
Understanding and utilizing waveguide invariant range-frequency
striations in ocean acoustic waveguides

by
Kevin L. Cockrell

B.S., Engineering Physics, University of California, San Diego, 2005
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION
February 2011

@2010 Kevin L. Cockrell. All rights reserved.
The author hereby grants to MIT and WHOI permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part in any

medium now known or hereafter cren tel

Author:

Certified

Accepted by:_

ARCHIVES
A4ASSACHUSETTS INSTI UTE

OF TECHNOLOGY

M IA 2011

LIBRARIES

Joint Program'in Oceanography/Applied Ocean Science and Engineering
Massachusetts I of Technology

A -an raphic Institution
September 30, 2010

Henrik Schmidt
rroressor or Mecflancal and Ocean Engineering

Massachusetts Institute of Technology
Thesis Supervisor

James C. Preisig
Chair, Joint Committee for Applied Ocean Science and Engineering

Massachusetts Institute of Technology
WcpWs Hole Oceanographic Institution

Accepted by:.
David E. Hardt

Chair, Committee for Graduate Students
Massachusetts Institute of Technology



2



Understanding and utilizing waveguide invariant range-frequency striations
in ocean acoustic waveguides

by
Kevin L. Cockrell

Submitted to the Joint Program in Applied Ocean Science and Engineering on
30 September 2010, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Abstract

Much of the recent research in ocean acoustics has focused on developing meth-
ods to exploit the effects that the sea surface and seafloor have on acoustic propaga-
tion. Many of those methods require detailed knowledge of the acoustic properties
of the seafloor and the sound speed profile (SSP), which limits their applicability.
The range-frequency waveguide invariant describes striations that often appear in
plots of acoustic intensity versus range and frequency. These range-frequency stri-
ations have properties that depend strongly on the frequency of the acoustic source
and on distance between the acoustic source and receiver, but that depend mildly on
the SSP and seafloor properties. Because of this dependence, the waveguide invari-
ant can be utilized for applications such as passive and active sonar, time-reversal
mirrors, and array processing, even when the SSP or the seafloor properties are
not well known. This thesis develops a framework for understanding and calculat-
ing the waveguide invariant, and uses that framework to develop signal processing
techniques for the waveguide invariant.

A method for passively estimating the range from an acoustic source to a re-
ceiver is developed, and tested on experimental data. Heuristics are developed to
estimate the minimum source bandwidth and minimum horizontal aperture required
for range estimation.

A semi-analytic formula for the waveguide invariant is derived using WKB ap-
proximation along with a normal mode description of the acoustic field in a range-
independent waveguide. This formula is applicable to waveguides with arbitrary
SSPs, and reveals precisely how the SSP and the seafloor reflection coefficient af-
fect the value of the waveguide invariant.

Previous research has shown that the waveguide invariant range-frequency stri-
ations can be observed using a single hydrophone or a horizontal line array (HLA)
of hydrophones. This thesis shows that traditional array processing techniques are
sometimes inadequate for the purpose of observing range-frequency striations us-
ing a HLA. Array processing techniques designed specifically for observing range-



frequency striations are developed and demonstrated.
Finally, a relationship between the waveguide invariant and wavenumber inte-

grations is derived, which may be useful for studying range-frequency striations in
elastic environments such as ice-covered waveguides.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Sound provides an unparalleled means of sensing in the vast, dark oceans that cover

70% of the Earth. Only with sound can one detect a submerged whale from hun-

dreds of miles away [55], or measure the average temperature of an entire ocean

in a matter of hours [65]. Although sound is a powerful method for sensing in

the ocean, it's an indirect one: the desired information must be extracted from an

acoustic signal.

Humans do this type of acoustic sensing on a daily basis (albeit, above the wa-

ter). A person can determine the type of building he is walking in - a large stone

cathedral, or an office building? - based solely on the sound of his footsteps. He

could even guess roughly how large the cathedral is, based on how much rever-

beration he hears. But to answer questions like these quantitatively - how many

meters wide is the cathedral? - quantitative methods must be used.

It is usually not obvious how to extract the desired information from the raw

acoustic signal, which is nothing more than a time-series of pressure recorded by

a hydrophone. The signal usually contains not only the information of interest,

but also other information that is not of interest. The sound caused by crashing

surface waves may not be of interest when one is trying to detect the presence

of whale vocalizations. Conversely, the presence of whale vocalizations may not

be of interest when one is trying to detect crashing surface waves. One of the

main challenges in ocean-acoustic sensing is to create signal processing techniques

that distill out the information of interest (e.g., whale vocalizations) while ignoring



everything else (e.g., sound of waves crashing).

How does one go about creating such signal processing techniques? Some-

times this can be done with standard engineering techniques, such as using a low-

pass filter to reject high-frequency noise. But often in ocean acoustics, the signal

processing techniques come from an understanding of the acoustics itself.

For example, ray theory reveals that some of the acoustic energy in the ocean

propagates without ever being affected by the seafloor. If one was trying to acous-

tically determine the sound speed profile (SSP) of the water column, and the prop-

erties of the seafloor were unknown and not of interest, one could use ray theory

develop a signal processing technique that extracts only the features of the sig-

nal that were not affected by the seafloor. The output of such a signal processing

technique could then be used to infer properties of the water column without ever

having to be concerned with the properties of the seafloor.

This thesis focuses on a feature of acoustic propagation in a waveguide known

as the "waveguide invariant." The waveguide invariant is a parameter denoted by

# which summarizes the frequency dependence of a waveguide's Green's function.

The waveguide invariant is important not only because it's a fundamental property

of the ocean acoustic waveguide, but also because it can be exploited to extract use-

ful information from an acoustic signal when the details of the ocean environment

(the SSP and seafloor properties) are unknown.

Many signal processing technique that utilize the physics of waveguide propa-

gation, such as matched field processing, require detailed knowledge of the ocean

environment. The accuracy of such methods tends to be very sensitive to mis-

matches between the actual environment and the assumed environment. In contrast,

signal processing techniques based on the waveguide invariant often require only a

minimal amount of knowledge about the environment. Because of this, techniques

based on the waveguide invariant are applicable even when the details of the SSP

or the seafloor are unknown.

The waveguide invariant has been used for a wide range of applications such

as: passive range estimation [58, 56, 62], matched field processing [59, 23], active

sonar [49, 27, 25], array processing [37, 57, 66], time-reversal mirrors [32, 54, 38,

39], and more (See Appendix A for a complete review of the waveguide invari-



ant literature). Despite its many uses, the waveguide invariant is not well studied

compared to other ocean-acoustic phenomena.

The goal of this thesis is to improve upon the latest understanding of the wave-

guide invariant and related signal processing so that future applications of the wave-

guide invariant can be better executed.

1.1 Thesis outline and contributions

Chapters 3 - 6 are the original research contributions of this thesis.

Chapter 2 This chapter provides the technical background for the thesis; it ex-

plains normal mode propagation in a range-independent waveguide, and pro-

vides a detailed introduction to the range-frequency waveguide invariant.

Chapter 3 This chapter presents one of the most straight-forward applications

of the waveguide invariant: estimating the range to a broadband acoustic

source in a shallow-water waveguide using a single acoustic receiver towed

directly toward the acoustic source. Previous research has shown that a two-

dimensional Fourier transform can be used to extract information about the

slope of the waveguide invariant striations. This chapter extends that research

by relating the ocean-acoustic environmental parameters to the signal pro-

cessing parameters, and applying the resulting signal processing technique

to estimate the range to the acoustic source (assuming =- 1). Heuris-

tics are developed to estimate the minimum source bandwidth and minimum

horizontal aperture required for range estimation. The range estimation al-

gorithm is tested on experimental and simulated data for source ranges of

500-2200 m and frequencies from 350 to 700 Hz. The algorithm is accurate

to within approximately 25% for the cases tested and requires only a minimal

amount of a priori knowledge about the environment.

Chapter 4 This chapter addresses the question: "Why is the waveguide invari-

ant, invariant?" Although it has been shown analytically that /3 1 for ideal

waveguides, numerical and experimental results have revealed that # ~ 1

for many (but not all) realistic shallow-water waveguides as well. Ocean-



acoustic techniques that utilize the waveguide invariant, such as those pre-

sented in Ch. 3, often assume # = 1. Therefore, it is important to under-

stand why # ~ 1 in many realistic waveguides, and when / deviates greatly

from 1.

This chapter presents a method for calculating / using a modal WKB de-

scription of the acoustic field in a range-independent waveguide, which re-

veals a straightforward relationship between the SSP and #. That relationship

is used to illustrate why non-uniformities in the SSP sometimes have such a

small effect on 3 and under what circumstances the non-uniformities will

have a large effect on /3. The method relies on implicit differentiation and

thus does not explicitly solve for the horizontal wavenumbers of the modes,

making it applicable to waveguides with arbitrary sound speed profiles and

fluid bottom half-spaces. Several examples are given, including an analytic

estimate of / in a Pekeris waveguide.

Chapter 5 This chapter generalizes a previously known result which showed that

a horizontal line array (HLA) can be used to observe waveguide invariant stri-

ations from one source while rejecting noise from other sources. It is shown

that array weights commonly used for planewave beamforming, such as uni-

form weights, can have the unintended effect of suppressing some the desired

striations. Insights gained from Ch. 4 are used to show that even when noise
is not present, array processing can still be useful because it can suppress

components of the striation pattern that are not useful for acoustic sensing.

Experimental data is used to illustrate the ability of an array processor to

preserve the desired striations while rejecting noise.

Chapter 6 This chapter shows that although the waveguide invariant is typically

defined in terms of normal modes or ray theory, it can also be related to the

wavenumber-integration method for calculating the acoustic field in a waveg-

uide. The Wiener-Khinchin Theorem is used to show that the autocorrelation

of the wavenumber-integration kernel, when plotted versus wavenumber dif-

ference and frequency, contains striations that can be described by the waveg-

uide invariant.



Chapter 7 This chapter summarizes and concludes the thesis. Several specific

suggestions for future areas of research are given.

Appendix A This appendix is an extensive but brief review of the waveguide

invariant literature, most of which is not required to support the conclusions

of the thesis but is included for the interested reader.
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Chapter 2

Background

This chapter briefly reviews the aspects of ocean acoustics that are relevant for this

thesis - normal modes in a range-independent waveguide - and then provides a

detailed introduction to the range-frequency waveguide invariant.

2.1 Acoustic propagation in a waveguide

We restrict our attention the acoustic field caused by a point source in a range-

independent ocean waveguide. As far the acoustics is concerned, the environment

is fully described by the sound speed profile (SSP) in the water column, and the

sound speed and density profile of the seafloor. If one is only interested in the

acoustic field in the water column, then the seafloor can be fully characterized by

its reflection coefficient as function of horizontal wavenumber and frequency.

As simple as that physical model may seem, a tremendous amount of research

was required to develop techniques to accurately calculate the acoustic field in such

a waveguide. The acoustic field be calculated and conceptually understood using

ray theory, normal modes, or wavenumber integration. Other methods can be used

for calculating the acoustic field, such as finite element analysis or the parabolic

equation, but those methods do not lend themselves to understanding the underlying

acoustics of propagation in a waveguide.

The concepts in this thesis are most readily understood using the normal mode

description of the acoustic field.



2.2 Normal modes

This section explains the aspects of normal modes that are important for under-

standing the waveguide invariant, including some obscure topics not typically cov-

ered in textbooks. A full derivation and interpretation of normal modes can be

found in [33, Chs. 2 and 5], as well as [60] and [10].

When the acoustic source and receiver are separated by a distance greater than

a few water depths, the complex pressure as a function of range from the source r,

depth z, and frequency w can be written as [33, Eq. 5.14]

p(r, z, w) p (z) 4 8m(zs)@m(z) eikrm (2.1)
m=1kr

where z, is the source depth, krm is the horizontal wavenumber of mode m, and

4'm(z) is the mode function of mode m. krm and om(z) usually depend on w, the

sound speed profile c(z), and seafloor properties, and are obtained by solving the

depth-separated wave equation [33, Eq. 5.90]

a2ol/(Z) + - k m m(z) = 0 (2.2)

along with the boundary conditions at the top and bottom of the waveguide, which

depend on the acoustic properties of the sea surface and seafloor. Equation 2.2 is a

second-order differential equation, for which a discrete number of solutions exist,

each one denoted by the mode number m.

krm and Om (z) can be calculated analytically in an ideal waveguide [33, Sec. 2.4.4]

and semi-analytically in a Pekeris waveguide [33, Sec. 2.4.5]. Semi-analytic solu-

tions exist for other situations as well, such as surface-trapped modes in an n2_

linear waveguide ([33, Sec. 2.5.1], [11, Sec. 6.6.1]), although the solutions are in

terms of non-elementary math functions. (See [9, Sec. 3] and [10, Sec. 4.4.1 ] for a

complete list of known analytic solutions.)

For waveguides with complicated sound speed profiles and non-vacuum seafloors

(i.e., fluid or solid), krm and /m (z) do not have exact analytic solutions. They can

be calculated numerically using ocean acoustic software such as Kraken [48]. Or



they can be calculated approximately using the WKB approximation or perturba-

tion theory ([50, Sec. 1.A], [36, Sec. 3.1]). The WKB approximation provides

insight into how the environment (SSP, seafloor) affects krm and m(z), and is

discussed in Sec. 4.2 and Appendix B.

2.2.1 Basic interpretation of normal modes

Regardless of how the krm values are calculated, the complex pressure field in

Eq. (2.1) is a sum of modes, each one propagating with its own horizontal wavenum-

ber krm. In this thesis we assume the acoustic medium has no attenuation so that all

the krm are real, though many of the concepts presented could likely be extended

to the case of mildly attenuating media.

Small changes in the SSP or the bottom boundary conditions (seafloor proper-

ties) will usually lead to small changes in the values of the horizontal wavenumbers

and the shapes of mode functions. But because krm is multiplied by the range r

in Eq. (2.1), which is typically on the order of 1000 m, small changes in the krm

lead to large changes in the structure of the complex pressure field. An example of

this is illustrated in Figs. 2.4 (b) and (e). For this reason, inversion schemes such

as matched field processing that use the complex pressure level as measured at a

specific range, depth, and frequency, are extremely sensitive to environmental mis-

match. Small modeling errors (be it an incorrect environmental parameter value

like the speed of sound in a sediment layer, or an incorrect parametrization of the

environment like not modeling enough sediment layers) can prevent an inversion

scheme from working correctly.

Another quantity of interest is the scalar acoustic intensity, which is the square

of the magnitude of the complex pressure. The acoustic intensity as a function of

range can be thought of as an interference pattern between all of the modes [33,

Sec. 2.4.4-5], and will be discussed further in Sec. 2.3.

2.2.2 Types of modes (terminology)

Understanding the relationship between a mode's horizontal wavenumber and the

SSP is important for understanding the waveguide invariant. A brief summary of

the relationship is given here, but more detailed descriptions can be found in [60,



Sec. 2.9], [33, Secs. 2.5.2 and 5.6], and [11, Sec. 6.7]. The terminology used here

is from [33, Sec. 1.4.1] where it was used in the context of acoustic rays.

Surface-Reflected Bottom-Reflected (SRBR) modes are modes that have

< krm < W where cmax is the maximum sound speed in the watercolumn
Cseafloor Cmax

(not including the seafloor), and cseafloor is the sound speed of the seafloor. (For a

vacuum or rigid seafloor, use Cseafloor = 00).

The term non-SRBR will be used to refer to any mode that is not an SRBR

mode. Non-SRBR modes always have ' < krm < ' where cmin is the mini-
Cmax Cmin

mum sound speed on the watercolumn. Examples of non-SRBR modes are surface-

trapped modes, bottom-trapped modes, and waterborne modes.

z-0

k(z)=

z=d k

Cseafloor Cmax Cmin

14 - SRBR-4 1 Non-SRBR- 1

Figure 2.1: Illustration showing the relationship between the sound speed profile,
the horizontal wavenumber, and the type of mode. The vertical axis is depth and
the horizontal axis is wavenumber. The horizontal axis also represents the hori-
zontal wavenumber krm of any given mode. Modes with horizontal wavenumbers
between C, and " are surface-reflected bottom-reflected (SRBR) modes.

2.2.3 The modal sum

As shown in Eq. (2.1), the total acoustic pressure is a summation of terms from

M normal modes. This modal sum has an interesting property that is essential for

understanding the waveguide invariant, but is often not discussed.

In Chuprov's original derivation of the waveguide invariant [18], he states that

the acoustic field in a range-independent ocean is typically "composed of a limited

number of groups of modes with close [mode] numbers." This subsection explains



why that is the case, by summarizing the argument presented in [20, Sec. 3.1.6].1

As discussed in [33, Sec. 5.2.1], the mode number m is a monotonic function of

kr (this property can also be understood using the WKB approximation in Ch. 4).

Thus, a particular range of kr values corresponds to a group of adjacent mode

numbers. The quote from Chuprov in the previous paragraph can then be stated

as: the complex pressure field at a given range is usually dominated by a group

of modes that lie within a small range of kr values - or possibly a few groups of

modes with a few distinct ranges of kr values.

Each term of the summation in Eq. (2.1) represents a mode's contribution to the

total complex pressure at a fixed range, depth, and frequency. That contribution is

a complex number with a magnitude and phase, which can be plotted as a vector in

the complex plane. The vector corresponding to the first mode can be plotted from

the origin of the complex plane. The vector corresponding to the second mode can

plotted from the end of the first mode's vector; the third one plotted from the end

of the second one, and so on, as shown in Fig. 2.2 (a). The end of the vector from

the M-th mode is then the total complex pressure level at the fixed range, depth,

and frequency.

From Eq. (2.1), it can be seen that the phase difference between term (m) and

term (m - 1) is r(krm - kr(m-)). Groups of modes that approximately satisfy the

equation

r(krm - kr(m-1)) = 27rN (2.3)

where N is an integer will all have approximately the same phase and thus will add

constructively (they will all be pointing in the same direction in the complex plane);

all other modes will be distributed in "random" directions in the complex plane

and will approximately cancel each other out, roughly speaking. This argument is

similar to the argument used to justify the stationary phase method of integration.

One can write Eq. (2.3) as

Okrm _ 2irN (2.4)
am r

to see that the complex pressure level is dominated by a few groups of modes (each

1[18] actually referenced [20, Ch. 2], but that was likely an error because the relevant material
appears to be in [20, Ch. 3]
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Figure 2.2: (a) Graphical representation of the mode summation for a fixed range,
depth and frequency. This plot shows the complex pressure in the deep-water
waveguide in Fig. 2.6 at a range of 80 km and 100 Hz. Each line segment rep-
resents the contribution from a single mode number (labeled), beginning with
the first modes at (0, Oi) and ending with the last mode about (2.75, -3.25i).
The total complex acoustic pressure is primarily determined by modes 160 to
170. (b) A plot of the phase difference between terms of the modal summation:
r(krm - kr(ml))/(27r). The phase difference for modes 160 to 170 is approx-
imately -2, an integer, so those modes all have approximately the same phase
(direction in the complex plane) and dominant the mode sum.



one corresponding to a particular value of N) along the curve of kr versus m.

Figure 2.2 (b) is a plot of r(kr -)/(27r) versus m for a deep-water waveguide at

80 km in range.

The concepts in the present subsection are illustrated in more detail, and with

more mathematical rigor in [20, Sec. 3.1.6], which also discusses how this inter-

pretation of the modal sum relates to ray theory.

2.3 The range-frequency waveguide invariant

Historical context and philosophical note

The Russian literature on ocean acoustics is noticeably different than the Western

(i.e., American and European) literature. Each group - Russian and Western -

has a slightly different way of thinking about ocean acoustics, and each way has its

own strengths and weaknesses.

One of the lessons learned from this thesis was that much can be gained by

drawing from the strengths of the two different ways of thinking about ocean acous-

tics, which complement each other very well. For this reason, this author often lists

several references for a single concept.

The waveguide invariant, the topic of this thesis, was discovered by a Rus-

sian acoustician named S.D. Chuprov in 1982 [18]. Because of the Cold War

between the United States and Russia, researchers in the United States (and pre-

sumably other Western countries) did not know about the waveguide invariant until

the 1990s.

Chuprov's original paper on the waveguide invariant, Ref. [18], has been trans-

lated to English.2 Chuprov's paper [18] is extremely dense - covering much ma-

terial not even mentioned in this thesis - and requires a very deep understanding

of ocean acoustics.

2.3.1 Range-frequency striations

This thesis uses the term "waveguide invariant" to refer to the range-frequency

waveguide invariant. In other literature, "waveguide invariant" sometimes refers

2This author obtained a copy from the library at the NATO Undersea Research Centre.



to a slightly more general concept that describes not only changes in range and

frequency, but also changes environmental parameters such as waveguide depth

([18], [34, Sec. 2.4.6]).

Sections 2.3.1 - 2.3.3 of this thesis draw heavily from [34, Sec. 2.4.6] and [11,
Sec. 6.7.2], both of which have excellent derivations and discussions of the waveg-

uide invariant. The derivation in this chapter attempts to complement those two

sources by presenting the concepts in a slightly different manner, and by explic-

itly showing many of the intermediate steps of the derivation. This section uses

normal modes to describe the waveguide invariant, but the waveguide invariant can

also be described using ray theory (see Appendix A.2). Also, Chapter 6 presents

some original research relating the waveguide invariant to wavenumber integration.

We start out with an empirical observation: A 2-d plot of acoustic intensity in

a waveguide as a function of range and frequency (I(r, w) = |p(r, w) 2) for fixed

source and receiver depths often contains striations. This plot is what one would
obtain if he or she plotted a spectrogram from an acoustic receiver being towed

directly away from a broadband acoustic source in a range independent waveguide.

I(r, w) versus r for a fixed w is the intermodal interference pattern discussed

in [33, Sec. 2.4.4-5], so the striations in I(r, w) are a result of how that intermodal
interference pattern changes with frequency. The striations in I(r, w) will be re-

ferred to as waveguide invariant striations, and can be observed under a wide range
of environmental conditions.

A simple example of these waveguide invariant striations is shown in Fig. 2.3 (a),

which shows the simulated acoustic intensity in a Pekeris waveguide (source at

z, = 40 m, receiver at z = 20 m, cwater = 1500 m/s, cbottom = 1700 m/s,

pbottom = 1750 kg/m 3 - but all Pekeris waveguides will have similar striations).
More complicated examples are shown in Figures 2.4 (c) and (d), which show the

waveguide invariant striations for two shallow-water waveguides with non-uniform

sound speed profiles. Figure 2.5 shows striations from experimental data collected

in a shallow-water waveguide (see Ch. 3 for details). Figure 2.6 shows simulated

waveguide invariant striations for a deep-water waveguide with a Munk sound

speed profile. These striations from a deep-water waveguide are different look-

ing than those from shallow-water waveguides shown in Figs. 2.3 and 2.4, and will



be discussed later.

These plots show that similar striation patterns appear in many different shallow-

water range-independent environments (with the deep-water waveguide having a

different pattern). In shallow water, the striation pattern is often not strongly af-

fected by the details of the sound speed profile or the seafloor properties: thus the

term waveguide invariant.

The acoustic pressure in a range-independent waveguide can be written as [see

Eq. (2.1)]
ikrmr

p(r, w) oc m(zs)4m(z) kr , (2.5)
m krmr

keeping in mind that krm and 4'm(z) depend on w. Note that although the pressure

depends on z, as well as r and w, the z dependence is not explicitly written on

the left-hand-side of Eq. (2.5) because the z dependence is not important for this

derivation. Define:
1

Am = @m(zs)4 m(z) krr(2.6)
-v/krmr

The pressure can then be written as

p(r, w) oc ZAmeikmr. (2.7)
m

Am is a slowly varying function of r and w compared to how quickly the exponen-

tial term in Eq. (2.5) varies with r and w, and so Am's dependence on r and w will

be ignored. Am can be thought of as the local amplitude in the (r, w) plane.

