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Abstract

In the past decades an increasing number of problems in continuum theory have been
treated using stochastic dynamical theories. This is because dynamical systems gov-
erning real processes always contain some elements characterized by uncertainty or
stochasticity. Uncertainties may arise in the system parameters, the boundary and
initial conditions, and also in the external forcing processes. Also, many problems are
treated through the stochastic framework due to the incomplete or partial understand-
ing of the governing physical laws. In all of the above cases the existence of random
perturbations, combined with the complex dynamical mechanisms of the system often
leads to their rapid growth which causes distribution of energy to a broadband spec-
trum of scales both in space and time, making the system state particularly complex.
Such problems are mainly described by Stochastic Partial Differential Equations and
they arise in a number of areas including fluid mechanics, elasticity, and wave theory,
describing phenomena such as turbulence, random vibrations, flow through porous
media, and wave propagation through random media. This is but a partial listing of
applications and it is clear that almost any phenomenon described by a field equa-
tion has an important subclass of problems that may profitably be treated from a
stochastic point of view.

In this work, we develop a new methodology for the representation and evolution
of the complete probabilistic response of infinite-dimensional, random, dynamical
systems. More specifically, we derive an exact, closed set of evolution equations
for general nonlinear continuous stochastic fields described by a Stochastic Partial
Differential Equation. The derivation is based on a novel condition, the Dynamical
Orthogonality (DO), on the representation of the solution. This condition is the
'key' to overcome the redundancy issues of the full representation used while it does
not restrict its generic features. Based on the DO condition we derive a system of
field equations consisting of a Partial Differential Equation (PDE) for the mean field,
a family of PDEs for the orthonormal basis that describe the stochastic subspace
where uncertainty 'lives' as well as a system of Stochastic Differential Equations
that defines how the uncertainty evolves in the time varying stochastic subspace.



If additional restrictions are assumed on the form of the representation, we recover
both the Proper-Orthogonal-Decomposition (POD) equations and the generalized
Polynomial-Chaos (PC) equations; thus the new methodology generalizes these two
approaches. For the efficient treatment of the strongly transient character on the
systems described above we derive adaptive criteria for the variation of the stochastic
dimensionality that characterizes the system response. Those criteria follow directly
from the dynamical equations describing the system.

We illustrate and validate this novel technique by solving the 2D stochastic Navier-
Stokes equations in various geometries and compare with direct Monte Carlo simula-
tions. We also apply the derived framework for the study of the statistical responses
of an idealized 'double gyre' model, which has elements of ocean, atmospheric and
climate instability behaviors.

Finally, we use our new stochastic description for flow fields to study the motion
of inertial particles in flows with uncertainties. Inertial or finite-size particles in
fluid flows are commonly encountered in nature (e.g., contaminant dispersion in the
ocean and atmosphere) as well as in technological applications (e.g., chemical systems
involving particulate reactant mixing). As it has been observed both numerically
and experimentally, their dynamics can differ markedly from infinitesimal particle
dynamics. Here we use recent results from stochastic singular perturbation theory
in combination with the DO representation of the random flow, in order to derive a
reduced order inertial equation that will describe efficiently the stochastic dynamics
of inertial particles in arbitrary random flows.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Associate Professor
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Chapter 1

Introduction

Dynamical systems play a central role in applications of mathematics to natural and

engineering sciences. However, dynamical systems governing real processes always

contain some elements characterized by uncertainty or stochasticity. Uncertainties

may arise in the system parameters, the boundary and initial conditions, and also

in the 'external forcing' processes. Also, many problems are treated through the

stochastic framework due to the incomplete or partial understanding of the govern-

ing physical laws. In all of the above cases the existence of random perturbations,

combined with the complex dynamical mechanisms of the system itself can often lead

to a rapid growth of the uncertainty in the dynamics and state of the system. Such

rapid growth can distribute the uncertainties to a broadband spectrum of scales both

in space and time, making the system state particularly complex.

In the past decades an increasing number of problems in continuum theory have

been treated using stochastic dynamical theories. Such problems are mainly described

by stochastic partial differential equations (SPDEs) and they arise in a number of ar-

eas including fluid mechanics, elasticity, and wave theory, describing phenomena such

as turbulence, random vibrations, flow through porous media, and wave propagation

through random media. This is but a partial listing of applications and it is clear

that almost any phenomenon described by a field equation has an important subclass

of problems that may profitably be treated from a stochastic point of view.

Probably the most characteristic representative from this family of problems are



turbulent flows. In turbulence the spatial and temporal dependence of the instan-

taneous values of the fluid dynamics fields have a very complex nature. Moreover,

if turbulent flow is setup repeatedly under the same conditions, the exact values of

these fields will be different each time. However, even though the details of the flow

maybe different over various runs, it has been observed that their statistical prop-

erties remain similar, or at least coherent over certain finite-time and space scales.

These observations lead to the natural conjecture that statistical modeling or statis-

tical averaging over appropriate spatial and temporal scales maybe more efficient for

the description of these phenomena.

In this work, we develop a new methodology for the representation and evolution

of the complete probabilistic response of infinite-dimensional, random, dynamical

systems. More specifically, we derive an exact, closed set of evolution equations for

general nonlinear continuous stochastic fields described by a Stochastic Partial Differ-

ential Equation (SPDE). By hypothetizing a decomposition of the solution field into a

mean and stochastic dynamical component that are both time and space dependent,

we derive a system of field equations consisting of a Partial Differential Equation

(PDE) for the mean field, a family of PDEs for the orthonormal basis that describe

the stochastic subspace where the stochasticity 'lives' as well as a system of Stochastic

Differential Equations that defines how the stochasticity evolves in the time varying

stochastic subspace. These new Dynamically Orthogonal (DO) evolution equations

are derived directly from the original SPDE, using nothing more than a dynamically

orthogonal condition on the representation of the solution. This condition is the 'key'

to overcome the redundancy issues of the full representation used while it does not

restrict its generic features. Therefore, we do not assume an a priori representation

neither for the stochastic coefficients, nor for the spatial structure of the solution; all

this information is obtained directly by the system equations, boundary and initial

conditions. If additional restrictions are assumed on the form of the representation,

we recover both the Proper-Orthogonal-Decomposition (POD) equations and the gen-

eralized Polynomial-Chaos (PC) equations. For the efficient treatment of the strongly

transient character on the systems described above, we derive adaptive criteria for



the variation of the stochastic dimensionality that characterizes the system response.

Those criteria follow directly from the dynamical equations describing the system.

We also describe how information obtained from full-field data inputs can be merged

with the numerically evolved stochastic fields within the context of DO equations.

Since the basis of the stochastic subspace is evolving according to the system

SPDE, fewer modes are needed to capture most of the stochastic energy relative to

the classic POD method that fixes the form of the basis a priori, especially for the

case of transient responses. On the other hand, since the stochasticity inside the

dynamically varying stochastic subspace is described by a reduced-order, exact set of

SDEs, we avoid the large computational cost of PC methods to capture non-Gaussian

behavior. Therefore, by allowing the stochastic subspace to change we obtain a bet-

ter understanding of the physics of the problem over different dynamical regimes

without having the well known cost or divergence issues resulted from irrelevant rep-

resentations of spatial (in POD method) or stochastic structure (in PC method). We

illustrate and validate this novel technique by solving the 2D Navier-Stokes equations

in various geometries and compare with direct Monte Carlo simulations. We also

apply the derived framework for the study of the statistical responses of an idealized

'double gyre' model, which has elements of ocean, atmospheric and climate instability

behaviors.

Finally, we use our new stochastic description for flow fields to study the mo-

tion of inertial particles in flows with uncertainties. Inertial or finite-size particles

in fluid flows are commonly encountered in nature (e.g., contaminant dispersion in

the atmosphere) as well as in technological applications (e.g., chemical systems in-

volving particulate reactant mixing) and as it has been observed both numerically

and experimentally, their dynamics can differ markedly from infinitesimal particle

dynamics. Here we use recent results from stochastic singular perturbation theory

in combination with the DO representation of the random flow, in order to derive a

reduced order inertial equation that will describe efficiently the stochastic dynamics

of inertial particles in arbitrary random flows.



1.1 Preview of chapters

This thesis is organized as follows. In Chapter 2 we give the necessary notation and

summarize basic properties for random fields. We present in detail a generalized form

of the Karhunen Loeve expansion, which is a fundamental tool for the reduction of

the stochastic dimensionality that characterizes a given problem. We also present a

geometrical interpretation of its properties and we illustrate how it can be used for the

efficient time and space dependent representation of random fields that characterize

fluid motion and have a priori properties such as non-divergence.

Chapter 3 is the central theoretical part of the thesis. Here we derive an exact,

closed set of evolution equations for general continuous stochastic fields described by

a Stochastic Partial Differential Equation (SPDE). The derivation is based on a novel

condition, the dynamical orthogonality, on the representation of the solution, which

as we prove, it comes naturally without imposing any constraints on the form of the

response. Based on this condition we derive a system of field equations consisting of

a Partial Differential Equation (PDE) for the mean field, a family of PDEs for the or-

thonormal basis that describe the stochastic subspace as well as a system of Stochastic

Differential Equations that defines how the stochasticity evolves in the time varying

stochastic subspace. We also prove that under additional restrictions on the form of

the representation, the DO field equations reproduce both the Proper-Orthogonal-

Decomposition equations and the generalized Polynomial-Chaos equations; thus the

new methodology unifies these two approaches.

The scope of Chapter 4 is to develop adaptive criteria for the dimensionality of the

stochastic subspace in the context of the dynamically orthogonal field equations. We

present adaptive criteria for the contraction and expansion of the stochastic subspace

and we also illustrate how the new stochastic dimensions should be chosen (when

the stochastic subspace should be expanded) according to stability arguments. These

criteria are based on the current stochastic response of the system and they use a priori

hypotheses on the spectrum of the orthogonal complement of the stochastic subspace.

Note that we restrict ourselves to the 'internal' adaptation, i.e. we assume that the



realizations of the full fields resulting from our simulations are the new information

used in the adaptation. This is different from adaptation to external irregular data.

In Chapter 5 we apply the Dynamically Orthogonal field equations to the case of

two dimensional random flows described by Navier-Stokes equations with and with-

out the Coriolis force due to a rotating reference frame. In the first two sections

we formulate the problem and we derive closed, evolution equations for the mean

field, the scalar stochastic coefficients, and the DO modes. We also discuss the case

of stochastic boundary conditions and we prove that this family of problems can

always be reformulated as problems with deterministic boundary conditions and suit-

able forcing. Subsequently, we present numerical results for specific geometries and

forcing configurations and we will examine convergence properties of the proposed

methodology. In the last section of the chapter we consider an idealized model for

the description of the temporal variability of the wind-driven, vertically averaged,

ocean circulation. The aim of this section is to study the stochastic response of this

model for different forcing parameters and Reynolds regimes. Through the developed

stochastic framework we shall prove that in the unstable regimes, as those are pre-

dicted by the deterministic theory, the system converges to a stochastic steady state

response which is characterized by finite variance that is smaller than the energy of

the mean flow. For larger Reynolds or forcing amplitude, we find that this variance

may become comparable with the energy of the mean flow giving rise to periodic or

even chaotic responses.

In Chapter 6 we apply our theoretical and numerical results derived for the de-

scription of stochastic flows in order to study the motion of finite-size particles in

flows with uncertainty. Specifically, we examine the coupled effects due to inertia and

flow stochasticity. In the first part of the chapter we summarize theoretical results

for particles in deterministic flows. Subsequently we present results for the stochastic

case. Specifically, we prove that the velocity of finite-size particles is governed by a

stochastic slow manifold, a 'layer' of probability around the deterministic slow man-

ifold derived previously for deterministic flows. Based on a stochastic reduction on

this manifold we derive a stochastic inertial equation that governs the motion of par-



ticles and which includes new terms expressing the coupled effect of particles inertia

and stochasticity. In the second part of the chapter we first illustrate numerically the

convergence of the particles stochastic velocity to the stochastic slow manifold. We

validate the derived inertial equation for a specific example and we analyze the cou-

pled effects of particles inertia and flow stochasticity on the preferential concentration

of particles. In Chapter 7 we summarize the contributions of this work.



Chapter 2

Representations of stochastic fields

Abstract

The primary purpose of this chapter is to give the necessary notation and summa-

rize basic properties for random fields. In the first section we give the definition of

a stochastic phenomenon. Subsequently we provide with a brief description of the

mathematical tools used for the representation of stochastic fields such as proba-

bility density functions, moments, and the characteristic functional. We also prove

that those different descriptions are equivalent. The next section refers to Karhunen

Loeve expansion, which is a fundamental tool for the reduction of the stochastic di-

mensionality that characterizes a given problem. We give a geometrical interpretation

of its properties and we illustrate how it can be used for the efficient representation

of random fields that characterize fluid motion and have a priori properties such

non-divergencess.

2.1 Introduction

Many problems arising in nature and technology can be profitably treated from a

stochastic point of view. A common characteristic for these problems is the presence of

uncertainties in the system parameters, and disordered or random perturbations in the

dynamical variables that describe the system state. Also, many problems are treated



through the stochastic framework due to the incomplete or partial understanding of

the governing physical laws or simply because the stochastic approach is the most

efficient way of doing computations (e.g. turbulence). In all of the above cases the

existence of random perturbations, combined with the nonlinearities of the system

often leads to their rapid growth which causes distribution of energy to a broadband

spectrum of scales both in space and time, making the system state particularly

complex.

Probably the most characteristic representative from this family of problems are

turbulent flows. In turbulence the spatial and temporal dependence of the instan-

taneous values of the fluid dynamics fields have a very complex nature. Moreover,

if turbulent flow is setup repeatedly under the same conditions, the exact values of

these fields will be different each time (see e.g. Monin and Yaglom [102]). However,

even though the details of the flow maybe different over various runs, it has been

observed that their statistical properties remain similar leading to the natural con-

jecture that statistical modeling or statistical averaging over appropriate spatial and

temporal scales ('spectral windows', [105]) maybe more efficient for the description of

these phenomena.

The primary purpose of this chapter is to introduce the mathematical tools used

for the description of random fields. Before we proceed to the definition of a random

or stochastic fields we shall first give a more formal definition of what we mean by

a random or stochastic phenomenon. We consider a sequence of runs for the same

experiment flW (where w denotes an arbitrary realization) that describe a given phe-

nomenon, IfWl, I 2 ... , UlWn ... and the corresponding sequence of results R'I, RtW2,...,

RWn, .... In many cases the following relation holds for the outcomes of the various

runs

d (Ri, Rw) <e for all i, j (2.1)

where d is a suitable metric (i.e. distance, see e.g. [104)) and s, is a predefined level of

tolerance. The above behavior leads to the commonly expected result that different

runs of the same experiment leads to close results. From the above discussion we



have the following definition [7]

Definition 1 A phenomenon will be called deterministic if, for every experiment UW

that is associated with it, any sequence of experimental runs li satisfies eq. (2.1)

with sufficiently small ed,. In contrary if relation (2.1) is not valid for one or more

experiments then the phenomenon will be called nondeterministic.

Therefore, the definition of a deterministic or nondeterminisitc phenomenon de-

pends strongly on the tolerance level E, as well as on the metric d. Even though

an experiment associated with a nondeterministic phenomenon presents important

variability in terms of results, this picture may change if we consider mean values of

the outcomes for a large sequence of runs, e.g. the ensemble mean

R&I + RW2 + ... + R&NRW±R 2 +=W

N

Then, it is possible to have sufficiently close mean values RN over different sequences

of runs {Hw}% for the same experiment UJ

d (R<, R. <e, for any large experimental sequences {1}i , {ir}.

In this case the experiment is said to present statistical stability [163]. Using this

concept we proceed to the definition of a stochastic or random phenomenon ([163],

[7])

Definition 2 A nondeterministic phenomenon will be called stochastic or random if

the results of any associated experiment with it UlW, present statistical stability.

We shall now define the appropriate tools for the mathematical modeling of

stochastic phenomena. In the theoretical modeling of random phenomena the ba-

sic role is played by the probability space (Q, EQ, P) . The set Q, which we call sample

space, includes all the possible outcomes of a given phenomenon. EQ is a o-algebra

of subsets of Q [67], i.e. a set of subsets that has the following properties i) Q E EQ,



ii) if A E EQ then its complement is also in EQ, iii) Every countable union of the ele-

ments of Eg, i.e. every Ai E EQ, is in EQ. Based on these two concepts we define the

probability measure Pn as a set function from EQ to the interval [0, 1] which satisfies

the three axioms of probability ([67], [135]).

For every physical realization w E Q, we may correspond a quantity u (w) E U,

where U is a suitable set (e.g. a subset of R, a set of functions, or a set of fields).

Therefore the abstract set Q contains all the possible physical realizations of the

phenomenon, while U contains their corresponding mathematical description. For

example, in the case of a random flow, w E Q will represent a particular physical

realization of the flow, while u (w) will represent a specific mathematical quantity

associated with the flow e.g. the velocity field. This leads to the concept of a stochastic

process or stochastic field. Specificallywe have the following formal definition

Definition 3 A stochastic field is a function u (x, t; w) = {uj (x, t; w)},1  E Rm ,

x E D c R", t E T, w E Q, defined on a sample space Q, a spatial domain D, and a

time interval T, such that, for every x E D C R" I t E T and every real vector r E R'

the set {w :u (x,t;w) <r., j = 1, ... , m} is inside EQ.

Having a stochastic field, there are at least three different kinds of methods to

obtain statistically averaged properties. They are space averages, time averages, and

ensemble averages. The usefulness of space averages is limited to fields that are

statistically homogeneous or at least approximately homogeneous over scales larger

than those of the random features. Similarly, time averages are useful only if the

stochastic field is in effect statistically stationary over time scales much larger than

the time scale of the stochastic properties. In both of the above cases averaging over

the appropriate 'spectral window' (i.e. range of spatial and temporal scales, [105])

may significantly simplify the problem. The third type of average, ensemble averages,

does not assume anything on the statistical characteristics of the random field (e.g.

homogeneity or stationarity) and for this reason it is the most versatile. In what

follows every averaged quantity will be in the sense of ensemble average and will be



denoted as

E[u.(w)] = U(Wi) ( + U W2 ) + ... + U (WN)

N--+oo N

where wi E Q are specific realizations. In the following sections we will present the

essential tools used for the analysis and description of stochastic fields in terms of

their statistical and physical properties.

2.2 The family of probability density functions

In this section we will give the definitions of probability density functions and also

present the essential notation that will be used in the rest of the thesis. Given

a stochastic vector field u (x, t; w) defined as above, we have for every collection

of spatial positions xi,x 2, ... , XN and time instants t1 , t 2 , ---, tN the joint probability

distribution function

FU(x1,t1),--,u(XNtN) (U1 , ---, UN) = u : u (xi, ti; w) < u1 n ... flU (XN, tN; w) < UN

where each inequality is meant in the component-wise sense, i.e. uj (x1, ti; w) <

u1 , j = 1, ..., m. This family (the term 'family; follows from the fact that the joint

distribution function is defined for arbitrary combinations of time instants and space

locations) will always satisfy the Kolmogorov compatibility conditions [67

1) the symmetry condition: if {i 1 , i2, ---, IN} is a permutation of numbers 1, 2, ..., N

then for arbitrary N > 1

Fu(x11),---,xNN) (U1, -- , UN) = F .U(xiN tiN 1 , ''', UiN)

2) the consistency condition: for M < N we have

lim Fu(x1 ,ti),...,u(x,tM),---u(xNtN) (U1 , --- , UN) = Fu(xi,ti),-,u(xmAt) (U1, ... , u M)

j>M

The above family of probability distribution functions defines uniquely the stochastic



field u (x, t; w). Therefore a complete statistical characterization of a random field

involves the characterization of the full family of probability distribution functions.

In the special case where Fu(x1,t1 ),.,U(XN,tN) (U1, ---, UN) is differentiable with re-

spect to its arguments (U1, ... , UN) for every collection of spatial locations and time

instants we can alternatively use the probability density function (see e.g. [109])

fu(x1,t1 ),.-U(XN,tN) (U1 , ... , UN) O-N Fu(x1,ti),--,U(xN,tN) (U1 , ... UN)
aOUl... aUN

where
a- am
8. &U& "2 -au all18U2 -. -a-lm'

Note that for the special case of scalar fields described by the probability distribution

function

FU(x1,.1),---,U(XN,tN) (U1 , ... UN) = [ W-u (xi, ti; W) <u i O ... fu (XN, tN; W) < UN} ,

the definition of the probability density function has the simpler form

fU(x1,t1),...,u(xN,tN) (U1 , --- UN) = u UN Fu(x1,tl),...,U(XN,tN) (U1, -- UN) -

In the general case the family of probability density functions satisfies the following

conditions

1) the non-negativity condition

fu(x 1 ,t1 ),---,U(xNstN) (U1, ... UN) > 0

2) the normalization property

J fu(x 1,t1 ),..,(xNtN) (U1, ... UN) dul...duN 1

RN.m



3) the marginal property

J fu(x1,i),...u(xNtN) (Ui, ... , UN) duM+1...dUN = fu(x1 ,t1 ),.,u(XM,tM) (U1, ... , UM)

R(N-M).m

For the fields that we will consider in the present work we will assume that the

probability distribution functions of every order (i.e. for any number of joint time

instants and space locations - e.g. second order are the joint probability density

functions involving two time instants and space locations) exist and they are also

differentiable. In this case an alternative tool for the description of a stochastic field

is given by the family of characteristic functions defined as

Ou(x1,t1),.,u(XN,tN) (6, -- , N) [fu(x1 ,ti),..,u(XN,tN) ( '''

N

= " [exp iu 3 (xy, t; W)U )
(j=1

where F denotes the Fourier transform. The family of characteristic functions possess

the following properties

1) the normalization property

Ou(x1it1),---,U(XNtN) (07 ... 1

2) the boundness property

4Ou(x1,ti),---,U(XN,tN) (61 ..., &) C' 1 for all ((1, ---, N) E RN.m

3) the symmetry property

wU(x1,ti),...,u( xNctN) ( u1 c ,N(x,ti),...,u(xNtN) ( 6 1 --- ~

where * denotes the complex-conjucate.



4) the marginal property

4u(x1,t1),---,u(xN,tN) 1, --- , M, 0, '0) U(X 1 ,t1 ) ,...,U(XMtM) (61 , - 7M) -

5) positive definiteness: for every vector c C ZM (with c* denoting the complex

conjugate of c) we have

M M

u(x 1 ,t1)-.-,u(XNtN) (61i - '1, --- , CMi - 6Mj) cic 0
j=1 i=1

for any collection of vectors Rm E 6ij, i, j = 1, ... , M.

2.3 The moment system

The next important concept for the description of stochastic or random fields is the

statistical moments. For a stochastic vector field u (x, t; w) defined as above, we have

the statistical moments of the first order

ii (x, t) = E' [u (x, t; w)] = Jufu(xt) (u) du E Rm

R

It is often necessary to investigate the joint behavior of the field at two different

spatiotemporal locations. For this case we define the correlation operator (or second

moment)

Ru(xl,t1;w)u(x 2 ,t2 ;W)Ew [u (x 1, t 1; W) u (x 2, t 2 ; W)T

= uJUTUfu(x 1 ,ti)u(x 2 ,t2 ) (ui, u 2) duidu 2 E R"'.

An alternative definition is given by the correlation coefficient which is a normalized

version of the correlation operator.

In many occasions it is often more convenient to work with central moments. The

second order central moments are described by the covariance operator (or central



second moment)

Cu(x1,ti;W)u(x 2 ,t2 ;w)=Ew [(U (x 1 , ti; W) - t (xI, ti; O)) (u (x2, t2; W) - ii (x2, t 2 ; w))T

Since, for what will follow we will make extensive use of the above operator at the

same time instants ti = t2 but at different locations we will use the following notation

for the spatial covariance

Cu(-,tw)u(.,t;w) (x, y) = Cu(x,tw),u(y,t;W)

=E' [(u (x, t; w) - ii (x, t; w)) (u (y, t; w) - i (y, t; w))T]

The above quantities define the second-order statistical characteristics for the field

u (x, t; w). Their knowledge is sufficient for a complete stochastic description for the

case of Gaussian fields (see e.g. [1093). However, for the general case, the com-

plete family of moments is required. Specifically, a complete stochastic description of

u (x, t; w) requires the knowledge of all moments of order r

E" [ujl (X1, ti; W) Uj, (X2, t2; W) --- Ujr (xr, tr; W)]

= UjUj 2 ... UjrfU(Xi,ti)U(X 2 ,t 2 ),...,U(Xr,tr) (ui, U 2 , ... , Ur) duidU2 ... dur

Rm.r

for every combination of spatial locations x1 , x 2, ... , Xr, time instants ti, t 2, ..., tr, in-

dices j = (jiJ2, ---,jr) , (with jE E {1, ..., m}) and r = 1, 2 . Note that in the above

definition u31 denotes the ji component of ui and so on.

2.3.1 Connection with the family of characteristic functions

We saw previously that the system of statistical moments is connected to the family

of probability density functions. This is also true for the family of characteristic



functions. Specifically, we can express any statistical moment as (see e.g. [136])

E"' [U, (x 1 , t1 ; w) Uj, (x 2, t2; w) ---ZUj (xr, t; w)

1r _________...___ ,U(X 1 ,t 1 ),.U(XN,tN) (1 - N)- N =0

where (1j is the ji component of the vector (1 and so on. The above property is a

direct consequence of the definition of the characteristic function through the Fourier

transform of the corresponding density. Hence we have presented three different

approaches for the complete probabilistic description of a stochastic field and we

have also recalled their connection. For all the presented approaches the definition is

given in terms of a system that includes all possible combinations of spatial locations

and time instants. In the next section we describe an infinite dimensional tool that

captures the complete probabilistic information in a singe functional.

2.4 The characteristic functional

We saw that the tools presented so far follow a bottom-up approach in the sense that

we define the global statistical behavior through the definition of finite-dimensional

joint statistical quantities such as probability density functions at various locations

and time instants or moments associated with them. A top-down approach will

involve the consideration of an infinite dimensional quantity that will be able to re-

produce all the finite-dimensional information. Such a quantity is the characteristic

functional defined directly in terms of the full probability measure '. More specifi-

cally, we have the following definition ([1361, [102], [120])

Definition 4 For a stochastic field u (x, t; w) = {u (x, t; w)},"'_ E R"', x E D c



R, t E T, w E Q, the characteristic functional is defined as

1u [9] = E' exp i Ju (x, t; w)T 9 (x, t) dtdx

= J exp( if/u (x, t; w)T q (x, t) dtdx dP (w)
0 (Rm T

where 9 (x, t) E R', x E D C R", t E T, is an arbitrary field.

Therefore, we see that the characteristic functional is a generalization of the family

of characteristic functions and therefore it has the same properties i.e.

1) the normalization property

u [0] = 1

2) the boundness property

1u [0]1 < 1 for all O

3) the symmetry property

4u [0] = <DPU [-6)

4) positive definiteness: for every vector c E ZM (with c* denoting the complex

conjugate of c) we have
M M

ZZ u i - Oj cic O > 0
j=1 i=1

for arbitrary fields 62 i = 1, ... , M. As mentioned at the beginning, the characteristic

functional contains the full probabilistic information. In fact, through the character-

istic functional we can derive the complete system of moments, as well as the family

of characteristic functions and through them the corresponding family of probability

density functions.



2.4.1 Determination of the moments system

We shall now illustrate how the characteristic functional can be used to derive ex-

pressions for the moment system. By considering the first Frechet derivative (see e.g.

[26]) of the characteristic functional we have

__u Qu [6+sso] - Qu [9] ]
J [0; p] = lim

0 s-+o s

+E exp i u (x, t; w)T [9 (x, t) + s~p (x, t)] dtdx
dRm Tf - S=o

= iE' ju (x, t; w)T W (x, t) dtdx exp i u (x, t; w)T 0 (x, t) dtdx

Rm T Rm T

Considering the above expression for 0 = 0 we obtain

6(U [0; V] = iE' u (x, t; w)T ( (x, t) dtdx

LRm T .

Setting 95 (x, t) = 6 (x - xo) 6 (t - to) 6 jk = 6 k,xo,to we obtain

6 uC [0; okxo,to iEw [Uk (xO, to; w)]

thus
1 64U

E' [Uk (xo, to; w)] = - 60 [0; 6k,xo,t].

where 6 jk is the Kronecker delta and 6 (t - to) is the Dirac delta function. Depend-

ing on the smoothness of the characteristic functional we may consider higher order

Frechet derivatives in order to obtain higher order moments. Specifically, we have

62u [0; I, p21 =

= i2E u (x, t; W)T 1 (x, t) U (X, t; 2 (x, t) dtdx]

mf/ (x, t



from which we obtain the correlation (second moment) operator

1 62u[
R'k (x1,t1;W)Ul (x2,t2;) i 2 kxit , IX,2

We may generalize the above procedure to obtain expressions for any moment char-

acterizing the field u (x, t; w)

1 6rT1

EW [uj1 (x 1, t 1 ; w) uj 2 (x 2 , t 2; W) ---Uj, (Xr, tr; w)] = 0;9 [o I., .jr,xr,tr]

From the above equation we also conclude that the existence of moments is connected

to the smoothness degree of the characteristic functional at the origin.

2.4.2 Determination of the family of characteristic functions

Another important property of the characteristic functional is its connection with the

family of characteristic functions. Specifically, we can generate any finite dimensional

characteristic function simply by considering the characteristic functional for delta-

type fields, i.e. Ok (x, t) = 6 (x - xo) 6 (t - to) 6 jk = 6 k,xo,t. For one-dimensional

characteristic functions we will have

du [o6k,xo,to)

= E" exp ido Ju (x, t; w)T k,,xo,todtdx

Rm T .

