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Abstract

Thermal conductivity is an important transport property that plays a vital role in ap-
plications such as high efficiency thermoelectric devices as well as in thermal manage-
ment of electronics. We present a first-principles approach based on density-functional
perturbation theory (DFPT) to predict the thermal conductivity of semiconducting
materials. Heat in these materials is conducted by lattice vibrations (phonons). The
most important ingredients in the prediction of thermal conductivity in such materials
are the second- and third-order derivatives of energy with respect to atomic displace-
ments. Typically, these are derived using empirical potentials which do not produce
the correct harmonic and anharmonic behavior, necessary to accurately compute
phonon frequencies and relaxation times. We obtain these derivatives from quan-
tum mechanics through DFPT, and use them along with the solution of the phonon
Boltzmann transport equation to predict thermal conductivity. We apply the ap-
proach to isotopically pure silicon and germanium as well as materials with disorder
such as silicon-germanium alloys and show how this leads to excellent agreement be-
tween computed and experimentally measured values. The approach is also applied
to predict thermal transport in nanostructured materials such as superlattices.

In isotopically pure silicon and germanium, phonons scatter only through the
three-phonon anharmonic scattering processes. Using the single-mode relaxation time
approximation and estimating the scattering rate of these processes based on the force
constants derived from DFPT, excellent agreement is obtained between computed and
measured values of thermal conductivity. The approach predicts that in isotopically
pure silicon, more than 90% of the heat is conducted by phonons of mean free path
larger than 40 nm, providing avenues to lower thermal conductivity through nanos-
tructuring.

To predict thermal transport in disordered silicon-germanium alloys of any com-
position, we make use of the phonon modes of an average crystal which has the two
atom unit cell and average mass and force constants appropriate for that composi-
tion. The disorder is taken to lead to elastic two-phonon scattering in addition to
the three-phonon scattering present in pure materials. The idea was first proposed



by Abeles in 1963; however we are able to compute all the ingredients from first-
principles. The force constants for the composition Sio.5 Geo.5 are obtained by using
the virtual crystal where the atomic potential at each site is an average of the silicon
and germanium potentials. We demonstrate how this approach can be used to guide
design of nanostructured materials to further lower thermal conductivity.

In superlattices, we again use the virtual crystal to obtain the second-order and
third-force constants. Computed thermal conductivity is found to lower with increase
in superlattice period; however, the predicted values are higher than experimentally
measured values, and we discuss the cause of this discrepancy. In the limit of very
small period superlattice, we find that thermal conductivity can increase dramatically
and can exceed that of isotopically pure silicon. This cause of this unexpected result
is discussed, and its implications for high thermal conductivity materials, important
for applications in thermal management of electronics.

Thesis Supervisor: Nicola Marzari
Title: Professor of Materials Science and Engineering
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Chapter 1

Introduction

Thermal conductivity plays a critical role in many applications such as microelec-

tronic and nanoelectronic devices [1] and in thermoelectric refrigeration and power

generation [2]. In nanoelectronics, for example, the progression of Moore's law, which

predicts that the number of transistors that can be placed inexpensively on an inte-

grated circuit doubles every two years, has led to increasing chip power dissipation

and heat chip heat fluxes have been predicted to exceed 150 W/cm2 [3, 4]. This,

along with the non-uniform distribution of chip power dissipation, creates localized

hot spots, that reduce device reliability and performance. High thermal conductivity

leads to improved heat spreading thereby reducing the hot spot temperatures, and is

thus critically important for thermal management of electronics.

Thermoelectric devices allow direct conversion of heat rejected to environment

as waste energy into useful electric power and can thus play a key role in achieving

higher energy efficiency. The energy conversion efficiency of a thermoelectric device is

often characterized by the dimensionless figure of merit ZT = S 2o-T/k [5] where S, o,

k and T are the Seebeck coefficient, electrical conductivity, thermal conductivity and

average operating temperature, respectively. The energy conversion efficiency r; [5] is

related to the figure of merit ZT as

/1 +ZT - 1 Tc
r = (1-- ) (1.1)/1+ZT±+Tc/TH TH



where TH and Tc are the hot-end and cold-end temperatures, respectively, across a

thermoelectric device. Thus for a TH=750 K and Tc=300 K, a material with a ZT of

1 would have a maximum thermoelectric energy conversion efficiency of 14%, while

for ZT=3, the conversion efficiency increases to about 25%. For several decades,

however, the ZT in bulk semiconducting materials was found to be significantly lower

than the above values, making these thermoelectric devices too inefficient to be of

any practical use. For example, the ZT in heavily doped n-type single crystal silicon

is about 0.01 at room temperature [6] while that of bulk p-type silicon-germanium

alloys is measured to be about 0.62 [7].

Nanotechnology has led to renewed interest in thermoelectrics. High thermal

conductivity in thermoelectric devices leads to parasitic heat loss that reduces the

energy conversion efficiency. Figure of merit ZT is therefore inversely proportional

to thermal conductivity and lower thermal conductivity leads to higher ZT. Heat in

semiconducting materials is conducted by quantized lattice vibrations called phonons

and one of the most promising avenues to increase ZT beyond ~1 has been to reduce

thermal conductivity through enhanced phonon scattering following alloying, surface

roughening or nanostructuring [8, 9, 10]. For example, reduced thermal conductivity

led to an improved ZT of about 0.6 in surface-rough silicon nanowires [10], 60 times

higher than bulk silicon. Similarly ZT of p-type Bi 2Te3/Sb 2Te3 superlattice was mea-

sured to be about 2.4 [11], a sharp increase over the corresponding bulk materials.

In silicon-germanium alloys, the thermal conductivity is significantly lower than both

silicon and germanium due to disorder. Thermal conductivity below the bulk alloy

value has been achieved by the use of different approaches such as alloy nanocompos-

ites and inclusion of nanoparticles. For example, embedding [12] ErAs nanoparticles

in Ino.53 Gao. 47As was found to result in a thermal conductivity reduction of nearly a

factor of 2 below the alloy limit and a corresponding increase in the thermoelectric

figure of merit by a factor of 2. A combination of above approaches could be used to

design a high ZT material.

An understanding of the relative importance of different approaches in scattering

phonons is important for designing materials with reduced thermal conductivity. The



parameter that typically determines if nanostructuring can lead to lower thermal

conductivity in a material is the phonon mean free path defined as the product of

phonon group velocity and phonon relaxation time. If significant heat is conducted in

a material by phonons of mean free path of about a micron (1pm) or larger then the

thermal conductivity can be reduced by introducing additional scattering mechanisms

like grain boundaries at nanometer length scales. Costs associated with designing a

nanostructured material with lower thermal conductivity can be reduced significantly

if these phonon mean free paths are known a priori.

The work in this thesis is focussed on accurate prediction of thermal conductivity

in pure, disordered and nanostructured materials using a first-principles approach

based on density-functional perturbation theory [13, 14, 15] and phonon Boltzmann

equation (PBE) [16]. The approach involves determining fundamental properties such

as phonon frequencies, group velocities, Bose-Einstein populations and phonon relax-

ation times from first-principles to compute thermal conductivity. Through explicit

knowledge of the above quantities, important parameters such as phonon mean free

paths are determined and these are then used to provide guidelines for the design

of low thermal conductivity materials, important for applications such as thermo-

electrics.

In this work, the relaxation time of a phonon mode is computed based on its

scattering through all possible channels over the entire Brillouin zone. Such a de-

tailed description of the scattering processes can be used to gain insight into atomic

configurations that lead to reduced phonon-phonon scattering and higher phonon re-

laxation times. Through above this work also provides ways to achieve higher thermal

conductivity, important for thermal management of electronics.

The most important ingredients that determine the thermal conductivity in semi-

conducting materials are the second-order and third-order derivatives of energy with

respect to atomic displacements also called the second-order (or harmonic) and third-

order (or anharmonic) interatomic force constants (IFCs). Second-order (harmonic)

force constants determine phonon frequencies, group velocities and Bose-Einstein pop-

ulations, while third-order (anharmonic) force constants are needed to estimate the



phonon relaxation times based on phonon-phonon scattering processes. Accurate pre-

diction of thermal conductivity is often made difficult due to the challenge involved

in accurately estimating these interatomic force constants.

In the past empirical potentials have been used to obtain the harmonic (second-

order) and anharmonic (third-order) force constants. These empirical interatomic

potentials (EIP) are typically fit to experimental properties of materials such as

second-order elastic constants and crystal structure. However the potentials are al-

most never fit to any property related to the anharmonicity of the crystal. Broido

et al. [17] computed the thermal conductivity of silicon using force constants de-

rived from several different empirical potentials, including, Stillinger-Weber [18], Ter-

soff [19] and environment dependent [20] potentials. They reported that none of the

potentials provided satisfactory agreement with experimentally measured values of

thermal conductivity due to the incorrect anharmonic behaviour.

Molecular dynamics simulations have also been used to study thermal trans-

port [21]. In these simulations as well, interatomic interactions are calculated with

the use of empirical interatomic potentials (EIP). Once again lack of the proper an-

harmonic behaviour in the interatomic potentials used, causes MD simulations to

have limited predictive power. Moreover the classical treatment of atomic motion,

makes MD simulations to be applicable at temperatures typically much higher than

300K.

Anharmonicity is necessary for finite thermal conductivity in a perfect crystal, an

observation first made by Peierls [22] in 1929. In a perfect harmonic crystal, phonons

do not interact with each other, and application of a perturbation such as a tem-

perature gradient can cause a non-equilibrium phonon population to persist in time.

Anharmonicity allows three-phonon interactions through which phonon populations

can reach equilibrium. An accurate description of thermal conductivity in a material

therefore requires an accurate knowledge of both the harmonic and anharmonic terms

in the expansion of energy with respect to atomic displacements.

These interatomic force constants can be obtained with great accuracy from first-

principles through the use of density-functional perturbation theory (DFPT) [13, 14,



15]. DFPT is a linear response approach and relies upon the use of "2n + 1" theorem,

which states that the knowledge of the electronic wave function up to order n in the

external perturbation is sufficient to determine the energy derivatives with respect

to the strength of the perturbation up to order 2n + 1. This implies that a first

order perturbation in the wave functions is sufficient to evaluate the second-order

and third-order derivatives of energy.

Giannozzi et al. [23] used the density-functional perturbation theory to compute

the lattice dynamical properties and second-order interatomic force constants of Si

and Ge and obtained excellent agreement between computed and experimentally mea-

sured phonon dispersions. This demonstrated the accuracy of the second-order force

constants obtained through DFPT. The first attempt to use a first-principles approach

to describe anharmonic scattering in Si was made by Narasimhan and Vanderbilt [24]

who fitted a Keating model [25] to a few frozen phonon calculations. However, the

first truly ab initio calculation of the linewidth (inverse of phonon relaxation time) of

a phonon mode at the F point was performed by Debernardi et al. [13] who obtained

anharmonic interatomic force constants by extending density-functional perturbation

theory using the "2n + 1" theorem [26]. By using the lowest order three-phonon

processes, Debernardi et al. [13] obtained excellent agreement between the calculated

and experimental Raman linewidths for Si and Ge up to temperatures well above the

room temperature. Similar results for Raman linewidths were subsequently obtained

by Lang et al. [27]. These results show that the use of DFPT also leads to accurate

third-order interatomic force constants.

For the calculation of thermal conductivity, the knowledge of phonon linewidth at

just the F point is insufficient. Phonon relaxation times of thousands of wave vectors

q in the entire Brillouin zone are needed to compute thermal conductivity. While

computation of the linewidth of phonon mode at F requires knowledge of anharmonic

coupling only between the wave-vectors 0, q' and -q', where q' varies over the entire

Brillouin zone, estimate of the linewidth of a phonon mode of arbitrary wave-vector

q requires knowledge of anharmonic coupling constants between three different wave-

vectors q, q' and q". These were first obtained by Deinzer et al. [28], who used them



along with the second-order force constants to compute the linewidth of phonon mode

of arbitrary wave-vector q.

Broido et al. [29] obtained the anharmonic interatomic force constants using the

approach outlined by Deinzer et al. [28] and solved the phonon Boltzmann equation

exactly using an iterative process [30, 17] to compute the thermal conductivity of

isotopically pure Si 28 and Ge 70. This first-principles approach, free of any adjustable

parameters, was found to yield an excellent agreement between the calculated and

experimentally measured thermal conductivities. Subsequent application of this ap-

proach to diamond resulted in a similar good agreement between theory and experi-

ment [31]. In this thesis we first compute the thermal conductivity of isotopically pure

Si 28 and Ge70 following the approach outlined by Broido et al. [29]. We compute the

second-order and third-order interatomic force constants from first-principles using

density-functional perturbation theory as implemented in the Quantum-ESPRESSO

package [32]. Comparison between the computed and experimentally measured val-

ues as well as those obtained by Broido et al. [29] allows for a benchmarking of

our approach. We subsequently use this first-principles approach to predict ther-

mal conductivity in disordered materials such as silicon-germanium alloys as well as

nanostructured materials such as superlattices.

The work by Broido [29] demonstrated the success of a first-principles approach

to predict thermal conductivity in ordered materials. However, prediction of ther-

mal conductivity in disordered materials is more challenging. To predict thermal

conductivity of silicon-germanium alloys, Skye et al. [33] performed non-equilibrium

molecular dynamics simulations using the Stillinger-Weber potential [18] to simulate

Si-Si and Ge-Ge interactions. To treat Si-Ge interactions a geometric mean of the

interaction parameters for the pure substances was used. MD simulations confirmed

that mass difference played a significantly larger role in phonon scattering than the

differences in the chemical bonds introduced by alloying. However the predicted ther-

mal conductivity was found to be lower than experimental value by a factor ranging

between 4 and 6. Moreover while experiments showed the temperature dependence

of thermal resistivity to be between T112 and T, MD simulations performed at 300 K



and 500 K showed thermal resistivity to be almost independent of temperature.

In this work we explore the applicability of a first-principles approach to predict

thermal conductivity in disordered materials. The structure of SiGe alloys has been

shown to be truly random both experimentally and theoretically [34, 35] with no sig-

nificant long or short range chemical ordering. This random distribution together with

the difference between Si and Ge atoms in mass and size makes them good candidates

for a first-principles study. The materials are simple insulators at low temperatures,

having no electronic contribution to the thermal conductivity. Secondly, experimental

data [36, 37, 38, 39, 40, 7, 41, 42] are available for thermal conductivity of SiGe alloy

crystals with relatively large grain sizes and small amounts of impurity atoms. This

allows an easy comparison between the calculated and experimental values. Thirdly,

it is known that in SiGe alloys, mass disorder plays a dominant role in phonon scatter-

ing compared to strain disorder [39, 33]. This allows the structure of the alloys to be

simulated with the use of virtual crystal approximation (where the atomic potential

at each site is taken to be the average of the Si and Ge potentials) [43, 44] making

the first principles analysis computationally feasible.

The figure of merit (ZT) of superlattices has been measured to be significantly

higher than corresponding bulk materials [11]. This is due to a significant decrease in

thermal conductivity in these materials. Extensive work has been done to explain this

reduction. Chen [45] developed models on the effective thermal conductivity of peri-

odic thin-film structures in the parallel direction based on the Boltzmann transport

equation and found that the atomic scale interface roughness was the major cause for

the measured reduction in superlattice thermal conductivity. However Hyldgaard and

Mahan [46] attributed the decrease in superlattice thermal conductivity to a lower

phonon group velocity due to the confinement of phonon modes. In the above analy-

sis, an approximation known as constant relaxation time approximation was used. A

first-principles approach to compute thermal conductivity, where the phonon frequen-

cies, group velocities, populations and relaxation times are explicitly computed using

the phonon modes of the superlattice can provide new insights into the parameters

controlling thermal transport in these materials.



The outline of the thesis is presented below.

In Chapter 2 we give a brief account of the methods used to obtain the interatomic

force constants. We explain the "2n + 1" theorem and give an account of the different

extensions which allow computation of second-order and third-order derivatives of

energy with respect to different atomic displacements.

In Chapter 3, we present the theory of thermal conductivity and describe the

phonon Boltzmann equation (PBE). We describe the computation of the phonon dis-

persions from the second-order force constants, and also demonstrate how anharmonic

force constants lead to three-phonon scattering. Using the single-mode relaxation

time approximation to solve the phonon Boltzmann transport equation, we estimate

phonon relaxation times and compute thermal conductivity. We compare the ther-

mal conductivity computed using this approach with experimentally reported values.

Finally we present the full self-consistent solution of the phonon Boltzmann equation

using an iterative process.

In Chapter 4, we address the thermal conductivity of silicon-germanium alloys.

We first attempt to compute the thermal conductivity using the same approach used

for isotopically pure silicon. However, to incorporate disorder we use large supercells

instead of the 2-atom unit cell of silicon. We discuss the validity of the virtual

crystal approximation and show that this approach fails to yield the alloy thermal

conductivity in the limit of an infinitely large supercell. We next present another

approach, where the disordered crystal is replaced with an ordered one, with the

average mass and potential of Si and Ge, and disorder is treated as a perturbation.

This idea was first proposed by Abeles [39] in 1963. We however now compute all

the ingredients in this model from first-principles, and show that the use of this

approach leads to excellent agreement with experimentally measured values. We next

present the phonon mean free paths in this system and demonstrate the feasibility of

nanostructuring to further lower thermal conductivity.

