronics: the quantum interference effect,

which stresses the significant difference between electron transport through nanoscale

molecular devices and that through macroscopic structures, and what interesting and

unexpected event could appear when one moves into a smaller and smaller world,

and constructive and destructive interference phenomena start playing a major role

in electrical transports. In Chapter 5 we explore the possibility of controlling the con-

ductivity of CNTs via covalent functionalization and identified a novel through-space

interaction between carbon nanotube surface and aromatic functional groups. In

Chapter 6 we investigate a relatively unexplored topic: the effect of transition metal

adsorption on CNT transport. We apply this to improve the low intertube conduc-

tivity of CNT networks, which is an important issue in electronic devices based on

SWNT thin films. The work in this thesis demonstrates how chemistry at the atom-

istic scale could affect electron transport even at the macroscopic scale, and suggests

novel approaches toward conductance modulation for single-molecular and carbon-

nanotube based nanoelectronics.
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Chapter 2

Fundamentals of Electronic

Structure Theory

Introduction

It is now clear that almost all natural phenomena we experience everyday are a result

of interactions of various molecules and that molecules are composed by even more

basic tiny particles called atoms. The abstract concept of a chemical "bond" enables

one to visualize in one's mind how atoms are held together by an electronic "glue".

Indeed all mechanical, thermal, optical, magnetic or any other unique properties one

can think of about a material are derived from the interactions between various nuclei

and electrons in atoms or molecules. The interactions were made computable with

the emergence of electronic-structure theory, thanks to the invention of a whole new

discipline, quantum mechanics, which describes systems at infinitesimal space and

time scales.

At the heart of electronic-structure theory lies the fundamental law of quantum

mechanics, the time-independent Schrodinger equation

NW({ri}, {RI}) = EF({ ri}, {RI}) (2.1)



where the system is described by an antisymmetric wavefunction T, a function that

depends on both the coordinates of the nuclei {Rj} and the electrons {ri}. The

Hamiltonian H operates on the wavefunction to give the total energy E of the sys-

tem. The problem can be further simplified according to Born-Oppenheimer approx-

imation, which separates the nucleus and electronic degrees of freedom and allows

one to study the electronic behavior while considering the ionic positions at rest as

parameters:

I({r}, {Ri}) < b({R})IR (f}ri} (2.2)

The Hamiltonian for a system containing N electrons includes the kinetic energy

of the electrons te, the attractive Coulomb energy between the electrons and the

nuclei ine, the Coulomb repulsion between electron pairs Vee and finally, the coulomb

repulsion between the positively charged nuclei nn1 .

N N

fiTe + ne + Vee±Wnn Z( -V + v(r) + Z 1  +W, (2.3)
S2 ) ~ . ri - rj|

v(r ) =Z (2.4)
1 ri - R1|

wnn = I Z Z j- (2.5)
2 I<JRI - R

Under the assumptions of quantum mechanics, all physical properties can be derived

from the ground state wavefunction. In practice, however, solving the Schr6dinger

equation is a formidable task as the motion of electrons are intercorrelated to each

other. As a result, the problem is equivalent to solving a set of heavily coupled

nonlinear integro-differential equations, and in fact, no exact solutions exist once one

goes beyond one-electron systems, that is to say, except for the H atom, H± molecular

ion , and a few other simplest systems, one has to rely on various approximations

which usually involve variational minimization of the total energy to obtain the ground

state energy and wavefunction. These approximations typically fall into two broad

'Throughout this chapter atomic units are used: h = me = 47re= 1



categories housed under the roof of wavefunction methods and density methods. This

chapter aims at offering a brief overall introduction of the two distinct methods used

in the following studies in this thesis; more details can be found e.g. in the books of

Szabo and Ostlund [151, Parr and Yang [16], and Koch and Holthausen [17].

2.1 Wavefunction methods

2.1.1 Hartree-Fock theory

Wavefunction methods, as the name suggests, focus on solving for the ground state

wavefunctions explicitly, and most often start from Hartree-Fock (HF) theory. In

reality, the electronic wavefunction for N electrons is a highly complex function that

depends on 3N coordinates and the exact form is not known. Central to Hartree-Fock

theory is the assumption of searching for an approximate solution in the form of a

Slater determinant of single-particle spin orbitals #i, which represents one and maybe

the simplest way of satisfying the antisymmetry requirement and Pauli exclusion

principle:

T (r1a1, r2U2, ... , TNVUN) T(1O1)O(T2U2)-.. -- (TNUN))

= 1 (-1)YP[#(r1i-)#(r2U2)...4(TNUN)1 (2-6)17 P

where r and a denote the space and spin coordinates of the electrons, respectively,

and P is a permutation operator that operates on the spin orbital product such

that upon any exchange between two particles, the spin orbital product takes up an

additional minus sign.

With this assumption at hand and some mathematical manipulations, the en-

ergy calculated from the expectation value of the electronic Hamiltonian can then be

written as:



E = (P(riUi, r202, ..., rNUN)IHeII(riul, r202, ...,rN UN))
N1

-Z iHili) + Z (ijlN2|ij) - (ijl 2|ji) (2.7)
i ii

where H1 and H2 stand for one-body and two-body terms of the Halmitonian:

(iljili) = dr147(ri) V + v(ri) #i(ri) = hi (2.8)

(ijl 2|ij) = dridr2# *(ri)#Or2* #~(r2) rr1=J2 (2.9)

(ijlft2|ji) = dri dr2# *(ri)#*(r2) #i O(r2)#j(ri) = Kij (2.10)

The two-body integrals Jij and K j are the classical Coulomb energy and the

non-classical exchange energy, respectively. The special thing about using Slater de-

terminant is the natural emergence of exact exchange interaction between electrons of

parallel spin. Another advantage of the Slater determinant class is that when i = j,

the Coulomb term Jij cancels exactly with the exchange term Kii, corresponding to

the physical situation where an electron does not interact with itself, i. e. it does not

have any self-interaction. This marks a central difference between Hartree-Fock and

density-functional methods, which inevitably suffer from some form of self-interaction

error, to be discussed in later sections.

The second important consequence coming from Hartree-Fock theory is that the

variational minimization of the total energy is equivalent to solving the pseuod-

eigenvalue problems of the effective one-electron operators, the Fock operators f,

for the spin orbitals #'s:

f (ri)#a(ri) - eaa(ri) (2.11)



f(ri) = h(ri) + vHF (r)

where h(ri) and vHF(ri) correspond to the one-electron core-Hamiltonian op-

erator and an effective one-electron potential operator, the Hartree-Fock potential,

respectively.

h(ri) -V2Z (2.13)
2 , - R1|

VHF (r) - Jb (ri) - b (rl) (2.14)
b

here Jb(ri) and Kb (ri) are the Coulomb and exchange operators which act on the

spin orbital via

Jb(rl)#.(rl) - dr 2#b(r 2 )----b-(r2) 1 a(ri) (2.15)

/ 1

)Cb(r1)#a fr1) -- dr24b(r2) -- alr2) 4btr1) (2.16)/ r12 .

Kb is a non-local operator, and in contrast to the local operator J, it involves an

exchange of orbitals. For one electron in #a the expectation values of Jb and Kb are

just the Coulomb and exchange integrals Jab and Kab. The problem now becomes a

pseudo-eigenvalue equation that involves solving f(ri)#a(ri) = Ea#a(ri) for all spin

orbitals 0#(r1 ). As the operators depend on the orbitals, it can only be solved itera-

tively by a procedure called the self-consistent-field (SCF) method, which calculates

the effective potential vHF(i) from an initial guess set of all the spin orbitals, solves

the eigenvalue problem for a new set of spin orbitals, takes them as the new input in

a second iteration and repeats the procedure until self-consistency is reached, i.e. no

more changes from one iteration to the next.

In practice, the Hartree-Fock one-particle eigenvalue equations are transformed

into a matrix algebraic problem by introducing a set of known spatial basis functions

S's2. The unknown HF spatial orbitals O's (the spin coordinate is integrated out for

2In modern quantum chemical programs, they are usually localized Gaussian or Slater orbitals
plus some diffusion and polarization functions

(2.12)



simplicity) to be solved are then linearly expanded as

Eq. 2.11 becomes

= Ci (Pi

f (ri) Y3 Ciaci (ri) = EZ Cia.p(ri)

Multiplying by spo(ri) on both sides of the above equation and integrate over space

gives the Roothaan equations

FiCia Ea SjiCia (2.19)

Fock matrix elementsFi (2.20)

(2.21)and overlap-matrix elements S p (ri)Pi(ri)dri

Roothaan equations can be written more compactly in the matrix form:

FC = SCE (2.22)

Solving this generalized eigenvalue problem gives the coefficients for 4'(r) via the

matrix C and the orbital eigenvalues E. The {$j(r)}'s that diagonalize the E matrix

are called canonical Hartree-Fock spin orbitals. They are generally delocalized and

have the symmetry properties of the molecule. Each eigenvalue represents the mean-

field electronic energy an electron feels when it occupies that particular spin orbital.

N

Ea = faa = haa + ± Jab - Kab (2.23)

The eigenvalue of the occupied (Ea) and unoccupied (Er) spin orbitals in Hartree-

Fock theory have a special physical meaning, demonstrated by Koopmans' theorem.

(2.17)

(2.18)

j o (ri) f(ri) oj(ri) dri



Each one represents the negative of the removal energy or the addition energy of

the electron occupying that orbital, under the assumption that the shape of the spin

orbital does not further relax upon adding or removing the electron to or from the

system.

Finally, the total energy in Hartree-Fock theory can be written as:

N N

EO,HF haa + Jab - Kab Ea - Jab - Kab (2.24)
a ab a ab

2.1.2 Post Hartree-Fock methods

Although Hartree-Fock theory treats the exchange between same-spin electrons ex-

actly, it lacks "correlation" between electrons (especially between different-spin elec-

trons) and its energy by construction lies higher than the real value. The correlation

energy is sometimes defined as the difference between the exact energy E0 of the

system and the Hartree-Fock energy EO,HF obtained in the limit of complete basis

set:

Ecorr - O - EO,HF (2.25)

Post Hartree-Fock methods, usually known as high-level quantum chemistry meth-

ods, take Hartree-Fock theory as a starting point and increase the complexity of the

approximation for more accurate descriptions of the system.

Many-body perturbation theory

The most straightforward approach to include the effects of electron correlation is

through many-body perturbation theory. In particular, Moller and Plesset suggested

that the zeroth-order Hamiltonian H0 could be chosen as the Hartree-Fock Hamilto-

nian, i.e. the total Hamiltonian could be written as

H = Ho+V (2.26)



N

Ho - f (i) (2.27)

the unperturbed zeroth-order state |WeO)) is the exact solution to HO and is nothing

else but the Hartree-Fock Slater determinant. The zeroth-order energy can be written

as

HoIT4') E(0 |I") (2.28)

N N N N

E ( Zfaa = haa + Jab - Kab (2.29)
a a a ab

and the perturbation V is

N N N N N
V = H - Ho =(Zh(i) + Zr - Zf(-i) = rI: ' - ZvHF(i) (2.30)

After some manipulation, the total energy up to the first-order in the perturbation

can be written:

E E P0 E = ( o ( ) (I HOITO)+(K'IVIIO) ZEa - Jj - Kj = EoHF
a ij

First order Moller-Plesset theory (MP1) is equivalent to the Hartree-Fock approx-

imation. More correlations can be included by going to higher orders of perturbation,

e.g. MP2 (with computational costs scaling as N', where N is the number of elec-

trons), MP3 (N 6 ) or MP4 (N'). MP perturbative approaches work quite successfully

for main group compounds, but they can become unstable when the orbitals are nearly

degenerate, and as a result it often fails dramatically for transition metal complexes.

Multi-configurational methods

Dynamical correlation comes mainly from the instantaneous electronic repulsion that

can not be captured accurately by the mean-field vHF; in comparison, the non-

dynamical correlation refers to the case when one Slater determinant is not a good



representation to the true ground state, as is often the case in dissociation problems,

open-shell species and transition-metal complexes. For such systems improvement

can be made by allowing more Slater determinants to be included. This is the case

in "multiconfigurational" methods as opposed to the single Slater determinant (con-

figuration) of the Hartree-Fock. Conceptually, the simplest way forward is given by

configuration-interaction (CI) method, which writes the wavefunction as a superpo-

sition of many Slater determinants constructed from excitations of the HF orbitals:

=Ici) co fo) +Zc )+ c 1Vr) + c +crste).. (2.32)
ar a<b,r<s a<b<cr<S<t

Here |DGo) is the ground state Slater determinant of HF, IT;) represents the singly

excited determinant obtained by promoting one electron from an occupied #a to an

unoccupied #r, and etc.. The coefficients of the ground, singly excited, doubly excited

determinant, co, c;, ca" and so on are then optimized variationally, keeping the orbitals

fixed. In practice, full-CI (considering up to N-electron excited determinants) is too

computationally demanding and is almost never considered apart from very simple

systems such as H2 . A quick compromise can be met by truncating the expansion up

to only singly excited determinant (CIS), or singly and doubly excited determinants

(CISD). Unfortunately, truncated CI suffers from size-inconsistency, that is to say,

for a supramolecular system, the CISD energy of a dimer does not equal to the

sum of CISD energies of the monomer, although an extension that corrects the size-

consistency error exists, which is called quadratic configuration interaction (QCI).

QCI gives results comparable to this more commonly used and closely-related coupled-

cluster (CC) method, which solves this problem via the use of the cluster operator T

and writes the wavefunction as:

|T O) = CT |±HFT (2-3)

t = $1 + t2 + $t + ... $- N ( 2.34)



where T1, T2, etc are excitation operators to generate multiply excited determi-

nants which, in the notation of second quantization, can be expressed as:

i1 Zc;t h (2.35)
ar

t :-- aaaa (2.36)
abrs

and so forth. The cluster operator can be truncated at different levels and is

known by acronyms accordingly, e.g. CCD for T T2, CCSD for T = Ti + T2 and

CCSD(T) for T T1 + t2 and T3 treated perturbatively. The Taylor expansion of the

cluster operator T takes into account higher excitations even when T is truncated;

for example, in CCD:

2eT e + 2..2 T (2.37)

where T2 generates quadruple excitations, T2 generates hextuple excitations... In

comparison, CID is defined only by the first two terms 1+ t2. This allows CC method

for the superiority with respect to CI in terms of size-consistency.

CCSD(T) is considered to be the gold standard for most transition-metal com-

plexes, but it is a single-reference method in construction and should be used with

caution. One measure of multireference character is called T diagnostic, the root

mean square of the single excitation amplitudes Ti -a, (ca) 2. A large T

value indicates substantial multi-determinantal character and over-interpretation of

coupled-cluster results for such systems might be problematic.

Multi-reference methods

CI and CC are multi-configurational methods, but they are built from only one sin-

gle "frozen" reference (a single Hartree-Fock ground state Slater determinant). The

jargons of quantum chemistry can look here a bit misleading and bewildering: multi-



configurational self-consistent field (MCSCF) methods refer to using more than one

Slater determinant (in contrast to HF) in the self-consistent calculation, thus not

only the weight but also the shape of the orbitals are variationally optimized. MC-

SCF methods are especially important when the ground state is highly degenerate

(e.g. the closed-shell singlet cyclobutadiene) or in bond dissociation reactions. One

special version of MCSCF is CASSCF, complete active space SCF, in which all Slater

determinants that can be formed within a predefined chemical active space (a limited

number of occupied and unoccupied orbitals) are considered in the self-consistent

procedure. MCSCF is also the starting point for many multi-reference approaches

such as MRCI (multi-reference configuration interaction), which differs from CI by

using a MCSCF wavefunction rather than using a HF wavefunction. As it can be

guessed, multi-reference methods require a lot of experience in their use and some a

priori knowledge of the answer one is seeking in order to select the best approach.

2.2 Density methods

Different from the wavefunction methods which focus on solving for the wavefunc-

tion that depends on 3N coordinates, density-functional theory developed an entirely

different approach by taking the electron density as a basic variable. This simplifies

the problem by enabling one to work directly with a physical observable, the density,

rather than some abstruse entity, the wavefunction. The earliest attempt along this

line was given by Thomas and Fermi who came up with a total energy based on a

kinetic energy functional derived from the uniform electron gas. Insightful as it was,

Thomas-Fermi model was over-simplified and failed to describe accurately real sys-

tems. In particular, the atoms as described by TF theory do not bind in molecular

systems.