- E' [exp (ikOnk (xo, to; w))

- kuk(xO,tO) (o)

Using the same approach we may derive more complex, finite-dimensional, character-

istic functions

N

Ouji(X1i7tOI,---,jN (xN~tN) (4, -, N u EG(kiaxk~tm

k=1.



where & have been defined in Section 2.2. Having the full family of finite-dimensional

characteristic functions, we may also obtain the corresponding family of probability

density functions by inverse Fourier transform. Hence we have illustrated how the

characteristic functional contains the full probabilistic information and it can repro-

duce any finite-dimensional quantity connected with the stochastic field.

2.4.3 Characteristic functionals with explicit description

Although the characteristic functional provides a complete stochastic description for

a random field its main disadvantage is the lack of explicit formulas that can be

used for the representation of general stochastic fields. In this section we present the

characteristic functional for two special cases of fields: Gaussian random field and a

more generalized form of characteristic functional that is capable of capturing more

complex statistics.

Gaussian characteristic functional

Gaussian probability measures ([120]) play a very important role in the theory of

probability in infinite dimensional spaces. The major reason is the existence of an

analytic expression for the characteristic functional. The technical reason behind this

feature is the property of Gaussian measures to be defined completely through the

first and second order statistical characteristics. Below we give the definition of a

Gaussian characteristic functional. We first consider a deterministic field m (x, t) E

R"', x c D C R", t E T that will play the role of the mean field as well as a

self-adjoint (symmetric), positive-definite operator with finite-trace (see e.g. [104]),

C (x1, ti, x 2, t 2 ) E R"x", x1, x 2 E D C R", t1 , t2 E T that will play the role of the

covariance operator. Then we have the following result (see e.g. [1203)

Theorem 5 The characteristic functional associated with a normally distributed ran-

dom field u (x, t; w) having mean m (x, t; w) and covariance operator C (x1, t1, x 2, t2 )



is given by

log <Du [9] i J m (x, t)T O (x, t) dtdx

Rm T

- f f (x, ti)T C (x1, ti, x2, t2) 0 (x2, t2) dtidt2dxidx2

R2m T 2

Note that based on the explicit expression for the Gaussian characteristic func-

tional we may construct more general representations of characteristic functionals

by considering convex superpositions of different Gaussian characteristic functionals.

For more details we refer to Sobczyk, 1991 [136 (p. 21).

Tatarskii characteristic functional

We will now describe a more general form of characteristic functional representation,

first introduced by Tatarskii, 1995 [1423. This representation creates a wide class of

characteristic functionals and its derivation is based on the construction of a specific

random function (see [142] for the description of the random function). Here we will

state only the representation, details for the derivation can be found in [142].

Theorem 6 Let a weight function W (x, t) : D x T -+ [0, oo) normalized to 1, an

arbitrary function g (xi, ti, x2, t2 ) : D2 x T2 --+ R", and a characteristic function

6(-, t) describing a scalar stochastic process. Then the functional

log <Du [9] = JJW (x1, ti) #V ( ig (x1,t 1, x2, t2)T 9 (x2, t2) dt2dx2, ti dtidx1

Rm T m T

represents a characteristic functional.

The above functional has been used successfully for the representation of random

wave fields [142] but also for the derivation of characteristic functionals of probability

measures that are well known measures in finite dimensions, such as the Gamma

measure, the Abel measure and the Cauchy measure [39]. However, the expression



above may be still too restrictive in order to represent effectively stochastic fields of

general form.

2.5 The Karhunen Loeve expansion

A different approach for the description of a stochastic field follows the Karhunen-

Loeve expansion. This is a linear decomposition of the stochastic field into determin-

istic fields multiplied by scalar stochastic coefficients. The deterministic fields carry

all the spatial information while the scalar coefficients contain the stochastic infor-

mation of the response. In this case the description of uncertainty is done through an

expansion directly on the state-space variables and not through the joint probabilities

at various spatial locations and time instants. As we shall see in the present section,

the Karhunen-Loeve expansion has the great advantage to separate the probabilistic

structure of the problem from the stochastic one. Moreover, for sufficiently smooth

samples of the stochastic field, the convergence of the Karhunen-Loeve series is very

rapid. Specifically, we have the following representation Theorem (see [143], [59]; see

also [73], [81], [76] for oceanic applications)

Theorem 7 An arbitrary spatially mean-square continuous random field u (x, t; w) ,

x E D c R", t = T, w E Q can be represented in the form of a series

oo

u (x, t; w) = fl (x, t) + 3Yi (t; w) ui (x, t)
i=1

which is mean-square convergent for each x E D C R", t E T and

Yi (t; w) J [u (x, t; W) - ii (x, t)]IT u (x, t) dx
D

are zero-mean stochastic processes, mutually orthogonal, with E' [Y (t; w) Y (t; w)] =

6ijA2 (t) ; where {ui (x, t) , A (t)} are the eigenpairs associated with the following



eigenvalue problem

J Cu(.,t;w)u(-,t;w) (x, y) ui (y, t) dy = Al (t) ui (x, t)
D

Note, in the above representation both the deterministic fields and the stochastic

coefficients are time-dependent. Although many authors consider a special case of

the above representation where the stochastic coefficients do not evolve with time

(see e.g. [591, [134]) here we will use this time-dependent representation in order to

obtain (in the next chapter) evolution equations for all the quantities involved. We

emphasize that a mean-square continuous random field u (x, t; w) has by definition

samples which are mean square integrable, i.e. the realizations of the random field

u (x, t; w) are such that Ju (x, t)T u (x, t) dx < oo. We will denote the Hilbert space

D

of spatially square integrable fields as L2 .

Note, that since Cu(.,t;W)u(.,t;W) (x, y) is always self-adjoint (symmetric) and posi-

tive definite, we will have a countable infinity of eigenpairs with all the eigenvalues

being real positive and the associated eigenfields orthogonal to each other. Also,

limi. A' = 0 {1043.

2.5.1 A geometrical interpretation

As we saw, Karhunen-Loeve expansion, apart from the analytic requirement for square

integrability, does not impose restrictions on the stochastic structure of the random

coefficients, i.e. to be necessarily Gaussian. If we want to give a more geometrical

picture of its properties, the Karhunen-Loeve expansion finds the principal directions

ui (x, t) in the infinite dimensional space L2 and orders them so that along the di-

rection described by ui (x, t), we have larger spread of probability relative to the

direction uj+1 (x, t), for all i. Specifically, if we denote with

.2 [u (x, t)] = Ju (x, t)T Cu(,t;w)u(-,t;w) (x, y) u (y, t) dxdy

D2



the spread or variance of the probability measure associated with the random field

u (x, t; w) , along the direction u (x, t), we have the following property

ui (x, t) is such that A' (t) = o' [ui (x, t)] = max o' [u (x, t)]
L2

u2 (x, t) is such that A2 (t) = o2 [u2 (x, t)] max o2 [u (x, t)]
[span{ui }]'

u+1 (x, t) is such that A1 (t) = 2 [ui+1 (x, t) = max or2 [u (x, t)]
[span{uj} j

where span{uj}' denotes the linear subspace spanned by the eigenfields {u,}>

and ' denotes the orthogonal complement. Therefore, the spectral decomposition of

the covariance operator provides us with a sequence of fields along which we have a

monotonic decrease on the spread of the probability measure. Note that no infor-

mation about the shape of the probability measure is given in this level of analysis

since the spread of probability is the maximum information that the second-order

statistics can provide. Thus, we may think the set of eigenpairs as an ellipsoid in

infinite dimensions, with the directions of the principal axes defined by {uj}'I and

the amplitudes along these axes defined by {A }1  . This ellipsoid bounds the proba-

bility measure, in the sense that the main spread ('mass') of the probability measure

is contained in the ellipsoid interior (Figure 2-1).

Since, the ellipsoid has always a finite number of axes which are greater than

an arbitrary constant c > 0 (this is a sequence of the property lim+oo A? = 0) we

may argue that Karhunen-Loeve expansion gives a finite dimensional ellipsoid where

the main mass of the probability measure is contained. Hence, we are interested to

characterize the detailed characteristics of the probability measure (such as higher

order moments or joint probability density functions) only along those directions

which are associated with important spread of probability or variance, i.e. for the

part of the probability measure contained in the ellipsoid.



Probability measure

u~ ( x)

Figure 2-1: Ellipsoid that contains the main spread ('mass') of the probability mea-
sure; defined by the principal directions and the associated eigenvalues of the corre-
lation operator.

2.5.2 Application to fluid flows

In stochastic partial differential equations and especially in stochastic fluid flows

we are interested to describe and characterize random fields that have given spatial

properties such as divergence free or irrotational fields. Using the Karhunen-Loeve

expansion we are able to represent very efficiently fields that have such properties.

Moreover, through this representation we shall prove properties which are satisfied

by the covariance operator as well as higher order moments describing the random

field. Finally, as we shall illustrate the Karhunen-Loeve series provides us with a

very efficient tool to create random samples of fields with given properties such as

divergence-free fields.

We first recall the following fundamental result for flow fields [10]

Theorem 8 Any spatially differentiable flow field u (x, t) can always be decomposed

as

u (x, t) = u, (x. t) + u (X, t) + u (X, t)

where



i) ur (x, t) is a divergence-free velocity field which can be expressed as

V.Ur (x, t) = 0 m4 Ur (x, t) = V X 4@ (x, t)

with 0 (x, t) being the field streamfunction,

ii) Ud (x, t) is a rotational-free field which can be expressed as

V X Ud (x, t) = 0 * ud (x, t) = Vq (x, t)

with Aq (x, t) = div Ud (x, t) being the flow divergence,

iii) Ub (x, t) is the potential flow part, that depends only from the boundary condi-

tions and which can be written as

V X Ub (x, t) = 0

V.ub (x, t) = 0
= Ub (X, t) = V4 (x, t) with A4 (x, t) = 0.

Using the above property in combination with Karhunen-Loeve expansion we may

write every sufficiently smooth (i.e. spatially differentiable in the mean square sense)

random field as

u(x,t;w) = V x @ (x, t) + Vq (x, t) + V (x, t)

+ Yi (t; w) [V x #i (x, t) + Vqi (x, t) + V4i (x, t)]
i=1

Such a random field that is divergence-free will satisfy the equation

V.u(x,t;w) = 0, x E D c R3, t T, w E Q

Using the expansion (2.2) we obtain

V.u (x, t; w) = Aq (x, t) + EY (t; w) Aqj (x, t) = 0

(2.2)

(2.3)

Since the above equation holds for arbitrary w E Q the above quantity is always zero



if and only if the mean and the stochastic modes are divergence free

zg (x, t) = Aqi (x, t) = 0, i = 1, ....

In addition here, the last set of equations is accompanied by homogeneous boundary

conditions since the non-homogeneous components are satisfied by the fields #, #3,
i 1 .... Therefore we will need to have here:

q(x,t) q(x,t)= 0, i =1, ....

for all x c D C R3, t e T.

Using similar arguments for the case of irrotational or potential flow fields, i.e.

by taking the curl or the divergence of the Karhunen-Loeve expansion, we obtain the

following result.

Theorem 9 Let u (x, t; w) be a random field. Then the following statements are true:

i) if V.u (x, t; w) = 0, w C Q then the flow can be expanded as

u (x, t; W) = V x @ (x, t) + V# (x, t) (2.4)
00

+ Yi (t; w) [V x #i (x, t) + Voi (x, t)]
i=1

where AO (x, t) = Aoi (x, t) = 0, i = 1,.

ii) if V x u (x, t; w) = 0, w E Q then the flow can be expanded as

u (x, t; w) = Vq (x, t) + V# (x, t) (2.5)
00

+ JY (t; w) [Vqi (x, t) + V#i (x, t)]
i=1

where A# (x, t) = Aq# (x, t) = 0, i = 1,.

iii) if V x u (x, t; w) = 0, and V.u (x, t; w) = 0 w C Q then the flow can be



expanded as
00

u (x, t; w) = VO (x, t) + Y (t; w) Vki (x, t). (2.6)
i=1

where A# (x, t) = A#3 (x, t) = 0, i = 1.

Moment properties of random flows with given hydrodynamic character-

istics

We shall now use the representations derived in the last Theorem to derive properties

for the covariance operator that is associated with the random field u (x, t; w). Using

representation (2.4) for divergence-free random fields we will have the covariance

function given by

Cu(-,t;w)u(-,tW) (x, y)
0C00

= ZZE"' [Yk (t; W) YI (t; )] [V x $k (x, t + Vk (x, t)] [V x Vit (y, t) + V 1 (y, t)]T

k=1 1=1
00

= MIk [V X Ok (x, t) + Vk (x, t)] [V x k (y, t) + Vk (y, t)]
k=1

We also have

div [V x k(x, t) + V (x, t)] = 0, k = 1, ...

Therefore, we obtain the following property of covariance functions characterizing

incompressible random fields

Vx.Cu(.,t:w)u(.t;W) (x, y) = VyC.,)u. (x, y) = 0

or in index notation

0 C(.,t;y,(. (x Y) = C w(.,)u (t) (x, y) = 0

where V, denotes the divergence operator with respect to the spatial variables x

(note that x, y are 3-dimensional vectors representing spatial variables).



Using similar arguments we have the following property for irrotational fields

Vx x Cu(-,t;w)u(-,t -) (x, y) = Vy x C'u.,t w)u(.,tw) (X, Y) = 03X3

or in index notation

Eijk uk(-,t;w)u(-,t;w) (X, y) = Eig CUk(.,t;W)u1(.,t;W) (X, y) - 0

where ejgk is the Levi-Civita symbol. Using these results we can generalize the above

arguments and derive similar properties for higher order moments of random fields.

Monte Carlo simulation of random flows with given hydrodynamic char-

acteristics

As we saw, the Karhunen Loeve expansion separates the stochastic from the spatial

structure of the problem allowing us to represent uncertainty very effectively. This

representation property can be used for the efficient simulation of random fields with

given properties such as incompressibility. In the more traditional approach for sam-

ple generation of random fields, the spectral decomposition method is used (see e.g.

[115]). In this framework the statistics of the random field are assumed to be Gaussian

with spatially homogeneous character. This assumption allows for the description of

the second-order statistics of the random field through the spatial Fourier transform

of the covariance operator. The generation of samples is then based on the decomposi-

tion of the full spectrum function into smaller (narrow banded) components each one

having random phase which is uniformly distributed. This technique is very popular

for the simulation of random water waves (see e.g. [106]).

Using the Karhunen Loeve expansion, in the time-dependent form presented

above, we may generate samples by performing Monte-Carlo simulation to the ran-

dom coefficients Y (t; w) and with fixed modes ui (x, t) that respect a priori the spatial

characteristics of the random field such as divergence-free or rotational-free but also

the time-dependent characteristics of the problem. We emphasize that through this



approach, no assumptions are required for the spatial characteristics of uncertainty,

such as homogeneity. Moreover, the non-Gaussian character of the random field is

fully respected since this is expressed completely through the random simulation of

the scalar coefficients Y (t; w) . This is not the case for other approaches used such as

the POD method where the field is represented as

S
u (x, t; w) = a (x) + Y (t; w) ui (x)

i=1

or the polynomial-chaos method where the following representation is used

S

u (x, t; W) = ii (x, t) + jY (W) ui (x, t) .
i=1

In both of the above cases the lack of time dependence on either the deterministic

fields or the stochastic coefficients restrict the representation capabilities. This is not

the case for the general Karhunen Loeve expansion where all quantities evolve with

time. allowing for very efficient representation of any given field. These properties

will also be of particular importance for the generation of samples used to represent

the initial conditions for evolution problems as we shall see in the next chapter.



Chapter 3

Evolution of stochastic fields

Abstract

In this chapter we derive an exact, closed set of evolution equations for general contin-

uous stochastic fields described by a Stochastic Partial Differential Equation (SPDE).

By hypothetizing a decomposition of the solution field into a mean and stochastic dy-

namical component, we derive a system of field equations consisting of a Partial Differ-

ential Equation (PDE) for the mean field, a family of PDEs for the orthonormal basis

that describe the stochastic subspace where the stochasticity 'lives' as well as a system

of Stochastic Differential Equations that defines how the stochasticity evolves in the

time varying stochastic subspace. These new evolution equations are derived directly

from the original SPDE, using nothing more than a dynamically orthogonal condition

on the representation of the solution. If additional restrictions are assumed on the

form of the representation, we recover both the Proper-Orthogonal-Decomposition

equations and the generalized Polynomial-Chaos equations. The material presented

in the chapter is part of the article Sapsis and Lermusiaux, 2009 [129].

3.1 Introduction

In the past decades an increasing number of problems in continuum theory have

been treated using stochastic dynamical theories. Applications of this kind include



problems where even though the details of the response maybe different over various

runs, their statistical properties obtained by averaging over appropriate spatial and

temporal scales ('spectral windows', [105]) remain similar. To this end one may

decide to use the stochastic framework to model the effect of the smaller and/or faster

scales of the system response as well as the effect of larger and/or slower scales of

the boundary conditions. Such problems are mainly described by stochastic partial

differential equations (SPDEs) and they arise in a number of areas including fluid

mechanics, elasticity, and wave theory to describe phenomena such as turbulence

([9], [102], [154], [46], [3], [46]), random vibrations ([137], [86], [118]), flow through

porous media ([16], [165]), and wave propagation through random media ([135], [68],

[45]). This is but a partial listing of applications and it is clear that almost any

phenomenon described by a field equation has an important subclass of problems that

may profitably be treated from a stochastic point of view. This includes problems for

which the dynamics is not fully resolved or not sufficiently known to warrant solely a

deterministic approach as well as problems for which initial, boundary or parametric

uncertainties are significant.

A basic goal of uncertainty quantification is to estimate joint probability distri-

butions for the field variables, given the probabilistic information for the initial state

and forcing of the system as well as for the SPDE random coefficients. A complete

probabilistic description of the response would either require the knowledge of the

response characteristic functional or equivalently the knowledge of the whole Kol-

mogorov hierarchy of the joint probability distributions of the response stochastic

fields at any collection of time instances and spatial locations ([16], [67]). Given the

SPDE that governs the system, it was first shown by Hopf [60] that for the stochastic

Navier Stokes equations, a functional differential equation can be derived that gov-

erns the characteristic functional for the response. His approach was later adapted

to the problems of stochastic wave propagation by Tatarskii [141] and Lee [72]. This

approach, known as the statistical approach to turbulence, has also been developed

further by many authors (see, e.g., [85], [44], [69]) and provides with infinite di-

mensional transport equations for the characteristic functional that characterizes the



stochastic solution. Even though these functional equations contain the full prob-

abilistic information for the dynamical system and their derivation from the SPDE

is straightforward ([16]), their infinite dimensional character prevents from a feasible

method of solution.

The Monte-Carlo simulation technique is a more practical method that can be

readily applied to solve such problems to an arbitrary degree of accuracy, provided a

sufficiently large number of samples is used. During the past years significant advances

have been made in improving the efficiency of Monte-Carlo schemes. This includes

new sequential Monte-Carlo methods (e.g. Particle Filters, see e.g. [38]) where the

probability density function of the response is approximated by a mixture of weighted

Dirac functions. A most recent development is the usage of a mixture of weighted

Gaussian kernels instead of Dirac functions to provide a more reliable representation

of the response pdf ([30],[150]). In recent years, such particle filters and their variants

have been applied to stochastic estimations in various fields including ocean and

atmosphere dynamics ([61]) and structural dynamics ([29]).

Another approach is based on the generation and evolution of an optimal set of

input samples of reduced dimensionality such that the scales and dynamical pro-

cesses where the dominant, most energetic, uncertainties occur are continuously

spanned. This is motivated by the multi-scale, intermittent, non-stationary and non-

homogeneous uncertainty fields for ocean dynamics (e.g. [77]). The methodology,

referred to as Error Subspace Statistical Estimation (ESSE) ([81],[74],[76],[79]), uses

a Karhunen Loeve (KL) expansion but with time-varying and adaptive basis func-

tions (see Chapter 2, Theorem 7). The functions are evolved using stochastic, data-

assimilative, ensemble predictions initialized by a multi-scale scheme and evolved

through a Monte-Carlo approach. Similar ideas have been later applied to the model-

ing of diffusion processes in random heterogenous media ([47], [48]). These methods

approximate the response pdf without making any explicit assumption about its form

and can thus be used in general nonlinear, non-Gaussian systems. However, a major

issue is that the evolution of the dominant uncertainties is through a Monte-Carlo

scheme and therefore a larger number of samples can still be required for accurate



prediction.

Order reduction methods have also been utilized to derive reduced-order models

which have lower complexity relative to the original SPDE model and which reveal the

underlying structure of the system dynamics. A classical approach is the statistical

technique of Karhunen-Loeve expansion or Proper Orthogonal Decomposition (POD)

(see [109], [89], [59]) where the response of the dynamical system is usually assumed

to have the form

(x, t; W) = EXi (t; u) ui (x), u E S (3.1)

i=1

where Xi (t; w) are stochastic processes and the family ui (x) are time-independent

functions computed from data collected in the course of experiments or from direct

numerical simulations. Specifically, ui (x) s are orthonormal fields that provide an

optimal modal decomposition in the sense that a finite collection of these modes can

capture the dominant components of the complete infinite-dimensional process. A

Galerkin projection of the original governing equations to the low-dimensional sub-

space identified by the POD basis functions ui (x) provides the reduced order evolution

equations for the unknown stochastic coefficients Xi (t; w). Note that POD is most

commonly used in the deterministic framework to derive reduced order dynamical

equations. In this case the averaging is usually performed over time and more rarely

over realizations. The POD concept has been applied to a wide range of areas such

as turbulence ([89], [134], [19], [59]), and control of chemical processes ([50], [132],

[166]). However, the main drawback of the POD method is that the basis functions

are chosen a priori and therefore may not be able to efficiently represent the evolving

responses generated by nonlinear dynamical processes.

Another main approach is the Polynomial Chaos (PC) expansion pioneered by

Ghanem and Spanos [52] in the context of solid mechanics. It is based on the original

theory of Wiener on polynomial chaos ([156], [25], [157]). The stochastic field de-

scribing the system response is treated as an element in the Hilbert space of random

functions and is approximated by its projection onto a finite subspace spanned by

orthogonal polynomials. Specifically, instead of imposing a representation for fixed



fields ui (x) as for the POD method, the stochastic processes Xi (t; w) are spectrally

represented in terms of fixed multi-dimensional Hermite polynomials,

S

u (x, t; w) =Z[ i (( (w)) ui (x, t) , w E Q (3.2)
i=1

where <bi are orthogonal polynomials and ( (w) are given random variables. A Galerkin

projection of the governing equations to the low-dimensional subspace defined by the

<bis transforms the original SPDE to a set of coupled deterministic PDEs for the

unknown family ui (x, t). The method has been applied to a series of applications

including fluid mechanics ([31], [91], [162), [66], [34]), structural mechanics ([52], [51],

[130]), and wave propagation in random media ([92]). Although for any arbitrary

random process with finite second-order moments, the PC expansion converges in

accord with Cameron-Martin theorem [25], it has been demonstrated that the con-

vergence rate is optimal (i.e. a given error tolerance is achieved with the smallest

number of terms in the series) for Gaussian processes [88], while for other types of

processes the convergence rate may be substantially slower. A recent development by

Xiu and Karniadakis ([161], [162]) proposes a generalized PC expansion where basis

functions from the Askey family of hypergeometric polynomials are used. It is shown

that suitable basis functions different from the Hermite polynomials can increase sub-

stantially the rate of convergence. Depending on the form of the SPDE, its stochastic

coefficients, and the initial stochastic conditions, there is an optimum choice of basis

functions through which an optimum rate of convergence can be achieved. However,

this choice must be made a priori and this can be a very challenging task especially for

non-stationary complex dynamical systems with large number of degrees of freedom

(e.g. atmospheric or oceanic dynamics).

Here we will utilize the general Karhunen-Loeve expansion presented in Chapter

2 (Theorem 7 and references therein),

S

u (x, t; W) = ii (x, t) + Ei (t; W) uZ (x, t) , W (3.3)
i=1
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in order to derive evolution equations for the Y2 (t; w), ii (x, t) and ui (x, t) without

making any assumptions on their form: the original SPDE governing u (x, t; w) is

the only information utilized. Using a new dynamical orthogonality condition for the

fields ui (x, t), we overcome the redundancy of representation (3.3) and derive an exact

set of evolution equations that has the form of an s-dimensional stochastic differential

equation for the random coefficients Yi (t; w) coupled with s + 1 deterministic PDEs

for the fields d (x, t) and ui (x, t) , where s is the number of modes that we retain

in representation (3.3). In this way, the basis that describes the stochastic subspace

is dynamically evolved and is not chosen a priori: it adapts to the stochasticity

introduced by the stochastic initial conditions and coefficients, and evolves according

to the SPDE governing u (x, t; w). The stochastic coefficients Y (t; w) are also evolved

according to dynamical equations derived directly from the original SPDE allowing us

to use any SDE numerical scheme for their solution (e.g. particle methods). For the

special case of stochastic excitation that is delta correlated in time, i.e. white noise,

an equivalent non-linear Fokker-Planck-Kolmogorov equation describes the evolution

of the joint probability density function for the stochastic processes Yi (t; w).

The derived field equations are consistent with the dynamical orthogonality con-

dition which also implies the preservation of the classical orthonormality condition

for the fields ui (x, t). If additional suitable assumptions, either on the form of the

fields a (x, t) and ui (x, t), or on the form of Yi (t; w) are utilized, our novel equations

reproduce the reduced-order equations obtained by application of the POD or PC

method, respectively.

3.2 Definitions and problem statement

Let (Q, EQ, P) be the probability space and let x ED C R" denote the spatial variable

and t E T the time. In applications, the most important cases are where n = 2, 3

therefore in what follows we will assume that x ED C R", n = 2, 3. The set of all

continuous, square integrable random fields, i.e. JEw [u (x, t; w) u (x, t; W)T] dx < o

D

for all t E T (where eT denotes the complex conjugate operation) and the covariance



operator

Cu(.,t;.)v(.,s;w) (x, y) = Ew [(u (x, t; w) - a (x, t))T (v (y, s; w) - (y, s))] , x, y ED, t, s c T

(3.4)

form a Hilbert space (1120], [1351) that will be denoted by H.

For every two elements u (x, t; w), v (x, t; w) E H we define the spatial inner

product as

(u (9, t; w) , v (0, t; w)) = Ju (x, t; w)T v (x, t; w) dx

D

where the integral on the right hand side is defined in the mean square sense ([87]). For

the case where the integrands are deterministic the mean square integral is reduced to

the classical Riemann integral. In what follows we will use Einstein's convection for

summation, i.e. Zaibi = aibi except if the limits of summation need to be shown. A
i

double index that is not summed-up will be denoted as ab1 . We define the projection

operator H of a field u (x, t) , x ED to an m-dimensional linear subspace spanned by

the orthonormal family {w, (x, t; w)},',, x ED as follows

Hgw(X,t;W)L [u (x, t; w)=[wj (x, t; w) (wj (*, t; W) , u (0, t; w))
j=1

=wj (x, t; W) (wj (0, t; W) , u (e, t; cv)) .

The SPDE describing the system evolution is assumed to have the form

'U(, ;W = L[u(x, t; w); w}, x ED, t ET, o E (3.5)

where L is a general (nonlinear), differential operator. Additionally, the initial state

of the system at to is described by the random field

u(x,to;w)=uo(x;w), xED, wEQ (3.6)



and the boundary conditions are given by

B[u ( , t; w)] = h ( , t; w) , ( E OD, w E Q (3.7)

where B is a linear differential operator. For all of the above quantities we assume

that random coefficients have statistical moments of every order.

3.3 The stochastic subspace and the dynamical or-

thogonality condition

As we saw in the last section of Chapter 2 Karhunen-Loeve representation provide

us with a tool to represent every random field u (x, t; w) E H at a given time t by a

series of the form

00

u (x, t; w) = fi (x, t) + Z Y (t; w) ui (x, t), u E Q (3.8)
i=1

where ui (x, t) are the eigenfunctions, and Y (t; w) are zero-mean, stochastic pro-

cesses with variance EW[Y (t; w)] equal to the corresponding eigenvalue Ai (t) of the

eigenvalue problem

Cu(-,t)u(.,t) (x, y) u, (x, t) dx =A2 (t) ui (y, t) , y ED. (3.9)
D

Moreover, we discussed that the important mass of the probability measure can always

be captured by a finite dimensional subspace in the sense that for every o,. > 0 there

is always a positive integer s such that the finite truncation of (3.8) that contains the

first s terms is oa,.-close (in the mean square sense, i.e. in the norm I|-|| = (0, 0)) to

the field u (x, t; w). Therefore, every random field u (x, t; W) E H can be approximated

arbitrarily well, by a finite series of the form

S

u (x, t; W) = i (x, t) + Yi (t; w) ui (x, t) , W E Q (3.10)
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where s is a sufficiently large, non-negative integer. Based on the above discussion we

define the stochastic subspace Vs = span {ui (x, t)} as the linear space spanned

by the s eigenfields that correspond to the s largest eigenvalues. A graphical inter-

pretation of the stochastic subspace is given in Figure 3-la where we represent the

space Vs as a plane along which the probability measure presents important spread.

On the other hand along any direction included in V', represented as the red axis,

the spread of probability is smaller (in the mean square sense) than o,. Hence, Vs

defines the appropriate subspace where the stochasticity of the random field 'lives' at

time t, following ESSE ideas ([81, 75]). Our goal now is two-fold:

1. For fixed dimensionality s study how the stochasticity evolves inside Vs. More

specifically we seek the equations governing the evolution of the stochastic vector

{Y (t; w)}j= e.