The scalar acoustic intensity is the pressure [Eq. 2.7] multiplied by its complex

conjugate, which can be written as 3

3Assuming Am and A, are real. If Am and Ai are complex, then the Am A, in the result must be
replaced with |AmA* + A, A* 1, which is approximately equal to AmA, when the real parts of Am
and Al are much larger than the imaginary parts.
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Figure 2.3: (a) Plot illustrating waveguide invariant striations in a simulated Pekeris
waveguide. The quantity plotted is acoustic intensity (dB with an arbitrary refer-
ence) versus range and frequency. The striations' slopes (pointing toward the lower
left) are described by the waveguide invariant #. (b) Same as (a), but overlaid with
lines corresponding to # = 1/2. (c) same as (b) but with lines corresponding to
# = 1. (d) same as (b) but with lines corresponding to # = 3/2. Note that the
striations are best described with # = 1.
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shallow-water waveguides, with the properties of one waveguide plotted in the left
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shows the sound speed profiles (including the seafloor). The second row shows the
acoustic intensity (dB with an arbitrary reference) versus range at 350 Hz, with the
source at 37 m deep and the receiver at 10 m deep. The plots in the second row illus-
trate that two waveguides with similar (but not identical) sound speed profiles can
have dramatically different acoustic fields. The plots in the third row are acous-
tic intensity (dB with an arbitrary reference) versus range and frequency. Both
waveguides, despite their differing sound speed profiles, contain similar-looking
striations, the slopes of which are described by the waveguide invariant 0.
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Figure 2.5: Acoustic intensity (dB with an arbitrary reference) versus range and
frequency illustrating waveguide invariant striations with experimental data from a
shallow-water waveguide.
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c (E Ame+ikrmr ( Aie-ikrIr

(AmAi cos(Akmir)) (2.9)
ml

= Aq + ( Am Aicos(A kmir ) (2.10)
q m,1; m4l

where m and 1 are the mode number indices, Akmi - krm - kri depends on W,

and the exponents have been written as cosines using Euler's formula. Inspection

of Eq. (2.10) reveals that the acoustic intensity is a sum of cosines, each cosine
resulting from the interference between two modes and having the amplitude of the

product of those two modes' amplitudes.

Define:

Imi(r, w) = AmAl cos(Akmir) (2.11)

so that Iml (r, w) is the contribution to the total intensity from a single cosine term.
A plot of a Iml (r, w) versus w and r, will contain striations, as shown in Fig. 2.7
for m = 4 and l = 10.

The slope of those striations can be determined by finding the direction in the

(r, w) plane for which the intensity does not change. This is done by taking a first-

order two-dimensional Taylor series expansion of Iml (r, w) about some point in the

(r, w) plane, and setting the result equal to zero:

Il(rW) 6 r + I(w) = 0  (2.12)Or O

ow
Then the slope (the direction in which Im (r, w) does not change value) can be
solved for:

6w _ Imz(r, W) OImi(r, o)
-a= - . (2.13)

6r Or O

From the perspective of a person walking around on the bumpy surface of

Imi(r, w), Eqs. (2.12) and (2.13) can be stated in words as: If I am at a location

I(r, w) = |p(r, w)2 I (2.8)
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Figure 2.7: A plot of a single cosine term of the acoustic intensity for the waveguide
shown in Fig. 2.4 (d), computed using modes 4 and 10.

(r, w) and I move in the r direction by some small amount Jr, then how far must I

move in the w direction (6w) so that Iml has the same value as where I started? A
"striation" is a line or curve in the (r, w) plane for which Im does not change.

Inserting Eq. (2.11) into Eq. (2.13) yields

6w AmAl - (Akmi(w)) sin (Akm(w) r) _ (Akmi(w)) (2.14)
6r rAmAi - ( ,k-1(w)) sin(Akml (w) r) r (Akm (w)

We then define the waveguide invariant parameter for these two modes, #ml,
as:

1 LAkmi(W)
3ml = -- Akm(w) (2.15)w Bakmi (w)/law

The reason for this definition is not immediately obvious, but it turns out to be a

useful one. Using Eq. (2.15) and the right hand side of Eq. (2.14), one can write

6w w
(2.16)6r r

So the slope - of a striation of a single Iml term is fmi times the frequency w

divided by the range r.

But the acoustic intensity I(r, w) consists of a sum of Im terms, and each
3m, only describes striations in a single Im term. If all of the Im terms have

Om, values that are approximately the same, then each term will have striations



with approximately the same slopes, and so the total intensity I(r, w) will have

striations described by a scalar value 3 that is approximately independent of m and

1. Section 2.3.2 shows that in an ideal waveguide, #3mi is approximately independent

of m, 1, and w, for modes far from cut-off.

In more complicated waveguides, however, 0m1 is not independent of m, 1, and

w. In that case, a more sophisticated view of the waveguide invariant is required in

order to understand why there are striations in I(r, w) even though I(r, w) consists

of a sum of Im1 terms, each of which has a different 0m1 value (and thus different
striations slopes). This more sophisticated view is described in Sec. 2.3.3. But first,
Sec. 2.3.2 shows that #m1 ~ 1 in an ideal waveguide.

Note that in Eq. 2.16, one can replace w (the temporal frequency in radians per

second) with f (the temporal frequency in cycles per second) because a factor of
27r will appear on both sides of the equation and will thus cancel out. Also note

that Eq. 2.16 is approximate because the dependence of Am on r and w has been

ignored.

2.3.2 The waveguide invariant in ideal waveguides

#ml can be calculated analytically in an ideal waveguide (pressure-release top and
bottom, iso-speed SSP). Following [11, Sec. 6.7.2], the horizontal wavenumbers

are:

krm (2.17)

where the total wavenumber k = -, and the vertical wavenumber of mode m is
mi. Eq. (2.17) can be written as

krm = k 1 - (2.18)

By letting x = (T)2, we can write Eq. (2.18) as

krm = k/1- z-x (2.19)

If x < 1 (which means the vertical wavenumbers are much smaller than the total

wavenumber, or equivalently that the angle of propagation is close to horizontal),



then we can Taylor series expand V1 - x to

#1-x= X + O(X2). (2.20)
2

Inserting x in Eq. (2.20) and ignoring 0(x 2) terms, we obtain

k,m ~- k 1 - I (M"f2 (2.21)
2 \kd/

where we used the approximate sign because we are ignoring all terms of O(x 2) or

higher. Under that assumption (and replacing k with '),

krm - kri ~ 2 D )(m2 _2) (2.22)

This can be inserted into Eq. (2.15) to reveal that # ~ 1 in this case, regardless

of the values of m, 1, and w (bearing in mind that this is only valid for modes

with small vertical wavenumbers compared to their horizontal wavenumbers). An

alternative derivation expresses the same result in terms of the modal propagation

angles [18, Eq. 9] [34, Sec. 2.4.6].

Modes far from cut-off in a Pekeris waveguide have horizontal wavenumber

differences and frequency dependencies that are similar to modes in an ideal waveg-

uide. To see this, consider a plot of the characteristic equation for a Pekeris waveg-

uide [33, Eq. 2.167] versus horizontal wavenumber, and how that plot would change

with frequency. Because of this, modes far from cut-off in a Pekeris waveguide also

have #m1 ~ 1.

Experimental and numerical observations suggest that 01mi 1 in many shallow-

water waveguides, regardless of their sound speed profiles. Qualitative reasons for

this are suggested in [18]; Chapter 4 investigates this in more depth.

2.3.3 The waveguide invariant non-ideal waveguides

One way to understand the waveguide invariant in non-ideal waveguides is to ma-

nipulate Eq. (2.15) to define #m1 in terms of the group slowness and phase slowness

(the reciprocal of group speed and phase speed, respectively). Group and phase

speeds are discussed in [33, Sec. 2.4.4] and [10, Sec. 4.5] (with rather different



points-of-view).

The phase speed for a mode m is

om (2.23)
krm

and the group speed is

Um = . (2.24)
Akm'

The phase slowness is

Sp,m = (2.25)om
and the group slowness is

1
Sg,m = . (2.26)

Comparing those definitions with the right-hand-side of Eq. (2.15), one can write:

#mi A Sp rn (2.27)
ASg,mi(w)

where ASp,mi = Sp,m - Sp,, and analogously for ASg,mi. (The last several equa-

tions are contained in original waveguide invariant paper, Ref. [18], but the notation

and interpretation used in this thesis come from [34, Sec. 2.4.6] and [66].)

The meaning of Eq. (2.27) can be illustrated by a plot of Sg versus Sp for all

the 1 through M modes (at a fixed w), as is done by Ref. [18] and [34, Sec. 2.4.6].
This plot of S9 versus Sp can be thought of as a functional relationship: Sg as a

function of Sp with both Sg and Sp being parameterized by the mode number m.

This function will be denoted as Sg(Sp). In fact, under the WKB approximation,

it can be shown that Sg is a function of Sp, independent of w, for modes that do

not interact with the seafloor. This is mentioned in Ref. [18] and can be seen in

Eq. (4.36) of this thesis.

If we consider only regions of Sg (Sp) where Sg (Sp) is approximately a straight

line (mathematically speaking, take a first order Taylor series expansion of Sg (Sp)

about some fixed Sp value), then # is defined in terms of the slope of that line:

1 _d S-=- - dS- (2.28)
#(Sp) -dSp
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This # no longer has an ml subscript because it depends only on the phase slowness

Sp in Sg (Sp), as opposed to depending on the phase slownesses of two distinct

modes as does Eq. (2.27). When calculated this way, # corresponds to two modes

with adjacent modes numbers. # may depend on w as well, as will be discussed in

Ch. 4.

It may seem strange (or even useless) to define # using only adjacent modes,

given that the acoustic intensity contains components from all mode pairs, includ-

ing those with m and I values that are not close to each other [see Eq. (2.9)];

each Iml (r, w) will have striations according to its #m1. However, as discussed in

Sec. 2.2.3, the acoustic field at fixed range and frequency, is dominated by groups

of modes with adjacent mode numbers. That provides justification for defining #
using only modes with adjacent mode numbers [18]. This author is not aware of any

research attempting to quantify the validity of such a justification. But evidently,

Eq. (2.28) often provides an accurate description of range-frequency striations.

Figure 2.8 (a) and (c) shows plots of phase speed and group speed for the two

shallow-water waveguides discussed earlier in this chapter. All modes with phase

speeds less than 1520 m/s - the speed of sound at the top of the water column

- are non-SRBR mode. An analogous statement can be made for the phase slow-

nesses: all modes with S,= km > 6.57 s/m are non-SRBR modes. It

can be seen in Fig. 2.8 that the slope of the line connecting non-SRBR modes is sig-

nificantly different than the slope of the line connecting the SRBR modes. Thus, the

non-SRBR modes and the SRBR modes each correspond to significantly different

values of S. However, because there are many more SRBR modes than non-SRBR

modes in these cases, the striation pattern observed in I(r, w) corresponds mostly

to the value of #3 for the SRBR modes(3 - 1).

Figure 2.9 is the same as Fig. 2.8, but for the deep-water waveguide shown in

Fig. 2.6. In this case, a significant fraction of the modes are non-SRBR modes

(which in this case are modes with phase speeds less than about 1550 m/s). That

partially explains why the striations in Fig. 2.6 (c) do not look the same as those

in Fig. 2.9(c) and (f): non-SRBR modes tend to have different values of # than the

SRBR modes do.

Furthermore, the slope of the striations in Fig. 2.6 (c) appear to vary depending

on the range and frequency, which makes sense given the argument in Sec. 2.2.3:



different locations in Fig. 2.9 are dominated by different groups of modes, which

have different values of 3. This author is not aware of any research directly inves-

tigating how the value of # observed in the local striations in I(r, w) may change

with range and frequency (See Sec. 7.3 for a suggestion on how to investigate this).

In many cases, however, the range-frequency striation pattern is well described by a
single, dominant value of 3 that is approximately independent of range, frequency,

ow
and mode numbers. In such cases, the striation slopes - can often be described

6r
with the equation

(2.29)
6r r

which does not include O's dependence on the mode numbers m and 1, and the

frequency w (or alternatively Sp and w). Eq. (2.29) is a useful approximation in

many situations. However, as pointed out by Rouseff and Spindel in [51], it's

important to keep in mind that Eq. (2.29) is an approximation, and that 3 is not

always equal to a single value.

Eq. (2.29) defines the slope of a striation (assuming the striation is perfectly

well described by #), and can be integrated to yield the equation for the striation

path itself [21, Eq. 20]:
(r

W = WO - (2.30)
ro

where wo and ro represent the constant of integration, and define a point in the

(r, w) plane where the striation will go through. When the source and/or receiver
are moving, the r and w in Eq. (2.30) can be parameterized by time, as shown in

[21, Eq. 20] by D'Spain et al.

2.4 Chapter summary

The total acoustic intensity is a summation of cosine terms, each representing the

contribution from a pair of modes denoted by m and 1. Each cosine term - each

mode pair - has its own 0#1 value that may depend on w. The total intensity is

the addition of all those cosine terms.

Under some circumstances, the total acoustic pressure and thus the total acous-



tic intensity is dominated by mode pairs that all have similar values of #mi. This

leads to the approximation that # is a scalar parameter.

Understanding that the acoustic intensity is a summation of cosines, each of

which has different (but possibly similar) 0,mj value, is useful for understanding

plots of I(r, w). This understanding may also be useful for applying the waveguide

invariant concept to other situations such as array processing, time-reversal mirrors,

etc.

This chapter reviewed the background material necessary for understanding the

original work presented in the rest of this thesis, all of which uses # described by

normal modes in a range-independent waveguide. However, much more research

has been done on the waveguide invariant, including relationships to ray theory and

extensions to range- and azimuthally-dependent waveguides. Appendix A is a brief

but thorough review of the waveguide invariant literature.
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Chapter 3

Robust passive range estimation

using the waveguide invariant

The previous chapter explained that the waveguide invariant, #, describes range-

frequency striations. In this chapter, original work is presented that utilizes range-

frequency striations to estimate the range to an acoustic source by assuming that

# - 1.1 Because this chapter presents experimental data that has #3 1, this

chapter also serves as a motivation for Ch. 4 which investigates why # 1 in most

shallow-water waveguides.

As with the rest of this thesis, mode numbers are denoted by m and 1. In

contrast to the rest of the thesis, this chapter writes the temporal frequency as f
(cycles/s) instead of w (radians/s): w = 27rf.

3.1 Introduction

Most research on acoustic source localization in the ocean has focused on using co-

herent signal processing techniques such as Matched Field Processing [3] (MFP).

While MFP works well in theory and in numerical simulation, it is often not ap-

plicable to real-world situations because it requires very accurate knowledge of the

'This chapter is based on "Robust passive range estimation using the waveguide invariant" by
Kevin L. Cockrell and Henrik Schmidt [The Journal of the Acoustical Society of America. May,
2010].



environment (e.g., sound speed profile and acoustic properties of the sea floor) in

order to correctly localize the source.

Other source localization methods have been developed that require much less

a priori knowledge about the environment by using the waveguide invariant. The

waveguide invariant has been applied to estimating the range to acoustic sources in

various circumstances using a variety of signal processing schemes such as:

" Estimating the range to a fixed acoustic source from measurements taken by

a vertical hydrophone array by analyzing the MFP sidelobe behavior [59].

" Estimating the closest-point-of-approach of a moving source to a single fixed

hydrophone using a Hough transform-like technique [56].

" Estimating source trajectories based on range-frequency striations in an ar-

ray's beamformed output [62].

In this chapter, a technique is developed to estimate the range to a fixed acoustic

source from the acoustic intensity as measured over a window of ranges and fre-

quencies, I(r, f). The technique is tested on experimental data that was obtained

from an acoustic receiver towed by an Autonomous Underwater Vehicle (AUV)
heading directly toward the acoustic source. Previous research papers have used

the two-dimensional discrete Fourier transform (2D-DFT) of I(r, f) to estimate

the value of the waveguide invariant when the source range was known [51, 66],
but did not address how to choose the signal processing parameters. This chapter

extends that research to using the 2D-DFT of I(r, f) to perform range estimation,

and develops guidelines for choosing the signal processing parameters' values.

The objective of the present work is to investigate the issues related to the signal

processing that is required for range estimation using the 2D-DFT of I(r, f) in the

context of performing the estimation autonomously (i.e., without requiring human

interpretation of any images), and to perform the range estimation on simulated and

experimental data. The main results are:

e The minimum bandwidth of the acoustic source and minimum range win-

dow of acoustic intensity measurements required for accurate range estima-

tion can be determined from a modest knowledge of the acoustic waveguide

parameters before any acoustic measurements are made.



" A relationship between the signal processing parameters and the ocean-acoustic

waveguide parameters can be used to reject much of the noise present in ex-

perimental data.

" Range estimation can be performed robustly, requiring very little a priori

environmental knowledge (at least, for the data sets analyzed this chapter).

* A range estimate accuracy of approximately 25% is achieved with the exper-

imental data set used in this chapter.

Section 3.2 discusses the waveguide invariant in the context of passive range

estimation. In Sec. 3.3, the range estimation algorithm based on a 2D-DFT is dis-

cussed. Section 3.4 applies the algorithm to simulated and experimental data. And

finally, Sec. 3.5 gives a summary and conclusion of this chapter.

3.2 Brief review of range-frequency striations

Section 2.3 explained that a plot of acoustic intensity versus range and frequency

due to a broadband source in a waveguide, I(r, f), will exhibit striations that are

described by the waveguide invariant #. As discussed in Sec. 2.3 the value of # is
unique for each mode pair, but # can sometimes be approximated as being a single

value independent of the mode numbers m and 1, and the frequency w. Under that

approximation, specific value of # that will be observed in I(r, W) depends on the

sound speed profile, the seafloor properties, and the source and receiver locations

[51, 21, 49, 59].

Empirical and numerical observations suggest that for mode pairs where both

modes are surface-reflecting bottom-reflection (SRBR) modes, # ~ 1 (this is inves-

tigated further Ch. 4). So if the acoustic intensity is dominated by SRBR modes,

the # observed in the striation pattern will likely be close to 1. Throughout this

chapter, for both the simulated and experimental data, we assume # 1. The

consequences of assuming # = 1 are discussed shortly.

Eq. (2.29) can be used for range estimation by rewriting it as

r = # - f .r - (3.1)
6f



which allows for one to estimate the range of the acoustic source if one measures

the slopes of the striations and assumes a value of 3. The effect of assuming an

incorrect value of 3 can been seen in Eq. (3.1). If the true value of # is #true and

the assumed value is #assumed, then the range estimates will be incorrect by a factor

of /3 assumed/true.

In order to estimate the range to the source, one begins by calculating I(r, f)
for some range of values of r and f. In a simulation one can calculate I(r, f) in the

frequency domain using acoustic simulation software. In an experiment one must

estimate the power spectrum of a hydrophone's time series at several ranges. In

practice, I(r, f) will likely be the spectrogram of a time series of acoustic pressure

obtained by moving acoustic an receiver radially towards or away from the acoustic

source, as is done in Sec. 3.4.2.

To estimate the source's location, one then must determine the slopes of the

striations (or curved paths of the striations, if / 5 1) in I(r, f). Because of the

visually striking relationship between the striation slope and the source's location,

a person looking at I(r, f) can estimate the source's location rather easily (see

Fig. 2.3. However, the present work focuses on techniques that perform the range

estimation autonomously (i.e., without the benefit of having a person to visually

interpret I(r, f) or its 2D-DFT).

3.3 Using the two-dimensional discrete Fourier transform
for range estimation

3.3.1 Outline of the 2D-DFT technique

The slope of the striation, 9, at a particular range-frequency combination (r, f)
can be inserted into Eq. (3.1) to estimate the range to the source. The technique

described in this section to determine the slope of a striation in I(r, f) looks at a

small local region (a "window") of 1(r, f) and assumes that all of the striations

within that window have the same slope. This is similar to what is done in [4, 51,

66], but in those papers the ranges were much larger than the ranges used in the

present analysis, so the slopes of the striations did not change quickly with range.

Consequently, those papers did not focus much attention on how to choose the size



of the window. Because of the short ranges used in the present analysis, the slopes

change quickly with range and so much care must be given to the choosing the

window size in order to ensure that the slopes do not change too much inside of the

window. This issue is discussed in Sec. 3.3.2.

In addition to the striations from the source, I(r, f) will also contain noise

which can be partially eliminated by filtering. The spatial cutoff frequencies of the

filter are discussed in Sec. 3.3.2.

The range is then estimated based on the slope of the striations in the window.

This process is repeated for several windows located on a grid in the (r, f) plane.

Each window on the grid will produce one range estimate, all of which can then be

averaged obtain a single, robust estimate. Note that the vertical axis of the window

is frequency, so it requires that the source be broadband. The horizontal axis of the

window is range, and so it requires that the acoustic field is measured along a line

emanating radially from the acoustic source.

3.3.2 Determining local striation angle with the 2D-DFT

Denote a rectangular window of I(r, f) bounded by (rmin < r < rmax) and

(fmin < f < fmax) as Iwin(r, f). The striations inside of Iwin(r, f) will all have

approximately the same slope if the window size is sufficiently small.

Several articles have pointed out the relationship between the 2D-DFT of Iin (r, f)
and the slope of the striations in Iwin(r, f) [66, 4, 51, 18]. That relationship forms

the basis for the approach used in the present work to determine the local striation

angle. The process of determining the local striation angle involves five main steps:

1. Take a two-dimensional discrete Fourier transform (2D-DFT) of Iwi (r, f)

2. Eliminate regions of the 2D-DFT of Iwin (r, f) associated exclusively with

noise content.

3. Convert the 2D-DFT of Iin (r, f) to polar coordinates.

4. For several hypothesized striation angles, add up (integrate) all of the com-

ponents of the 2D-DFT of Iwin (r, f) corresponding to that striation angle.

5. The striation angle that has the most "energy" is then the estimate.



These steps are illustrated in Fig. 3.1 and are described in detail in the follow-
ing subsections. The steps are related to the Radon Transform and the Fourier-
Slice Theorem [35]. If one were to skip the 2nd step, then the steps could be per-
formed with a Radon Transform using the Fourier-Slice Theorem. 2 But because
step 2 eliminates components of win (r, f) above particular spatial frequencies, the
present analysis works directly with the 2D-DFT of Iwin(r, f).

Interpretation of the two-dimensional discrete Fourier transform

win (r, f) has striations whose slope needs to be determined in order to estimate

the source's range. Fig. 3.1(a) shows an example Iwin(r, f). Denote the magnitude

of the 2D-DFT of Iwin(r, f) as I2DF (kr,image, kf,image):

I2DF(kr,image, kf,image) J win (r, f) 6 -2 (kr,imager kf,imagef) d df

where kr,image and kf,image do not refer to the acoustic wavenumbers, but rather

to the wavenumbers of the "image" win (r, f). Hence, kr,image and kf,image will
be referred to as the image wavenumbers. They are the horizontal and vertical

axis, respectively, of Fig. 3.1(b). In Sec. 3.3.2 the relationship between kr,image and

kf,image and the acoustic horizontal wavenumbers of the modes propagating in the

waveguide will be derived.

In practice one has a discrete (sampled) version of I(r, f), so the two-dimensional
Fourier transform is implemented as a two-dimensional discrete Fourier transform.
The direction of the mainlobe originating from the origin of I2DF(kr,image, kf,image)

is perpendicular to the slope of the striations in the window of I(r, f). An exam-

ple is shown in Figs. 3.1(a) and 3.1(b). (They do not appear exactly perpendicular
because of the different aspect ratios of the figures.)

If one thinks of Iwin (r, f) as an image, ignorant of the fact that it represents

power spectrum of an acoustic field, then its 2D-DFT, I2DF(kr,image, kf,image), Can

be interpreted as a decomposition of win (r, f) into "cosine" image basis functions,

each with a unique image wavenumber [7, 12].

2The author thanks an anonymous reviewer for The Journal of the Acoustical Society of America
for pointing this out.



The acoustician may gain insight by noting that the basis functions of a 2D-

DFT of an image look like two-dimensional plane waves with the time-dependence

removed: exp (i(kx + kyy)).

Each pixel of I2DF (kr,image, kfimage) represents a single basis function with im-

age wavenumbers of kr,image and kf,image (horizontal and vertical image wavenum-

bers, respectively, in Fig. 3.1(a)). One may find this easier to understand if she or

he ignores that r and f represent range and frequency, and instead thinks of them

simply as labels for the x and y axes of Fig. 3.1(a).