2.2.1 Density functional theory

Hohenberg-Kohn Theorem

The real breakthrough came in 1964 when Hohenberg and Kohn [18| proved in their

famous theory that (a) the density p(r) is a basic variable that has a one-to-one

correspondence to the external potential v(r) within an additive constant and (b)

that total energy, E, can be written as a functional of the density E[p] = E[p(r)] and

is an upper bound for the real ground state energy. Hohenberg and Kohn showed

that the sum of the electron kinetic energy and electron-electron Coulomb repulsion

energy can be written as a universal functional independent of the external potential:

F[p| = (DT +eeI) (2.38)

So now for a given external (e.g. nucleus) potential, the total energy functional

can be written as:

E, [p] = F [p] + v(r )p(r)dr (2.39)

The Hohenberg-Kohn variational theorem states that the true ground state elec-

tron density po minimizes the energy functional to ground state energy E0 , which is

lower than the energy from any arbitrary electron density

Eo = E,[po] < E [p| (2.40)

Kohn-Sham approach

The HK theorem reduces greatly the complexity of the problem from 3N to 3 variables,

if only one knew how to write explicitly the form of F[p|. A significant progress was

made when Kohn and Sham [19] introduced a reference system of N non-interacting

electrons and N one-particle states $4. The density of this reference system is required

to be equal to that of the real one:



N

p(r) = | (r)|2 (2.41)

The wavefunction for the reference system T, can be written as a Slater deter-

minant and the kinetic energy T, of the noninteracting system can be solved exactly

as:

N

T,[p] = [($bi| - -V |$) (2.42)
2

The total energy functional now treats the real kinetic energy T[p] as T,[p] +

(T[p] - T,[p]), and the real electron-electron interaction Vec[p] as EH[p]+(Vc[p] - EHp]),

where EH is the Hartree energy that represents the classical Coulomb interaction for

an electron gas

EH [P] p ] r p r') drdr' (2.43)

The universal functional F[p] now picks up T, [p] and EH [p], and collects the

residual terms in the unknown exchange-correlation energy Exc[p]:

F [p] = Ts[ p] + EH[p] + Exc[p] (2.44)

Exc[p] = T [p] - T[p] + Ve[p] - EH [p] (2.45)

So, in a form reminiscent of Hartree-Fock, the Kohn-Sham approach recasts the

N-particle problem into a set of N one-particle equations:

V + VKS (ri) /)i = Ej4
Yj (2.46)

whose effective one-electron Kohn-Sham potential is defined as

UKS vr) = Uext(r) + SEH[p]+ 6E=C[p] Vext (r[) + pr dr'+VXC(r) (2.47)
rp(r) 6p(r) |r - r'|



Similar to Hartree-Fock, these equations are non-linear and need to be solved

iteratively. The total energy at self-consistency is then given by

N

E0 = E - EH [P + Exc[p| -] vXc(r)p(r)dr (2.48)

Exchange-correlation functionals

The theory remains exact up to this point but relies on an unknown exchange-

correlation functional. The merit of the Kohn-Sham approach is that by mapping

the system onto a noninteracting reference, it is able to capture a large part of the

energy in terms we know exactly how to calculate, T[p] and EH[p] , shifting the dif-

ficulty of the problem into finding the small residual energy functional Exc(r), which

still has no explicit form. Approximations dedicated to improving the accuracy of the

theory follow a Jacob's ladder of increasing complexity. The simplest approximation

is local density approximation (LDA), which takes the exchange-correlation energy

density at a position r as that of a homogeneous electron gas with the same density,

and writes Ec[p) as

EXcDA J o--cT,(p)dr (2.49)

where eg, "(p) is the exchange and correlation energy per particle of the uniform

electron gas of density p. The corresponding exchange-correlation potential then

becomes

6ELDAtp [_]____

v LDA Am(P) + Hom() (2.50)
XCop(r) XCOP

The second rung is the generalized gradient approximation (GGA), which adds

the density gradient Vp(r) into the functional as a first order improvement over inho-

mogeneities [20]. The higher rungs include meta-GGAs, which contain higher order

terms such as gradient squared (Vp(r))2 and the Laplacians V2p(r), and hyper-

GGAs, that employ fully non-local exact exchange such as the hybrid functionals.

Despite all attempts, however, it is almost impossible to improve Exc[p] systemat-



ically and one usually relies on fitting to high-level Quantum Monte Carlo results

or a pre-determined set of experimental values. Thus a certain exchange-correlation

functional (denoted by numerous acronyms from its inventor: PBE, PW91, B3LYP,

etc.) could work moderately well for certain properties of a particular class of ma-

terials (e.g. metals), but perform poorly for other properties or another class (e.g.

molecules).

2.2.2 Practical implementations of DFT

Similar to the case of Hartree-Fock, the Kohn-Sham equations are usually solved by

expanding the orbitals in a basis set and iteratively diagonalizing the Hamiltonian

matrix until self-consistency. But unlike wavefunction methods, which were originally

developed for isolated molecular species, density-functional theory first appeared as

a solid-state electronic-structure theory. Rather than localized atomic orbital basis

set, in extended systems with periodic boundary condition, a plane-wave basis set is

the most straight-forward and economical choice as had been implemented in many

packages. This section intends to outline this framework, as implemented in the

Quantum-ESPRESSO [21] distribution, which is the primary DFT tool used in this

thesis and is open-source under the GNU public license. General details can be found

in Ref. [22] and [23].

Bloch theorem and plane-wave basis expansion

For a crystal with a periodic potential U(r) = U(r + R), the Bloch theorem states

that the Hamiltonian shares with the translational operator the same eigenstates in

the form of

)nk (r) -- e irUnk (r) (2.51)

where Unk(r) satisfies the periodicity of the crystal

Unk (r) - unk(r + R) (2.52)



Each Bloch wavefunction $'k(r) is labeled with a wavevector k that represents

the crystal momentum and a band index n for different energy levels at a given k.

Applying the Hamiltonian on the Bloch wavefunction gives

-1(V + ik) 2 I+ U(r)j unk(r) - Enknuk(r). (2.53)2

Thus different k's are independent and the Schr6dinger equation can be solved

separately for each k. The charge density self-consistently depends on all k, and en-

ters into U(r) so the iterative solution is still coupled at all k.

The unk(r), satisfying crystal periodicity, is best described by a plane-wave ex-

pansion as

Unk (r) = cnkGe r (2.54)
G

giving

bnk (r) CnkG ei(k+G)r (2.55)
G

where G's are the reciprocal lattice vectors and satisfy e'GR = 1. Usually G runs

over all plane-waves within a sphere in reciprocal space with a cut-off energy Ecut,

namely for all values of G that satisfy

h2 |1k + G|2
h2 + G < Eent (2.56)
2m,

An appropriate Ecut value needs to be tested for convergence prior to any theo-

retical investigation. In practice, however, the orthonormality wiggles of the atomic

wavefunctions near the nucleus usually imply a very high value of Ecut is required

to accurately describe any system, making calculations computationally unfavorable.

This eventually led to the idea of pseudopotentials to separate the chemically inert

core and reactive valence electrons to greatly reduce the number of plane-waves used,

as well as the number of electrons (these will be described later).



BZ integrations and k-point sampling

For each k' = k+G, one can derive unk'(r) = eiGrunk(r) from Eq. 2.54, or equivalently

-k(r) - V'n,k+G(r) (2.57)

as well as

Enk =n,k+G (2.58)

Therefore Bloch theorem allows one to represent the macroscopic crystal within

a small unit cell consisting just a few in inequivalent atoms. Ideally physical quanti-

ties should be integrated over all possible k's within the first Brillouin Zone (BZ) to

represent an infinite crystal, but in reality periodic-boundary conditions on the elec-

tronic wavefunctions (called Born-von Karman (BvK)) are often applied to reduce

the number of k points. BvK boundary conditions are

3

Vfnk(r) = Onk(r + Nidi) (2.59)

where N1, N2,N are integers and di's are unit lattice vectors. Therefore one has

eikunk(r) - eikr k Y' N, d unk(r) - ei(k+' Nidi)runk(r + Nidi) (2.60)

so that

kiNidi = 2nir (2.61)

or

ni27 n
- = bi (2.62)

where ni = 1, 2, 3...Ni and bi's are the unit reciprocal lattice vectors. In other

words, the Born-von Karman boundary conditions state that a supercell containing

Ni x N2 x N3 unit cells can be accurately described by the wavefunction of a unit

cell modulated by e i where k is constrained by the above equation. Thus the entire

BZ integration is reduced to summation of discrete k-points. The simplest method



samples all the allowed k-points in Eq. 2.62 in equal spacing within the first BZ, also

called Monkhorst-Pack sampling [24].

Pseudopotentials

The concept of pseudopotentials refers to approximating the real asymptotic Coulomb

potential of atoms by an effective potential VPs that includes the screening of the

core electrons. Pseudopotentials are devised in a way such that the corresponding

pseudo valence wavefunctions have the ideal properties of (1) perfectly matching the

real valence wavefunctions outside some cut-off radius Rc and (2) the eigenvalues

reproduce the true eigenvalues for each pseudo-wavefunction Fps -- E. Since each

wavefunction "feels" the screening differently according to their different angular na-

ture, the pseudo-potential naturally has to be composed of a local radial part and a

non-local, angular-dependent part:

VPSr Vloc(r) = VAE(r) if r > R(263)
Voc(r) 6,m I3ym))VlocV r + ,|imV1 (r) (Yi.\ if r <; Re

where Yim are spherical harmonics. In norm-conserving pseudopotentials, the

pseudo-wavefunctions are constrained under the orthonormality requirement ('i/c I )

og. Nevertheless, although many valence electron orbitals have most of the density

outside the cut-off radius and can be approximated as node-less smoothly varying

pseudo-wavefunctions by norm-conserving pseudopotentials, the 2p, 3d, and 4f or-

bitals, being the first angular momentum to appear of of its kind, retain most of

the density close to the core region. Thus a norm-conserving pseudopotential does

little to reduce the plane-wave cut-off for these orbitals. The solution for this is the

ultrasoft pseudopotential, which relaxes the norm-conserving constraint and rewrites

the Schr6dinger equation as a generalized eigenvalue problem:

fj|,US) - sE vUs) (2.64)

with an orthonormality condition redefined as



(,OUSIsUs) = 6 (2.65)

where S is an overlap operator that contains the "augmentation charge" that

ensures correct charge density in the core region.

5S= 1±+ Q # f)(jl (2.66)
i,j,J

#f's are projector functions that run over different angular momentum channels

and depend on the ionic positions, while Qf- is an augmentation function given by:

R,

Qi = (oAE*(r),AE (r) - V)4S* (r)?Pusb(r)) dr (2.67)

2.3 Maximally localized wannier functions

Wannier functions (WFs), originally introduced by Wannier in 1937 [25], are orthonor-

mal atomic-like wavefunctions that span the same space represented by Bloch states.

For an isolated set of N Bloch bands Onk(r), a set of WFs wnR(r) wn(r - R),

n E [1, N], labeled by Bravais lattice vectors R, can be constructed by the Fourier

transformation of Bloch states over the Brillouin zone (BZ):

~ N

Iwn(T) -(2~ j [~Unkbn) e ikRdk (2.68)
nR2r)3 BZ m1 ka n)Ik

where U(k) is a unitary matrix that mixes the bands at wave-vector k, and V is

the volume of the real-space primitive cell.

Due to the phase indeterminacy eikn(k) of an isolated Bloch state 4nk(r) at each

wave vector k, the choice of U(k) is not unique. One strategy to determine U(k) is to

choose one that minimizes the spatial spread of the WFs:



Z [(wno(r)|r2|wno(r)) - (wno(r)Irlwno(r))2] (2.69)
n

Wannier functions obtained this way are named maximally localized wannierfunc-

tions (MLWFs) [26]. This formulation offers an extension of the localized molecular

orbitals for molecular systems [27] to the solid-state case. In many instances, MLWFs

are the most natural choice for a set of localized orbitals that span the same Hilbert

space of the Hamiltonian eigenfunctions, and they provide a clear picture of chemical

bonding.

2.3.1 Localization procedure

In a reciprocal space, the expectation values in Eq. 2.69 can be expressed as [26]:

(no(r)rlwno(r)) = (r)n = i (2 )3 Jeik-R (unklVkUnk)dk (2.70)

(wo(r)r2 wo(r)) = (r i (2 7) 3 J e"(Unk k I Unk)dk (2.71)

where Unk = -ikr)nk is the periodic part of the Bloch function 'nk.

In a uniformly-discretized BZ, the overlap matrix between Bloch orbitals can be

defined as

mkb)= (UmkIUn,k+b) = (4'mkle ib-rn,k+b) (-7

where b is a set of vectors that connect a mesh point k to its near neighbors.

After some algebra, the gradient and the Laplacian can be rewritten in terms of the

overlap matrix [28], giving for



Nk, N

(r)= - Wb b Im InMj,;b) (2.73)

Nkp Nb

(r)n NWb{Y[1 -IM,')|12] + [| Im lnMk,)| 2 (

Nkp k b

where Nk, is the number of k-points, Nb is the number of b vectors, and W is

the weighting factor for the corresponding vector b. The spread functional Q can

now be expressed in terms of M",;Ab), and the minimization of Q with respect to Uk

is then performed using steepest descent or conjugate gradients, until the stationary

condition d = 0 is reached.

2.3.2 Disentanglement

For an isolated set of bands such as the valence states in an insulator, the above

procedure is straightforward. When a system is metallic, however, a disentanglement

procedure [29] is needed to separate a group of bands since all bands near the Fermi

level are mixed together and there is no visible gap in between. This is done by per-

forming another unitary transformation Udis(k) prior to localization. At each k-point,

an energy window that contains N n states is defined and a subspace S(k) spanned

by N (N < N#in) Bloch states is determined:

lu op) = Udisk)|Umk) (2.75)

where Udis(k) is a rectangular Nwin x N matrix. The disentanglement procedure

is equivalent to selecting a subspace out of the entangled space that is maximally-

connected across each k-point, i.e. with maximum overlap between S(k) and S(k+b).



2.3.3 Real-space Hamiltonians

In the Bloch representation, the Hamiltonian by definition is diagonal Hmn(k) -

Enkmn After finding the unitary matrix U(k) that minimizes the spread, we obtain

the Hamiltonian in a transformed representation

H(rot) (k) = U(k)tH(k)U(k) (2.76)

that can then be Fourier transformed to give the Hamiltonian in the MLWF basis

H t )(R) - e-ik-R Hr t )(k) = (WmOlIlWnR) (2.77)

k

Due to the strong localization of MLWFs, the matrix elements Hmn(R) decay

rapidly with R, making the Hamiltonian a sparse matrix. In the following chapter,

we would see how MLWFs offer a bridge between plane-wave electronic structure and

Green's function formalism for transport calculations.



Chapter 3

Quantum Transport Theory

Introduction

Classical theories of transport treat electrons as particles. Electrons move unimpeded

and are freely accelerated by the external field for a characteristic relaxation time un-

til they are scattered by a defect, a phonon, or another electron. The direct result of

this classical particle assumption gives the well-known Ohm's law, which states that

the conductance (G) of a rectangular two-dimensional conductor is directly propor-

tional to its width (W) and inversely proportional to its length (L):

G = (3.1)
L

where a is the conductivity of the material. As the size of devices begins to shrink,

however, the wave nature of electrons becomes non-negligible and consequently, classi-

cal transport theory can no longer hold. The quantum characteristics of the transport

phenomena must be taken into account as the device dimensions L reach the scale of

the following characteristic lengths: (1) the de Broglie wavelength AF determined by

the kinetic energy of the electrons, (2) the momentum-relaxation length Lm which is

the distance that an electron travels before its initial momentum is destroyed, and (3)

the phase-relaxation length Lp which is the distance that an electron travels before it



looses the initial phase information. In this chapter, we focus on the phase-coherent

transport regime where Lp is a lot larger than the device length, i.e. L < LO, as is

the case in single molecule transport, and we introduce some formal approaches to

quantum conductance, namely Landauer's approach in a Green's function technique.