2. Study how VS evolves inside H through the variation of the basis {u (x, t)}'.

Clearly, representation (3.10) with all quantities (a (x, t) , {u (x, t)} , {Y (t; w)}= 1 )

varying is redundant and therefore we cannot derive independent equations from the

SPDE describing their evolution. Hence, it is essential to impose additional con-

straints in order to get a well posed problem for the unknown quantities.

To this end we examine more carefully the source of redundancy in representa-

tion (3.10). Specifically, we notice that the variation of the stochastic coefficients

{Y (t; w)}>_1 can express exclusively the evolution of uncertainty within the stochas-

tic space Vs. On the other hand, by varying the basis {u, (x, t)} we can express

both the evolution of uncertainty within VS and also normal to Vs. Therefore, we

see that the source of redundancy comes from the evolution of uncertainty that can

be described by both the variation of the stochastic coefficients and the basis. To

overcome this difficulty we need to restrict the evolution of the basis {u3 (x. t)} _ to

be normal to the space VS since the evolution within Vs can be described completely

by a rotation of the stochastic coefficients as it is shown in Figure 3-1b. The above



requirement can be elegantly expressed through the following condition

dVs _u____tdsJ.. Vs a u '* t, uj (9, t) =0 , i = 1,-1 .. ,s1 1, ..., s. (3.11)
dt at

We will refer to the above condition as the dynamically orthogonal (DO) condition.

Note, that the DO condition implies the preservation of orthonormality for the basis

{uj (x, t)}>1 since

Bu (9, t).Ku, (., t)
at(ui (, t) , ua (, )) = at tu jui(,t) = 0 , = 1,...,s, j= 1, ... , s.

To summarize the above discussion, in what follows we will use the DO represen-

tation defined by equation (3.10) and the additional properties

1. {Y (t; w)} are zero-mean stochastic processes.

2. {uj (x, t)}'_, are deterministic fields satisfying the DO condition (3.11) which

are initially orthonormal, i.e. (u%(e, to) , u3 (0, to)) = ois.

3.4 Dynamically orthogonal field equations

In this section we use representation (3.10) to derive reduced order field equations

describing the mean state of the system, its stochastic characteristics and their in-

teractions. As it is proven in the following theorem, the DO expansion results in

a set of independent, explicit equations for all the unknown quantities. In particu-

lar, using the DO expansion we reformulate the original SPDE to an s-dimensional

stochastic differential equation for the random coefficients Y (t; w) coupled with s + 1

deterministic PDEs for the fields ii (x, t) and ui (x,. t) .

Theorem 10 (DO evolution equations) Under the assumptions of the DO repre-
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Figure 3-1: a) The stochastic subspace Vs spanned by fields ui (x, t) that corresponds
to important variance. b) The variation of the ui (x, t) inside V, can always be covered
by a rotation of the stochastic coefficients Y (t; w) .



sentation the original SPDE (3.5)-(3.7) is reduced to the following system of equations

dYi (t; w) - (L [u (o, t; w) ; w] - E' [L [u (*, t; w) ; w]], ui (e, t)) , (3.12)
dt

ii (x, t) = Ew [L [u (x, t; w) ; w]] (3.13)
at

au, (, t) = HIvJ [Ew [L [u (x, t; w) ; w] Y (t; w)]] C ~ (3.14)

where 11vj- [F (x)] = F (x) - Uv, [F (x)] = F (x) - (F (*) , uk (, t)) Uk (x, t) and

Cy(t)yj(t) = E' [Y (t; w) Yj (t; w)]. The associated boundary conditions have the form

B [ (, t; w)] IeaD = EW [h ((, t; w)]

B [ui (, t)] IaD = Ew [Yg (t; w) h ((, t; w)] CytY(t)

and the initial conditions are given by

Yi (to; w) = (uo (; w) - do (0) , uio (e))

i (x, to) = io (o) = E' [uo (x; w)]

ui (x, to) = uso (x)

for all i = 1, ..., s, where ujo (x) are the eigenfields of the correlation operator

Cu(.,t0 )u(.,t0 ) defined by the eigenvalue problem (3.9).

Proof: First we insert the DO representation to the evolution equation (3.5). We

obtain (using Einstein's summation notation defined in Chapter 2)

8at + (x, t) dY+ (t; w)u a+ (x. t) = L [u (x, t; w) ; w). (3.15)
at + dt i xt+ (8w t

By applying the mean value operator we obtain the second equation of the theorem

(equation 3.13), i.e. an evolution equation for the mean part of the representation.



By considering the inner product of the evolution equation (3.15) with each of the

fields {u 3 (x, t)} we have

Kii (0, t)
&t ,

u3 ( 9t) dY (t; w)
+ dt

= (L [u (x, t; w); w], u) (o, t)) .

Now, the second term on the left hand side vanishes because of orthonormality ex-

cept one term for which i = j. Moreover, the DO condition implies that the third

term vanishes completely. Therefore we have the family of s stochastic differential

equations

dY (t; w)

dt
+ (, t)+ at ,us(*,t)) =

Note that by using (3.13) or by applying the mean value operator to the above

equation, we obtain

KB&U(et)Tti tu ( 0

The quantity ',us (0, t)) expresses the variation of ii

))], j = 1, ..., s.

towards directions of the

stochastic subspace Vs. Hence, the equation for Y (t; w) will take the final form

(3.12).

As a next step, we multiply equation (3.15) with Y (t; w) and apply the mean

value operator to get

[Yi (t; w) Y (t;
Iu& (x, t)

w)] at - E' [1C [u (x, t; w) ; w] Y (t; w)]

which can be written as

au (X, 0t + C ui (x, t) = E' [L [u (x, t; w) ; w] Y (t; w)] (3.16)

Bui (0, t)
0))+ Yi (t; W) at ., uj(0, )

('C [u (0, t; W) ; W) , us (0, t)) ,

, t) )= E' [(,C [u (9, t; w) ; w] , uj (o, I

[dY (t; w)
Ew di Y (t; W)] u, (x, t) +E'



where Cy(t)y(t) = EW [Y (t; w) Y (t; w)]. By considering the inner product of the

last equation with the field Uk (x, t), and using DO condition, we obtain an exact

expression for CarY)(t)

C rICL)Y(t) = E' [(C [u (x, t; w) ; w], Uk (., t)) Y (t; w)] . (3.17)

Note that this result (3.17) can also be obtained from the definition of CdY(t) and

from equation 3.12. Now, inserting the last expression to equation (3.16) will result

in the equation

Cyygi)Bj~)u (x, t) = E' [L [u (x, t; w) ; w] Y (t; w)] - vs [E' [L [u (x, t; w) ; w] Y (t; w)]]

= HV [Ew [L [u (x, t; w) ;w]Y (t; w)]

where

Ivi [F (x)] = F (x) - (F (e) , uk (, t)) Uk (x, t).

Moreover, since Cyy(t)y 3 (t) is positive-definite it can always be inverted and therefore

we obtain the final expression (3.14) for the evolution of the fields ui (x, t).

Finally, by applying the mean value operator on equation (3.7) for x E D we

obtain the boundary condition for the evolution of the mean field

B 1" ((,7 t; W)]|( EaD = E' [h ((, t; w)] .

Additionally, by multiplying equation (3.7) with Y (t; w) and applying the mean value

operator we obtain for x E 0D

E' [Y (t; w) h ((, t; w)] = Cyy(t)y(t) 1 [ui (, t)]|E '

Therefore,

B [u2 ((, t)]|(eBD = EW [Y (t; w) h (, t; w)] C-y1 .



The initial conditions for the quantities involved are found by approximating the

initial, field uo (x; w) by a truncated Karhunen-Loeve expansion containing s terms.

Therefore, the initial conditions uio (x) for the fields u, (x, t) will be the s most

energetic eigenfields of the correlation operator Cu(.,t0 )u(-,t 0 ) defined by the eigenvalue

problem

JCu(.,to)u(.,to) (x, y) uio (x) dx =A'u (y), y ED.
D

The initial conditions for the stochastic coefficients Y (t; w) will be given by the

projection of the field uo (x; w) - ilo (x) to the orthonormal eigenfields uso (x) as

follows

Yi (to; w) = (uo (0; w) - io (0) , uio (0)),

and the initial condition for the mean field will be given by a (x, to) = iio (x)

Ew [uo (x; w)] . O

As it can be easily verified the evolution equations derived above are consistent

with the DO condition that was initially assumed. Also, the initialization procedure

for our DO field equations follows the multivariate ESSE approach, e.g. [75, 78].

It should be emphasized that the knowledge of the full set of quantities asso-

ciated with the DO expansion, i.e. {Y (t; w)}i, (x, t), and ui (x, t) can lead,

through simple random variable transformations ([109]), to analytic expressions of

any statistical quantity of interest (e.g. pdfs of velocity field at particular positions of

the domain, spectral representations of the stochasticity etc.) in terms of these DO

expansion quantities (see Chapter 5).

3.4.1 The case of independent increment excitation (white

noise)

A special class of SPDE of great importance is the case where the operator L can

be linearly split to a deterministic part and to a stochastic part having the form

of derivative of an independent increment process ([116]), e.g. Brownian motion or

Poisson process. More specifically we consider the special case of a system excited



by an independent increment (with respect to time) stochastic process and having

deterministic boundary conditions, described by the evolution equation

au(x, t; W) D [u(x, t; w)]+ b' (x, t) dW, (t; w) x ED, tET, W E Q

(3.18)

u (x, to; w) = uo (x; w),

B[u( , t; w)]= hD (, ),

xED, wEQ

( E aD, w c Q

where D is a deterministic, differential operator, hD ( , t) is a deterministic quantity

defining the boundary conditions, {<b, (x, t)} 1 are deterministic, sufficiently smooth

fields, and {Wr (t; w)}R 1 are taken for simplicity to be independent Brownian motions

(although the proof follows exactly the same steps for general independent increment

processes). In this case an alternative description of the stochasticity inside Vs,

can be given in terms of the probability density function fy (yi, Y2, ... , Ys, t) for the

stochastic vector {Y (t; w)}> . For simplicity in what follows we will also use the

following notation

D [U (x, t) , Y (t; W)} = D

with U (x, t) referring to the s

following result.

+1 (x, t) + EYi (t; W) u (x, t) = D [u (x, t; h)]

+ 1 fields il (x, t) , {uj (x, t)}'= . We then obtain the

Corollary II Under the assumption of the DO representation the SPDE (3.18) is



reduced to the following system of equations

D [U (, t) , y] - fy (v, t) D [U (*, t) , v] dv, ui (, t))

(3.19)

1 a2

+ I [fyQij (t)]

ii (x, t) =

au (X, t) = v1

fy (v, t) D [U (x, t) , v) dv,

vj fy (v, t) D [U (x, t)

where Qij (t) = (<b, (e, t) , U (*, t)) (<r (., t) , uj (., t)) and Cy(t)y,(t)

The associated boundary conditions have the form

viv fy (v, t) dv.

B[a (, t; w)]I IED = hD ( , t)

B [Ui (0,t)]|I ED 0 0

and the initial conditions are given by

fy (y, to) = fy (y)

a (x, to) = E' [uo (x; w)]

ui (x, to) = uio (x)

for all i = 1, ... , s, where uno (x) are defined in Theorem I and fy (y) is the probability

density function associated with the random vector Y (to; w) = (no (*; w) - ijo (*) , u1 o (0)).

afy_ a fy

v dv] C-yYi(t)Y 3 (t)

(3.20)

(3.21)



Proof: By using the special form of the SPDE (3.18) and the zero mean property

of the Brownian motion we obtain from equation (3.12)

di (t ; W)
dt = (D [U (x, t) , Y (t; w)] - EW [D [U (x, t) , Y (t; w)]], u2 (, t))

dtt dWr (t; w)

This last equation is an Ito stochastic differential equation and can be written equiv-

alently as a transport equation for the probability density function fy (Yi, Y2, ., Ys, t)

WY a2 [fy {(D [U (e, t), y] - E' [) [U (o, t) , y]], ui(,t))}] (3.22)

1 a2
- 2 7Yi&Y [fY ('D (0,t) , Ui (*, t)) ('k, (., t) , Uj (.,)]

Note, that

Ew [D [U (x, t) , Y (t; w)]] = Jfy (v, t) D [U (x, t), v] dv

Rs

and hence equation (3.19) follows. Equation for the mean field follows directly from

the corresponding equation (3.13) and the zero-mean property of the Brownian mo-

tion. Finally, using equation (3.14) we obtain

Oui (x, t) = 1 1 v [E [D [u (x, t; w)] Y (t; w)]] C-1
at[ [dW,(t ) t

+ v1 [( r (0, t), ui (, t)) Ew d YW (t; ) Ct)yg).

The second term on the right hand side vanishes due to the non-anticipative property

of Brownian motion ([135]). Moreover,

EW [D [u (x, t; w)) Y (t; w)] = Jv fy (v, t) D [U (x, t) , v] dv.

Rs

Additionally, for the boundary conditions, we obtain from Theorem 1

B [u2 ((, t)]|eOD = EL [Y (t; w) hD (, t)] C-y) = hD (, t) EW [Y (t; w)] C-1y = 0.



Therefore, equation (3.21) follows. Finally the initial conditions are defined as in

Theorem 1 with the stochastic vector Y (to; w) = (uo (9; w) - io (e) , ujo (e)) described

now by the associated probability density function fy (y). O

Note that a transport equation for the probability density function can also be

obtained for the case of general time correlation structure for the excitation using

recent results for stochastic dynamical systems ([65], [127]).

3.5 Consistency with existing methodologies

The derivation of our new dynamically orthogonal field equations (3.12)-(3.14) was

based exclusively on the representation of the solution by the DO expansion. In

what follows, we show that by imposing additional restrictions on the representation,

either those of the PC or the POD expansion, we recover the set of equations that are

obtained for each of these expansions. Therefore, the DO field equations (3.12)-(3.14)

can be considered as a general methodology that unifies two of the most important

and widely used methods for evolving uncertainty in stochastic continuous systems

governed by a SPDE or a system of SPDEs.

3.5.1 Generalized polynomial chaos expansion

In the generalized PC method, introduced by Xiu and Karniadakis [161] the stochastic

processes {Y (t; w)}& are chosen a priori and often fixed in time, based on the

statistical characteristics of the system input process. Specifically, the stochastic

processes are chosen to have the statistically time-independent form

Y (t; W) = '>5 (((w)) (3.23)

where 4 are orthogonal polynomials from the Askey-scheme and ( (w) are given ran-

dom variables [161]. In this case, the following orthogonality relation in the random



space holds between the stochastic coefficients

E' [4i (( (w)) ,D (( (w))] = E' [4i (( (w))2] J

The reduced order PC equations (e.g. [91],[162],[21],[66],[103]) are usually derived by

substituting a representation as (3.10) but with the stochastic coefficients given by

(3.23) to the SPDE (3.5) and then projecting it to the stochastic orthogonal basis

functions 4) (C (w)) using the inner-product. Following these steps we obtain

E,[o (((w))2] Ou (xt;W) = E' [L [u (x, t; w) ; w] 4Ji (( (w))]. (3.24)E iat

To now show that the DO expansion can reduce to the PC expansion, we start

from the DO field equations (3.12)-(3.14) but we restrict them with (3.23). Then

the equation for the stochastic coefficients {Y (t; w)} __1 is not used since those are

chosen a priori in a classic PC equation. Then, our equation for the mean field (3.13)

provides directly the equation in the set (3.24) that corresponds to 1N (( (w)) being

the constant polynomial. Finally, to obtain the remaining equations in (3.24), we

start with the third of the DO field equations (3.14) in the form

aui (x, t)Cy,(t)) = LW [C [u (x, t; w) ; w] Y (t; w)]-Hv [E[L [u (x, t; w) ; w] Y (t; w)]].

(3.25)

But, from (3.17), we have EW [(L [u (x, t; w) ; w] , Uk (, t)) Y (t; w)] C cty(t) = 0

since the stochastic characteristics of Ii (( (w)) do not change with time. Therefore,

we have 1 1 vs [EW [L [u (x, t; w) ; w] Y (t; w)]] = 0 in (3.25). Hence, equation (3.25) and

the mean equation (3.13) reduce to the family of PC equations (3.24).

3.5.2 Proper orthogonal decomposition

The POD method uses a priori chosen fields {uj (x)}'_,, generated either from an

ensemble of experiments or from direct numerical simulations ([59]) and provides

equations either for the stochastic or the deterministic coefficients {Y (t; () }'_. In



what follows we show how our DO equations reduce to the standard POD method

(given the standard POD assumptions) for the stochastic case since the deterministic

equations follow as a special case.

In a standard POD method, one chooses an expansion having the form

5

u (x, t; W) = Xi (t; W) ui (x) (3.26)
i=1

where {u 3 (x)}', are fixed, orthonormal fields and {X (t; w)}> are stochastic pro-

cesses (in general with non-zero mean). The reduced order POD evolutions equations

are then usually obtained by Galerkin projection of the original SPDE (3.5) onto the

orthonormal fields u3 (x). In this way we obtain the set of equations

dXj (t; w) = (L [u (x, t; w); w], uj (x, (3.27)
dt

To now show that the DO expansion can reduce to the POD method, we start from

Theorem 1 and the DO field equations but we restrict them with (3.26). We con-

sider just equations (3.12) and (3.13) since {uj (x)}>1 have already be imposed

from the POD method. Moreover, we note that the coefficients {Xj (t; w)}', of the

POD method are connected to the stochastic coefficients {Y (t; w)}'= of Theorem 1

through the relation

X (t; w) = Y (t; w) + (ii (x, t) , uj (x)) .

Then, by differentiating X, (t; w) and using equations (3.12), (3.13) we recover equa-

tion (3.27)

dXj (t; w) _ dY (t; w) 8i0 (x, t)
dt dt at ,ujQ(,,t)

= (L [u (*, t; w) ; w] - E' [L [u (o, t; w) ; w] , u (e, t))

+ (E' [L [u (x, t; w) ; w]], uj (x, t))

= ( u(o, t; w) ; w] , u (, t)) .





Chapter 4

Evolution of the stochastic

dimensionality

Abstract

The scope of this chapter is to develop adaptive criteria for the dimensionality of the

of the stochastic subspace in the context of the dynamically orthogonal (DO) field

equations. In the first section we discuss the cost scaling of the DO field equations

with respect to the number of stochastic dimensions used. Subsequently, we present

adaptive criteria for the contraction and expansion of the stochastic subspace and

we also illustrate how the new stochastic dimensions should be chosen (when the

stochastic subspace should be expanded) according to stability arguments. Finally,

we also discuss the issue of updating both the stochastic subspace and the probabilistic

information (i.e. the stochastic coefficients) through the usage of full-field data if those

are available. The material presented in this chapter is partially contained in Sapsis

and Lermusiaux, 2009, 2010 [129], [126].

4.1 Introduction

In Chapter 2 we saw how we can approximate the full probability measure by its

projection to a finite dimensional subspace, the stochastic subspace or error subspace



of the problem. Using this property we derived an exact closed set of field equations

that evolve the probabilistic structure for fixed stochastic dimensionality s. In this

chapter we will discuss how this stochastic dimensionality should vary with respect

to time according to the correct response of the system. More formally we may think

of the stochastic dimensionality as the minimal number of latent variables needed to

approximate satisfactory the system at a given time instant.

The estimation of the number of latent variables is an essential step in the process

of reduced-order modeling for stochastic systems since most order-reduction methods

need that number as an external and a priori user-defined parameter. However, there

are many situations where the dimensionality of the stochastic subspace needs to be

adapted as the system evolves. A typical example is a stochastic system initiated with

deterministic initial conditions where the stochastic subspace is initially an empty set

and as time evolves acquires non-zero dimensionality. Another commonly encountered

problem where it is essential to adapt the stochastic dimensionality, is a stochastic

system exhibiting transient dynamics either due to time varying external excitation

or inherent instabilities.

Typical applications of this kind are atmospheric and oceanic systems where the

strongly transient and non-stationary character of the dynamics requires adaptive

modeling of the dimensionality. For oceanic data assimilation applications a con-

vergence criterion based on the second-order statistical characteristics of the system

state is defined and utilized to control and adapt the stochastic dimensionality (see

[81], [74], [75], [76], [78]).

Other estimators of the stochastic dimension come from fractal geometry includ-

ing the capacity dimension [112] and the correlation dimension [53]. Other methods

that are not primarily intended to compute the fractal dimension can also be used to

evaluate the dimensionality of the stochastic subspace. One of the most commonly

used is the Principal Component Analysis (PCA) [71] mainly because of its simplic-

ity. PCA is a linear method, meaning that the estimator cannot identify nonlinear

dependencies but only gives a global dimensionality of an object. However, as we

illustrated in Chapter 2 this can be sufficient information since the nonlinear depen-



dencies may be expressed through the joint probability density function defined in

the reduced order, time-varying, space.

4.2 Cost scaling with the stochastic dimensionality

The most important obstacle towards the numerical solution of stochastic dynami-

cal systems and especially of high dimensionality such as SPDEs is the exponential

growth of the number of unknowns with respect to the stochastic dimensionality of

the problem. This is also known as curse of dimensionality [14] and refers to the expo-

nential growth of hypervolume as a function of dimensionality. Therefore in a direct

simulation approach where N degrees of freedom are involved in every stochastic

dimension, the storage cost of having s stochastic dimensions will be given by

Sdirec (N) = 0 (NS)

Hence, for high or infinite-dimensional systems, the storage, and thus, the compu-

tational cost is prohibited. In the Polynomial-Chaos method, where the stochastic

element is projected into a given set of random functions the storage cost grows

polynomially as (see e.g. [162])

p k-1

Spc(N) =NJ hY (s+r) ~0(NsP),
q=1 r=O

where p is the order of the polynomial-chaos approximation and s the stochastic di-

mensionality of the problem. Therefore, the growth rate strongly depends on the

order p which may need to be sufficiently large in order to capture adequately com-

plex statistical responses. For the same method, the associated computational cost

for evolving the degrees of freedom depends on the order of the non-linearity, q ,

characterizing the evolution equation (e.g. for Navier-Stokes q = 2) and it will scale

as

Cpc (N) ~ 0 ([NsPJ|).



where the exponent q comes from the fact that for a q-order polynomial term in

the system equation and a representation consisting of NsP terms the number of

multiplications required for the computation of this term will be [NSp]q .

In the ESSE approach the storage cost grows linearly with respect to the stochastic

dimension s. Since the evolution of the probabilistic information is done through

Monte-Carlo simulation the computational cost does not depend on the stochastic

dimensionality but rather on the number of Monte-Carlo samples that will allow us

to get a satisfactory approximation of the stochastic response.

In the case of the DO field equations the storage cost grows linearly with respect to

the stochastic dimension s, while the computational cost grows polynomially with an

exponent that does not depend on s but rather on the nonlinearity q associated with

the governing equations. More specifically, as we presented in the previous section,

the representation (3.10) consists of s +1 deterministic fields, and a stochastic process

that takes values in Rs. Even though the stochastic process Y (t; w) carries the curse of

dimensionality, the small to moderate size of s (even for realistic oceanic applications

s 0 O (10) -0 (103) is sufficient, [82]) allows for storage of the probabilistic structure

through a fixed number of samples (see Appendix B). Therefore, the main storage

cost comes from the s + 1 time dependent fields. Thus,

SDO (N) = 0 (Ns),

Consequently, for a system operator C having polynomial nonlinearities of maximum

order q the computational cost will be given by

CDO (N) = 0 ([Ns]') .

where the computational cost follows from similar arguments as in the case of the PC

method.

From the above discussion we conclude that in the DO methodology the storage

cost grows linearly independently from the complexity of the stochastic solution or the

nonlinearity of the system operator, while the number of numerical operations grows
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Figure 4-1: Computational time (sec) for the lid-driven cavity flow described in Chap-
ter 5, using different number of modes (red curve). The blue line indicates the linear
'best fit' in the log-log plot and it has an inclination equal to 1.986 (2 is the theoretical
prediction).

polynomially with an exponent that depends exclusively on the order of nonlinearity

of the system operator.

In Figure 4-1 we present the computational cost in seconds with respect to the

number of modes for a dynamical system described by Navier-Stokes equations. More

specifically, we consider the stochastic lid-driven cavity flow which is described in

detail in Chapter 5. The red curve indicates the measured time for a particular run

while the blue line is the best linear fit. The inclination of the best linear fit is equal

to 1.986 and compares satisfactory with the theoretical prediction i.e. the order of

nonlinearity which for Navier-Stokes is 2.



4.3 Update of the stochastic subspace using sta-

bility properties of the SPDE

In this section we will study criteria for the dimensionality selection of the stochas-

tic subspace Vs as the system evolves. The proposed conditions for the contrac-

tion and expansion of the stochastic subspace will be based on the covariance ma-

trix Cy(t)y,(t) = Ew [Y (t; w) Y (t; w)], i.e. on the second order characteristics of the

stochastic field. Note that Cy(t)y(t) provides information about both the intensity of

the uncertainty that characterizes a stochastic field but also the principal directions

in H over which this stochasticity is distributed.

4.3.1 Conditions for the evolution of the stochastic dimen-

sionality

For the covariance matrix Cy(t)yj(t) we have the set of eigenvalues pj (t) , j = 1, ..., s

and the corresponding eigenvectors #j (t) , j = 1, ..., s, given by the eigenvalue problem

CYi(t)Y 3 (tyOkj (t) = ?k (t Ok~i (t)

To relate the above eigenvalues and eigenvectors with those of the covariance operator

Cu(-,t)u(.,t) (x, y) we observe by definition of our representation of u (x, t; w) (having

order s) that

Cu(-,t)U(.,t) (X, y) =E' Yj(; )Y (t; W) ui (X, t) uj (y, t)T

=Ci(t)YMtui (X, t) uj (y, t)T

Then we can easily check that the eigenvalue problem

Cu(-,t)u(-,t) (x, y) ui (x, t) dx =A\ (t) u, (y, t) , y ED

D



has s non-zero eigenvalues given by p? (t), j = 1, ... , s with the corresponding eigen-

fields given by

og (x, t) =- #ij (t) ui (x, t) ,j = 1, ... , s

where #ij (t) is the i element of the j eigenvector #j (t).

In what follows, we provide one condition for the decrease and one for the increase

of the size of the stochastic subspace, considering arbitrary contraction time tc and

expansion time te at which this can happen.

Condition 12 (Contraction of Vs) The stochastic dimension s = dim Vs will be

decreased by one when at t = tc the minimum eigenvalue becomes less than a pre-

defined critical value o-,

minp| (tc) < cr.

In this way we set a threshold of variance below which uncertainty is sufficiently

small to be neglected. The stochastic subspace basis elements ui (x, tc) as well as

the stochastic coefficients Y (tc; w) have to be updated accordingly. We assume that

(ps (tc) , vs (x,tc)) is the eigenpair that we neglect because p2 (tc) < or,.. Moreover, we

denote as uf (x, tc) and Yi+ (tc; w), i = 1, ..., s - 1 the basis elements of the stochastic

subspace V+ 1 and the corresponding stochastic coefficients respectively after the

application of the contraction criterion. By choosing the basis elements ut (x, tc) to be

identical with the eigenfields vi (x,tc) , i = 1, ... , s - 1 we have the stochastic subspace

V+ 1 which is contracted relative to Vs exactly by the eigendirection v, (x,tc) that

corresponds to the minimum eigenvalue (note that orthonormality of vi (x,tc), i =

1, ... , s - 1 is preserved). Then, the state of the system at t = te will be described by

s-1

u+ (x, tc; W) =n(x, tc) + IEi+ (tc; W) vi (x, tc) , W E D
i=1

where the stochastic coefficients can be easily found by projecting the stochastic part

of the solution u (x, tc; w) - ii (x, tc) to the basis v (x,tc) , j = 1, ..., s - 1

Y+ (tc; w) (tc) Yi (c; = 1.



Condition 13 (Expansion of Vs) The stochastic dimension s = dim Vs will be

increased by one when at t = te the minimum eigenvalue becomes greater than a

pre-defined critical value E. > U2.

minp2(te) 2 E, > U

The additional stochastic dimension is chosen for simplicity to have a stochastic

coefficient Y,+ 1 (te; w) that is normally distributed with variance o-r, Moreover, it is

assumed statistically independent from the existing stochastic coefficients. Both of

the above assumptions are based on the fact that the stochastic intensity along the

new direction is small (o-,.). However, the selection of the the additional basis field

ui 1 (X, te) is not straightforward and will be made based on stability arguments of

the system operator L.

4.3.2 Selection of new stochastic dimensions

We will now describe the directions in H which are not included in the stochastic

subspace Vs and which have the larger tendency to grow (most unstable) in terms of

the variance. In what follows we will assume that uncertainty is small and uniform

in the orthogonal complement of the stochastic subspace (the one that until now is

not considered stochastic). Based on this assumption we may chose the new direction

based only on the largest growth rate (see e.g. [73], [63]).

First we give some definitions that will be essential to our analysis.