To relate kr,image and kf,image to striation angles, one can interpret each combi-

nation of kr,image and kfimage (or each pixel of Fig. 3.1(b)) as representing a cosine

basis function at a particular angle with a particular period (striation width).

Application of the 2D-DFT to determine striation angle

The waveguide invariant as shown in Eq. (2.29) makes a statement only about the

slopes of the striations; it says nothing about the distance between the striations.

From an image processing perspective, the waveguide invariant makes a statement

about the angle of the basis functions comprising Iin (r, f); it says nothing about

the period (striation width) of those image basis functions. But as Chuprov points

out in his original derivation of the waveguide invariant, one can calculate the mini-

mum striation width using only modest information about the waveguide [18]. This

allows one to filter out noise by only including components of I(r, f) with image

wavenumbers less than the maximum expected due to the acoustic source of inter-

est, as will be discussed in Sec. 3.3.2.

To determine the angle of the striations in Iwin(r, f) we first remove the mean

of Iin(r, f) and then take its 2D-DFT to obtain I2DF(kr,image, kf,image)- Then we

transform I2DF(kr,image, kf,image) from Cartesian coordinates to polar coordinates:

I2DF (kr,image , kfimage) * 12DF (0, K) (3.2)

where

0 = arctan(kfimage /kr,image), K - kr,image + kfimage-

Note that it is legitimate to add kr,image and kf,image together because they are di-

mensionless, as they are the result of the 2D-DFT. However throughout most of the



present work kr,image and kf,image are "re-dimensionalized" based on the sampling

used in the 2D-DFT, just as is typically done with power spectra based on discretely

sampled temporal waveforms.

Nearest-neighbor interpolation is used to do the coordinate transform. An ex-
ample I2DF (0, K), is shown in Fig. 3.1(c).

If one places bounds on the possible ranges to the acoustic source, one can use
Eq. (2.29) to put bounds on the angles that could have striations due to the waveg-
uide invariant. The present analysis assumes the source was between 100 meters
and 5,000 meters. Typically this only eliminates a few degrees (e.g., angles of 3
to 87 degrees, instead of 0 to 90 degrees), but the striation angle finding algorithm
benefits from this because it occasionally incorrectly chooses very steep or very

shallow angles as the dominant striation angle.

(maximum frequency in window
0 min = arctan . .minimum range to search

(minimum frequency in window
0 max =arctanII

maximum range to search

Interpolation isn't strictly necessary to obtain the value of I2DF(O, K) at an
arbitrary (0, K). One can evaluate the 2D-DFT of a sampled version of I(r, f) at
arbitrary kr,image and kf,image values, analogous to a discrete time Fourier transform

for a discrete time series. However, doing this is computationally intensive because
one cannot utilize the Fast Fourier Transform algorithm, and the present analysis
did not suggest a noticeable increase in striation-angle finding performance when
doing this to avoid interpolation.

I2DF(0, K) is then integrated along the K direction (the y-axis in Fig. 3.1(c))
to add up all the components of the image with a particular striation angle (remem-
bering that I2DF(0, K) will already have been spatially filtered to eliminate high
frequency noise).

E(O) JI2DF(0, K)dK (3.3)

E(O) approximately represents the amount of energy (in an image processing
sense, not in an acoustic sense) in I2DF (kr,image, kfimage) of striations at a particular

angle in I(r, f). A plot of an E(9) is shown in Fig. 3.1(d). In this chapter, we



assume # = 1 and use E(6) to estimate the range. However, other researchers

have modeled # as a distribution (see Sec. 2.3.3) and used E(9) to estimate that

distribution [51].

Note that a proper change of variables would give an extra factor of K on the

right hand side of Eq. 3.3, as noted in [51]. Because the present analysis does not

have that extra factor of K, lower values of K are weighted more heavily. The

precise meaning of this can be seen by looking at the mapping between pixels in

Fig. 3.1(b) and Fig. 3.1(c). This was done because it led to better estimates of the

striation angle.

Finally, the angle corresponding to the maximum value of E(6) is the most

dominant angle in the basis functions comprising Iin (r, f). The angle of the stri-

ations is perpendicular to the angle of the basis function:

6striation = arg max E(0) + 7r/2 (3.4)
6

An I2DF(kr,image, kf,image) obtained from experimental data will have noise at

all values of kr,image and kf,image. However, the region of I2DF(kr,image I kfimage)

which is important for the slope estimation (the signal of interest) lies mostly at

lower values of kr,image and kf,image. It was found that even at very high signal-

to-noise ratios, the noise can significantly deteriorate the slope estimate because

the maximum value of kr,image and kf,image represented I2DF(kr,image, kf,image) can

be arbitrarily large depending on how finely I(r, f) was sampled in range and fre-

quency. The effect of the noise can be reduced significantly by limiting the re-

gion of integration of Eq. (3.3) to (-kr,image,max < kr,image < kr,image,max) and

(0 < kf,image < kf,image,max). The next section will demonstrate how to choose

kr,image,max and kf,image,max-
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Figure 3.1: The four steps used to determine the angle of the striations in Iwi (r, f).
Part (a) shows Iwin(r, f), a window of I(r, f). The two-dimensional Fourier trans-
form of Iwin (r, f) is then taken resulting in I2DF (kr,image, kf,image), shown in part (b)

(using the bounds described in Sec. 3.3.2). I2DF (kr,image, kf,image) is then converted
into polar coordinates, I2DF(0, K), shown in part (c). I2DF(6, K) is then integrated
along K to produce E(9), shown in part (d). The angle corresponding to the peak of
E(6) is then the estimated angle of the striation. White dotted lines corresponding
to the estimated striation angle are then plotted in part (a) for visual comparison.

N

S440

:- 420

400

200

(a) lwin(r, co)

So



Upper Bounds on kr,image and kf,image

[18] showed that one can relate the environmental parameters of the waveguide to

the maximum rate at which I(r, f) can oscillate in r and in f. In this subsection,

we reproduce the results from [18] in the context of the problem at hand - source

range estimation in a shallow-water waveguide. Determining an upper bound on

the rate at which I(r, f) oscillates in r and in f is equivalent to determining an

upper bound on the kr,image and kf,image due to the acoustic source of interest. Any

components of I2DF(kr,image, kf,image) above some kr,image,max and kf,image,max can

be regarded as noise because they cannot be due to the source of interest.

In order to exclude as much noise as is possible, the integration in Eq. (3.3) of

I2DF(kr,image, kf,image) will be bounded by kr,image,max and kf,image, max- An example

of this region is shown in Fig. 3.2. Note that applying these bounds on the is

approximately equivalent to low-pass filtering the image.

According to Eq. (2.9), the acoustic intensity is a sum of cosines. Each cosine

term has an image wavenumber in the r direction of

a (Akml (f )r)
kr,image,ml = O r = Akml(f) (3.5)

and an image wavenumber in the f direction of

kf,image,ml =O(Akm(f)r) _ rO(Akmi(f)) (3.6)O9f O9f

(where Akml = krm - kri).

An upper bound on kr,image,mi in I(r, f) can be determined (to within the

approximations used when deriving the waveguide invariant) by calculating the

largest possible value of Akml (f). All non-zero values in I2DF(kr,image, kfimage)

with kr,image image wavenumbers above the maximum value of Akml (f) are likely

due to noise, and can be excluded from the integration in Eq. (3.3). For all ocean

acoustic waveguides, the horizontal wavenumbers are bounded by [10, Eq. 4.5.19]

27r f 27f (3.7)
Cmax Cmin I

where Cmax and Cmin are the respective minimum and maximum sound speeds that
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Figure 3.2: I2DF(kr,image, kf,image) showing the full range of kr,image and kf,image,
with white lines illustrating the bounds described in Sec. 3.3.2. This figure illus-
trates why it is essential to limit the region of integration in Eq. (3.3). Even if
the noise outside the white lines is at a low level, it can dominate the integral in
Eq. (3.3) because of the large ratio of outer to inner areas separated by the white
lines. The inner area is what is shown in Fig. 3.1(b).



occur in the environment. Thus

(1 1N(38
kr,image,max = 27rf . (3.8)

Cmin Cmax /

To determine and upper bound on kf,image,mi, we use Eq. (3.6) and replace f
with w/(27r), and note that 9 is the reciprocal of the group speed of mode m.aw

The maximum and minimum group speeds are approximately bounded by fastest

and slowest media in the waveguide, so

1 1 N(9
kf,image,max = 27rr - 3.9)

Cmin Cmax

These upper bounds are used to limit the region of integration in Eq. (3.3). Us-

ing Eqs. (3.9) and (3.8), one can set the bounds loose enough to include almost all

ocean waveguides on Earth, but still reject much of the noise in I2DF(kr,image, kfimage)-

The r in Eq. (3.9) should be set to the maximum range that one expects to see the

source. All results presented in this chapter used Eqs. (3.8) and (3.9) with r = 5000

m, ci = 1500 m/s, and c2 = 1800 m/s.

Choosing The Window Size

Iwin(r, f) is a rectangular window of I(r, f), bounded by (rmin < r < rmax) and

(fmin < f < fmax), inside of which the striation slope will be estimated using a

2D-DFT. The purpose of this subsubsection is to determine how one goes about

choosing the window size. Denote the window size by

Af = fmax - fmin (3.10)

Ar = rmax - rmin (3.11)

To accurately determine the striation angle, the observation window of I(r, f)
must be large enough in r and f such that at least one full striation (from peak to

trough to peak) is contained within the window, in each direction (r and f). The

statement in the previous sentence can be quantified by noting that the frequency

resolution of the DFT for some variable x is Akx = 2, so if the DFT of a signal

is to distinguish the frequency of kx from the zero frequency, then one needs to



observe at least Ax = 27.

In theory one could use the kr,image,max derived Sec. 3.3.2 (originally derived

in [18]) to determine the minimum Ar. However, only one term of the sum in

Eq. (2.11) will lead to such a high value of kr,image. So using kr,image,max would

underestimate the minimum Ar that is required to estimate the striation slope in

practical situations. A better way to determine the minimum value of Ar is to use

the value of kr,image,mi averaged over m and 1.

To do this, first the approximate values of Akm (f) for an ideal waveguide will

be calculated. Then the additional approximations required for non-ideal waveg-

uides will be discussed. For an ideal waveguide, the difference in horizontal wavenum-

bers of modes not near cutoff can be written as [Eq. (2.22)]

Akml(f) = km(f) - kl(f) (m2 _ s2). (3.12)

Note that because the intensity is a sum of cosines and cos(Akmg r) = cos(-Akmir),
only the absolute value of Akm is of interest. The average absolute value of the

wavenumber differences can be determined by calculating the average value of
m2 _ 12

1 M=M l=M M 4 + M 3 - M 2 - M

(M2 - m2) M 2  
- 3M 2  (3.13)

m=1 1=1

where M is the number of propagating modes. The computer algebra system Math-

ematica was used to determine the formula for the sum. For M > 1,

1
(12 - M 2 ) ~ -M2 (3.14)

3

For an ideal waveguide, Eq. (3.14) can be inserted into Eq. (3.12) to determine the

approximate average horizontal wavenumber difference, and thus the average value

of the image wavenumber kr,image-

For non-ideal waveguides, this analysis assumes that the horizontal wavenum-

ber differences are distributed similarly to that of an ideal waveguide, but are



bounded by the maximum and minimum k in the media:

A kmt(f) = 27rf (1 - Ia) 12 -_n 2  (3.15)
Cmin Cmax M2

The mean horizontal wavenumber difference is then

kr,image,mi(f) = Akmi(f) = 27rf ( - ) - (3.16)
Cmin Cmax

Conveniently, this does not depend on M.

For the average value of kf,image, we use a similar argument. Begining with

Eqs. (3.6) and (3.12):

a (Akm(f)) r c ( r r m2

kf,image,ml -- r f 4 d2 f 2  (m2 2) 4d 2 f2) 3 (3.17)

One can then insert M for an ideal waveguide.

For non-ideal waveguides, this analysis assumes that the derivative of the hor-

izontal wavenumbers with respect to f are distributed similarly to that of an ideal

waveguide (or equivalently, the group slownesses are distributed similarly to that

of an ideal waveguide), bounded by the minimum and maximum group slownesses.

In that case, the mean kf,image,ml is

(1 -1 1
kf,image,ml = 27rr - - --- - (3.18)

Cmin Cmax ) 3

Eqs. (3.16) and (3.18) can be used to ensure that the window will contain one

full striation of the average striation width. A larger window size could be used

and could potentially lead to a more accurate striation slope estimate because the

resolution of the 2D-DFT is inversely proportional to the window size. But because

the slopes of the striations contained in I(r, f) change with r and f according to

Eq. (2.29), the window size should not be too large or it will contain striations with

a wide range of slopes.

We now discuss how to choose the window size, given the trade-offs mentioned

in the previous paragraph.

Iwin(r, f) will contain striation slopes ranging from f to f. One way to



choose the window size would be to make the range of striation slopes in the win-

dow equal the range of striation slopes represented by the 2D-DFT bin. According
to Eq. (2.29), a window of size Ar by Af centered at r and f with have slopes
ranging from

f + Af/2 f - Af/2 (3.19)
r - Ar/2 r + Ar/2

A striation's slope is perpendicular to the angle (in r, f space) of its cosine basis

function, so an image wavenumber of kr,image and kf,image represents a striation with

a slope of -kr,image/kf,image. Thus, an image wavenumber frequency bin of size
Akr,image by Akfjmage located at kr,image and kf,image represents striations ranging

from

kr,image + Akr,image/2 to krimage - Akr,image/2 (3.20)
kf,image - Akf,image/2 kf,image + Akf,image/2

To make the range of striation slopes in the window equal the range of striation

slopes represented by the 2D-DFT bin, one could in principle substitute kr,image -

and kfi = 2 into Eqs. (3.19) and (3.20), and then set the ranges of slopes
equal to each other. The solution would depend on kr,image and kf,image, for which

one could use the average values derived in this section. The solution would also
depend on r, for which one could choose some value in the middle of the search
range. An exact analytic solution can be obtained and would ensure that the range
of slopes represented by the 2D-DFT bin would equal the range of slopes in the
window. However, doing so will only provide a relationship between Ar and Af,
not values for both quantities, because there are an infinite number of combinations
of Ar and Af that could satisfy the equality.

A less quantitatively rigorous, but more pragmatic approach is used in the
present work to determine the value of Ar and Af. We start with the heuristic

that the window should be roughly three times the average striation width that we

expect to see in each direction. This heuristic is motived by a desire for the 2D-
DFT bin representing the average image wavenumber expected to be a few 2D-DFT

bin-widths away from both axes in Fig. 3.1(b). Thus we desire:

Ar = , Af = (3.21)
kf,image,ml kr,image,ml(f)



The r in Eq. (3.18) should be set towards the lower end of the ranges over which

one is searching for the source.

In the present work, Af was determined by using Eqs. (3.21) and (3.18) with

cl = 1500 m/s, c2 = 1800 m/s, r = 1000 meters, resulting in Af a 81 Hz.

Ar was determined by using Eqs. (3.21) and (3.16) with cl = 1500 m/s, c2 =

1800 m/s, and f = 525 Hz (the middle of the frequency range of the data presented

in the next section), resulting in Ar ~ 154 meters.

The parameter values determined in this section - kr,max, kfmax, Af and Ar

- are used to process the simulated and both experimental data sets in this chapter.

The parameter values were not "fine tuned" for each data set, illustrating the ro-

bustness of the method to the choice of the parameters. In fact, it was observed that

all of the parameters can be adjusted by roughly a factor of 2 (increase or decrease)

without drastically affecting the results for the data sets analyzed in the present

chapter.

Equations (3.16), (3.18) and (3.21) provide practical estimates of the minimum

source bandwidth and minimum horizontal aperture required for range estimation.

These estimates are shown to be accurate with experimental data in Sec. 3.4.2.

However, it is important to keep in mind that Eqs. (3.16), (3.18) and (3.21) were de-

rived for range independent waveguides. Under some circumstances (e.g., a rough

sea surface, or a source with a high temporal frequency f), effects such as incoher-

ent scattering will smear out the high image-wavenumber striations, and a window

larger than that predicted by Eq. (3.21) will be necessary to estimate a striation's

slope. (See Sec. 7.3 for specific suggestions for future research)

3.4 Results -

3.4.1 2D-DFT technique applied to simulated data

In this subsection, the striation angle finding technique based on the 2D-DFT is

tested on the simulated acoustic intensity shown in Fig. 3.3, which is from the

same Pekeris waveguide used to produce Fig. 2.3. After finding the striation angle,

Eq. (3.1) is used to estimated the range to the acoustic source, assuming # = 1.

First, I(r, f) is divided into several windowed segments, Iwin(r, f), spread on

a grid throughout the (r, f) plane. The striation angle is then estimated in each
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Figure 3.3: Acoustic intensity (dB, arbitrary reference) in a Pekeris waveguide
plotted versus range and frequency, I(r, f), for a receiver depth of 20 meters and a
source depth of 40 meters.



Iin (r, f) using the technique described in the previous section.

The resulting slope estimates are shown in Fig. 3.4(a). Each slope estimate is

associated with a range estimate, which are shown in Fig. 3.4(b).

In order to use all of the data, one needs to ensure that every pixel in Fig. 3.3 is

contained inside at least one window. In fact, one can let the windows overlap. In

the present analysis, the windows overlapped by about 50% in both the r and the f
directions.

One can average each column of Fig. 3.4(b) to obtain more accurate range

estimates. The result of such averaging, plotted versus the true range to the source,

is shown in Fig. 3.4(c).

The estimates are biased by about 10%. This is most likely do to the fact that the

derivation of the waveguide invariant does not take into account the } cylindrical

spreading, which will cause the actual slopes to be steeper than that predicted by

the waveguide invariant. However it could also be due to the other approximations

made when the waveguide invariant, such as the dependence of the mode shapes on

frequency. Because this error is less than the expected range estimate accuracy for

experimental data, it will not be addressed further in the present analysis.

3.4.2 2D-DFT technique applied to experimental data

The experimental data presented in this chapter was collected during GLINT08, an

experiment performed during the summer of 2008 near Pianosa Island, Italy. Two

sound speed profiles measured about an hour before and an hour after the acoustic

data were collected are shown in Fig. 3.5(a), but note that this information was not

used by the range estimation algorithm.

An acoustic source was lowered 40 m below the ocean surface from the R/V

Leonardo, which was using dynamic positioning to keep its position as fixed as

possible. Due to a malfunctioning GPS unit, the acoustic source's position had an

uncertainty of 100 m. The signal projected from the source was pseudo-random

white noise with a with an approximately flat spectrum from 300 to 750 Hz and a

frequency-integrated source level of 150 dB re: 1 [Pa at 1 m. Due to equipment

limitations, the signal was a single 65000 point realization of white noise that was

repeated back-to-back every 5.33 seconds.

An acoustic receiver was towed directly toward the acoustic source from a range
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of 2,200 meters to about 500 meters at a speed of 1.5 m/s and at a depth of 30
meters. This segment of the experiment is referred to as the incoming segment.
The acoustic receiver was then lowered to 50 meters, and towed away from the
source at 1.5 m/s back out to a range of 2,200 meters. This segment is referred to
as the outgoing segment. The acoustic receiver was moving continuously, so the all

of the presented data was collected in less than 1 hour. There was a small Doppler
shift of about 1% due to receiver motion. Such a shift may cause range estimate
errors of about 1%, which is negligible compared to the overall expected accuracy

and thus will be ignored. The acoustic receiver location had an uncertainty of 50
meters.

The acoustic data were sampled at a frequency of 4 kHz. The window length
used to estimate the spectrum of the received signal had to be 21,334 points long so

that it corresponded to the 5.33 second repetition rate of the signal. Under other cir-
cumstances, one would be free to choose other window lengths that do not strongly
depend upon the signal characteristics. Because the acoustic receiver was moving
at an approximately 1.5 m/s, each spectrum (each column of Fig. 3.6) represents
~ 5.33 s x 1.5 m/s = 8 meters in distance that the acoustic receiver traveled. The

Blackman-Tukey method of spectrum estimation was used to estimate each spec-
trum (each column of Fig. 3.6). Because the acoustic receiver was towed at an
approximately constant rate, the spectrogram of the recorded time series is I(r, f).

Once the spectrogram, I(r, f), was calculated, the processing method was ex-
actly the same as that used for the simulated data. The same parameter values were
used.

Incoming segment

The water column depth, acoustic receiver's depth and sound speed along the hy-
drophone's path are plotted in Fig. 3.5(b) and (c). The measured acoustic field from
0 Hz to 2 kHz is shown in Fig. 3.6. The results of the range estimation algorithm
are shown in the same format as the simulated results, in Figs. 3.7(b) and 3.7(c).

There is extremely good qualitative agreement between the angle determined

by the striation angle finding algorithm and the striation angle as it appears to a
human observer, as can be seen in Fig. 3.7(a). At source ranges larger than 1000
meters, the estimated range tends to be less than the true range. This could be the



result of any number of effects, including: 3-d propagation effects, range inhomo-

geneities, the temporal stationarity of the SSP while the field was being measured,
the approximations used when deriving the waveguide invariant. Sec. 3.4.3 shows

a simulated spectrogram for comparison.
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Figure 3.6: The acoustic intensity (dB, arbitrary reference) as measured by the
acoustic receiver for the incoming segment of the experiment. The striations are
clearly visible in the frequency range of the source, from 350 to 700 Hz.

Outgoing Segment

The watercolumn depth and sound speed along the hydrophone's path were similar
to the incoming segment (see Fig. 3.5). The measured acoustic field, from 0 to
2 kHz is shown in Fig. 3.8. There is a loud interfering broadband acoustic source
during the portion of the spectrogram corresponding to a range of 1000 to 2000



(a) Acoustic Intensity (dB, Range vs. Frequency)

- 600

(D 500

400

500 1000 1500
range to source (m)

(b) Ranges Estimates (m)

out

Go)50C
C.~(DSo

500 1000 1500 2000
range to source (m)

2000

1500

1000

500

(c) Estimated Ranges vs. True Ranges
IA

O 2000
CZ

4- 1000
E
Cl)
U)

50 1000 1500
range (m)

2000 2500

Figure 3.7: Range estimates for the incoming segment of the experiment. (a) A
zoom-in of Fig. 3.6 on the frequencies of interest, with the estimated slopes super-
imposed as solid white lines. (b) Range estimates based on each estimated slope
in part (a), plotted versus the true range. (c) Range estimates versus true ranges,
obtained by averaging each column of part (b).

2000

o estimated range
+ true range

0 0++++0

++++ 00 000 0++++0ooo

I



meters. As one can see in Fig. 3.9, this does effect the estimates, but not as much

as one might expect. The estimates are only adversely affected at ranges of 1400 to

1800 meters, when the striations in the spectrogram from the interferer are nearly

parallel to the striations that are expected from the experimental acoustic source.

If one did not know a priori that the acoustic receiver was moving away from the

acoustic source of interest, then the estimates may have been affected more ad-
versely because one would have had to search over the full 180 degrees. The range

estimates are accurate within a few hundred meters, excluding the estimates when

the true range was 1400 to 1800 meters.
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Figure 3.8: The acoustic intensity (dB, arbitrary reference) as measured by the
acoustic receiver along its track away from the source. Note the striations in the
frequencies of the acoustic source (350 to 700 Hz) and the interfering source present
during times corresponding to ranges from 1000 to 2000 meters.
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So far, the present chapter has dealt exclusively with the signal recorded from

a single hydrophone. However, data was collected from a 32-element horizontal

array of hydrophones. Chapter 5 discusses how to process the data from all the

hydrophones in order to reduce the noise in Fig. 3.8. The result of such filtering

can be seen in Fig. 5.4(b). One can then apply the passive ranging algorithm to

the array-filtered data in Fig. 5.4(b); the result is shown in Fig. 3.10. Note that

Figs. 3.8 and 3.10 are from the experimental data set; the difference is that Fig. 3.8

used data from a single hydrophone of the array whereas Fig. 3.10 used data all of

the hydrophones of the array.