3.1 Landauer Formalism for Phase Coherent Trans-

port

3.1.1 Quantum Scattering Theory

The theory for electron transport through nanoscale devices is in essence scattering

theory [30]. Consider the 1-D case where a plane wave is scattered by a step potential

barrier:

U(z) = z<0 (3.2)
UO z > 0

The solution for the scattered state wavefunction is given by

V) (Z) Aieikz + Aoe ikz z < 0(3)B(z) = (3.3)
Be' + Be' z > 0

The "+" and "-" subscripts are for right-moving and left moving wavefunctions,

and the "i" and "o" superscripts mark the incoming and outgoing waves toward the

barrier boundary, respectively. The coefficients are related to each other from the

boundary conditions expressed in the matrix M:

1 +a 1 a
A' B BO+( = M + 2 2 + (3.4)
A B') 1 -a 1+ a B

46



EF-U 0 yR
where a - = - . Alternatively, the incoming and outgoing waves can

E vL
also be related by the scattering matrix S:

1- a 2a
A0 A' All

S +a 1+a + (3.5)
B0 B 1+a0 B"

+) ~ 1+ a 1+ a)( )

To find the transmission and reflection coefficients we set Bi = 0 (i.e. the wave

is only coming in from the left), then the transmission probability T(E) and the

reflection probability R(E) become

V R|B± _| 4a

T(E) =IAB1 2 . ±) (3.6)
Vt|A1|2 (1 + a)2

A |2 (1 - a)2

R(E) = =(1+)2 (3.7)
I|A'12 (1 + aZ)2

T(E) + R(E) = 1 (3.8)

The elements in the matrices M and S are expressed in terms of the amplitudes

of the waves. One can define another matrix S' in terms of the amplitudes of the

currents to satisfy the current conservation rule and the unitary condition, S'tg = I

S'm = Snm (3.9)

The elements inside the unitary scattering matrix S' are related to the transmis-

sion and reflection coefficients in the following way:

/1-a 2 /t

S' 1+a 1+a r t (3.10)
2-/a -1+a t r'
1+a 1+a

where r and t describe transmission and reflection of left-incident waves, and r'



and t' for right-incident waves. As shown in this case, in general t = t' holds, i.e.

the left-incident and the right-incident waves have the same transmission probability

given by time-reversal symmetry. The transmission probability T(E) comes naturally

from the square modulus of t

4a
T(E) = =fft = |t|2 (3.11)

(+ a)2

The example shown here is the so-called single-channel transmission where only

one possible |kl exists for any given energy. In the three-dimensional case, if the

(x, y) dimensions are constrained and only certain transverse modes exist for a given

energy, multiple k2's can exist and scatter into each other.

h2 k2

2 r + Ex"y n = 1, 2 , 3...NL,R (3.12)
2m

For the multi-channel case, the scattering matrix S' is a square matrix with di-

mension N = NL + NR, where NL and NR are the number of channels for the left

and right side of the system. S' can be written in the form

S' = r t' (3.13)
(t r

where r, t, r', and t' now also become matrices and have the dimensions of NL x NL,

NR x NL, NR x NR and NL x NR, respectively. TO, = Itp3| 2 are the probabilities

of transmission from the left mode a into the right mode 3. The total transmission

from left to right is

T(E) = [T = Tr(tft) =[T (3.14)
BEGR aE -L n



where Ta's are the eigenvalues of the ttt matrix and represent the transmission

probabilities of the non-mixing eigenchannels.

3.1.2 Current from transmission

Landauer approach [31] describes the current through a conductor as the probability

that an electron can transmit through it. For a single-channel conductor connected

to reservoirs both on the left and the right sides, the current is

2e 2e L hk
J vf(k)T(k) = dk(-)f(k)T(k) (3.15)

L L2 m
k

since

h2k hk
E dE= hdk (3.16)

2m M

The net current that passes through the conductor under finite bias V would be

2e )0 2e 2

J(V) = JL R - JRML - T(E, V)[fL(E + eV) - fR(E)] dE = -T(E, V)V
h J_ h

(3.17)

and the conductance

dJ 2e2

G = -=eT(E, V) = T(E, V)Go (3.18)
dV h

2e2

where Go is the conductance quantum, Go - - 77.5 pS. For multi-channel

conductors, the total transmission is the sum of the contribution from all channels,

and the generalized two-terminal Landauer transport is given by the Fisher-Lee for-

mula [32]:



2e2  2e2
G 2= Te(E, V) = h Tr(ttt) (3.19)

3eR aEL

3.2 Green's Function Method in a Localized Basis

Set

In principle, the transmission function T(E) for a coherent conductor must be cal-

culated from the scattering matrix, which can be obtained from the solution of the

Schrbdinger equation. Nevertheless, in the atomistically defined LCR systems, solv-

ing for the scattering states requires the non-trivial task of calculating the complex

band structure in the electrodes. This difficulty can be circumvented by the powerful

method of Green's functions, which express the elements of the scattering matrix in

terms of the Green's function of the conductor part [33, 34, 35] and is simpler to

compute.

For a system represented by an Hamiltonian H, the retarded and advanced Green's

functions are defined as follows:

[(E + -i)I - H]G T = I (3.20a)

G = [(E + iTr)I - H]-1 (3.20b)

and

[(E - iq)I - H]G"a = I (3.21a)

Ga = [(E - iT)I - H]- 1  (3.2 1b)

Ga = (G')t. (3.22)



where r/ is an infinitesimally small positive number (rjA0+) that ensures the cor-

rect boundary conditions.

3.2.1 Green's function method for extended systems

Consider a "left lead-conductor-right lead" (LCR) structure described by some lo-

calized basis such as atomic orbitals or Wannier functions. The wavefunctions are

represented by a linear combinations of the localized basis set, # = J c, la). The

matrix elements of the Hamiltonian Hy = (ajHI#) gradually decay to zero as the

distance between the basis functions 1a) and 1#) increases. If the conductor region

is long enough such that there is no interaction between the left and the right leads,

the full Hamiltonian of the system has the following block form:

HL HLC 0

H Ht Hc HCR (3.23)

0 Ht HCR HR

where HL, H 0 , HR are Hamiltonians of the left lead, the system, and the right

lead, respectively. The off-diagonal terms HLC and HCR describe the coupling be-

tween the leads and the conductor. The matrix form of the Green's function (from

now on we only look at the retarded Green's function Gr) for this system can be

further partitioned into submatrices corresponding to the conductor and the leads:

E - HL -HLC 0 GL GLc GLR

-Htc E - HG -HRG GRo GCR 1

H0  - E - H -H GRL G 0c GR

where we have substituted E for (E + ir7)I. Take each row of the first matrix and

multiply by the second column of the second matrix and we have:



(E - HL)GLC - HLsGC = 0 (3.25)

-H'CGLC + (E - Hc)Gc - HtCRGRC = 1 (3.26)

-HtCRGC + (E - HR)GCR = 0 (3.27)

(3.28)

After some manipulations one can get a simplified expression for Gc:

GC = [E - HC - EL - ERI-' (3.29)

where EL = HIcGLHLC and ER HtRGRHCR are the self-energy terms for

the left and the right lead, respectively [11]. H 0 + EL + ER can be viewed as the

effective Hamiltonian for the conductor interacting with semi-infinite leads. The spec-

tral function Ac is defined as the imaginary part of the Green's function, which gives

the local density of states for the conductor [11].

A =i (Gc - Gc) (3.30)

No(E) - Tr [Ac(E)] - Im{Tr [G(E)] (3.31)
27r 7r

The complex self-energy terms contain a few important physical aspects. The

real part describes the energy shift of the level of the conductor region when it is

connected to the leads, and the imaginary part describes the level broadening, which

is a measure of the coupling strength. The coupling functions are therefore defined

as

PFL,R - i (E,R (L,R332)
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where the advanced self-energy E a is the Hermitian conjugate of Er

3.2.2 The principal-layer approach for semi-infinite leads

As our system involves semi-infinite left and right leads, the submatrices of the Hamil-

tonian have infinite dimensions, except for HC. Therefore, the evaluation of the

self-energy terms require manipulation of matrices with infinite dimensions. It is con-

venient to adopt the principal layer approach [36, 37] in which one can define the

minimal length it takes between two basis functions |a) and 1#) in the lead to have

negligible interactions (i.e. (a|H I#) ~ 0) as the length of a principal layer. The

principal layer of the lead should contain enough unit cells such that the interactions

between the i-th and i + 2-th layer is negligible, and the Hamiltonian can be recast

as

... H 0
0 Hl0 0 0 0 ...

HL HLC 0 ... Hot H00 hLc 0 0 ...

H =H Ho H 0 s = -- 0 ht 0  He hcR 0 (3.33)
LC CR ... 0 C 0 ...~H**

0 Ht HR ... 0 0 h0 Hot H00 -

- -0 0 Hol Hoo
R R

As shown in Eq. 3.33, all information of the infinitely-dimensioned HLC is now

contained within a small submatrix hLc with dimension NC x NL, where NL and

No are the number of basis functions in the principal layer of the lead and in the

conductor region, respectively.

The self-energy term for the left lead now becomes



EL = H cGLHLC (---- ht Cx GL X(

hLcl

0-

Hi
E -H10)

-K -22
gL

lot
gL

20t
gL

21
gL

11
gL

lot
gL

20
(3.35)

10
gL

00
gL/

Inserting Eq. 3.35 into Eq. 3.34 we get EL = H cGLHLC = htCgo0hLc, where

g0 is called the surface Green's function.

3.2.3 The surface Green's function

With the help of the principal-layer approach, one can transform the infinite-dimensional

problem into a finite-dimensional matrix multiplication, and we are now left with the

task of evaluating the surface Green's function go' [38, 39].

From the definition of GL

K.E - Ho0L

H0ot

0

EHr
E - HotL

Hl"I

Multiplication between each

second matrix gives

\ /...

E -- H10 - -

22
gL

lot
gL

20t
gL

21
gL

11
gL

lot
gL

20>
g -\

0 I

gL

(3.36)

row of the first matrix and the last column of the

L -
E -Ho0L

HiL

0

EHo

Hi ot
L

(3.34)



(E - H )g
(B L

(E - H )g -

(E -- HO )g"

I + H lgt

Hlotg 2 + H 0 g 10

Ht gn+1,o + Hl0 g" 1,0

or equivalently

g - tog n"-' 0 + tegn+1,0

to (E - Hoo) 1 Hl0

to = (E - Ho0)-iHIOt

Applying Eq. 3.40 recursively, one can derive the following relations and the

transfer matrices T and T:

gL = Tg0

gL = Tgu0L

T to+it1+io±lit 2 +---+ olit 2 --.tn

T = io + toi + toti 2 + - + totit 2 ... in

where t. and ti are defined via the recursion formulas:

(3.37)

(3.38)

(3.39)

(3.40)

(3.41a)

(3.41b)

(3.42a)

(3.42b)

(3.43a)

(3.43b)



ti = (I -t_1_ iiIti_1)- t _1 (3.44a)

tj = (I - ti_1ti_1 - is_1ti_1) i _1(34 b

The process is repeated until t,, and i, ; 6 with 6 arbitrarily small. Usually only

5 or 6 iterations are required to converge T and T.

Finally, the surface Green's function is

0000_1
gL = (E - H" - HlOtT)-' (3.45)

3.2.4 Transmission probability in the Greens' function rep-

resentation

We have introduced the matrix Green's function for the LCR system, and shown how

to convert the infinite-dimensional problem into finite matrix manipulations. We are

now in the position to derive the the Fisher-Lee formula, Eq. 3.19, in the Green's

function representation to show the full power and elegance of this method [40].

Consider again the tight-binding Hamiltonian of Eq. 3.23. The Shr6dinger equa-

tion can be written in the following form

HL HLC 0 T LTL

Ht H0  H C = E 0  (3.46)
0 HR HR /\IR} I R

where TL = Q+ T1. TO is the "incoming wave" and is the eigenstate of HL with

energy E, i.e. HLT4F = El0f. WfT is the reflected wave and WR is the transmitted

wave. With these conditions one can solve the scattering state as



4 L = (1+ GLHHsGr HtS)

'Is = GRHRsGBJHb sWp

WR =GrHt sW
C LS L

The current carried by this left-incident scattering state is

jL-+R -- -- (J(RjqR) = -C R)at (a + (KR I at )

From HT = ih JT and Eq. 3.46, one can find the current to be
at

JL-R - - (THLS4fS - TsHsL

Inserting in these expressions the solutions given in Eq. 3.47, we have

W'4HLsTS - F'sHts'L)

h HLsGHRS (GIR - GR) HRSG'HtSo)

- f ( tHsGFRG Ht sO)

Eq. 3.50 is the current for this specific scattering state. For total current one

needs to sum up this current from all left-incident transverse modes at a given en-

ergy. From Eq. 3.15 and Eq. 3.17, the transmission function is related to the current

by

(3.47a)

(3.47b)

(3.47c)

(3.48)

(3.49)

jL-+R =

(3.50)



T(E) = JLR =2r i(E - E ) (CH sGLFRGHIsA)

27r 6(E - E,) ('ItHLS

S27r Z (E - E,) (#tG" FRGrHs) (4! HLsdi)
A i

z GaFRGrH tS 27r 6(E - E)o HLHs, T

Recall that the Green's functions can also be expressed in terms of eigenvectors

of the system:

Ar E - E + ir

G4=E -E- ir

(3.52a)

(3.52b)

Using the SokhatskyWeierstrass theorem

1 = P(1/x) - iiro(x)
x + zr

P(1/x) = lim
6->0

(3.53)

(3.54)dx + -dx
_ X z 6 X I.

We can get

(G - Gr) = i27r(E - E )

Part of the right-hand side of Eq. 3.51 becomes

S 27r 6(E - E)WfoA\Io ) HLS

(3.51)

(3.55)

-iHt a LS = FLLS(G - Gr)HL L (3.56)

Ga qf 0
Cr'RG1_ H'SC L LA)



Finally Eq. 3.51 can be rewritten as

T(E) = Tr(FLGFRIGP ) (3.57)

and we have the Fisher-Lee formula in the Greens' function representation [40]

G() 2e 2  2e2  (.8

G(_E) = -- T(E) = Tr(FLGa RGr) (3.58)
h h C

3.2.5 Eigenchannel analysis

In scattering theory, the S matrix is usually represented in the basis of the Bloch

wavefunctions of the left and right electrodes (or plane waves for free-electron elec-

trodes). In Sec. 3.1.1 we have shown in Eq. 3.14 that one can diagonalize ttt and get

a set of non-mixing eigenchannels, each with a well-defined transmission probability

UttftUL = diag{T1} (3.59)

The eigenvectors of ttt given by the columns of the unitary matrix UL[NL x NL]

are linear combinations of the incoming wavefunctions from the left, and represent

a new set of eigenchannel wavefunctions with well defined transmission probabilities,

0 T < 1. The individual eigenchannel transmissions add up to the total transmis-

sion T = Y:,E T. One can also define a rectangular unitary matrix UR[NR x NL] for

the right lead such that

UfktUL = diag{TI} (3.60)

The columns of UR represent the outgoing part of the eigenchannel wavefunctions

at the right, formed by mixing the Bloch wavefunctions of the right lead, with a one-

to-one correspondence to the incoming channels at the left as shown in columns of UL.



The eigenchannel decomposition has the advantage of breaking up the transmission

into a set of "non-mixing" channels and thus the total transmission is the direct sum

of all contribution without any cross (interference) terms. Alternatively one can also

diagonalize the rectangular matrices t t and t using single value decomposition:

tt = URDUL and t = UtDtUt (3.61)

The norm of the eigenvalues of the complex diagonal matrix gives the transmission

DDt = DtD diag{T}, and the phase information for the transmitted waves are

retained as 0,= arg(D,).

Scattering theory assumes no knowledge about the scattering region and only

gives the description of the incoming and outgoing waves far from the scattering cen-

ter. The Green's function's method, on the other hand, works in the device subspace

without solving for the scattering states in the leads. To relate the two one must

recover the implicit scattering states within the device subspace. It can be shown

that the spectral function of the device region can be written as the sum of the left

and right contribution [41]:

Ac = i(Gc - Gc) - iGc(Gt-1 - G-1)Gt = GcLGt + GcPRGt = AL + AR

(3.62)

where ALR = GCFL,RGt represents the projection of the scattering states with

left and right incoming waves onto the device region. Diagonalization of the transmis-

sion matrix ttt in the left lead space is equivalent to diagonalization in the eigenbasis

of AL. It was shown that the eigenchannel transmissions and wavefunctions in the

device region can be obtained by diagonalization of the Hermitianized matrix [41]:

T(E) = Tr(F LGcRGc) - Tr((G,,F G 2 FR (G rLGc) (3.63)



U((G'FLG")FrR(G rLG') )Ut = diag{ T} (3.64)
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Chapter 4

Quantum Interference Effect and

Conductance Switching of

Porphyrins Controlled by

Hydrogen Tautomerization

4.1 Quantum interference effect in single molecule

transport

One of the main interests in single molecule electronics is to employ the wave nature

of the electron to control current flow in nanoscale devices. The interference effects in

transport through aromatic systems, in particular the prototypical example, benzene,

have been studied both experimentally [42, 43] and theoretically [44, 45, 46, 47]. The

transmission of benzene varies by orders of magnitude when relative orientation of

thiol disubstitution is changed from para, ortho, to meta. In transport theory, it

is known that for single molecules, transmission at the Fermi level is dominated by

the tunneling mechanism in which the transmission coefficient T decays exponentially

with electrode spacing, T oc e- 3, and the decay constant # is proportional to the gap

between HOMO and LUMO, ErUMo EHoMo [48]. Since the HOMO - LUMO gap is



affected negligibly for all three systems in dithiobenzene, one may naively expect the

transmission ordering to be ortho meta para based on the tunneling length between

the two electrodes. Nevertheless, both experiments and theory have confirmed that

the transmission follows the order of para ~ ortho > meta.