Suppose <b (u) : H -+ H is an operator from the space of square integrable stochas-

tic fields H to itself. The operator <b will be called Frechet differentiable (see e.g. [26])

if for any u E H there exists a bounded, linear operator ") [h] : H -* H such that

the following limit exists

<}4 (u + Eh) - <b) (u) - 6") [h]
lim 2 = 0.
e-n+o e

where ||u||2 = (u, u) is the norm induced by the inner product of the Hilbert space



H. In this case we will have (Cartan, 1971 [26])

<k (u + Eh) - <} (u) = E [h] + 0 (E2). (4.1)

In what follows we will study the normal stability of Vs, i.e. the stability of

the reduced system to perturbations which are normal to Vs. To this end we will

use Normal Infinitesimal Lyapunov Exponents (NILE) that have been used in the

study of normal stability properties of invariant manifolds ([57]). More specifically,

we consider a small perturbation of an element in Vs at the time instant t, that has

the form

ii (x, te; w) = eT (te; w) V (x, te) + u (x, te; w) .

where u E Vs, E is a small real number, V (x, te) is a deterministic field that is normal

to the stochastic subspace Vs, and T (te; w) is a square-integrable random variable

that is independent from the stochastic processes Y (t; w), i = 1,, 1 S, t < te. Then

from the s + 1 dimensional DO equations we will have

E dT (t; w) = (L [f (e, t; w) ; w] - E' [L [6 (e, t; w) ; w]] 19 (e, t))
dt

Then, by expanding C [ii (o, t; w) ; w] around u using equation (4.1) we obtain

C [R (x, t; w); w] = L [u (x, t; w); w] + ET (t; w) 'C[u(Xt;W) W] [(x,t)] + 0 (2)

Moreover, since T (t; w) is zero-mean we will have for the limit t -+ te

lim E' [C [ii (x, t; w) ; w]] = lim E' [C [u (x, t; w) ; w]] + 0 (32)
t-te t-te

Now inserting these latter two equations in the equation for T (t; w) we have for t --+ t

dT (t; w) = (L [u (e, te; w) ; w] - E' [C [u (e, te; w) ; w]], O (, te))
dt t=te

6L te [u ) -W1 (2+ eT (te; W) Kf [u (, t [O(*, te)] ,19 (, te) ±0(2)



Then we multiply with 2T (t; w) and apply the mean value operator to obtain for the

limit t -+ te, E - 0

dEw [T2 (t; w)] of [ (t. W [u (e, te; w) ; w] [79 ( (0,= E'[T ( We; \) E [ [6u ,e)]J , L e)/
dt Iu

Therefore the NILE in this case will be given by

Ot [u] = 2 max Q [V] = 2 max E [L [u(ot;W) ; [ W (, t)]] 9 (* t) (4.2)

1191=1 11l11=1

The last quantity is a measure of the maximum potential growth of perturbations

which are not contained in Vs. Using the above quantity we can predict based on

the current state of the system and the current form of the stochastic subspace Vs

which perturbation V (x, te) will grow faster and therefore we can update or expand

the stochastic subspace accordingly.

Another approach that is commonly used in the weather prediction literature is

based on the instantaneous left singular vector of the tangent linear model considered

over a finite time interval extending from the current time to a future time instant

(the so called 'linear regime'). This approach is based on the assumption of linearized

dynamics over this short time interval that allows to find the perturbation that will

have the maximum growth over this finite interval (See e.g. [83], [73], [63]).

Numerical computation of the NILE

In order to compute the NILE we first approximate Vi by a finite base {9i (x, te)} 1.

This can also be seen as the first iteration of the breeding procedure ([63], [81]); this

'first step' approach is also utilized in ESSE method except that in the present work

we do the analysis in continuous time.

Note that such basis can always be constructed using any finite base that approx-

imates the space of square integrable deterministic fields L2 (e.g. Fourier modes) and



then applying Gram-Schmidt process. By considering such a base we will have

q q

V (x, te) S aid (x, te) with a2 = 1.
i=1 i=1

Then, using the linearity of the Frechet derivative with respect to 79 we will have

Q [] 0=Q [ai,..., a,]

of [u (e, t; W) ; w] 1

1 6

= (Qij + Qjj) ajaj

where Qjj is a q x q matrix whose elements are given by

= [ofI[u(.~t;w);w] [h.t] ' 3 .t)Qij E' [ C[ *It;W;W 1i (0, t1)]?g (0, t).

Note that in the equation for Q [?9] we have used the fact that for any matrix Q and

vector x we have

XTQX (XTQX)T = XTQX - X (Q + QT) x

Therefore the problem has been reduced to the optimization of the quadratic func-

tion Q over the unit sphere a?. = 1. Note that the property a?. = 1 follows from

the assumption of uniform variance for all the modes which are not included in the

stochastic subspace. For the case where we had some information for the size of

the various perturbations in the orthogonal complement we would have a weighted

problem according to the variances of the individual modes in the orthogonal space.

The last optimization problem has always a solution since the unit sphere is a

compact set. Moreover, since Q is quadratic we will have

Olt, [U] = Amax [Qij + Qjil

where Amax denotes the maximum eigenvalue. Based on the above analysis we choose



the new direction u', (x, te) in the expanded stochastic subspace as the critical

direction Vc (x, t) for which maximum growth of variance will occur

uS1 (x, te) = Vc (x, t) = a,,o9 (x, t)

where {ac,i} 1 is the eigenvector of Qij + Qji that corresponds to the maximum

eigenvalue Amax [Qij + Qji].

4.4 Update of the stochastic subspace using data

and measurements

In many problems modeled through the stochastic framework, available data or mea-

surements can improve significantly the accuracy of the stochastic solution. The scope

of this section is to describe how this information can be merged with the numerically

evolved stochastic fields within the, context of DO equations.

Generally data and measurements are available in arbitrary locations in the do-

main of interest. The optimal estimation of gridded fields directly from the spatially

irregular and multivariate data sets that are collected by varied instruments and sam-

pling schemes is a problem studied in the context of objective analysis (see e.g. [160],

[1], [2]) and will not be studied in this work. For schemes that utilize raw data to

learn the dominant (multivariate) stochastic subspace, we refer to [73] and [75]. Here

we assume that data or measurements information is expressed in field form known

at particular time instants. Based on this assumption we first define some essential

notation for the analysis that will follow.

4.4.1 Data and measurements formulation

We denote the time instant where data is available as t0, the unbiased estimated

field (through objective analysis) as 6t (x, t,), and the covariance operator for the



associated error E (x, to; w) -= (x, to) - u (x, to; w) as

CcE (x, y) = E' [E (x, to; w) E (y, to; w)T

For simplicity we also assume zero-mean Gaussian statistics for the estimated field.

To express the available information in the DO framework we perform a spectrum

analysis of the covariance operator by solving the following eigenvalue problem

C&F (x, y) vE,i (x) dx =A',ve,1 (y), y ED. (4.3)

D

from which we obtain a set of eigenpairs (A ve, (x)) i = 1,2. Then, based on

the critical variance threshold o. (below which stochasticity is negligible), we obtain

the full-field data subspace defined as

Vo = span {vc,i (x) IA2i > U2

defined as the span of all eigenfields ve,i (x) associated with important variance (Ai,' >

oTi.).

4.4.2 Update of the stochastic information inside Vs

To update the stochastic information of the current state of the system we partition

the stochastic subspace Vs into two orthogonal (i.e. disjoint) linear subspaces as

follows

Vs = Vs n Vo E Vs n V1.

where D denotes the direct sum of the two subspaces (Figure 4-1). Note that along

the dimensions contained in the subspace Vs n VI C Vs, the available information

from data and measurements guarantees accurate estimation since the associated

data variance is less than U. Therefore, for these directions, we may neglect those
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Figure 4-2: Decomposition of the stochastic subspace Vs based on the data subspace
V 0 .

stochastic dimensions and update the stochastic subspace and the mean directly as

Vs -+Vs nVo, and s -+dimVs n Vo

ii (x, to) -+ 'E (x, to) - y1 vrwg [fL (x, to)] + HVsv [1 (x, to)]

where for the stochastic subspace we maintain only the directions lying on the intersec-

tion of the stochastic subspace and the data information. For the mean we substitute

completely the information computed through the evolution equations with the mea-

sured information for which there is good accuracy, i.e. the information corresponding

to eigendirections with " < o which are contained in V'.

The next step of our analysis involves the update of the remaining stochastic

coefficients Y (to; w) that describe the probabilistic structure in the reduced-dimension

stochastic subspace Vs. We have by definition of S

f (x, to) = E (x, to; W) + ii (x, to) + Y (to; W) u2 (x, to)

By projecting the above equation to every basis element of the stochastic subspace

we obtain for every k 1,..., s

(f (e, to),nk(,to)) ((,to;W),Uk(.,to)) + (ii (eto) , Uk (e, to)) + Y (to;).



We shall now do a Bayes 'data assimilation' update in the Y space. Using the above

relation we can apply Bayes rule to update the probability density function describing

the stochastic coefficients. More, specifically we will have

f ({6 e to) , uk e to)) ilY) fy (Y, to)
fy (Y,7 tol {(6 (0, to) , uk (0, to) ) =

f ({(6 (t), k (.,to"))} 1 z) fy (z, to) dz

Rs

where y is the argument for the random variable Y (to; w) and fy is the corresponding

probability density function (see Chapter 2 - Section 2.2). We have assumed Gaussian

statistics for the error field E (x, to; w) . Therefore,

f ({(6 (., to) ,Uk (*, to)) i y) = .A ((n (., to) , Uk (, to)) + Yk, Eij)

where Egg is the covariance matrix defined as

S=J uT (x1, to) CeS (x1 x 2) u (x 2 , to) dxidX2, i, j = 1, ... S.

D D

Thus, the pdf describing the updated stochastic coefficients will be

fy (y, tl {(U (, to), Uk (., to)) 1) = -((ii(* t) , Uk (*,to)) ± Yk, ' fY (Y, to)I 1 ((U (, to) , Uk (, to)) + yA, jig) fy (z, to) dz

Rs

To be consistent with the DO formulation we finally need to center the above density,

so that the updated Yk (to; w) are zero mean (Figure 4-2). Specifically, we will have

n (x, to) -+ ;U (x, to) + mkuk (x, to) , with mk = JYkfY (y, to| {(fi (9,t) , uk (*,to))} 1 ) dy

Rs

fy (y, to) -+ fy (y + m, t0l {(6 (.,t0 ) ,ku



Jk )

f~(iUj)+

W((iU..)+Yk;x)

pdf

Yk;E}.y (Yk It)o

Zk;I )AY(ZkIt i)dz

Bayes Rule

pdf

Centering of updated
density and update of the

mean field

pdf

4:

y
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4.4.3 Expansion of the stochastic subspace VS

The second stage involves the consideration of the stochastic dimensions of Vo which

are not included into the stochastic subspace Vs. More specifically, we consider the

space Wo = Vo n V'. This linear subspace contains directions with important un-

certainty according to the estimation procedure and hence these should be included

into the stochastic subspace Vs. This can be done in more than one ways. One

approach is the expansion of the stochastic subspace Vs using all the new dimen-

sions contained in Wo. However, this method may involve significant cost. Another

approach (ESSE learning) is to add only a single dimension for every synoptic batch

of data [75].

A more efficient alternative is to combine the information for Wo with the ana-

lytical arguments presented in the previous section in order to obtain the direction(s)

in Wo that tend to obtain larger values of variance according to the dynamics of the

system. In this way, we may enhance Vs only with the most unstable directions of

the space Wo.

If we select only the most unstable direction in Wo, then according to the results

of the last section this will be given by

dimWo

uS+1 (x, t0 ) = a wi (x)
i=:1

where wi (x) is a basis that spans Wo and {ai}'- is the eigenvector associated with

the maximum eigenvalue of the matrix Qij + Qji, with

Qij Ew[o [u (0, to; W) ; W] [i W 0

Depending on the nature and scale of the problem and the size of the stochastic

subspace a combination of the two approaches, i.e. adding those directions in Wo

with important variance as well as those which are most unstable, may result in

more efficient results. Finally, the corresponding stochastic coefficients Y+1 (t; w)



will follow Gaussian distribution with variance

J uf+1 (xi, to) Ces (x 1 , x 2 ) uS+1 (x 2 , to) dxidx2

D D

and mean

Ew [Ys+1 (to; w)] = (n1 (., to) , us+1 (0, to))

As we mentioned in the previous section appropriate modification of the mean field

should be made so that Y+1 (to; w) is centered according to the DO formulation.

o?+1 (to) =



Chapter 5

Application of dynamically

orthogonal field equations to

random fluid flows

Abstract

In this chapter we will apply the Dynamically Orthogonal field equations for the case

of two dimensional random flows described by Navier-Stokes equations including the

Coriolis force. The Navier-Stokes equations contain quadratic nonlinearities, which

as we will see, are responsible for the transfer of energy from the mean flow to the

various stochastic DO modes in the form of variance. The quadratic terms are also

the cause of transfer of uncertainty among different DO modes. In what follows

we will illustrate the above mechanisms through the consideration of special cases

involving externally forced, forced through the boundary, and free systems. More

specifically, in the first two sections we will formulate the problem and we will derive

closed, evolution equations for the mean field, the scalar stochastic coefficients, and

the DO modes. Note that the Navier-Stokes equations involve a diagnostic variable,

the pressure, which is not described explicitly and hence special treatment is needed.

In the third section we will discuss the case of stochastic boundary conditions and we

will prove that this family of problems can always be reformulated as problems with



deterministic boundary conditions and suitable random forcing. In Section 4 we will

apply the methodology developed in Chapter 4 to express the most unstable mode

and in Section 5 we will derive expressions for the transfer of energy from the mean

flow to and among the stochastic modes. In the last three sections of the chapter

we will present numerical results for specific geometries and forcing configurations

and we will also examine convergence properties of the proposed methodology. The

details for the numerical solution of the derived equations are included in Appendix

B. Part of the material presented in the current chapter is contained in Sapsis and

Lermusiaux, 2009 [129].

5.1 Formulation

We will now formulate the DO field equations for the special case of fluid flows

governed by stochastic Navier-Stokes. The general equations, for an incompressible,

two dimensional fluid in a domain D in a rotating frame at frequency f have the form

Ou 1V Au -u.Vu - flc x u +-r(x, t) + p(x, t; w) =L[u(x,t; w); w]
&t Re

0 div u

where u = (u (x, t; w) , v (x, t; w)) is the flow velocity field, and k is the unit vector for

the z-direction. The pressure field is denoted with p (x, t; W), f = fo-+oy is the Cori-

olis coefficient under the beta plane approximation, T (x, t) = (T, (x, t) , T (x, t)) is the

external deterministic stress acting on the fluid, and p (x, t; w) = (p, (x, t; w) , wy (x, t; w))

is the zero-mean stochastic component of the stress for which we assume known the

complete probabilistic information. In what follows we will use the DO field equations

derived in Chapter 3 with inner product

(u1 , u2) = J (U1u2 + viv 2) dx.

D



We consider the correlation operator for the stochastic part of the excitation C, (x, y)

E"' [ (x, t; U)) P (y, t; w)T . To diagonalize the probability measure associated with

p (x, t; w) we solve the following 2D-vector eigenvalue problem

C, (x, y) W, (y, t) dy =A 2 (x, t)
D

In this way we obtain the principal directions over which the probability measure

is spread in the variance sense. Retaining only the the first R terms we obtain the

following approximation of the stochastic field y (x, t; w)

R

P (x, t; w) = [Zr (t; w) P, (x, t) = Zr (t; w) Pr (x, t)
r=1

where R is defined by the order of truncation of the full series, and Z, (t; w) are the

stochastic coefficients given by

Zr (t; W) = (P t; W) , (, (-, t))

For simplicity we assume that the boundary conditions for the velocity are either

deterministic Neumann or Dirichlet

u (,t; w) = UaDi ((,t), ( EODi

((,t; w) = h&D2 ( ,t), ( -OD 2an

The case of stochastic boundary conditions will be discussed Section 3.

Furthermore, we assume that the initial conditions are stochastic with known

statistics given by

u(x,to;w)=uo(x;w), xED, oCEQ



5.2 Derivation of DO Navier-Stokes equations

We will first calculate the stochastic operator L. By using the DO representation

u (x, t; W) = ii (x, t) + Y (t; W) ui (x, t)

into Navier-Stokes equations we obtain

1
L [u (x, t; w); w] = -Vp + -Aii - .Vi-fk x i +r (x, t) (5.2)

Re

Yi - Au - us.Vi! - ii.Vuj - fk x ui
[Re ]

- YjY [Ui.VUj + U,.VU ] + Zr (t; w) p, (x, t)

Moreover, by inserting the DO representation in the continuity equation we obtain

div i + Y (t; w) div ui = 0.

But since Y (t; w) is random the above equation has the equivalent form

divii = 0

divui=0, i=1,...,s.

A very important property of Navier-Stokes equations that allow for the efficient

applicability of the DO formulation is the analyticity of the evolution operator L

with respect to the argument u (x, t; w). This property allows for the expression of

the operator into a polynomial series that involve the unknown quantities of the DO

representation (eq. 5.2). Through this property we are able to derive closed and exact

evolution equations whose right hand side depends from moments of the stochastic

coefficients, the DO modes and the mean.

Note, that for the case of a non-smooth operator L we are not able to expand into

a polynomial series therefore, even though the DO equations are valid, it is not pos-

sible to compute their right hand side efficiently using moments of the coefficients Yi.



Instead, in this case we need moments of the full field u (x, t; w) which even though

they are available (since the DO formulation includes the full probabilistic informa-

tion) it is not straightforward to compute. For the case where the non-smoothness of

the operator C occurs in points where u (x, t; w) has very low probability to exist we

may approximate the operator by a polynomial series. We emphasize that the above

described technical complication characterize in the same way every method that is

based on an a priori representation of the solution (i.e. POD or PC). Monte-Carlo

based methods are not sensitive to this point.

5.2.1 Stochastic pressure field

To derive an equation for the pressure we need to understand its role in the stochastic

context of the operator L given above. Pressure (for a flow with constant density) is

the stochastic quantity which guarantees that every possible realization W the evolved

field (u (x, t; w) , v (x, t; w)) is divergence-free (take the divergence of the momentum

equation 5.2 and use the family of continuity equations to show this). Therefore,

the stochastic pressure should be able to balance all the non-divergent contributions

from the terms involved in the operator C (equation (5.2)). To this end we choose to

represent the stochastic pressure field as

p = po + Y (t;w) pi - Y (t;w)Yj (t;w) pi3 + Z, (t; w) b,

Based on the above discussion, the mean pressure field components should satisfy the

following equation

Apo = div (-ii.Vii-fk x ii + r (x, t))

with boundary conditions often given by

a1o ((,t) = 0, E EOD 1  and po ((,t) = const. G EOD 2
On



Note, that following common practice in fluid mechanics literature [28] we have chosen

homogeneous Neumann condition for the pressure on the boundary &D1 and piece-

wise constant Dirichlet condition for the boundary 8D2 . As we will see, this property

is key for simplifying the evolution equations for the stochastic coefficients and also

for the numerical implementation using projection methods.

The stochastic terms in L multiplied with Y (t; w) will be balanced through the

following equation

Api = div (-u.VUF - .Vui - fk x ui), i = 1, ..., s (5.4)

with boundary conditions

((,t) = 0, (EOD 1  and pi (It) =, EaD2, i = 1, ... , s.an

where the Dirichlet condition is taken to be homogeneous since the boundary con-

ditions of the full problem have been assumed deterministic (the generalization for

stochastic boundary conditions is presented in the next sections). Similarly, for the

stochastic terms multiplied by Y (t; w) Y (t; w) we will have

Apij = div (ui.Vu + u.Vui) , ij= 1, ... , s

and boundary conditions

(e,t) = 0, &EDi and pij ( ,t) = 0, ED 2 , i, j=1,...,s.
an

Finally, the forcing terms will be balanced through the family of equations

Abr = div p, (x, t) r = 1,..., R.

with boundary conditions

( ,t) = 0, G EODi and q, ( ,t) = 0, G EOD 2 , r= 1, ..., R.
On



The above set of equations guarantees that for every realization W the evolved field

(u (x, t; w) , v (x, t; w)) will always be incompressible. Moreover, the evolution operator

L will take the form

1
1 [u (x, t; w); w] = -Vpo + Aii - i.Vii-fk x + (x, t)

Re

i ; p + Aui - ui.Vi! - a.Vui - fk x ui
Re

- YiY [-Vpig + ui.Vuj + uj.Vui] + Z, (t; w) [-Vb, + w, (x, t)]

5.2.2 Evolution of the mean field ii (x, t; w)

Using the corresponding DO equation for the mean we obtain the set of deterministic

PDEs

=ii -1 
-Tt- = Vpo + -ezAti - iii-fk

- CYi(t)rj(t) [-Vpij + ui.Vu, + u,.Vuj]

0 = div ii

with the following boundary conditions

( E&D1

( E&D2

5.2.3 Evolution of the stochastic subspace basis u (x, t; W)

We will first calculate the quantity E' [L [u (x, t; w) ; w] Y (t; w)]. We will have

EW [C [u (x, t; w) ; w] Yj (t; w)] = CYm(t)Yj(t) - VPm + ReAUm - um.VU - ii.Vum -

- MY(t)Ym(t)Yn(t) [-VPmn + Um.VUn + Un.VUm]

+ CY,(t)zr(t) [-Vbr + or (x, t)]

x i + T (X, t) (5.5a)

(5.5b)

f x Um]

fi ( ,t; W) = uaDi (CO ,

a-((,t; w) = haD2 (CO ,I



Multiplying with the inverse matrix Cyi(t)yj(t) we will have (defining Qj)

Qi= C y E' [ [u (x, t; w) ; w] Yf (t; w)

= Vpj + R Au - uj.VU - u.Vu - f x uzj[ Re

-Cit)Y(t) y(t)Ym(t)Yn(t) [Vpmn + Um.VUn + Un.VUmI

+ C- 1tY CY,(t)Zr(t) [-Vbr +< p, (x, t)]

Note that Cy,(t)y3 (t) as a covariance matrix is always symmetric, positive-definite thus

invertible. Using the last expression we obtain the evolution equations for the basis

uj (x, t; w)

0 Qi - (Qi, um) Um

0 =div ui

for i = 1, ..., s. Moreover, we will have the following boundary conditions

ui ( ,t) = 0,

Ou.
( ,t) = 0,On

E&D1

(ED2-

5.2.4 Evolution of the stochastic coefficients Y (x, t; w)

The set of evolution equations for the stochastic coefficients will take the form of a

SDE

1
+ -AUm - Um.VU - U.VUm -

Re
f k X Um, ui Ym

- (-Vpmn + Um.VUn + Un.VUm, ui) (YmYm - CYm(t)Yn(t))

+ (-Vb, + p, (x, t) , u) Z, (t; w)

dY VPm

di



Using Gauss theorem [167] we have for every scalar field a and every divergent-free

vector field F

JVa (x) .F (x) dx = a (() F ( ) .n (() d(

D aD

Using this property for the velocity field, for part of the boundary ODi where ho-

mogeneous Dirichlet boundary conditions hold, the above integral vanishes because

of the zero velocity of the modes on the boundary. Moreover, the zero boundary

pressure associated with modes implies that the above integral will also vanish over

the boundary &D2 . Therefore, we will have

(Vpm, ui) = (Vpmn, ui) = (Vb,, ui) = 0 (5.8)

Hence, the stochastic equation describing the evolution of the stochastic coefficients

will be take the form

d = 1-Aum - um.VUI - n.Vum - f x Umu Ym
di Re

- (Um.VUn + un.Vum, Ui) (YmYn - Cym(t)Yn(t))

+ ((P, (x, t) , ui) Zr (t; W)

We emphasize that the last property (5.8) is crucial since it allows us to apply pro-

jection methods (Guermond et al., [55], Ueckermann & Lermusiaux [personal com-

munication]) for the numerical solution of the DO equations for Navier-Stokes. In

this numerical framework the stochastic pressure does not need to be determined

completely since the non-divergent requirement for the velocity field is enforced nu-

merically. The last property that the pressure terms do not show up in the evolution

equation for the stochastic coefficients, allows the applicability of projection methods,

leading to significantly smaller computational cost.



5.3 The case of stochastic boundary conditions

We shall now consider the problem of stochastic boundary conditions. We assume

that the complete stochastic information for the boundary conditions is known. More

specifically we have

u ((,t; w) = u8Di (, ± U8D1 ((,t; w),

((,t; w) = haD2 ( a,t) + h'D 2 ((,t; w),

EBD1

E EaD2

where [uD 1 (&,t; w) , hD 2  t; W)]T is the zero-mean stochastic part of the bound-

ary conditions. We consider the correlation operator associated with the boundary

conditions

CuaD' (11,t2); ) D1 (2,;)

h'8D2 (61,4; W) h'L8D2 (62,; W)

We formulate the eigenvalue problem to determine the principal directions where the

probability is distributed in the variance sense

CaD8D (2 uhD1,k ( 2 ,t)

BD h8D2,k (2,t)

2
d62 = Ak

uaDi,k (61,t)

haD2,k (1,t)

Using this information we expand the stochastic boundary conditions as follows

u ((,t; w) = uaDi1 (,t) + Ek (t; w) UaOi,k ((,t),

u(,t; w) = haD2 ( ,t) + =k (t; w) haD2,k ((,t),
')n

(2D 1

E EOD 2

where k is an index taking values from 1,..., K, the order of the truncation, and the

stochastic coefficients are given by

k (t;W) = I
iMD
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We will transform the above problem to an equivalent one having deterministic bound-

ary conditions. In this case the effect of stochastic boundary conditions will come

through the forcing terms. The idea is to handle the effect of stochastic boundary

conditions through the partition of the solution into a component Uh (x, t; w) that will

satisfy the deterministic part of the boundary conditions, and a set of incompress-

ible and irrotational components Ub,k (x, t) that will satisfy the stochastic part of the

boundary conditions. Specifically, we write the solution of the system as

u (x, t; w) = Uh (x, t; w) + Zk (t; w) Ub,k (x, t)

Since the velocity fields Ub,k (x, t) have been assumed irrotational and incompressible

there will be a set of scalar potentials #b,k (x, t) such that

ub,k (X, t) = V~b,k (x, t)

Adb,k (x, t) = 0

Moreover, each potential function #b,k (x, t) will satisfy the following boundary con-

ditions

Vb,k ((, t) = UaD1,k ( ,t) , ( E&D1

-V#b,k ( t) = hBD2,k ( ,t) , EOD2On

Note that time in the above elliptic equation act as a parameter; thus there is no need

for initial conditions. With the above choice we have a well defined problem for the

potentials 4b,k (x, t) and additionally our solution satisfies the stochastic part of the

boundary conditions. Moreover, we require Uh (x, t; W) to satisfy the deterministic

part of the boundary conditions and we obtain the following problem for uh (x, t; w)

= a [uh (X, t; w) + _k (t; w) Vdb,k (X, t) ; W1 b,k (X, t))

0 = div uh
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with deterministic boundary conditions

uh ((,t; W) = UOD1 ( ,t), G E8Di

(,t; w) = haD2 (6,t), E E&D2i9n

and initial conditions

uh (x, to; w) = uo (x; w) - Ek (to; w) Vb,k (x, to), x ED, w E Q

Therefore, we have transformed the general problem to one with deterministic bound-

ary conditions and stochastic forcing. We emphasize that the handling of the stochas-

tic boundary conditions through the boundary is of special importance for the case

of systems where the initial state is deterministic and uncertainty is introduced only

through the boundary conditions (i.e. the stochastic subspace is initially an empty

set). In this case the modes required to describe the current state of the system may

be very few compared to those required to satisfy the stochastic boundary conditions.

Using the above decomposition we create a new set of modes that depend exclusively

on the stochastic characteristics of the boundary conditions and not on the system

state. Hence, in this formulation the stochastic boundary conditions are satisfied a

priory (since we have solved for the potentials #b,k (6, t)) and we only need to solve

for the uncertainty of the solution in the interior of the domain.

5.4 Unstable perturbations for Navier-Stokes equa-

tions

As we saw in Chapter 4 the application of adaptive criteria for the dimensionality of

the stochastic subspace requires the determination of the most unstable perturbations.

These perturbations should be normal to the current form of the stochastic subspace

V,. In Chapter 4 a closed expression for the determination of the most unstable

direction was derived in terms of the Frechet derivative of the system operator. In
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this section we compute explicitly the form of the unstable mode and we prove that

this depends only on the mean of the current state, while the dependence through

the DO modes is indirect through the fact that the unknown mode should be normal

to every existing DO mode.

We consider Navier-Stokes equations (5.1) and by computing the Frechet for the

evolution operator L we obtain the variation towards the deterministic state-space

direction 79 (x)

6L [u (e, t;W)] [7] = -VL+ A - f k-x O - ?.Vu - u.V.
Ju 6u Re

Moreover, the continuity equation will take the form (since it must be satisfied for all

variations 6u)

div 9 (x) = 0

from which we can determine the variational derivative of the pressure 6

6U k.(f x ?9 - d.Vu - u.V?9) .

Applying the mean value operator E' we have

A E = V - - x d -( [.V ii -jV)) -

Moreover,

Ew ofC [u (0, t; W))][1]9= -V E"A+d - fi x ' - VUi - fi-70-
6u J +u Re

Hence, from Chapter 4, Section 2 we will have the form of the functional Q [V] from

which we will determine the most unstable mode

Q[]=ELO 6L [u (0, t; W) ; W] [Id (0, 0)] , (0, t)
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V(E W (A0, ?2)+

- (P.Vai, 9) - (a.V79,) - (f x 7, i .

The last Coriolis term (fk x

identity we have

KVE 6[P]

V,,) vanishes identically.

o = E div ?fdx+ E
D aD

Moreover, by using Gauss

I.ndS

SEw 1 .ndS
BD

where the last equality follows from the non-divergence property of 1. Note also,

that using same arguments with those used in the previous section we can show that

E [6] z.ndS = 0. Thus we can avoid the solution of an inverse (p - u) problem

8D
and express Q [?9] explicitly in terms of the current mean velocity state of the system

Q [M = - (Ao,0 ) - (V.Vi, d) - (ii.Vt 9)
Re

Hence, the following expression for the matrix Qij can be written

=

QCRe (od) - (9.vfi, 79) - (O.V9i, 9)

Following the analysis of Section 4.2.2 we have an expression for the most unstable

mode

Vc (x, t) = a,ios (x, t)

where a,, is the eigenvector that corresponds to the maximum eigenvalue of the

matrix Qij + Qji.