In Chapter 5, we study thermal conductivity in superlattices. We present the

variation of superlattice thermal conductivity with period thickness, and discuss the

cause of the observed behaviour. We also discuss the discrepancy between computed



and experimentally measured values of superlattice thermal conductivity. We present

an interesting effect in the limit of very small period superlattices where we find that

the computed thermal conductivity is substantially higher than superlattices of larger

period lengths and even exceeds the bulk thermal conductivity of both the materials

comprising the superlattice. We discuss the reason behind this unexpected increase

and its implications for thermal management of electronics.
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Chapter 2

Density-functional perturbation

theory

2.1 Introduction

Density functional theory provides a computationally efficient approach to solve the

quantum-mechanical problem that governs the properties of matter. In 1964, Hohen-

berg and Kohn [47] demonstrated that all properties of the nondegenerate ground

state of a system of interacting electrons are completely determined by its electron

density n[r]. From this work density-functional theory evolved as a conceptually

and practically useful method for studying the electronic properties of many-electron

systems.

Their work, that became the theoretical basis of DFT, builds on the two following

fundamental theorems [47]:

Theorem 1 For any system of interacting particles in an external potential Vet(r),

the potential Vet(r) is determined uniquely, except for a constant, by the ground state

particle density no(r).

Theorem 2 A universal functional for the energy F[n(r)], expressed in terms of the

density n (r) can be defined, valid for any external potential Vext(r). For any particular

Vet(r), the exact ground state energy of the system is the global minimum value of



this functional, and the density n(r) that minimized the functional is the exact ground

state density no(r).

In the Kohn-Sham [48] formulation of density-functional theory, the total energy

of an electronic system in an external field vext , is given by:

E[n] - 1 f n(r)n(r') drdr' + Exc[n] - n(r)dr (2.1)
S 2 r - r'| J on(r)

In the above equation 8Exc[n]/Dn(r) indicates the functional derivative of the ex-

change and correlation energy Exc[n], c, are the eigenvalues of the Kohn-Sham one-

particle equations:

HVIba) = cal4a) (@)al<)a) = 1 (2.2)

The self consistent Hamiltonian H is given by

H = V2 + vext + IJnr> ,) drdr'+ Exc[n]. (2.3)
2 2 Ir - r'|

The ground state density of the system is :

n(r) = 5. (r)4a(r) (2.4)

where the summation involves all the occupied Kohn-Sham orbitals.

As the Hamiltonian depends upon the Kohn-Sham orbitals through the charge

density, the above system of equations has to be solved self-consistently. To do this,

a trial density is assumed to begin the process. Using this, Eq. 2.2 is solved for the

eigenfunctions. Using these eigenfunctions, a new charge density is computed using

Eq. 2.4. This new density is used to compute the Hamiltonian through Eq. 2.3 and

then solve Eq. 2.2 again. This process is continued until a self-consistent solution is

obtained. This allows the computation of the ground state density along with the

corresponding energy.



2.2 2n + 1 theorem and density-functional pertur-

bation theory

The use of perturbation theory in the density functional framework was made possible

by Baroni, Giannozzi and Testa [14]. They provided an efficient scheme to compute

the first-order correction to the wavefunction and second-order correction to the en-

ergy. Later, Gonze and Vigneron [49] showed, through the use of 2n +1 theorem, that

the first-order correction to the wavefunction is the only quantity that was needed to

compute the correction to the energy up to third-order. The 2n + 1 theorem states

that the knowledge of all the corrections to the wavefunction up to V<i is sufficient to

determine all corrections to the energy up to E 2nnl. Thus the 2n + 1 theorem allows

one to determine the third derivatives of the energy with respect to the strength of

the perturbation, if the linear response of a system to an external perturbation is

known.

In this section we analyse the response of the system under a perturbation. When

the external potential depends on a parameter A, we can perform a Taylor expansion

and express the potential in terms of higher order terms:

vext(r, A) _ v((r) + AveJ(r) A2v(r) + ...... (2.5)

Also the Kohn-Sham wave functions may be expanded in the same way:

4b(r, A) - V(0) +- A~~b() + A2,0(2 ) .+... (2.6)

and the same applies to the corresponding energy functional:

E[n, A] = E(0 ) [n] + AE1 [n] + A2E(2L [n] + A3E 3 [n]....... (2.7)

The scheme to obtain the first-order correction to wave-function and second-order

correction to energy is outlined below.

First, the second-order correction to the energy can be computed from the Hellman-



Feynman theorem, which states that the generalized force associated with a variation

of the external parameter is given by the ground-state expectation value of the deriva-

tive of vet(r, A) :
BE[n, A] Bor~,A)= I n(r, A) vext(rAdr (2.8)

BA BA

In the above n(r, A) is the electronic ground state density. Taking the derivative of

the above equation with respect to A yields the second-order correction to the energy:

E(2 ) [n] = ( In(1) (r)v(1(r) + n(0) (r)v(2 (r) dr, (2.9)

where n(O) is the unperturbed electronic ground-state density, nDl) (r) is the first deriva-

tive with respect to A, v(1(r) and v ((r) are the first and second derivatives, respec-

tively, of the external potential with respect to A.

In order to order to evaluate the above expression, the first-order derivative of the

charge density nu() (r) and thus the first-order change in the eigenfunctions need to be

known. These are obtained by taking the derivative of Eq. 2.2 and self consistently

solving the resulting equation:

H(0) - e) IV @1 ) =(H(1) - ep)L|)). (2.10)

The above equation is also called the Sternheimer equation [50]. In the above HM) is

the first-order correction to Hamiltonian and depends upon the first-order eigenfunc-

tions through the first-order charge density

HUM =V i + 6 2E,1[n] n(')d'2.1

ex + on(r)6n(r' ) ' ~r,(.1

where the "interaction energy" EI[n] is defined as:

1 n(r>?n(r')
E[n] = I ,rr' drdr' + Ee[n]. (2.12)

2 |r - r'|



The first-order correction to the Kohn-Sham eigenvalues is given by

EC') = ( 03|H ), (2.13)

where the first-order wavefunction has to satisfy the following orthogonality condition:

Re (I3|@') = 0. (2.14)

The first-order correction to charge density is related to the first-order wavefunction

through

njl)(r) =(r)V)0)) + V(0)-* )(r) (2.15)

Similar to the solution of Kohn-Sham equations, the above set of equations has to

be solved iteratively as well. The first iteration is typically begun by using HM = vej.

Using this, Eq. 2.10 is solved for the first-order wavefunctions 0(l). Knowledge of the

first-order wavefunctions allows computing the first-order correction to the charge

density n(1) through Eq. 2.14. This can then be used to compute the new first-order

Hamiltonian HM) through Eq. 2.11, which then along with Eq. 2.10 yields the new

first-order wavefunctions. This process is repeated until self-consistency is achieved.

Using the converged first-order charge density, the second-order correction to energy

can be computed through Eq. 2.9.

Using the 2n + 1 theorem of perturbation theory, Gonze and Vigneron [49] then

derived the third-order derivatives of the energy from the knowledge of the first-order

wavefunctions. The resulting expression is presented below:

E(3) E [()|JH) - 52|10()+

Jv2 (r)n(1)(r)dr + Jv ((r)n(0)(r)dr+ (2.16)

63 E.,[n] n1)(r)nl)(r')nl)(r")drdr'dr".
6 a [ n(r)n(r')n(r")

Gonze and Vigneron [49] further extended the above work to obtain the expression for



the third-order derivative of the energy with respect to three arbitrary perturbations,

as in the case of three different atomic displacements.

In this work we use density-functional perturbation theory as implemented in

the Quantum-ESPRESSO package [32] to obtain the second-order and third-order

derivatives of the energy with respect to three atomic displacements.



Chapter 3

Thermal conductivity of

isotopically pure Silicon (Si 28 ) and

Germanium (Ge 70)

Thermal conductivity is a fundamental transport property that plays a vital role in

many applications. In semiconductors and insulators, heat is conducted by lattice

vibrations. Understanding and quantifying the interactions between these vibrations

is critical to accurate prediction of thermal conductivity. A theoretical approach to

predict lattice thermal conductivity in these materials would facilitate understanding

of heat dissipation in microelectronics and nanoelectronics as well as assist in design

of high efficiency thermoelectrics for both refrigeration and power generation appli-

cations. At temperature above a few tens of degrees Kelvin the lattice thermal con-

ductivity of semiconductors is usually dominated by three-phonon scattering, which

arises because of the anharmonicity of the interatomic potential. Anharmonic phonon

scattering is an intrinsic resistive process and does not require the presence of defects,

impurities or grain boundaries in the material. In 1929 Peierls first formulated a mi-

croscopic description of the intrinsic lattice thermal conductivity of semiconductors

and insulators through what has become known as the phonon Boltzmann equation

(PBE). The equation involves the unknown perturbed population of a phonon mode

and balances the perturbation due to the temperature gradient to the change in



phonon population due to scattering. The perturbed phonon populations can be ob-

tained by solving the PBE. While the framework to describe thermal conductivity is

well known, the development of a predictive theoretical approach to calculate thermal

conductivity has been hindered by the significant complexity inherent in describing

(a) interatomic forces between atoms and (b) the inelastic phonon-phonon scattering

processes.

The first issue can be addressed by using density-functional perturbation theory

to obtain interatomic force constants. Use of DFPT has been shown in the past to

yield accurate IFCs, which have led to the prediction of material properties in good

agreement with measured values. The challenge involved in the second issue lies in

the dependence of inelastic phonon-phonon scattering rates upon the unknown per-

turbed phonon populations of the phonon modes in the Brillouin zone. A tremendous

simplification is however achieved in the calculation of thermal conductivity in bulk

semiconductors by using the single-mode relaxation time approximation (SMRT). In

this approximation it is assumed that only the phonon mode under consideration is

out of equilibrium and relaxes to its equilibrium state, while all other modes remain in

their equilibrium states. This allows the three-phonon scattering rate to be expressed

in terms of only the unknown population of that mode and a phonon relaxation

time which is completely known. This further allows the Boltzmann equation to be

solved for the unknown population. The thermal conductivity in this approximation

is determined by fundamental properties such as phonon frequencies, group velocities,

phonon populations and phonon relaxation times.

Going beyond the use of single-mode relaxation time approximation, the PBE

can be solved exactly by using a self-consistent iterative procedure first developed

by Omini and Sparavigna [30]. Broido et al. [29] used such an exact solution of the

phonon Boltzmann equation along with the interatomic force constants derived from

density-functional perturbation theory [28] to compute the thermal conductivity of

isotopically pure silicon and obtained excellent agreement with measured values.

In this chapter, the theory for first-principles thermal conductivity calculations is

presented along with its implementation for isotopically pure Si and Ge. The results



are compared against the experimentally measured values, allowing for a benchmark-

ing of the approach. In subsequent chapters, we compute the thermal conductivity

of disordered SiGe alloys as well as superlattices.

3.1 Theory of thermal conductivity

In this section we present the theory of thermal conductivity following Ref. [51]. The

potential energy V of a crystal, in which the unit cell is characterized by the vector

1 and the atomic positions in each unit cell are described by the vector b, can be

expanded in a Taylor series in powers of the atomic displacements u(lb); we show

here the expansion up to third-order:

V =V+( u,(lb)+

e 98 2y
2 0 BuUbCu~ ' ' " (b)up(l'b')+ (3.1)
3 lb,l'b , uO(1b)8up('b') "b 'j b

At equilibrium, the first derivative of the potential energy with respect to atomic

displacement is zero, due to the energy being minimum in this configuration:

Dv = 0. (3.2)
at(Ib) 0

The second derivative of the energy with respect to atomic displacements yields the

second-order force constants

(baV(lb 1'b) = (3.3)
b u,(lb)Dup(1'b') 0

and the third derivative of energy yields the third-order force constants

(b ay(lb, l'b' 1"b") = V(34)
u7elb)8uO(l'b')8u,(l/b") o'
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The potential energy can now be rewritten in terms of the force constants as

V =V + 2 3 3 (bap(Ib, 1'b')u,(Ib)uO('b')+

1 lb,l'b' a 
( .5

3! E E (bD,jlb, 1'b, 1"b" )u,(ib)up(l'b')u-,(l/lb").

3.1.1 Dynamical matrix and phonon frequencies

If the crystal potential is only expanded up to the second-order with respect to atomic

displacements, it can be shown that the displacements can be written in terms of

vibration modes which are completely decoupled.

To obtain the equation of motion the first term in the potential energy Vo is ignored

as it does not lead to any forces on atoms. Ignoring it, the equation of motion can

be written as:

mObza(Ib) =- (o(lb,l'b') u (1'b'). (3.6)
I'b'p3

Because of translational symmetry, the second-order force constants can be rewritten

in terms of the relative position between unit cells h = 1' - 1:

<b QJ(lb, l'b') = <b( (Ob, (1' - I)b'). (3.7)

The equation of motion can now be written as

mO,(lb) = - 3 <b(Ob,l'b')uO('b'). (3.8)
l'b'f3

To solve this equation, the displacements can be written as

1
Un(1b) = I Uc(q, b)exp[i(q.I - wt)], (3.9)

Vm b q

where q represents the wave-vector of a vibration mode in the first Brillouin zone

with w as its vibration frequency. By substituting the above expression (Eq. 3.9) into



the equation of motion Eq. 3.8, one obtains

w2UO(q, b) = E DoO (bb' q)Up (q, b'). (3.10)
b'O

The above translates into the following determinant equation

|Dap(bb'|q) - W 2 6,06bb'I = 0, (3.11)

where DcO(bb'|q) is the dynamical matrix and is given by the following expression:

1
Dap (bb'|q) = (<b 0 O(Ob, 1'b')exp(iq.l'). (3.12)

Diagonalizing the dynamical matrix yields the phonon frequencies. Thus, expansion

of the potential energy up to second-order results in vibration modes which are com-

pletely decoupled and do not interact. To see this more explicitly we notice that in

the harmonic approximation where the third-order term in the expansion of potential

energy is ignored, the crystal Hamiltonian can be written as

p(lb).p(lb)

lb 2rm (3.13)

2 E E4<b(lb,l'b')ual(lb)uO(l'b').
lb,l'b' a0

In the above p(lb) represents the momentum operator of an atom located at 1 + b.

To rewrite the above in terms of vibration wave-vectors q we make use of a set of

transformations that involve replacing the displacement and momentum operators

with their Fourier representations X and P, respectively:

u(lb) 1 Y X(q, b) (3.14)

p(lb) = P(q, b)e- 4q. (3.15)



Here No = N1 N2N3 is the crystal size, N1, N2 and N3 being the number of unit cells

along the three lattice directions. Using the above transformations the Hamiltonian

can be rewritten as,

H = I b P(q, b).P(q', b) exp[-i(q + q').l]+
No qqIb 2mb 

3.6

- E E T)c(bb, l'b')Xa(q, b)X(q', b')exp[i(q.I + q'.I')].
2 No q,q' Ib,1'b' 0p

The first term can be simplified by performing the summation over 1,

First Term = P(qb).P(q'b) 1 exp[-i(q + q').l]
q,q'b 2 mb No 1

- E P(qb).P(q'b) (3.17)
qq'b 2 mb

P(qb).P t (qb)

qb 2 mb

As indicated earlier, because of the translational symmetry, the second-order force

constants can be rewritten in terms of only the relative position between the unit

cells h = 1' - I as shown by Eq. 3.7. Using this the second term can be rewritten as:

Second Term

= I S S S (bap(lb, l'b')Xa(q, b)Xp(q', b')exp[i(q.I + q'.l')]
o q,q' 1,1'b' ceO

= 2 N E ( E <bap(0b, hb')Xa(q, b)XO (q', b')exp[iq'.h] 5exp[i(q + q'). 1]
o q,q' b,hb' op

= 2 E : 40(b 0b, hb')X o(q, b)X o(q', b')exp [iq'. h] 6+q,o
q,q' b,hb' ap

= ( ( ( <ba(Ob, hb')Xa(q, b)X(-q, b')exp[-iq.h].
q b,hb' ap

(3.18)

In the above use is made of: 1:1 exp[i(q + q').l] = Nooq+q',o-



Using

(b1p(bb'q) = ( 4O(ob, hb')exp(-iq.h)
h (3.19)

= r/bmbDO (bb'-q)

where D is the dynamical matrix, the second term can now be written as,

Second Term = 2 E E<bO(bb'|q)X,(q, b)X%(qb'). (3.20)
q,b,b' a0

Using Eqs. 3.17 and 3.20 crystal Hamiltonian in the harmonic approximation can now

be written as a sum over the different vibration wave vectors q,

H = E ( +-((QE3(bb'|q)X0(q, b)X (qb') (3.21)
q b P Mb 2 b,b' aO I

The above Hamiltonian is completely separable and therefore has independent

eigenstates or vibration modes. However it is shown next that the inclusion of the

third-order anharmonic term in the potential energy expansion leads to coupling

(scattering) between three vibration modes.

3.1.2 Anharmonic potential

Including the third-order term in the expansion of the potential energy the crystal

Hamiltonian can be written as:

H E-~~ p(lb).p(lb) +
lb 2m

1 E E(ba/J(b,l'b')ua(1b)uO(l'b')+ 
(3.22)2 lb,l'b' a0

1
3! b 4> (bag (l b, I'b', l"b")ua(lb)uf(l'b' )u,(l"b" ).

Sbl'b',l"b" ap,



We focus the discussion on rewriting of the third term V3 to show how anharmonicity

leads to three-phonon coupling. Using the transformations represented by Eqs. 3.14

and 3.15, V3 can be rewritten as

1 1
V3 =31 N 3/2  4,j1b, l'b', l"b")X,(q, b)X3(q', b')X, (q", b")

3!(No q lql b,1'b',l'/b'/" e

x exp[i(q.I + q'.1' + q".I")].