(a) Acoustic Intensity (dB, Range vs. Frequency)
700

-600

500

400

-600

S500

40

400

1000 1500
range to source (m)

2000

(b) Ranges Estimates (m)

1000 1500
range to source (m)

2000

1500

1000

500

(c) Estimated Ranges vs. True Ranges
3000

o estimated range
+ true range

C)2000 +++
CZ

CD ++++++0000000

16 1000- +o0 o0O

E> + 0

1500
range (m)

2500

Figure 3.10: Range estimates for the outgoing segment of the experiment using
array-filtered data. This figure is similar to Fig. 3.9, but data from the 32-element
array has been used to remove the noise from sources besides the source of interest.
(a) A zoom-in of Fig. 5.4 on the frequencies of interest, with the estimated slopes
superimposed as solid white lines. (b) Range estimates based on each estimated
slope in part (a), plotted versus the true range. (c) Range estimates versus true
range, obtained by averaging each column of part (b).



3.4.3 Validity of 3 = 1 assumption

Section 3.2 discussed that although usually # 1 in shallow water environments,

that may not always be the case (see Sec. 2.3.3 or [51]). Determining when one can

assume that # ~ 1 is still an active area of research, but some guidelines are given

in [51, 49], and other papers on the waveguide invariant. Chapter 4 presents some

original research on this topic.

All of the analysis in the present chapter assumed # 1, so it is worthwhile

to simulate the acoustic field in an environment similar to the environment where

the experimental data was collected, in order to determine if # differs significantly

from the assumed value. (We expect it not to, otherwise we wouldn't have been

able to accurately estimate the range to the source in the previous section.)

To do this, the normal mode program Kraken [48] was used. The sound speed

profile used was that collected during the experiment [shown in Fig. 3.5(a)]. The

source and receiver geometry were the same as the incoming portion of the exper-

iment. Because the bottom bathymetry and the sound speed profile changed very

little with range, the environment was modeled as being range independent. The

bottom properties were unknown so typical values for a bottom half-space were

used (cbottom = 1650 m/s, pbottom = 1.5 g/cm 3 , a = 0.5 dB/A).

Figure 3.11 shows the simulated spectrogram. The white lines have slopes

corresponding to $ = 1. It can be seen that there are some striations with slopes

that are slightly steeper than the # = 1 lines, but almost no striations have slopes

that are shallower than the # = 1 lines. This could explain why the ranges tended

to be underestimated in some parts of the incoming segment of the experiment

[Fig. 3.7(c)], and suggests that 3 may have a value slightly larger than one for this

particular environment and source-receiver geometry.

The fact that the range estimates from the experimental data in Figs. 3.7(c)

and 3.10(c) were between about 75% to 100% of the true range implies that #
had a value between about 1 and 4/3 for the environment where the experimental

data was collected. Later in this thesis, a method is developed for calculating the

value of #. Section 4.5.4 shows that # changes with horizontal wavenumber, and

that it has a value of slightly less than one for this particular environment (for

the SRBR modes). Thus there is a discrepancy between the predicted value of #
being slightly less than one, and the measured value of # being slightly greater than



one ([49] and [32] also have experimental examples of # being slightly greater
than one). This discrepancy might be due to the non-SRBR modes which have
different # values, the 1/s/ spreading, or attenuation (imaginary components of
the horizontal wavenumbers). [51] provides some explanation for this discrepancy,
but there is certainly room for further research.
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Figure 3.11: A simulated spectrogram for the environment used to collect the ex-
perimental data. The white lines correspond to #3 = 1. Most of the striations
correspond to # ~ 1, with a few exceptions.

3.5 Chapter summary

A processing scheme based on the waveguide invariant and the 2D-DFT of I(r, f)
was used to estimate an acoustic source's range using simulated data and two sets
of experimental data. The processing techniques used did not require human inter-



pretation of any images in order to obtain the range estimate, making the techniques

suitable for implementation on an autonomous platform.

A relationship between the average image-wavenumbers in the 2D-DFT of

I(r, f) and the acoustic waveguide parameters was used to determine the mini-

mum observation window size of I(r, f) required for range estimation. A similar

relationship was used to reject noise in I(r, f).
The same set of signal processing parameter values (maximum image wavenum-

ber, and window size in range and frequency) was used for both simulated and ex-

perimental data, showing that the signal processing parameters' values do not need

to be fine-tuned for each data set. The range estimates were based on the assump-

tion (approximation) that # is a single scalar value, and is equal to one. The range

estimates were accurate to within about 25% despite using only a minimal amount

of a priori knowledge about the environment. The technique appeared to be robust,

but more experimental data would be needed to determine the robustness of these

algorithms in other environmental conditions.
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Chapter 4

A WKB modal approach to

calculating the waveguide

invariant

The previous chapter illustrated that the waveguide invariant is a powerful con-

cept for explaining range-frequency striations in experimental data. It is somewhat

surprising that the strong non-uniformities present in experimental SSP in the pre-

vious chapter did not have a large effect on the value of # observed in I(r, f). The

present chapter develops a method for calculating the waveguide invariant that il-

lustrates the relationship between the SSP and #, which provides some insight into

why / ~ 1 in most shallow-water waveguides. 1

In this chapter, m and 1 refer to the mode numbers just as they did in previous

chapters. This chapter also uses n to refer to the mode number, but n is used only

when the mode number comes from the WKB approximation. The reason for this

distinction will become clear later.

'This chapter is based on "A modal Wentzel-Kramers-Brillouin approach to calculating the

waveguide invariant for non-ideal waveguides" by Kevin L. Cockrell and Henrik Schmidt [Under

review for publication in The Journal of the Acoustical Society of America]



4.1 Introduction

In Chuprov's original paper on the waveguide invariant, he defines # in two differ-
ent ways. The first way uses normal modes to describe the acoustic field, and the
second way uses ray theory to describe the acoustic field [18]. In general, normal
modes is accurate under a wider range of circumstances than ray theory, however,
normal modes tends to be less amenable to non-numerical analysis than ray theory.

Previous research on the waveguide invariant using ray theory has used both
numerical techniques and analytic techniques [18, 24, 22], with the analytic tech-
niques pFoviding some insight into how the SSP affects 3.

Previous research on the waveguide invariant using normal modes has mostly
used numerical techniques to calculate # [18, 51, 21, 52], which has provided many
useful insights but is not conducive for understanding how the SSP affects #.

This chapter investigates the waveguide invariant using a the WKB approxima-
tion to normal modes, which can be thought of as "half way" between full-field
normal modes and geometric ray theory. The modal WKB description is accu-
rate under a wider range of circumstances than geometric ray theory but is more
amenable to (non-numerical) analysis than full-field normal modes.

# can be defined directly in terms of the normal modes' horizontal wavenum-
bers, as is shown in Eq. (2.15). To make the dependence of 3 on the modes numbers
m and 1 and the frequency w more explicit, we write Eq. (2.15) as:

3(mnlu)) 1 k(m,w) - k,(l, (4.1)

where kr (i, w) is the horizontal wavenumber of mode i at frequency w.

In Sec. 2.3.2 it was shown analytically that #3 1 for ideal waveguides. Ref-
erences [18] and [11] analytically show that #3 -3 for surface-trapped modes in
waveguides with n2-linear sound speed profiles (SSP). As discussed in Sec. 2.3, ex-
perimental data and numerical simulations have shown that many realistic shallow-
water waveguides can be well approximated by an ideal waveguide for the purpose
of calculating # (i.e., #3 1 for many shallow-water waveguides). However, the



analysis in Sec. 2.3 (originally from [18], [11, Sec. 6.7.2], and [34, Sec. 2.4.6])

does not lend itself to understanding why # is not strongly affected by the non-

uniformities present in a realistic SSPs, as opposed to the pressure field itself which

is strongly affected (two examples are shown in Fig. 2.4). In fact, the derivation in

Sec. 2.3.2 showing that #3 1 for an ideal waveguide only considers modes far

from cutoff (i.e., low-order modes at high frequency). Paradoxically, those are pre-

cisely the modes whose kr values will be most affected by the non-uniformities in

the SSP 2; those modes will "tuck" into the local sound speed minimums and will

not behave like modes in an ideal waveguide.

This chapter develops a method for calculating # based on the WKB approxi-

mation, which is an approximate method for solving for the horizontal wavenum-

bers in a waveguide. The relationship between the WKB approximation and # is
briefly mentioned in the original waveguide invariant paper [18]. Later, Brown et

al. used the WKB approximation to show the relationship between between # and

the ray stability parameter a [14, 6]. The present chapter investigates how non-

uniformities in a SSP will affect #. The resulting method is then applied to a few

canonical waveguides and compared with the values of # calculated numerically

from the normal mode program Kraken [48].

The main results are:

" If the WKB approximation is used, the derivatives required to calculate #
can be performed implicitly, circumventing the need to obtain explicit so-

lutions for kr (m, w) and allowing for the inclusion of a fluid bottom halfs-

pace. The resulting estimate of # is then an explicit function of the horizontal

wavenumber instead of being an explicit function of the mode number.

* When the bottom halfspace is modeled as a vacuum, the value of # for all

horizontal wavenumbers and all frequencies is a function of a single param-

eter: the phase slowness Sp.

* The value of / can be directly related to two one-dimensional curves: the

depth-integrated vertical wavenumber as a function of phase slowness and

the seafloor reflection coefficient as a function of phase slowness. These

2Chuprov mentions this fact later in his paper when discussing the waveguide invariant in deep-
water waveguides.



curves show that # for surface-reflected bottom-reflected (SRBR) modes is

not strongly affected by the details of the SSP, but that 3 for non-SRBR

modes is strongly affected by the details of the SSP.

e A qualitative argument suggests that # ~ 1 for SRBR modes in waveguides

where the seafloor is modeled as a vacuum, regardless of the SSP. # can take

on a wide range of values for non-SRBR modes.

4.2 Calculating 8 using the WKB approximation

To calculate /, the WKB approximation is used to determine the modal horizontal

wavenumbers. Details of the WKB approximation as it applied to calculating the

modal horizontal wavenumbers can be found in [11, Sec. 6.7], [33, Sec. 2.5], [5],
and [60, Sec. 2.9] (See Appendix B for even more references). All results in this

chapter apply only to propagating modes with no more than 2 turning points (depths

where kz(z, kr) = 0. see Sec. 2.2.2), and to waveguides with bottoms that are
either lossless homogeneous fluid halfspaces or vacuums. Because the quantity
of interest in the present analysis is the acoustic intensity, we note that the WKB

approximation is usually more accurate at calculating the acoustic intensity than
it is at calculating the complex acoustic field. As discussed in [8, Sec. 48.5], this

is because the error of the WKB-approximated acoustic intensity depends on the
errors of the differences of the horizontal wavenumbers, as opposed to the error of

the WKB-approximated complex acoustic field which depends on the errors of the

value of the individual horizontal wavenumbers.

Under the WKB approximation, the horizontal wavenumbers are calculated by
solving for kr in the equation [5]

n = 4(kr, W) + Adn(kr,) + Adup(kr, W) + 1 (4.2)



where n is the mode number (1, 2, 3, ...),

#(krW) = -jkz(z, kr) dz (4.3)

S(2 - k2 dz (4.4)

where zi and z2 are either the sea surface (z = 0) and sea floor (z d) respectively,

or a z at which kz (z) = 0 (a turning point). And with:

A Oup(kr, w) = - if kr < k(0) (i.e., mode reflects from surface){ if kr > k(0) (i.e., mode has an upper turning point),
(4.5)

A Odn (kr, Lo) =(b if kr < k(d) (i.e, mode reflects from bottom)
-4 if kr > k(d) (i.e., mode has a lower turning point),

(4.6)

where #b(kr, w) is 1 times the phase angle of the bottom half-space reflection

coefficient. (-1/2 < #b (kr, w) < 0) for a fluid bottom and #b(kr, w) = -1/2 for

a vacuum bottom. Figure 4.1 discusses how to interpret Eq. (4.3) (See Fig. 2.1 for

a definition of SRBR modes).
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Figure 4.1: Illustration of the WKB approximation applied to calculating the
horizontal wavenumbers kr. The shaded area is related to (but not equal to)
f kz (z, kr) dz, which is used to determine the values of kr that correspond to propa-
gating modes. Subfigure (a) demonstrates that when kr is greater than the minimum
k(z) in the water column (which corresponds to non-SRBR modes), the shape of
f kz (z, kr) dz as a function of kr will depend strongly on the detailed shape of the
the SSP - especially the part of the SSP near k(z) = kr. Subfigure (b) demon-
strates that when kr is less than the minimum k(z) in the water column (which
corresponds to SRBR modes), the shape of f kz (z, kr) dz as a function of kr does
not depend strongly on the details of the SSP because the integral tends to average
out any "roughness" in the SSP. A similar argument can be made regarding the
dependence of f kz(z) dz on w.



Eq. (2.15) can be manipulated to facilitate a geometric interpretation of # in

terms of the WKB approximation. The numerator and denominator of Eq. (2.15)

can be divided by an arbitrary value without affecting the value of the fraction.

Specifically, one can divide the numerator and denominator by the difference in the

mode numbers (m - 1) so that

1 (k,(m, w) - k,(l, w)) /(m -1) (4.7)
(m, l,w) = - a(k,(m)-k,(w)) ''m - 1

A line connecting the points (k,(m, w), m) and (k,(l, w), 1), as shown in Fig. 4.2

with m = 2 and 1 = 4, has a slope of (m - l)/(k,(m, w) - k,(l, w)). This allows

one to interpret the numerator of Eq. (4.7) as the reciprocal of that slope.

(a) (b)

6

4-

4

2
4' 2

8.3 084 0.5 S.3 0.4 0.5
k k
r r

Figure 4.2: (a) A plot of n versus k, for an ideal waveguide using the WKB approx-
imation (f = 100 Hz, d = 50 m, c = 1500 m/s). The two points plotted correspond
to modes 2 and 4. The reciprocal of the slope of the line connecting the two points
can be used to facilitate interpretation of the waveguide invariant #, as described in
Sec. 4.2. (b) A plot of n versus k, for a waveguide with an n 2-linear sound speed
profile and pressure-release boundary conditions (f = 100 Hz, d = 50 m, c(0) =
1400 m/s, c(d) = 1600 m/s). The discontinuity at kr = w/c(d) is due to the WKB

approximation (#4d as defined in Eq. (4.6)).

# (m, 1, w) depends on how (kr(m, w) - k,(l, w)) depends on frequency. One

can visualize that dependence by plotting n as a function of k, and of w, as shown



for an ideal waveguide in Fig. 4.3.

n vs. k and o)r
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Figure 4.3: A contour plot of n versus kr and w for an ideal waveguide (d = 50 m,
c = 1500 m/s). The solid black lines are contours at integer values of n, which
in the WKB approximation correspond to the normal modes' horizontal wavenum-
bers.

#(m, 1, w) can then be interpreted as: -1 divided by the slope of the line con-
necting the points (kr, W, m) and (kr, w, 1), divided by how the reciprocal of that
slope changes with frequency. Or,

1/slope (48)(48a(1/slope)

where the m, 1 subscript indicates that the m and 1 values at which the points are
located must stay constant as w changes.

The discussion in the caption of Fig. 4.1 suggests that (kr(m, W) - kr (l, W))
and its dependence on frequency does not strongly depend on the details c(z) when



I k, (m, w) - kr (1, w)I < kmin and k, (m, w) is not too close to kmin, in some quali-

tative sense. So then one would expect that # would also not depend on the details

of the SSP under those circumstances in waveguides with a pressure-release bot-

toms. This is mentioned by Chuprov in [18, pp. 104].

4.2.1 Approximating a finite difference with a continuous derivative

The acoustic field in a waveguide is typically dominated by a few groups of modes

with close mode numbers, for reasons discussed in Sec. 2.2.3. Because of that,

# is often defined only in terms of adjacent modes (see Sec. 2.3.3). Because the

mode number n is a monotonic function of the horizontal wavenumber kr, a group

of adjacent modes corresponds to a particular range of kr values. Here, we use

that relation to approximate a finite difference in mode order with a continuous

derivative in n.

If the curve n(k,, w) is approximately linear in k, between the points (In, kr (n , w))

and (n + An, kr(n + An , w)), then the finite difference between horizontal wavenum-

bers in Eq. (4.7) can be approximated by a continuous partial derivative:

lim ((kr(n + An, w) - kr(n, w)) Ok,(n, w)

This is equivalent to the idea of expanding the group and phase slownesses around

an average value for modes with adjacent k, values, as discussed in Sec. 2.3.3, [18],

and [11, Sec. 6.7.2]. Most of the present analysis applies only to mode pairs with

adjacent kr values, but Sec. 4.6 discusses how to calculate # for mode pairs that

have k, values that are far apart.

For adjacent modes, # can then be written in terms of partial derivatives:

1 &kr(n,w) kr (n,w)

kan _n (4.10)
( akr(nw)) r2k(n,w)

On a awg
Bw

4.2.2 Implicit differentiation

Calculating the partial derivatives in Eq. (4.10) is straightforward if one has an ex-

plicit solution for k, as a function of n and w. But explicit solutions for k, (n, w) can



only be obtained for a few cases such as modes in an ideal waveguide or surface-
trapped modes in an n 2-linear waveguide.

Therefore, the present analysis calculates the partial derivatives in Eq. (4.10)
using implicit differentiation. Following the procedure for implicit differentiation
in [31, Sec. 7.2], write Eq. (4.2) as

n - (0 + Adn + A~up + 1) - 0. (4.11)

Then define a function:

f (kr, n, w) = n - (0 + Adn + Aup + 1) = 0 (4.12)

which allows kr to be defined as an implicit function of n and W in regions where
the derivative Of /Okr exists and is not equal to zero. The derivative Of /Ok, exists
and is not equal to zero except at a finite number of points, such as kr k (0)
and kr = k(d), as described in Appendix 4.A. So for our purposes kr may be
considered an implicit function of n and w.

The first step to calculate 3 using implicit differentiation is to determine the
first order partial derivatives of kr with respect to n and with respect to W. These
can be obtained using [31, Eq. 17].

-kr- = 
(413)

On Of/Okr

Okr _ Of/OW
Ow = /- (4 14)

where Of/Ox indicates the result of differentiating f with respect to the explic-
itly appearing variable x, holding all other explicitly appearing variables constant.
More specifically, the partial derivatives with respect to kr on the right hand sides
of Eqs. (4.13) and (4.14) should treat kr as if it were not a function of n or W. See
[31, Secs. 7.1-7.2] for details.

To obtain 2 kr/(OL On) for the numerator of Eq. (4.10), the partial derivative
of (2) needs to be taken with respect to w. This can be done as follows:

Ok
1. Calculate Okr using Eq. (4.13).

Bn



a kr
2. Calculate - , where the partial derivative with respect to w must

treat kr as a function of w.

3. The result of step 2 will contain terms of the form k, (w). Those terms should
&kr

be replaced with as calculated by Eq. (4.14).
aw

The results can the be inserted into Eq. (4.10) obtain #.

As will be discussed in Sec.4.6, Eq. (4.14) can be used to determine the group

speed of a mode at a particular kr. However it cannot directly be used to obtain

a dispersion curve for a particular mode, so the utility of such a calculation is not

immediately apparent.

Example

As an example of how to use the method described in this section to calculate #,
we will apply the method to an ideal waveguide with pressure-release boundaries

(depth d, sound speed c):

f (kr, n, W) = n - -(k . (4.15)

The application of Eqs. (4.13) and (4.14) yield:

-kr = - (4.16)
On d - kr

Owr - Wr (4.17)



Then we apply the steps to determine the mixed-partial derivative:

S Ak 9 7r C_ k,(W)2

BO On ow B d - k,(w)

7rw (wk,.(w) - kr(W))

d - c 2 kr(w) 2  
W2 kr(W) 2

C
2

7FLA) - kr)(4.18)

d -c2 k~ j-kg

Inserting Eq. (4.16) and Eq. (4.18) into Eq. (4.10) yields:

C 2  k2 r (4.19)cWk2 k2'

For modes far from cut-off kr ~ k leading to # 1, which matches the result

in Sec. 2.3.2. Note that the estimate of # is a function of k, instead of begin a
function of n because the differentiation was performed implicitly.

4.3 Exploiting dependence on w

In the previous section it was shown that a mixed second-order partial derivative
of kr with respect to n and w was required to calculate 3 [Eq. (4.10)], implying

that 3 depended on two independent variables. In this section we show that under
certain circumstances, #, A bn and Aoup depend on kr and w in such a way that
the mixed second-order partial derivative can be expressed as a non-mixed (regular)
second-order derivative, meaning that # depends only on one independent variable.
It should be noted that this result is not entirely new: In [18] Chuprov mentions

that under the WKB approximation, the functional dependence of the group speed

on the phase speed - a quantity that can be used to define # - does not depend

on the frequency under certain circumstances.

We begin by noting that a plot of #(kr, W) will look like a scaled down version

of a plot of #(kr, w + Aw); both axes shrink uniformly. Furthermore, the shape of

A#dn =cO #also scales with frequency, but the scaling only occurs on the w axis.



This scaling suggests that the shape of # (kr, w) and #b (kr, w) at one frequency

as a function of kr provides sufficient information to take partial derivatives with

respect to either kr or w at any frequency. We now show that #(kr, W) can be

written as w - #(1, kr /w) and AqOdn(kr, w) can be written as A Odn(kr/W).

First, factor an w out of kz (z):

(k2 2(-- kr2 dz

Z |2 -dz

0 kr 1

01 k (4.20)

where
1 IZ2 ( (4.21)

c()2 - (L)2 dz.

Note that (g) is the inverse of the phase speed, which is known

slowness Sp.
kr

Sp -

as the phase

(4.22)

The remainder of this chapter will denote (h) by Sp to simplify notation, but it is

important to keep in mind the Sp is a function of w when taking derivatives with

respect to w.

Next we show that #b, the phase of the reflection coefficient between two-

homogeneous half-spaces, and thus #dn can be written as a function of Sp. Fol-

lowing [33, Eq. 1.45 and Eq. 2.125],

Reflection coefficient = R = -
Z1 + Z2

(4.23)

kr
01 ( W )



where

Zi - pici
sin Oi
kpici

kz

(W/Ci)pici

(w/c,)2 - k2

pi
(1/c )2 - (kr/w)2

(4.24)
(1/ci)2 _-p

Then R can be written as a function of Sp, and so can Adn.
To see that Aoup (and Abdn in the case of a vacuum bottom) can be written as

function of Sp, note that the value of Aup (kr, w) as defined in Sec. 4.2 depends
only on the point at which kr = c(O), or equivalently at S = 1

Having written #, Aoup, and A~dn as function of (kr/w), the waveguide in-
variant 0 can be calculated by writing Eq. (4.12) as

0 - f (kr, n, W)

=n- (W 1 (k + Adn () + Aup -) +) (4.25)

and then following the steps in Sec. 4.2.2 to calculate #3 from f(kr, n, w). The
resulting expressions are lengthy and difficult to manipulate by hand, so the author
used the computer algebra system Mathematica. See Appendix 4.B for details. The
final result can be simplified down to:

(wo, (SP) + A40, (S)) 2

(, A (SP) 2 + wA4' (S) O4 (SP) + W0i (SP) (A4'n (SP) + w4' (Sp))
(4.26)

where the denotes a derivative with respect to the argument S, = . Note that

A#'n is related to the "ray displacement" discussed in [11, Sec. 4.4].

When S, > 1/c(d) (i.e, when the mode has a lower turning point) or if Aodn
represents a vacuum bottom, then the derivative of A~dn with respect to S, is zero



everywhere except possibly at one point, and Eq. (4.26) can be reduced to

q0, (SP) 2

(S() - 1 (SP ) (4.27)
0 1 (S,) #'7 (SP)

This expression is remarkably simple given the complexity of its derivation, which

is shown in Appendix 4.B. When it's valid, Eq. (4.27) provides an direct rela-

tionship between the SSP and the value of # at all horizontal wavenumbers and

all frequencies though a single function of a single variable: #1 (Sp). It should be

noted that Eq. 4.27 is equivalent to [14, Eq. 24].

4.4 Interpretation and implementation

Eq. (4.26) reveals that the shape of #1 (Sp) and #dn (Sp) provides sufficient infor-

mation to calculate the value of # for any k, and w. Eq. (4.27) reveals that when

Sp > 1/c(d) or when the bottom is approximated as being a vacuum, # depends

only the ratio of kr to w, as opposed to depending on each variable independently.