We emphasize that in the computation of the matrix Qij used for the determina-

tion of the most unstable mode there is no contribution of the Coriolis terms (Coriolis

force is locally orthogonal to the flow). This is physically justified by the fact that
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Coriolis force does not change the energy content of the system (it is a rotation term)

and here the norm that we consider is the kinetic energy. However, other norms may

be used to characterize the most unstable perturbation, e.g. growth of enstrophy,4 IV x u12 dx. In the latter case, we will have a contribution of the Coriolis force
D

due to the spatial variation of the Coriolis coefficient.

5.5 Transfer of energy in Navier-Stokes

We will now study energy exchange properties between different DO modes and the

mean flow. As we saw in Chapter 3 the DO modes remain always orthogonal. Spatial

orthogonality of these fields implies orthogonality of their spatial Fourier, Gabor, and

Wavelet transforms [5], [35]. Therefore, different DO modes always contain different

frequency-phase content at the same spatial locations. In what follows we will prove

that the transfer of energy from the mean flow to the DO modes occurs through

a linear mechanism and is triggered by linear instability of the mean flow. This

causes transfer of energy content from the mean flow to the DO modes in the form

of variance.

On the other hand, flow of energy among different DO modes occurs both in

a linear and a non-linear way and is exclusively connected with the non-Gaussian

statistics of the stochastic coefficients. As we will see, since different modes contain

different frequency-phase content, the mutual interaction of the DO modes occurs in

triads and it is not possible to specify the exact amount of energy transferred from

one mode to another (we can only specify the total energy transferred from one mode

to two others).

To illustrate these properties we consider a system that is not externally forced and

which has homogeneous Dirichlet boundary conditions everywhere. More specifically,
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we consider the system

a-- =Vp + -- u - u.Vu -
at Re

0 = div u

u ( ,t; W) = 0, ( E&D

u (x, to; w) = u0 (x; W) , xED, WEQ

5.5.1 Energy exchanges between the DO modes and the mean

flow

To study the flow of energy among the mean flow and the DO modes we consider

the DO equation for the stochastic coefficient Y (t; w) since the fields ui (x, t) are

normalized. We have, using Einstein notation

dY = -- Aum - um.VU - l.Vum -
dt Re

f X Um, Ui )Ym

- (Um.Vun + Un.VUm, ui) (YmYn - CYm(t)yn(t))

We assume that at the current time instant the correlation matrix Cym(t)yn(t) is diag-

onalized (in this way we have energy on the diagonal components only) and we wish

to study the transfer of energy from the mean flow to the mode i. Multiplying with

Y and applying the mean value operator we obtain

1 d EW

2 dt
[Y2 ] K jYui - us.Vn - i.Vu, - fk x us, EW [Y2]

- (Um.Vun + un.Vum, ui) E' [YYmY]

We have

(i.Vui, u2 ) = (ii. V&) = 0 (5.12)
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fi x u =- L [u (x, t; W))]



where Ei = 1 (ui, ui) and the last equation follows from Gauss identity and the chosen

boundary conditions. Additionally we have

(f^ x u, u= 0

and from Gauss theorem and the chosen boundary conditions

(Aui, ui) = - (Vui, Vui)

Finally, we observe that

(uj.Vu, u2) = JuTSuuidx
D

where {Su = + . Hence, we will have

ld [y] 1 1 y2
= Re(Vu Vui) - u Sudx E' [Y21 (5.13)

2 dt [(
LD J

- (Um.VUn + Un.VUm, uz) EW [YiY m Yn)

We observe that energy transfer between the stochastic mode i and the mean flow oc-

curs in a linear way although the terms in the original equation which are responsible

for this energy transfer are the nonlinear ones (it is the quadratic terms in Navier-

Stokes that lead to the term ufSa1 uj in equation (5.13)). Hence we have for the

viscous dissipation

Ediss,i = -- eE1 [Y 2] (Vui, Vui)
Re

and the rate of energy transferred to or from the mean flow to mode i in the form of

stochastic energy (variance)

Emean-i = -Ew [Y 2] uTSiiuidx.
D

107



We note that for small energy amplitudes E' [Y2] (so that terms of 0 (Y 3 ) can be

omitted) these two terms are those that mainly characterize the total energy variation

of the mode ui, i.e. the total rate of energy change is given by

Elinear,i - £diss,i + Emean->i

( 1 (Vu,, Vui) + uSausdx EW [Y2]ReD ud)E
D

This is exactly the quantity that we maximize in order to choose the most unstable

mode for the adaptation process described in Chapter 4 and in the previous section.

Note that in this case the added mode has very small amplitude so the hypothesis

that terms of 0 (Y 3 ) can be neglected is justified. We note that for the case where

stochasticity is introduced only through the initial conditions, uncertainties are al-

ways reduced by the diffusion, but are either amplified or tapered by the nonlinear

stretching of the mean flow.

5.5.2 Energy exchanges between the DO modes

To study energy exchanges among various modes we consider equation (5.13) de-

rived in the previous subsection. By inspection, we observe that the rate of energy

transferred to mode i from all the DO modes is given by

EDO-i= -~ (Um-VUn + Un-VUm, ui) E' [YiYmYn].

As it can be clearly seen the transfer of energy among different DO modes depends

on the non-Gaussian characteristics of the probability measure and for the Gaussian

case it vanishes (for Gaussian variables we always have EW [YiYmYn] = 0). Note that

the m = n = i term vanishes (since the covariance operator is diagonal) so we have

two remaining cases.

The first case where we have energy transferred directly from mode q to a different

mode i (cases m = q, n = i, or m = i, n = q, or n = m = q). For that case, summing
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all non-zero contributions, we have the rate of energy transferred directly from mode

q to mode i

eq-*i= -2 (uq.Vui + Ui.VUq,u) E' [Y2Y,] - uq.Vuq + Uq.Vuq,u 2 ) E [Yi]

= -2 ((Ui.Vuq, Ui) + (uq.VUi, ut)) Ew [Y2Yq] - 2 (uq.VUq, ui) E' [YY]

-- 2 ((Ui.VUq, U) + (uq, VIuI) E' [Y2Y%] -2 (uq.Vuq, u4) E' [Y 2Y]

-- 2 (ui.Vuq,ui) EW [YYq] + 2 (uq.Vui, uq) E' [Y2 Yi|

= -2E" [YY] JUTS.quidx+2E' [y1 Y ] Ju Suqdx.

D D

In the above, we have used the equality (uq.Vuq, u) = - (uq.Vui, uq) which follows

from direct application of Gauss identity.

The remaining second case occurs when the energy transferred to mode i is due to

its triple interaction with every other pair of DO modes. The rate of energy transfer

due to this triple interaction with modes p and q has the form

epq-i =- (up.Vuq + Uq.Vup,uj) E' [YiYY]

= ((uq.Vup, ui) + (Up.Vuq, u2)) E' [YiYY]

((uq.Vui, up) + (up.Vui, uq)) E' [YY,Yq]

= (JuSuudx + JuSuiuqdx E' [YYpY,]
D D

2JU ,SuUpdxE" [YiYY].

D

5.5.3 Stochastic energy in Navier-Stokes

In the last two subsections we derived expressions characterizing the transform of

energy to uncertainty (flow of energy from the mean to the modes) but also the

variance exchange between the modes. Motivated by these results we define the

following form of stochastic energy where energy of the mean and variance of the
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modes are considered in a unified way

1 1
1s = -E' [(u, u)] = Ew [(a+Yiui, ii+Yuj)]2 2

i=1C111 + EEW [y2])

The next step is to study the evolution of the above quantity. We have using the DO

equations

dS E' [(ii, ii)] + EW Yi dY

= EW [(ii, EW [L])] + EW [Y (L-E [L] , uj)]

= EW [(ii, EW [L])] + EW [Y (L, u)]

= EW [(4 ii)] + EW [(L, Yui)]

= E" [(4, ii+Yu)]

= E' [(4, u)]

Now, by directly computing the above quantity using Gauss identity (and equation

(5.9)) we obtain

=~ E" [(L, u)] = E" AU,
dt [\Re ]

= E' [(Vu, Vu)]
Re

= Re ((V, VUi) + Ew [Y2] (Vui, Vui))

=- 1 (||Vi||2 + EW [Y2] IIVuiI2)

Thus, the stochastic energy for homogeneous Navier-Stokes is dissipated due to vis-

cosity in full analogy with the usual notion of energy for deterministic Navier-Stokes.

All the other forms of energy transfer from the mean flow to the DO modes and

among the DO modes are internal system interactions.

A summary of all the energy transfers is given in Figure 5-1 where the internal
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interactions among the DO modes (green and blue arrows) are shown. The black

arrows show the energy exchanges between the mean flow and the modes. Finally,

the red arrows represent the energy dissipation due to viscosity acting on both the

mean flow and the DO modes.

5.6 Application I: Lid driven cavity flow with stochas-

tic initial conditions

As a first application we present the results of the DO field equations applied to

the numerical simulation of a lid-driven cavity flow described by the Navier-Stokes

equations in a square domain. The stochasticity is introduced through the initial

conditions. The physical configuration (Figure 5-2) consists of a square container

filled with a fluid. The lid of the container moves at a given, constant velocity, thereby

setting the fluid in motion. No-slip conditions are imposed on all four segments of

the boundary with the exception of the upper boundary, along which the velocity u

in the x-direction is set equal to the given lid velocity Ub to simulate the moving

lid. The length of each side is L = 1 and the Reynolds number of the flow is taken

to be Re = 1000. For the stochastic computation the lid velocity is taken to be

Ub =1.5 while in the DO expansion (3.10) we retain 5 modes which is equal to the

stochastic dimension of the initial conditions. The flow fields associated with the

initial conditions uo (x; w) are shown in Figure 5-3 in terms of the streamfunction.

By evolving all parameters of the system using the DO field equations we compute

the complete 5-dimensional probabilistic structure of the stochasticity inside Vs. In

Figure 5-4 we show the evolution of the principal variances o' (t) , i = 1, ... , 5 which

are the eigenvalues of the correlation operator Cy(tY)Y (blue solid curves). They

provide a direct measure of how the stochastic energy evolves with time. The red

solid curve is associated with the deterministic kinetic energy of the mean flow field,

i.e. the quantity (U (0t) , ii (o,t)). We observe that the stochastic energy decays

almost monotonically after some initial transient interactions, while the energy of the
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Figure 5-1: Energy exchanges between DO modes and the mean flow in stochastic,
homogeneous, Navier-Stokes equations. The energy flow from the mean to the modes
is characterized by the second order statistics while variance exchange among the
modes is characterized by the third order statistics.
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Figure 5-2: Driven cavity flow, problem configuration.

Meanw(x4)

0 32 .A 0.6 0 10

Figure 5-3: Initial conditions for the mean and the basis of the stochastic subspace
Vs in terms of the field streamfunction.
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time

Figure 5-4: Evolution of principal variances o? (t) , i = 1,..., 5 (blue curves) and mean
field energy (red curve) for the flow in a cavity.

mean field slowly grows towards a steady limit. This is an expected behavior if we

consider the fact that the deterministic cavity flow possess a stable attractor which

is characterized by a steady velocity field. Therefore, in the absence of external

stochastic excitation it is fully expected to have convergence of the system to this

deterministic, one-dimensional attractor. The mean fields ii (x, t) and orthonormal

basis fields ui (x, t), i = 1, ..., 5 are shown in Figure 5-5 and 5-6 for two different

time instances both in terms of the streamfunction and vorticity. For the same time

instances we present three out of the five two-dimensional marginals associated with

the stochastic processes {Y (t; w)}> 1.

Finally, in Figure 5-7 we compare the mean streamfunction computed using the

5-modes DO method with the one obtained by Monte-Carlo simulation initialized

with the ESSE methodology and using 250 and 500 samples. We observe that as we

increase the number of samples used for the Monte Carlo simulation we obtain better

agreement with the DO mean estimate.
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Figure 5-5: Mean field and basis of the stochastic subspace Vs in terms of the stream-
function and vorticity field; two-dimensional marginals of the five dimensional joint
pdf f (y, t) at time t = 2.
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Figure 5-6: Mean field and basis of the stochastic subspace Vs in terms of the stream-
function and vorticity field; two-dimensional marginals of the five dimensional joint
pdf f (y, t) at time t = 8.
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Figure 5-7: Mean velocity field (streamfunction) computed using Monte-Carlo method

(250 and 500 samples) and the DO field equations (s = 5 modes) at t = 1.

5.6.1 Evolution of a small stochastic perturbation

In this subsection we will study the convergence properties of the DO methodology

for the lid driven cavity flow. The first feature that we want to examine is sensitivity

of the flow in the addition of an extra stochastic mode having very small variance. In

general the variance growth of an initially low-amplitude stochastic perturbation will

depend on the stability properties of the dynamical system (as we saw in Chapter

4). For the lid-driven cavity flow there is a stable attractor where dynamics tend

to converge after sufficiently large time. However, during the initial phase we have

strong interactions between the DO modes and the mean flow.

We initiate the system with four stochastic modes in the first case and with

the same four stochastic modes in the second case plus one extra that has variance

2~ (to) =10-6, i.e. much smaller than the stochasticity contained in the first four

00.8

modes. We denote the first solution as u (x, t; w) - ii (x, t) + Y (t; wv) ui (x, t) and

the second solution as v (x, t; wv) =v (x, t) + Ti' (t; u)) vi (x, t). After solving the

corresponding set of DO equations for the two cases we project the stochastic solution

u (x, t; w) obtained with the four modes to the stochastic subspace conmputed in the

second case using five modes. The results are shown for two different time instants

in Figures 5-8 and 5-9. Specifically, the two upper plots represent the streamfunction

of the mean flow for the case of four modes (st (x, t)) and for the case of five modes

(42 (x, t)). The red curves shown in the lower plot represent the time series for the
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variances o? (t), i = 1, .., 5 of the five-modes solution v (x, t; w). The blue curves

represent the variance of the projection of the four-modes stochastic solution u (x, t; w)

to the stochastic subspace computed using the five modes solution, i.e. oQ (t) =

var [(u (x, t; w), vi (x, t))] , i = 1,.., 5.

As we can observe the two sets of curves start initially very close having a very

small difference due to initialization error (different Monte-Carlo samples). After

time t = 0.2 the red curve describing the variance of the fifth mode for the solution

u (x, t; w) starts to grow due to an internal instability that causes transfer of energy

from the mean flow to the stochastic perturbation (Figure 5-8). However, the mean

flows for the two cases still compare satisfactory since the difference on the stochastic

part of the solution is very small.

For larger times t ~,., 1-2 the variance of the fifth stochastic mode (lower red curve)

has increased more drastically causing an energy deviation for the other variance

curves of the same order of magnitude (see Figure 5-9 e.g. the higher variance mode:

red and blue curve). In this case, even though the topology of the mean flow remain

the same there are some small differences caused by the different energy or variance

distribution among the stochastic modes.

Therefore, we may conclude that the total error magnitude between the two

stochastic solutions depends on the magnitude of the neglected part in the KL ex-

pansion. Depending on the stability properties of the fluid flow, the energy or the

variance of a small perturbation may grow. However, the analytical criteria developed

in Chapter 4 may be used to make sure that for every time instant the neglected part

of the stochastic solution is smaller than an a priori chosen tolerance. This guaran-

tees that our stochastic solution will have a given accuracy using the least number of

stochastic modes at every time instant. These criteria will be illustrated in the third

application involving an unstable double gyre flow which is initiated with determin-

istic initial conditions.
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Figure 5-8: Upper plots: mean flow for t 0 07 in terms of the streamfunction for i)
the four modes solution and ii) the five modes solution. Lower plot: the red curves

represent the time series for the variances o (t), i = 1, .., 5 of the five-modes solution

v (x, t; w) while the blue curves represent the projection of the four modes solution

u (x, t; w) to the modes vi (x, t) .
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Figure 5-9: Upper plots: mean flow for t = 5.98 in terms of the streamfunction for i)
the four modes solution and ii) the five modes solution. Lower plot: the red curves
represent the time series for the variances o, (t), i = 1, .., 5 of the five-modes solution
v (x, t; w) while the blue curves represent the projection of the four modes solution
u (x, t; w) to the modes vi (x, t) .
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5.6.2 Convergence with respect to the stochastic dimension-

ality

We will now study the convergence properties of the stochastic solution with respect

to the number of used modes. We use the same configuration as previously but with

only one initial stochastic mode having important variance. Then we solve the DO

equations each time using different number of modes (the extra modes are initiated

using very small variance relative to the variance of the first mode). In Figures 5-

10, 5-11, and 5-12 we present the mean flow for three time instants over different

stochastic dimensionalities, dim (Vs). We note that the general topological features

of the fluid flow are common even for the case of very low dimensional stochastic

subspace. However, for longer times a good degree of convergence is obtained using

larger number of modes (see Figure 5-12).

In Figures 5-13, 5-14, and 5-15 we present the convergence properties of the

stochastic subspace Vs. Specifically, we show the four most energetic modes ui (x, t)

and their associated variance E' {Y? (t; w)] for different stochastic subspace dimen-

sionalities. An interesting observation is that the robustness of the modes ui (x, t) is

strongly related with the magnitude of their variance. Therefore the first mode that

corresponds to the largest variance seems to converge much faster than the modes that

correspond to lower magnitude of variance. The same observation can be made for

the time series for the variances, EW[Y 2 (t; w)]. Specifically, the time series describing

modes with larger variance seem to be more robust with respect to the stochastic

dimensionality of the solution. These results are in agreement with those obtained

with ESSE (e.g. [74], [75], [76]).

Finally, in Figure 5-16 we present two forms of error with respect to the number of

used modes. The upper plot shows the instantaneous mean square error between the

solution Udim v, (x, t; w) that utilizes s stochastic modes and the solution u12 (x, t; W)

that utilizes 12 stochastic modes. Therefore we have in the upper plot the time
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dependent norm

|lUdimV - U12|| = E" [(Udim Vs (X, t; W) -- 12 (X, t; W) ,1udim V, (X, t; W) -- 12 (X, t; W))

and in the lower plot the global error

|1UdimVs - U12211 = jUdimVs - ul2 I dt.
T

As we are able to observe the instantaneous error becomes maximum during the time

interval 1 < t < 5 where all the transient dynamics take place. Subsequently the flow

begins to reach the steady state attractor and the error decays. In the lower plot we

observe the convergence of the solution with respect to the number of modes. We

note that after the stochastic subspace exceeds dimVs = 9 the error decays rapidly

and remains in very low levels; an indication that for this problem the stochastic

dimensionality of the solution has finite dimension.

5.7 Application II: Flow past a circular disk with

stochastic initial conditions

Here we consider the flow past a disk immersed in a channel. The inflow velocity at

the left boundary has a parabolic profile with a maximum value u = 1.5; the disk

measures d = 1 in diameter and is situated at a distance of 1.5 from the left and

1.6 from the upper boundary. It is well known that for two-dimensional flow past

a circular cylinder, the first critical Reynolds number is around Re ~ 40, where the

flow bifurcates from steady state to periodic vortex shedding [158]. Here, we consider

the case of Re = 100. A typical realization for this case is shown in Figure 5-17.

The stochastic initial conditions are described by the mean field and the stochastic

subspace basis fields. They are all shown in terms of the streamfunction in Figure

5-18.

The principal variances of (t), i = 1,...,5 (eigenvalues of Cyy(t)yj(t)) (blue solid
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dim(V )=2 t = 1 dim(V,)=3 dim(V 3 )=4

dim(V 3)=5 dim(V )=6 dim(V 3)=7

Figure 5-10: Mean flow for various stochastic dimensionalities and for t
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dim(V )=2 t = 2 dim(V3 )=3 dim(V )=4

dim(V,)=5 dim(V )=6 dim(V 3)=7

Figure 5-11: Mean flow for various stochastic dimensionalities and for t = 2.
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dim(V,)=2 t = 6m

dim(V,)-5 dim(V )=6 dim(V )=7

Figure 5-12: Mean flow for various stochastic dimensionalities and for t 6.
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Figure 5-13: Left column: mean flow for various stochastic diniensionalities dim (Vs)
at t = 2. The four right columns on the right show the four most energetic
modes us (x, t) in terms of their streamfunction as well as their associated variance
E"' [2 (t; w)] as a function of time.
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Figure 5-14: Left column: mean flow for various stochastic dimensionalities dim (Vs)
at t = 6. The four right columns on the right show the four most energetic
modes uj (x, t) in terms of their streamfunction as well as their associated variance
EW [Y 2 (t; w)] as a function of time.
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Figure 5-15: Left column: mean flow for various stochastic dimensionalities dim (Vs)
at t = 8. The four right columns on the right show the four most energetic
modes u, (x, t) in terms of their streamfunction as well as their associated variance
Ew [Yi2 (t; w)] as a function of time.
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Figure 5-17: A typical realization of the flow past a circular disk.
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Figure 5-18: Initial conditions for the mean and the basis of the stochastic subspace
Vs in terms of the field streamfunction.
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Figure 5-19: Evolution of principal variances o (t), i = 1, ... , 5 (blue curves) and

mean field energy (red curve) for the flow behind a disk.

curves) and the kinetic energy of the mean flow field (red solid curve) are shown

in Figure 5-19. In this case, we find a more complex evolution of the stochastic

energy characterized by oscillations and non-monotonic behavior. The evolution of

the kinetic energy associated with the mean field is also more complex.

The mean fields ii (x, t) and orthonormal basis fields ui (x, t) , i = 1, ..., 5 are shown

in Figures 5-20 and 5-21 for two different time instances in terms of the streamfune-

tion. For the same time instances we also present four out of the five two-dimensional

marginals associated with the stochastic processes {Y (t; w)}>1 . As we can observe,

the basis fields ui (x, t) are mainly distorted at locations close to the solid bound-

aries indicating that the main interaction of the stochastic subspace Vs and the mean

flow is taking place close to these locations and especially the circular obstacle. This

behavior has also been reported in previous work based on generalized PC method

([162]). Larger interactions also occur where the mean vorticity is larger and where

meanders and eddies form downstream.

Finally in Figure 5-22 we compare the mean streamfunction computed using the

presented method with the one obtained by Monte-Carlo simulation initiated using
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Figure 5-20: Mean field and basis of the
streamfunction; two-dimensional marginals
at time t = 2.

stochastic subspace Vs in terms of the
of the five dimensional joint pdf f (y, t)
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Figure 5-21: Mean field and basis of the stochastic subspace Vs in terms of the
streamfunction; two-dimensional marginals of the five dimensional joint pdf f (y, t)
at time t = 4.
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Figure 5-22: Mean velocity field (streamfunction) computed using the DO field equa-
tions (s = 5) and Monte-Carlo method (500 samples) at t = 1.

ESSE methodology and 500 samples.

5.8 Application III: Instabilities in the forced dou-

ble gyre flow in a basin

The third application that we consider is an idealized model for the description of the

temporal variability of the wind-driven ocean circulation. Specifically, we consider

the simplest model of the double-gyre circulation, that is a barotropic, single-layer

QG model (see e.g. McCalpin and Haidvogel [99]; Chang et al. [27]). Simonnet

and Dijkstra [133] used this simple double-gyre model to study instabilities of non-

oscillatory modes that lead to the creation of a low-frequency gyre mode.

The aim of this section is to study the stochastic response of this model for dif-

ferent forcing parameters and Re regimes. After giving a detailed description of the

model as well as an overview of the deterministic dynamics, we will examine what is

the effect of a very small stochastic perturbation on the initial conditions of the prob-

lem. Through the developed stochastic framework we will prove that in the unstable

regimes, as those are predicted by the deterministic theory, the system converges

to a stochastic steady state response which is characterized by finite variance that is

smaller than the energy of the mean flow. For larger Re this variance increases causing
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nonlinear interactions between the modes and the mean flow and resulting strongly

non-Gaussian, non-stationary responses. The numerical results that follow are based

on a finite-volume framework [148] suitably adjusted to model the two-dimensional

DO equations. Other numerical frameworks such as Discontinuous Galerkin ([1471,

[149]) may also be applied for the solution of the DO equations.

5.8.1 Model

We use a barotropic single layer-model [37]. The ocean layer has a constant density

p and mean thickness d and is confined to a square basin of horizontal dimensions

L x L. The flow in the basin is forced by a wind stress (TOrx, ror), where ro is a

characteristic amplitude. Both bottom friction (with coefficient Co) and lateral (with

coefficient AH) are considered. Using characteristic horizontal and vertical scales

L and d, a horizontal velocity scale U, a wind stress To, and a timescale L/U, the

nondimensional equations become

au 8p 1 AU 8 (U2) a (Uo) p v+ar
t x Re x y

Bo Op 1 V (oU) a (V2)at--=--+0(v- -ptv-fu~arat ay Re ax ay
0 u av

ax Oy

where Re is the flow Reynolds number, f = fo + 0oy is the Coriolis coefficient, a the

strength of the wind stress, and yL the bottom friction parameter. Their expression

are given as

Re=UL ro L 2 LEO

AH' pdU 2  U U

In the results shown below, we follow Simonnet and Dijkstra [133] and we set both p

and F = f to zero. The Reynolds number Re is used as the control parameter. Thegd

reference values of the other parameters are indicated in Table 5.1 (in dimensional

form) and Table 5.2. The values of the dimensionless inertial and viscous boundary

layer thickness, Jr = L- 1 U/30 and 1/ = - (AH/1 0) 1 / 3 are also shown.

The flow in the basin is forced by an idealized zonal wind stress that is constant
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Table 5.1: Reference values of parameters

Parameter Value

U 7.1 x 10- 3m.s-1

L/U 4.46yr

TO 1.26 x 10-'Pa

p 103Kg.m~3

in the barotropic QG model (dimensional).

Parameter Value

L 1.0 x 106m
d 2500m

00 7.1 x 10~12 (m.s)-1

fo 5.0 x 10~s5-1

Table 5.2: Reference values
dimensional).

Parameter

a
F
or

in time, given by

of parameters in the barotropic

Value

1000
0

0.032

Parameter

)M

QG model (non-

Value

103
0

0.02 - 0.04

1
rX = -cos 27ry.

27r

Free slip boundary conditions are imposed on the northern and southern walls (y = 0, 1)

and no-slip boundary conditions on the eastern and western walls (x = 0, 1). In all

the results that follow the system is initiated with zero mean flow and zero stochastic

part. After a small time interval (10-2 non-dimensional time) a stochastic perturba-

tion is added with Gaussian statistics and variance equal to 10~6 of the mean energy.

The shape of the perturbation is chosen according to the stability analysis arguments

presented in Section 5.4. Subsequently we use the adaptive framework developed in

Chapter 4 to add extra stochastic modes if this is necessary.

5.8.2 An overview of deterministic analysis

In this section we give a summary of the results presented in Simmonet and Dijkstra

[133] that follow from deterministic stability analysis of the system. More specifi-

cally, it is shown that the considered QG model has a globally stable attractor for

sufficiently low Re numbers. This can be seen in the bifurcation diagram in Figure

5-23 (published in [133]) where the vertical axis corresponds to the non-dimensional

intensity of the subtropical gyre, that is @subtropical = max, >o V@ (with 0 being the
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flow streamfunction) and the horizontal axis corresponds to the Reynolds number.

As the Reynolds number increases and becomes larger than the critical value

Re = 29.7 then a spatially symmetric mode (symmetry is meant in the sense of

vorticity field), the P-mode (shown in Figure 5-24 top-left) becomes unstable causing

the existence of multiple steady states. In Figure 5-24 (published in Simmonet and

Dijkstra [133]) the eigenvalue corresponding to the P-mode is presented. As we are

able to observe for Reynolds number between Re = 29.7 and Re = 39.3 the symmetric

mode has an eigenvalue with a positive real part that leads to instabilities. However,

even in this unstable regime the system converges to an attractor which, in contrary

to the low Re regime, is stochastic (the authors describe it as a multiple steady state

regime, [133]).

For higher Reynolds number the P-mode becomes stable with a negative growth-

factor. This is the case for higher Reynolds numbers up to Re = 71.5 where the first

Hopf bifurcation takes place and oscillations begin to occur. For even higher Reynolds

numbers two more Hopf bifurcations take place as it is shown in 5-23 (points H 1,

Hgyre, H 3 ). In the sections that follow we will give an exact probabilistic characteri-

zation of these regimes using the developed stochastic framework.

5.8.3 Bifurcation analysis of the stochastic response

We begin our probabilistic analysis in the stable regime, i.e. Re < 29.7. In Figure 5-

25 we present the stochastic response of the system. The left-top plot shows the mean

flow in terms of the vorticity (colormap) and the streamlines (black solid curves). The

right-top plot indicates the energy of the mean flow (black curve) and the variance

of the stochastic mode (blue curve). The bottom plot indicates the first DO mode

together with the probability density function for the stochastic coefficient. In this

case as we are able to observe the system state is stable and the system rapidly

converges to a deterministic attractor since the variance of the stochastic perturbation

decays monotonically. Therefore, in this regime the system behaves deterministically.

By numerically solving the DO field equations over various Re numbers we found

that the deterministic regime is extended up to Re ~ 30.2. A possible explanation
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Figure 5-23: Bifurcation diagram for the QG model with values of the parameters as
in Tables 5.1 and 5.2 (from Simonnet and Dijkstra [133]).
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Re

Figure 5-24: Spectral behavior of the eigenmodes involved into the various bifurca-

tions of the anitsymmetric branch for the barotropic QG model (from Simonnet and

Dijkstra [133]).
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Figure 5-25: Stochastic responce of the QG model for Re 25. The left top plot
shows the mean flow in terms of the vorticity (colormap) and the streamlines (black
solid curves). The right-top plot indicates the energy of the mean flow (red curve)
and the variance of the stochastic mode. The bottom plot indicates the first DO
mode together with the pdf for the stochastic coefficient.

for the numerical difference with the results by Simmonet and Dijkstra [133] is the

different numerical schemes used but also the fact that very small linear growth rate

may not be able to cause finite size stochastic perturbations.