(3.23)

Defining h' = 1' - 1 and h" = 1" - I the cubic term V3 can be further rewritten as

1 1
3 1 ( E S Y exp[i(q + q' + q").1]

3. (N0 )3!2 qb,q'b',q"b" OY 1 , (3.24)

x 4Gap,(qb, q'b'I, q"b" )Xa( q, b)X O(q', b' )X_,(q"1, b" )

where

4ao (qb, q'b', q"b") = 5 '1 O (ob, h'b', hlb")ei4'h'ei4"h". (3.25)
h',h"

Finally summing over 1 and realizing that Z-' exp[i(q + q' + q").] = NO3G,q+q'+q", we

obtain

1 1
3 NG,q+q'+q"

qb,q'b',q"b" a-Y (3.26)

X GapO-(qb7 q'b', q1b")X,(q, b)X,3(q', b')X,(q"l, b"l).

G in the above equation is the reciprocal lattice vector.

To explicitly show the three-phonon couplings and to convert the anharmonic term

into a form where it can be used to compute the three-phonon scattering rates, two

more transformations are performed. The second set of transformations allows the

anharmonic term to be expressed in terms of the vibration eigenvectors e(bjqs), where

s represents a particular vibration mode of the vibration characterized by wave-vector

q. The transformations are indicated below:

X(qs) = mv ie*(bjqs).X(qb) (3.27)
b



1
P(qs) - e(b~qs).P(qb). (3.28)

b mb

The vibration eigenvectors obey the following relationships

( e*(bqs).e(bqs') = 6,,, (3.29)
b

*e(bqs)eO(b'|qs) = oopobbi (3.30)

Finally, the last set of transformations involves the use of the creation and annihilation

operators aq, and atS

aq, = P(qs) - I Xt(qs) (3.31)
a 2&hw(qs) r2 hs)

as PI(qs) + i' V 2. X(qs). (3.32)
q 2wss 2h

We discuss next some of the properties of creation and annihilation operators. Let

a state with n phonons of wavevector q and polarisation s be denoted by Inqs); the

effect of the creation and annihilation operators on such a state is summarized below:

atrnqs) = nqs + 1q +1) (3.33)

aq8snqs) = Vngqsqs - 1). (3.34)

Inverting Eqs. 3.31 and 3.32 allows the operators X(qs) and P(qs) to be written in

terms of creation and annihilation operators:

X(qs) -i h (at, - a-gs) (3.35)
2w(qs) q

P(qs) = 2w(qs) (aq, + atqs). (3.36)
V2



Finally, using Eqs. 3.27 and 3.28, the operators X(qb) and P(qb) can now be written

in terms of the vibration eigenvectors and the creation and annihilation operators:

1
X(qb) =e(bjqs)X(qs)

V'mb

-i(e(blqs)(at - ags )
s 2mbw(qs)

(3.37)

Substituting

yields

P(qb) - V/nm e*(bjqs)P(qs)

mbhw(qs) e*(bjqs)(aq, + ateq). (3.38)

the above in the expression for the cubic term in the crystal Hamiltonian

1 i Iq , qhs3 
/1) 1 / 2

3!N3! 7N=-, 8nmbomb'moW(qs)w)(q's')wLtq"s"
bb' b"

x 6G,q+q'+q"e-a(blqs)e,(b lqs e6, bllq slf)4ap,(qb, qWb, q'Ib")

x (a', - aqs)(a, 8 , - aq',)(a/I 8 ,, - a1

3! Z: G,q+q'+qIV3(qs, qs, q s
- qs,q' s' ,qas"

x(at - a-qs)(at,s, - a q's,)(a,,,, - a-quln)

3(qs, q's', q"s") = 8 q 1/2 Y bOy(qb, q'b', q"b")

Xe'( bjqs ) eO( b'|q's' ) e,(b"|IqIs" )
Mb mb( 3mb"

(3.40)

Eq. 3.39 shows that an anharmonic term in the expansion of potential energy leads

to scattering between three phonons such that G = q + q'+ q". We next compute the

rates of phonon scattering due to anharmonicity and use them along with Boltzmann

where

(3.39)



transport equation to compute thermal conductivity.

3.1.3 Boltzmann transport equation

In the absence of a temperature gradient, the heat flux in a material is zero and

the phonon modes are in their equilibrium state with the phonon populations being

determined by the Bose-Einstein distribution

1

where n(qs) and w(qs) are the equilibrium population and the frequency, respectively,

of the phonon mode qs, h is the Planck's constant and kB is the Boltzmann constant.

However, the presence of a temperature gradient in a material causes the phonon

population of any mode qs to be perturbed out of equilibrium and establishes a heat

flux Q than can be written in terms of phonon energies ho(qs), perturbed phonon

populations nq, and phonon group velocities c(qs) as

Q = No- 1 hw(qs)c(qs)nqs -k 0 1|VTIO, (3.42)

where Q is the volume of the unit-cell. As shown above the heat flux can be further

written as the product of the thermal conductivity k and the temperature gradient

VT. Thermal conductivity is a tensor whose components kap give the direction of

heat flux along a direction a for a temperature gradient along direction 13.

Knowledge of the perturbed phonon populations allows heat flux and in turn ther-

mal conductivity to be determined. As phonon populations are a function of tem-

perature, a temperature gradient creates an imbalance in the flux of a phonon mode

qs through an elemental volume in the material as shown in Fig. 3-1. If the phonon

mode qs does not interact (scatter) with other phonon modes (i.e. Dnqs/8tscatt = 0)

as is the case in a perfect harmonic crystal, such an imbalance creates a divergence in

the perturbed phonon population leading to a divergence in the thermal conductiv-

ity. A perfect harmonic crystal therefore has infinite thermal conductivity. Through,



anqs
at scatt

cx(qs)nqs(T + dT) cx (qs)nqs(T)

'0 x

T+dT T

Figure 3-1: Perturbation in phonon population due to temperature gradient balanced
by the change due to scattering induced by the anharmonicity of the interatomic
potential.

three-phonon scattering processes anharmonicity allows for the perturbation due to

the temperature gradient to be balanced by the change in phonon population by

scattering, leading to a finite thermal conductivity. The resulting balance equa-

tion for the perturbed phonon population is called the phonon Boltzmann equation

(PBE) [16, 51, 30]:

-c(qs).VT I I + a" 0, (3.43)
B DT ) at scatt

where nqs and c(qs) are the perturbed phonon population and group velocity respec-

tively of mode qs. The first term on the left-hand side represents phonon diffusion

induced by a temperature gradient and the second term represents the phonon scat-

tering rate due to all scattering processes. Assuming that the perturbation from

equilibrium is small, the temperature gradient of the perturbed phonon population

can be replaced with the temperature gradient of the equilibrium phonon population,

anqs/aT ~ angs/aT, leading to

-c(qs).VT (as + anq = 0, (3.44)aT ) at scatt

where qs is the equilibrium population of mode qs and is determined by the Bose-



(a) Normal Process

Figure 3-2: (a) Normal and (b) Umklapp processes - for class 1 events or the "coa-
lescence processes".

Einstein distribution Eq. 3.41.

As indicated in the previous section, in a pure material a phonon mode qs can

scatter through anharmonic three-phonon scattering processes such that G = q +

q' + q". The three-phonon scattering can thus be classified into two types:

1. Normal processes: For these type of processes, G = 0. For example, when a

phonon q scatters by absorbing another phonon q' to yield phonon q" the momentum

conservation for this process can be written as -q - q' + q" = 0. This is shown in

Fig. 3-2(a). As can be seen, these processes preserve the direction of energy flow,

since the resulting phonon is in the same direction as the combining phonon modes.

Hence these processes do not contribute towards thermal resistance in a material.

2. The second type of processes are characterized by G # 0. Here the momentum

conservation for the process indicated above would be q + q' = q" + G. This is shown

in Fig. 3-2(b). As can be seen, in this process the direction of energy flow is reversed.

These type of scattering processes were given the name "Umklapp" by Peierls [52],

and they give rise to thermal resistance in a material.

The scattering rate for a three-phonon scattering process can be computed using

Fermi's golden rule [53, 54]:
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Figure 3-3: (a) Class 1 and (b) Class 2 events associated with three-phonon scattering.

Pif (3ph) = |(flV3|i)|26(Ef - El). (3.45)

In the above equation i and f denote the initial and final state, V3 is the three

phonon coupling potential as expressed in Eq. 3.39, and 6(Ef - Ej) denotes energy

conservation between the initial and final states.

There are two types of events associated with three-phonon scattering. In the first

type of events, called class 1 events or "coalescence processes", a phonon mode (qs)

scatters by absorbing another mode (q's') to yield a third phonon mode (q"s"). In

the second type of events, called class 2 events or "decay processes" a phonon mode

(qs) scatters by decaying into two phonon modes (q's') and (q"s"). These two classes

of events are shown in Figs. 3-3 (a) and (b) respectively.

Both processes satisfy momentum and energy conservation: For class 1 events,

these are:

q + q' = q", hw(qs) + hw(q's') =ho(qs"), (3.46)

while for class 2 events we have

q = q' + q", hw(qs) = hw(q's') + hw(q"s"). (3.47)

The reciprocal lattice vector G is not explicitly written in the above equations.



For class 1 events the scattering rate is given by

"118" 272
P /r i(qs - 1, q's' - 1, rq/"" + 1|V3fnqs, nq's,, nq'u) (34

qsqs h 2 1 (3.48)

x 5o(w(qs) + w(q's') - w(qfs"))

where n in the above equation represent the perturbed phonon populations. Substi-

tuting V3 from Eq. 3.39, we obtain

Pq1,'1, =27| 3(-qs, -q s', q s") 2q 1)
Pq's qs qsnqsl (q//,/ +(3.49)

x (w(qs) + w(q's') - w(q"s"))

The factor of 1/3! in the expression for V3 is cancelled by the presence of 3! equivalent

terms involved in the summation over q, q', q". This is due to the fact that the

expression for V3 is cyclically symmetric in q, q', q". Secondly in the expansion of

(af- a~qs)(aq,s, - aq',,)(aqun - a-qls") only one term, a-qsa-qarac8 o, survives, as

this is the only term that couples the initial state Ings, nq',, neq//S;) with the final state

Inqs - 1, nq1, - 1, nq"8" + 1).

The net scattering rate involving a class 1 event can be written as the difference

of the forward and back scattering processes. The expression is given below:

Pq' 's, - P,,'' = 27(w(qs) + w(q's') - w(q"s"))j 3(-qs, -q's', q"s")| 2

Pq s (3.50)

[fnlsnqis,(nys + 1) - (nqs + 1) (nls + 1)nqnn]

At equilibrium and in the absence of a temperature gradient, the net scattering rate

is zero. This yields the principle of detailed balance for the class 1 events:

nqsnqs,(nq"," + 1) (nqs + 1)(nqfs, + 1)nq/S//, (3.51)

that can be rewritten as

nqisi(nq//,s/ + 1)
nq/,/ nl// (nqs + 1) (3.52)



To linearize the scattering rates in Eq. 3.50, we expand the perturbed phonon

population nqs about the equilibrium in terms of a first order perturbation Pq defined

as

nqs - qs -
kBT &niqs 4p

h aw(qs)

nq, - nqs + rqs(nqs + 1)qes. (3.54)

Substituting Eq. 3.54 into Eq. 3.50, the net scattering rate due to class 1 events can

be written as :

P ,'I, - Pq"S'' - Pq",'s,(q'8q + q ',') (3.55)

where

Pqs,q =2rngsngs-,nquI/ + 1)|1? 3(-qs, -q's', qs

x (w(qs) + w(q's') - w(q"s

Similarly the scattering rate due to class 2 events is expressed as

Eqs ( os - 1, nqs' + 1, nqul. + 1|V3Inqs, nls, nqu11 }|2

x 6(w(qs) - w(q's') - w(q1s")).

(3.56)

(3.57)

Substituting V3 from Eq. 3.39 we obtain:

Pqs 4q"S" =27IV 3(-qs, q's', q"s")|2nqs (ngq,, + 1)(nqusli + 1)

x 6(w(qs) - w(q's') - w(qIs")).
(3.58)

The net scattering rate involving a class 2 event is

Pqs''"s" - P ," ,,q1 = 27r6(w(qs) - w(q's') - w(q"s"))|V3 (-qs, q's', q"s")|2

qs q1 q + +q ng q

[nqs (nq'S' + )(riqi/,i + 1)I (nqs, + 1)flqi~i hq/1,1 I
(3.59)

Again, at equilibrium, the net scattering rate for class 2 events is zero, yielding the

leading to

(3.53)



following identity for class 2 events:

nqs (nq's, + 1)(nqiu,// + 1) = (nq, + 1)nq'inqui',

that can be rewritten as

1+ nfq/s, + nqlfs' -
nqs

Making use of Eq. 3.54, the scattering rate due to class 2 events becomes

pq S-,q S p qs ' -Np s' '" " -(qj' - q',

(itP p' A P 5 )qs Pqs,qst q q q, qI

where

q's'' 'qS =27nnsQ(nqrs + 1) (ngtsi + 1)|1(-qs, q's', q"s")| 2

x 6(w(qs) - w(q's') - w(q's")).

The net scattering rate of a phonon mode is the sum of scattering rates due to the

class 1 and class 2 events and is given by

-Ot scatt
,

q S ,s
PqsIl + I(Pq'is'""/II 1

Ps,q - Pqs, 
,, qus

- q S ,q1 1 )I

qI" Ns + TI
ql's"[qs,q S q q ~q/) 2 S q~ q1

Substituting the above expression for net scattering rate into Eq. 3.44, the PBE can

now be rewritten as

-c(qs).VT (6$rs
Pqs,q's, + fIS qi)±+ pqSq q1 q(365

(3.65)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)



3.1.4 Single-mode relaxation time approximation

Eq. 3.65 shows that the PBE for the unknown IV is coupled together with the un-

known phonon populations of all other modes (V/q' , TI') all over the Brillouin zone.

The complexity involved in solving the phonon Boltzmann equation (PBE) based on

the three phonon processes lies in the dependence of the distribution function nqs

on the occupation of all other states, allowed by energy and momentum conserva-

tion. The scattering rate of a mode when the entire system relaxes to equilibrium

would in general not be the same as when all other modes are in equilibrium. In the

first situation the PBE's of all the different modes qs are coupled together and have

to be solved simultaneously in a self consistent way [30, 17]. The second situation

corresponds to the single mode relaxation time approximation [55, 56, 16, 57, 58].

In this approximation, the PBE is solved for nqs by assuming that '#9',, 4 ', are zero

where q's' and q"s" are modes involved in the scattering of mode qs. We first calcu-

late the thermal conductivity in the single mode relaxation time approximation and

later compare it with the result obtained from the full self consistent solution of the

Boltzmann transport equation.

In the single-mode relaxation time approximation, by setting 4',, W' = 0 and

using identities represented by Eqs. 3.52 and 3.61, Eq. 3.64 can be rewritten as,

nqs =nqs(Fq, + 1)q W~7r E li3(-qs, q's', q"s")12

scatt qs,,,s"

x [2(iq/s, - nqi/s/)(w(qs) + w(q's') - o(qls"))+

(1 + q', + nqus")6(w(qs) - w(q's') - w(qls"))

(3.66)

Using Eq. 3.54, the above can be rewritten as

a- q 8  - nq s (3.67)
at scatt Tqs



where Tqs is the phonon relaxation time and is given by the following expression:

2 Fqs = r E |3(-qs, q's', qls")|2
q s ,s"

x [2(ii4,s, - nqg- 8o}o(w(qs) + w(q's') (3.68)

(1 + niq's' + nq11SI)6>(w(qs) - w(q's') - w(q"s")).

In the above expression 2 Fqs is the full linewidth at half maximum (FWHM).

Now solving the PBE assuming a temperature gradient along direction 0, we get

85, (T anq*
at scatt

nqs -nqs

(3.69)

Therefore

nys -6,l= -cO(qs)|VTJ 3 (n ) Tqs

(3.70)
hw(qs)

-cO(qs)|VTrngqs(nqs + 1) kBT 2 TqV

Substituting the perturbed phonon population obtained above into the expression for

heat flux (Eq. 3.42) yields the following expression for thermal conductivity

ka = N kBT 2 ca(qs)cO(qs)w 2 (qs)nqs(nqs + 1)Tqs. (3.71)

3.2 Implementation

Thus, in order to compute thermal conductivity in the single mode relaxation time

approximation, the only inputs required are the second-order and the third-order

interatomic force constants (IFCs).

Steps involved in the thermal conductivity calculation are outlined below:

1.) The second-order interatomic force constants (IFCs) <by(ob, hb') are ob-

tained. The second-order IFC's allow computation of the dynamical matrix DO(bb'|q),

- W (qlls")) +

-cO(qs)|"VTjO



whose eigenvalues yield the phonon frequencies and the dispersion, from which the

phonon group velocities and Bose-Einstein populations can be computed. The second-

order force constants yield the second derivative of energy with respect to two atomic

displacements; as the distance between the atoms increases, these force constants di-

minish in magnitude. In order to ensure an accurate estimate of dynamical matrix,

these force constants have to obtained in real space on a large enough supercell such

that the force constants have decayed to negligibly small values. We find that a su-

percell size of 10x1Ox1O is enough to ensure this. However, direct calculation of force

constants in real space is computationally expensive as it requires using a supercell

with thousands of atoms. Instead, first the Brillouin zone is discretized into 1Ox1Ox1O

grid of q points; then the force constants in q space JDQ(bb'|q) are computed for q be-

longing to this grid, using density-functional perturbation theory in reciprocal space.

This calculation is computationally much cheaper as it involves using the primitive

fec unit cell with only two atoms. The force constants in q space, Gay(bb'|q), are

then inverse Fourier transformed to obtain the force constants in real space:

I%0(ob, hb') = I af(bb'|q)exp(iq.h), (3.72)
q

where q in the above equation now belongs to the 10x1Ox1O grid in the first Brillouin

zone, and h is the lattice vector of a unit cell on a 1Ox1Ox1O supercell in real space.