To relate the value of # to the SSP c(z) and Sp, some properties of #1 (Sp) will

now be discussed. Let cmin and cmax be the minimum and maximum sound speed

in the water column, not including the seafloor. #1 (Sp) can be broken up into two

regions, the first being (0 < S, < 1/cmax) which corresponds to SRBR modes (see

Sec. 2.2.2). And the second being (1/cmax < Sp < 1/cmin) which corresponds to

non-SRBR modes. In both regions #1 (Sp) is a positive and monotonically decreas-

ing function.

Modes with horizontal wavenumbers in the first region do not have any turning

points and "feel" the top and bottom boundary of the waveguide. In this region

#1 (Sp) and its derivatives can be approximated to arbitrary accuracy by breaking

the water-column up into several small iso-velocity segments, or equivalently, ap-



proximating Eq. (4.21) with Riemann Sum:

N N

01 (Sp) 1,i (Sp) di S2 (4.28a)
i=1 i 1

N

#' I S-d (4.28b)
i=1 -- P,

1/SP N g2dii
#" (Sp) E = - (3/2 +)(4.28c)

i=1 - S2 - S2

where 01,i (Sp) represents the contribution from the i-th segment, and di is the depth
of the i-th segment. For (S, < 1/Cmax), every term in Eq. (4.28a) is a positive but
monotonically decreasing function with negative concavity, so #"(S,) < 0, as can
be verified by inspection of Eq. (4.28c). Inserting the sign of #1(Sp) and #'i(Sp)
into Eq. (4.27) reveals that # > 0 for all SRBR modes in a waveguide with a
pressure-release boundaries, regardless of the SSP.

For non-SRBR modes (1/cmax < Sp < 1/cmin), Eqs. (4.28b) and (4.28c) are
incorrect because they do not take into account that the limits of the definite integral
of kz (z) in Eq. (4.21) - the turning points - are themselves functions of S,. 3

Therefore in SSP segments where a turning point exists, c(z) must be represented
with a segment that is not iso-velocity so that the derivative with respect to S, can
take into account that the limits of the integral in Eq. (4.21) are functions of S,. For
this we use n 2-linear segments ([33, Sec. 2.5.1] and [5]), which can be analytically
integrated and are very close to linear for the SSPs typically encountered in ocean
acoustics. A segment with an n2-linear SSP is one of the form

cia(z) =(4.29)
vai z + bi

where ai and bi are chosen to interpolate the SSP. Each segment can have its own
coordinate system, so without loss of generality let a2 < 0.

3See "Leibniz Integral Rule" in any introductory Calculus textbook. Note that although the
value of #'(Sp) is not affected by the fact that the integration limits are functions of Sp because
k2 (z, Sp) = 0 when (z, Sp) corresponds to a turning point, the value of 4"'(Sp) is affected.



Inserting Eq. (4.29) into Eq. (4.21) yields

#1,i(Sp) = 2 -2 ) dz

3ra2 ((bi + adi - - (bi - S) 3 /2 . (4.30)

For a segment that contains a turning point, b + a Pd - = 0 at that turning
point and thus

#1,i(SP) = (b2 - SP) 3/2 . (4.31)

To represent an arbitrary SSP, one can use any combination of segments that are

iso-velocity or n2-linear (or any c(z) for which there is a closed form expression of

Eq. (4.21)), as long as the segments that contain turning points are not iso-velocity.

#1 (Sp), # (Sp), #'(Sp), which are needed to calculate #, can then be calcu-

lated quasi-analytically in the sense that the derivatives are taken analytically for

each term of the summation that represents c(z), but the summations themselves

may be computed numerically if there are too many terms to handle analytically.

In the case of a waveguide with a bottom half-space, the function #b (Sp) is also re-

quired to calculate 3 and its derivatives can calculated analytically from Eq. (4.23).

Many waveguides can be sufficiently well represented with just a few seg-

ments and a bottom half-space, and thus # can be computed purely analytically

in those cases. In all waveguides, regardless of how complicated the SSP is, #1 has

a straightforward meaning in the sense that it is easy to qualitatively understand

how the details of the SSP affect #1.

4.5 Examples

This section applies the methods described in Secs. 4.2 - 4.4 to calculating # in

waveguides with several commonly analyzed SSPs: iso-velocity, a single n 2-linear

segment, and a deep-water Munk SSP. For each SSP, 1 is plotted for a vacuum

bottom and for a fluid halfspace bottom. In addition k(z), #1 and #n are plotted

on an x-axis common with the plots of # so that their relationship to # can be



easily seen. In all cases that have a fluid bottom halfspace, Cbottom = 1650m/s,

Pbottom 1.5Pwater.

For comparison, the normal mode program Kraken [48] was also used to cal-
culate the value of 0 using the same environmental parameters. # was calculated

from Kraken using Eq. 2.27, using only adjacent mode numbers.

All calculations in Kraken used an acoustic source frequency of 250 Hz except

for the deep-water Munk case which used a frequency of 75 Hz. As the frequency
increases, the agreement between Kraken and the methods described in this chapter
tends to improve, as would be expected because the accuracy of the WKB approx-
imation increases with frequency as does the accuracy of approximating the finite

difference in mode order with a continuous derivative. This agreement provides a
sanity check on the validity of the present analysis.

4.5.1 Iso-velocity SSP: ideal and Pekeris waveguides

An iso-velocity SSP with a vacuum bottom is known as an ideal waveguide. Al-
though # for an ideal waveguide can be calculated analytically using Eq. (2.15)
because explicit expressions for k,(m, w) can be obtained (See Sec. 2.3.2), the
result is reproduced here for illustrative purposes. For an ideal waveguide

d 1

#1(SP) = - c2 S . (4.32)

Calculating #' (Sp) and #'j(Sp) and inserting into Eq. (4.27) yields:

/ = c2 2. (4.33)

As S, -+ 1/c, which happens as modes move away from being cut off, /3 - 1, as
shown in Fig. 4.4(c).

An iso-velocity SSP with a bottom fluid halfspace is known as a Pekeris waveg-

uide. 1 (Sp) is the same as that for an ideal waveguide but the derivatives of

Odn(Sp) are non-zero, so Eq. (4.26) must be used instead of Eq. (4.27). #df(Sp)
for a bottom that is denser and has a faster c than the water just above it always

has the same qualitative shape, shown in Fig. 4.4(b). #'n(Sp) and #'" (Sp) can be

calculated analytically in a straightforward manner, although the result is a lengthy



expression. Eq. (4.26) can then be used to obtain an analytic estimate of # as a

function of Sp. In the case of a Pekeris waveguide, the WKB approximation is the

exact solution, so the only approximation made in calculating # is approximating

the finite difference in mode number with a continuous derivative. The reason one

can obtain an analytic estimate of # in a Pekeris waveguide despite not being able

to analytically solve for kr (m, w) is that the resulting # is a continuous function

of Sp instead of being an explicit function of mode number. Figure 4.4(c) shows a

plot of # for a Pekeris waveguide.
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Figure 4.4: The waveguide invariant # for an ideal and a Pekeris waveguide, and
the functions used to calculate #, all plotted on a common x-axis scale (the phase
slowness Sp normalized by the minimum sound speed in the water column). (a)
k(z) = -y, which in this case is a constant and equal to 1 because of the nor-
malized scale. (b) The #1 (Sp) associated with k(z) (black), and #dnd(Sp) for the
bottom fluid halfspace (gray). (c) 3 versus phase slowness. For the ideal waveg-
uide (vacuum bottom) the WKB-based approximation of # closely matches the
value calculated from Kraken. For the Pekeris waveguide (fluid bottom) there is
also good agreement between Kraken and the WKB-based approximation. For the
fluid bottom, the WKB-based approximation of 3 is unbounded at the value of Sp
corresponding to the critical angle because the derivative of #dn (Sp) is infinite.



4.5.2 n2-linear waveguide

The n 2-linear waveguide used in this section has c(0) = 1500 m/s and c(d) = 1550

m/s, and d = 100 m. The k(z) associated with c(z) is shown in Fig. 4.5(a).

Surface-trapped modes

Surface-trapped modes are modes that have Sp > 1/c(d) in an upward refract-

ing SSP. Using Eqs. (4.31) and (4.25), one can obtain an explicit solution for

k,(m, w), use a Taylor series expansion similar to that in [11, Sec. 6.7.2] and then

use Eq. (2.15) to see that # / -3 for modes far from cut-off. Alternatively one can

use the method in Sec. 4.3. Using Eq. (4.31) to represent #1 and inserting #1 into

Eq. (4.27) yields:
3S 2

# = 2S . (4.34)
b - '2S2

Surface-trapped modes far from cutoff have a phase slowness of Sp ~ 1/c(0)

v&b. Inserting that into Eq. (4.34) results in # = -3.

For S, > 1/c(d) the concavity of #1 is positive, as shown in Fig. 4.5(b). This

is because as S, decreases, the integrand increases in value and the limits of the

integral move further apart. The result is that # is a negative number for S, >

1/c(d) as can be seen in Fig. 4.5(c).

This analysis for surface-trapped modes also applies to waterborne modes in a

two-segment ducted waveguide where each side of the duct has an n 2-linear SSP,

because such modes have a #1 equivalent to that of the surface-trapped modes

discussed above, and so those modes will also have # -3 [26].

SRBR modes

SRBR modes in this upward refracting environment have S, > 1/c(d). Based on

the qualitative argument in Fig. 4.1, one would expect that # for the SRBR modes

should be similar to 3 in an iso-velocity waveguide when (k(0) - k(d))/(k(0) -

kr) < 1. An explicit analytic solution for kr (in, w) of these modes is either in-

tractable or does not exist. However 3 can be calculated with fairly simple expres-

sions using Eqs. (4.30) and (4.27). # for a vacuum and a fluid halfspace bottom are

shown in Fig. 4.5(c).
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Figure 4.5: The waveguide invariant # for an n 2-linear waveguide, and the func-
tions used to calculate #3 plotted on a common x-axis (the phase slowness Sp nor-
malized by the minimum sound speed in the water column). (a) Normalized k(z).
(b) The #1 (Sp) associated with k (z) (black), and #n (Sp) for the bottom fluid half-
space (gray). Note that the concavity of #1 (Sp) changes when Sp = 1/c(d), which
results in a sign change of # at that point. (c) # for the vacuum and fluid bottom
n 2-linear waveguides. The WKB-based approximation is in good agreement with
Kraken everywhere except in the region near Sp = 1/c(d) = 0.974 - cmin which is
where the mode's turning point is close to the bottom and the WKB approximation
is inaccurate. For Sp > 1/c(d) the modes are surface-trapped, #1 has positive con-
cavity, and # ~- -3. For Sp < 1/c(d), which corresponds to bottom-interacting
modes, # ~-1 1. The effect of including a bottom fluid halfspace instead of a vacuum
is small, except for modes close to cutoff (modes with k, values near the critical

angle kr value) because #'n (Sp) becomes unbounded at that point.



4.5.3 Quasi-analytic results for a deep-water Munk profile

A deep-water waveguide with a Munk SSP [33, Sec. 5.6] can be approximated with

n2-linear segments. Fig. 4.6(c) shows # for 5000 m deep waveguide with a Munk

SSP, for both a vacuum and a fluid halfspace bottom. The #1 used for calculating

# was computed with Eq. (4.30) using 1000 segments to represent c(z).
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Figure 4.6: The waveguide invariant 3 for a deep-water Munk SSP, and the func-
tions used to calculate # plotted on a common x-axis (the phase slowness Sp
normalized by the minimum sound speed in the water column). (a) Normalized
k(z). (b) The #1(Sp) associated with k(z) (black), and #dn(Sp) for the bottom
fluid halfspace (gray). (c) # for the Munk SSP with vacuum and fluid bottoms.
In general there is good agreement between the WKB-based approximation and
Kraken except at Sp values where the mode's turning point is near a boundary and
the WKB approximation is inaccurate. In regions where modes are non-SRBR
(SP - Cmin > 0.968), the concavity of #1(Sp) is negative and so # is positive. For
Sp values corresponding to top- and bottom-interacting modes, # is between about
0.5 and 1. The effect of including bottom fluid halfspace instead of a vacuum is
negligible, which is why no gray lines can be seen.
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4.5.4 Realistic shallow water waveguide

Section 3.4.2 presented some experimentally measured waveguide invariant stria-

tions from a shallow water waveguide (see that section for details). In this subsec-

tion, we calculate the value of 0 for that environment (i.e. for the SSP in Fig. 3.5,

assuming cbottom = 1500 m/s). It can be seen that # has a value slightly less than

one for the SRBR modes, and that # varies greatly for non-SRBR modes.
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Figure 4.7: The waveguide invariant # for a realistic shallow water waveguide, and
the functions used to calculate # plotted on a common x-axis (the phase slowness
Sp normalized by the minimum sound speed in the water column). The SSP for
this figure comes from Fig. 3.5 (a) Normalized k(z). (b) The #1(Sp) associated
with k(z) (black), and #dn (Sp) for the bottom fluid halfspace (gray). (c) # for the
realistic shallow water SSP with vacuum and fluid bottoms. In regions where modes
are SRBR (Sp - Cmin < 0.98), # is slightly less than 1. For Sp values corresponding
SRBR modes (Sp . cmin > 0.98), the value of # varies greatly.
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4.6 Calculating # for non-adjacent modes

The definition of # in its most general form, Eq. (2.15), is for a pair of modes whose

kr values are not necessarily adjacent to one another. The methods for calculating

# in Secs. 4.2 - 4.5 are valid only for mode pairs that have k, values that are close

enough together so that the curve #1 (S, = kr/w) is approximately linear between

the two modes' Sp values. This restriction on the validity is because the finite

difference of the modes' kr values was approximated to be infinitesimally small

(i.e., a derivative). Because of this, # depended only on a single k, value. The

justification for such an approach was discussed in the beginning of Sec. 4.2.1.

However, some components of the acoustic intensity field I(r, w) will be the

result of mode pairs that have SP values that are far apart (non-adjacent). When cal-

culating # for such mode pairs, the finite difference between the modes' kr values

cannot be approximated by a derivative as was done in Secs. 4.2 - 4.5. However

some of the analysis from Secs. 4.2 and 4.3 is still valid for a pair of non-adjacent

modes, and can be applied to calculate # for non-adjacent modes. The resulting

# will depend explicitly on the two modes' S, values, and implicitly on the two

modes' modal numbers.

Using Eq. (2.15) as a definition for #, Eq. (4.25) can be inserted into Eq. (4.14)

to implicitly the calculate derivatives with respect to w in the denominator Eq. (2.15).

If the bottom fluid halfspace is approximated as being a vacuum, then #$d = 0 and

Okr #1 (Sp) + Spel (Sp)

auo #1 (S,)
= (S - .11 (S)) (4.36)

Note that this is the group slowness. It is worth mentioning that Eq. (4.36) is

identical to [45, Eq. 2.14.12], where it appears in the context of ray theory and S,
was defined as the slowness of a ray at its turning point, as opposed to the definition

used here which is in terms of the modal phase slowness and thus explicitly takes
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into account frequency dependence.

Eq. (4.35) or (4.36) can then be inserted into Eq. (2.15) to calculate 0 for a pair

of modes with Sp values that are not adjacent. When the bottom is a vacuum:

#(kr,m, kri, W) 1 (krm - kr,)
ou &(kr,m-kr,i)

(kr,m - krl)

Sp 1(s,,1 ) +1(s,m)

(S,(-S)m + ~ 1

(SPm - SP,) (4.37)
(S, - SO )+ ( -S,, 1) _ +1(3,,M-)

#3 (Sp,m, S,,l) can then be plotted as a function of the two modes' phase slow-
nesses. Although the specific Sp,m and Sp,1 values that correspond to propagating
modes are unknown unless one explicitly solves for them, one can determine the
regions of # (Sp,m, Sp,l) that correspond to SRBR modes and non-SRBR modes.

Fig. 4.8 shows # (Sp,m, Sp,l) for the same n 2-linear waveguide with a vacuum
bottom used in the previous section, calculated using Eq. (4.37) and using Kraken
for comparison. A fluid bottom could be taken into account inserting Eq. (4.35)
into Eq. (2.15).

4.7 Chapter summary

Knowing the value of # is critical for many applications of the waveguide invari-
ant, such as the passive range estimation presented in Ch. 3. Under the WKB
approximation, # can be determined solely from the phase of the bottom Rayleigh
reflection coefficient as a function of the phase slowness and from the integrated
phase of kz in the water column as a function of the phase slowness, #1 (Sp). If
the waveguide has a bottom fluid halfspace, / depends on k, and w independently
and can be calculated using Eq. (4.26). The use of implicit differentiation allows

for analytic estimates of # in waveguides whose horizontal wavenumbers cannot
be explicitly solved for analytically. When the bottom is approximated as being

a vacuum, # depends only on the ratio of kr to w (phase slowness), has a simple
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Figure 4.8: Plots of the waveguide invariant 3 for non-adjacent modes versus nor-
malized phase slowness (Sp - cmin) for each mode (Sp.m and Sp.1). These plots are
from the same n2-linear SSP used for Fig. 4.5, with a vacuum bottom and were
calculated from (a) Kraken and (b) Eq. (4.37). The white areas along the diagonal
correspond to m = 1 in Eq. (2.15) and are thus undefined. A diagonal "slice" just
off the line Sp,m = Sp, corresponds to adjacent modes, and is the same as what is
plotted in Fig. 4.5(c) for the vacuum bottom. For this SSP 3 1 for all mode pairs
where both modes are SRBR, and ~o -3 for all mode pairs where both modes
are non-SRBR. In regions where one mode is SRBR and the other is non-SRBR, 3
usually greater than 1.
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relationship to the integrated vertical phase 41 (Sp), and can be calculated using
Eq. (4.27) for adjacent modes and Eq. (4.37) for non-adjacent modes.

The relationship between c(z), #1 (Sp), and # provides a means for understand-
ing how the SSP affects the value of 3. A qualitative argument was given which
suggests that / 3 1 for SRBR modes in waveguides where the seafloor is modeled
as a vacuum, regardless of the SSP. It was also shown that # for non-SRBR modes
can take on a wide range of values, which depend strongly on the details of the SSP.

The present analysis discussed how to calculate / for a single pair of modes.
But, as can be seen in Eq. (2.9), the acoustic intensity is a summation of terms
from all mode pairs. Each term of the summation will contribute to the total inten-
sity (although a few groups of modes sometimes dominate the summation). The
relative amplitude of each term of the summation depends on the relative modal
amplitudes, which in turn depend primarily on the source and receiver depths rel-
ative to features in the sound speed profile. This depth-dependence is discussed
briefly in [51] and [52]. For example, if both the source and receiver are near a lo-
cal sound speed minimum, the local modal amplitudes of the modes trapped in that
sound speed minimum will likely be large, and one will observe some striations
according to the value of / for mode pairs with Sp 1/Cmin. The present analysis
provides a rigorous framework for analyzing how the observed striation slopes in
an acoustic intensity plot depend on the source and receiver depths and the SSP.

As with many ocean acoustic phenomena, the waveguide invariant can be un-
derstood from the perspective of normal modes or ray theory. The insights ob-
tained by the present normal mode analysis complement the ones obtained by the
ray-theoretic analysis presented in [24, 22, 14]. In fact, because ray theory can be
derived by taking the WKB approximation to the limit of infinite frequency, the
results from the present analysis as w -+ oc should match the results derived in
[24, 22]. Reference [14] discusses the relationship between normal modes and ray
theory in the context of the waveguide invariant.

Because the striations from the waveguide invariant can be seen in the beam-
formed output from a horizontal array, as will be discussed in Ch. 5, one possible
application of the present analysis would be to use a horizontal array to observe
striations corresponding to specific range of kr values, and thus a specific range of
# values. This idea is explored in Ch. 5. Knowledge of which k, values correspond
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to which # values may facilitate passive range estimation and other applications of

the waveguide invariant, especially in low SNR environments.

4.A Chapter Appendix: Justification for treating k, as an

implicit function

k, can be treated as an implicit function of n and w in regions where the derivative

Of /k, exists and is not equal to zero [31, Sec. 7.2]. The analysis in this chapter

is only interested in the region

W < kr < kmax (4.38)
Cbottom Cmin

where cbottom is the speed of sound in the bottom fluid halfspace (use oo for a

vacuum), and Cmin is the minimum sound speed in the water column. To determine

when of /okr exists and is not equal to zero, use Eq. (4.12) to write:

Of _ _ #q(k,,w) OAq~dn OA$up"
okr + Ok + . (4.39)

Inspection of Eq. (4.4) reveals that o#(kr, w)/Okr exists everywhere inside the

region of interest except perhaps at k. values corresponding to discontinuities in

k(z) = w/c(z) and at kr = k(O) and kr = k(d). OAcup/Okr equals zero every-

where except at k, = k(O), where the derivative does not exist. oAZdn/ok, can be

calculated analytically and is smooth, continuous, and monotonically decreasing

inside the region of interest.

Therefore, k, can be defined as an implicit function of n and W in the region

of interest excluding the points k, = k(o), k, = k(d), kr values corresponding to

discontinuities in k(z), and possibly one more location where Of /Okr = 0.

All of the aforementioned discontinuities are artifacts of the WKB approxi-

mation used in this chapter. In a full-wave solution of the depth-separated wave

equation, the effect of the surface or sea floor on the horizontal wavenumber would

smoothly increase as the turning point of the mode approaches the waveguide

boundary. Future research could attempt to extend the current analysis to a WKB

approximation that includes the evanescent Airy tails of the non-SRBR modes.
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4.B Chapter Appendix: Derivation of expression for #

Equation (4.26), which includes the effects of a bottom fluid halfspace, was derived
with the assistance of the computer algebra system Mathematica. As described in
Sec. 4.3, when the bottom halfspace is a vacuum, Eq. (4.26) reduces to Eq. (4.27).
Alternatively, Eq. (4.27) can be derived by hand if one begins the derivation assum-
ing that the bottom halfspace is a vacuum. That derivation is performed here.

Following the WKB approximation in Sec. 4.2, for a waveguide
trary SSP and a vacuum bottom halfspace:

k, krn = w - (1 - - 1/2-1/2+1= w - 1-.

Using the method for implicit differentiation in Sec. 4.2.2:

0 = f (kr, n, w) = n - w - #1 kr

with an arbi-

(4.40)

(4.41)

Application of Eqs. (4.13) and (4.14) yield:

Okr 41(

Oftn 5 (k,) (4.42)

Okr #1 (L) -#1' (__ )

OT #1' (m )
Then apply the steps in Sec. 4.2.2 to determine the mixed-partial derivative:

0 Okr - 0(i

-w (nk9W) +kr(W))~ k~

k, (w) kr(W))
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Replace the k, (w) term in Eq .(4.44) with Eq. (4.43) and simplify the result:

Insert Eqs. (4.42) and (4.45) into Eq. (4.10), and write asSp

#3(Sp) = - (4.46)
#1 (Sr) #/' (Sp)(

which is the same as Eq. (4.27).

For a waveguide with a fluid bottom halfspace, the expression for n is that

given in Eq. (4.25) instead of the one given in Eq. (4.40). The same mathematical

operations are then be applied, but the intermediate expressions are lengthy and

difficult to manipulate by hand. The following lines of Mathematica code were

used to produce the result in Eq. (4.26).

ff = n - (w phil[kr/w) +phidn[kr/w] + 1)

dkdn = -D[ff,n]/D[ff,kr] (* dkr / dn *)

dkdw = -D[ff,w]/D[ff,kr] (* dkr / dw *)

step1 = dkdn/.kr->kr[w]

step2 = D[step1, w]

step3 = step2/.kr[w]->kr/.(kr^\[Prime]) [w]->dkdw

ddkdndw = Simplify[step3l (* d^2 kr / ( dn dw) *)

beta = -(1/w) dkdn/ddkdndw /.(kr/w) ->Sp

Simplify [%]

Equation (4.26) is valid when the bottom is fluid halfspace, as is the case in all of

the examples in this chapter. One could extend the present analysis to include the

effects of an arbitrarily layered (but lossless) bottom by letting the bottom reflection

coefficient be a function of both k, and w independently: #b(k, w). This can be

done by changing the first line of the above Mathematica code to:

ff = n - (w phil[kr/w] + phidn[kr,w] + 1)
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The resulting expression is extremely complicated, but analytic none-the-less.
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Chapter 5

Array processing with the

waveguide invariant

Chapter 3 used striations in I(r, w) measured from a single hydrophone to estimate

the range to an acoustic source, by assuming that #3 = 1. Chapter 4 showed that

surface-reflected bottom-reflected (SRBR - see Sec. 2.2.2) modes usually had #3mi
values close to one, whereas non-SRBR modes had #mn values that varied widely

and depended strongly on the details of the SSP. In this chapter, we develop a

technique for observing waveguide invariant striations with a horizontal line array

(HLA), which allows for rejecting noise from sources other than the source of in-

terest. We also show that an HLA with sufficient aperture can filter out non-SRBR

modes, resulting in a striation pattern consisting only of SRBR modes which are

likely to have #ml ~ 1.