As we increase the Reynolds number we observe in Figure 5-26 that the variance

of the stochastic perturbation converges, in an oscillatory manner (see Figure 5-27),

to a steady state. In this case we have one way interaction between the mean flow and

the stochastic perturbation, since the steady state variance of the stochastic mode

is pumping energy from the mean flow (since energy is continuously dissipated in

the DO mode due to viscosity) while on the same time the mean flow preserves its

antisymmetric character, i.e. it is not influenced by the symmetric perturbation. The

statistics seem to preserve their original character, i.e. they have normal distribution.

The spatial shape of the stochastic perturbation is strongly related with the linearly
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Figure 5-26: Stochastic responce of the QG system for Re = 35 after the system has
reached steady state statistics.

unstable mode computed in [133] (see Figure 5-24), i.e. the tripolar form of the per-

turbation presented in Simmonet and Dijkstra [133]. In this way we have obtained

the complete statistical information for this family of multiple equilibria, reported in

Simmonet and Dijkstra [133]. Also, we emphasize that the steady state statistics do

not depend on the initial magnitude of the perturbation. The magnitude of the vari-

ance for the steady state regime increases monotonically with the Reynolds number.

At Re ~ 38 this growth is interrupted by the mutual interaction of the stochastic

perturbation with the mean flow. More specifically, in Figure 5-28 we present the

initial regime of the dynamics for Re = 38. At time t = 3.46 the existing stochastic
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t = 0.66 t = 0.67

t= 0.68 t = 0.69

t = 0.70 t = 0.71

Figure 5-27: Oscillation of the DO mode during convergence to the steady state
attractor for Re = 35.
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mode exceeds the critical limit for variance causing the addition of a new mode (as it

is described in Chapter 4). This new mode, however, tends to decay, in an oscillatory

manner as it is illustrated in Figure 5-29.

The P-mode continuous to grow up the point where its variance becomes compa-

rable with the energy of the mean flow. At this point we have a two-way interaction

between the stochastic perturbation and the mean flow causing decay of the mean

flow energy. Interestingly both the mean and the stochastic perturbation preserve

their symmetric characteristics although both are deformed relative to the regime

where their energies were not comparable. Subsequently, the system reaches a steady

state that is time independent. This behavior is consistent with the description given

in Simmonet and Dijkstra [133]. Here, we have also derived an exact description of

the flow characteristics for the stochastic steady state regime.

At even higher Re number (Re = 40) the second mode becomes unstable causing

its variance to grow similarly with the first mode. An interesting feature is the

symmetry properties of the DO modes (Figure 5-32). We observe that the first one

is spatially antisymmetric while its pdf retains its symmetric structure. The second

mode however has the same type of symmetry with the mean flow (antisymmetric)

while the corresponding stochastic coefficient has lost its initially symmetric structure

(initially, when we add a new mode its, density is assumed to be Gaussian - see

Chapter 4).

For higher Re number (Re = 55) we obtain again stochastic instabilities. In this

case, however, we observe that the mean flow has different characteristics with the

vortices being completely detached from the left boundary. The response is initially

Gaussian (Figure 5-33) but as time evolves, the statistics become more complicated

with the first mode being described by a bimodal distribution (Figure 5-34). There-

fore, in this case the flow has two most-probable stages around which the probability

measure is distributed. Those stages are described completely through this approach.

We emphasize that numerical simulations (which we do not present here) confirm that

this picture is robust in terms of the initial distribution magnitude. More specifically,

the shape of the modes as well as the shape of the distribution remains qualitatively

143



Time = 3.50 Re = 36

10

10

0 0.5 1 1.5
Time

Mode 1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05
0

-4 -2 0 2 4

2 2.5 3 3.5

Figure 5-28: Addition of an extra mode at the time instant where the
exceeds the predefined variance (Flow Re = 38).
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Time = 6.38 Re = 38

2K
CC

CD

> lC

Model1

0 1 2 3 4 5 6
Time

Mode 2

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
-4 -2 0 2 4

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0 -
-4 -2 0 2 4

Figure 5-29: Mode removal due to very low variance (Flow Re = 38).
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Time = 12.10 Re = 38
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Figure 5-30: The variance of the stochastic perturbation becomes comparable with
the energy of the mean flow. At this point mutual interactions between the mean
flow and the perturbation begin to occur.
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Time = 15.23 Re = 38
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Figure 5-31: Steady state regime for Re = 38. Note that the perturbation retains its
symmetric character even though the variance of the mode is comparable with energy
of the mean flow.
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Variance / Energy T = 5
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Figure 5-32: Stochastic response for Re = 40. Note that the first mode has symmetric
spatial properties which are accompanied by symmetric pdf while the second mode
has antisymmetric spatial properties with non-symmetric pdf.
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Figure 5-33: Initial stage of motion for Re = 55.

the same independent of the initial magnitude of the perturbations confirming that

the observed dynamics are caused by the nonlinear interactions with the mean flow

and they are not the result of the growth of the perturbation on the initial conditions.

As we increase the Reynolds number (exceeding Re = 65), the flow loses its

stochastic features converging again to a deterministic attractor that is different from

the one observed in the lower deterministic regime. The results are shown for Re = 65

in Figure 5-35. More specifically, in this regime the two gyres fill completely the do-

main while the stochastic perturbation tends to zero after an initial transient regime.

The above behavior is consistent with the deterministic analysis that predicts stabil-

ity for this regime. Note, that as we increase the Reynolds number the convergence

of the stochastic mode to zero occurs more rapidly (before a critical Reynolds limit

after which instabilities occur) as it can be seen in Figure 5-36 and 5-37.

For higher Reynolds number we enter the regime of unsteady behavior in the
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Figure 5-34: As time evolves more modes have to be added in order to achieve the
given tolerance (in terms of variance).
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Mean Flow Variance /Energy T =6 Re =65
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Figure 5-35: Convergence to a deterministic attractor after a transient stochastic
regime for Re = 65.

long term dynamics. The deterministic analysis predicts the occurrence of three

Hopf bifurcations leading to periodic responses. Using the stochastic framework we

found that for sufficiently small Re (Re < 100) we enter initially a stochastic regime

that allows variance to increase temporarily. This is followed by a convergence to a

deterministic attractor. However for larger Re (see Figure 5-38 for Re = 200) this de.

terministic behavior is interrupted by a sudden growth of the stochastic perturbation

with energy pumped directly from the mean flow. This is followed by the addition

of more DO modes according to the criteria developed in the previous Chapter. As

we observe in this case the responses become strongly non-Gaussian illustrating very

clearly the multiple equilibria that the system may reach.

The results presented in this section are summarized in the diagram of Figure 5-39.

As we are able to observe, in agreement with the deterministic analysis, the system is

characterized by two deterministic regimes. Between these two regimes we have the

existence of a linearly unstable mode leading to finite-amplitude, time-independent,

stochastic perturbations for which we obtain an exact probabilistic description. For
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Figure 5-36: Response for Re = 85. In this case the convergence to the deterministic
attractor occurs earlier with the initial stochastic regime being much sorter in time.
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Figure 5-37: Convergence to a deterministic attractor for Re =100.

higher Reynolds number we still have the occurrence of the deterministic attractor.

However, when the energy of the flow becomes sufficiently large then we have transfer

of energy from the mean flow to the first DO mode enhancing its variance. This leads

to the addition of more DO modes and to non-Gaussian transient responses.

In conclusion, we have illustrated how the DO field equations provide a natural

framework for the partition of the problem into different dynamical components each

one containing independent information. This is done without assuming anything

on the nature of the response or its energy level. Moreover, the derived results are

qualitatively consistent with the results predicted by linearization of the system in the

deterministic framework. The modes extracted may be used for the setup of further

reduced order models that take into account more efficiently the mutual interactions

of modes and the finite-amplitude of the response. In the next section we will examine

the qualitative changes occurring in the dynamics for larger Reynolds number.
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Figure 5-38: Stochastic attractor after a
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Figure 5-39: Summary of the stochastic analysis for the double gyre flow over various
Reynolds numbers.

154

Mean Flow

10-10

DO Mode 1

DO Mode 3 DO Mode 4 Normalized PDF for Y4

0.5 -
0-
-5

temporal convergence to deterministic dy-



5.8.4 Stochastic response for larger Reynolds number

We will now present results for the evolution of the flow with a much larger value

of the Reynolds number. Specifically we consider the case of Re = 10000. As we

observe in Figure 5-40 in the initial regime of the flow we have the formation of two

antisymmetric small vortices. The DO mode follow these vortices, i.e. it localizes

around them while its statistics remain Gaussian during this initial phase. As the

energy of the mean flow increases so does the variance of the first DO mode causing

the addition of new modes shown in Figure 5-41. Similarly with the first mode,

the two new modes rapidly localize around the boundary of the vortices. Moreover,

comparing with the lower Reynolds number results we see that in this case the DO

modes present smaller spatial scales and sharper gradients. In the same time the

variance of the modes continues to grow while the statistics remain Gaussian and

their symmetry is preserved.

This picture of Gaussian statistics changes very suddenly with a nonlinear in-

stability that causes the pdf of the third mode to lose its symmetry. This loss of

symmetry is accompanied by change of the spatial symmetric properties of the corre-

sponding mode. Note that results (not shown here) indicate that this loss of symmetry

is connected with energy transfer between in the modes while the instabilities pre-

sented so far where connected with energy transfer from the mean flow to the modes.

Specifically we observe that the mode loses its antisymmetric properties and becomes

antisymmetric as the mean flow is. This non Gaussian behavior passes to the other

modes very rapidly causing the system to reach a multi-equilibrium regime described

very efficiently by the joint pdf function (whose marginals are shown in Figure 5-43).
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Figure 5-40: Initial regime of the stochastic response for Re - 104.
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Figure 5-41: The modes added are localized around the boundary of the formed gyres
of the mean flow.
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Figure 5-42: After the mean flow energy exceeds a certain limit an instability breaks
the symmetry of the third mode as it is shown in the corresponding pdf plot.

157

DO Mode 1

. ..... ....... I ............ .. .. .. ........ ..

DO Mode 3

10



Mean Flow T = 1 5 Variance / Energy
10 1 1

DO Mode 1 Normalized PDF for Y1

0.4 0.5
time

DO Mode 2 1Normalized PDF for Y2

0.2
-5 0 5 -

DO Mode 3 Normalized PDF for Y3  DO Mode 4 Normalized PDF for Y4

0 6 --- --- --- ---- --- --- -- 0 .4 -------- .... ----- .-- .----- ----

0.4. ... .. .

0.2 -.----------. -- ----.--------

0[ 0
-5 0 5 -5 0 5

Figure 5-43: The instabilitiy shown in the previous figure is the starting point for the
non-Gaussian statistics shown here.
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Chapter 6

Finite-size particles in stochastic

flows

Abstract

In this chapter we shall study the motion of finite-size particles in flows with un-

certainty. Specifically, we will examine the coupled effects due to inertia and flow

stochasticity. In the first part of the chapter we will summarize theoretical results for

particles in deterministic flows. Subsequently we will present results for the stochastic

case. Specifically, we will prove that the velocity of finite-size particles is governed

by a stochastic slow manifold, a 'layer' of probability around the deterministic slow

manifold derived previously for deterministic flows. Based on the stochastic reduction

on this manifold we will derive a stochastic inertial equation that governs the motion

of particles and which includes new terms expressing the coupled effect of particles

inertia and stochasticity. In the second part of the chapter we will first illustrate

numerically the convergence of the particles stochastic velocity to the stochastic slow

manifold. We will validate the derived inertial equation for a specific example and

we will analyze the coupled effects of particles inertia and flow stochasticity on the

preferential concentration of particles.
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6.1 Introduction

Dust, impurities, droplets, air bubbles, and other-finite size particles transported

by incompressible flows are commonly encountered in many natural phenomena and

industrial processes. Applications showing the importance of the phenomenon are

pollutants transport in the ocean and atmosphere [146], [40], [62], rain initiation

[114], [41], [131], coexistence between several species of plankton in the hydrosphere

[119], [84], or planet formation by dust accretion in the solar system [155], [36]. In

all of the above cases the flow velocity field may be characterized by uncertainties

or stochasticity either because the flow dynamics is not fully resolved or because

initial, boundary or parametric uncertainties are significant. Therefore, an important

question is the analytical quantification of the effect of flow stochasticity on finite-size

particle dynamics.

Several studies have been devoted for the above problem. In Maxey [97] the

gravitational settling of aerosol particles in homogeneous and stationary random flow

fields is studied. Using numerical simulations of Gaussian random fields it is shown

that the coupled effect of particle inertia and flow stochasticity produces an increased

settling velocity. These results are then considered in terms of various asymptotic

limits of either rapid settling or weak particle inertia.

Vasiliev and Neishtadt [151] consider the problem of finite-size particle transport

in steady flows in the presence of small noise. It is shown that for the case of cell

flow this effect is important at high viscosity and leads to a transition from bounded

motion of the particles to diffusion-type chaotic motion.

Reynolds [117] derived for one dimensional flows, Lagrangian stochastic models

for the prediction of fluid velocities along heavy-particle trajectories, by assuming

the well-mixed condition. This approach ensures consistency with the Eulerian fluid

velocity statistics. However, for higher dimensional flows additional assumptions

are required for the unique definition of a Lagrangian stochastic model using this

approach. The derived model is applied to simulate the trajectories of heavy particles

in a vertical turbulent pipe flow.
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In Pavliotis et al. [111] the problem of inertial particles in a random flow field with

specified structure is considered. Specifically, the authors study the case of a time-

dependent flow with stationary spatial structure and with random time dependence

defined by a stationary Ornestein-Uhlenbeck process. Using homogenization theory

they prove that under appropriate assumptions the large-scale, long-time behavior of

the inertial particles is governed by an effective diffusion equation for the position

variable alone.

Klyatskin and Elperin [64] and Klyatskin [65] study the problem of diffusion of a

low-inertia particle in the field of a random force that is spatially homogeneous. In this

case the authors prove that the problem admits an analytic solution which predicts

that the particle velocity will be a Gaussian stochastic process with known covariance

function. Bec et al. [12], [13] study the dynamics of very heavy particles suspended

in incompressible flows with 6-correlated-in-time Gaussian statistics. Under these

assumptions they derive a model which is used to single out the mechanisms leading

to the preferential concentration of particles.

In what follows we will use recent results from stochastic singular perturbation

theory [18] in combination with a Karhunen Loeve representation of the random flow,

in order to derive a reduced order inertial equation that will describe the stochastic

dynamics of inertial particles in arbitrary random flows. As it has been observed in

the literature the random part of the fluid flow changes both the mean dynamics of

the finite-size particles (an effect that is usually expressed through clustering) but also

their diffusive dynamics (usually observed through reduced decorellation time - also

known as 'crossing trajectories' effect [164], [33]). Here, our primary aim is the study

of the stochasticity of the flow on the mean dynamics of the particles. Specifically,

through the reduced order stochastic dynamics we will study the result of a zero mean

stochastic perturbation on the clustering properties of inertial particles. We will also

validate and illustrate our theoretical findings through the stochastic double gyre flow

presented in Chapter 5.
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6.2 Summary of results for finite-size particles in

deterministic flows

In this section we will summarize some recent results on the dynamics of finite-size

particles in deterministic flows. These results will be essential for analyzing the

motion of finite-size particles in stochastic flows. All the material, as well as proofs

and applications in various settings are included in the following publications: Sapsis

and Haller, 2008a,b, 2009, 2010a, b [128], [122], [1231, [124], [125], and Haller and

Sapsis 2008, 2010 [56], [57].

6.2.1 Reduced order dynamics

Let u(x, t) denote the velocity field of a two- or three-dimensional fluid flow of density

pf, with x referring to spatial locations and t denoting time. The fluid fills a compact

(possibly time-varying) spatial region D with boundary OD; we assume that D is a

uniformly bounded smooth manifold for all times. We also assume u(x, t) to be r

times continuously differentiable in its arguments for some integer r > 1. We denote

the material derivative of u by

Du
u= ut + (Vu) u.

Dt

Let x(t) denote the path of a finite-size particle of density p, immersed in the

fluid. If the particle is spherical, its velocity v(t) = x(t) satisfies the equation of
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motion (cf. Maxey and Riley [98] and Babiano et al. [8])

pYp5Du (6.1)
Dt

+(pp- pf)g
9VPf a2 A

- 2a 2  Kv -u u

v (s)--d u+-aAU ds.
9f r /t V1- sfds x=x(f1s).

Here pp and p5 denote the particle and fluid densities, respectively, a is the radius of

the particle, g is the constant vector of gravity, and v is the kinematic viscosity of

the fluid. The individual force terms listed in separate lines on the right-hand side

of (6.1) have the following physical meaning: (1) force exerted on the particle by the

undisturbed flow (2) buoyancy force (3) Stokes drag (4) added mass term resulting

from part of the fluid moving with the particle (5) Basset-Boussinesq memory term.

The terms involving a2Au are usually referred to as the Fauxen corrections.

For simplicity, we assume that the particle is very small (a < 1), in which case

the Fauxen corrections are negligible. We note that the coefficient of the Basset-

Boussinesq memory term is equal to the coefficient of the Stokes drag term times

a/\/W7. Therefore, assuming that a/# is also very small, we neglect the last term

in (6.1), following common practice in the related literature (Michaelides [100]). We

finally rescale space, time, and velocity by a characteristic length scale L, character-

istic time scale T = L/U and characteristic velocity U, respectively, to obtain the

simplified equations of motion

3R Du - (v-u)+ 1- -) g, (6.2)
2 Dt 2

with

f __2p5 R St 2 (a) 2 R
pf + 2 p = , St = L
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and with t, v, u and g now denoting nondimensional variables. Variants of equation

(6.2) have been studied by Babiano, Cartwright, Piro and Provenzale [8], Benczik,

Toroczkai and T6 [15], and Vilela, de Moura and Grebogi [152].

In equation (6.2), St denotes the particle Stokes number and Re = UL/v is

the Reynolds number. The density ratio R distinguishes neutrally buoyant particles

(R = 2/3) from aerosols (0 < R < 2/3) and bubbles (2/3 < R < 2). In the limit of

infinitely heavy particles (R = 0), equations (6.2) become the Maxey-Riley equations

derived originally in [98]. The 3R/2 coefficient represents the added mass effect: an

inertial particle brings into motion a certain amount of fluid that is proportional to

half of its mass. For neutrally buoyant particles, the equation of motion is simply

' (v - u) = -p (v - u), i.e., the relative acceleration of the particle is equal to the

Stokes drag acting on the particle.

Rubin, Jones and Maxey [121] studied (6.2) with R = 0 in the special case when

u describes a two-dimensional cellular steady flow model. They used a geometric

singular perturbation approach developed by Fenichel [43] to understand particle

settling in the flow. The same technique was employed by Burns et al. [24] in the

study of particle focusing in the wake of a two-dimensional bluff body flow, which is

steady in a frame co-moving with the von Kirmin vortex street. Recently, Mograbi

and Bar-Ziv [101] discussed this approach for general steady velocity fields and made

observations about possible asymptotic behaviors in two dimensions.

Here we construct an attracting slow manifold that governs the asymptotic behav-

ior of particles in system (6.2). We also obtain an explicit dissipative equation, the

inertial equation, that describes the flow on the slow manifold. This equation has half

the dimension of the Maxey-Riley equation; this fact simplifies both the qualitative

analysis of inertial dynamics and the numerical tracking of finite-size particles.
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Singular perturbation formulation

The derivation of the equation of motion (6.2) is only correct under the assumption

y >> 1, which motivates us to introduce the small parameter

1

IL

and rewrite (6.2) as a first-order system of differential equations:

x= v,

.- (,t + 3R Du(x, t) + I-3R)g(63ev = u(x, t) -v+-- +Dt -- . 63
2 Dt 2

This formulation shows that x is a slow variable changing at 0(1) speeds, while the

fast variable v varies at speeds of 0(1/c).

To transform the above singular perturbation problem to a regular perturbation

problem, we select an arbitrary initial time to and introduce the fast time r by letting

Er = t - to.

This type of rescaling is standard in singular perturbation theory with to = 0. The

new feature here is the introduction of a nonzero present time to about which we

introduce the new fast time r. This trick enables us to extend existing singular

perturbation techniques to unsteady flows.

Denoting differentiation with respect to r by prime, we rewrite (6.3) as

x' = Ev

V' = u(x, #)-V (6.4)

3R Du(x, 4)
2 Dt

+E 3R)g
2
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where # = to + Er is a dummy variable that renders the above system of differential

equations autonomous in the variables (x, 4, v) E D x R xR"; here n is the dimension

of the domain of definition D of the fluid flow (n = 2 for planar flows, and n = 3 for

three-dimensional flows).

Slow manifold and inertial equation

The c = 0 limit of system (6.4),

x'= 0, (6.5)

#?' =0,

has an n + 1-parameter family of fixed points satisfying v = u(x, #). More formally,

for any time T > 0, the compact invariant set

Mo = {(x,#0,v) : v = u(x,#$), x E D, # [to - T, to + T}

is completely filled with fixed points of (6.5). Note that Mo is a graph over the

compact domain

Do = {(x,#0) : x E D, C [to - T, to + T};

we show the geometry of Do and Mo in Figure 6-1.

Inspecting the Jacobian

dv+[u(x, 4?) - v]MO = -Inxn,

we find that Mo attracts nearby trajectories at a uniform exponential rate of exp (-T)

(i.e., exp (-t/e) in terms of the original unscaled time). In fact, Mo attracts all the

solutions of (6.5) that satisfy (x(0), 0(0)) E Dx [to - T, to + T]; this can be verified

using the last equation of (6.5), which is explicitly solvable for any constant value of
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Figure 6-1: (a) The geometry of the domain Do (b) The attracting set of fixed points
Mo; each point p in Mo has a n-dimensional stable manifold fo'(p) (unperturbed stable
fiber at p) satisfying (x, #) = const.

x and 4. Consequently, Mo is a compact normally hyperbolic invariant set that has

an open domain of attraction. Note that MO is not a manifold because its boundary

aMo= vDx [to -T,to+T]UDx Ito -T}UExIto+T

has corners; Mo - &Mo, however, is an n+ 1-dimensional normally hyperbolic invariant

manifold.

By the results of Fenichel [43] for autonomous systems, any compact normally

hyperbolic set of fixed points on (6.5) gives rise to a nearby locally invariant manifold

for system (6.4). (Local invariance means that trajectories can only leave the manifold

through its boundary.) In our context, Fenichel's results guarantee the existence of

co (to, T) > 0, such that for all c e [0, 6o), system (6.4) admits an attracting locally

invariant manifold M that is 0(e) Cr-close to Mo (See Figure 6-2). The manifold

M can be written in the form of a Taylor expansion

M = {(x, 4, v) : v = u(x, #) + cul(x, +) ... +r ur (x, #) + O(er+1), (x, 4) E Do};

(6.6)

the functions uk(x, #) are as smooth as the right-hand side of (6.3). Me is a slow
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M

V-0
T

Figure 6-2: (a) The geometry of the slow manifold M
a stable fiber fs(p) converges to the trajectory through

(b) A trajectory intersecting
the fiber base point p.

manifold, because (6.4) restricted to M is a slowly varying system of the form

x' = EVIM (6.7)

= f [u(x, #) + Eu(x, 4) +... + erUr(x, ) + O(Er+1)]

We find the functions uk(x, #) using the invariance of M, which allows us to

differentiate the equation defining M in (6.6) with respect to r. Specifically, differ-

entiating

v = u(x, #) + E ekuk(x, q) + 0(r+1)
k=1

with respect to T gives

(6.8)V' = uxx' + u,#' + E Ek [UkX' + uko'] + O(.r+1),

k=1

on ME, while restricting the v equations in (6.3) to M gives

v' [U - v+C 3R Du
2 Dt

+ E -3R) g

= -Ek k 0 3R Du
2

k=1

+ E 1 -

(6.9)

3R
2 Jg

Comparing terms containing equal powers of E in (6.8) and (6.9), then passing back
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to the original time t, we obtain the following result.

Theorem 14 For small c > 0, the equation of particle motion (6.7) on the slow

manifold M can be rewritten as

i = u(x, t) + Eu1(x, t) + ... + erUr(x, t) + 0(r+1), (6.10)

where r is an arbitrary but finite integer, and the functions u(x, t) are given by

1 3 (R [Du _g
2 D5t'

kDu k1_1 k-2 . --
uk = Dt ± (Vu) uk- + _u) U k>2. (6.11)F i=1

We shall refer to (6.10) with the uz(x, t) defined in (6.11) as the inertial equation

associated with the velocity field u(x, t), because (6.10) gives the general asymptotic

form of inertial particle motion induced by u(x, t). A leading-order approximation to

the inertial equations is given by

k*- (xIt+C3R [Du(x, t) 1Dt ux t e1- gj ; (6.12)
(2 Dt

this is the lowest-order truncation of (6.10) that has nonzero divergence, and hence

is capable of capturing clustering or dispersion arising from finite-size effects.

The above argument renders the slow manifold M, over the fixed time interval

[to - T, to + T]. Since the choice of to and T was arbitrary, we can extend the existence

result of M to an arbitrary long finite time interval.

Slow manifolds are typically not unique, but obey the same asymptotic expansion

(6.11). Consequently, any two slow manifolds and the corresponding inertial equations

are Q(cr) close to each other. Specifically, if r = oo, then the difference between any

two slow manifolds is exponentially small in c. The case of neutrally buoyant particles

(R = 2/3) turns out to be special: the slow manifold is the unique invariant surface

MEz={(x,q#,v) : v=u(x,#), (x, #) E Do},
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Figure 6-3: Sudden changes in the velocity field delay convergence to the slow mani-
fold.

on which the dynamics coincides with those of infinitesimally small particles. This

invariant surface survives for arbitrary e > 0, as noticed by Babiano et al. [8], but

may lose its stability for larger values of c.

Convergence to the slow manifold

The results of Fenichel [43] guarantee exponential convergence of solutions of (6.4) to

the slow manifold Me. ranslated to the original variables, exponential convergence

with a uniforn exponent to the slow manifold is only guaranteed over the compact

time interval [to - T, to + T].

Over finite time intervals, exponentially dominated convergence is not necessarily

monotone. For instance, if the velocity field suddenly changes, say, at speeds com-

parable to 0 (1/E), then converged solutions may suddenly find themselves again at

an increased distance from the slow manifold before they start converging again (cf.

Figure 6-3). Again, this is the consequence of the lack of compactness in time, which

results in a lack of uniform exponential convergence to the slow manifold over infinite

times.

Where do solutions converging to the slow manifold tend asymptotically? Observe

170



that for c = 0, each solution converging to Mo is confined to an n-dimensional plane

f0(p) = {(x,, O,, v) : p = ( xp, #p, u(x,, #p)) E Mo} .

Fenichel refers to fo(p) as the stable fiber associated with the point p: each trajectory

in fo(p) converges to the base point of the fiber, p. More generally, a stable fiber has

the property that each solution intersecting the fiber converges exponentially in time

to the solution passing through the base point of the fiber. The collection of all fibers

intersecting MO is called the stable foliation of MO, or simply the stable manifold of

M.

Fenichel [43] showed that the stable foliation of MO smoothly persists for small

enough E > 0. Specifically, associated with each point p E M,, there is an n-

dimensional manifold fs(p) such that any solution of (6.4) intersecting fs(p) will

converge at an exponential rate to the solution that runs through the point p on M,.

The persisting stable fibers f,(p) are Cr smooth in c, hence they are O(E) CT-close

to the invariant planes fo(p), as indicated in Figure 6-2b.

6.2.2 Instabilities on the dynamics of finite-size particles

As we saw in the previous subsection the velocity of a finite-size spherical particle

typically differs from the local velocity vector of the ambient fluid flow. In particular,

we saw that an exponentially attracting slow manifold exists for general unsteady

inertial particle motion as long as the particle Stokes number is small enough. We

also derived an explicit reduced equation on the slow manifold (inertial equation) that

governs the asymptotic behavior of particles. In the case of neutrally buoyant par-

ticles (suspensions), the inertial equation coincides with the equations of Lagrangian

particle motion. This would seem to imply that neutrally buoyant particles should

synchronize exponentially fast with Lagrangian particle dynamics for small Stokes

numbers.

By contrast, Babiano et al. [8] and Vilela et al. [152] give numerical evidence that

two-dimensional suspensions do not approach Lagrangian particle motions; instead,
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their trajectories scatter around unstable manifolds of the Lagrangian particle dy-

namics. Szeri et al. [139] present specific examples of suspended microstructures in

two dimensional fluid flows where small changes of the modelling assumptions lead to

drastically different dynamics. Babiano et al. [8] derive a criterion that characterizes

the unstable regions in which scattering of inertial particles occurs. Their derivation

follows an Okubo-Weiss-type heuristic reasoning, where it is assumed that the rate

of change of the velocity gradient tensor calculated on a particle trajectory is small

and hence can be neglected. However, as known counterexamples show (cf. Pierre-

humbert and Yang [113] and Boffetta et al. [22]) such reasoning, in general, yields

incorrect stability results except near fixed points of the flow field.

As we saw in the last subsection for E > 0 small enough, equation (6.2) admits a

globally attracting invariant slow manifold. For neutrally buoyant particles, has the

form

M, =f {(x, 4, v) : v = u (x, #)}; (6.13)

for non-neutrally-buoyant particles, M is given by a graph v = u (x, #) + O(C).

The dynamics on M is governed by the reduced Maxey-Riley equation (inertial

equation)

x = u (x, t), (6.14)

i.e., by the equation of motion for infinitesimal fluid elements.