-2.0 -1.0 0.0 1.0 2.0
Energy (eV)

Figure 4-1: Transmission of the benzene molecule calculated within the Hickel model
with different electrode connections. The on-site energies and the hopping terms for
the p2 orbitals are set to 0.0 and -0.5 eV, respectively. The coupling element between
the lead and the molecule is also set to be -0.5 eV.

4.1.1 The orbital view interpretation

This effect is generally attributed to the so-called quantum interference effect, which

implies that the electron goes through the molecule via multiple paths and the phase

difference between different paths determines constructive or destructive interference

for the transmitted wavefunctions, as in common wave interference experiments. Nev-

ertheless, the "branch current" interpretation is hardly applicable to molecular sys-

tems since the wavefunctions span the entire molecule and are not limited within

II



certain parts of the molecule as the current flows through. The origin of the quan-

tum interference effect is essentially embedded in the underlying molecular symmetry

and the inherent electronic structure, and more specifically, the phase and the am-

plitude of the frontier orbitals on the anchoring atoms linking the molecule to the

electrodes [49]. In the orbital view interpretation proposed by Yoshizawa et. al. [49],

the Green's function of the central region for a weak coupling system is approximated

by the zeroth-order Green's function, which neglects the effect of lead self-energies,

and is expanded in terms of the molecular orbital basis li) of the molecule:

c~0 (E - I i) (i1 (4.1)G(0) (E) = E -

where ci runs over all molecular orbital eigenenergies. Transforming to the local-

ized atomic orbital basis, we can get the Green's function element between the linkage

r-th and s-th atomic orbitals to be

G(0 (E) - c c (4.2)

where cr, is the ith molecular orbital expansion coefficient for the rth atomic or-

bital. Assuming the Fermi energy to be at the midgap between HOMO and LUMO,

for polyaromatic hydrocarbons (PAH) such as benzene, the occupied and unoccupied

orbitals are symmetric with respect to the Fermi level in terms of energy and AO

composition. It is then straight forward to show that the transmission at the Fermi

energy solely depends on the relative sign of Cri and cj of the HOMO-n and LUMO+n

orbital pairs:



I h.,C* cluo*

G() c,homoc homo + crumocSUM

8EF + ir - Ehomo EF + 1 -- Elum

c +r,homo-1cs,homo-1 Cr,lumo+1Cs,iumo+ 1

( F-- r -- Ehomo-1 EF + i - Elumo+1 /

If the CrHOMO0 sHOMO has the same sign as CrLUMOC,*LUMO, each pair inside the

brackets cancels out and Gr8 equals to zero, as in the case of meta-benzene shown in

Fig. 4-2

LUMO

KID
Symmetry allowed

Symmetry forbiddenHOMO

Figure 4-2: Frontier orbitals of benzene and symmetry-allowed/forbidden routes for
electron transmission.

4.1.2 Molecular conductance orbital analysis

A different approach to interpret the quantum interference effect known as the molec-

ular conductance orbital (MCO) analysis has also been proposed [471. Different from

the eigenchannel analysis, which has the advantage that by mixing orbitals one ac-

quires a set of non-mixing transmission channels with no cross terms, the MCO

analysis decomposes the transmission into the contributions from each molecular

orbital. As the name implies, molecular conductance orbitals resemble molecular

orbitals of the discrete molecular systems, but also account for lead-molecule inter-

actions. In other words, molecular conductance orbitals are the eigenvectors of the

Ca



effective Hamiltonian Heff = HC + EL + ER, or equivalently, the eigenvectors of the

Green's functionGr = (E - Heff) . Since the self-energy terms are not Hermitian,

molecular conductance orbitals are generally complex, but still retain the one-to-one

correspondence to the unperturbed molecular orbitals. This is seen by first rewriting

the coupling functions FL into

FL = hCL (9(gO - go)) hLC hcLai) a 2 hLC 7YLCYt (4.4)

and similarly for the right lead; here aLR is the spectral function of the leads. In

the matrix representation YL(R) = hCL(R)al/2 is a rectangular matrix with dimension

L(R) x C. Transmission can then be rearranged in the following form

T(E) = Tr[FLG'TFRGa = Tr[7LT G't aTG]

= K 7LG 7R) NTG7L) = Tr(ttt) (4.5

A new transmission matrix with dimension L x R can then be defined as tf

y1G>R~. The matrix element th,(E) represents the transmission coefficient from the

a-th orbital in the left lead to the #-th orbital in the right lead and the total trans-

mission T = It2 is a sum over all lead orbital transmissions.

We can do a further simplification by adopting the wide band limit (WBL) ap-

proximation for the lead, in which the self-energy of the lead can be represented by a

constant imaginary number, and t essentially has dimension one by one and becomes

a number. Following the notation used in the previous orbital view discussions, if we

assume that the central region is connected to the left and right leads only through the

r-th and s-th orbitals respectively, then the -y4 and YR matrices have only one nonzero

element each, (-y)1,= 5- ~ and (YR),l = fy . Matrix multiplication then reduces to



t tt Vl-(G )rs/ R = LTRG;,(E) - 'YL'yR d E + (4.6)

One can immediately see the similarity of the above formulae to Eq. 4.2, except

that instead of expanding in molecular orbitals. Eq. 4.6 contains full lead coupling

effect and is expanded in terms of the molecular conductance orbitals, while ej, cj are

generally complex rather than real numbers, as in the zero-th order Green's function

expansion. In the limit that electrode coupling goes to zero, the MCO analysis is

reduced to the simple orbital view of Sec. 4.1.1. Also note that the transmission

probability T = t|2  Iti 2I+It 2 |2+-. -+ tit + t*t2 + - - - now contains the cross terms

which naturally rationalize the interference effect from the molecular orbital point of

view.

4.2 Quantum interference effect in porphyrins

The discovery of the quantum interference effect has raised a lot of interest in de-

signing single molecular switches as functional electrical elements towards the minia-

turization of electronic circuits. A transformation based on isomerization [50], bond

cleavage [51] or an electrochemial reaction [52] often induces a change in molecular

symmetry which can in turn cause a change in transmission by orders of magnitude.

A quantum interference effect transistor (QuIET) [45] was recently proposed in which

the destructive interference of meta-connected benzene can be controlled by decoher-

ence and/or elastic scattering introduced by a third voltage probe or a side group.

Nonetheless, most of the proposed strategies to date remain at the "conceptual"

stage, either lacking controllable means or involving drastic conformational changes

that are incompatible with device setup. An ideal molecular switch, other than being

bistable and reversible, should have similar molecular frames and binding strengths to

the substrate before and after the switching event. These criteria can be fulfilled by



the recently discovered hydrogen tautomerization reaction in naphthalocyanin [53],

in which the tautomerization reaction was induced by electron injection through a

STM tip under a bias voltage above the LUMO resonance, and can even be coupled

to neighboring molecules in an assembly. It would be interesting to investigate if the

aromatic porphyrin families as shown in Fig. 4-3, whose small bandgaps and planar

structures make them a perfect candidate for nanoscale device fabrication, also pos-

sess the quantum interference characteristic that can be accurately maneuvered by

the hydrogen tautomerization reaction.

(a) (b) (c)

N
NH N- \NNH N NH N

\\/ N N

N HN N HN N HN

N

Eg=3.18eV 1.63eV A08 eV

Figure 4-3: The porphyrin family molecules:(a) porphyrin (b) tetrabenzoporphyrin
and (c) naphthalocyanin considered in this study. Also shown here are the HOMO-
LUMO gaps calculated with the PBE functional and 30/360 Ry cutoffs for plane wave
basis. It has been shown that the hydrogen tautomerization of (c) can be controlled
by a STM tip.

We first examine the symmetry of the frontier orbitals of the D2h symmetric por-

phyrin molecule. As shown in Fig. 4-4, the HOMO has ai symmetry with respect

to both yz and xz planes and the almost degenerate LUMO and LUMO+1 orbitals

have the same nodal structure but are rotated by 90 degrees with respect to each

other as have been previously observed in STM measurement [53]. Considering the

shape of molecular frame and the most possible connection points common to all

porphyrin family molecules, we first look at four possible connection paths to the

left and right electrodes, namely AB, AC, DE, and DF. A close examination at

the relative phase and magnitude of the pz orbital coefficient in the frontier orbitals

indicates that only in the AB connection there might exist a destructive interference



near the Fermi level since CA,HOMOCOMO and CA,LUMOcB,LUMO have the same sign,

while all the other connections have opposite signs for the two products and therefore

interfere constructively. Note that although porphyrins do not belong to the PAH

family and therefore do not have the symmetry between the occupied and unoccupied

7r orbitals, the HOMO and LUMO terms are still the dominant contribution in Eq.

4.2 since all the non-zero terms are much smaller and merely shift the position of the

conductance dip. Using Eq. 4.2 and considering only the HOMO and LUMO orbital

pairs, a transmission zero can be predicted for an AB connection to lie at E -- 3.84

eV, only -0.6 eV away from the midgap Fermi level.

(a) (b)

N

LUMO LUMO+1 LUMO+2
-2.21 eV -2.20 eV -0.88 eV

MsO.
HOMO HOMO-1 HOMO-2

-4.16 eV -4.38 eV -5.00 eV

Figure 4-4: (a) the connection sites of porphyrin to the left or right electrodes consid-
ered in this study and (b) the positions and wavefunctions of the frontier molecular
orbitals of porphyrin.

4.2.1 Transport properties of porphyrin family molecules

We perform the NEGF calculation in the zero-bias limit to find the transport prop-

erties for all possible paths between A - F connection sites. The electronic structure

of the molecular part is first calculated with plane wave basis under periodic bound-

ary conditions and then a unitary transformation to maximally-localized Wannier

functions (MLWF) is performed to obtain the smallest possible orthogonal localized



basis set that is compatible with the lead-conductor-lead formalism of the Green's

function's method. In order to represent in the MLWF basis not only the occupied

manifold but also r* orbitals close to the Fermi level that are relevant to the trans-

mission, we include unoccupied states up to 10 eV above HOMO, and followed the

disentanglement procedure to separate localized molecular states from diffuse Ryd-

berg states. A selection of the MLWF orbitals for a porphyrin are shown in Fig. 4-5.

An s-like orbital is located in the middle of all a bonds and a p, orbital are recovered

for all carbon atoms, as well as the nitrogen atoms in the pyrrole moiety. For the

other pair of nitrogen atoms the pz orbital is found to hybridize with the long pair

and give rise to two sp3 long pair orbitals. In any case, the transformed MLWF basis

set accurately reproduces the electronic structure of the porphyrin and all molecular

orbital eigenenergies up to 5 eV above the HOMO level. For the lead part we adopt

the wide band limit (WBL) approximation. It is known that the use of WBL approxi-

mation is applicable to Au leads since the density of states of gold is quite flat around

the Fermi energy [44]. The self-energy of the lead can be represented by a constant

imaginary number, EL,R -- -Z'2' |GL,R (L,RI where laL,R)is the pz orbital of the

linkage carbon atom, and the coupling constant -YL,R is set to be 0.5 eV, following

typical estimates in other studies [45].

The transmission function for porphyrin, tetrabenzoporphyrin and naphthalo-

cyanin with the wide-band-limit approximation are shown in Fig. 4-6. Conforming to

what we have expected, a transmission zero appears for the AB-path within 1 eV from

the Fermi level for all three systems, and there are some other transmission paths, for

example, BD and AD, that show strong destructive interference effect near the Fermi

level. Since these transmission zeros are all rather accessible, an electrical switch can

simply be made by applying a gate voltage to tune the position of the Fermi level

[54]. More excitingly, the specific symmetry of the porphyrin-family molecules allows

for another degree of freedom. Upon hydrogen tautomerization, the AB-path and

DE-path change into one another and same for AD and BE (Table.4.1). If a gate

voltage can be applied to the molecule to tune the Fermi level to the energy where a



Figure 4-5: Selected orbitals of the MLWF basis of porphyrin. An s-like orbital is
located in the middle of all a bonds and a p, orbital are recovered for all carbon
atoms, as well as the nitrogen atoms in the pyrrole moiety. For the other pair of
nitrogen atoms involved in 7r molecular orbitals, the pz orbital is found to hybridize
with the long pair and give rise to two sp3 like orbitals.

transmission zero occurs, what is non-conducting (AB or AD) becomes conducting

(DE or AF) after the tautomerization, and vice versa, differing by orders of magni-

tude as in an ideal electrical switch. Even without any gate voltage fine-tuning, at

the Fermi energy the transmission between AD and BE already differs by at least

one order of magnitude caused by the nearby conductance dip.

AB -* DE
AC < DF

AD=CF - BE=AF=CD
AE BF
BD CE

Table 4.1: The equivalent paths of porphyrin-family molecules and their interconvert-
ing relationships upon hydrogen tautomerization

To quantify the molecular orbital contribution to the destructive interference, we

perform the molecular conductance orbital (MCO) analysis following the procedure

proposed by Solomons et.al [47]. We can now separate the contributions to the trans-

mission from each of the molecular conductance orbitals. For a generic transmission

I
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Figure 4-6: Transmission spectra calculated for (a) porphyrin (b) tetrabenzoporphyrin
and (c) naphthalocyanin molecules with lead treated by WBL approximation and
'YL,R = 0.5 eV. The linkage sites for different paths are labeled in Fig. 4-4(a). The
midgap Fermi level is marked by the dashed vertical line.
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zero, both the real and imaginary component of t summed over all MCO's has to be

zero. Fig. 4-7 shows the real and imaginary parts of the coupling coefficient in AD

and BE connections along with four biggest contributions from four nearest orbitals

to the Fermi level, from HOMO-1 to LUMO+1. Whenever the energy sweeps across

an MO energy, the real component crosses zero and the imaginary component shows

a spike. Any other zeros shown in the real components that do not correspond to

an MO energy level are caused by destructive interference. For the AD-path, both

the real and imaginary components are equal to zero at around E = -2.8 eV (the

midgap Fermi level is around 3.2 eV), giving rise to an absolute transmission zero.

In comparison, for the hydrogen tautomerized BE-path, the transmission always has

finite values across the Fermi level. The coupling coefficients of the BD-path and

AE-path are very similar for both real and imaginary components except for a few

sign differences, revealing the close relationship between the two configurations, but

differ slightly at absolute magnitude which makes a zero in one case but not the other.

4.2.2 Porphyrins assembled between carbon nanotubes

We want to emphasize that although the above calculations are calculated with the

wide band approximation for the lead rather than the full LCR calculation including

also the metal lead atomistic details, this simpler analysis does capture the majority

of physics and is appropriate to describe and predict the transmission and interfer-

ence effects near the Fermi level. The difference between the present calculation and

a full LCR calculation would possibly come from the following: (1) the structural

relaxation of the molecule, which does not alter the molecular symmetry properties

in the absence of drastic distortion; (2) the lead-molecule coupling strength, which

should affect the peak broadening and the transmission between two closely-spaced

molecular orbitals (which does not happen at the Fermi level, but indeed happens be-

tween HOMO-1 and HOMO, or between LUMO and LUMO+1. ), and (3) inclusion

of a transmission, which would contribute extra non-zero terms to the 7r destructive

interference but is generally much smaller than 7r transmission at the Fermi level.
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Figure 4-7: The real(top) and imaginary(bottom) contributions to the transmission
from frontier molecular conductance orbitals of porphyrin linked to the leads through
AD- (left) or BE path (right). The black curves are the sum of all contributions
from all molecular conductance orbitals, and the contributions from HOMO-1(red),
HOMO(green), LUMO(blue) to LUMO+1(orange) are shown in dashed curves.

As a comparison, we also perform the full atomistic calculation using metallic

(5,5) CNT as the leads. Such systems have been made possible by the the recent

experimental breakthrough in manufacturing a spatial gap in single-wall carbon nan-

otubes and assembling organic molecules in between two CNT electrodes [10, 55]. The

optimized structures of our systems are shown in Fig. 4-8 for the AB and AD config-

urations. The porphyrin molecule is directly linked to a CNT edge atom, and an extra

linkage through the alkyl groups is inserted to maintain a rough coplanar structure,



(b)

Figure 4-8: The top view and side view of optimized structures for (5,5)CNT-
porphyrin-(5,5)CNT through (a) AB-path (or BD-path in case of hydrogen tau-
tomerization inside the porphyrin) and (b) AD-path (or BE-path for hydrogen tau-
tomerized porphyrin) The strong coupling between the and the porphyrin 7r orbital
and the CNT p2 orbitals is indicated by the red bond.

which is known to provide good contact transparency. The transmission functions of

the (5,5)CNT-porphyrin-(5,5)CNT junctions with different linkage configurations are

shown in Fig. 4-9 along with the WBL counterparts shown in dashed curves. A high

similarity can immediately be noticed between the full atomistic calculation and the

one that contains only the porphyrin molecular Hamiltonian and a virtual lead. The

strong molecule-lead ir - 7r coupling results in larger peak broadening and, in general,

higher transmissions at the Fermi energy. The absolute transmission zeros observed

in the WBL approximation, which considers only pure 7r transmission, are smeared

out in real CNT junctions due to a contributions, but the overall shape and symmetry

still closely resemble those calculated in the WBL approximation. The destructive

interference "dip" is particularly apparent in the BD and AD configurations. In

case of the AD(BE) linkage to CNT electrodes, the hydrogen tautomerization could

bring a conductance difference by two orders of magnitude. Comparing with previous

theoretical studies on molecular switches assembled between carbon nanotubes [56),

the system proposed in this study has the advantage that the switching mechanism



is well-established and has been proven to be viable experimentally.