The dynamical matrix at any arbitrary q' can now be obtained by a simple Fourier

transform of these real space force constants

1
Dcy (bb'l -q') = EGaO(ob, hb')exp(-iq'.h). (3.73)

Vmbmbl h

2.) Next, the third-order interatomic force constants 4), I(b'b', l"b") are com-

puted. The third-order IFC's are used to compute the three-phonon scattering matrix

elements, which along with the phonon frequencies and populations yield the phonon

relaxation times. As in the case of second-order force constants, the third order

force constants decay with the distance between atoms and have to be computed



on a large enough supercell such that for the farthest atoms in the supercell, these

force constants have diminished to negligible values. In the case of second-order force

constants this calculation was performed indirectly, the force constants were first ob-

tained in q space and then inverse Fourier transformed to get them in real space. To

repeat the same process for the third-order force constants, force constants in q space

4bp(qb, q'b', q"b") need to determined for q, q' and q" belonging to a chosen grid in

the first Brillouin zone. As in the case of second-order force constants, this approach

would reduce computational cost as it would allow using the primitive fcc unit cell

with only two atoms. However DFPT as implemented in the Quantum-ESPRESSO

package [32] currently only allows the above calculation for q = 0, q" = -q'. Knowl-

edge of the force constants <bpy(Ob, q'b', -q'b") on the two atom unit cell is only

sufficient to compute the linewidth of the phonon mode at F (since momentum con-

servation q + q' + q" = 0 leads to q" = -q' for q = 0).

Due to the above limitation the third-order force constants <Da0Y(lb, I'b', l"b") are

computed at F using density-functional perturbation theory on larger supercells sized

2x2x2 and 3x3x3 containing 16 and 54 atoms respectively. This makes the calculation

computationally expensive. While calculation of third-order force constants on 2x2x2

supercell required a few hours on twelve 2.4 GHz processors, calculation on a 3x3x3

supercell required about 30 days for the same computational resources. Computing

third-order force constants on a mesh larger than 3x3x3 is prohibitively expensive.

By comparing the phonon linewidths obtained from force constants on a 2x2x2 versus

3x3x3 supercell, an estimate of the convergence of the phonon linewidth is obtained.

We find that the force constants obtained on a 3x3x3 supercell are adequate for the

present calculation and lead to a only a small error in the estimate of the phonon

linewidth (inverse of phonon relaxation time). The three-phonon matrix elements are

then computed using these force constants through Eq. 3.39, which are then used to

compute phonon relaxation times using Eq. 3.68.

3.) To compute the thermal conductivity, the first Brillouin zone is discretized

into a grid of q points, and the thermal conductivity is computed using Eq. 3.71. At

any q in the grid, the phonon frequencies are computed using the second-order force



constants obtained in step 1, and the phonon group velocities are computed from the

derivative of the phonon dispersion ow/8q, using the central difference technique

c(qs) - au(qs) _ w(q + Aq, s) - w(q - Aq, s) (374)
o&q 2Aq

Finally, the phonon population is computed using the Bose-Einstein distribution

(Eq. 3.41).

4.) To compute the relaxation time of any phonon mode q, the Brillouin zone is

again discretized into a grid of q'. The relaxation time is then computed by evaluating

the sum in Eq. 3.68. The convergence of the computed relaxation time with respect

to the size of the q' grid is studied. It is found that for a grid of size 30x30x30,

relaxation times are sufficiently converged. Also to compute the relaxation time, the

delta function for the energy conservation in Eq. 3.68 is replaced by a Gaussian

1
6kw) - exp(-(w/c) 2 ); (3.75)

a width of c = 2.5 cm 1 along with a q' grid of size 30x30x30 is found to lead to

reasonably converged relaxation times.

5.) Finally, the convergence of the computed thermal conductivity with respect to

the size of the q grid in the first Brillouin zone is studied. The converged result is taken

to be the thermal conductivity in the single mode relaxation time approximation.

For all density-functional perturbation theory calculations a 8x8x8 Monkhorst-

Pack [59] mesh is used to sample electronic states in the Brillouin zone and an energy

cutoff of 20 Ry is used for the plane-wave expansion. Convergence of all quantities

with respect to these parameters is carefully tested. First-principles calculations

within density-functional theory are carried out using the PWscf and PHonon codes

of the Quantum-ESPRESSO distribution [32] with norm-conserving pseudopotentials

based on the approach of von Barth and Car [60].



3.3 Phonon linewidth of the zone center optical

mode in Si and Ge

Calculation of the linewidth of zone center optical phonon modes can be performed

more accurately than that of any arbitrary q. This is due to the fact that for comput-

ing the linewidth of the zone center optical phonons, the elements GDO'qb, q'b', q"b")

need to be known only for q = 0, q" = -q', i.e. only GTpy(Ob, q'b', -q'b") need to be

known. These can be obtained directly from density-functional perturbation theory

for q' belonging to grids even larger than 3x3x3, and relatively cheaply.

Thus, to study the convergence of linewidth of the zone center optical mode, we

obtain directly 1%,(0b, q'b', -q'b") using DFPT on grids of size 2x2x2, 3x3x3, and

4x4x4 respectively.

Linewidth at F is computed by- discretizing the Brillouin zone into a dense grid

of q' wavevectors and computing the sum in Eq. 3.68. For this, Qap(0b, q'b', -q'b")

need to be known for thousands of q' wavevectors over the entire Brillouin zone. These

are therefore interpolated from the aOy(Ob, q'b', -q'b") computed using DFPT on

either a 2x2x2, 3x3x3, or 4x4x4 q' grid in the first Brillouin zone. The linewidths

computed using iI,,(Ob, q'b', -q'b") interpolated from three different starting grids

are compared. This gives insight into the rate of decay of the anharmonic force

constants with distance between atoms. If the anharmonic force constants in real

space diminish rapidly with the distance between atoms, then this would lead to

their variation in q space to be relatively smaller. This in turn would allow accurate

linewidth to be obtained using 4,O,(Ob, q'b', -q'b") interpolated from even a small

initial q' grid in the Brillouin zone.

Linewidths computed using 4apO(Ob, q'b', -q'b") interpolated from three different

starting grids (2x2x2, 3x3x3 and 4x4x4) are compared against the experimentally

measured values in Fig. 3-4.

It can be seen that the linewidths computed using I(%IOb, q'b', -q'b") obtained

on a 4x4x4 initial grid agree very well with both the first-principles calculation per-

formed by Lang et al. [27], and also the experimental values. Interestingly however,
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Figure 3-4: Comparison of the phonon linewidth of the zone center optical mode in
Si 28 computed using the anharmonic force constants interpolated from three different
initial q' grids in the Brillouin zone, 2x2x2, 3x3x3 and 4x4x4. The computed values
are compared against the computed values obtained by Lang et al. [27] and the
experimentally measured values obtained by Menendez and Cardona [61].

the linewidths computed even with the <bg(Ob, q'b', -q'b") obtained on a 3x3x3

initial grid agree well with experimentally measured values, with only a small error.

This confirms that the anharmonic force constants decay rapidly in real space and

thus vary smoothly in q space, allowing accurate interpolations based on even a 3x3x3

grid.

3.4 Phonon lifetimes in Si and Ge

To compute phonon linewidth (inverse of lifetime) of any mode (qs), where s is

the vibration branch, the Brillouin zone is discretized into a grid of wavevectors q',

and the linewidth is computed using Eq. 3.68. The linewidth is found to converge

for a q' grid size of 30x30x30. As indicated earlier, the third-order force constants
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Figure 3-5: Comparison of the phonon linewidth of the transverse acoustic modes
along J-X (0,0,A) in Si 28 at 300 K computed using anharmonic force constants ob-
tained on two different supercells, 2x2x2 and 3x3x3.

<br(ob, h'b', h"b") needed to compute phonon linewidths were obtained on two dif-

ferent supercells, 2x2x2 and 3x3x3. The phonon linewidth of phonon modes along

the direction F-X was computed using these two different sets of interatomic force

constants. The results for the TA modes at 300 K are presented in Fig. 3-5.

The difference between the two linewidths is only about 6.3% for the TA mode at

(0, 0, 1.0); however, it is much larger, at about 18% at (0, 0, 0.5). Although the change

in linewidth can be expected to be smaller in going from a 3x3x3 to a 4x4x4 supercell,

there is certainly a small error introduced in the thermal conductivity calculation due

to the inability to compute the third-order IFC's on a supercell larger than 3x3x3.

Phonon relaxation times to compute the thermal conductivity were thus computed

using the third-order IFCs obtained on a 3x3x3 supercell. In Fig. 3-6 the anharmonic

relaxation times in silicon are presented along directions of high symmetry at 50 K,

100 K, 300 K, and 500 K respectively.
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3.5 Thermal conductivity of Si and Ge

In this section, the heat carrying ability of the different modes is compared. The total

thermal conductivity is computed and compared against experimentally measured

values.

As indicated before, to compute the thermal conductivity the Brillouin zone is

discretized in a grid of q wave-vectors. For each vibration mode qs in the grid the

phonon frequencies, group velocities, populations and relaxation times are computed.

The thermal conductivity is then computed by using Eq. 3.71. We first study the

convergence of the computed thermal conductivity with respect to the size of the q

grid. Fig. 3-7a shows the thermal conductivity of Si28 computed using three different

grid sizes of 10x10xO, 30x30x30 and 50x50x50 respectively. The computed value

converges for a grid size of 30x30x30.

In Fig. 3-7(b) we compare the converged computed thermal conductivity of Si28

and Ge70 in the single mode relaxation time approximation with experimentally mea-

sured values. The computed values in the single mode relaxation time approximation

agree well with the experimentally measured values [62, 63] both qualitatively and

quantitatively, the disagreement being about 16% for Si28 and 14% for Ge 70 at 300

K.

3.5.1 Contribution of TA and LA modes to thermal conduc-

tivity

The good agreement between computed and measured values allows these results

to be used for a more detailed understanding of the parameters controlling thermal

transport in bulk semiconductor materials. One of the issues that has been strongly

debated is the relative contribution of longitudinal and transverse acoustic modes

in conducting heat in Silicon and Germanium. Hamilton and Parott [64] solved the

Boltzmann transport equation by using a variational approach using a trial function;

using a linear phonon dispersion, they showed that in Germanium transverse acous-

tic modes conduct about 80-90% of the heat, while the contribution of longitudinal
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phonons to thermal conductivity is less that 20%. Their work led to the idea that

transverse acoustic modes play the dominant role in thermal conduction. Savvides

and Goldsmid [65] used the results of Hamilton and Parott to explain their exper-

imental results. However, Ju and Goodson [66] measured thermal conductivity of

silicon thin films and through modelling explained the results by assuming that LA

modes were the dominant heat carriers. More recently Henry and Chen [21] per-

formed molecular dynamics simulations using an environment dependent interatomic

potential (EDIP) to study thermal transport in silicon. They found that LA phonons

contributed roughly 45% to thermal conductivity while TA modes conducted about

50% of the heat. Clearly there a is large scatter in the values reported for the rela-

tive importance of TA and LA modes in conducting heat. The main reason for this

disagreement is that, while empirical potentials have been partially successful in cap-

turing the second-order vibration properties such as the phonon dispersion correctly,

their use to predict the anharmonic behaviour is largely unsuccessful. Empirical po-

tentials are almost never fitted to any properties related to third-order derivatives

(such as Gruneisen parameter) and therefore cannot be expected to yield the correct

third-order behaviour.

In Fig. 3-8 we compare the different modes along F-L line in terms of their phonon

frequencies, group velocities, populations and relaxation times i.e all the ingredients

necessary to compute thermal conductivities. The populations and relaxation times

are presented at 300K: it can be seen right away that optical modes have much smaller

group velocities, phonon populations and relaxation times, compared to the acoustic

phonons. Optical phonons can thus be expected to have only a small contribution

to the thermal conductivity. Among the acoustic modes, while transverse acoustic

modes have lower frequencies and group velocities compared to LA modes, they have

higher populations and relaxation times; Actually the relaxation times of TA modes

are higher than those of the LA modes, almost by an order of magnitude in certain

parts of the Brillouin zone.

In Fig. 3-9(a) we compare the heat carrying ability of the different modes along

the direction F-L(A,A,A). It can be seen that lower frequencies and group velocities of
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the TA modes are compensated by their higher relaxation times, leading to the heat

conduction of each TA mode being comparable to that of the LA modes.

In Fig. 3-9(b) the total contribution to the thermal conductivity of the TA and LA

modes is compared. In silicon, at room temperature, it is found that the TA modes

conduct about 63% of the heat and LA modes conduct about 32%, the remaining

5% being conducted by optical phonons. These values are significantly different from

results reported above [64, 65, 66, 21]. First-principles calculations can thus provide

more accurate understanding of parameters controlling thermal transport.

Figs. 3-10(a) and (b) show the frequency dependence of the thermal conductivity

in Si 28 and Ge70 respectively: in Si 28 , even though acoustic modes extend in fre-

quencies to more than 10 THz, only modes up to about 6 THz contribute to the

thermal conductivity. A decrease in relaxation times and phonon group velocities

with increase in frequency diminishes the heat conduction ability of higher frequency

phonons. The small jump in thermal conductivity at 12 THz occurs due to the

contribution of longitudinal optical modes. Similar trends can be seen for Ge70 .

3.5.2 Phonon mean free path dependence

The dependence of thermal conductivity on phonon mean free path is presented in

Fig. 3-11. The phonon mean free path of a mode qs is taken to be the product of its

relaxation time Tq and the magnitude of its group velocity |c(qs)|. Peak contribu-

tion to thermal conductivity at room temperature comes primarily from phonons of

relatively small mean free path, about 50 nm in Si 2 8 and about 40 nm in Ge 70 . As the

temperature is lowered, an increase in relaxation times shifts the peak contribution

to higher mean free paths. Even though the contribution to thermal conductivity

drops significantly with the increase in mean free path, the long tail ensures that

these large mean free path phonons still contribute significantly to the total thermal

conductivity.

Fig. 3-12 shows the accumulation of thermal conductivity as a function of phonon

mean free path. In Si 2 8, more than 50% of the heat is carried by phonons of mean free

path larger than 200 nm. This provides avenues to lower thermal conductivity through
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nanostructuring. Indeed room temperature thermal conductivity of polycrystalline

silicon was measured to be almost an order of magnitude lower than that of single-

crystal silicon [67].

3.6 Full iterative solution

In the previous sections the thermal conductivity was computed by solving the Boltz-

mann transport equation in the single-mode relaxation time approximation. However,

the Boltzmann transport equation can be solved exactly using a self-consistent itera-

tive solution [30, 17]. In this section, following Ref. [17], the full iterative solution is

implemented, and the methodology presented.

Rewriting the phonon Boltzmann equation (PBE) as

Oqs '\ sljs 2q qs11V kqq'q"/1-e(qs).VT OT Nq 1 -qq j1
(I: q" qs,q 8 q q - + p

(3.76)

using the shorthand A for the vibration mode (qs) and defining V' E , FAa(BT/rxa)

and realizing that

9 _nA hw(A) nA(nA + 1) (377)
OT kBT 2

the PBE can be rewritten as

-c,(A) 1) ,A) n(Fxa + FA/a - FAIa)+

A"T (3.78)
1 - A "l

2 A '(FA - -

where it is understood that the sum over A" only involves the sum over the mode s".

Defining
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QA",[~ + I AA] (3.79)

and

hu(A)nA(nA + 1)-cc,(A). 2 -=F QA (3.80)
kBT 2  (8

the PBE can be rewritten as

F,,QA = FAa QA - ( [P ,(FA/a - FA/a) + 2PA (FA a + Fna)] , (3.81)

and further rewritten as:

F F + 1 S [ ,[ Fana Fa) + ,N Fra + FAAa)] . (3.82)

The above equation has to be solved for FXA for all the modes A on a chosen grid

in the first Brillouin zone. The iterative solution starts by assuming that the second

term on the right hand side is zero. This gives the zeroth order solution F,\ = FA.

For the next iteration, the required values of FA, and FA\c, are taken from the zeroth

order solution. Substituting these into the second term on the right hand side, yields

the first-order solution F1a. Continuing this process yields the converged values of

FAa.

The thermal conductivity after solving exactly the PBE is obtained as

kao = hw(A)c(A)nA(nA + 1)FAO. (3.83)

The computed thermal conductivity after self consistently solving the PBE is

compared against experimental values in Fig. 3-13. It can be seen that solving the

PBE exactly leads to a better agreement with experimentally measured values as

compared to the use of the SMRT approximation. However for pure Si28 and Ge70
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the difference between the two results is small. Furthermore, it can be seen that

there is still a small disagreement between the computed and the experimentally

measured values. This is primarily due to the fact that the anharmonic force constants

4,Qfl(ob, h'b', h"b") were obtained on a 3x3x3 supercell. As shown in Fig. 3-5, there

is a small difference in the linewidths computed using <bfly(ob, h'b', h"b") obtained

on a 2x2x2 versus a 3x3x3 supercell. Thus the computation of linewidths is not

fully converged with respect to the size of the supercell on which the third-order

anharmonic force constants were obtained. Computation of the force constants on a

supercell larger than 3x3x3 was found computationally too expensive, thus somewhat

limiting the accuracy of the final computed thermal conductivity.



Chapter 4

Thermal conductivity of

Silicon-Germanium alloys

In thermoelectric materials, the energy conversion efficiency is often characterized

by the dimensionless figure of merit ZT = So-T/k where S, o-, k and T are the

Seebeck coefficient, electrical conductivity, thermal conductivity, and temperature.

For decades, it was found difficult to increase the figure of merit beyond ~1, rendering

these devices too inefficient to be of practical use except in niche applications, such

as power generation in space. However, recent advances in nanotechnology have

led to renewed interest in thermoelectric devices. A key approach to improve ZT

in thermoelectric materials has been to reduce thermal conductivity by increasing

phonon scattering either by introducing disorder as in alloys, or nanostructuring [8,
9, 10].