Using an observation of Babiano et al. [8], we can conclude that the invariant

manifold M and the corresponding reduced equation (6.14) exists for all values of E

in the neutrally buoyant case. Specifically, for R = 2, equation (6.3) is equivalent to

# -ut- (Vu) u = -p (v - u) .

As pointed out by Babiano et al. [8], this last equation can be recast in the form

i - ut- (Vu) v = -p (v - u) + (Vu) (u - v),
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or, equivalently,

d
~[v - u (x, t)] = - [Vu (x, t) + pIi] [v - u(x, t))], (6.15)

d
dt' V.

This shows that M, defined in (6.13) is an invariant manifold for any y = 1/c.

Global attractivity of the slow manifold

While M, exists for any e > 0, it is not guaranteed to be globally attracting for larger

values of c (i.e., for smaller values of p). Here we give a sufficient condition under

which the globally attractivity of M is guaranteed.

Theorem 15 Assume that for some fixed c > 0, the smallest eigenvalue field Amin(X, t)

of the symmetric tensor field I + eS (x, t) is uniformly positive for all x ED and

t e R+. Then the invariant manifold M is globally attracting, i.e., all neutrally

buoyant particle motions synchronize exponentially fast with infinitesimal Lagrangian

fluid trajectories.

Proof: See Sapsis and Haller 2008 [128].

For two-dimensional incompressible flows, Amin [I + cS] is the smaller root of the

characteristic equation

A2 - 2A + (1 + 62 detS) = 0.

Therefore, the two-dimensional version of the sufficient condition in the above theorem

requires that

Amin = 1 - E -detS (x, t) > 0,

or, equivalently,

pd-sfdet S(x, t)| > 0 (6.16)

holds uniformly for all x Ez D and t E R.
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Note that Theorem 15 may be generalized for the case of non-neutrally buoyant

particles by studying the normal stability of the manifold (6.6)

M, = {(x, #, v) : v = u(x, #) + eu'(x, #) + . . + 'u'(x, #) + O(c"), (x, #) E Do} .

In this case the stability condition takes the form

Amin S (x(t), t) + -I + 0(E) < 0. (6.17)

See Appendix C for details.

6.2.3 Clustering of finite-size particles

A well-documented phenomenon displayed by inertial particles is clustering, i.e., con-

centration into narrow bands. Several studies have analyzed inertial particle dynamics

in either analytically defined or numerically generated fluid flows (cf. Maxey and Ri-

ley [98], Tang et al. [140], Tio et al. [145], Marcu et al. [94], Martin and Meiburg

[95], Marcu and Meiburg [93], Vasiliev and Neishtadt [151], Rubin et al. [121], Crowe

at al. [32], Burns et al. [24}). These studies are based on the Maxey-Riley equations

[98], the equation of motion for small spherical particles in an unsteady non-uniform

flow velocity field.

The first systematic attempt to predict particle clustering appears to be by Rubin

et al. [121], who study the settling of aerosol particles in a two-dimensional cellular

flow field. Applying results of singular perturbation theory, they show the existence

of a globally attracting slow manifold to which inertial particle velocities converge.

Reduction to the slow manifold coupled with a subharmonic Melnikov calculation

reveals that particles will be attracted to (and hence cluster around) an attracting

periodic path as they settle downwards through a cellular flow field. Sedimentation

patterns for Stokes particles in a weakly time-periodic flow have been studied by

Angilella [4] using similar methods.

Burns et al. [24] investigate the motion of small, dilute spherical particles in the
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far wake of a bluff body flow model. Using the approach of Rubin et al. [121], they

show numerically the existence of a periodic attractor, i.e., the location of clustering

in the wake. A more recent numerical study by Vilela et al. [153] visualizes the

attractor around which heavy particles cluster in a time-periodic flow.

The objective of the present subsection is to present a general criterion for pre-

dicting inertial particle clustering in three-dimensional steady velocity fields of the

form

u = (u(x), v(x), w(x)), x = (x, y, z) E R3

and in two-dimensional time-periodic velocity fields of the form

u =(u(x), v(x), w), x = (x, y, #$) E R2 x S1 . (6.18)

The latter velocity field is also represented as three-dimensional, including the third

velocity component # = w in the three-dimensional extended phase space of the

spatial variables (x, y) and the phase variable # on the standard unit circle S1 .

The main assumption we make is that the underlying fluid velocity field contains

at least one closed two-dimensional stream surface. This certainly holds if u describes

a 3D steady Euler flow in which the Beltrami condition does not hold, i.e., vorticity

and velocity are never parallel. In this case, the flow is integrable and the flow

domain is foliated by continuous families of stream surfaces diffeomorphic cylinders

or tori (Arnold and Keshin [6]). Isolated closed stream surfaces will also exist in

three-dimensional nonintegrable flows; a well-known example is the non-integrable

Arnold-Beltrami-Childress (ABC) flow which has KAM tori (Arnold and Keshin

[6]). Finally, KAM tori typically exist in two-dimensional, incompressible flows; their

signature is a closed invariant curve for the associated Poincar6 map.

Under the above assumption, we use the inertial equation to reduce the full Maxey-

Riley dynamics of small inertial particles to a three-dimensional slow manifold. Given

the existence of a closed stream surface So, we derive a necessary condition that

guarantees the existence of a nearby particle attractor on the slow manifold. The

175



criterion requires the integral of the normal component of the material derivative

Du
u= ut + (Vu) uDt

over So to vanish for a nearby attractor SE to exist for particles of mass E. The

vanishing of this integral on So, therefore, predicts clustering on a nearby surface SE

which is diffeomorphic to So.

For the special case when the fluid particle motion is dense in So, we use ergodic

theory to reformulate our clustering criterion. The result is a simplified clustering

criterion that only requires the evaluation of a line integral along a single fluid trajec-

tory in So. This formulation is particularly helpful for numerically or experimentally

generated velocity fields, where exact expressions for closed stream surfaces are not

readily available, but individual fluid trajectories are simple to generate.

Formulation

We consider the case of three-dimensional steady flows, and finite size particles for

which the stability criterion (6.17) is everywhere valid. In this case a reduction of the

dynamics to the slow manifold M leads to the inertial equation

x= (X )±C(3)u (x) 1 g] + 0(62). (6.19)
(2 Dt

The above equation also holds for unsteady flows with the appropriate modifications.

Specifically, for a two-dimensional velocity field (u(x, y, At), v(x, y, At)) that is 27r/A-

periodic in time, we let

x = (x,y <p), u = (u(x), v(x), A), (6.20)

and observe that the inertial equation (6.19) remains valid. As a result, particle

trajectories of such two-dimensional flows approach asymptotically the trajectories

of (6.19), as long as E is small enough for condition (6.17) to hold on the domain of

interest.
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Necessary condition for clustering

For the setting described above, we have the following main result-a necessary condition-

for the location of inertial particle clustering.

Assume that the three-dimensional vector field u (defined as (6.20) is incompress-

ible, i.e., has zero divergence with respect to its arguments x. Also assume that So

is a compact, two-dimensional stream surface for u. Let us denote the outward unit

normal of So at point x by n(x). Then the following hold:

Theorem 16 Assume that the three-dimensional vector field u (defined as (6.20) is

incompressible, i.e., has zero divergence with respect to its arguments x. Also assume

that So is a compact, two-dimensional stream surface for u. Let us denote the outward

unit normal of So at point x by n(x). Then the following hold:

(i) A necessary condition for the existence of an inertial particle attractor Se that

is O(E) C1 -close to So is the following:

I -n dA = 0,so Dt
(3R - 2) JV Du n] ndA<0.

so Dt

(ii) Assume that So is a two-dimensional torus filled densely with the trajectories

of the system xt = u(x). Let {(t) be one of these dense trajectories on So. Then

condition (6.21) is equivalent to

l3R-2lim T -

T-oo T

lim - _(t)D -n d = 0,
T-.-oo T 0 Dt x-W)

T) [Du -n -n dt < 0.
Dt X(t)

Proof: Sapsis and Haller, 2010 [124].
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6.3 Dynamics of finite-size particles in stochastic

flows

6.3.1 Stochastic velocity field

We will now study the motion of finite-size particles in the presence of flow uncertainty.

We consider a random field u(x, t; w),x ED C R, n = 2, 3, t E T, W E Q and we

assume that this can be written as the sum of a mean flow U (x, t) and a zero-

mean stochastic disturbance for which we utilize the stochastic expansion used in the

previous chapters

u (x, t; W) - U (x, t) +Yi (t; ) ui (x, W E
i=1

= U (xt) + Y(t; W) us(xt), WGE

Moreover, in what follows we will denote the correlation function that describes their

second order characteristics as

CyjY (ti, t2) = -E' [Yi (ti; W) Y (t2; )

Since our study will involve inertial particles it is necessary to consider the acceleration

field given by

Du (x t;w)
D' = (Vu (x, t;w)) u (x, t;w) + Ut (x, t;w)Dt

DU(x,t)

= Dt +a(x,t;w)

(6.23)

DU (x t) U (x,
Dt

t) + (VU (x, t)) U (x, t)

178

where



and

a (x, t;w) = Y (t; w) [(VU (x, t)) ui (x, t) + (Vui (x, t)) U (x, t) + ui,t (x, t)]

+ Y,t (t; w) uj (x, t)

+ Y (t; W) Y (t; w) (Vuj (x, t)) uj (x, t)

with Yi,t (t; w) = a" (t;w) and ui,t (x, t) = au(x"') Note that the consideration of aat at*

zero-mean random component in the velocity field introduces an extra non zero-mean

term in the acceleration field. Therefore it should be emphasized that

E'' [a (x, t;w)) Cyy (t, t) (Vui (x, t)) uj (x, t)

6.3.2 Markov (diffusion) approximation

Inserting representations (3.1), (6.23) for the flow velocity and acceleration fields into

the equation of motion (6.3) we obtain

EV-± 2 Dt + Cyy, (t, t) (Vuj (x, t)) uj (x, t)] = - (v - U)+c (I - g+( (x, t;w)

(6.24)

where C (x, t;w) is a zero-mean stochastic process defined as

( (x, t;W) = Y (t; w) + E Yit (t; W) us (x, t) (6.25)
3 3

+ 2 [Yi (t; w) Y (t; W) - Cyiy (t, t)] (Vui (x, t)) u, (x, t)

3eR
+ 2 Y (t; W) [(VU (x, t)) ui (x, t) + (Vuj (x, t)) U (x, t) + uj, (x, t)]

Note that in (6.24) the term Cyy, (t, t) (Vui (x, t)) u (x, t) can also be written as

Vx Cu(.,t)u(.,t) (x, y) ___ . Equation (6.24) describes the stochastic dynamics of finite

size particles in a random flow. The zero-mean stochastic process ( (x, t;w) has in

general finite correlation length and therefore (6.24) is not an Ito Stochastic differen-

tial equation for which many analytical tools exist to derive equations describing the
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probability density function of the solution.

In what follows we will derive an Ito SDE that approximates the dynamics of

(6.24). This derivation will be based on the assumption of small correlation time

length for the stochastic process Y (t; w) (which is the only stochastic ingredient of

( (x, t;w)) relative to the timescale of the mean flow U (x, t), T. As correlation time

length of the stochastic process Y (t; w) we define the time Ty for which

oo

ry (t) = mraxr (t) = max C jY (t, t) Cyy (t, t + r) dr (6.26)

0

This quantity is a measure of the memory of the stochastic process Y (t; w) . For

stationary fields the correlation time length is independent of time. For the general

case we will assume that the statistical characteristics of the flow are slowly varying

(with respect to the memory of the field ry).

For the case where Ty (t) is sufficiently small relative to the deterministic dynam-

ics time scale, i.e. when ry < T, Markov (or Diffusion) approximation can be applied

to derive an approximate Ito SDE for the SDE (6.24). This methodology relies on the

approximation of the stochastic process C (x, t;w) by a process with independent in-

crements with respect to time (e.g. Brownian motion). Therefore even if the process

( (x, t;w) may not posses the property of independent increments (i.e. zero correla-

tion length) if the deterministic dynamics governing the evolution of x, v act on a

slower time scale than the memory of the stochastic process ( then the independent

increment approximation is valid (Lin & Cai, 1995 [86], Klyatskin, 2005 [65]).

First we transform the above stochastic singular perturbation problem to a regular

stochastic perturbation problem by selecting an arbitrary initial time to and introduce

the fast time T by letting

Er - t - to.
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Then equation (6.24) will take the form

3Rv'-e2
DU
Dt+

- - (v - U) (6.27)

3R)g+(x,;w)
2

(6.28)

where we denote with prime the differentiation with respect to T, and # = to + Er.

Then using diffusion approximation, the dynamics can be described by the following

Ito SDE (Lin & Cai, 1995 [86], Klyatskin, 2005 [65])

dv (#) = D- D' + Cy2 (#, #$) (Vui (x, #)) uj (x, #)] dr

3R)
+ -(v-U)+C 1-

(6.29)

g] dr+E(x,v,#0)dW(r;w)

where in the above there is no drift correction since this is vanishing:

]du E (X, #;)
avj (X (s; x, v, #) , s;w)] ds = 0 (6.30)

since (i (x, #;w) is independent of v. Moreover, E (x, v, #) is a matrix such that

1
Eik (X, V, #) E (Xv,= --

TY

O±rY 0+7y

Jdu J

(6.31)

with x (u; x, v, 0) being the solution of the following deterministic system

(= -Udob
± C

3R

2)

(6.32)

X(#0)= X and (0)=v

We will now proceed to the asymptotic computation of the diffusion coefficient with

181

1

Try

3R
~E2d# 2

[DU
Dt +C y,

Cyy (#, #) (Vui (X, 0)) us (X, #)

+e 1 -

i (X, V, 4) =

E' [(i (X (u; x, v, #) , u; w) (j (X (s; x, v, #) , s; w) ] ds

(#,#0)(Vui (X,#0))u U



respect to the correlation time length ry. More specifically from equation (6.31) we

may obtain the zero order approximation for the diffusion coefficient by first noting

that

Ty -* 0 = CYYj (t, s) -+ 2Dij (t) 6 (t - s)

where (by direct integration from 0 to oo we obtain)

00

Di () = JCyy (#, + r) dr. (6.33)

0

The term Dij (#) expresses the statistical dependence of the field ui on the field uj over

time and it can be seen as a measure of the intensity of the flow stochasticity. For the

case of zero-correlation time length all this statistical dependence is concentrated in

the current time instant and therefore we have an infinite correlation (Dirac function).

However, this limit can still be used to obtain a zero-order approximation for the the

diffusion coefficient. Thus, we will have from equations (6.25) and (6.31) for the

diffusion coefficient

4+iry 4+iry

Eik (X, #)Ejk (X, 1)=-- du Ev [Y (#; w) Yk (s; W) Ut,i (X, 4) uk,j (X, s)] ds + 0 (E 2)
rY

=lim du CYYk (# s) u1 ,i (x, 4) Uk,j (x, s) ds + 0 Ca2qy-+0 ry T

= 2Di (#) ul,i (x, #) Uk,j (x, #) + 0 (Ic 2 1)
00

2JCu(,t)u(,O) ±r) (x, x) dT + 0 (COI2 i )
0

=2Eo E + 0 (U 2 71)

where a2 = max Cyyk (#, #) expresses the order of the stochastic terms. The above

approximation for diffusion coefficient coincide with those that describe the motion

of fluid elements (zero-mass particles) in the limit of zero correlation length (see e.g.

[65]). Hence, in this level of approximation (weakly stochastic flow) the effect of
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particle inertia does not enter through the diffusion term.

Using the above expression for the diffusion coefficient we obtain the equation of

motion for the finite-size particles in the following form

dv(#) = 3 D - (v-U)+cE 1- 3)g+ 3;R Cyy! (#,#)(Vu (x, #)) u (x, #) dr

+ Vro (x, #) dW (r;w) + 0 61,

Reverting back to the original time t will result in

dv (t) = 3 DU I (v-U)+ 1 g+ Cyiy (t, t) (Vui (x, t)) uj (x, t) dt

+ Eo (x, t) dW (t;w) + 0 o1, - . (6.34)

Note, that the white noise term scales as

dW (r;w) 1 dW (t;w)

diT VF dt

since E' [dW (r;w) 2 ] = dr, and EW [dW (t;w) 2 ] = dt and therefore the above rescal-

ing is the one that will give dr = Edt.

Examining more carefully equation (6.34), and comparing it with its deterministic

counterpart (equation (6.3)) we see the addition of a white noise component but also

a new term in the deterministic part of the equation. To understand better this

new term we assume that the correlation time length is constant among different

stochastic components Y. Then, using equation (6.33) as well as the definition of the

correlation time length ij (t) (equation (6.26)), we obtain

3R 3R
.Cyy, (t, t) (Vu- (x, t)) uj (x, t) = Dij (t) (Vui (x, t)) uj (x, t)

2 2Ty (t)
00

2 Ty (t)j Vx Cu(.,tyut.,t-) X y)I dr

0

This term is related exclusively to the inertial dynamics of the finite-size particles
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and for sufficiently small correlation time length its effect can become comparable

with the effect of the mean flow (or even more intense). Therefore, consideration

of random fields that have zero correlation time length (i.e. Kraichnan fields [70])

will result unbounded acceleration on the right hand side of the equation of motion,

except of the case of aerosol particles (R = 0) [12].

6.3.3 Stochastic slow manifold

For simplicity we will assume now that all stochastic components Y have the same

correlation time length ry which is assumed constant or sufficiently slowly varying.

Then the equation describing the motion of finite size particles will have the form

dx = vdt (6.35a)

dv = 3(v-U)+ 1- D g+ -- CyUy dt
12 Dt E 2 2 (70(u X i(,0

+ 2Eo (x, t) dW (t;w) + 0 a -1T (6.35b)
VI T

where o =J Cu(-,t)u(-,t) (x, x) dT.
0

System (6.35) is a stochastic singular perturbation problem which in the absence

of stochastic excitation and in the limit e = 0 admits a globally attracting invariant

manifold (see Section 1 of current chapter). Therefore, from Berglund and Gentz,

2003 [17] we have the existence of a stochastic slow manifold

.MA= {(x, v) I v = ue (x,t, E;w)}

which has the form of a concentrated probability measure around the determinis-

tic slow manifold and which attract solutions of the stochastic differential equation

(6.35) (Figure 6-4). In what follows we will determine the second order stochastic

characteristics of the stochastic slow manifold, i.e. mean and variance.
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(t, x)

Figure 6-4: Particle velocity (blue solid curve) attracted by a concentrated layer of
probability, a stochastic slow manifold. The red solid curve denotes the mean of
the manifold and the dotted curves define the local spread of probability around the
mean.

Mean of the stochastic slow manifold

To determine the mean of the stochastic slow manifold we use the invariance property

of u, (x,t, ;w) and apply the mean value operator to equation (6.35b). The last term

vanishes because of the non-anticipative property of white-noise [136]. Therefore we

obtain

dV _3R DU 1 u ( 3R'\(.6--- = ----- - - (V - U) + 1 - -R g (6.36)dt 2 Dt c 2
3R

+ 3RCyY (t, t) (Vu2 (x, t)) u3 (x, t)

Expanding in the same way we did in the proof of Theorem 14 the mean of the

stochastic slow manifold, V with respect to E we obtain

3R DU-u(~t )= e1 2t yy,(, )(ug(,D)Uu x t)] (6.37)

+ 0 (C2 2 1 T

Variance of the stochastic slow manifold

To determine the variance of the probability measure around the mean value of the

stochastic slow manifold we consider equation (6.35b).with v = ue (ue is invariant

185



manifold for (6.35b)) and we subtract from it equation (6.36). Then by setting =

v - - we obtain

1 + Tyd,=--(,dt + -o (x, t) dW (t;w) + 0 f j, o2 , -) (6.38)

Now, from equation (6.38) we have

1
(, (t + At) = (, (t) - -, (t) At +

2
E

Eo (x, t) AW (t;o)

-ET (X, t) Eo (X, t) At
16Fe

where (2 (t) = E' [, (t; w) (t; w)T . Therefore, in the limit At -+ 0 we have

d(2 2- 2-"-= -+-E (x, t) Eo (x, t)dt E ,

From the last equation we obtain the zero-order approximation for the variance of

the stochastic slow manifold

(x,t, E) = ET (x, t) Eo (x, t) + 0 (o2 .1 (6.39)

The last equation describes the local variance of the stochastic slow manifold.

6.3.4 Stochastic inertial equation

The next step of our analysis will involve the formulation of a reduced order stochastic

differential equation, a stochastic inertial equation, that will describe the reduced

order dynamics on the stochastic slow manifold. Taking into account equation (6.37),

(6.39) and the fact that we are already in the delta correlated regime we have the

following Ito stochastic differential equation approximating the dynamics of the full
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slow fast system for order 1 timescales ([18])

dx=Udt + (1 _-+) [g- ]dt (6.40)
2 Dt.

- 3 ( 2 Cyy3 (t, t) (Vui (x, t)) u (x, t) dt

+ET (X, t) VEo (x, t) dt + v 2Eo (x, t) dW (t;w) + 0 C( 62 T

where the new term on the deterministic part of the right hand side is the Wong-Zakai

correction ([159], [86]) due to the spatial dependence of Eo (x, t). For C = 0 the above

inertial equation is reduced to the delta-correlated approximation for the description

of fluid elements in random flows ([65]). On the other hand for zero stochasticity

of the flow we recover the corresponding approximation of the deterministic inertial

equation derived in the first section.

Analyzing the terms on the right hand side we have for each line: i) the deter-

ministic effect of particles inertia, ii) the coupled effect of particles inertia and flow

uncertainty, iii) the effect of the random flow. Thus, the diffusion coefficient and the

associated drift correction, in this level of approximation, do not take into account the

effect of particles inertia. The coupled effect of particles inertia and flow stochastic-

ity is expressed through the term E (M - 1) Cy y (t, t) (Vui (x, t)) uj (x, t) and as we

shall see in the applications it plays an important role for the formation of clustering

regions for finite-size particles different than those predicted by the mean flow.

Using this equation we can directly obtain a transport equation for the probabil-

ity density function describing the evolution of finite-size tracers in a random field.

Specifically, the stochastic inertial equation is equivalent with the following Fokker-

Planck-Kolmogorov equation [136] describing the probability density function or the

concentration c (x, t) of finite-size tracers

a + c ue (x,t, E) + E',Jm (x, t) aEojm (x, t)
at ax i  (x(

a2
= ~(Eo~ik (X, t) Eo,s(xt)caxjoxj k(, )C
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a x i

+ 0 ,ik (X, t) EO,jk (X, t)

(X t)] C)

Oxc

(X, t)Uk, (X,)

Dik (t) ou'j (x7 t) Ukj (X, t) +

= Dik (t) (x7 t) Uk,j (X, t)
Ox,

= 0,jm (X) 0,a lim (X, t).ax

OUkj (X, t)
Ox, (X t)]

(6.41)

where the last term in the second line vanishes due to incompressibility of uk (X, t)

Therefore, the transport equation will take the form

(Uj+6
- a~ (EOik (X, t) O,jk

3R [gDU
2 Dt CyYkY, (tIt)

OUk,i (X, t) UL'm
Oxm

(Xt) ac

or equivalently

Oc O8 f

at O9x O

_a (ac
Ox2 Ox, .

fCUi(.,t)Uj(-,t+r) (X,

DUi
Dt

x) dr).

Cy 0kY (t, t) xU l,m (X , t)J

The last equation describes the forward evolution of the concentration for finite-size

particles with given characteristics E, R under the assumption of small correlation time

length for the stochasticity of the velocity field relative to the mean field dynamics.
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Ox,

Dik (t) a

(x,

0F,,ik (X, t) EO,jk (X, t) C)

0E,ik (X, t) EO,jk (X, t)] =



6.3.5 Stochastic source inversion

The stochastic inertial equation may also be used for the source-inversion of finite-

size particles in the presence of diffusion or flow uncertainty. More specifically, as

it is shown in Haller and Sapsis, 2008 [56] the reduced order inertial equation for

deterministic flows can be inverted since the reduction to the slow manifold does not

allow for numerical instabilities; this is not the case if we use the full set of dynamical

equations (6.3) since the strong attraction to the invariant slow manifold (in forward

time) will cause numerical blow-ups if we try to solve these equations backwards.

This is also the case for stochastic flows. Equation (6.40) is numerically well

defined both in forward and backward time since the vector field on the right hand

side is a small deformation of passive scalar advection due to the inertial terms and

the presence of noise. This allows us to obtain the initial position of inertial particles

with some uncertainty due to the randomness of the flow.

6.4 Higher order Lagrangian stochastic models

In the previous section we derived a Lagrangian stochastic model based on the diffu-

sion approximation of the random terms. As we saw in the first level approximation

inertia does not modify the effect of diffusivity. Therefore, inertial particles diffuse in

the same manner as fluid particles. This is not the case for the deterministic terms

of the inertial equation where the effect of particles finite-size enters explicitly. The

expression for the diffusion coefficient was derived based on the assumption of very

small correlation time length for the stochastic term, which allowed us to apply dif-

fusion approximation. However, other methods may also be used for the description

of the diffusive dynamics.

Methods which are based on the well-mixed condition [144] allows us to derive

higher order Largangian models for the description of the diffusive dynamics of fluid

elements. In this framework it is assumed that the Eulerian velocity that the par-

ticle 'feels' evolves in a Markovian manner. Based on these assumptions Thomson

[144] considered models of fluid particle trajectories in which the trajectories in the

189



(x, v) -space are Markovian, continuous and have the same local structure as a pro-

cess with independent increments. Such processes can be represented as solutions of

Ito stochastic differential equations (cf. [138]). Based on the same arguments, we may

assume that the evolution of inertial particles is described by the stochastic model

dx=Udt+ 1- ( -) g- DUg7 dt (6.42)
2 Dt

3R)C
- e ( - Cyj (t, t) (Vu? (x, t)) u, (x, t) dt + odt

dv= f (t, x, v) dt + uoF (t, x, v) dW (t; w)

where the drift and diffusion coefficients f, F are defined based on the well-mixed

condition ([144], see also [20]) which essentially guarantees that the produced process

v (t; w) will have at every time instant the exact same statistics with the Eulerian

velocity field u (x, t; w) at the location x = x (t; w) , where the particle is currently

moving.

The main difference of the inertial particle model (6.42) with (6.40) is the addition

of more memory in the diffusive dynamics, by increasing the order of the model (two

stochastic equations instead of one). However, this is also the main disadvantage of

equation (6.42) since the formulation of a transport equation for the concentration

field of inertial particles will lead to an advection-diffusion equation involving six

spatial variables (three for the position and three for the velocity). Therefore, higher

order inertial particle models may only be solved through Monte-Carlo simulation.

A final remark on the above discussion is that through the above method inertial

effects may also be taken into account in the diffusive dynamics if one applies the well-

mixed condition directly to the statistics of the Eulerian field ( (x, t;w) (see equation

(6.25) for definition) instead of the Eulerian statistics of the flow field u (x, t; w) (which

is the first level of approximation for the diffusivity of inertial tracers as shown in

Section 6.3.2).
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6.5 Clustering due to stochasticity of the flow

In this section we will discuss the coupled effect of flow stochasticity and particles

inertia on the clustering properties of finite-size particles. By clustering of finite-size

particles in random flows we mean the formation of narrow zones in the physical

phase space where the concentration of finite-size particles becomes very important.

In Section 6.2.3 we saw that in deterministic flows the cause for the formation of

these zones is the dissipative dynamics induced by the order ( terms in the inertial

equation.

For the case of random flows, as we saw in Section 6.3.4, we have the dissipa-

tive term c (1 - !) [g-2-3] found also in the deterministic analysis, the white noise

term with the associated drift correction EI (x, t) VEo (x, t), but also the new term

E (1 - g) Cy1y (t, t) (Vui (x, t)) uj (x, t) which expresses (to the first order) the cou-

pled effect of particles inertial and flow stochasticity. The combined effect of the

deterministic terms on the right hand side of (6.40) causes particles to be attracted

by critical manifolds in the flow which are, in general, different by those of the mean

flow alone. On the other hand the existence of noise prevents the particles to cluster

on lower dimensional manifolds (which is the case in deterministic flows) since it in-

duces diffusive behavior. The result is particles to concentrate smoothly around the

critical manifolds defined by the deterministic part of the right hand side of (6.40).

In what follows we will analyze more rigorously this behavior. Before we pro-

ceed to this analysis let us understand better the physical effect of the new term

c (1 - R) Cygy (t, t) (Vui (x, t)) u (x, t) on the deterministic part of the inertial equa-

tion by considering the following simplified case. Assume we have a zero mean random

flow field which has the following form

u (x, t; w) = Y (t; w) u0 (x, t) (6.43)

where Y (t; w) is a zero mean Gaussian process and uo (x, t) is a deterministic flow field

for which the deterministic clustering criterion presefited previously can be applied.

Furthermore, we assume that there is a manifold So in the physical phase space such
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bubble'

aerosol' aerosol--

Figure 6-5: Clustering manifold is independent from the flow direction.

that the clustering criterion (in the following form; see Sapsis and Haller 2010 [124]

for details) holds, i.e.

SV.DuInt(SO) Dt

The above condition can also be written as

int(SO) V. [(Vuo) uo] dV 0.

An interesting feature of the last condition is its independence of the sign of the flow.

Additionally, a similar argument on the second condition

(3R - 2) f -n -n dA < 0,
so Dt

which defines the kind of the particles (bubbles or aerosols) that will cluster around So,

reveals that particles (either bubbles or aerosols) will cluster around So independently

from the direction of the flow. Therefore, returning to the stochastic flow field (6.43),

we conclude that the same kind of clustering (i.e. same kind of particles and same

location) will occur for both the cases where Y (t; w) is positive and negative (Figure

6-5).