4.3 Porphyrin as a molecular bit

Last, we would like to propose another potential application of conductance switching

in porphyrins controlled by hydrogen tautomerization, that is, to serve as the smallest

memory unit in a computer. As an attractive building block for supramolecular sys-

tems, porphyrins have long been considered as potential candidates in nanoelectronics

[57]. Recently there has been a strong interest in developing multiporphyrinic sys-

tems with linear, cyclic, and cross-linked geometries through covalent or noncovalent

linkage strategies. The synthesis of the tetrameric porphyrins has also been achieved

in which four porphyrin units are linearly linked by three conjugated C-C bonds and

form a square planar sheet [58]. The superb structure, stability and flexibility in

terms of supramolecular assembly of the multiporphyrinic systems have inspired us

to consider porphyrin as the smallest possible molecular bit with the "0" and "1"

represented by the two hydrogen tautomeric states.

Take the 2-bit system made by a tape-porphyrin as shown in Fig. 4-10, the triply

linked fused diporphyrin [59], for example, the combination of the hydrogen tau-

tomeric states of each porphyrin gives rise to four memory states, 00, 01, 10, and 11.

Depending on the contact structures and symmetry properties, the four states can

be all uniquely defined or involve some degeneracies. The transmission functions of

the tape-porphyrin via different connection paths are shown in Fig. 4-11. Some con-

nections give more striking transmission difference between the three or four memory

states, such as #6, but even in connections where a definite transmission zero near the

Fermi level is missing, one can still easily differentiate memory states that differ by

one order of magnitude in electrical conductance. A more complex multiporphyrinic

system is likely to offer more striking difference between different memory states.

In summary, we have performed a detailed study of the quantum interference effect
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Figure 4-10: A 2-bit tape porphyrin system representing the "01" memory state (" 0"
and "1" for the hydrogen configuration for the left and right porphyrins, respectively).
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ing the transmission through different molecular connection points, and essentially

captures all important physics without the expense of full-atomistic lead-molecule-

lead calculations. The porphyrin molecule offers a variety of desirable features and

is one of the most extensively studied macromolecules. Our study, based on the

experimentally-proven hydrogen tautomerization mechanism, provides useful insight

for important applications in molecular electronics: a fully controllable molecular

switch and a memory unit, which awaits for experimental realization in the near fu-

ture.



Chapter 5

Conductance Switching in

Functionalized Carbon Nanotubes

via Reversible Sidewall Bond

Cleavage

5.1 Electrical conductivities in functionalized car-

bon nanotubes

Single-walled carbon nanotubes (SWNTs) have been investigated for manifold appli-

cations owing to their special structural, mechanical and electronic properties [60].

Chemical functionalizations of carbon nanotubes can add to their versatility serving

different purposes in chemical sensing, modify the surface properties and solubilities,

and facilitate the assembly, separation and purification of CNTs [61, 62, 63]. Cova-

lent chemical functionalizations [64, 65] are especially relevant to manipulating the

electronic properties of CNTs in nanoscale electric devices, such as molecular diodes

or single molecular transistors.

In metallic CNTs, covalent functionalization of the sidewalls often reduces the elec-



trical conductance by orders of magnitude due to the sps hybridization brought upon

functionalization between CNT sidewall atoms and the addends that interrupts the 7r

conjugation network of CNTs. This has been verified by first-principles calculations

[66, 67] as well as optical absorption spectra and electrical transport measurements

[68, 69, 70, 71]. In contrast, unlike the common [2+2] or [4+2] Diels-Alder reactions

where the sidewall bonds remain intact, in [1+2] cycloaddition functionalizations on

armchair CNTs first-principles calculations have shown that the strain of the cyclo-

propane ring introduced by divalent addends such as carbenes or nitrenes leads to

sidewall bond cleavage, recovering sp2 hybridization and thus preserving conductance

[72, 67]. While the experimental work confirming the effect of dichlorocarbene func-

tionalization is currently in progress, it has already been observed that the formation

of an ether like oxygen bridge on the CNT sidewall in redox cycling gives high con-

ductance due to sp 2 conjugation, in contrast to the low conductance observed in other

functionalities [73].

In all of these studies, it appears that a molecular switch with the capability of

controlling CNT conductance in response to an external optical, chemical or electrical

stimulus is highly desirable, and could have applications for molecular devices, chem-

ical sensors, and imaging. Recent theoretical studies have revealed the possibility of

tuning bond-cleavage chemistry of [1+2] cycloadditions on CNTs through the orien-

tation of the unsaturated i bonds of the addend with respect to the CNT surface [74].

In our previous study on the model system of dinitrocarbene-functionalized CNTs,

we found that the bond-closed configuration is greatly stabilized when the plane of

the addend i system bisects the base of the cyclopropane ring moiety. This stabiliza-

tion effect was originally attributed to the enhanced interaction between the addend

7r and the cyclopropane Walsh orbitals, which weakens the anti-bonding interaction

of the sidewall bond [75]. The bridgehead carbon atoms can reversibly rehybridize

from sp2 to sp 3 in response to addend i orientation, implying a switch-like behavior.

Nevertheless, for dinitrocarbene-functionalized CNTs the bond-closed configuration

is unstable. The addend prefers to rotate out of cyclopropane conjugation, resulting



in only one stable open configuration that is impossible to manipulate. An isoelec-

tronic carboxyl group was suggested to control bond-cleavage by the intramolecular

hydrogen bond [74], but the hydrogen bond strength is too weak to offer bistability.

The closed-bond configuration is a saddle point rather than a local minimum.

In this chapter, we systematically explore the cycloaddition functionalizations on

carbon nanotubes using first-principles calculations. We characterize the structure

and the electronic structure of armchair CNTs with various addends and provide

an in-depth analysis of the underlying mechanisms that determine reversible bond-

cleavage chemistry. We find that the high strain energy in the cyclopropane moiety

can be compensated by a through-space 7r orbital interaction between the addend

and the CNT, which lowers the HOMO energy significantly in the closed-bond con-

figurations. A bond opening or closing switch marked by large conductance change

can therefore be devised by modulating the proximity between the addend 7r system

and the tube surface with optical, chemical or electrochemical means. We explore

strategies for reversible bond cleavage using redox or hydrolysis reactions, cis-trans

isomerization or excited state proton transfer and verify the marked change in CNT

conductance with the addend in either the "on" or "off' configuration by quantum

transport calculations.

5.2 Mechanisms for closed-bond stabilization in [1+2]

cycloaddition functionalization

Previous studies [72, 74] have shown that simple carbenes or nitrenes bearing only

saturated moieties give an open sidewall bond, leaving very little room to maneuver

for switching purposes. In this study we focus mostly on the interaction between

unsaturated addends and the CNT surface, and more specifically on the closed-

bond stabilization offered by unsaturated addends in the perpendicular orientation.



When considering only the cyclopropane moiety on the functionalized armchair car-

bon nanotubes, the simplest rationalization for closed-bond stabilization comes from

the. through-bond o-7r interaction [75] (Fig. 5-1). It withdraws electron density from

the HOMO of cyclopropane to the LUMO of acetylenes, causing a decrease in the bond

length of the cyclopropane base but an increase for the lateral bond lengths. The bond

variation in substituted cyclopropanes, however, is typically smaller than 0.05 A, sug-

gesting this might be a less significant effect. On the other hand, a CNT is certainly a

lot more complex than a cyclopropane. The sidewall bond-breaking chemistry of func-

tionalized armchair carbon nanotubes is reminiscent of the valence tautomerism of

1,6-methano[10]annulene and the even more relevant methanofullerenes. During the

search for improved electron-accepting organofullerens for photovoltaic applications,

it was found that the quinone-type methanofullerenes or fluorenefullerenes that con-

tain unsaturated moieties perpendicular to the surface of the fullerenes have a less neg-

ative first reduction potential than the parent C60 or other type of methanofullerenes

by as much as 70 mV. The peak positions can be further tuned by electron donating

or withdrawing groups attached to the addend. This phenomenon was ascribed to a

through space 7r-7r interaction, which was called "periconjugation" [76, 77, 78]. The

intramolecular electronic interaction between the 7r orbitals of quinone and nearby

carbon atoms of C60 , separated by a spiro carbon atom, results in more extended

conjugation, which possibly improves its electron accepting ability. As shown by

the X-ray crystal structure, fullerene has an essentially [5]radialene-type electronic

structure, i.e. the [6,6] bonds possess more double bond character while the [5,6]

bonds are more single-bond like. The fact that the isolated fluorenefullerenes were

exclusively [6,6] fullerenes rather than [5,6] fulleroids also implies the existence of

this stablizing interaction. As a relevant digression here, it is worth mentioning that

unlike carbon nanotubes in which the sidewall bond lengths are largely affected by

the addend identity, CNT curvature and chirality, in organofullerenes it is well known

that experimentally only the kinetic [5,6]-open and the thermodynamic [6,6]-closed

adducts were observed in most cases, whereas [5,6]-closed and [6,6]-open counterparts

are almost never found due to the unfavorable endocyclic pentagon double bond con-



jugation [79]. This might be the reason why the same rotational bond-cleavage effect

of dinitrocarbene substituent does not exist in fullerenes as in CNTs [74].

(a) %% LUMO
of acetylene

HOMO
of cyclopropane

(b)

Figure 5-1: Two possible contributing effects for closed CNT sidewall bond stabiliza-

tion: (a) through bond o-7r interaction in cyclopropane and (b) through space ir-7r
periconjugation in quinone-type methanofullerene

5.2.1 Unsaturated addend orientation effect

In order to study the effect of addend 7r system orientation, we use 1,6-derivatized

naphthalene (1,6-methano-[10]annulene, 1) and pyrene (8,16-methano[2.2]metacyclophane-

1,9-diene, 2) as molecular homologues of a functionalized CNT to investigate behav-

iors of different addends [72]. The distance between the two bridgehead atoms 1 and

6 of 1, d16 , is largely dictated by the substitutional group X [80]. The valence tau-

tomerisation between 1 (2) and bisnorcaradiene (cyclopropa[e]pyrene) corresponds

to the open and closed configurations of a functionalized armchair CNT. A short d16

around 1.6 A would correspond to a closed sidewall bond, and an elongated d16 over

2 A would correspond to a broken sidewall C-C bond in a [1+2] cycloaddition func-

tionalized CNT. Prior to introducing more complicated effects such as the curvature

of CNTs, we first study on these molecules the potential energy surface (PES) along

d16 with different substitutional groups, in which the d16 is fixed at each point along



the ID-PES and all other degrees of freedom are fully relaxed unless further specified.

x xl1X

1 2

Figure 5-2: The molecular homologues of a functionalized CNT: 1,6-derivatized naph-

thalene (1) and pyrene (2). The bond length between the bridgehead carbon atoms

d16 depends primarily on the identity of the addend X. The similarity between the

local structure of a [1+2] cycloaddition functionalized CNT and the 2 is also shown.

First of all, to rule out the orientation effect of unsaturated substitutional groups,

we look at 2 with X-C(CHO) 2 (abbreviated as pyrene-C(CHO) 2 in the following)

with the C=O double bonds pointing at different directions as shown in Fig. 5-3. As

reported in previous studies, the addend prefers the unconstrained "flat" 7r plane as

the most stable conformation in which the sidewall bond d16 is open, and in the con-

strained perpendicular -r plane conformation, the d16 bond between two bridgehead

atoms prefers closed. Between the two constrained perpendicular ir plane conforma-

tions, however, we find that the closed bond configuration can be stabilized by about

0.2 eV more in the "0 side" orientation in which the C=0 double bonds lie closer to

the pyrene backbone than in the " 0 top" orientation. This is a strong suggestion that

the major closed-bond stabilization comes from periconjugation. The closed bond is

stabilized the most when the addend -r has maximal overlap with the pyrene backbone

ir-system. On the other hand, the through-bond cyclopropane conjugation would not

have been affected by the proximity between the oxygen atom and the pyrene surface.
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Figure 5-3: Potential energy surface as a function of d16 for 2 with X=C(CHO) 2 in
different conformations. The closed-bond configuration is stabilized more when the
C=O double bonds are closer to the pyrene backbone in the constrained perpendicular
"0 side" orientation.

5.2.2 Periconjugation effect

The addend 7r bonds by nature prefer the flat orientation if they are left free to

rotate, but they can be "locked" in place by a ring structure such as the cyclopenta-

dienyl (C5 H4) group. To further examine the strength of the periconjugation effect,

we study the potential energy profile along d16 of 1 and 2 with various saturated

and unsaturated ring substitutional groups as shown in Fig. 5-4. Each point in Fig.

5-4 corresponds to a full relaxation with only one geometry constraint, d16, and the

energy minimum under this constraint would correspond to the lowest energy ground

state of the system, which is also confirmed by vibrational frequency calculations.

As can be seen clearly in Fig. 5-4, for both 1 and 2, the closed configuration is sta-

bilized more when the addend 7r system spans longer and leans toward the aromatic

plane. The stabilization strength goes in the order of C50 2H4-diketone > C50 2 H4-



dienol> C5 H4 diene, much greater than the saturated C5 Hs or CH2. For the case of

2, the closed configuration is stabilized significantly more when X=C5 0 2H4-diketone

than when X=C5 H4 by as much as 0.7 eV. This is another strong proof for the ex-

istence of the periconjugation effect as these substitutional groups are highly similar

in structural motif and electronegativities. Any kind of inductive effect, if it exists,

shall only differ slightly and shall not cause such a dramatic stabilization.

1.8 2.0 2.2 2.4 '1.4 1.6 1.8 2.0 2.2 2.4
d16 (A) d, B(A)

HO OH OHO 0 O
C C C

1x C.H 4 C502H4-enol C902H4-keto

k - Strong
The extent of periconjugation

Figure 5-4: Potential energy surface as a function of d16 for (a) 1 (b) 2 functionalized

with ring substituents. The zeros are set at d16=2.20 A to mark the release of roughly

same strain energy.

The origin of periconjugation stabilization can be revealed by an analysis of the

eigen orbital evolution along d16. The Walsh diagram of 1,6-methano[10]annulene (1)

with X=CH 2 and X=C5 0 2 H4 -keto are presented in Fig. 5-5. The occupied a 2 and un-

occupied b1 are relatively unaffected by the d16 bond length and remain roughly flat.
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-0.4

1.4 1.6

C.

C5H

Wea



The two b2 orbitals involve the antibonding interaction along d16 and are lowered in

energy as the bond length increases. On the contrary, the two ai orbitals involve the

bonding interaction and are raised in energy with increasing bond opening. The most

striking difference between X=CH2 and X=C50 2H4-keto is the significant lowering in

energy of b2 in X=C50 2H4-keto. The occupied b2 orbital shows electron density delo-

calization between the 7r of naphthalene backbone and C=O double bonds and even

switched ordering with a2. This gives the overall stabilization of X=C5 0 2H4-keto in

closed configuration.

L b1 b

LOLUMO b22HlOLMO aa, *3

HOMO ~

a,
a a1  

a6-b,

1.6 1.6 2.0 22 2 .4 1 6 18 20 22 24

re =2.30A re =1.55 A

(a) X=CH 2  (b) X=C 5O2 H4 -keto

Figure 5-5: Walsh diagram along d16 of 1 for systems (a) without and (b) with
periconjugation. The equilibrium bond lengths are also marked. The dashed curve
in (b) is an orbital in the same energy window but with the density mostly located
on the substituent and should be safely left out of discussion.