As an example, while ZT in heavily doped n-type single crystal silicon was re-

ported to be about 0.01 at room temperature [6], ZT in nanostructured silicon was

measured to be about 0.02 [6], almost 100% higher compared to single crystal sili-

con. This increase in ZT was due to the significant reduction in thermal conductivity

in nanostructured silicon, due to increased scattering of phonons. More recently,

Hochbaum et al. [9] measured ZT in surface-rough silicon nanowires to be about 0.6

at room temperature, almost 60 times higher than bulk silicon. This increase in ZT

was attributed to an almost 100-fold decrease in thermal conductivity with respect



to bulk silicon. Similarly, Boukai et al. [10] measured ZT in silicon nanowires to be

about 1 at 200 K. This increase was again ascribed to phonon effects.

Due to disorder, thermal conductivity of silicon-germanium alloys is significantly

lower than both silicon and germanium. This leads to a higher ZT in SiGe alloys.

Vining et al. [7] reported a ZT of about 1 in n-type Si0 .8 Ge. 2 alloys and a maximum

ZT of about 0.62 in p-type samples. Both measurements were made on samples with

grain sizes of the order of microns. Thus low thermal conductivity in SiGe alloys

leads to a ZT almost 100 times larger than bulk silicon. However, while ZT in p-type

samples with micron-sized grains was measured to be 0.62, nanostructuring to reduce

thermal conductivity was found to lead to a ZT of about 0.95 [68], an increase of

almost 50%.

Being able to predict thermal conductivity in disordered materials accurately

would greatly reduce the cost associated with designing more efficient thermoelec-

tric materials. One of the key parameters deciding whether nanostructuring would

result in lower thermal conductivity is the phonon mean free path. If significant heat

is conducted by phonons of mean free path larger than a micron, then this provides

avenues to lower thermal conductivity by introducing additional scattering mecha-

nisms at nanometer length scales. Accurate prediction of phonon mean free paths

can thus help guide the design of nanostructured materials with improved ZT. In

Chapter 3, it was demonstrated that first-principles approaches can very accurately

predict the thermal conductivity in pure materials, such as Si 28 and Ge7 .

However, prediction of thermal conductivity in disordered systems is more chal-

lenging. While mass-disorder plays a key role in lowering thermal conductivity

in important thermoelectric materials such as half-Heusler alloys [69] and silicon-

germanium alloys, an attempt to predict the magnitude of this effect in SiGe al-

loys through non-equilibrium molecular dynamics (MD) [33] simulations using the

Stillinger-Weber potential [18] was found to result in large discrepancies with mea-

sured values. Moreover, the predicted temperature dependence did not agree with

experimentally observed behaviour.

Chaudhuri et al. [70] studied heat-current in two-and three-dimensional disordered



harmonic crystals in a slab geometry. Expressing the current in terms of a frequency

dependent transmission function, they numerically evaluated thermal transport in

these systems, and tried to ascertain the finiteness as well as system size dependence

of thermal conductivity. However the effect of anharmonicity was not included in

the work. Finally Allen and Feldman [71] investigated heat conduction in highly

disordered materials where the typical phonon mean free paths are so short that

phonon wavelength and mean free path are no longer well defined concepts. Again,

the discussion pertained to harmonic solids.

In this Chapter, we will use a first-principles approach to predict the thermal con-

ductivity of silicon-germanium alloys. It would be tempting to compute the thermal

conductivity of alloys using the same approach as was implemented for pure silicon

and germanium, using larger supercells to take disorder into account. The thermal

conductivity is then computed using the phonon modes of these large supercells,

with random distributions of silicon and germanium masses. However, this approach

does not converge to the alloy thermal conductivity in the limit of an infinitely large

supercell. The cause of the failure of this approach is discussed and presented.

The second approach involves replacing the disordered crystal with an ordered

one and using the phonon modes of this ordered crystal to compute the' thermal con-

ductivity. Both anharmonicity and disorder are treated as perturbations and phonon

relaxation times are computed using anharmonic and mass-disorder scattering terms.

Disorder therefore leads to scattering in addition to the anharmonic scattering present

in pure materials, thereby lowering relaxation times and lowering thermal conduc-

tivity. This approach is found to lead to excellent agreement with experimentally

measured values and provides guidelines for the design of nanostructured materials.

The two approaches are presented in detail in the following sections.

4.1 Approach based on use of supercells

In this section, the first approach to compute the thermal conductivity of silicon-

germanium alloys is presented. This approach involves using large supercells to com-



pute phonon frequencies, group velocities, populations and relaxation times, that

together yield the thermal conductivity via Eq. 3.71. Since, the structure of SiGe al-

loys has been shown to be truly random both experimentally and theoretically [34, 35]

with no significant long or short range chemical ordering, disorder can be modelled

by randomly allocating masses to be that of Si or Ge, in the ratio corresponding to

a desired composition. Naturally occurring Germanium Genat is a mixture of five

isotopes having an average mass of 72.64 a.m.u [721; while computing the thermal

conductivity of alloys the mass of naturally occurring Ge""t was used.

To compute phonon frequencies, group velocities, populations and relaxation

times, second-order <bO(ob, hb') and third-order <D0,(ob, h'b', h"b") IFCs need to

be known for any composition. For Sio.5 Geo.5 , these are obtained by using the virtual

crystal approximation [44], where the atomic potential at each site is represented by

the 50/50 average of the Si and Ge potentials. The use of this virtual crystal potential,

along with the second- and third-order density-functional perturbation theory yields

the second- and third-order IFC's respectively. For compositions SizGe1_, different

from Si 0.5 Ge0 .5 the second-order and third-order IFCs are obtained by quadratically

interpolating between those of Si, the virtual crystal at x=0.5, and Ge. Obtaining

IFCs using the virtual crystal approximation ignores the effect of difference in atomic

sizes of Si and Ge in lowering thermal conductivity in alloys. However, it is well known

that in SiGe alloys mass disorder plays a significantly more dominant role compared to

strain disorder [39, 33]; the use of the virtual crystal approximation should therefore

lead to only a small error in the estimate of the thermal conductivity.

For any supercell size, the thermal conductivity is taken to be an ensemble average

over many different configurations of mass disorder for a particular composition. As

supercell size is increased, more long-range disorder can be incorporated. The thermal

conductivity at any composition is then finally taken to be the value in the limit of the

supercell size approaching infinity. The validity of the virtual crystal approximation

for computing the thermal conductivity of SiGe alloys is tested and the results are

presented next.
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Ge 70 computed using the pseudopotentials of Si and Ge, respectively, with that com-
puted using the virtual crystal potential.

4.1.1 Validity of the virtual crystal approximation

The applicability of the virtual crystal approximation to compute second-order prop-

erties such as phonon dispersion is tested first. The phonon dispersions of silicon

and germanium computed using the pseudopotentials of Si 28 and Ge70 are compared

against those computed using the virtual crystal potential. The dispersions are com-

pared along -X in Figs. 4-1 (a) and (b).

For both Si and Ge, the phonon frequencies computed using the Si and Ge pseu-

dopotentials are close to those computed with the virtual crystal potential. The

difference in computed frequencies of longitudinal acoustic modes at (0,0,1.0) is only

about 4% for Si and 3% for Ge. Thus virtual crystal approximation can be used

very well to predict second-order properties such as phonon dispersions in silicon-

germanium systems [73, 74].

Next the phonon linewidth at F in Si 28 is computed using the second-order and

Mir-



third-order IFCs of Si 28 , and compared against the value obtained with the second-

and third-order IFC's of the virtual crystal. The comparison is presented in Table 4.1

below.

Table 4.1: Comparison of the phonon linewidth FWHM(cm-1) of zone center optical
mode in Si 2s computed using the force constants derived from (a) Si 28 pseudopotential
and (b) Virtual crystal.

Force constants
Temperature Silicon Virtual

0 K 1.40 1.46
300 K 2.77 2.99

The disagreement is about 4% at 0 K and about 8% at 300 K. Thus the use of

virtual crystal leads to only a small discrepancy even in the estimate of a property

such as a phonon linewidth, that depends upon the third-order interatomic force

constants.

Finally, the applicability of the virtual crystal approximation to compute total

thermal conductivity is tested. To make the comparison easier, we choose a con-

figuration that has a small unit cell and still allows both Si and Ge atoms to be

incorporated. This is the case for SiGe[001]1 ± 1 superlattice. The structure has the

two atom fcc primitive unit cell, one atom being Si and the other Ge. In the first

case, the thermal conductivity is computed using the second-order and third-order

interatomic force constants derived using the Si pseudopotential at the Si site and

the Ge pseudopotential at the Ge site. In the second case these are derived using the

virtual crystal potential at both the sites. The comparison is presented in Table 4.2.

Thus the discrepancy in computing the thermal conductivity through the use of

virtual crystal potential is less than 10%.

4.1.2 Application to thermal conductivity of Sio. 5Geo.5

After the harmonic and anharmonic IFC's are obtained using the virtual crystal

pseudopotential, the disorder is simulated by randomly allocating masses, either of Si



Table 4.2: Comparison of the thermal conductivity (in W/mK) of SiGe[001]i su-
perlattice computed using force constants of (a) Si and Ge pseudopotentials and (b)
Virtual crystal

Force constants
Temperature Si,Ge Virtual

100 K 648 606

150 K 363 336

200 K 252 233

or Ge, to the atomic sites in the supercell but without relaxing the ions from the ideal

configuration. The thermal conductivity is calculated in the single mode relaxation

time approximation using Eq. 3.71. While the thermal conductivity of isotopically

pure Si and Ge was calculated using the primitive two-atom unit cell, the thermal

conductivity of the Sio.5GeO.5 alloy is calculated for larger supercells and the result is

then extrapolated to infinity. This value is taken to be the thermal conductivity of

the Sio.5GeO.5 alloy.

First, the variation of phonon relaxation times with increase in supercell size is dis-

cussed. The anharmonic three-phonon relaxation times are computed using Eq. 3.68.

However, larger supercell corresponds to a smaller Brillouin zone and typically a

smaller q' grid is required for the convergence of the phonon linewidth. Second, the

number of vibration modes s', s" at each q', q" in the Brillouin zone is equal to three

times the number of atoms in the supercell. This number increases as the third power

of the supercell linear dimensions, and becomes 48 for a 2x2x2 supercell, and 384 for

a 4x4x4 supercell. This makes the computation of phonon relaxation times expensive,

and a 4x4x4 supercell is the largest supercell for which they can be computed. For

supercells 5x5x5 and larger, the computational cost is prohibitively large.

The phonon scattering rate as determined by Eq. 3.68 depends upon both the

strength of the three-phonon coupling matrix elements |V3(-qs, q's', q"s") as well as

the phase space available for scattering, as determined by



X =N(3N ) 2 E 26(w(qs) - w(q's') - ((q4s"))+

6(w(qs) - w(q's') - w(q"s"))j.

In the above equation 1/[N(3Natom) 2 ] is a normalization factor, where N is the size

of the q' grid in the Brillouin zone and Natom is the number of atoms in the supercell.

Mass disorder modifies the three-phonon scattering rate in the following ways;

* Disorder leads to lower symmetry, and in turn to a loss of degeneracy. Phonon

modes become smeared out over the entire frequency range, changing the num-

ber of scattering channels (i.e. phase space, x) available for the scattering of

any particular phonon mode.

" Phonon scattering also depends on the strength of the three-phonon coupling

matrix elements. These matrix elements (Eq. 3.40) are related to the third-

order anharmonic force constants and the vibration eigenvectors of the three-

phonon modes involved in scattering. Mass disorder can change the vibration

eigenmodes and therefore alter the strength of these three-phonon scattering

matrix elements, thereby changing scattering amplitudes.

The three-phonon relaxation times computed for the composition Sio.5 Geo.5 using

2x2x2, 3x3x3 and 4x4x4 supercells are presented in Fig. 4-3 and we find that there

is little variation in the anharmonic relaxation times as the supercell size is increased

from 2x2x2 to 3x3x3 and to 4x4x4. As indicated above, computing phonon relaxation

times for supercells sized 5x5x5 and larger is currently computationally too expensive.

However, to accurately extrapolate the thermal conductivity to an infinitely large

supercell, phonon relaxation times on supercells sized 5x5x5 and larger are required.

Since there is little variation in relaxation times as supercell size is varied from 2x2x2

to 4x4x4, any further variation can be expected to be small and is ignored. The

three-phonon relaxation times for supercells sized 5x5x5 or higher are assumed to be

properly described by an extrapolation on the 4x4x4 supercell. To implement this,



Figure 4-2: A supercell with random distribution of Si and Ge atoms in the compo-
sition Sio.5Geo.5.

a fit between relaxation times and phonon frequencies is obtained. For any supercell

the three-phonon relaxation time of a phonon mode can be computed through the

knowledge of its frequency and this fit.

Next, we discuss the phonon group velocities. Allen and Feldman [71] suggested

that as the size of a supercell containing N atom atoms is increased, the system becomes

more disordered, causing the N atom phonon bands to repel each other, and reducing

bandwidths and group velocities by on average, 1/Natom. Thus, in the limit of an

infinitely large supercell, all phonon modes can be expected to become localized and

with zero group velocities. To study group velocities we define here a mean squared

group velocity weighted with the density of states.

E v (qj)
q3

(v2)(O) w<w(qj) <w+dw (42)
(dw) x N x (3Natom)(4.2

In the above equation N is the size of grid used to discretize the Brillouin zone and

Natom is the number of atoms in the supercell. This mean squared velocity is presented

as a function of frequency for different supercell sizes in Fig. 4-4. It can be seen that

; e a-
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Figure 4-3: Anharmonic phonon relaxation times Sio.5 GeO.5 alloy at 300 K as a func-
tion of supercell size.

the group velocities decrease with increase in supercell size as suggested by Allen and

Feldman [71].

Using the fit we obtained for the phonon relaxation times, and the actual group

velocities, it is now possible to compute the thermal conductivity with increasing

supercell size. The results are presented in Fig. 4-5(a). Due to the decrease in

group velocities, the thermal conductivity drops with increase in supercell size, and

plotting the results on log-log scale (Fig. 4-5(b)) reveals that the conductivity drops

with the number of atoms in the supercell roughly as 1/N,;i. Thus, in the limit

of an infinitely large supercell this approach would yield zero thermal conductivity,

and cannot be used to compute alloy thermal conductivities. This result agrees well

with the observation made by Lee [75] who stated that disordered systems cannot

be understood by forcing them into the mould of ordered systems, but instead that

disorder should be treated separately from the beginning.

Below we present another approach which does treat disorder from the beginning

by including its effect as an additional two-phonon elastic scattering term.

-- ------- -
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4.2 Approach based on perturbation theory for

the virtual crystal

Abeles [39 first introduced the idea of computing the thermal conductivity of SiGe

alloys by replacing the disordered crystal with an ordered one and treating both

disorder and anharmonicity as perturbations. In this phenomenological model the

net scattering rate of a phonon mode is computed as the sum of the scattering due

to mass disorder and anharmonicity. The mass disorder contribution is taken to

be T- w4Vog/(4rv3), in analogy with the result of Klemens [76] for point-defect

scattering, where V is the volume per unit atom, v is the branch-averaged sound

velocity, g = E fi ( - mi/ m)2 is a measure of the mass disorder, fi and mi are

the concentration and the atomic mass of species i and m-n is the average mass for

the given composition. For the anharmonic contribution, the low-frequency limit

of normal (B1w 2 ) and umklapp (B 2w2 ) processes is used to estimate anharmonic

scattering, leaving B1 and B2 as free parameters. The use of these fitting parameters

allows to obtain good agreement with experiments, but also limits the predictive

ability of these models.

Here we follow Ref. [39], but we compute from first-principles all parameters nec-

essary to estimate the thermal conductivity. For any composition, the disordered

crystal is replaced with an ordered (average) crystal which has a 2-atom fec unit cell

and lattice parameter, mass and force constants appropriate to that composition. The

mass of an atom in this ordered (average) crystal is taken to be a linear interpolation

between the masses of Si and Ge for any composition, SiGei-,

m = xms2 + (1 - x)mGe- (4-3)

For Sio.5Geo.5 , the force constants are obtained by using the virtual crystal approxima-

tion [73, 441, where the atomic potential at each site is represented by the average of

the Si and Ge potentials. Second-order and third-order density-functional perturba-

tion theory along with this virtual crystal potential yield the second-order 4D8(lb, l'b')



and third-order <bO (ib, l'b', I"b") interatomic force constants respectively. The lat-

tice parameter for Sio.5 Geo.5 is obtained by minimising the energy with respect to the

volume of the unit cell using the virtual crystal potential. For compositions SiGe1_

different from Sio.5 GeO.5 the interatomic force constants and the lattice parameter

are obtained by quadratically interpolating between those of Si, the virtual crystal

potential at x=0.5, and Ge.

For any composition, we compute the phonon modes of this ordered (average)

crystal from the interpolated force constants and mass and derive from these the

frequencies, group velocities and populations that enter into the calculation of thermal

conductivity. The scattering rate of a phonon mode qs where q is the wave-vector

and s is the phonon branch, is taken to be the sum of a term describing harmonic

scattering due to mass disorder and a term describing anharmonic scattering, as in

Matthiessen's rule.

1 1 1
Tqs Ty-harmonic Tanharmonic '4

The harmonic scattering rates due to mass disorder are derived using perturbation

theory by Tamura [77]. The derivation is presented in the following section. Anhar-

monic scattering rates are computed based on the perturbation theory for the lowest

order three-phonon scattering processes [28] using Eq. 3.68.

Finally, we adopt the single-mode relaxation time (SMRT) approximation [16] as

an approximate solution of the Boltzmann transport equation [22, 52]; the thermal

conductivity is computed using Eq. 3.71.