As with the rest of this thesis, mode numbers are denoted by m and 1.

5.1 Introduction

Passive source localization is one of the most straightforward applications of the

waveguide invariant. If one uses a single hydrophone to measure the acoustic inten-

sity in a shallow-water waveguide while a broadband source moves away from the

hydrophone, the resulting plot of acoustic intensity will contain striations described

by the waveguide invariant. The slopes of the striations can be used to estimate the

109



range to the source, as was done in Ch. 3 and in [56]. This type of processing is re-

ferred to as incoherent processing because it depends only on the acoustic intensity

(as opposed to the complex pressure level) and is discussed further in Sec. 5.2.

Although observing intensity striations using a single hydrophone is appealing

because of its simplicity, the disadvantage is that if there are multiple sources in the

water, all of those sources contribute to the striation pattern in a non-linear manner

and the striations from the source of interest can become obscured. To combat

this problem, one can use an array and beamform towards the source of interest.

The use of an array to observe the striations necessitates coherent processing of the
measured acoustic field.

In [66], Yang showed that the output of a horizontal line array (HLA) with a

uniform array weights can be used to observe waveguide invariant striations. The

output of the beamformer will contain striations that are almost the same as the

striations present in the single-hydrophone acoustic intensity, while rejecting noise
coming from directions other than that of the source of interest. In [62], Turgut et

al. used the methods described in [66] to successfully localize an acoustic source
with experimental data.

In Sec. 5.3, it is shown that when the HLA is short and the temporal frequency

is low (small aperture relative to wavelength), processing the array data with a

uniformly weighted beamformer will yield the expected results: the array processor

output will contain desired striations from the source of interest while rejecting
noise from other directions. But when the array is long or the temporal frequency
is high (large aperture relative to wavelength), uniformly weighted beamforming
can have an undesired effect: the main lobe of a uniformly weighted beamformer

can get so narrow that it eliminates some of the modes necessary to create the modal
interference pattern (striations) that is one is trying to observe.

This chapter shows how to design HLA array weights that are optimal for ob-

serving waveguide invariant striations from a single source while rejecting noise

from other directions. This chapter also analyzes when it is beneficial to design

such array weights as opposed to simply using uniform ones.

Section 5.4 uses simulated data to illustrate how an HLA can filter out non-

SRBR modes which typically don't have #0,~ 1. Sec. 5.5 uses experimental

data (from the same experiment that was used in Ch. 3) to show that an HLA can
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reject noise but preserve the waveguide invariant striations. Sec. 5.6 summarizes

and concludes the chapter.

Before moving forward with the present analysis, it is worth noting that other

array processing techniques have been developed to exploit the waveguide invari-

ant, including source localization using broadband matched field processing [59],

and covariance matrix estimation for adaptive beamforming [57, 37] (See Appendix

A). In the present analysis, the focus is on using an HLA to filter out non-SRBR

modes, and/or observe the waveguide invariant striations from one source while

eliminating contributions to the acoustic intensity from other sources.

5.2 Review of incoherent processing

As discussed in Sec. 2.3.1, the acoustic intensity in a waveguide resulting from

a single, compact acoustic source can be written as summation of cosines [see

Eq. (2.10)]. Many processing schemes that utilize the waveguide invariant, such

as the one presented in Ch. 3, rely on accurately observing the striations resulting

from the cosine terms in Eq. (2.10). But when other sound sources are present

in the ocean, the striations from the source of interest can be become difficult to

observe amongst all the noise. An example of this can be seen in Fig. 5.4(a).

If one has an array of hydrophones rather than a single hydrophone, the stri-

ations from the source of interest can be enhanced by using coherent processing.

But doing so requires a judicious choice of array weights, as will be discussed in

the next section.

5.3 Coherent processing

The concept of observing waveguide invariant striations using an HLA was origi-

nally introduced by Yang in [66], which analyzed the special case of an HLA with

uniform array weights. In this section we generalize Yang's results to array pro-

cessors (beamformers) with non-uniform weights, such as a Hamming Window or

weights designed by more advanced techniques. We restrict our attention to uni-

formly spaced HLAs. It will be shown that the trade-off to be considered when

choosing the weights is not the usual "beam width versus side lobe level" that one
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encounters with planewave array processing, because the desired signal is not a
planewave but rather the striations resulting from the interference between a set of
modes.

We start by defining some notation (bold faced lower-case letters denote vector
quantities):

e co is the speed of sound at the HLA depth.

" ko - ! is the wavenumber at the HLA depth.CO

" J is the number of elements in the HLA, with each element numbered as

j =- 1, j = 2, . .. , j =_ J.

* 0 L is the look direction as measured from broadside of the HLA.

" kL = ko sin OL is the horizontal wavenumber corresponding to the look di-

rection.

* V(kL) vl (kL), V2(kL), ' . , vJ(k)T is the steering vector correspond-

ing to the look direction. v is a column vector.

* w = [wi, w 2 , - - , wJ]T the array weights column vector (e.g., Hamming,
Hann, uniform). w is a real-valued vector and does not include the phase
shift of the steering vector.

* 0s is the bearing of the acoustic source as measured from broadside of the
HLA, in the plane parallel to the ocean surface.

" T is the wavenumber response function of the array processor, which de-
pends on the array geometry and the array weights w, and is described in
more detail later.

5.3.1 HLA response to a planewave

An array and its weights can be characterized by their wavenumber response func-
tion, denoted here by T [61, Chs. 2 and 3]. T describes the gain of an array proces-
sor for a planewave with a given wavenumber along the axis of the array. As shown
in [61, Eq. 2.122], T for a uniformly spaced HLA depends only on the difference
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between wavenumber corresponding to look direction (kL) and the wavenumber

corresponding to the source direction (ks), as opposed to depending on kL and kg

independently. T also depends on (is parameterized by) the array weights. Thus

we write the wavenumber response function as T(kL - ks; w). It is well known

that when w = 1, T(kL - ks; 1) is a periodic sinc function of (kL - kS) [61,

Eq. 2.94].

Let a superscript H represent a complex conjugate transpose, and an asterisk

represent the complex conjugate of a scalar. The wavenumber response function is

then defined as [61, Eq. 2.58]

J

T(kL - ks; w) v(ks)H (v(kL)w) = Zv (k)*(vj(kL)Wj) (5.1)
j=1

where (v(kL)w) is the element-by-element multiplication of v(kL) and w.

For an HLA with J elements numbered 1 to J and an inter-element spacing of

d, the j-th element is located at a distance of d(j - 1) from the 1st element, and

the center of the array is at a distance of d(J - 1)/2 from the 1st element. Let

dj represent the displacement of the j-th element of the array to the center of the

array:

dj = d(j - 1) - d(J - 1)/2 (5.2)

The j-th element of the steering vector v is then (Eq. 2.78 of Van Trees)

vj(kL) = exp [+ikLdj] (5.3)

In this chapter we only consider w that are real and symmetric with respect to

the center of the array. Because of that, and because dj was defined with respect to

the center of the array, T(kL - ks; w) will be real. This is a result of the Discrete

Fourier Transform relationship between T and w [61, Sec. 2.3]. Knowing that

T(kL - ks; w) is real will help simplify the algebra later in this chapter, but is of

little conceptual importance.
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5.3.2 HLA response to source in waveguide

T (kL -ks; w) represents the response of an array to the pressure field of a planewave.
In this subsection we derive the response of an HLA array with weights w to the
pressure field from a discrete source in a waveguide. The intensity of that response,
when plotted as a function of range and frequency, will contain waveguide invariant
striations. [66] contains a similar derivation for the specific case of uniform array
weights (w = 1). In the present work, we generalize Yang's result and explain
some advantages of using non-uniform array weights.

Let Ttotal(w, L, 0s, rc; w) represent the response function of an HLA due to a

source at a bearing of 0s and a range of rc in a range independent waveguide, while
looking in a direction OL- In contrast to T which depends only on kL - ks, Ttotal

depends on w, 0 L and Os for reasons that will become clear later; it also depends
on the array weights w. It will be shown that Ttotal can be written as a sum of Ts,
one for each mode.

Ttotal(w, OL, OS, rc; w) = pH(v(kL)w) (5.4)

where p is the pressure at the array elements due to the source in the waveguide.
Note that kL is a function of OL, as defined at the beginning of this section.

To calculate p, let re be the range from the source to the center of the HLA. If
the distance between the array and the source is large compare to the array's length,
then the range from the source to the j-th element of the array can be approximated
as

rc + sin 0s dj (5.5)

The pressure at the j-th element of the array can written by replacing the r in
Eq. 2.7 with Eq. 5.5, resulting in:

Pj = E Am exp [+ikrm (rc + sin Osdj)]. (5.6)

Eq. (5.6) can be interpreted as a sum of planewaves along the array, each with
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amplitude an Am, a wavenumber along the array of krm sin 0s, and a phase of

krmrc.

Inserting Eqs. (5.6) and (5.3) into Eq. (5.4), and rearranging the summations

yields:

Ttoai(W, OL, s, rc; w) = pHv(kL)w (5.7)

J=j Zpvj(kL) Wj

rk( snosd") *exp [±ikLd,]wJ
j= ( Am exp (+ikrm (rc + sin sdj)]
j= \m

J

= S Am exp [-ikrmrc] ( exp [-ikrm sin Osdj] exp (+ikLdj]wj (5.8)
m j=1

The summation over j in Eq. (5.8) is the same as Eq. (5.1), but with the ks in

Eq. (5.1) replaced by krm sin 0s. Eq. (5.1) is the definition of T for a planewave.

We can therefore write Ttotal as a sum of Ts - one for each mode m.

Define kms = krm sin Os, which is the wavenumber of mode m along the array

due to a source at a bearing Os. Ttotal can then be written as

Ttotai(W, OL, OS; W) = Am exp [-ikrmrc] T(w, kL - kms) (5.9)

bearing in mind that kL is a function of OL, and kms is a function of 0s. To the

HLA, each mode appears to be a planewave propagating along the array with a

wavenumber of kms, with an amplitude of Am, and a phase shift of krirc. So

Ttotai is a sum of Ts corresponding to each mode.

The magnitude of Ttotai (W, OL, Os; w) contains the waveguide invariant stria-
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tions analogous to those in Eq. (2.10):

2

Ttotai(W, 9 L, OS; W) 2  Am exp -krmc] T (w, kL - kms; w)

= A2 |T (kL - kqS)W 2

q

+ > AmAlcos(Akmlrc)(T(kL - kms;w))(T(kL - kls; W))
m,1; m#1

(5.10)

where Akmi = krm - kri is the difference in the horizontal wavenumbers between
mode m and mode 1, and we have used the fact that T(kL - kms; w) is real.

A careful term-by-term comparison of Eq. (5.10) to Eq. (2.10) is essential to
understanding the present analysis. The waveguide invariant striations are a re-
sult of the cos(AkmiTc) terms, which represent the interference between modes.
The cosine terms in Eq. (5.10) are the same as in Eq. (2.10) but are multiplied by
(T(kL - kms; w))(T (kL - kls; w)).

In order to "extract" the waveguide invariant striations from HLA measure-

ments of the acoustic field, one would first compute the complex pressure level at
each hydrophone of the array at each snapshot. The resulting complex pressure
levels would then be fed into an array processor, and the magnitude of the output
of the array processor would be plotted versus frequency and snapshot number.

For the purpose of understanding the present work, it is easiest to consider
a scenario where the source changes range but not bearing between snapshots so
that one can plot |Ttotai (W, 0 L, OS; W) 2 versus rc and w while keeping 0 L fixed at

OS. (In a practical situation, one would likely plot |Ttotai(P, OL, OS; W) 2 versus
snapshot number and w while changing OL with the snapshot number to follow the
source, and then estimate the range and speed of the source. See [62].)

5.3.3 Array processing for the waveguide invariant

To simplify notation, let Ak equal the difference between a wavenumber received
by an array, and the wavenumber corresponding to the look direction of array pro-
cessor. That is, Ak = kL - kS in free space or Ak = kL - kms in a waveguide.
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The purpose of array processing is to exclude contributions to the output of the

array processor from sources located at a bearings different than that of the source

of interest. Traditionally, array processing (beamforming) was developed to distin-

guish planewaves from one another, and thus the goal was the design array weights

that resulted in as narrow of a main lobe in T as is possible while controlling the

level of the side lobes in T [61, Ch. 3]. The array weights were usually chosen so

that T(Ak; w) was largest at Ak = 0 and T(Ak; w) generally decreased in value

as Ak increased.

In contrast to the planewave model, the waveguide invariant striations are the

result of modes interfering with one another. In the previous subsection it was

shown that each mode appears to the HLA as a planewave with wavenumber kmS.

If the array processor weights have a high enough wavenumber resolution (i.e.,

main lobe width) to distinguish a low order mode (e.g., k1s) from a high or-

der model (e.g., k 5s) coming from the same source, then the striations result-

ing from the interference term between the two modes, cos(AkmlFc)(T(kL -

kms; w))(T(kL - kis; w)) from Eq. (5.10), will have a very small magnitude be-

cause either (T(kL - kms; w)) or (T(kL - kls; w)) will be small no matter what

the value of kL is. That is, no matter where the array is steered, the desired stria-

tions term may be suppressed due to the high resolution of the array processor. We

investigate this further in the next subsection, and then suggest how to design better

array weights later in this chapter.

5.3.4 Uniform weighs

This subsection analyzes the circumstances which result in suppressed striations for

the case of an array processor with uniform weights. [66] derived Ttotai (w, OL, Os; w)

for the specific case of w = 1. In that case, T is a periodic sinc function [61,

Eq. 2.94]:

(A w) sin ( 2Ak)
T(Ak; w) = si ±A)(5.11)

sin (4Ak)

117



Inserting this into Eq.(5. 10) yields

2 sin (L(kL - kqS)) 2
= Aq si 4(L-k(5.12)
q sin {({k-kqS))

sin (1(kL - kmS)) sin ( (kL - kis))
+ ( Am Ai cos( Akmijre} 2

sin ({(kL - km,)) sin kL - kis))ml,; mnzl 2/

Eq. (5.12) is equivalent to [66, Eqs. 14 and 15]. The second term of Eq. (5.12)
contains the same cosine terms that are in Eq. (2.10), but they are multiplied by
two periodic sine functions.

When (I Jd/2Ak < 7r), the periodic sine function is near its maximum value.
As |Jd/2Ak increases in value, the periodic sinc function decreases in value until
|Jd/2Ak| > ir, at which point the periodic sinc function will have a very small
value (i.e., be in the side lobe of the periodic sinc).

(Jd/2) is approximately half of the array length. So if the array length times
(kis-kms) differ by an amount larger than twice the main lobe width of T (A k; w),
then the cosine term in Eq. (5.12) is going to be very small no matter what the value
of kL is.

This can occur in practical situations. Consider a waveguide where the water
column has a sound speed of 1500 m/s and the seabed has a sound speed of 1600
m/s. If a source with a center frequency of 500 Hz is at end fire, then: kms = km,

the first order mode has kri P 27500/1500, and highest order mode has krM a
27500/1600. An array that is longer than about 200 meters (with w - 1 ) will
have such a narrow main lobe that there is no choice of kL for which T for mode 1

sin (l (kL - kri))
- 2 (5.13)

sin ( (kL - kr1))

and T for mode M
sin (! (kL - krM))

2 (5.14)
sin ({ (kL - krM))

are in their respective main lobes.

Although one may not always want the term corresponding to Ak1M to be
in the array output, an analogous argument can be made for any two modes with

118



differing horizontal wavenumbers. Even if the two modes are both in the main

lobe, their cosine term will be suppressed to some extent because the periodic sinc

function starts to decrease in value as soon as the wavenumber difference in the

argument isn't zero.

In this subsection, we showed why uniform weights (w = 1 ) can have unde-

sired results. In the next subsection, we show how to choose the weights to prevent

the suppression of the desired cosine terms.

In addition to the issue analyzed in this section regarding the suppression of

cosine terms in the summation, there is one other potential problem with the array

processor output. As noted in [66], (kL - kmS) and (kL - kiS) are functions of w.

And so multiplying the cosine term with

sin (lQ (kL - kmS)) sin (L (kL - kiS)) (5.15)

sin ( {kL - kmS)) sin ( (kL - klS))

may have an adverse affect on the striation pattern, which lies in the (rc, W) plane.

It will become clear in the next subsection that designing a w that prevents the

suppression of the cosine terms will also prevent T (kL - kmS; w) and T (kL -

kls; w) from being a strong function of frequency and thus preserve the desired

striations resulting from the cosine terms.

5.3.5 Designing array weights for waveguide invariant striations

The previous subsection discussed why uniform weights can lead to a suppression

of some striation terms because uniform weights correspond to a narrow main lobe

in T. In this subsection we discuss how to choose non-uniform weights for the

purpose of observing the waveguide invariant striations. To understand this subsec-

tion, it is useful to think of the array processor as a spatial filter whose wavenumber

response is H(k) where k is the wavenumber along the array.

In the case of planewave beamforming - where the goal is to estimate the

signal coming from a one direction while rejecting signal coming from other direc-

tions - the ideal H(k) is an impulse in k space. Because that cannot be achieved

with a finite aperture array, one chooses a trade-off main lobe width and side lobe

levels.
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But in the case of using an array to observe the waveguide invariant striations,

the ideal H(k) is not an impulse in k space; the interference pattern is the result
of modes with different k values interfering with each other, and so a range of k
values must pass through the array processor.

An ideal H(k) for observing the waveguide invariant striations is an H(k)
that passes through all wavenumbers associated with the cosine terms in Eq.(5.10)
while blocking out all other wavenumbers, so that none of the striation terms are

suppressed but noise coming from directions other than the source direction get
blocked out (other ideal H(k)s are discussed later in this subsection). For example,
in a Pekeris waveguide with Cwater = 1500 m/s and cbottom = 1600 m/s H(k), all
modal horizontal wavenumbers will be between ' and 1. So the array proces-
sor should pass all wavenumbers between k = sin 8s ( ') and k = sin Os (g)
with equal amplitudes while blocking signals with all other wavenumbers:

0 k < sin OS (1 ) k

Hideai (k) = I sin 8S (O ) < k < sin Os ( L) (5.16)

0 k > sin Os (1 ) - kupper

Hideal (k) in Eq. (5.16) is a complex band-pass spatial filter whose spatial cutoff
wavenumbers depend on the temporal frequency w and the source direction Os. It

is complex in the sense that the input signal is complex (the complex pressure level
along the array at some value of w). So the filter must treat positive and nega-
tive wavenumbers differently, in contrast to typical time domain band-pass filters
whose impulse response is generally conjugate symmetric (which treat positive and
negative frequencies the same when the input signal is real).

Hideal (k) can only be realized with a infinitely long array, so it is necessary to
approximate Hideal (k). This can be done with a finite impulse response (FIR) filter

of length J because there are J elements in the array. A straightforward approach to

designing the FIR filter is to first design a linear-phase, low-pass FIR filter centered

at k = 0 using standard digital filter design techniques [46, Ch. 7]. The resulting

FIR filter will be the array weights w. (Note that a linear phase filter is required

because it yields a symmetric w). Then multiply w by the steering vector v to shift

the pass-band from being centered at k = 0 to being centered at some k value that
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is halfway between the kiower and kupper in Eq. (5.16).

For example, in the above case, one would first design a low-pass filter with a

cutoff frequency of kcutoff (kupper - kiower)/ 2 . One would then multiply that filter

by v(kcenter) to shift the center frequency from up to kcenter = (kupper + kiower)/2.

The resulting output can then be described by Eq. (5.10) where the kL = kcenter-

Designing w involves choosing between many trade-offs, which are discussed in

digital filter design text books such as [46]. The next section discusses one possible

choice of w in depth.

Hideal (k) depends on the 6s and the sound speeds in the environment, which

may not be known accurately. In that case, the pass-band of the filter can be

widened at the expense of letting in more noise. Or one could narrow the pass-

band in order to reject more noise, at the expense of suppressing some of the cosine

terms.

In some cases, one may purposely choose a filter that is narrower than the

Hideal(k) in Eq. (5.16). The waveguide invariant striations (cosine terms) are most

useful when the value of #m1 is predictable (i.e., not sensitive to the details of the

environment). But 1m is only predictable under certain circumstances: Sec. 2.3

and Ch. 4 qualitatively showed that when both modes are SRBR modes that are

not near cutoff, #1 ~- 1. For other modes, the value of # is often unpredictable.

Therefore, it may be useful to filter out wavenumbers that correspond to modes

close to cutoff, and to filter out wavenumbers that correspond to non-SRBR modes.

Then the cos (Akmir) terms with unpredictable #m values will be suppressed and

the array processor output may be more useful.

It is worth noting that filtering out wavenumbers corresponding to non-SRBR

modes while keeping those corresponding to SRBR modes requires fairly high

wavenumber resolution, and thus requires a long array relative to the wavenum-

ber differences.

5.4 A simulated example

To validate the theory presented in the previous section and explain some of the

details required for implementation, a simulated example is provided here. The

environment and array parameters are chosen specifically to illustrate the concepts
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from the previous section, but are realistic none-the-less.

The environment is a range-independent shallow-water waveguide with a typi-
cal summer sound speed profile (SSP), shown in Fig. 5.1. The bottom is a halfspace
with sound speed of 1600 m/s, a density of 1.5 g/cm3, and a attenuation of 1/2 dB/A.
The array was a 256 element HLA with a spacing corresponding to A/2 at 700 Hz;
the total array length was 273 meters. The source was at endfire, which maximizes
the effective aperture of the array.

The acoustic field was calculated using Kraken [48] from a range of 3000 m to
5000 m, and a temporal frequency of 300 Hz to 700 Hz. The source and receiver
depth (52 and 84 meters, respectively) were chosen to be below the thermocline so
that the bottom-trapped modes would contribute to the total pressure.

5.4.1 Filter design

As discussed in Sec. 5.3.5, it can be useful to filter out modes that do not interact
with the top and bottom of the waveguide, because those modes are unlikely not
lead to a /3m1 value that is close to one. Modes that are close to cutoff will also
not have 3m1 ~ 1, but modes that are close to cutoff have very small amplitudes
because they are highly attenuated, so it is usually not necessary to filter them out.
Therefore the ideal array processor for this environment would filter all wavenum-
bers except those with phase speeds between 1535 m/s and 1600 m/s, because
modes with those phase speeds are top and bottom interacting modes.

To create an linear-phase FIR filter that approximates the ideal filter, a tech-
nique that minimizes the integrated squared error between the ideal filter and the
magnitude response of the filter was used (specifically, the fir is tool in MAT-
LAB). Because the wavenumber associated with a specific phase speed is a func-
tion of frequency (e.g., k = '), a different FIR filter must be designed for each
temporal frequency. The width of the pass-band is Ak = Lo( 1 - 1 ), so at
higher frequencies the FIR filter must have a wider pass-band.

5.4.2 Simulated results

Figure 5.2 shows the response of the FIR filters (array processor weights) designed
for (a) f = 300 Hz, (b) f = 500 Hz, and (c) and f = 700 Hz. Also shown is the
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response of uniform array weights, which is the same for all temporal frequencies.

In subfigure (a) (f = 300 Hz), the FIR filter response is similar to the uniform

weights, but slightly wider. In subfigure (c) (f = 700 Hz), the difference between

the FIR filter and the uniform weights is very apparent; the FIR filter has a wide,

flat, pass-band that allows all the desired modes the pass through.