To this point, periconjugation is only expected to exist in perpendicular unsat-

urated addends. In our search among saturated addends, however, we find that for

both 1 and 2, X=C5 H8 is also more stabilized in the closed configuration than X=CH2

is. This might be caused by the difference in the relative rotational orientation of

the C-H bonds adjacent to the spiro carbon atom with respect to the cyclopropane

moiety. To verify this, we look at simpler substituents such as dimethylcarbene. We

note that the rotation of the methyl groups also introduces a slight periconjugation



effect. The methyl groups can exist in two conformations, staggered or eclipsed with

respect to the cyclopropane lateral bonds (Fig. 5-6); both conformations predict an

open sidewall bond with a shallow potential energy surface. The staggered methyl

groups, as expected, give a more stable structure by 0.2 eV than the eclipsed ones do,

but the energy barrier for the d16 bond to close in the eclipsed methyl conformation

(0.12 eV) is only one half of that of the staggered methyl conformation (0.19 eV).

Fig. 5-6 also shows the HOMO and HOMO-1 for both structures at d16 = 1.6 A.

The staggered molecule follows the same orbital ordering as in X=CH 2 and gives an

a2 HOMO and a b2 HOMO-1, while in the eclipsed molecule, the two C-H u bonds

sticking towards the naphthalene backbone on both sides of the top C atom stabilize

the b2 orbital, showing a similar, although to a minor extent, through space orbital

interaction mechanism as in the case of perpendicular unsaturated substituents.

- staggered eclipsed

1.2- H H H HH

1 .0

b20.8-2 HOMO a-k 2

0.6 a2 HOMO-1 b2

0.4 -

0.12 eV

0.19 eV

0 .0 - -- --
1.4 1.6 1.8 2 2.2

d16(A)

Figure 5-6: (a) Potential energy surface as a function of d16 for 1 with X=C(CH 3)2
in staggered and eclipsed conformations. The frontier orbitals of two conformers at

die = 1.6 A are also shown here.



5.2.3 CNT curvature effect and the bent-graphene model

The tautomerization between the bond-open and bond-closed form depends largely

on the chirality and curvature of the CNT. In the case of zigzag and armchair CNTs,

two types of C-C bonds exist: the "axial" bonds A (the C-C bonds that are more "par-

allel" to the tube axis) and the "orthogonal" bonds 0 (the C-C bonds that lie more

"perpendicular" to the tube axis). For both types of tubes, computational studies

have shown that the A bond forms a closed-bond three-membered ring upon carbene

cycloaddition and the 0 bond undergoes a sidewall bond opening upon carbene in-

sertion [72, 81]. The reaction energy defined as AE = ECNT-func - ECNT -Efnc

increases linearly as the curvature increases for both modes of addition reactions,

but the functionalized CNT is always more stable in the open 0 bond configuration

than in the closed A bond configuration since the former involves a release of strain.

Here we focus our discussion only on armchair CNTs, and on the [1+2] cycloaddi-

tion reactions to the orthogonal sidewall bond, which opens up in most cases upon

cycloaddition reaction but may be brought back to the closed configuration in the

presence of special closed-bond stabilizing effect. The orthogonal bonds in zigzag or

chiral tubes should have similar behavior but also depends specifically on the angle

of each C-C bond with respect to tube axis.

As mentioned above, for the orthogonal bonds in armchair CNTs, the open bond

configuration is favored in high curvature CNTs so as to release the strain, but as

the tube grows larger and the curvature decreases, the closed bond configuration is

gradually lowered in energy and eventually becomes more stable (for tubes larger

than an (18,18)-CNT [72]). For small tubes, however, the competition between peri-

conjugation and the curvature effect determines the equilibrium between a closed and

an open sidewall bond. We investigate a similar set of unsaturated substituents as in

Fig. 5-4 on a bent graphene model to represent the real CNT curvature effect. The

carbon backbone of the 12-angstrom wide bent graphene nanoribbons is taken from

CNTs with different curvatures, with the edge hydrogenated. The curvatures of the



bent graphene nanoribbons are preserved by freezing the edge carbon atoms during

later geometry optimizations. The bent-graphene model is used to study the effect

of CNT curvature in a systematic and efficient way. The carbon backbone of the

bent graphenes is taken from CNTs with different curvature, with the graphene edge

hydrogenated. The edge carbon atoms of the graphene nanoribbon are frozen in later

geometry optimizations with the addends to keep the curvature. The bent graphene

derivatives are found to represent excellently the full carbon nanotubes functional-

ized with CH 2 (Fig. 5-7) with the energy difference within 0.1 eV. In cases involving

unsaturated addends such as C(CN) 2, the bent graphene model shows stronger closed-

bond stablization, which can be rationalized by the fact that the narrow graphene

fragments are richer in 7r electrons and would induce stronger periconjugation effect.

In any case, the difference between the bent graphene model and a true CNT is

within 0.2 eV in the bond-closed configurations, but extra care needs to be taken in

predicting the behavior of a functionalized CNT when the bond-open and bond-closed

configurations are close in energy tested on a bent graphene model.

Fig. 5-8 shows the relaxed sidewall bond length of different bent graphene deriva-

tives as a function of curvature. For unconstrained X=C(CHO) 2 , the sidewall bond

is always open up to the "(12,12)" bent graphene, while for X=C 50 2 H4-keto which

exhibits the strongest periconjugation effect, the sidewall bond is always closed even

for the smallest (5,5) bent graphene (It should be noted here that for this particular

substitent, the open and closed configurations are very close in energy for "(5,5)"

bent graphene, in real (5,5) CNT C5 0 2H4-keto actually gives an open configuration).

Other addends showing intermediate periconjugation show transitions from open to

closed at different critical curvatures.

Any single substituent among these on a carbon nanotube will be useless for

switching purposes since it only gives one configuration rather than a bistable ground

state. Instead, the substituents studied in Fig. 5-8 should be seen as basic molec-

ular modules that can be chemically transformed between each other. For example,
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Figure 5-7: Potential energy surface as a function of sidewall bond length d16 for CNT
and bent-graphene with (a) X=CH2 and (b) X=C(CN) 2. The carbon backbone of the
bent graphene nanoribbon is taken from CNTs with different curvatures. The edge
carbon atoms (hydrogenated carbons) are kept fixed in later relaxations to preserve
the curvature.

the cyclopentadienyl-functionalized (8,8) CNT, in principle, can be hydrogenated (if

manipulated properly so that only the 7r bonds on the addend react) to give rise to

the cyclopentane C5H8 substituent accompanied by a nanotube sidewall bond open-

ing. Similarly, the cyclopentadiene ring can be cleaved to give some structure like

X=C(CHO) 2, and a functionalized (10,10) or (12,12) tube shall respond with a con-

ductance change. Indeed, two of the substituents in Fig. 5-8, C50 2H4-enol and

C50 2H4-keto, are already tautomers to each other and could perfectly serve as a

switch for a (6,6) tube if one is able to stabilize selectively either enol or keto form

in different chemical environments. Overall, the tubes with diameters around 0.8 to

1.4 nm have more flexible bond lengths and can be functionalized as conductance

swtiches based on vertical transitions between different curves in Fig. 5-8.
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Figure 5-8: Sidewall equilibrium bond distance C1 C6 (d16) for bent graphenes repre-
senting (nn) CNTs

When a functionalized tube is switched from the open to the closed bond configu-

ration, another complication that may arise is the relative stability between a closed

axial bond A and a closed orthogonal bond 0, and the possibility for the substitutional

group to "migrate" to an adjacent C-C axial bond. For a carbene functionalized (5,5)

tube, the fully relaxed open 0 configuration is 1.2 eV more stable than the closed A

configuration, but even the constrained closed 0 bond is still more stable than the

closed A bond configuration by about 0.5 eV [82]. In the presence of periconjugation,

the situation can be slightly more complicated since the distance between the addend

7r system and the tube surface is be different when the addend is attached to an

A bond or an 0 bond. For a functionalized tube prepared as the " open" 0 bond

(which is absolutely thermodynamically favored) then transformed to the "closed" 0

bond configuration chemically (to be discussed in the following section), we presume

that as long as the chemical transformations on the addend part do not involve any

biradicaloid mechanism, the addend is likely to remain on the same attachment site

I



(i.e. the 0 bond) and is unlikely to "walk" to an adjacent A bond. In any case, for

conduction switching purposes, both a closed 0 and a closed A bond will give low

conductivities since they both disrupt severely the 7r manifold of the CNT.

5.3 Conduction Switching on Functionalized Car-

bon Nanotubes

Apart from the keto-enol tautomerization mentioned in the last section, here we

propose several other switching mechanisms that could suit different experimental

conditions and device setups. These switches can be controlled by chemical reactions

or optical excitations. Fig. 5-9 gives an overview for the switching mechanisms we

propose. The switching can be achieved by breaking a bond in the 5-membered ring,

e.g. in a hydrolysis reaction of an ester or an amide bond (Fig. 5-9(a)), or by removal

of the C=O double bonds, e.g. by reducing the diketone to a diol (Fig. 5-9(b)). Al-

ternatively, the switching can also take place by tuning the spatial proximity between

the addend 7r system and the tube surface, e.g. by imine cis-trans isomerization (Fig.

5-9(c)), or by shifting the conjugation on the addend (keto-enol transformation) in

excited-state proton transfer (ESPT) (Fig. 5-9(d)). For all the systems considered

in the following, we consider the addition reaction to the orthogonal sidewall bond

of the armchair (6,6) CNT, and perform in each case full structural relaxations in a

supercell containing 5 primitive unite cells (i.e. 120 CNT carbon atoms).

5.3.1 Switching via chemical reactions

As shown in Fig. 5-10, hydrolysis and redox reaction products successfully give stable

open and closed configurations, as expected. The CNT sidewall bond is closed with

the lactone or diketone substituent, and is open with free carboxyl groups or diol ad-

dends. Based on our study of the curvature effect using the bent pyrene model (Fig.
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Figure 5-9: Proposed conductance switching mechanism in functionalized armchair
CNTs. The addends are attached to the C-C bonds perpendicular to the CNT axis
labeled on the bottom of the figure.

5-8), we predict that the hydrolysis switch should be able to work for tubes ranging

from (6,6) to (12,12), and the redox switch should work for tubes from (6,6) to at

least (8,8) or even (10,10). From a synthetic point of view, attaching such functional

groups to a CNT sidewall should be feasible. For example, to prepare a hydrolysis

switch, a malonate moiety can be introduced relatively easily by the well estabilished

Bingel reaction [83, 68]. Experimentally, the reaction process in a solution will possi-

bly require extra care to avoid unwanted damage to the tube surface under redox or

acid/base conditions.

(a) Hydrolysis rxn
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Figure 5-10: Relaxed structures of a functionalized (6,6) CNT with (a) lactone and
free carboxyl groups shown in Fig. 5-9(a) and (b) diketone and diol addends shown in
Fig. 5-9(b). The CNT sidewall bond is closed with the lactone or diketone substituent,
and is open with free carboxyl groups or diol addends.

5.3.2 Switching via optical excitations

An optically controlled switch, in contrast, is less straightforward to design since

the bond-breaking or conjugation-shifting in response to optical stimulation is more

demanding on the overall molecular electronic structure. We propose tentatively

the imine cis-trans isomerization and the excited state proton transfer (ESPT) as

optically controlled conductance switches. In the imine cis-trans isomerization, the

open-closed sidewall bond transformation is determined by the conformation of the

N-H bond. This happens since the strength of periconjugation is highly sensitive to

the spatial proximity between the addend double bonds and the tube surface. It is

known that in the fullerene counterpart, when two benzene rings are fused to the

quinone moiety in the quinone-type methanofullerenes, the first reduction potential

becomes more negative rather than more positive, i.e. it becomes an even worse

electron acceptor. This was accounted by the steric hindrance effect between the

"peri" hydrogens and the surface of C60 [78]. We study the ground state potential

energy surface of bent graphenes with X=cis or trans cyclic imines (we arbitrarily

differentiate the two conformers as cis (when the peri-hydrogens point toward the

tube surface) or trans (when the peri-hydrogens point away from the tube surface)

isomers, see Fig. 5-11) and found that at a critical curvature (in this case the bent

graphene representing (6,6) CNT), a change as simple as a cis-trans isomerization



would indeed induce a sidewall bond-cleavage, while tubes smaller or larger than this

critical size will have only closed or only open configurations for both isomers. In

practice, however, the imine cis-trans isomerization will be difficult, if not impossible,

to manage. Unlike the well known light-initiated cis-trans isomerization of azoben-

zenes or stilbenes, photoinduced rotation along the C=N (or C=C, N=N) double

bonds for simple imines (or ethylene and diimide) so far has not been observed ex-

perimentally due to technical difficulties (the excitation energy needs to be extremely

high; around 100-200 nm far-UV light). But numerous theoretical investigations have

proven that photoisomerization is likely to happen through a conical intersection be-

tween the ground and the first excited state at the femtosecond time scale (84, 85, 86].

0.4 ' I ' I ' I ' 1 -
a) (5,5) bent graphene (b) (6,6) bent graphene (c) (8,8) bent graphe e
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Figure 5-11: Potential energy surface as a function of d16 for (5,5)-, (6,6)-, or (8,8)
bent graphenes functionalized with X=cis- or trans-cyclopentadiimine. The relaxed
structure of functionalized (6,6) bent graphene in the equilibrium bond length are
also shown.

For ESPT (shown in Fig.Fig. 5-9(d)), we are able to locate two local min-

ima for the normal(the cyclopentadiketone) and the proton-transfered tautomer(the



cyclopentadiene-diol) for the hydrogenated substituents alone (not attached to the

CNT). The forward and reverse reaction barriers in the ground state for this proton

transfer reaction are 0.50 eV and 0.28 eV, respectively. Nevertheless, when these

addends are attached to the CNT, both normal and tautomer substituents give an

open sidewall bond for a (6,6) tube and both give a closed sidewall bond for a (7,7)

tube. This again demonstrates the "spatial sensitivity" of periconjugation. When the

C=O double bonds of the cyclopentadione are attracted towards the hydroxyl groups,

the distance between the C=O double bonds and CNT surface increases slightly, the

periconjugation decreases, and the sidewall bond opens.

5.3.3 Switching via quinone-quinol transformation

Alternatively, an intramolecular hydrogen bond can be tuned to control the distance

between the C=O double bond and the tube surface. As shown in Fig. 5-12, the hy-

drogen bonded cyclopentadione and the quinol moiety shall render the sidewall bond

of a (6,6) tube open, but the intramolecular hydrogen bonding can be easily removed

by either an oxidation or an acid/base reaction. The diketone C=0 double bonds are

therefore released and the (6,6) CNT sidewall bond will be closed. The oxidation of

a quinol into a quinone can happens in a milder condition than the diol oxidation,

which should be less harmful to the CNT itself and more favorable in this respect.

5.4 Quantum conductance of functionalized CNTs

5.4.1 Singly functionalized CNTs

The conductivity of the proposed switches in the on and off states on CNTs are also

investigated. Fig. 5-13 shows the quantum conductance of a singly functionalized

(6,6) carbon nanotube with either lactone/acid or the diketone/diol addend pairs de-

signed in Fig. 5-9 (a) and (b). While the conductances for the "open" configurations
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Figure 5-12: Proposed conductance switching mechanism by tuning the intramolecu-

lar hydrogen bonding between the quinol and the cyclopentadione moiety. On a (6,6)

CNT, the hydrogen bonded addend (in the middle) shall render the CNT sidewall

bond open, while removal of the hydrogen bonds will induce a bond closure.

(the acid and the diol) are negligibly affected and can hardly be distinguished from

the pristine conductance around the Fermi level, the conductances of the "closed"

configurations (the lactone and the diketone) are lower. Nevertheless, the conduc-

tances at the Fermi level for both cases remain close.

5.4.2 Multiply functionalized CNTs

The quantum conductance for large scale randomly functionalized carbon nanotubes

is also computed to simulate real experimental conditions. The quantum conduc-

tance is taken as an average from 20 different configurations with functional groups

randomly (both translationally and rotationally) attached to a nanotube. Fig. 5-14

is an illustration of one of the 20 constructed configurations with 5 addends. The

Hamiltonian matrix of the central region (Hc) of the multiply functionalized CNT is

constructed by assembling Hc 's of individual singly functionalized CNT segments,

taking into account all possible rotated equivalent positions and random lengths of

pristine CNT segments inserted in between. The multiply functionalized carbon nan-

otubes computed has an average addend density of about 1 addend for every 200

carbon atoms, comparable to the experimental density in typical [1+2] cycloaddition

100



CJ

06Cj

-

g4- closed
0

E
C

-2 -1 0 1
Energy (eV), EFermi 0 eV

Figure 5-13: Quantum conductance of an infinitely long (6,6) carbon nanotube with
a single functionalization. The solid lines correspond to the lactone/acid addend pair
and the dashed lines correspond to the diketone/diol addend pair. The red color are
for the "open" (acid and diol) and the black color are for the "closed" (lactone and
diketone) conformations. The quantum conductance of the pristine tube is also given
in the brown dashed line as a reference. The quantum conductance depends more on
the "open" or "closed" conformations rather than on the specific addend identity in
a wide energy range around the Fermi energy.

functionalizations. This addend density ensures no loss in transferability of each in-

dividual singly functionalized Hc, matrix, and should be seen as an upper bound for

the conductivity measured experimentally in more densily functionalized CNTs.