4.2.1 Harmonic scattering rate due to mass disorder

We present below the scattering rates due to mass disorder as derived in Ref. [77].

For a crystal with a unit cell containing r atoms, the Hamiltonian can be written as:

1
H = 2 E m(lb)na(1b) + V2  (4.5)

2 ba



where u represents the magnitude of the displacement of an atom, 1 represents the

position of the unit cell, b denotes the position of different atoms in each unit cell, a

is the direction of the displacement, and V2 is the harmonic interatomic potential. If

the only disorder present is assumed to be purely mass disorder, then the Hamiltonian

can be rewritten in the following form:

H = Ho + H1  (4.6)

where
1

Ho = -m(b)i1lb) + V2. (4.7)
2 lba

H0 is the unperturbed Hamiltonian, that represents the average crystal, and its eigen-

values and eigenfunctions are the phonon energies and phonon eigenvectors corre-

sponding to the vibration modes of the average crystal. H1 is the interaction Hamil-

tonian, that leads to coupling and hence scattering between the eigenstates of the

average crystal. The expression for H1 is given below:

H1 = E Z[m(lb) - mT(b)]iL(1b)
Slba (4.8)

= 2E Am(lb)nj (1b).
lba

In the above rh(b) is the average mass of the atom at location b in the unit cell,

m(b) = N m(lb) = fi(b)mi(b), (4.9)

where N = N1N2N3 is the crystal size, N1, N2 and N3 being the number of unit cells

along the three lattice directions, i represents the different atomic species and f is

the concentration. Using Eq. 3.14 and Eq. 3.37, the displacement of any atom can

be expressed in terms of vibration eigenvectors e(blqs) and creation and annihilation

operators a 8 and aqs, where q and s are the wave-vector and branch of phonon qs:

utlb) = -i (h e(blqs)(at - a-qs)e iq-. (4.10)
s -2mbNw(qs)



In the above, the time dependence exp(iwt) is omitted as it only contributes a phase

factor which yields unity when the scattering rate amplitudes are computed. The

time derivative (omitting the term exp(iwt)), can be written as

h (q s) ti.A(lb) = -i E)e(blqs)(aq, - a-qs)e*l. (4.11)
qs 2mbN

Substituting the above expression into the interaction Hamiltonian, we obtain,

1h AmlbH, = h E E 1: E[w(qs)w(q's')]i 2 Nml
b qq' ss' i Nrb (4.12)

x e(bjqs).e(bjq's') [aqs at',, + at a-qisi] e i e '.

In the above only those combinations of annihilation and creation operator have been

retained that lead to a physically possible scattering process. To further simplify the

above, following transformation is introduced:

Amn(lb) 
.

Amnb) E ZA~b(Q)eiQ' (4.13)

mb Q

AMb(Q) AM(Ib)e i3, (4.14)

where AM(lb) = Am(lb)/mb. Using the above transformations, the interaction

Hamiltonian can be rewritten as:

H, = h E 1 j[w(qs)w(q's')]1/ 2AM-(Q)
b qq'Q ss' (4.15)

x e(bjqs).e(bjq's')(a-qsat, , + at a-qsi] Eeiq+q'+Q-

the summation over I yields the delta function o(q + q' + Q) and we obtain

h
Hz = 3 Y,[LL(qs))(q'sf)]1/ 26 (q + q' + Q)Afb(Q)

b qq'Q ss' (4.16)

x e(bjqs).e(bjq's')[a-qaat ,8, + ataqasi].



As for the case of three-phonon scattering, the phonon scattering rate due to mass-

disorder can be now computed using the Fermi's golden rule,

P = |( IHIli)|26(Ef - Ei). (4.17)

The net scattering rate of a phonon mode is given by

scatt
(4.18)-1S -~qs pqs

8

(P ' s ,),
qISI

where

P'' nqs(nqlsl + 1)w(qs)w(q's') Al(Q)e(bjqs).e*(bjq's')6(q
2 bQ

2

+I + Q)

x 3[w(qs) - w(q's')].

(4.19)

Writing w(qs) as simply w, i.e. w =w (qs), and realizing that energy conservation

leads to w(qs) w(q's'), the above expression can be rewritten as

PqS = nus(nqsi + 1)w 2 S A ~ (Qjetbjqs).e*(bjq's'jo(q + q' + Q
bQ

x 6[w - w(q's')].

Similarly

P, s,=- (nqs +1)nqIsIW 2 (Al(Q)e(bjqs).e*(bjq'
2 bQ

s')6(q + q' +

x 6[w - w(q's')].

Substituting Eqs. 4.20 and 4.21 into Eq. 4.18, the scattering rate of phonon mode qs

(4.20)

2

Q)
(4.21)



can be written as

2
-nq8  W 2  ( AMb(Q)e(bjqs).e*(bjq's')6(q + q' + Q) 64w -[ w(q's')]

scatt 2 qrs' bQ

x [nqs(nqisi + 1) - (nqs + 1)nqri].

(4.22)

The term [nq(nq, + +1) - (nq, + 1)nqg,'] can be simplified by linearising the perturbed

phonon population nq in terms of equilibrium population nqs and a first order per-

turbation oneq to yield,

nq(nqi/i + 1) - (nqs + 1)nqSi = (nqs -nq's) + (6nqs - nqis (4.23)

= nq -- nqii.

In the above use is made of the energy conservation for the scattering process, i.e.

w(qs) = w(q's') leading to nrqs = nqs'. Using the single-mode relaxation time approx-

imation, where it is assumed that only the mode qs relaxes to its equilibrium state

while other modes remain in equilibrium, i.e. 6niqf, = 0, Eq. 4.23 reduces to,

nqs(nqis' + 1) - (Ns + 1)nqis = nqs (4.24)

Using the above, the net scattering rate can now be written in terms of the pertur-

bation in phonon population of the mode qs and a relaxation time Tqs(W) as,

_9nqs _ 6nqs _nqs -fqs (4.25)
at scatt Tqs(W) Tqs(W)

where the relaxation time T qs (w) is given by

2

w2 (qs) ( 6[w - o(q's')] 5 AfMb(Q)e(bjqs).e*(bjq's')6(q + q' + Q)
Tqs(W) 2 q'S, bQ

(4.26)



To simplify the above expression, we note that

AMb(Q)AM*, (Q') I ZAM(b)AM(b'1')e- '-'']. (4.27)
N211,4.7

Taking an ensemble average over a random distribution of masses yields

KAM(bl)AM(b'l')Xve = K[AM (bl )] 2 ) 616b, = 92(b)ou636bb',

92 (b) = Z fi(b)[1 -Tmi(b)/ t(b)]2 (4.29)

here, fi(b) is the concentration of species i at location b in the unit cell. Note that

the above allows sub-lattice disorder to be taken into account. Making use of the

Eq. 4.28, Eq. 4.27 can be written as

AFb(Q)Af*'(Q') = g2(b)6bb-A(Q - Q'). (4.30)

Substituting Eq. 4.30 into Eq. 4.26, the scattering rate can now be written as

Tqs(W) 2W (qs) Z6[w - w(q's')] 2be (bqs).e*(bq's')|2.
q,() 2N q's' b

(4.31)

To make further progress, we use the following property of the eigenvectors related

to the cubic symmetry of fec unit cell [77],

S f(qs)e*(bqs).e3(bjqs)
qs

E" f(qs).
6 qs

In the above f(qs) is any function that depends upon q and s through W(qs). Using

Eq. 4.32, the scattering rate can be rewritten as

(4.33)= W - w(qs) 1: 6[w - w(q's')]
Tq,(w) 12N qs,

Realizing that 6[w - w(q's')]/N = D(w) where D(w) is the density of states corre-

where

(4.28)

(4.32)



sponding to the two-atom unit cell (f D(w)dw = 6), the above can be written as:

1 g2W2(qs)D(w) (4.34)
Tqs(W) 12

where

92 - S g2(b) (4.35)
b

Using the density of states normalized to unity D(w) = D(w)/6 such that f D(w)dw =

1, the scattering rate can be written as

1 - 92W (qs)D(w). (4.36)
Tqs(W) 2

Typically the low frequency limit of this expression is used to estimate elastic phonon

scattering rates. We now derive the limit of the above expression as w -> 0. Rewriting

1 ir
-g2W2(qs) VOD'(w) (4.37)

Tqs (W) 6

where D'(w) is the density of states per unit volume, D'(w) = D(w)/V , V is the

volume of the unit cell, and V is the volume per unit atom. The density of states

per unit volume is given by

D'(w) ) dS (q s) (4.38)
(27r) 3 vs (q)

where dS, is an element of area on the constant frequency surface, and v. is the group

velocity of the phonons. We finally obtain

1 V w4

g2 (4.39)
Tqs(W) 47r (c 3 (W))

where we define

1 1 [dQ(q) 1 (4.40)

(c3(w)) 3 LJ 47r cS(q)vs(q)cos[ s(q)]



In the above c, is the phase velocity, and (, is the angle between q and the group-

velocity vector. The integral is performed over the solid angle Q(q) in the wave vector

space on a constant frequency surface. In the long wavelength limit, where both c,

and v, = c8 /cos , become independent of the magnitude of q or the frequency, the

relaxation time exhibits the characteristic w--' behaviour. For Sio.5 Geo.5 composition,

the above expression is numerically evaluated to be

V0  w4
r-I (U) - 0) = gO 2 3
qS47r C (0)) (4.41)

= 4.43 x 10 4 2sec 3 x 4

where w is in rad/sec.

Though the expression for harmonic scattering (Eq. 4.36) is valid for small mass

disorder, its use has been found to lead to good agreement with experimentally mea-

sured phonon linewidths, e.g even in the case of a Nio.5 5 Pdo.45 alloy, where atomic

species are chemically similar but mass disorder is large (mpd/mNi = 1.812) [78].

The computed harmonic scattering rates for the composition Sio.5 Geo.5 are shown

by the solid line and the long wavelength limit (represented by Eq. 4.41) is shown by

the dashed line in Fig. 4-7(b).

4.2.2 Anharmonic scattering rates

The anharmonic scattering rates are computed based on the lowest-order three-

phonon scattering processes in the single-mode relaxation time approximation by

using Eq. 3.68 [13, 28]. These anharmonic scattering rates for any composition are

computed first using the phonon modes of the average crystal corresponding to that

composition; later we will also incorporate the effect of disorder by performing ex-

plicit calculations on supercells with random distributions of Si and Ge masses for the

relevant composition. The anharmonic scattering rates for the composition Sio.5 Geo.5

computed using the phonon modes of the average crystal at 100 K, 300 K and 500 K

are shown in Fig. 4-7(b) by open circles, diamonds and squares respectively.
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Figure 4-6: Composition dependence of the thermal conductivity in SiGei_2 at 300
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4.2.3 Alloy thermal conductivity

The approach outlined above yields an excellent agreement between the computed

and measured values at 300 K [36, 39] for the alloy thermal conductivity at all com-

positions (Fig. 4-6). Notably, the thermal conductivity is found to drop sharply after

only a small amount of alloying. This is due to the strong harmonic scattering of

phonons even in the dilute alloy limit. Our approach predicts that in the composition

range 0.2 < x < 0.8 the alloy thermal conductivity becomes nearly independent of

composition, in excellent qualitative and quantitative agreement with experiments.

This low thermal conductivity in SixGei_- with respect to pure Si or pure Ge

is better understood from the analysis of the relative contribution of the different

scattering mechanisms. As shown in Fig. 4-7(a) for Sio.5 Geo.5 , thermal conductivity

even at temperatures as high as 500 K is dominated by phonon modes below 1 THz

(at 100 K, 300 K, and 500 K, respectively, 82%, 65% and 58% of the heat is conducted

by phonons of frequency less than 1 THz, while 13%, 23% and 27% is conducted by

phonons between 1 and 2 THz; optical frequencies for Si and Ge are 15.67 and 9.27

THz, respectively, at the zone center). In pure silicon, on the other hand, phonon

modes up to 6 THz contribute in similar measures to thermal conductivity (see Figs. 3-

10 and 4-7(a)); harmonic scattering completely annihilates the heat carrying ability

of these higher frequency modes (see Fig. 4-7(b)) leading to the observed sudden drop

in conductivity.

In order to consider the temperature dependence of heat transport, we looked

at the experimental data for Sio.3 Geo. 7. While disagreement with measured resistiv-

ity [38] is less than 10% at 300K, it becomes larger at higher temperatures (open

squares in Fig. 4-8). The effect of 4-phonon processes has been estimated to be

small [79]; we should note that up to now scattering rates were computed using the

phonon modes of the average crystal, without taking into account the effect of a ran-

dom distribution of masses. To incorporate this effect, we compute the scattering

rates using large supercells with explicit random distribution of Si and Ge masses

in the relevant compositions. Fig. 4-9(a) shows that for Sio.3Geo.7 the anharmonic
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phonon relaxation times computed using a 4x4x4 supercell (dashed red line) are

lower by a factor of -2.0 at the smallest frequencies studied - compared to those

obtained using the virtual crystal (solid black line) - with the difference diminishing

as the frequency is increased. Using these lower anharmonic lifetimes, and continuing

to use the other parameters obtained with the virtual crystal, we find that a good

agreement with measured resistivity values is obtained even at higher temperatures

(see Fig. 4-8, open diamond). On the other hand, the effect of using real masses is

negligible for harmonic scattering in the low-frequency region, due to the negligible

changes in phonon density of states at low frequencies (Figs. 4-9(b)), resulting in

minimal changes for the thermal resistivity (open triangles in Fig. 4-8).

Mass-disorder thus lowers thermal conductivity through harmonic scattering in the



high-frequency region, and by increasing anharmonic scattering at low frequencies.

To understand this latter effect, we perform anharmonic scattering calculations on a

2x2x2 supercell, using 2nd and 3rd order force constants for the composition Sio.3Geo.7.

We compute the values of the three-phonon anharmonic coupling matrix elements

I 3(-qs, q's', q"s")| 2 involved in the scattering of a low-frequency phonon mode (qs),

when the mode (q's') is varied over the entire Brillouin zone. The lis2 values are

computed first for the case where all the atoms have an average mass corresponding to

Sio.3Geo.7, and second with real Si and Ge masses randomly distributed according to

the above composition. We find that in the first case a large fraction of channels have

negligibly small | 3 |2 (Fig. 4-10(a)), while in the second case the number of channels

with large 3|2 increases significantly (Fig. 4-10(b)), causing the overall anharmonic

scattering rate to increase by almost a factor 2. To explain this increase, we notice

that

, a, , yeO,(bjqs) ep,(bjq's') e_,(bjq"s")
3(qs, qls', qlsl) ~ E (ba,(qb, qWb ,qlbl 'M

b,b',b" a mb mb' mb-
(4.42)

where r, denotes the atoms in the supercell, a is the Cartesian direction, <D is the

Fourier transformed anharmonic force constants, M is the atomic mass, and c's are

the vibration eigenvectors. Typically, it is found that the largest values of <D involve

the same atom and vibration along different Cartesian directions, while other terms

are orders of magnitude smaller. Therefore V3 ~ XS where

S ~~ec,(blqs) ep,(bi q's') eY(bjq11s") (.3

b aI# -y mb Vmb' mb

This is confirmed by the strong correlation between |S12 (Figs. 4-10(c) and (d)) and

lis32 (ISI2 can be thought of as an "eigenvector overlap"). Since the same anharmonic

force constants are used for both cases of average or random masses, the difference

in 13 originates from the vibration eigenmodes. The small values of |S12 (Fig. 4-

10(c)) in the average case indicate a cancellation of terms involved in the summation
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for S - due to an even distribution of vibration amplitudes over all atoms in the

system - while a random distribution perturbs this even distribution, preventing

such cancellation.

4.2.4 Phonon mean free path dependence

The predictive power of first-principles calculations allows to lay out design rules for

low thermal conductivity materials, of central importance for applications in ther-

moelectrics. Through a microscopic characterization of the relative contribution of

the different vibrational modes in terms of their mean free paths, practical guidelines

for nanostructuring to reduce the thermal conductivity below bulk alloy limit can

be obt'ained. For example, we show that at 300 K (Fig. 4-11) more than 50% of

heat is conducted by phonons with mean free paths larger than 1 pm. Additional

scattering mechanisms introduced by the presence of grain boundaries or nanoparti-

cles distributed around this length scale can thus reduce the phonon mean free paths



thereby reducing the thermal conductivity below the bulk alloy value. The above

results are in agreement with the experimental work of Rowe et al. [40] who showed

that introduction of grain boundaries can reduce the thermal conductivity of SiGe

alloys by as much as ~ 28%. Similarly, from Fig. 4-6, it can be seen that addition

of only about 12% Ge to Si is sufficient to lower the thermal conductivity to the

minimum value achievable in this binary system, of central importance to develop

low-cost thermoelectric devices.
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Chapter 5

Thermal conductivity of

Silicon-Germanium superlattices

Superlattices could provide another avenue to lower thermal conductivity and achieve

higher figure of merit in thermoelectric devices. Venkatasubramanian et al. [11] mea-

sured the ZT of 10 A/50 A p-type Bi 2Te3/Sb 2Te3 superlattice to be about 2.4, a

value significantly higher than the ZT of bulk materials. Devices built using this

superlattice demonstrated a potential to pump heat fluxes up to 700 W cm-2. Local-

ized cooling (for refrigeration) and heating rates (heat pump) were measured to be

almost 23,000 times faster than in bulk devices. This fast response was due to the

heat transfer being through thin films with thickness of the order of microns rather

than through millimeters associated with bulk devices.

Superlattices thus have the potential to achieve significantly higher ZT values

compared to bulk materials. Extensive work has been done to understand thermal

transport in superlattices; e.g. Venkatasubramanian et al. [41] measured the thermal

conductivity of Si/Ge superlattices with periods between 30 A and 300 A using the

3-omega method [80]. They measured the thermal conductivity of the Si/Ge super-

lattice with period L = 150 A to be about 2 W/mK at room temperature. This

value is almost two orders of magnitude lower than the corresponding value for Si 28 .