As discussed in Sec. 2.3, waveguide invariant striations are of the form

6f f
6r r

(5.17)

where § is the slope of the striation and # is the waveguide invariant. So striations

with # = 1 correspond to lines of the form f = Ci r where C1 is an arbitrary

constant. Figure 5.3 shows the intensity from the (a) unfiltered pressure and (b)

array processed (filtered) pressure. The black lines correspond to 3 = 1. Notice

that the striations in subfigure (b) correspond much more closely to # = 1 than

do the striations in subfigure (a), because the pressure from which the intensity in

subfigure (b) was calculated was filtered (array processed) to remove modes that

were not top and bottom interacting.

SSP

100-

15900 1550 1600
c (m/s)

Figure 5.1: The sound speed profile for the simulated environment. It is a simplified
model of a shallow-water waveguide in the summer. The bottom halfspace starts at

100 meters.
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Figure 5.2: Plots of the wavenumber response function of three different array
weights, each designed for a different temporal frequency f. The response due
to uniform array weights is plotted in each subfigure as well, for comparison. (a)
f = 300 Hz. (b) f = 500 Hz. (c) f = 700 Hz. As f increases, the array weights
change so that the main lobe width increases to ensure that all the desired modes
pass through the array processor without being attenuated. In contrast to the array
weights designed specifically for observing the waveguide invariant, the uniform
array weights do not change with f and thus their response function is the same for
all f.
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(a) unfiltered (b) filtered
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Figure 5.3: Simulated acoustic intensity as a function of range and frequency,
which exhibits striations described by the waveguide invariant #. Subfigure (a)
is a plot of the intensity from the scalar pressure. Subfigure (b) is a plot of the in-
tensity from the array-processed pressure which had wavenumbers corresponding
to undesired modes filtered out. The black lines correspond to # = 1. The stria-
tions subfigure (b) correspond much more closely to # = 1 than do the striations in
subfigure (a), because the undesired modes have been filtered out.

5.5 Experimental example

The previous section showed an example of how filter out specific wavenumbers

due to a single source. It required a relatively long array in order to have high
enough wavenumber resolution. In this section, some experimental results are pre-
sented using a much shorter array. With a short array, the array weights designed

using the technique from the previous section will be very similar to uniform array
weights, because the desired resolution will be close to the highest resolution the
array is capable of, which is achieved with uniform array weights. None-the-less,

the array processing is very useful at eliminating sound coming from directions

other than that of the source of interest.

The data set presented here is the same experimental data that was used for
Ch. 3. In Ch. 3, only the signal from a single hydrophone was processed. But
during the experiment, data was collected from a horizontal array of hydrophones.

So we now process the same data using the array processing techniques discussed
in this chapter.
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An acoustic source was lowered to a depth of 40 meters, and pseudorandom

noise was projected from the source over a frequency band of 350 to 700 Hz. A 23-
element, 17.25 m long hydrophone array was towed directly away from the source
along a line of nearly constant bathymetry at a speed of 1.5 m/s. The hydrophone
array had an inter-element spacing of 3/4 m, and was towed at a depth of 50 m. The
sea floor was about 90 m deep with a typical summer downward refracting sound

speed profile (SSP). (See Sec. 3.4.2 for more details).

Fig. 5.4 (a) shows a plot of the acoustic intensity as measured by a single hy-
drophone from the array, and is the exact same data as that shown in Fig. 3.8.
Because # ~ 1 for the environment where the data was collected [19], one ex-
pects to see waveguide invariant striations from the acoustic source of interest that
point toward the origin of the coordinate system (towards the lower left of each
subfigure). Although such striations are clearly present at frequencies of 350 to
700 Hz, there is also noise present. One particularly loud noise source causes its

own parabolic shaped striations at all frequencies. Figure 5.4 (b) shows the output
of the array processor, which is using weights designed by the method described in
the previous section. Because the array is short relative to the desired wavenumber
resolution, the weights are nearly uniform. The striations from the source of in-
terest are much more clearly visible in subfigure (b) than in subfigure (a), because
much of the noise has been filtered out. Other array processing (not shown here)
confirmed the presence of the interfering sound source seen in subfigure (a).

5.6 Chapter summary

Observing intensity striations from the waveguide invariant is useful for many
acoustic sensing applications, such as the passive range estimation in Ch. 3 and
many of the applications discussed in Appendix A. Although this can be done with

a single hydrophone, an array can be used to suppress noise coming from directions

other than that of the source of interest. In [66], Yang showed that the output of an
array processor with uniform array weights contains striations that are similar the

striations from a single hydrophone. The present chapter generalized Yang's result

for uniform weights to include array processors with arbitrary weights, and showed

why is it beneficial to use non-uniform weights.
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Figure 5.4: Acoustic intensity from experimental data, plotted as a function of
frequency and range from th e of interest. If there was no noise in the data,
then all that would be seen is striations between 350 to 700 Hz pointing towards the
origin of each subfigure's respective coordinate system. Both subfigures are from
the same data set. Subfigure (a) is the acoustic intensity as measured by a single
hydrophone from an array towed away from the source. The plot has the expected
striations from the source of interest, as well as noise from other interfering sound
sources that were present during the experiment. The parabolic shaped striations
between 1200 and 1800 m are from an interfering sound source. Subfigure (b) is
the same as (a), but data from all elements of the array were used to filter out noise
coming from directions other than that of the source of interest.
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Because the waveguide invariant striations are the result of modes interfering
with one another, designing array processing weights for the purpose of observing
waveguide invariant striations is different than designing array processing weights
for planewave beamforming. It was shown that when an HLA is long enough
to distinguish the horizontal wavenumbers of low order modes from the horizon-
tal wavenumbers high order modes, an array processor with uniform weights can
have undesired effects. An example was given demonstrating how to design array
weights that allow a range of wavenumbers to pass through the array processor,
preserving all the desired striation terms while suppressing noise.

It was also shown that even in the absence of noise, it can be beneficial to filter
out specific ranges of wavenumbers - ones that correspond to non-SRBR modes
- because they tend to cause striations whose slopes are unpredictable and thus
corrupt the striations that are useful.

The filtering/beamforming concepts in this chapter were discussed in the con-
text of passive sensing with an array, but they could likely be applied to active arrays
in the context of TRM or active sonar, similar to the ideas discussed in [40]. For
example, in the context of variable range TRM, one could have the array only emit
sound over the range of wavenumbers corresponding SRBR modes which typically
have 01 ~ 1, thus improving the ability to predict how the range of the focal spot
will change with frequency.
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Chapter 6

A relationship between the

waveguide invariant and

wavenumber integration

Chapters 3 - 5 analyzed the waveguide invariant and its applications using normal

modes. It was pointed out in Sec. 2.3 that the waveguide invariant can also be an-

alyzed using ray theory. This chapter presents original research that attempts to

complete the ray/mode/wavenumber-integration 'trifecta.' 1 Although the research

presented in this chapter is mostly of theoretical interest, but may have some prac-

tical use in waveguides with attenuating elastic media.

6.1 Introduction

Although the waveguide invariant is usually derived and interpreted using nor-

mal modes [11], ray theory can also be used to interpret the waveguide invariant

[18, 24, 14]. The present analysis relates the waveguide invariant to another com-

mon method for calculating the acoustic field in a waveguide: wavenumber inte-

gration. It will be shown that in some cases, the waveguide invariant can be "seen"

'This chapter is based on "A relationship between the waveguide invariant and wavenumber inte-

gration" by Kevin L. Cockrell and Henrik Schmidt [The Journal of the Acoustical Society ofAmerica

Express Letters. July, 2010].
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in a plot of the autocorrelation of the wavenumber-integration kernel. This result
is somewhat intuitive because the autocorrelation of the wavenumber-integration
kernel represents horizontal wavenumber differences, which is what the waveguide
invariant is defined in terms of when using a normal mode description of the acous-
tic field.

The present analysis is for a range independent waveguide with planar geome-
try so that the wavenumber transform is a Fourier transform (as opposed to a Bessel
transform for cylindrical geometry). Because the usual derivation of the waveguide
invariant ignores cylindrical spreading, assuming planar geometry is not a limita-
tion.

6.2 The waveguide invariant and normal modes in a pla-
nar waveguide

A derivation of the waveguide invariant using normal modes was given in Sec. 2.3
(originally [18] and [11, Sec. 6.7.2]), using a point source (cylindrical geometry) in
a waveguide. Here we present a similar derivation, but using a planar geometry. For
planar geometry, the complex pressure can be written as as shown in [33, Eq. 5.26].

eikzm (w)xl(.
p(x, z, w) c Zm(zs)#m(z) (6.1)

m kxm(w)

where x is the coordinate pointing directly away from the source and kxm (w) is the
horizontal wavenumber for mode m at a temporal frequency of w. Analogous to
the derivation in Sec. 2.3, define

1
Bm = m(Z)m() ). (6.2)

kXM w)
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The scalar acoustic intensity is then the pressure times its complex conjugate:

I(x, W) = p(x, W) . p(x, W)

oc ( Bmeikxm()x) ( Bie-ikl(w)x) (6.3)

B2 + 2 ( BmBi cos(Akmi (w)x) (6.4)

where the overline indicates a complex conjugate and Akml(w) = kxm(w) -

kxl(w). Eq. (6.4) shows that the intensity at a fixed w is a sum of cosines, each

of which has a spatial frequency in the x coordinate that depends on the difference

between a pair of modes' horizontal wavenumbers.

It was shown in Sec. 2.3.2 that in an ideal waveguide, # 1 because Akmi (w) oc

17w for modes far from cutoff. That implies that the x-coordinate spatial frequen-

cies in the intensity depend on w like 1/w [26].

6.3 Relating the waveguide invariant to wavenumber in-

tegration

In the previous section it was shown that the x-coordinate spatial frequencies in

the acoustic intensity are determined by horizontal wavenumber differences. In

this section, we relate the wavenumber integration kernel to the x-coordinate spa-

tial frequencies in the intensity I(x, w), which reveals a relationship between the

wavenumber integration kernel and the waveguide invariant.

To obtain the complex pressure p(x, w) using wavenumber integration, the

Helmholtz equation for p(x, w) is transformed into the wavenumber domain us-

ing the Fourier transform pair [33, Eqs. 2.85 and 2.86]:

p(x ) = j IF(kx) eikxx dkx (6.5)

( = I p (x) e-ikxx dx (6.6)
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The boundary conditions are then written as a function of kx, and the resulting
equations are solved in the k, wavenumber domain at a single temporal frequency
to yield the wavenumber kernel IV (ky, w), which represents the magnitude and
phase of the spatial frequency components k, of the complex pressure field at a par-
ticular temporal frequency w. T (ky, w) is then transformed (back) to the x domain
using Eq. (6.5), yielding p(x, w). The scalar acoustic intensity can then be com-
puted by multiplying the pressure by its complex conjugate: I(x, w) = p(x, w) .P(x, w).
Note that the wavenumber kernel T (kx, w) for a cylindrical geometry is identical to
that for a planar geometry; only the integral transform used to obtain p(x, w) from
T (x, w) is different.

In order to relate the waveguide invariant to the wavenumber integration ker-
nel T (kx, w), we seek to establish a relationship between 4' (kr, w) and the x-
coordinate spatial frequencies in the intensity I(x, w). This relationship is provided
by the Wiener-Khinchin Theorem [63, 64], which will now be used to show that the
magnitude of x-coordinate spatial Fourier Transform of I(x, w) can be calculated
from the autocorrelation of the wavenumber kernel. Note that although the Wiener-
Khinchin Theorem is well-known for its use in statistical spectrum estimation, our
application is purely deterministic.

The autocorrelation of the wavenumber kernel is:

C(Akx) jT(k) +(k+ Akx) dkx (6.7)

where the overline indicates a complex conjugate. Following the standard deriva-
tion of the Wiener-Khinchin Theorem, insert Eq. (6.6) into Eq. (6.7) and perform a
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series of algebraic manipulations [63, 64]:

C(Akx) = j0 ( j0p(xI) eikxxi dx1

x - p(x2) eikxkx)x2 dx 2 dkx
(27r fo0

1 4 j j fj P(x1) eikxxlp(x 2 ) e-i(kx+Akx)x2dkx

- 2 f P(xI)P(x2) eikx(x1-x2) e-iAkxx2 dk

1o -oo -oo

42 1 f P(x1 ) 6(x1 - x 2 )P(x 2 ) eiAkxx2 dx1 dx 2

- 2 j (xi) P(x1) e-iAkox1 dxi

1 2 j I(x 1 ) e-iAkxxl dxi

(6.8)

dx1 dx 2

xdx1 dx 2

(6.9)

Eq. (6.9) shows that the autocorrelation of the wavenumber kernel is propor-

tional to the x-coordinate spatial Fourier transform of the scalar acoustic intensity

I(x). If one were to decompose I(x) into all of its spatial frequencies compo-

nents, the relative magnitude of those spatial frequencies could be determined by

the autocorrelation of the wavenumber kernel.

This result can be related to the normal modes description of the acoustic in-

tensity given in Eq. (6.4). The wavenumber kernel I(kx) has peaks at values of

kx corresponding to the modal horizontal wavenumbers. Thus the autocorrela-

tion of Q(kx) will be large at Akx values corresponding to the differences in the

modal horizontal wavenumbers - precisely the x-coordinate spatial frequencies of

I(x, w) shown in Eq. (6.4).

The peaks (local maxima) of the autocorrelation of the wavenumber kernel cor-

respond to the modal horizontal wavenumber differences (Akm(w)), so the peaks'

dependence on frequency will be the same as Akmi (w)'s dependence on frequency.

Because the waveguide invariant describes Akmi(w)'s dependence on frequency,

the waveguide invariant also describes how the peaks of the autocorrelation of the

wavenumber kernel depend on frequency. The next section analyzes this further.
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6.4 An ideal example

The waveguide invariant is well understood for an ideal waveguide because the
horizontal wavenumbers can be calculated analytically. For mode pairs in an ideal
waveguide where both modes are far from cutoff, Akmi (w) is approximately pro-
portional to 17w, which corresponds to # ~ 1 (see Eq. (2.22) or [26]). So one
would expect the Ak, location of the peaks in C(Ako, w) for an ideal waveguide
to depend on w like 1/w. We now show that this is indeed the case.

The wavenumber kernel for an ideal waveguide is [33, Eq. 2.143]

( sin kzz sinkz(D-z)

kz sin kzD Z '> z(.

where kz = - k2 and D is the depth of the waveguide. J(k, w) has
poles when kzD = m7r for positive integers m, or equivalently at kx values cor-
responding to the modal horizontal wavenumbers. Those poles will then depend
on frequency in the same manner as the modal horizontal wavenumbers will, and
so the Akx location of the peaks of C(Akx, w) will depend on W in the manner
predicted by the waveguide invariant (oc 1/w).

To visualize this dependence, a plot of xI'(kx, w) is shown in Fig. 6.1(a) along

with its autocorrelation in Fig. 6.1(b). The black lines in Fig. 6.1(b) correspond to a
few potential striation paths predicted by the waveguide invariant with # - 1 (lines
with Akx oc 17w). It can be seen that there are striations in Fig. 6.1(b) that do
not match up well with the black lines. This discrepancy appears to contradict the
analysis in the previous section. But if we remember that # is only approximately
equal to 1 for mode pairs where both modes are far from cutoff, or equivalently

when kx is close to k, then the discrepancy makes sense because the wavenumber
kernel contains horizontal wavenumber components that are close to cutoff and

thus are not well described by # = 1. To address this issue, Fig. 6.1(c) shows the
wavenumber kernel using only kx values close to k (specifically, 1 k < kx < k) and

Fig. 6.1(d) shows the resulting autocorrelation along with black lines corresponding

to / = 1. The striations in Fig. 6.1(d) match very well with the black lines because
only horizontal wavenumbers that are far from cutoff are included.
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Figure 6.1: All subfigures are for a 100 m deep ideal waveguide with z, = 16 m
and z = 73 m, and are in units of dB re: an arbitrary reference. (a) I T(kx, w)1,
the wavenumber kernel as a function of horizontal wavenumber and frequency. (b)
|C(AkX, w) , the autocorrelation of wavenumber kernel shown in subfigure (a) as
a function of wavenumber difference Akx and frequency w. The black lines are
example striation paths corresponding # = 1 (lines with Akx oc 1/w). (c) Same
as subfigure (a), but only including k. values far from cutoff (2k < kx < k). (d)
IC(Akx, w)|, the autocorrelation of the wavenumber kernel shown in subfigure (c).
The black lines are example striation paths corresponding # = 1 (lines with Akx oc
1/w), and match the actual striation paths more closely than those in subfigure (b)
because subfigure (d) only includes kx values far from cutoff.
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6.5 Relevance

Many applications of the waveguide invariant, such as the one in Ch. 3, require an
assumption about the value of #. It is often correct to assume that # ~ 1 in shallow-
water waveguides, but this assumption is not always valid, as discussed earlier
in this thesis and in [18]. Consequently, numerical modeling is sometimes used
to determine the approximate value of # in a given environment [51]. Although
this can be done by simulating the acoustic field itself, more insight can often be
gained by calculating more fundamental quantities such as the modal horizontal
wavenumbers or the ray parameters (horizontal slowness, cycle distance, etc. - see
[24, Eqs. 11-15]), which can be related to the value of the waveguide invariant.

However, normal modes and ray theory are not conducive to describing the
acoustic field in some environments, such as those involving attenuating elastic
media (especially if one is interested in the acoustic field inside of the elastic me-
dia). In those cases, understanding how the wavenumber-integration kernel relates
to the waveguide invariant may allow one to gain insights that would be difficult to
obtain otherwise.

For example, the concepts described in this chapter may be useful for study-
ing the effect that surface ice has on the value of #. The striations in a plot like
Fig. 6.1(d), but generated for an ice-covered waveguide rather than an ideal one,
could reveal whether it's reasonable to assume # = 1 in such an environment.
More specifically, one could use a plot like Fig. 6.1(d) to determine if hydrophones
sitting on surface ice (or embedded in the seafloor) would record the the same
range-frequency waveguide invariant striations that a hydrophone in the water col-
umn would record.

6.6 Chapter summary

The waveguide invariant implies a specific dependence of the acoustic intensity's
x-coordinate spatial frequencies on the temporal frequency w. When the geom-
etry of the problem is planar, the wavenumber integration transform is a Fourier
Transform, and so the Wiener-Khinchin Theorem can be used to relate the auto-
correlation of the wavenumber kernel to the x-coordinate spatial frequencies in the
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acoustic intensity. A 2-d plot of the autocorrelation of the wavenumber kernels ver-

sus "wavenumber lag" Akx and temporal frequency w exhibits striation patterns

that can be explained by the waveguide invariant.

The relationship between the waveguide invariant and wavenumber integration

is not as direct as the waveguide invariant's relationship to normal modes or ray

theory. However, the relationship described in the present analysis may be useful

in certain situations because wavenumber integration can be used in waveguides

that are difficult to model using normal modes or ray theory.
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Chapter 7

Conclusion

The waveguide invariant # is both embarrassingly simple (why did it take so long

to explain the striations in spectrograms!?), and fantastically complicated (hidden

behind so many layers of mathematical manipulation, it's a wonder it was ever

discovered!).

To explain waveguide invariant range-frequency striations, one must transform

the time-domain wave equation into the frequency domain. Then transform that

frequency-domain equation into the horizontal wavenumber domain, and then sepa-

rate it into a depth-dependent equation and a range-dependent equation. The range-

dependent equation provides the eikrmr terms that interfere with one another. The

depth-dependent equation, which often cannot be solved analytically, provides the

krm which depend on w. The difference between two krms, and how that differ-

ence depends on w, determines the waveguide invariant 0. And # determines the

slopes of the striations in a spectrogram from a hydrophone being towed away from

a source.

Small changes in the SSP and in the seafloor properties can cause large changes

in the structure of the acoustic field. So it is somewhat surprising that a single scalar

value of 3 accurately describes the range-frequency striations that appears in the

acoustic field under such a wide range of SSPs and seafloors.

This thesis built upon previous research to understand why # is such a robust

description of the acoustic field, and to develop fundamental signal processing tech-

niques for the waveguide invariant.
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This chapter summarizes this thesis and discusses its significance. Although

this thesis made significant contributions, much is left to be understood; several

suggestions for future research are given in this chapter.

7.1 Thesis summary

Chapter 3 assumed # = 1, which allowed for passive range estimation. Although

similar research had already been performed, Chapter 3 quantified the signal pro-

cessing techniques and derived some fundamental quantities such as the minimum

source bandwidth required to observe range-frequency striations. Chapter 3 also

provided an experimental example showing that # - 1 in a realistic waveguide

with a non-uniform SSP and a seafloor with unknown acoustic properties.

Chapter 4 analyzed why # / 1 in shallow-water waveguides, and how the

SSP and seafloor affect #. The original paper on the waveguide invariant gave

some brief hand-waiving, albeit substantive, arguments for this, and solved for #
analytically in a few special cases. Other researchers investigated # numerically,

and analytically using ray theory. In Ch. 4, a method was derived using normal

modes that provided not only a quantitative relationship between the SSP and 0,
but also a relationship that could also be understood intuitively through the function

#1 (Sp). This method was used to prove that / > 0 for all surface-reflected bottom-

reflected (SRBR) modes in a vacuum-bounded waveguide regardless of the SSP It

was also used for a qualitative argument suggesting that # 3 1 for SRBR modes in

a vacuum-bounded waveguide, regardless of the SSP. (Unfortunately the analysis

in chapter 4 did not prove that / 3 1 for SRBR modes.)

Chapter 5 drew from the understanding gained in Ch. 4, and showed how an

array can be used to not only filter out noise, but to filter out non-SRBR modes

leaving only the SRBR modes which are likely have #3ml 1.

Chapter 6 related the waveguide invariant to wavenumber integration, develop-

ing another tool to study the waveguide invariant.
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7.2 Thesis Significance

Applications: The waveguide invariant has been applied to a broad range of prob-

lems in ocean acoustics: passive sonar, active sonar, array processing, time-reversal

mirrors, and more. (See Appendix A for a review of the waveguide invariant lit-

erature). Many of those applications could benefit from the concepts discussed in

this thesis. For example, a transmitting TRM array could emit sound primarily at

horizontal wavenumbers that correspond to SRBR modes, ensuring that # ~ 1 and

thus increasing the predictability of the focal spot shift with frequency (details in

next section).

Fundamental Understanding: The research in this thesis was applied exclu-

sively to range independent waveguides. However, the waveguide invariant is com-

monly applied to range dependent and azimuthally dependent waveguides. The

method for calculating # in Ch. 4 could be applied to understanding how range-

frequency striations behave in such environments. It could also be used for under-

standing how the range-frequency striations change in time due to oceanographic

events like internal waves (details in next section).

Also, the analysis in Ch. 6 relating the waveguide invariant to wavenumber

integration may be useful for studying the waveguide invariant under conditions

which are not conducive to ray theory or normal modes, such as the acoustic field

in a lossy elastic seafloor.

7.3 Specific suggestions for future research

This section is a list of suggestions for future research. Some suggestions are nat-

ural continuations of the research presented in this thesis, and some are simply

"holes" in the current understanding of the waveguide invariant. The difficulty of

executing these suggestions ranges from "assign as a homework problem" to "write

a multi-year multi-institution research grant proposal."

Range dependent environments

The waveguide invariant # can be defined for mildly range-dependent environments

using the adiabatic approximation [18]. D'Spain et al. extended that to range- and



azimuthally-dependent environments using the "N by 2D" approximation [21]. The

method for calculating # presented in Ch. 4 could be applied to (or even simply

inserted into) [21, Eq. 14 and/or 18].

The concept of the waveguide invariant may even be able to be extended to

strongly range-dependent environments where mode coupling occurs. [53] has an

expression for how the modal amplitudes Am change as a function of range due to

mode-coupling. One may be able to insert that expression, using the mode shapes

as calculated from the WKB approximation, into the derivation of the waveguide

invariant shown in Sec. 2.3 to see how much mode couping can occur before the

range-frequency striations are destroyed.