The difference is greatly magnified in multiply functionalized CNTs. Fig. 5-15

shows the quantum conductance of a 22 nm, 47 nm or 67 nm-long (6,6) CNT func-

tionalized with 10, 20, or 30 addends, respectively, for the diketone/diol switch pair.

The strong scattering of the ir electrons in a window of about 2 eV around the Fermi

energy in the "closed" conformation is evidenced by the increasing drop in quantum

conductance with the degree of functionalization. The quantum conductance is re-

duced by about 13% from 1 to 10 addends, another 23% from 10 to 20 and at last
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Figure 5-14: Illustration of the methodology used to construct Hamiltonian matri-

ces for large disordered functionalized carbon nanotubes. Shown here is a carbon

nanotube functionalized with 5 groups. The computed quantum conductance is an

average from 20 different configurations.

another 29% from 20 to 30 addends in the "closed" (diketone) case. On the contrary,

the "open" (diol) case shows only a 2% reduction from 1 to 10 addends, another

3% from 10 to 20, and another 3% from 20 to 30 addends. The average quantum

conductance at the Fermi level functionalized with 30 addends in "closed" confor-

mation drops to about 0.87 whereas it remains at about 1.84 in the "open" case.

The fundamental origin of this strikingly different behavior goes back to the earliest

prediction: the sidewall bond breakage in the "open" configuration preserves the 7r

network, while in the "closed" conformation only a a-like Wannier function is left,

destroying locally the 7r conjugation, as shown in Fig. 5-16.

In summary, we have identified the role of through-space periconjugation in con-

trolling the sidewall bond-cleavage chemistry in [1+2] cycloaddition functionalized

CNTs. We have predicted that a functional group similar to the C5 0 2H4-ketone moi-

ety with carefully arranged -v orientations with respect to the CNTs could strongly

stabilize the closed conformation even for CNTs with the curvature as high as that of

a (6,6) tube. We have proposed possible conduction switching mechanisms that cover

different CNT diameters and can be applied in different experimental environments

and device setups, controlled by chemical, electrochemical or optical means. Our

transport calculation verifies that the quantum conductance changes significantly in

the on or off state. These switches, if realized experimentally, should have practical

applications in nanoscale electrical devices and sensing.
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Figure 5-15: Average quantum conductance (in units of 2e 2/h) of 20 randomly func-
tionalized (6,6) carbon nanotubes with 10, 20 or 30 addends. Both types of addends
are considered (ketone in black and diol in red). Inside a given set of conductance
curves (black or red), the highest curve represents 10 addends and the lowest curve
represents 30 addends. The quantum conductance of a pristine (6,6) carbon nanotube
is given in dashed line as a reference.
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Figure 5-16: Visualization of (a) the "p,"-like Wannier orbitals in the "open" confor-
mation and (b) the "u"-like orbital in the "closed" conformation in the diketone/diol
addend pair. The strong scattering introduced in the "closed" conformation is caused
by the disappearance of the two p, Wannier orbitals, which disrupts the 7r manifold
of the CNT.
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Chapter 6

Improved Intertube Electrical

Conductivity of Carbon Nanotube

Networks Cross-Linked by

T ransition Metals

6.1 Electrical conductivities in CNT networks

While the assembly and connection of individual SWNTs to metal contacts remain

a challenge and impede practical applications, carbon nanotube thin films can be

readily fabricated and show reproducible characteristics [87]. As a result, there has

been increasing enthusiasm for using single-walled carbon nanotube (SWNT) net-

works as transparent conductive thin films in various electrochemical applications,

ranging from electrodes for solar cells, organic light emitting diodes, to transpar-

ent transistors [88, 89, 90]. A wide range of conductivities, from 12.5 S/cm [91] to

6600 S/cm [92] have been reported for SWNT films, but regardless of fabrication

methods and SWNT types used, all experimental values are orders of magnitude

lower than single SWNT fibers (axial conductivity ~ 10000 to 90000 S/cm) owing

to poor electronic tunneling at intertube junctions [92, 93]. A typical fabrication

105



process of SWNT thin films involves blending the nanotubes into a matrix polymer

for good dispersion and suspension, which causes severe limitations in nanotube-to-

nanotube carrier hopping. Chemical functionalizations with conductive polymers are

commonly employed to improve conductivity as well as to make mechanically stronger

nanocomposites. Nevertheless, most functionalized SWNT networks show further re-

duced electrical conductivity by 2 to 3 orders of magnitude due to interruption of

r-conjugation, charge trapping, or steric hinderance of bulky functional groups [921.

In the few reported examples where the conductivity of a polymer-nanotube compos-

ite does improve, the results are controversial and depend strongly on morphology

and fabrication methods [94]. While it was suspected that the conductivity was dom-

inated by the conductive polymer alone, rather than of nanotubes [95]; neither the

cooperative nature between the CNTs and the polymer linkers nor the mechanism of

electron tunneling through a linker at intertube junctions has ever been addressed in

detail. Therefore, the optimization of SWNT networks and a detailed understanding

of their electronic properties shall offer considerable scope for the development of

SWNT-based electronics.

Many first-principles studies have focused on assembling molecular electronic de-

vices by attaching single molecules between two SWNT ends [10, 55], but few have

explored the possibility of sidewall functionalizations as an alternative way to cross-

link SWNTs. It has been shown that a near-transparent nanotube-molecule-nanotube

junction is possible through careful arrangement of the molecular orientation and

linkage sites with respect to the tube terminals [96, 97, 98, 56], but the conductivity

would depend strongly on the linker identity, linkage site, molecular conformation

and SWNT chirality. As a result of high experimental uncertainties and difficulties

in manipulating the SWNT-molecule-SWNT junctions on the atomic scale, the ob-

served electric conductance remains poor in most experiments [99, 10, 55, 3]. On

the other hand, sidewall-functionalizations were rarely considered as a possibility to

enhance intertube coupling. This can be attributed to the following two reasons:

First of all, most sidewall functionalizations inevitably lead to unfavorable disrup-
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tion of the intrinsic nanotube sp2 conjugation. Second, the a bonds of the sidewall

functional groups, which are perpendicular to the tube, can hardly be coupled to

the 7r conjugation which runs along the SWNT surface. Nevertheless, for structures

like SWNT networks, sidewall functionalizations could employ much more attach-

ment sites and can potentially increase the intertube conductance more effectively

than end-functionalizations. It would be highly desirable if a sidewall linker could be

designed, without the extreme specificity required for end-functionalizations, to serve

the same purpose of improving intertube conductivity.

In this study, we use first-principles calculations to address the issue of low electri-

cal conductivity in carbon nanotube networks. We first use polyacene as a prototype

model system to study the effect of sidewall linkers on intertube conductivity, and

then move on to large scale nanotube calculations. We briefly discuss the nature

of intertube tunneling of bare SWNT junctions and the limitation of common or-

ganic polymer linkers. We then explore the effect of transition metal adsorption on

CNT surfaces, and find the strong coupling between the transition metals and the

sandwiching CNTs may lead to a solution that has never been considered in this field.

6.2 Intertube conductivity of the polyacene model

6.2.1 Band structure of the polyacene model

Polyacene can be seen as the narrowest possible nanoribbon which preserves the elec-

tronic structure characteristic of a metallic armchair SWNT marked by the crossing

of valence and conduction bands and a quantum conductance of 2 at the Fermi level.

The entire p, manifold of polyacene is retained in the MLWF transformation to accu-

rately describe the band dispersion around Fermi level. Fig. 6-1 shows the Wannier

Function interpolated band diagram which matches perfectly to the plane wave cal-

culation up to 3 eV above Fermi energy. The conduction band minimum of polyacene
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lies 3.14 eV above the Fermi level at the F point and exhibits near free electron char-

acter. The 7r* bands are strongly hybridized with the o* bands and cannot be clearly

distinguished, as evidenced by the PDOS projection onto all carbon p, orbitals. The

MLWF transformation, containing the full p2 manifold but not the p,, or py's, can-

not perfectly trace the physical first unoccupied band curve close to the F point.

The quantum conductance calculated following Landauer formula with MLWF basis

shows the typical step-like behavior with each step corresponding to the sharp van

Hove peak of the density of states (DOS).

4 -dos

Ipros of Cp.

EF

-4
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-12-
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-20-

], 0 1 2 3 4 5 0 5
OC DOS (arb.unit)

Figure 6-1: The band structure, quantum conductance, and density of states of pris-
tine polyacene. The wannier function interpolated band structure and density of
states are shown in red circles and red dashed lines, respectively. The solid curves
are calculated from full plane-wave basis calculation.
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6.2.2 Intertube tunneling without linkers

A typical van-der-Waals distance between two graphene layers in graphite or CNT

tubes in SWNT mats is around 3.5 A. The natural intertube transmission unassisted

by cross-linkers is simulated by laying a short pentacene molecule on top of a broken

polyacene junction with both terminals hydrogenated. When the distance between

the bridging pentacene is (unphysically) brought closer than 2 A, the substantial hy-

bridization between the 7r orbitals of the pentacene bridge and the underlying poly-

acene junction preserves the majority of conductivity around Fermi level, as shown

in Fig. 6-2(a). As the distance between the layers is larger than 3 A, the interaction

between the ir orbitals of the upper and lower layers significantly decreases and the

conductance reduces to discrete resonant peaks. The width of the transmission peaks

reduces as the inter-plane distance increases, showing the typical resonant transport

characteristics in systems where the molecules are only weakly coupled to the leads.

The first peak below Fermi level (0.4 eV) corresponds well to the HOMO level (0.37

eV) of isolated pentacene and is right-shifted monotonously towards the Fermi level

as the bridging oligoacenes are extended from pentacene to decacene, as can be seen

in Fig. 6-2(b).

6.2.3 Intertube tunneling with covalent linkers

In order to improve the intertube conductivity by a sidewall functionalized organic

polymer, an ideal sidewall linker must be able to couple the frontier orbitals to those of

the nanotubes and must be conductive itself. It would be best if the linker could pre-

serve the conductivity of pristine CNTs as much as possible, especially for high-degree

functionalizations. To fulfill all the above criteria, we first consider the [1+2] cycload-

ditions of carbenes or nitrenes which are able to preserve conductance [72, 67] of the

nanotube through a sidewall bond cleavage, as has been proven by first-principles

calculations. [72, 67] The linker we test on the polyacene model has an aromatic

moiety (as in most conductive polymers) substituted with two nitrene groups which
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Figure 6-2: The quantum conductance of a broken polyacene junction bridged by
(a) a pentacene molecule with varying adsorption distance (b) different nanoribbon
fragments in which the adsorption distance is fixed as 3A

connect to the CNT-surface, e.g. a nitrene-linked pyrazine. We suspect that the

long pair p2 orbital on the nitrene atoms might be able to couple the 7r orbitals of

SWNT to the aromatic ir orbitals, and thus, increase intertube tunneling. If that

were true, then the orientation effect of the pyrazine group would also have an effect.

We perform a relaxation calculation and find that the most stable configuration for

the pyrazene-nitrene-linked polyacene junction is for the pyrazine plane to lie per-

pendicular rather than parallel to the polyacene axis, but both configurations give

essentially zero conductance at the Fermi level. The sparse narrow peaks are also

characteristic of resonant tunneling and indicate no substantial coupling between the

two leads. This result could only be explained by the increase of inter-polyacene

junction distance from the natural 3.5 A to 7 A, further deteriorating already poor

tunneling. This scenario corresponds to the experimental situation where the exis-

tence of polymer cross-linkers could push CNTs further away from each other and

affect negatively electrical conductivity.
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Figure 6-3: The quantum conductance of a broken polyacene junction bridged by a
covalent pyrazene-nitrene linker

6.2.4 Intertube tunneling with transition metal coupling

Alternatively, we temporarily shift our focus away from typical organic polymers and

turn to coordination chemistry on SWNTs. We consider a sidewall functionaliza-

tion via coordination with transition metals, inspired by ferrocene-based molecular

wires[100]. Transition metals are well known for their versatile bonding scheme with

aromatic systems, including the sandwich-type metallocenes. It was recently shown

experimentally that when two extended polyphenylethynyl fragments were connected

by a ferrocene unit in the middle, the conductance at zero source-drain bias V was

significantly improved with respect to the ferrocene-absent analog, and a broad reso-

nance peak 30 meV above the Fermi level was revealed by first-principles calculations.

This is because the d orbitals of transition metals are close to the Fermi level and

interact strongly to the 7r orbitals of the conjugated backbone. For our purpose it

might be reasonable to first consider a junction containing a chromium atom since

Cr is known to form the stable metallocene, bis(benzene)chromium, which shares the

same hexagonal aromatic moiety as CNTs.

We examine three structures of polyacene involving Cr coordination and intertube-

tunneling as shown in Fig. 6-4. The relaxed inter-plane distances are around 3.30
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Figure 6-4: The quantum conductance of A). a pristine polyacene scattered by a

bis (benzene) chromium defect, B). a broken polyacene junction bridged by a chromium

atom, and C). a broken polyacene junction bridged by an adsorbed pentacene and
two sandwiched chromium atoms.

Afor all three systems. The strong hybridization between Cr d orbitals with the

polyacene 7 orbitals acts as a strong scattering center for the perfect polyacene chain

(structure A in Fig. 6-4), decreasing the transmission to 30% of that of the undoped

pristine polyacene, but also serves as an excellent electrical bridge for broken poly-

acene segments for the same reason. All three systems give a broad transmission

feature, and show a quantum conductance around 0.6 at the Fermi level and a sharp

resonant peak at 0.25 eV below Fermi energy. The eigenchannel analysis of the trans-

mission spectrum of structure B shown in Fig. 6-5 reveals a conjugated eigenchannel

traversing the entire molecule from lead to lead at Fermi level, giving rise to high

transmission. It is evident to see that the broad band at Fermi level originates from

the HOMO-2 in bis (benzene) chromium involving Cr d,, orbital which strongly cou-

ples to the p orbitals of both benzene molecules. The resonant peak slightly below the

Fermi level corresponds to the HOMO in bis(benzene) chromium with Cr d orbital,

which only weakly interacts with the benzene 7r orbitals.
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Figure 6-5: (a) The eigenchannel decomposition and the density of corresponding
eigenchannels of quantum conductance of configuration B in Fig. 6-4 near the Fermi
level; (b) The energy and frontier molecular orbitals of bis(benzene)chromium.

6.3 Intertube conductivity of carbon nanotubes

6.3.1 Carbon nanotube junctions cross-linked by transition

metals

The bulk conductivity of a macroscopic CNT network is a very complicated quantity

since it can only be described by the percolation model, which depends on the length,

the morphology and the atomistic structure at the contact of CNTs. Our polyacene

model system study shows that the transmission of a broken polyacene junction can

be improved dramatically by a single transition metal atom doping. Nevertheless, a

polyacene chain is only one-benzene wide so it should not come as a surprise after

all that an r 6-coordinated transition metal atom could almost fully connect the 7r

orbitals between the top and bottom polyacene fragments. A CNT, on the other

hand, has much larger dimension and only a small fraction of the 7r orbitals between

two tubes can be directly coupled by a single TM-atom doping. Thus it becomes
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interesting to investigate how much improvement on the poor conductivity of CNT

networks can be achieved by transition-metal coordination.

In the past coordination chemistry was a less studied topic in the field of CNTs,

but recently more diverse functionalization of CNTs have been explored by deco-

rating the CNT sidewall with transition metals. It has been experimentally shown

that the CNTs nanocomposites doped by transition metal nanoparticles have great

potential applications in fuel cells, sensing, catalysis, hydrogen storage and magnetic

nano-devices. As for single atom transition metal complexes, experimental works

incorporating iridium, rhodium, and osmium complexes with CNTs have been stud-

ied [101, 102, 103] and theoretical calculations concerning CNTs functionalized by

transition metals such as Cr(CO)3 and OS04 or Vaska's complex have also been per-

formed [104, 105, 106]. The coordination between the transition metals and the CNT

ir manifold can vary between j2, 4 or g6, involving two, four or six 7r electrons on

the CNT surface, respectively, but for most TMs the most stable configuration is the

7 6-coordination where the TM atom lies about 1.5 A above the center of a hexagon,

which is the same configuration assumed in the polyacene model. In order for the

transition metal to couple the 7r orbitals between different nanotubes, it must be able

to form a local sandwich structure between neighboring CNTs.