To understand this dramatic decrease in thermal conductivity, significant theoretical

work has been done to model thermal transport in superlattices.
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Ren and Dow [81] explained low thermal conductivity in terms of a new type of

umklapp processes, which they termed mini-umklapp. Normal processes do not by

themselves offer resistance to the flow of heat, but superlattices have a larger lattice

parameter and hence a smaller Brillouin zone in the direction of layering. The recipro-

cal lattice vector associated with this folded Brillouin zone was described to give rise

to mini-umklapp processes which contribute to thermal resistance. Majumdar [82]

cast the problem of heat transport by lattice vibrations in dielectric thin films as a

radiative transport problem and found that in the acoustically thick limit, where the

film thickness is much larger than the phonon-scattering mean free path, the phonon

radiative transfer model reduces to the Fourier law. Chen [45] developed models of the

effective thermal conductivity of periodic thin-film structures in the parallel direction

based on the Boltzmann transport equation. Different interface conditions including

specular, diffuse and partially specular and partially diffuse interfaces were consid-

ered; the study found that atomic-scale interface roughness was the major cause for

the measured reduction in superlattice thermal conductivity. It was also argued that

by controlling interface roughness the effective thermal conductivity of superlattices

made of bulk materials of high thermal conductivities could be reduced to those of

amorphous materials, while maintaining high electrical conductivities, providing av-

enues for high ZT materials. Subsequently Chen [83] also investigated the thermal

conductivity in the cross-plane direction by solving the Boltzmann transport equa-

tion. Different scattering mechanisms, including elastic versus inelastic and diffuse

versus specular were considered. The thermal conductivity in the cross plane direc-

tion was found to be related to the thermal conductivity of the individual layers and

a thermal boundary resistance. The thermal boundary resistance was found to be

not an intrinsic property of the boundary but depended on the layer thickness and

the phonon mean free path.

All of the above attempts to explain the low thermal conductivity of superlattices

focussed on increased scattering of phonons. However Hyldgaard and Mahan [46]

attributed the decrease in superlattice thermal conductivity to a lower phonon group

velocity due to the confinement of phonon modes. They found that the decrease in
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group velocity can lead to almost an order of magnitude decrease in thermal con-

ductivity. Subsequently Tamura et al. [84] also found that the component of the

phonon group velocity in the growth direction of superlattice was reduced due to the

flattening of the dispersion curves associated with Brillouin zone folding. In Si/Ge

superlattices they found that this leads to an order of magnitude decrease in thermal

conductivity, in agreement with the results of Hyldgaard and Mahan.

Simkin and Mahan [85] also discussed the conflict between the thermal conduc-

tivity behaviour of superlattices with small and large period lengths. At small period

lengths, the thermal conductivity increases with a decrease in period length. How-

ever at large period lengths, the behaviour is the opposite, the thermal conductivity

decreases with a decrease in period length. They resolved this by using the wave

picture at small period lengths and the particle picture at large period lengths. In

the wave picture, the decrease in thermal conductivity with increasing period length

is due to the interference effects which cause a decrease in group velocity. In the

particle picture however, it was proposed that the these interference effects disappear

due to the phonon mean free path being smaller than the period length.

In this Chapter, we investigate the thermal conductivity in superlattices from first-

principles. The phonon modes of the superlattice are used to derive the phonon fre-

quencies, group velocities and populations that enter into the computation of thermal

conductivity, and phonon relaxation times are computed based on the three-phonon

scattering processes. We still solve the phonon Boltzmann transport equation in the

single-mode relaxation time approximation. We compute the thermal conductivity

of [001] superlattices with period lengths ranging from 2 atomic layers to 28 atomic

layers. We find that for superlattices with period length between 4 atomic layers and

28 atomic layers, the computed thermal conductivity drops with increase in period

length and is lower than that of Ge70 . This is due to the decrease in group velocity as

a result of zone folding. However we find that for the superlattice with period length

of only 2 atomic layers the computed thermal can exceed that of Si 28 . This large in-

crease in thermal conductivity as the period length is decreased from 4 atomic layers

to 2 atomic layers cannot be explained based solely on the increase in group velocity.
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We find that the large gap in phonon frequencies of optical and acoustic modes at

the zone edge in the 2 atomic layer superlattice strongly affects the three-phonon

scattering processes. The gap dramatically reduces the scattering of acoustic modes

by optical modes and leads to a large increase in the relaxation times of acoustic

modes. This in turn leads to large increase in the thermal conductivity at this small

period length.

To describe the superlattices with a particular growth direction and period, we use

the notation SiGe[001]isf, where Si and Ge represent the materials that constitute

the alternate layers, [001] represents the growth direction, and in the subscript i + f,
i represents the number of atomic layers of Si and f represents the number of atomic

layers of Ge in one period of the superlattice. The period of the superlattice is thus

i + f atomic layers.

5.1 Harmonic and anharmonic force constants in

superlattices

Our approach to compute the thermal conductivity of superlattices is similar to the

one used to compute the thermal conductivity of isotopically pure Si28 and Ge70 .

There are two main differences, however, which are outlined below:

1. To compute the thermal conductivity of Si28 and Ge 70 , the second-order and

third-order force constants corresponding to Si28 and Ge70 were used. The force

constants for the superlattice are however derived using the virtual crystal approx-

imation [44] where the atomic potential at each site is an average of the Si and Ge

potentials. The second-order and the third-order force constants are again computed

on a 10x10xl0 and a 3x3x3 supercell (of the 2-atom fcc unit cell), respectively.

2. The unit cell of the superlattice varies with the period length and is differ-

ent from the 2-atom fcc unit cell. Therefore the second-order and third-order force

constants obtained above cannot be used directly but must be folded appropriately.

Once the second-order and third-order force constants are obtained for a super-
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Figure 5-1: A SiGe[001] 6 +6 superlattice with a period of 12 atomic layers.

lattice with a particular period length, the thermal conductivity is computed using

Eq. 3.71. The second-order force constants are used to compute the phonon frequen-

cies, group velocities and populations. The third-order force constants are used to

calculate the phonon relaxation times based on anharmonic three-phonon scattering

processes.

The computed thermal conductivity of superlattices with periods larger than 2

atomic layers is presented in Fig. 5-2 for T=300 K.

5.2 Thermal conductivity variation with superlat-

tice period

Fig. 5-2 shows that with increase in the superlattice period the thermal conductivity

drops sharply, and then for larger period lengths the behaviour plateaus out. The

minimum computed cross-plane thermal conductivity is about 13 W/mK. This value

is higher than the reported values. Lee et al. [41] measured the thermal conductivity

of Si/Ge superlattices with periods ranging between 30 A to 275 A to lie between 1

and 5 W/mK. Thus calculated values are higher than experimentally measured values
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Figure 5-4: Anharmonic phonon relaxation times in Si/Ge superlattices of different
periods at 300 K.

by almost an order of magnitude. The cause of this discrepancy will be discussed later

and we first discuss the cause of the decrease in computed thermal conductivity. To

do this, the phonon group velocities and phonon relaxation times are compared as

the period is increased; it can be seen in Fig. 5-4 that the phonon relaxation times

do not change. However, it is found that with increase in period length, the phonon

group velocities decrease rapidly and we discuss this next.

5.2.1 Group velocity reduction in superlattices

In Figs. 5-5(a) and (b) the mean squared phonon group velocities weighted with the

density of states (defined by Eq. 4.2) are compared for different period lengths, both

for the cross-plane and in-plane directions. It can be seen that both the cross-plane

and in-plane group velocities decrease as the superlattice period is increased. At long

period lengths however the group velocities do not decrease any further leading to
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the thermal conductivity also becoming constant. Interestingly, it can be seen that

at large period lengths the cross-plane group velocities above the highest frequency

in Ge70 drop to zero. This is simply because higher frequency modes localize within

the silicon layer and therefore have zero group velocities. At small period lengths

however phonon modes are able to tunnel through, leading to finite group velocities

even at high frequencies.

Such a drop in group velocity was also observed by Tamura [84] and Mahan [46],

and the cause discussed by Tamura [86], that showed that the presence of alternate

layers of materials with different atomic masses leads to Bragg reflection at the Bril-

louin zone edge and center. This Bragg reflection leads to the creation of a gap in

the phonon energies, in turn leading to a flattening of the phonon dispersion. As the

period of the superlattice is increased, the Brillouin zone gets folded and the Bragg

reflection leads to the creation of additional frequency gaps, in turn leading to fur-

ther flattening of the phonon dispersion. For this reason, the phonon group velocities

decrease as the period length is increased.

Chen [87] also investigated the effect of formation of the frequency gaps on the

phonon group velocity and a reduction in the thermal conductivity. At small su-

perlattice periods, the high-frequency phonon modes are able to tunnel through the

germanium layers, leading to finite group velocities. However, as the superlattice pe-

riod width is increased, these modes become progressively localized within the silicon

layer, and the group velocity decreases further, leading to the observed drop in com-

puted thermal conductivity. Above a certain width of the germanium layers, all the

high frequency phonon modes become localized within the silicon layer, and only the

lower frequency phonon modes are able to propagate through. Beyond this period

width, there is no further change in group velocity and the thermal conductivity value

reaches a constant.

In the very long period length limit, both the in-plane and cross-plane thermal

conductivity can be computed from bulk values. Realizing that in the in-plane direc-

tion, the thermal resistance of the two layers is in parallel, the thermal conductivity

in the long period length limit is given by
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kin-plane = ks k (5.1)

Using the computed values of the thermal conductivity of silicon (130 W/mK)

and germanium (59 W/mK) at 300 K from Chapter 3, the long period limit of the

in-plane thermal conductivity of Si/Ge superlattice is obtained to be 94.5 W/mK.

For the cross-plane direction, the thermal resistances are in series and therefore the

long period length limit is given by

kcross-plane - ksi x kGe (5.2)
ksi + kGe

The above value is computed to be 40.6 W/mK. Thus the long period limits of both

the in-plane (94.5 W/mK) and the cross-plane (40.6 W/mK) thermal conductivity

are higher than the constant values achieved in our calculations, about 40 W/mK

and 13 W/mK for in the in-plane and cross-plane directions respectively. Thus in

the very long period limit, our computed thermal conductivity should increase and

asymptotically reach the limits presented above. However, it has been argued [88]

that our approach based on the use of phonon modes of the superlattice would not

show such a behaviour.

To resolve this Simkin and Mahan [85] proposed that in the small period range, for

layers thinner than the mean free path, the wave theory applies. Wave interference

leads to band folding which in turn leads to a reduction of group velocities and

the observed reduction in computed thermal conductivity (Fig. 5-2). However, they

argued that when the layer thickness (L) exceeds the mean free path (1), the particle

model should become applicable and the interference effects should diminish, leading

to an increase in thermal conductivity. They achieved this in a phenomenological

way by adding a complex part (i/i) to the wave vector q and then recomputing the

properties of the superlattice. Later Yang and Chen [88] further modified this model

by also including the diffuse interface scattering and found that this resulted in good

agreement with experimentally observed thermal conductivity reduction along both

in-plane and cross-plane directions of superlattice.
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5.2.2 Constant relaxation time approximation

An approximation that is typically used in the analysis of thermal conductivity of

superlattices is the constant relaxation time approximation. In this approximation, it

is assumed that the phonon relaxation times of all phonon modes are constant and the

thermal conductivity is computed using lattice dynamics, allowing phonon frequen-

cies, populations and group velocities to vary with the phonon modes as well as the

superlattice period. Ren et al. [89] used the constant relaxation time approximation

along with lattice dynamical calculations and found the thermal conductivity to de-

crease with increasing period length and then reach a constant value beyond a period

length of 20 atomic layers. This result is in excellent agreement with our thermal

conductivity values computed from first principles. However our explicit calculations

of phonon relaxation times show that they are not constant and vary strongly with

the frequency of the phonon mode (Fig. 5-4). Thus constant relaxation time approx-

imation is not strictly valid and leads to an error in the estimate of absolute thermal

conductivity. However Fig. 5-4 also shows that the relaxation times do not vary much

with the superlattice period.

5.2.3 Cause of discrepancy between predicted and measured

thermal conductivity

We now discuss the difference between predicted and measured values of thermal

conductivity at 300 K. As indicated before, in order to estimate the harmonic and

anharmonic force constants in superlattice of any period, we used the virtual crystal

approximation. However in our work, we ignored the disorder at the interfaces and

treated them as perfectly planar.

The disorder at the interfaces has been reported to have a profound effect on

the phonon scattering. Disorder at the interface leads to strong diffuse scattering of

phonons [45]. Extensive work was done by Chen [45, 83] to understand the effect of

interface roughness on both in-plane and cross-plane thermal conductivity. The study
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Figure 5-6: Temperature dependence of the computed superlattice thermal conduc-
tivity for superlattices of different period lengths.

found that interface roughness was the main cause of thermal conductivity reduction

in superlattices, and that by enhancing the roughness, the thermal conductivity could

be reduced to that of amorphous materials.

5.3 Temperature dependence of superlattice ther-

mal conductivity

Fig. 5-6 shows the temperature dependence of the computed thermal conductivity.

We find a dependence of - 1/T, as can be expected for thermal transport due to

anharmonic three-phonon scattering processes. However the temperature dependence

of the measured thermal conductivity is opposite of what is predicted (Fig. 5-3).

The measured thermal conductivity increases with an increase in temperature at

low temperatures and becomes nearly constant at higher temperatures (Fig. 5-3).

This implies that while at 300 K the computed thermal conductivity disagreed with
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Figure 5-7: Thermal conductivity of SiGe[001]1+1 superlattice, Si 2 8, Ge70 and the
average material computed in the single-mode relaxation time approximation.

experiments by an order of magnitude, the disagreement at lower temperatures is

much higher.

5.4 High thermal conductivity

We find that as the superlattice period is reduced from 4 atomic layers to 2 atomic

layers the computed thermal conductivity increases dramatically. Fig. 5-2 shows that

the average of the cross-plane and in-plane thermal conductivity in SiGe[001] 2+2 su-

perlattice is about 55 W/mK at 300 K. The thermal conductivity of the SiGe[001]1+1

superlattice, however, is computed to be about 160 W/mK (see Fig. 5-7) at the same

temperature. Reducing the superlattice period from 4 to 2 atomic layers thus results

in an increase in thermal conductivity by almost a factor of 3. More intriguingly, the

thermal conductivity of the SiGe[001]11 superlattice is found to exceed even that of

isotopically pure silicon (Si 2 8) by about 20% at 300 K. This result is unexpected be-
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cause the presence of heavy Ge70 atom in the silicon-germanium superlattice leads to

lower phonon frequencies and lower phonon group velocities than in Si 2 8 and should

therefore result in lower thermal conductivity. However the opposite is found to be

the case. Our approach provides an understanding of the cause of this high thermal

conductivity.

Some increase in thermal conductivity is expected as the superlattice period is

reduced. At small superlattice periods, phonon modes are able to tunnel through

the small length scale variations in mass and the phonon group velocity increases

resulting in an increase in thermal conductivity. However this by itself cannot explain

an increase in thermal conductivity by more than a factor of 3 when the superlattice

period is reduced from 4 atomic layers to 2 atomic layers. To show this more explicitly,

we compare the thermal conductivity of SiGe[001]i+1 superlattice with a system where

the mass of each atom is an average of the masses of Si and Ge. We will use the term

"average material" to describe this system henceforth. We first compare the phonon

group velocities in the two materials. To make this comparison easier, we use the mean

squared group velocities weighted by the density of states, as defined by Eq. 4.2. The

comparison is presented in Fig. 5-8(a). At frequencies below 5 THz where most of the

contribution to thermal conductivity occurs (see Figs. 3-10(a) and (b)) the phonon

group velocities in the two materials (average and superlattice) are equal (Fig. 5-8(a)).

This can be expected as at low frequencies, the phonon modes in the SiGe[001]1+1

superlattice see the average mass and therefore have similar frequencies and group

velocities as the average material. Based on the group velocity arguments alone, the

thermal conductivity of the SiGe[001]1 +1 superlattice should be similar to that of the

average material, about 84 W/mK, at 300 K (see Fig.5-7). However the superlattice

thermal conductivity (160 W/mK) exceeds that of the average material by almost a

factor of 2. Furthermore, due to the presence of heavier Ge atom, the group velocities

in the superlattice are lower than in isotopically pure Si (see Fig. 5-8), implying that

the thermal conductivity of the superlattice should be lower than Si 28 . Again, the

results are contrary to such an expectation. Group velocity increase cannot therefore

completely explain the dramatic increase in thermal conductivity by a factor of 3 as
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the superlattice period is decreased from 4 to 2 atomic layers.

We find that this enhancement in thermal conductivity occurs due to a large

reduction in the scattering rates of acoustic phonons in the SiGe[001]i+1 superlattice

compared with the SiGe[001] 2+2 superlattice, Si 28, Ge70 and the "average material".

This reduction in the scattering rates of acoustic phonons leads to an increase in their

relaxation times. We discuss this in more detail in the following section.

5.4.1 Higher phonon relaxation times in the SiGe[001]imi si-

perlattice

Fig. 5-9 shows that the relaxation times of the individual phonon modes in SiGe [00111+1

superlattice are significantly higher than those in superlattices of larger periods as well

as in isotopically pure silicon (Si 2 8 ). Similarly in Fig. 5-8(b) we compare SiGe[001]i+1

superlattice with Si 28, Ge70 and the "average material" in terms of mean relaxation

times weighted with the density of states. These are defined by replacing the squared

group velocities with relaxation times in Eq. 4.2. At low frequencies these mean re-

laxation times in the SiGe[001]i+1 superlattice are higher by 3 to 4 times compared

to Si 28 , Ge 70 and the average material. In Figs. 5-13 and 5-14 we compare the phonon

relaxation times of transverse and longitudinal acoustic modes along the directions of

high symmetry. Fig. 5-13 shows that the relaxation times of the transverse acoustic

modes in the SiGe[001]i+ 1 superlattice are more than 5 times higher than in isotopi-

cally pure silicon (Si 28) and the "average material" at the Brillouin zone edge.