Forcing 3 1 without an array (AUV environmental adaptation)

Chapter 4 showed that surface-reflected bottom-reflected (SRBR) modes tend to

have # ~ 1. Chapter 5 showed that if one wants to observe only SRBR modes,

one can use an array to filter out certain wavenumbers. An alternative method for

observing the striations from only SRBR modes (which tend to have # / 1) is

to place the acoustic receiver at the depth of the sound speed maximum. Doing

so will minimize the contribution to I(r, w) from non-SRBR modes, because non-

SRBR modes will have small O(z) at that depth. This could be useful for any

application where one would like to assume # - 1, like passive range estimation.

An Autonomous Underwater Vehicle (AUV) could adaptively determine the SSP
maximum, and move to that depth. An AUV with an array could detect a source,

adaptively head directly towards it, and move to depth of the SSP maximum.

Tighter bounds on # for SRBR modes

In Sec. 4.4, it was mathematically proven that #(Sp) > 0 for SRBR modes in a

vacuum-bounded waveguide, regardless of the SSP. The examples in that chapter

also showed that typically #(Sp) ~1 for SRBR modes. A "hand-waiving" argu-

ment was used to explain this: SRBR modes behave similarly to modes in an ideal

waveguide, which have #3 1 (see last paragraph of Sec. 4.2). By using the equa-

tions in Sec. 4.4, it may be possible derive tighter bounds on #, or to quantitatively

explain why # ~ 1 for SRBR modes regardless of the SSP.
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Waveguide invariant array processing for active transmissions

The array processing concepts presented in Ch. 5, where one filtered out non-SRBR

which typically do not correspond to # ~ 1, could be applied to many of the waveg-

uide invariant applications discussed in Appendix A. Specifically, transmitting ar-

rays in TRM may be able to apply similar concepts, increasing the ability accurate

predict how the range of the focal spot will shift with frequency. The work pre-

sented in [49] may also benefit from such filtering, although the mode coupling

may subdue the desired effect.

Waveguide invariant array processing in non-uniformly spaced arrays

The array processing (wavenumber filtering) method in Ch. 5 was based on a stan-

dard time-domain filter design technique (f i r l s in Matlab). Because time domain

filter design techniques usually assume the samples are spaced uniformly in time,

they cannot be applied to arrays where the elements are non-uniformly spaced.

If one wanted to do wavenumber filtering similar to that in Ch. 5, but for a non-

uniformly spaced array, one would have to use (or develop) filter design techniques

that can handle non-uniformly spaced arrays. The methods in [61, Ch. 3] may be

useful for this.

1/r spreading

Quantify the effect of the 1/r spreading that is ignored when deriving the waveg-

uide invariant, in terms of how it affects the "observed" value of 3 in the striation

slopes in I(r, w). Note that one can factor out the 1/ in the Am and A, terms in

Eq. 2.10.

Including attenuation when deriving #

Re-derive the waveguide invariant but allow for the horizontal wavenumbers to be

complex so that they can take into account bottom loss. The result will likely be

like Eq. 2.10, but with an exponential decay tacked on to each cosine term. The

footnote in Sec. 2.3.1 may help with this.
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Group speeds and phase speeds

[10, Eq 4.5.15] gives an integral expression for the group speed times the phase

speed, um - v, for a c(z) that is constant above some depth but can vary with z

below that depth. That expression may be able to be used to calculate #, without

even using the WKB approximation. Or it may provide some general bounds or

insights on the waveguide invariant (in that specific environment).

Striation slopes change with range and frequency

As discussed in Sec. 2.2.3 and Sec. 2.3.3, the waveguide invariant 0m, is typi-

cally defined using adjacent modes (the Taylor series expansion of group and phase

slowness plotter versus mode number). The justification for this is based on a prop-

erty of the modal sum discussed in Sec. 2.2.3. The group (or groups) of modes

that dominate the modal sum is determined by the range and frequency of the re-

ceiver. Thus, the range-frequency striation slopes (locally in the (r, f) plane) will

be different at different ranges and frequencies, as is observed in Fig. 2.6(c). This

phenomena is not observed as strongly in shallow-water waveguides, presumably

because shallow-water waveguides have many fewer modes and less of those modes

are non-SRBR modes.

It would be worthwhile to quantitatively investigate when the argument in Sec. 2.2.3

applies, and how it could be used to predict which group of modes (and thus which

value of 13) is relevant at a given range frequency. Perhaps there are certain ranges

and frequencies where one can assume # ~ 1 in a deep-water waveguides, as sug-

gested by some of the striations around 60 km in Fig. 2.6(c) (which happens to

be the convergence zone distance...). This investigation could be done using the

argument in Sec. 2.2.3 - looking at kr as a function of m and w. In addition, ray

theory may also provide good insights into this, especially as it is portrayed in [20,

Fig. 3.8] (which is the original reference for Sec. 2.2.3).

Another approach for studying this would be to investigate the relationship be-

tween the (AmAl cos(Akmir)) terms in Eq. 2.10, and the argument in Sec. 2.2.3.

Figure 2.2 shows the contribution to the complex pressure from each mode, but

each (AmA cos(Akmir)) term represents the contribution to the magnitude of the

pressure from 2 modes.
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Upper limits on range and frequency for observing striations

Waveguide invariant striations occur when the environment is not strongly range-

and/or azimuthally-dependent (i.e., no mode coupling), and the source is broad-

band. As the frequency and range increase, scattering from inhomogeneities in

the environment (boundary roughness, SSP variations) tends to smear out or com-

pletely destroy the waveguide invariant striations. This effect can be seen in Fig. 2.5,

where the striation widths get wider as the range increases (contrary to what Eqs. (3.6)

and (3.5) predict for a perfectly homogeneous waveguide). Rouseff and Kuz'kin

have done some research on this topic [52, 42, 41], but there is certainly more re-

search that could be done with relative ease given the state of understanding of

acoustic scattering in the ocean waveguide.

The upper limit in range and frequency at which the striations would appear

will depend on the inhomogeneities of a particular environment. Such upper limits

could obviously be measured experimentally by towing a hydrophone away from

a very broadband source. In addition, the literature in Appendix A provides much

experimental data.

On the theoretical side, there is a large body of literature studying scattering

in the ocean; surely it could be applied to determining how far away and how

high frequency waveguide invariant striations could be observed. To first order,

surface and seafloor roughness act simply as a loss-mechanism [33, Sec. 1.7]. More

sophisticated models would likely need to be used. [60, Ch. 6] may provide a good

starting point, as would [36, Chs. 4 and 6].

Another approach might be to use the expressions used to generate [16, Fig. 5(a)],

which could be analyzed as a function range and frequency. [2, 17] may also pro-

vide useful insights.
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Appendix A

Review of waveguide invariant

literature

This appendix is a list of references about the waveguide invariant, with each ref-

erences loosely categorized based on its application. Nearly all articles in The

Journal of the Acoustical Society of America and IEEE Oceanic Engineering relat-

ing to the waveguide invariant are included here; some of the Russian literature is

also included.1 [47] gives a brief summary of the Russian literature on the waveg-

uide invariant and similar phenomena, including several of references which are

not reviewed in this appendix.

A.1 General review

Fundamental research on the waveguide invariant

The first paper on the waveguide invariant is [18] by Chuprov. This paper discusses

the waveguide invariant from the perspective of normal modes and ray theory. It

focuses primarily on range-frequency striations, but also discusses some changes

with receiver depth. It focuses mostly on deep-water propagation but discusses

shallow-water waveguides as well. It analytically calculates the waveguide invari-

'The journal Soviet Physical Acoustics turned into Acoustical Physics sometime in the 1990s.
Articles from Acoustical Physics are available online from Springer; many articles in Soviet Physical
Acoustics have been translated into English and were able to be tracked down MIT's superb librarians.
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ant for ideal waveguides and surface-trapped modes in an n 2-linear waveguide. It

presents numerical and experimental data, and shows that in most cases the Doppler

effect due to source/receiver motion has little effect on range-frequency striations.

It also briefly mentions how to account for mild range dependence using the adia-

batic approximation (although other references give a more detailed derivation). In

general, this paper is dense and fairly difficult to follow unless the reader has a very

deep understanding of ocean acoustics. It's a 'must read', but probably only after

reading other simpler derivations of the waveguide invariant.

In [11, Sec. 6.7.2], Brekhovskikh and Lysanov give a derivation and discus-

sion of the range-frequency waveguide invariant in somewhat simpler terms than

Chuprov's original paper does. 2

[21] by D'Spain et al. is a highly cited paper which presents more thorough

derivations of many of the results in Chuprov's original paper. This paper extends

Chuprov's range-dependent expression for # to environments that change with az-

imuth as well, using the "N by 2D" approximation. Striations in experimental data

with a frequencies of 70-170 Hz are compared with predicted striation slopes. Also

derived is an expression for the striation trajectories in the spectrogram of a fixed

hydrophone, when the a source's position is a function of time. This paper provides

an approximate expression for # in an waveguide with a constant sound speed and

vacuum bottom, but with range-dependent bathymetry. Also discussed are "gener-

alized" waveguide invariants, which explain striations which results from changes

in waveguide depth.

The 2nd edition of the textbook "Computational Ocean Acoustics", which is

still in preparation, will contain a few sections that discuss the waveguide invariant.

[34, Sec. 2.4.6] gives a very nice introduction to the waveguide invariant. There is

a section in [34, Ch. 3] that discusses how the waveguide invariant can be calcu-

lated from acoustic ray parameters, which is based on the work in [22] and [24].

Expressions are derived for calculating the waveguide invariant without needing to

run full ray-tracing models, similar to the result in Sec. 4 of this thesis which does

not require solving for the horizontal wavenumbers. A section in [34, Ch. 5] also

discusses the waveguide invariant, and gives some numerical examples.

In [26], Grachev shows that if a single scalar value of # is an accurate descrip-
2This author recalls noticing an typographical/mathematical error in their derivation, however.

150



tion of the horizontal wavenumbers, then those horizontal wavenumbers must have

a power-law dependence on frequency. Grachev also discusses an analogous result

or a generalized waveguide invariant that deals with changes in waveguide depth.

Also discussed are # for surface-trapped modes modes in n 2-linear waveguides,

and # for waterborne modes in asymmetric and symmetric n2-linear waveguides.

In [42], Kuz'kin et al. study range-frequency striations in a range-dependent

environment using experimental data. Perturbation theory is used to determine

how changes in the SSP will affect changes in the observed striation pattern, and

how one might be able to use that for acoustic inversions.

In [41], Kuz'kin uses a statistical correlation framework to study range-frequency

striations (or frequency shifts) due to range-dependent SSP perturbations.

In [15], Burnekov discusses the boundaries (range) of validity of the adiabatic

range-dependent expression for #. He analyzes 3 in the case of a waveguide with

a constant bottom slope, and he shows that # as a function of range can change

quickly with range even if the environment changes slowly with range because

modes can go from being SRBR to non-SRBR as the bathymetry changes.

In [44], Lobanov and Petukhov discuss that in range-dependent environments,

# can have a "singularity" ((ri) = 0) which implies the range-frequency striations

will be completely parallel to the frequency axis in the range-frequency plane. They

point out that in the time domain, #(ri) = 0 means that pulse signals are not

subject to dispersion broadening with time at the range ri. [44] investigates the

range-frequency striations when only a few modes are propagating, and notes that

even if many modes are propagating, the higher order modes often attenuate away

with range leaving only a few propagating modes. The effects of seismic (elastic)

waves on the range-frequency-striations are also briefly discussed. Finally, there is

a brief mention of how / can change with range and frequency.

Note that much of the Russian literature, such as [44], makes statements that

only apply to waterborne modes without explicitly stating that the statements only

apply to waterborne modes. For example: "under the WKB approximation, a group

speed has a functional dependence on the phase speed [independent of frequency]."

That statements is only true for waterborne modes, and is not true for bottom inter-

acting modes (Ch. 4 illustrates why).

In [52], Rouseff uses numerical simulations to study the effect of shallow-water
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internal waves on #. He discusses that the value of # depends on the type of mode,

and that the "measured" value of # (i.e., the striations slope seen in I(r, w)) depends

on receiver depth. He numerically studies the effect of bottom attenuation and

range on the range-frequency slopes.

In [4], Baggeroer discusses methods for plotting and understanding the waveg-

uide invariant in several canonical waveguides, using normal mode simulations.

Baggeroer also shows how the 2D-DFT can be used to extract the value or distri-

bution of # from I(r, w).

In [51], Rouseff and Spindel discuss how to use a 2D-DFT to measure the dis-

tribution of 3 from I(r, w), and show that the striations slopes sometimes depends

on the source and receiver depths.

In [14], Brown et al. shows that when the modal horizontal wavenumbers are

calculated from from the WKB approximation and the limit of high frequency

is taken, # is equivalent to the "ray stability parameter" a. Note that there is

some overlap between the work in [14] and the work Ch. 4. [14] discusses range-

dependent effects, including mode-coupling. [6] extends the work of [14] and dis-

cusses how # related to "acoustic beam dynamics."

In [1], An et al. discuss how a 2D-DFT can be used to calculate the slope of the

waveguide invariant striations. They show a simulated plot of # versus frequency

and modal phase speed in a Pekeris waveguide. They also show how the value of #
observed in I(r, w) depends on the source and receiver depths, and they show some

experimental data from the South China Sea with frequencies around 370 Hz and

ranges around 13 km.

In [13], Brooks et al. discusses a few methods of extracting the striation slopes

from I(r, w).

[47], which is a summary of the Russian literature on the waveguide invari-

ant, is the first chapter of a book which contains several articles on the waveguide

invariant, some of which are not described in this appendix.

Active sonar

In [49], Quijano et al. discuss how the waveguide invariant concept can be applied

to bi-static active sonar. An expression is given for the pressure as a function of

source/receiver/target geometry, including the mode coupling which depends on the
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model of the target. That expression illustrates how # from passive measurements

can be related to active sonar. Some experimental data shows a measured #active
of 1.4, which is then compared to the (passively) measured values of # from other

papers.

In [27], Chensong et al. applies the concept of the active sonar waveguide

invariant from [49] to an extended Kalman filter tracking algorithm. The waveguide

invariant is used to restrict the possible state transitions of the state vector in the

Kalman filter, leading to better tracking performance.

In [25], Goldhahn et al. uses the waveguide invariant to describe reverberation

in active sonar returns, allowing for an improved ability for target detection.

Passive sonar and non-adaptive array processing

In [56], Tao et al. demonstrate a method for estimating the speed and closest-point-

of-approach of a moving source. Tao shows that if # = 1 and the source maintains

a constant speed and bearing, parabolic striations will appears in a spectrogram

from single fixed hydrophone. The properties of the striations are extracted using

a Hough transform, and a range and speed estimate are produced. The method is

tested on experimental data from a pontoon boat in a 9 m deep lake, with frequen-

cies of about 3-5 kHz and ranges of a few hundred meters.

In [23], D'Spain et al. discuss striations in a plot the beamformed acoustic in-

tensity from a vertical array. Striations in range, frequency and vertical wavenum-

ber are discussed assuming the vertical array is an ideal wavenumber-filter (as op-

posed to [66] and Ch. 3, which explicitly take into account the array's non-ideal

response). The results are discussed in the context of 4 different SSPs which can

be treated analytically. Methods for depth and range estimation are discussed and

demonstrated using experimental data from SWellEx-3 (frequencies of 300-700 Hz

and ranges of 1.5 to 6 km.)

In [66], Yang shows that the waveguide invariant range-frequency striations

appear in the output of a horizontal line array beamformer, with some array gain.

He discusses some applications of this and demonstrates them with simulated data.

In [62], Turgut et al. estimate the ratio of a broadband acoustic source's speed

to its closest-point-of-approach. Striation trajectories are derived for sources with

constants speeds and bearings, similar to those in [56]. The striations observed in
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the beamformer's output from experimental data (frequencies of 50-150 Hz) are

analyzed using Hough transforms. The waveguide invariant formulation from [21]

is used to take into account a # that varies with range and azimuth. [62] also

investigates the possibility of jointly estimating the value of # along with the other

parameters.

Chapters 3 and 5 of this thesis, and their associated papers in JASA would be

in this section.

In [59], Thode et al. localize an acoustic source by utilizing the waveguide

invariant in a matched field processing (MFP) scheme. Thode shows that the side-

lobes of the MFP, when plotted versus frequency for a broadband source, follow

a trajectory described by # which can be used to accurately estimate the range to

the acoustic source assuming # = 1. Thode demonstrates this experimentally for

shallow water with a Blue whale vocalization. Thode also argues through analysis

and simulation that even if # is a negative number, as it would be in environments

like the Arctic, one can use the sidelobe behavior to estimate the source range. This

result is interesting because most other applications of the waveguide invariant as-

sume # = 1.

In [58], Thode presents a method for "estimating the range of an unknown

broadband acoustic source in a [range-independent] waveguide, using a vertical

array and a signal sample from another broadband source a known location relative

to the array." Experimental data is used with frequencies from 75-150 Hz and
ranges from about 3-5 km. Thode discusses the use of a Radon transform to find
the slopes of striations.

Time-reversal mirrors and adaptive array processing

In [57], Tao and Krolik used the waveguide invariant to improve covariance matrix

estimation for adaptive beamforming, in order to reduce coherent multipath inter-

ference. The basic idea is that the covariance matrix at one frequency can provide

useful information about the covariance matrix at another frequency, with the value

of # describing how the wavenumber differences change with frequency.

In [37], Kim et al. use the waveguide invariant for null-broadening - an

adaptive beamforming technique - in the context of matched field processing in

a waveguide. A relationship to adaptive time-reversal mirrors is also discussed.
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In [54], Song et al. use the waveguide invariant to create a time-reversal mirror

with variable range focusing. The idea is that by shifting the frequency of the

received signal before re-transmitting it, the range at which the sound will focus

will shift proportional to the value of #. The range is about 6 km and the frequency

is about 450 Hz.

In [32], Hodgkiss et al. experimentally verify the ideas presented in [54], and

perform the TRM focusing at ranges of up to 30 km, at frequencies around 450 Hz.

By comparing the change in frequency with the change in range of the focal point,

they measure # = 1.4.

In [38], Kim et al. use the waveguide invariant to predict the cross-spectral

density matrix (CSDM) at one range based on the measured CSDM at a slightly

different range from a 'probe' source (assuming the depth remains fixed). This

predicted CSDM is used to place a null with an adaptive TRM.

In [39] by Kim et al. changes in focal depth due to changes in frequency and

waveguide depth are related to the waveguide invariant.

Geoacoustic Inversion

In [29], Heaney uses the waveguide invariant striations' slopes and spacing, along

with the incoherent transmission loss, for "rapid geoacoustic inversion". In [28],

Heaney extends that work to range-dependent environments, and in [30] Heaney et

al. use a seismic survey source.

The array invariant and the waveguide invariant

[43] describes an invariant property of acoustics fields in a waveguide which is

dubbed "The array invariant", which is used for passive range estimation for an

impulsive acoustic source. The array invariant describes a property of the acoustic

signal as a function of time and range along an array. The array invariant differs

from the waveguide invariant in that the array invariant describes the acoustic pres-

sure itself, as opposed to the acoustic intensity. The array invariant is only invariant

for modes where k, has (almost) no dependence on frequency, as discussed in [43].

These modes are usually the same modes for which # ~ 1.
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A.2 Rays, modes, and the waveguide invariant

In [18], Chuprov states that the waveguide invariant can be described using normal

modes or ray theory. Subsequent research can be found in [22] and [24], the results

of which are summarized in [34, Ch. 3]. Also see [14] and [6].

[20, Fig. 3.8] provides a very interesting way of understanding the relationship

between rays and the modal sum, and that understanding may be very useful for un-

derstanding how the observed striations in I(r, w) depend on range and frequency

- a topic that is not well studied as pointed out in Sec. 2.3.3. For example, # is

defined in terms of a group of adjacent modes. The striations in I(r, w) are deter-

mined by whichever group of modes dominates the modal sum at particular r and

w, as discussed in Sec. 2.2.3. Because a ray represents the interference between

adjacent modes, ray tracing may be a good tool for determining how the striations

in I(r, w) change with r and w. This author is not aware of any research exploring

this idea in detail.

The WKB approximation can be a "bridge" between normal modes and ray

theory, as discussed [33, Ch. 3] and even more so in [34, Ch. 3]. [60, Sec. 5.3] and

other parts of [60] also discuss the relationship between rays and modes, as does

[11, Sec. 6.7.1].
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Appendix B

References for the WKB

approximation in ocean acoustics

The WKB approximation is used in parts of this thesis to describe the horizontal

wavenumbers of modes in ocean acoustic waveguides. It is a general mathematical

technique for approximating the solution to certain types of differential equations,

and is discussed in textbooks on applied math, quantum mechanics, electromag-

netism, and acoustics.

This appendix is a far-from-exhaustive list of references that discuss the WKB

approximation specifically as it applies to ocean acoustics.

* [9, Ch. 8] and [8, Ch. 23 ] discuss the validity of the WKB approximation as

applied to acoustic propagation in stratified media, but not specifically as it

applies to modes waveguides.

* [8, Sec. 48.5] discusses WKB approximation for surface-trapped normal

modes in an n 2-linear waveguide.

* [8, Ch. 49.6] discusses WKB approximation for surface-trapped modes in an

Epstein waveguide.

* [60, Sec. 2.9 and 5.3] discuss the WKB approximation for ocean acoustic

waveguides, as it relates to modes and ray theory.

157



* [33, Sec. 2.5 and Ch. 3] discuss the WKB approximation and how it relates

to ray theory. [34, Ch. 3] has even more material on how the WKB approxi-

mation relates to ray theory.

* [33, Sec. 5.6] uses the WKB approximation to describe the mode shapes in

deep-water waveguides.

* [11, Sec. 6.7] briefly discusses the WKB approximation, and also has a nice

bulleted list of mode types. However, it does not discuss bottom interacting

modes and thus does not discuss how to use the vertical phase integral to

obtain the modal horizontal wavenumbers. It does, however, discuss a good

technique for normalizing the mode shapes obtained from the WKB approx-

imation.

* [5] discusses how to use the WKB approximation to use calculate the modal

horizontal wavenumbers for modes in ocean acoustic waveguides.

This WKB approximation as presented in Sec. 4.2 of this thesis is based on [5].

But [60, Sec. 2.9] also provides most of the relevant information.
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Appendix C

List of symbols and acronyms

modal the adjective for the noun "normal modes" (e.g., modal horizontal wavenum-

bers).

JASA The Journal of the Acoustical Society of America

MFP matched field processing

SSP sound speed profile

TRM time-reversal mirror

2D-DFT two-dimensional discrete Fourier transform

c speed of sound

d depth of ocean waveguide

I scalar acoustic intensity

1 mode number (same as m, but used when there is a double summation)

m mode number

n mode number, but in terms of the WKB approximation. See Sec. 4.2. In n2_

linear waveguide, n stands for the index of refraction.

r range from the acoustic point source in a waveguide

159



x range from the acoustic line source in a waveguide. See Ch. 6.

Sp phase slowness (See Sec. 2.3.3)

Sg group slowness (See Sec. 2.3.3)

z depth below the sea-surface

kr,image the image wavenumber of Iwin(r, f) in the r direction. See Sec. 3.3.2

kf,image the image wavenumber of Iwin(r, f) in the f direction. See Sec. 3.3.2

# the waveguide invariant when approximated as being independent of the mode

numbers and frequency.

0m1 the waveguide invariant for a pair of modes with mode numbers m and 1.

The array processing in Ch. 5 uses the following symbols (bold faced lower-

case letters denote vector quantities):

* co is the speed of sound at the HLA depth

" ko = - is the wavenumber at the HLA depthco

* J is the number of elements in the HLA, with each element numbered as

j = 1, j = 2, . .. I , j =

* OL is the look direction as measured from broadside of the HLA

* kL = k0 Sin 0 L is the horizontal wavenumber corresponding to the look di-

rection

" v(kL) = [v1(kL), v2(kL), * . , vj(kL ) T is the steering vector correspond-

ing to the look direction. v is a column vector

* w = [wi, W2  , wJ]T the array weights column vector (e.g., Hamming,

Hann, uniform)

" 0 s is the bearing of the acoustic source as measured from broadside of the

HLA, in the plane parallel to the ocean surface
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* T is the wavenumber response function of the array processor, which de-

pends on the array geometry and the array weights w, and is described in

more detail later.
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