We start by calculating the binding energies and stable geometries of a single TM

atom adsorbed on a CNT, or sandwiched between two CNTs. The binding geometries

are determined by optimizing all atomic positions including the adsorbate atom and

5 units of carbon atoms of a (5,5) CNT (120 or 240 atoms for one or two CNTs,

respectively). The first binding energies are obtained when a single TM atom is ad-

sorbed to the surface of a single CNT, from the expression

E-l ET[CNT] + ET[TM] - ET[TM-CNT) (6.1)
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in terms of the total energies of the fully optimized bare nanotube (ET[CNT), the

free transition metal atom (ET[TM)), and the TM adsorbed SWNT (ET[TM+CNT]),

of the lowest magnetic ground states, respectively. We define the second binding en-

ergy as the energy further released when a second tube is absorbed to a TM-decorated

CNT, giving rise to a "sandwich" structure. The secondary binding energy E2 is cal-

culated with the equation:

E ET[CNT] + ET[TM-CNT] - ET[CNT-TM-CNT] (6.2)

Atom drM-c (A) Eb (eV) P (ps)

Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn

2.34
2.28
2.31
2.47
2.54
2.25
2.15
2.16
2.40
4.04

Table 6.1: Calculated
average carbon-TM at

2.04 1.03(1)
1.97 2.36(2)
1.50 4.30(3)
0.37 6.20(4)
0.42 6.29(5)
0.96 4.40(4)
1.26 1.98(1)
1.56 0
0.38 1.04(1)
0.05 0

binding energies (El,
om distances (dTM-c),

2.42
2.34
2.31
2.34
2.38
2.31
2.29
2.39
2.42
4.11

2.10
2.27
2.08
1.37
1.06
1.45
1.28
1.01
0.82
0.12

E as defined in Eq. 6.1

1.03(1)
2.12(2)
3.46(3)
4.85(2)
4.99(3)
3.09(2)
3.24(3)

0
1.03(1)

0

and Eq. 6.2),
and the absolute magnetization per unit

cell pB (the number of unpaired electrons is listed inside the parenthesis) of a single
TM atom adsorbed on (Left): the surface of a (5,5) CNT or (Right): between two
(5,5) CNTs.

The geometry, binding energy, and magnetic moment of the single TM atom ad-
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sorbed to the CNT are presented in Table 6.1. The calculated values for Eb are

comparable to a single TM atom adsorbed on to a (8,0) or a (6,6) CNT in other

studies [107]. Owing to the curvature effect, the binding energies are higher for single

transition metals adsorbed on SWNT surfaces than on the graphene surfaces and are

in the range of 0 to 2 eV, indicating significant chemisorption. The binding is the

strongest for early transition metals such as Sc, Ti, and V, and is the weakest for

half-filled (Cr, Mn and Fe), or fully-filled TM metals (Cu and Zn). Surprisingly, al-

though Cr is known to form the stable bis(benzene)metallocene, it gives the smallest

binding energy (0.37 eV) other than zinc when it binds to a single CNT. A further

detailed examination reveals that the small binding energy comes from the fact that a

free Cr atom has an extremely stable half-filled configuration 4s13d 5 , rather than the

formation of a specifically unstable adsorption structure. The second binding energy

E2 is comparable to Eb for most metal atoms, except in the case of half-filled metals

(Cr, Mn, and Fe), where the second adsorption event could release 0.5 to 1 eV more

energy than the first one since the initial state involves no particularly stable free

metal atoms. The intertube distance in a sandwich structure is around 3.4 A, which

is also close to the natural pi-pi stacking distance in graphite.

The interaction strength between a single TM to the CNT surface is directly re-

flected by the conductance calculation of a pristine CNT adsorbed by a single TM

atom as shown in Fig. 6-6. The quantum conductance in the spin up channel in

Fig. 6-6(a) shows strong scattering for partially filled 3d transition metals Sc, Ti,

V, Cr, Co, Ni and weak to negligible scattering when the spin up 3d orbitals are

completely filled as in Mn, Fe, Zn. In the spin down channel, the transport shows

strong scattering characteristic for all partially filled 3d metals except for Cu and Zn

(Fig. 6-6(b)). The interaction strength could be correlated to the half width of the

transmission "valleys" which represents the extent of scattering when the r channel

of a pristine CNT is perturbed by the 3d orbital of the TM. The early transition met-

als, Sc, Ti, V, Cr, show broad scattering features in both spin up and down channels

compared to other 3d atoms and are expected to offer a stronger coupling between
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Figure 6-6: The (a) spin up and (b) spin down quantum conductance near the Fermi
level of a (5,5)-CNT scattered by a single first-row transition metal adsorption (in the
configuration of the left of Table 6.1. The quantum conductance of a pristine (5,5)
CNT is shown in the black dashed curve.

adjacent nanotubes and a better intertube conductivity in a nanotube junction. Se-

lected atoms are studied in the CNT-TM-CNT sandwich connection configuration as

shown in Fig. 6-7. At a first glance it is already stunning to see such high intertube

quantum conductance could ever be achieved in a SWNT junction. Of the few metal

atoms tested, Ti, V, Cr shows particularly broad transport features around the Fermi

level and could recover the quantum conductance up to about 0.8 Go (the quantum

conductance of a pristine armchair CNT in this energy window is 2 GO). This is a

dramatic improvement over unconnected nanotube junctions, which shows essentially

zero conductance at the Fermi level. Note that in Fig. 6-7 the configuration of the

"no TM" junction is taken directly from the CNT-Cr-CNT structure by removing the
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Figure 6-7: Quantum conductance near the Fermi level of a (5,5)-CNT junction

connected by a 3d transition metal. The quantum conductance of the same junction

without the transition metal is shown in the "no TM" curve, with the geometry

directly taken from the CNT-Cr-CNT structure by removing the central Cr atom, to

show the contribution of through space tunneling between the ir orbitals unassisted

by TM coordination.

central Cr atom. In realistic scenarios the intertube conductance of a SWNT junction

is likely to be even lower since the tubes would slightly push each other away from the

3.2 A, the surface distance between adjacent tubes pulled by the transition metals in

the CNT-TM-CNT junction.

6.3.2 Nitrogen doped carbon nanotube junctions cross-linked

by transition metals

If the intertube conductivity of SWNT networks can be improved by transition metal

coordination, then the main question left would be that if one is able to disperse

the TM metals in a CNT networks in the way that neighboring tubes are coupled
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Atom dTM-N (A)

Sc 2.01 6.83 0 2.19 5.14 1.20(1)
Ti 1.93 6.69 1.45(1) 2.12 5.37 0
V 1.91 6.11 3.23(2) 2.08 4.96 2.71(3)
Cr 1.88 4.24 4.48(3) 2.06 4.87 4.06(4)
Mn 1.94 4.19 5.59(4) 2.02 3.92 3.19(3)
Fe 1.87 4.97 4.65(3) 2.01 3.97 0
Co 1.85 5.20 2.66(2) 2.02 3.04 1.11(1)
Ni 1.84 5.04 1.66(1) 2.11 2.80 2.36(2)
Cu 1.88 3.81 0 2.17 1.95 1.23(1)
Zn 2.01 1.73 1.08(1) 2.18 3.26 0

Table 6.2: Calculated binding energies (Ed, Eb as defined in Eq. 6.1 and Eq. 6.2),
average nitrogen-TM atom distances (dTM-N), and the absolute magnetization per
unit cell pB (the number of unpaired electrons is listed inside the parenthesis) of a
single TM atom adsorbed on (Left): the surface of a (5,5) CNXNT or (Right): between
two (5,5) CN2NTs.

efficiently to each other through the local sandwich junction formation, or, in other

words, whether such a junction is experimentally possible. SWNTs have been used

as support material for the dispersion and stabilization of metal nanoparticles and

the hybrid materials offer several applications in catalysis, nanoelectronics, and op-

tics [108, 109]. Nevertheless, most studies are limited to noble metal nanoparticles,

e.g. Au, Ag, Pt, Pd and involve pre-treatment on the CNTs such as acid oxidations,

which could impair the electrical and mechanical properties of the CNTs. Alterna-

tively, it has recently been proposed to utilize N-doped CNTs (the CN2NTs) as a

support material to immobilize various TM nanoparticles. The pyridine-like nitrogen

configurations, which have been found to be the favorable structure in CNNTs both

from first-principles calculations and XPS measurements [110], could lead to a strong
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hybridization between the TM atom and the nitrogen atoms even in the absence of

pre-modifications. This could be a promising and useful characteristic for enhancing

intertube conductivity by TM coordination.
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2.0- --(a--------------------------------------Ti V
- Cr
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Figure 6-8: The (a) spin up and (b) spin down quantum conductance near the Fermi
level of a (5,5)-CNXNT scattered by a single first-row transition metal adsorption (in
the configuration of the left of Table6.2. The quantum conductance of a pristine (5,5)
CNT is shown in the black dashed curve; the quantum conductance of a (5,5) CNNT
is shown in the black dotted curve.

To quantify the effect of pyridine-like defects in nanotube-TM coupling, we again

study the geometry, binding energy, and magnetic moment of the single TM atom ad-

sorbed to CN2NTs as presented in Table 6.2. The obtained binding energy, geometry

and magnetic structure are comparable to previous studies of TM metals attached to

a pyridine defect on a (10,0) CNT [111]. The first thing to note is that the binding

energies of most 3d transition metals to the (5,5) CNXNT range from 4 to 6 eV and

are on average three times or higher compared to a pristine (5,5) CNT, due to the
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Figure 6-9: Quantum conductance near the Fermi level of a (5,5)-CNT junction
connected by a 3d transition metal. The quantum conductance of a pristine (5,5)
CNT is shown in the black dashed curve.

multiple TM-N bonds formed at the pyridine vacancy sites. Recent first-principles

calculation predicts high possibility of forming single TM atom adsorption on these

pyridine sites. The energy barrier for a metal to disperse to another position on the

tube surface was estimated to as high as 7 eV [111] and thus such is unlikely to hap-

pen. The secondary binding energies are also on average two times higher than those

of CNTs. One thing to note is that the intertube distance of a sandwich structure in

the CNXNT could be bring to as close as 3 A by the transition metals, which is at

least 0.5 A shorter than the natural ir - 7r stacking distance. This indicates that the

bonding between the TM atom and the pyridine moiety is strong enough to overcome

the natural repulsion between neighboring tubes.

Typically N-doped CNTs are expected to show n-type or metallic behavior and

greater electron mobility since the extra electron from the graphitic nitrogen atoms

would create a donor state close to the Fermi level, but a pyridine-like nitrogen doping
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does not contribute to electron carriers. Rather, the local pyridine structure induces

a highly defective trap state [112] and appears a large dip near the Fermi level in the

transport of a (5,5) CNNT as in Fig. 6-8. Nevertheless, the quantum conductance

of a CNNT is largely recovered by the adsorption of a metal atom to the pyridine

site, indicating that the broken ir bands of the tube is reconnected by the TM 3d

- nitrogen 2p bonding. Unlike the case of TM-CNTs where only some of the metal

atoms would induce strong scattering in the transport (Fig. 6-6), the transmission

of the CNNT is affected by all traction metals significantly, including zinc. Never-

theless, the transmission "dips" of TM-adsorbed CN2NTs have narrower half-widths

comparing to TM-doped CNTs since the TM metal does not interfere directly to the

7r orbitals of a CNT atop as in a TM-doped CNTs in the metallocene configuration.

The quantum conductance calculation of the CNXNT junction connected through the

pyridine-TM-pyridine sandwich structure also shows significant improvement, as high

as 1.0 Go, as shown in Fig. 6-9. It was found that in this configuration the two tube

terminals come extremely close to each other and are only 2.6 A apart. Therefore

it can be expected that the conductance would also include substantial contribution

from direct intertube tunneling. Such a short intertube distance is unlikely to exist in

real SWNT networks, but even an intermediate intertube distance and a TM sand-

wiching moiety (e.g. a TM coordinated to the r16 ring of one tube and the pyridine

site of the other tube) should offer much better intertube conductance.

In summary, we have studied the intertube conductivity in a SWNT network

with first-principle calculations on SWNT junctions. We have shown the limitations

of intertube tunneling in bare CNTs or CNTs functionalized with common organic

polymers. Alternatively, we find the intertube tunneling can be greatly enhanced by

transition metal adsorption on CNT surfaces. The adsorption geometries and binding

energies of first-row transition metals on a (5,5) CNT or sandwiched between two (5,5)

CNTs are studied systenatically. We also find that the nitrogen-doped CNT binds

with TM atoms three times stronger than pure CNT does. Such sandwich structures

are thus more likely to exist in TM-doped CNXNT networks and could offer significant
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enhancement on electrical conductivities of SWNT networks by orders of magnitude

from current experimental findings.
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Chapter 7

Conclusions

In this work, we apply the Landauer formalism in a basis of maximally localized

Wannier functions to study the electronic structure and quantum conductance of

nanoscale materials. We perform detailed studies on transmission of single molecules

governed by quantum interference effect, conductance switching of functionalized car-

bon nanotubes controlled by sidewall bond cleavage, and intertube conductivity of

nanotube junctions bridged by transition metal atoms. We demonstrate how minute

differences in the atomistic details could have a huge impact on transport properties

throughout different scales, ranging from a few nanometers in a single molecule to

micrometers in an extended carbon nanotube or carbon nanotube networks.

For single-molecule transport, we show that a minimal Wannier basis transformed

Hamiltonian for the molecular part in conjunction with the wide band limit approx-

imation for the lead part is sufficient to provide quantitative results and is able to

capture all important physics without the expense of full-atomistic lead-molecule-lead

calculations. A detailed study of the quantum interference effect controlled by hy-

drogen tautomerization of porphyrinic systems is performed. We also show that the

frontier orbital symmetry interpretation for quantum interference effect is the zeroth

order approximation to the recently proposed molecular conductance orbital analysis.

In porphyrin family molecules, the quantum interference effect could lead to orders of

magnitude in transmission at or near the Fermi level when hydrogen tautomerization
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occurs, which essentially marked the behavior of a single molecular switch. The on/off

electrical transmission of porphyrin molecules may also be used as a novel memory

device in which each porphyrin unit in the organically assembled "tape-porphyrin"

systems serves as one "quantum bit" and has two hydrogen tautomeric states repre-

senting "0" and "1". This could lead to important breakthroughs in the fabrication

of molecular memory circuit.

In the second study we identify the role of through-space periconjugation in con-

trolling the sidewall bond-cleavage chemistry in [1+2] cycloaddition functionalized

CNTs. While almost all divalent functionalizations on CNTs break the sidewall

bonds in response to the high tension in the cyclopropane moiety formed in [1+2

cycloaddition reactions, a carefully arranged -r orientations of the functional group

with respect to the CNT surface could strongly stabilize the closed bond conformation

even for CNTs with very high curvature. Exploiting the periconjugation effect, we

investigate major classes of chemical functionalizations well within reach of experi-

mental capabilities that allow for instantaneous and reversible control of conductance

controlled by chemical or electrochemical means. As opposed to most of the work

in molecular electronics, where microscopic control and repeatability remain major

issues even under the most careful conditions, this study applies directly to nanotube-

based devices, covering broad classes of chemical functionalizations, and resulting in

effects that are extremely robust.

Although the conductivity of single nanotubes can be manipulated by chemical

functionalizations, at present most realistic applications of CNTs are carried out in

the form of CNT networks or thin films, in which the transmission is dominated by in-

tertube rather than intratube conductivity. We offer potential solutions to a realistic

experimental problem in carbon nanotube networks that has rarely been considered

in theoretical studies. The CNT junction cross-linked by transition metals shows

an increase in transmission over 2 orders of magnitude compare to bare (un-linked)

junctions, where the only mechanism of electron transport is tunneling which quickly
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decays exponentially with intertube distance. The strong hybridization between the

d orbitals in transition metals with the 7r orbitals in a CNT serves as an excellent

electrical bridge for broken polyacene or CNT junctions, as shown in the eigenchannel

analysis. We find that the binding energies between single transition metal adatoms

and SWNT can even be improved to three times or higher when a pyridine-like de-

fect is involved in the nitrogen-doped CNTs. Even though the pyridine defect is a

strong scattering defect compare to the pristine CNT, the transition metal adsorption

recovers largely the transmission at the Fermi level, and couples as efficiently the 7r

systems of adjacent nanotubes as in the CNT-TM-CNT system.

Finally, we would like to emphasize that in choosing and designing our model

systems, we have been especially careful in ensuring that the systems we studied are

well within reach of experimental capabilities or can be directly related to current ex-

perimental setup. Throughout the course of our pursuit, we have come to realize that

although the unconstrained imagination of theoreticians could lead to undiscovered

territories, overly impractical (or even incorrect) assumptions would only result in

meaningless calculations and may not provide much substantial information regard-

ing realistic breakthrough. Therefore it is our sincere hope that the studies carried

out in this thesis could contribute to a novel paradigm for molecular and nanoscale

electronics, and serve as a reference and a source of inspiration for future experimen-

tal studies.
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