Thus while the long wavelength acoustic phonons in the SiGe[001]1+1 superlattice

have the same frequencies and group velocities as the average material (see Figs. 5-

13 and 5-14), they scatter much less in the superlattice as compared to the average

material. To understand how such an effect arises it is worthwhile to compare the

phonon dispersions of the two materials along F-X-F in Figs. 5-10(a) and (b). In the

case of the "average material" a dominant scattering mechanism for the transverse

acoustic modes involves absorbing longitudinal acoustic modes and converting into

optical modes. This is illustrated in Fig. 5-10(a). Such a scattering process has to

116



10000:

SiGe[001]

Sie[r 1u]6+6
0 1000:- SiGe[001]10 , 10

101
28

SiGe[001]

100

10

0 2 4 6 8
Frequency [THz]
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satisfy both momentum conservation: q + q' = q" and energy conservation: w(TA) +

W'(LA) = w"(O). We show one such channel for the scattering of transverse acoustic

mode in the "average material" in Fig. 5-10(a). The channel satisfies both momentum

and energy conservation as indicated below:

q[(0, 0, 0.4)2-r ] + q'[(0, 0, 0.71) 27] q"[(0, 0, 1.11) 27r
a a a (5.3)

w(q, TA)[2.4 THz + w'(q', LA)[6.88 THz] w"(q", LO)[9.28 THz].

However, in the SiGe[001]1+1 superlattice, a large gap exists between the frequencies

of optical and acoustic phonons (Fig. 5-10(b)). This frequency gap prohibits such

a scattering channel. Due to this large gap, the frequency of the optical mode is

typically larger than the sum of the frequencies of the relevant acoustic modes and

the above scattering channel is no longer feasible as demonstrated below:
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27r 2r 27r
q[(0, 0, 0.4) a + q'[(0, 0, 0.71) ] = q"[(0, 0, 1.11) (]a a a (5.4)

w(q, TA)[2.4 THz] + w'(q', LA)[6.45 THz] = w"[8.85 THz] < w"(q", Optical)

This is also shown in Fig. 5-10(b). This absence of scattering by optical phonon

modes results in a decrease in the scattering rates of the TA modes and an increase

in their relaxation times.

To show the importance of optical phonons in scattering transverse acoustic

phonons in the "average material" we split the total scattering rate of the TA modes

into three parts - first part involves absorbing another acoustic mode to yield an

acoustic mode: TA + A = A, second part involves absorbing an acoustic mode to

yield an optical mode: TA + A = 0, and the third part involves absorbing an optical

mode to yield another optical mode: TA + 0 = 0. Other scattering processes con-

tribute negligibly. Fig. 5-11 shows that the three scattering rates are almost equal in

magnitude and therefore scattering by optical phonon contributes almost two thirds

to the total scattering rate of the transverse acoustic mode in the "average material"

along F-L at 300 K. However, in the SiGe[001]11 superlattice due to the large gap in

the frequencies of optical and acoustic phonons, Fig. 5-11 shows that the scattering

by optical phonons is completely absent, resulting in the scattering rates of the trans-

verse acoustic modes in the superlattice being about one-third of the scattering rates

in the "average material". Similar comparison for the longitudinal modes is presented

in Fig. 5-12.

To show the effect of this on the heat conduction ability of the acoustic modes, we

compare all the ingredients that go into the computation of the thermal conductivity

(Fig. 5-13). We make this comparison for the transverse acoustic mode in four differ-

ent materials: Si 2 8, Ge 70, "average" and SiGe[001]1+1 superlattice. While the phonon

frequencies, group velocities and the populations of the transverse acoustic mode in

the superlattice are equal to those in the average material, the phonon relaxation

times are significantly larger. This leads to the transverse acoustic modes conducting
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Figure 5-11: Comparison of the linewidth of the transverse acoustic mode at 300 K
along the l'-L direction (A,A,A) in three materials: Si 28 (dashed line), average material
(dashed-dotted line) and SiGe[001]1+1 superlattice (solid line). Contribution to total
linewidth of the transverse acoustic mode due to (a) absorption of an acoustic to
yield an acoustic mode, (b) absorption of an acoustic mode to yield an optical mode
and (c) absorption of an optical mode to yield an optical mode. (d) Total linewidth
of the transverse acoustic mode, which is the sum of (a),(b) and (c). In the case of
SiGe[001]1+1 superlattice, scattering by optical modes, i.e. parts (b) and (c), is almost
completely absent. This results in the total linewidth of the transverse acoustic mode
being much lower in the SiGe[001]11 superlattice leading to higher relaxation times.

120



2.5 - k W.J-k a= optical

2 -I--

1.5 - g i

0.5 -

0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5

4

- (d) Total linewidth = (a) + (b) + (c) -

3 -3 A SiS *-.Average

,. ~ -SiGe[001] 1 _,1 Superlattice

2m -

0
0 0.1 0.2 0.3 0.4 0.5

Figure 5-12: Comparison of the linewidth of the longitudinal acoustic mode at 300 K
along the I'-L direction (A,A,A) in three materials: Si 28 (dashed line), average material
(dashed-dotted line) and SiGe[001]i+1 superlattice (solid line). Contribution to total
linewidth of the longitudinal acoustic mode due to (a) decay into two acoustic modes
(b) absorption of an acoustic mode to yield an optical mode (c) absorption of an
acoustic mode to yield an acoustic mode. (d) Total linewidth of the longitudinal
acoustic mode, which is the sum of (a),(b) and (c).
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more heat in the SiGe[001]1+1 superlattice than in the other materials. This increase

in the heat conduction ability of acoustic modes due to an increase in their relax-

ation times leads to the large increase in the thermal conductivity of SiGe[001] 1+1

superlattice.

5.4.2 Engineering high thermal conductivity through vary-

ing mass-mismatch

The above result could have useful implications for the design of high thermal con-

ductivity materials. To understand how the mass-mismatch between the materials

constituting the alternate layers affects thermal conductivity, we consider a [001]1+1

superlattice where we fix the mass of one atom in the unit cell to be that of Si, and

vary the mass of the second atom (the unit cell of the [001]1+1 superlattice is the 2

atom fcc unit cell). The variation of thermal conductivity at different temperatures is

presented in Fig. 5-15. As the mass mismatch is increased beyond that of the Si/Ge

superlattice, it is found that thermal conductivity increases even further. This is due

to a further reduction in the scattering rates and increase in the relaxation times of

acoustic phonon modes (Figs. 5-16 and 5-17]).
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Figure 5-13: Comparison of the transverse acoustic modes between Si 28 , Ge 70, average
and SiGe[001]i+1 superlattice, in terms of their phonon frequencies, group velocities,
populations, relaxation times and contributions to thermal conductivity.
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Figure 5-15: Variation of the thermal conductivity of the SiGe[001]i±1 superlattice
with magnitude of mass mismatch between the two atoms in the unit cell. The mass
of one atom in the unit cell is fixed to be that of silicon, while the mass of the second
atom is varied. Increasing the mass mismatch beyond that in the Si/Ge superlattice
leads to further increase in thermal conductivity.
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Figure 5-16: Variation of the relaxation time of transverse acoustic modes at 300 K
along F-X (0,0,A) with increase in mass-mismatch between the two atoms in the unit
cell (M1 = Msj = 28.0 a.m.u and M2 is varied).

-"

CIO

1000

100

10

Figure 5-17: Variation of the relaxation time of longitudinal acoustic modes at 300
K along F-X (0,0,A) with increase in mass mismatch between the two atoms in the
unit cell (M1 = Msj = 28.0 a.m.u and M2 is varied).
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Chapter 6

Conclusions

An accurate prediction of thermal conductivity is important for many applications,

such as thermal management of microelectronics and nanoelectronics as well as for

for higher energy conversion efficiency in thermoelectric devices. The most important

inputs required to predict thermal conductivity accurately are the second-order and

third-order interatomic force constants. Typically these are derived from empirical

potentials, which are unable to produce the correct anharmonic behaviour, thereby

limiting their ability to predict thermal conductivity.

In this thesis we presented a first-principles approach based on the use of density-

functional perturbation theory to predict thermal conductivity in bulk, disordered and

nanostructured materials. Density-functional perturbation theory as implemented in

the Quantum-ESPRESSO package was used to estimate the second-order and third-

order interatomic force constants. Thermal conductivity was then computed by solv-

ing the phonon Boltzmann equation (PBE). By separately estimating the contribution

of each scattering channel to the scattering rate of a phonon mode, this approach pro-

vided the ability to acquire a very detailed understanding of the scattering processes

that determine thermal conductivity at different length scales. Such an understand-

ing is of fundamental importance in the ability to engineer materials with desired

thermal conductivity.

We first applied this approach to estimate the thermal conductivity of isotopically

pure silicon (Si2 8) and germanium (Ge"). The thermal conductivity was first com-
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puted by solving the phonon Boltzmann equation in the single-mode relaxation time

approximation (SMRT), and later the Boltzmann equation was also solved exactly

using a self-consistent solution based on an iterative procedure developed by Omini

and Sparavigna [301. The predicted thermal conductivities were found to be in good

agreement with experimentally measured values, with a disagreement of about 15%

at 300 K. Our results agreed closely with the previous work of Broido [29]. In isotopi-

cally pure silicon it was found that transverse acoustic modes contribute about 62%

and longitudinal acoustic modes contribute about 32% of the thermal conductivity

at 300 K. These estimates are significantly different from the values predicted by

molecular dynamics simulations based on the use of an empirical potential [21] and

this result clearly outlines the importance of a first-principles approach for accurate

predictions of thermal conductivity. Another significant advantage of this approach

lies in the explicit calculation of the phonon frequencies, group velocities, populations

and relaxation times to compute thermal conductivity. This allows to extract addi-

tional information, such as the dependence of thermal conductivity on phonon mean

free paths. In Si 28 it was found that more than 50% of the heat was conducted by

phonons of mean free path longer than 200 nm, providing avenues to lower thermal

conductivity through nanostructuring.

In silicon-germanium alloys, it was found that the thermal conductivity could

not be computed using phonon modes of the supercell with random distributions of

silicon and germanium masses. Such an approach fails to predict thermal conduc-

tivity because the group velocities decrease with the increase in supercell size due to

more long range disorder being incorporated, leading to zero thermal conductivity in

the thermodynamic limit. In this work, we presented another approach to compute

alloy thermal conductivity at any composition, based on the idea first proposed by

Abeles [39] in 1963, where the disordered crystal is replaced with an ordered one and

thermal conductivity is computed using the phonon modes of the ordered crystal.

For any composition SiGe1_, the mass of an atom in this ordered crystal is taken

to be a linear interpolation between the masses of Si and Ge, and the interatomic

force constants are quadratically interpolated between those of Si, virtual crystal at
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x = 0.5, and Ge. The potential of an atom in the virtual crystal is the average of

the potentials of Si and Ge. Both disorder and anharmonicity are then treated as

perturbations from the ordered crystal. The scattering rates of phonons due to mass-

disorder were computed using the analytic perturbation theory [77] and first-principles

results, while the anharmonic scattering rates were computed using density-functional

perturbation theory for three-phonon scattering processes. This approach predicted

more than an order of magnitude drop in thermal conductivity of silicon-germanium

alloys compared with silicon, in excellent agreement with experimentally measured

values.

The predictive power of first-principles calculations allowed to lay out design rules

for low thermal conductivity materials, of central importance for applications in ther-

moelectrics. For example, we showed that at 300 K most of the heat is conducted by

phonons with mean free paths around 1 pm (60% between 0.2 and 3 pm). Additional

scattering mechanisms introduced by the presence of grain boundaries or nanoparti-

cles distributed around these optimal values can thus reduce the phonon mean free

path and the thermal conductivity below the bulk alloy value. This result is sup-

ported by experimental measurements made by Rowe et al. [40], who showed that

introduction of grain boundaries can reduce the thermal conductivity of SiGe alloys

by as much as - 28%. Similarly, it was found that addition of only about 12% Ge to

Si is sufficient to lower the thermal conductivity to the minimum value achievable in

this binary system. This is of central importance to develop low-cost thermoelectric

devices.

The first-principles approach was next applied to predict thermal conductivity in

nanostructured materials such as superlattices where thermoelectric figure of merit

(ZT) significantly higher than bulk materials has been measured. Thermal conduc-

tivity was computed using the same approach as for isotopically pure silicon, with one

main difference: the interatomic force constants were obtained by using the virtual

crystal where the atomic potential at each site is the average of the silicon and germa-

nium potentials. The phonon modes of the superlattice unit cell (which varies with

the superlattice period) were used to compute the phonon frequencies, group veloci-
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ties, Bose-Einstein populations and relaxation times which together yielded the ther-

mal conductivity. In this work we ignored the roughness at the interfaces and treated

them as perfectly planar. At small superlattice periods, the thermal conductivity was

found to decrease sharply with increase in period and then reached a constant value at

larger periods. The cross-plane thermal conductivity of the SiGe[001]14+14 superlat-

tice with a period of 28 atomic layers (where Si and Ge constitute the alternate layers

in the superlattice, [001] represents the growth direction and the subscript i + f, here

14 + 14, represents i atomic layers of Si and f atomic layers of Ge in one period of

the superlattice) was computed to be about 13 W/mK, more than an order of magni-

tude lower than that of silicon. In our work, this sharp drop in thermal conductivity

was found to be due to a decrease in phonon group velocity, in good agreement with

the results of Tamura [84] and Hyldgaard and Mahan [461. Furthermore, comparison

with experimentally measured values shows that roughness present at the interfaces

results in a further order of magnitude decrease in the thermal conductivity.

In the limit of very small superlattice period, we find the thermal conductivity

to increase dramatically. The thermal conductivity of the SiGe[001]1±1 superlattice

was computed to be 160 W/mK at 300 K. The average of the cross-plane and in-

plane thermal conductivity of the SiGe[001] 2+2 was obtained to be 55 W/mK. Thus

reducing the superlattice period from 4 atomic layers to 2 atomic layers resulted in

an increase in thermal conductivity by almost a factor of 3. More intriguingly, the

computed thermal conductivity of the SiGe[001]1±1 superlattice was found to exceed

even that of isotopically pure silicon (Si 28 ) by almost 20%. This is surprising because

the presence of heavier Ge in the superlattice leads to lower frequencies and lower

group velocities than in pure silicon and should therefore result in lower thermal

conductivity. Our approach provides an understanding of the processes that lead to

the observed enhancement in thermal conductivity.

As the superlattice period is decreased, the phonon modes are able to tunnel

through the short range variations in mass, resulting in an increase in group velocity

and a corresponding increase in thermal conductivity. However, this alone cannot not

explain the thermal conductivity of SiGe[001]i+1 superlattice. To demonstrate this

130



more explicitly we compared SiGe[001]1+1 superlattice with an average material where

the mass of each atom was taken to be an average of Si and Ge masses. The thermal

conductivity of this average material was computed to be 84 W/mK at 300 K. Below

5 THz where most of the heat conduction occurs, the phonon group velocities in the

two materials (superlattice and average) were found to equal and lower than in silicon.

Based on the group velocity arguments alone the thermal conductivity of SiGe[001]i+1

superlattice is expected to be the same as that of the average material and lower

than silicon. However, results presented above are contrary to such an expectation

and therefore group velocity increase cannot completely explain the observed thermal

conductivity behavior.

The large enhancement in thermal conductivity at small superlattice period was

found to be due to a dramatic decrease in the scattering of acoustic phonons and

a corresponding increase in their relaxation times. This decrease in scattering rates

of acoustic phonons occurs due to a large gap between the frequencies of optical

and acoustic phonons in the SiGe[001]i+1 superlattice. In pure silicon and germa-

nium, a dominant scattering mechanism for low energy transverse acoustic modes

involves absorbing another acoustic mode to yield a higher energy optical phonon

mode. For the above scattering process to be feasible, the sum of the phonon fre-

quencies of the two acoustic modes has to be equal to the frequency of the optical

mode (w(TA) + w(A) = w(O)). In the SiGe[001]i+1 superlattice, however, the large

separation between the optical and acoustic phonon mode frequencies leads to the fre-

quency of the optical mode being typically larger than the sum of the frequencies of

the relevant acoustic modes (w(O) > w(TA) + w(A)), and the above scattering chan-

nel is not feasible in this system. This eliminates a dominant scattering mechanism

for transverse acoustic modes and leads to a large reduction in their scattering rates

with a corresponding increase in their relaxation times. At the Brillouin zone edge

the phonon relaxation times of transverse acoustic modes in SiGe[001]i+1 superlattice

were computed to be almost five times higher than in silicon at 300 K. This increase

in phonon relaxation times of the acoustic modes leads to the observed enhancement

in the thermal conductivity of SiGe[001]i+1 superlattice.
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Finally we explored the possibility of engineering this high thermal conductivity by

varying the mass-mismatch between the two materials in SiGe[0011+1 superlattice.

The unit cell of this superlattice is the fcc unit cell with the two atom basis. We

fixed the mass of one atom in the superlattice unit cell to be that of silicon and

computed the thermal conductivity as a function of the mass of second atom. It was

found that as the mass-difference is increased beyond that in the SiGe superlattice,

the thermal conductivity increases further. These results suggest the possibility of

designing materials with high thermal conductivity and could have useful implications

for thermal management of electronics.
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