Thus, a zero mean stochastic perturbation on the flow velocity field can induce

non-zero probability for particles clustering, assuming that the geometry of the per-

turbation has a suitable spatial form to cause clustering. This is exactly the effect
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that the coupling term e (1 - () Cysy., (t, t) (Vui (x, t)) uj (x, t) expresses in the in-

ertial equation. It induces clustering of particles and depends on the covariance of

the stochastic coefficients and the geometry of the stochastic perturbations.

For the general case of two-dimensional, random, periodic flows (or three dimen-

sional random time-independent flows) we will use the unified setting described in

Section 6.2.3. For this case we first consider the following deterministic system (using

the notation defined in (6.20))

3R)C
i= v (x, V) U (x, (p) - e 1 - Cysy3 (p, p) (Vui (x, y)) u3 (x, y) (6.44)

~~3R) g DU (j )
+Eo, (X, V) VEO (X, V) + 6 (1 -2 Dt '

The last equation is the deterministic part of the stochastic inertial equation. The-

orem 5.1.6 from Berglund and Gentz [18] guarantees that an attracting manifold for

a deterministic system such as (6.44) will persist as a domain of high concentration

in the presence of additive noise, i.e. for the full inertial stochastic equation (i.e.

including the white-noise term), assuming that the noise intensity does not exceed in

size (order of magnitude) the deterministic terms.

Therefore, it is sufficient to describe the clustering regions for the dissipative deter-

ministic dynamical system (6.44). This can be done with direct numerical integration

of equation (6.44) or by assuming a decomposition of the vector field v (x, V) in the

form of an irrotational and incompressible component. Specifically, if we assume that

there is a potential # (x, V) and a streamfunction 0 (x, V) such that

v (x, p) = V x V (x, V) + V4 (x, V)

then we will have 4 ~ 0 (1) (since this term will contain the effect of the incompress-

ible field U (x, V)) while # - 0 (c). Based on this decomposition we are able to apply

directly the analytical results of Theorem 16 and predict whether an invariant mani-

fold for the incompressible flow k = V x V) (x, p) will persist as a clustering manifold

for equation (6.44) and thus for the full stochastic inertial equation.
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We emphasize that the invariant manifolds (if those exist) for the incompress-

ible flow f = V x 0 (x, po) are in general different from those predicted by the mean

field equation ft = U (x, W) since there are terms that constitute v (x, a), other than

U (x, (p), which are incompressible and therefore they contribute to the streamfunc-

tion V). This will be also illustrated in the numerical example presented in the following

section.

6.6 Application: Particles in the double gyre flow

To illustrate our theoretical findings we consider the stochastic double gyre flow an-

alyzed in Chapter 5. Specifically, we consider the case presented in Section 5.8.3

for Re = 25 with different parameters. After computing the stochastic flow field we

rescale time by a factor of 100. The dimensional parameters of the flow are presented

in 6.1.

In Figure 6-6 we present the stochastic flow field. Specifically, the mean flow

field U (x, t) is shown in the left-top plot (the colormap indicates the vorticity and

the solid curves the streamlines of the flow). For this case of parameters we have

two stochastic perturbations ui (x, t), i = 1, 2 shown in the lower plots along with

the corresponding probability density functions of the stochastic coefficients Y (t; w).

The variance E' [Y2 (t; w)] of each of the stochastic perturbations is shown in the

right-top plot as blue solid curves. The red curve indicates the energy of the mean

flow, IU (x, t)12 dx.

We will study the motion of finite-size particles for t = 100 where the a typical

stochastic perturbation has an order of magnitude of 10% of the typical amplitude

of the mean flow; therefore in this regime we expect the effect of flow uncertainty to

be comparable with the effect of inertia. After t = 100 the dynamics of the mean

flow have converged to a stationary regime, while the most energetic stochastic mode

has converged to a periodic attractor with period of oscillation (T ~ 2) comparable

with the time scale of motion for the finite-size particles. Therefore, this is a case of

unsteady flow with non-stationary statistics.

194



Table 6.1: Reference values of parameters in the barotropic QG model used for the
study of finite-size particles (dimensional).

Parameter Value Parameter Value

U 7.1 x 10-'m.s-' L 1.0 x 101m
L/U 16.27days D 2500m

TO 1.26 x 10-1 Pa 0 7.1 x 10-12 (m.s)-'

p 103Kg.m- 3  f 5.0 x 10-5s-1

Note, that for particles having size c = 10-2 or smaller the stability criterion (6.17)

is satisfied for almost every flow realization w, everywhere in the domain. Therefore,

the reduction to the stochastic inertial manifold is valid.

6.6.1 Stochastic slow manifold in the flow

We consider heavy particles with E = 0.001 and R = 0.4. In Figure 6-7 we present

the modulus of the velocity of the slow manifold |- (x,t, c)I with respect to the

horizontal dimensions x and y and for t = 100. In this time regime the mean flow

has converged to a steady form even though the stochastic perturbations perform a

periodic oscillation. This is clearly seen from the top-right plot where we present the

energy of the mean flow (red curve).

In Figures 6-8 and 6-9 we show the spatial distribution of uncertainty in the

stochastic slow manifold by plotting the quantity

o
1 I

u- (x, t) = [|]Cu(-,t)u(-,t+,) (x, x) dr
trace [Cytyt)]

for different time instants, where ||| denotes the Euclidean matrix norm. The above

quantity is a weighted average of uncertainty of the slow manifold due to stochasticity

coming from different modes. The total variance of the slow manifold, at every time

instant can be characterized by the global quantity trace [CY(t)y(t)] which is shown

in the top-right plot as a function of time. In the considered time regime the variance

of the slow manifold is of order 10-2 of the energy of the mean flow. Therefore, a

stochastic fluctuation will have a typical magnitude of 10% relative to the mean flow.
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Figure 6-6: Stochastic double gyre for the illustration of the inertial particles motion;
Re = 25 (See chapter 5 for details).
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Figure 6-7: Mean value of the stochastic slow manifold governing the motion of
inertial particles for the double gyre stochastic flow.

The mean value of the stochastic slow manifold depends on both the mean flow

and the stochastic fluctuations. However, since the energy of the mean flow is an

order of magnitude higher than the stochastic fluctuations, the mean value of the

stochastic slow manifold appears almost stationary. On the other hand, the typical

deviations of particle velocities from the mean slow manifold depend strongly on both

space and time. Therefore, in accordance with the plots 6-8 and 6-9 we expect higher

deviations from the mean value of the stochastic slow manifold in locations and time

instants where a. (x, t) is higher.

6.6.2 Convergence to the stochastic slow manifold

We shall now illustrate the convergence of the stochastic dynamics in the concentrated

layer of probability that defines the stochastic slow manifold. We consider a specific

flow realization wi and we solve the deterministic Maxey-Riley equation with very

high accuracy. We initiate an inertial particle with E = 10-3 and R = 0.4 with initial

velocity away from the stochastic manifold.
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Figure 6-8: Variance of the stochastic slow manifold descrbing of motion inertial

particles for t = 100.0 and t = 100.5.
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Figure 6-9: Variance of the stochastic slow manifold descrbing of motion inertial
particles for t = 101.0 and t 101.5.
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In Figure 6-10a we present the distance from the stochastic slow manifold

z(t) = IE' [uE (x,t, E;w)] - v (t;wi)|

with respect to the horizontal position of the particle. The black dot indicates the

projection of the particle on the mean of the stochastic slow manifold. The colormap

shows the instantaneous local variance of the stochastic slow manifold, a, (x, t). In

Figure 6-10b we present with blue solid curve the x-component of the particle ve-

locity. The red curves show the typical spread (two typical deviations) of probability

around the mean of the stochastic slow manifold. Specifically, they are defined by

the quantity

00

Ux,±2 a(t) = UE (x (t),t, c;w) itrace [CC] Cu,t)u(.,t±,) (x, x) | dr

0

and they illustrate the location where most of the probability measure is concentrated.

In Figure 6-10c we present directly the distance from the slow manifold,

zz(t) = vx (t;wi) - E' [uz (x,t, c;w)]

together with the curves

00

trace [CY(t)Y(t)] I
0

As we are able to observe, during the initial phase of motion we have rapid convergence

into the layer of probability that defines the stochastic slow manifold. Subsequently,

the particle continue to move inside the stochastic slow manifold, with its velocity

fluctuating (see Figure 6-11). Note that the magnitude of the jumps from the mean

of the stochastic slow manifold are in full accordance with the bounds defined by the

curves zx,±2a(t) (Figure 6-11c).
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Figure 6-10: (a) Rapid convergence to the stochastic slow manifold during the initial
phase of motion. The colormap denotes the local variance of the slow manifold
as (x, t). The vertical coordinate shows the distance of the stochastic dynamics from
the mean slow manifold. (b) x- component of the particle velocity, resolved according
to Maxey-Riley equation for a particular flow realization (blue solid curve). The red
lines indicate the local spread of probability around the mean slow manifold at the
particle's location. (c) same as (b) but now the distance from the slow manifold is
shown.
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t= 104.000
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Figure 6-11: Same as 6-10 but for a later time instant.
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6.6.3 Validation of stochastic inertial equation

The next step of our analysis involves the validation of the reduced order, stochastic,

inertial equation (6.40). We consider an initial distribution of inertial particles (heavy

particles with c = 10- and R = 0.4) that is described by a Gaussian probability

density function (see Figure 6-12-top plot). We first create a large number (N = 104)

of particles positions that follow the initial Gaussian distribution. We advect those

particles by solving the stochastic inertial equation (6.40). For the numerical solution

of the stochastic differential equation we use the Euler-Maruyama method (see e.g.

[58], [49]). Then we advect the initial sample set of particles (which approximate the

initial distribution) using the deterministic inertial equation for M = 500 realizations

of the random flow field.

The results are shown in Figures 6-12, 6-13 for 5 time instants. In the left column

we present the results from simulating the stochastic inertial equation, while in the

right column we show the Monte-Carlo simulation. Note that the computational time

required for the Monte-Carlo simulation was almost 500 times higher since we had

to advect the probability density function for every flow realization. As we are able

to observe the full Monte-Carlo simulation is slightly more diffusive relative to the

stochastic inertial equation. However, the results compare satisfactory even for larger

times.

6.6.4 Clustering due to the combined effect of inertial and

flow stochasticity

We will now comment on the effect of flow stochasticity on the clustering properties

of heavy particles. In Figure 6-14 we present the particles concentration (particles

have the same parameters as in the previous section) for two different time instants.

The blue lines represent the streamlines for the mean flow U (x, t) and the red curves

represent the clustering manifolds predicted by the deterministic part of the stochastic

inertial equation (6.44).

During the initial phase of motion, the initially Gaussian blob is transported ac-
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Figure 6-12: Comparison of stochastic inertial equation (6.40) and direct Monte-Carlo
simulation for t = 100,101,102.
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Figure 6-13 Same as Figure 6-12 for t 103, 104.
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cording to the mean flow. Additionally, we observe a stretching, normal to the mean

flow, caused by the existence of the stochastic perturbation (Figure 6-14 top). As

we are able to observe the stretching of the probability density function, i.e. concen-

tration field occurs in accordance with the clustering manifolds for the deterministic

part of the stochastic inertial equation (red curves).

In a later time instant the concentration field has been transported by the mean

flow while it has also aligned according to the clustering manifolds of the stochastic

perturbation (Figure 6-14 bottom). We observe the formation of a closed ring of

particles (on the right of the plot) which is not consistent with the mean flow but it

is fully justified by the clustering regions of the full stochastic flow.

Therefore, zero mean stochastic perturbations, even of low intensity (in this case

the variance of the perturbation is 1% of the mean flow energy), are capable to in-

fluence drastically, the evolution of the concentration field. Through the developed

framework we have identified the geometry of these deformations and we have corre-

late their form with the characteristics of the stochastic part of the flow.
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Figure 6-14: Concentration field for finite size particles (heavy particles) for two
different time instants. The blue lines indicate streamlines for the mean flow. The
red lines indicate clustering manifolds for the stochastic flow field.
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Chapter 7

Conclusions

In this chapter we will summarize our contributions and results obtained within the

context of this Ph.D. thesis.

Dynamically orthogonal field equations: We have derived an exact, closed set of

equations that determine the evolution of continuous stochastic fields described by

a SPDE. By hypothesizing a finite order dynamical expansion (DO expansion) we

derived directly from the original SPDE a system of differential equations consisting

of a PDE for the mean field, a family of PDEs for the orthonormal basis where the

stochasticity 'lives' as well as a system of SDEs that describes how the stochasticity

evolves in the time varying stochastic subspace. Therefore, we do not assume an a

priori representation neither for the stochastic coefficients, nor for the spatial structure

of the solution; all this information is obtained directly by the system equations,

boundary and initial conditions. We have also illustrated that under appropriate

assumptions the DO approach generates both the equations obtained by the Proper-

Orthogonal-Decomposition method and by the Polynomial-Chaos method; thus it

unifies the two methodologies. Even though the developed framework is valid for

non-smooth systems its efficient numerical properties are limited by the order of the

nonlinearity (infinite for non-smooth systems), similarly with the other analytical

approaches (PC or POD method). The above results have been published in the

article Sapsis and Lermusiaux, Physica D, 2009 [129].

Adaptive criteria for stochastic dimensionality: To treat the strongly transient
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responses characterizing complex systems such as those found in oceanic applications

we have developed a set of adaptive criteria that controls the size of the stochastic

subspace where the reduction of the full dynamics is performed in the context of

the DO method. Those criteria are based on the covariance operator of the system

response as well as on the stochastic operator expressing the dynamics of the system.

The above material is included in Sapsis and Lermusiaux, 2010 [126].

Computational code for 2D stochastic Navier-Stokes: We have developed and val-

idated a computational code in Matlab that implements the DO field equations for

2D Navier-Stokes in general geometries. This code is based on the finite-differences

numerical scheme and also incorporates the adaptive criteria for the stochastic dimen-

sionality of the solution. We used this code for the validation of DO methodology

by solving the stochastic fluid flow in a cavity and behind a cylinder (material in-

cluded in Sapsis and Lermusiaux, Physica D, 2009 [129]). This code also served as

a basis for the development of a more accurate and optimized version based on the

finite-volume approach (in collaboration with Mr. Matt Ueckermann). Using the

finite-volume code we obtained the stochastic response of an idealized 'double gyre'

model, which has elements of ocean, atmospheric and climate instability behaviors,

and we illustrated its response over different dynamical regimes.

Dynamics of finite-size particles with applications: The derivation of the La-

grangian stochastic model presented in Chapter 6 was based on our own work on

the deterministic dynamics of finite-size particles. More specifically, for finite-size

particles in deterministic flows we derived a reduced order inertial equations that de-

scribes accurately the dynamics of finite-size particles for sufficiently small size (Haller

and Sapsis, Physica D, 2008 [56]). These results were also extended and applied to

large scale geophysical flows in Sapsis and Haller, J. Atm. Sc., 2009 [123]. Disper-

sion properties of finite-size particles were studied analytically in Sapsis and Haller,

Physics of Fluids, 2008 [128] and Haller and Sapsis, SIAM J. Appl. Dyn. Syst., 2010

[57]. Also, analytical criteria were derived for the description of clustering regions for

finite-size particles in Sapsis and Haller, Chaos, 2010 [124].

Lagrangian Stochastic transport model for finite-size particles: Based on the de-

210



terministic analysis for finite-size particles as well as on our DO representation of

the stochastic flow, we derived a reduced order Lagrangian stochastic model describ-

ing the motion of finite-size particles in arbitrary random flows. We validated this

model for a specific random flow through the comparison with direct Monte-Carlo

simulations. Also, using the reduced order stochastic inertial equation we illustrate

the combined effect of inertia and flow uncertainty on the clustering properties of

finite-size particles.

7.1 Future directions

Future directions include the application of the developed framework to complex sys-

tems characterized by uncertainty, others than those considered in the context of this

thesis. Applications of this kind include for example the analysis and identification

of structural systems subjected to random excitations (e.g. water waves), wave prop-

agation in random media, as well as biological systems (such as population models)

in environments with uncertainty.

Based on the work related to the idealized climate model an interesting direction

would be the analysis of the effect of stochasticity directly introduced from the ex-

ternal forcing which in this study was modeled as deterministic. Another promising

research direction will be the stochastic analysis of the flow transition from determin-

istic to stochastic states characterized by a large number of modes (turbulence). The

study of energy flow among the modes and between the mean field, in combination

with the DO formulation may be used for the development of reduced order dynamical

systems that will contain the essential dynamics that characterize this transition.

DO may also be used for characterization and prediction of more realistic sys-

tems (oceanic and atmospheric flows). For realistic numerical studies, non-intrusive

schemes (e.g. [901, [103]) based on our DO expansion should also be investigated. Re-

search is underway for developing DO schemes for data assimilation [80] or Bayesian

inference [96] in idealized and realistic dynamical systems. Adaptive modeling and

adaptive sampling are also promising directions (e.g. [78], [110]).
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Related to the work on finite-size particles an interesting future direction is the

development of transport models that take into account, apart of the finite-size, the

interaction between finite-size particles due to clustering that occurs because of inertia

(as it is described in the current work). Development of such models will play a very

important role on the understanding of cloud formation and rain initiation (where

both the particles finite-size and their interaction play an important role) [114], [41],

[131] as well as in the problem of coexistence between several species of plankton

in the hydrosphere [119], [84]. Another potential application of interest is planet

formation by dust accretion in the solar system [155], [36].

Research is underway for the experimental validation of the developed models

in chaotic fluid flows using PIV techniques [108], [107]. To this end an interesting

direction for future research will be the extension of the present theory in more com-

plex models describing particles motion such as dynamical equations that include the

effect of non-spherical shapes, take into account memory effects (Basset-Boussinesq

terms), and/or contain non-Stokes (i.e. non-linear) drag forces.
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Appendix A

DO equations for 3D Navier-Stokes

in component wise form

In this appendix we will present in detail the DO field equations for the special case of

fluid flows governed by stochastic Navier-Stokes. All the results will be presented in

component-wise form which is most suitable the development of computational code.

The general equations, for an incompressible fluid in a domain D have the form

au

at
Dp 1a+ AU -

D(U2) _ (uv) _ (uw)

Dx ay Dz +

S[L (x (Xt; w) ; w]

ap
ay

1
Re

x(vu)
-Dxz

D(v2)
ay

(vw) - fu + Ty (x, t) + <pY (x, t; W)
Dz

- Lv [x (x, t; w) ; w]

1e (w) D(wV) _ (w2 ) gp+ r(x,
Dy Dz +z(X

- L,, [x (x, t; w) ; w]

D(up)
Ox

D(vp)

Dy
_ D(wp) + Ap = L,[X (x, t; W); W]Dz

Du Dv Dw

Dx Dy Dz

where

X= (U (x, t; W), v (x, t; w), w (x, t; W), p (x, t; W))
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is the state vector with (u (x, t; w) , v (x, t; w) , w (x, t; w)) being the flow velocity field

and p (x, t; w) the density. The pressure field is denoted with p (x, t; w), f = fo + 3oy

is the Coriolis coefficient, (r. (x, t) , ry (x, t) , -r (x, t)) is the external deterministic

stress acting on the fluid, and (cp, (x, t; w) , p , (x, t; w) , oz (x, t; w)) is the zero-mean

stochastic component of the the stress for which we assume known the complete

statistical information. In what follows we will use the DO field equations derived in

the previous chapter with inner product

(X1, X2) J [uiu 2 + viv2 + wiw 2 + P1P2] dx.

D

We will also use the notation

{ai, a 2 } J ai (x) a2 (x) dx.

D

By performing a Karhunen-Loeve expansion on the stochastic field p (x, t; w) we may

approximate it as

R

'p (x, t; w) = Z (t; w) Ypr (x, t) = Zr (t; W) <' (x, t),
r=1

where R is defined by the order of truncation of the KL series for the field 'P (x, t; w).

For simplicity we assume that the boundary conditions are either deterministic

Neumann or Dirichlet for the velocity field and Neumann for the density field

u ((,t; W) = UaDi ( ,t) , c E8D1

-(,t; v) = hu,aD2 (Ct), c EOD 2On

((,t; w) = hp,aD ((,t), E EBD.
On

As it is shown in chapter 5 the case of stochastic boundary conditions can always

be transformed into a problem with deterministic boundary conditions and suitable

stochastic forcing.
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Furthermore, we assume that the initial conditions are known and given by

u (x, to; w) = uo (x; w)

p (x, to; W) = po (x; w),

xED, wEQ

xED, wEQ.

We will first calculate the stochastic operator L. By using the DO representation

x (x, t; w) = xV (x, t) + Y (t; w) Xi (x, t)

into Navier-Stokes equations we obtain

ap
[x(x,t;w);wj= +Fo+

x

4 [x (x, t; w);] =

C. [x (x,t); w)] =

YF- YYF+ Z, (t;w)(pr,(x,t)

YGj - YiYGij + Zr (t; w) <py, (x, t)
opy+By

Ho +Y Hi -YY Hij + Z (t; w) pzr (x,t)

L, [x (x,t; w) ;w] = Ro +Y R, -YY R

where the fields on the right hand side are given by

1
Fo=--An-

Re

1
Re

1
Ho = -- 65

Re

8(fL2)

Ox

a (m)
Dx

Dx

Dy

a(f2)
ay

Dy

0 (np)
Ro rsp-aD 8x

+ f + rx (x, t)

- f + T (x, t)

_DzV2)

Oz

Dy

gp+rz (X,t)

Dz

1
F = --Ius

Re

Gi -I vi -
Re

D2 (u )- 2 D
D (vjhu + Ujv)

Dy
S(WitD + Us)

az
o (vnU + ujV) 2 2 (vWi) _ 0 ( vjie)

Dx Dy Dz

+ fv

- fu

215

and,

az

az



O (wii + uj') & (wiv + vjfii) _ 2 a (wjie) - gpj
Dx By Dz

D(pjU+uip)
Dx

for i 1, ... , s, and

_ D(uiu3 )Fi-= a ax y (Ujo) Dz (uws)
ay az

_ D(vinu) 8 (viv3) D (viws)
G Dx= + + Dax ay az

D(wing)His= Wjj +Dx ±

9 D(piu) +
Dx

D(wiv 3) D(wiw,)
ay +

8y Dz

D(pros) D(psw,)
+

Dy Dz

with i,j = 1,..., s.

Moreover, by inserting the DO representation in the continuity equation we obtain

D6 D86 Db /Du
S+ -+ +Y(t;W)ax ay az x 09

+ + 0.
Dy Dz )

But since Y (t; w) is random the above equation has the equivalent form

D ' x DY - D z9X Dy Dz
Du + Dv

Ox By_
Dmi

+ =0,
9z '

i = 1 ... S.

A.1 Stochastic pressure field

To derive an equation for the pressure we need to understand its role in the stochastic

context of the operator L given above. Pressure is the stochastic quantity which guar-

antees that for every possible realization w the evolved field (u (x, t; w) , v (x, t; w) , w (x, t; w))

is incompressible. Therefore, the stochastic pressure should be able to balance all the

non-divergent contributions from the terms involved in the operator L. To this end
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we choose to represent the stochastic pressure field as

p =po +Y (t;w)pi - Y (t;w) Y (t;w)pig + Z, (t;w)b,

Based on the above discussion, the mean pressure field components should satisfy the

following equation
OF0 BGo

Apo= o+5x Oy
+ =Ho 0

az

with boundary conditions given by

- (0,t; w) = 0,an O ED 1 and po = const.

The stochastic terms in L multiplied with Y (t; w) will be balanced through the fol-

lowing equation

OFi
-pOx

OGi
+

ay
OHi

+ =0,
Oz

i=1,...,s

and boundary conditions

Op-
(O,t;w) =0,On

EOD1 and pi = 0, E OD 2 , i = 1, ..., s.

Similarly, for the stochastic terms multiplied by Y (t; w) Y (t; w) we will have

aFig
Api, = Ox

+ G ig Hu=± + =0,
Oo z

i,j= 1,..., S

and boundary conditions

Op--(6t; 0(a,t;w) = 0,On
7 EOD 1 and pij = 0, ( EOD 2 , i, j = 1, ---, s.

Finally, the forcing terms will be balanced through the family of equations

+ Oy
~Oy

+ a'=0,
Oz

O ED 2

Ab = x
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with boundary conditions

E0D1 and q, = 0,

The above set of equations guarantees that for every realization W the evolved field

(u (x, t; w) , v (x, t; w) , w (x, t; w)) will always be incompressible. Moreover, the evolu-

tion operator £ will take the form

OP
= P

oI+ Fo

ax

0+ Go]

-YiY [L ay+ G23]

api +F]

+ Z,(t;w)

ap +G

+ Zr (t;w)

[
ax

Oqr

ay

+(xr(Xt)

+ CPy, (xt)]

L.x (x, t; W); w] =
[ P
Bz

o
+ Ho

+ Z

Oz

Hi] + Z' (t; w)
Oqr

Oz

C, [x (x,t;w) ;w] = Ro +Y R -YiY Ri

A.2 Evolution of the mean field ii (x, t; w)

Using the corresponding DO equation for the mean we obtain the set of deterministic

PDEs
9in
at = O +Fo

at Oy

- Cy(t) i(t)

- Cyi(t)Yi(t)
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C [x(x,t;w) ;w]

L,[x(x,t;w);w] =

OPij

ay

+T(X,t)

+ Gj +rY(X,t)

5n( ,t; w)=0,' S( E8D2, r = 1, ...,I R.
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aw- = o + HO - Cyi(t)s(t) (
t Ro - Cy(t)y3(t)Ri3

0 =- + -+ 5
Ox ty hz

with the following boundary conditions

S(,t; w) = UaD 1 (,t) ,

On

(6,t; w) = haD2 (,t),

(6,t; w) = hp,aD (6,t),

COD1

E EOD 2

( EOD

A.3 Evolution of the stochastic subspace basis Xi (x, t; w)

We will first calculate the quantity E' [C [u (x, t; o) ; w] Y (t; w)}. We will have

; w1 Y (t; w)] = CYm(t)Yj(t) [ -Pm
Ox

- MY(t)Ym(t)Yn(t) -

+ Fml

Opm
Ox Fmnl

+ CYj(t)z,(t) -Ox

E' [{L [x (x, t; w) ; w] Y (t; w)] = CYm(t)Yj(t)
Opm
ay

+ Gm]

- MYr(t)Ym(t)Yn(t) [- a"
+ Gmn]

+ Cyj(t)z,(t) -Ok + Syr (x,
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Ew [, [x (x, t; w) ; w] 1j (t;w)] = CYm(t)Y(t) K- 9m+ Hm

Myj(t)y(t)y.n(t) I z + Hmn

+ CY2(t)Zr(t) - + 'zr (x, t)

EW [,4 [x (x, t; w) ; w] Y (t; w)] = C Ym j (Yt)Rm - My(t)ym(t)Yn(t)Rmn

Multiplying with the inverse matrix Ct)y we will have

Qui E' [, [X (x, t; w) ; w] Y (t; w)] C-'yg

=[- +±F C )tytMYAt)m(t)Yngt) [ m&rn + Fmn]

+ C- )CY(t)z,(t) + y Pxr (x,t)]Q vi a ' [x (xt ); ]Y (;w) -Ig

y + Yi(t)Y(t)MYA)Ym(t)Yn(t) +Gmn

+ C1 C(t)z(t) [ r + Pyr (x, t)

Q.; E' [,C [X (x, t; w) ;]Y (t; W)]I C-,

=[- + Hi] - C-t)Y(t) MYj(t)m(t)Yn(t) - Pn + Hmn]

C C(t)Y(t)zr(t) - p + 2r (x, t)]

Q, Ew [, [x (x, t; w) ; w] Y (t; w)] C-1y(,

= -C It) (t)MY(t)Ym (t)Y(t) Rmn

Using the above expressions we obtain the evolution equations for the basis u (x, t; ) , p (x, t; w)

Quz - ({Qu 2 , um} + {Qrn, Vm} + {Qmi, Wm} + {Qpi, Pm}) Umat

Qvi - (ui, UM} + {Qv, om} + {Qa, WM} + {Qg, Pm} om
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= Q i ({Qui, Um}+ {Qvi, m} + {QwiWm} +{Q , Pm}) Wm
at-

0 Bui + vi +owi
ax ay az

p = Q - ({Qui, Um} + {QviV m} + {QwiWm} + {QO, p m }) pM

for i = 1, ... , s. Moreover, we will have the following boundary conditions

ui (6,t) = 0,

Bu-
O(6t) = 0,

EOD1

E EOD 2.

_Z( ,t) = 0, EOD

A.4 Evolution of the stochastic coefficients Y (x, t; w)

The set of evolution equations for the stochastic coefficients will take the form of a

SDE

- ({u, Fm} + {vi, Gm} + {wi, Hm} + {pi, Rm}) Ym

- ({ui, Fmn} + {vi, Gmn} + {Wi, Hmn} + {pj, Rmn}) (YmYn - CYm(t)Yn(t))

+ ({(p. (x, t) , Ui} + {<Pyr (x, t) , Vi} + {<pzr (x, t) , wi}) Zr (t; w)

Opm
19X

apmn

ax
Oqr

ax

- ( {i
+ ( Z
- ( U

+ oPmn

Oy

+ wi,
OPn})Ym

+ {wi " (YmYn - CYm(t)Y.(t))

Wi, 5) Zr (t; w)

Using Gauss theorem we have for every scalar field a and every divergent-free vector

field #

Va (x) ./3 (x) dx I
D
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Applying the above property for the pressure pm and the vector field ui and by using

(without loss of generality) the boundary conditions of section 5.2 we obtain

w, )= .

Furthermore, by applying the same argument for the pressure fields pmn and qk and

the vector fields u, we also obtain

&Pmn I +  I + Iwn "" =0

{2, + Vi, + wi, }0.

Hence, the stochastic equation describing the evolution of the stochastic coefficients

will be take the form

dY- ({ui, Fm} +{Vi, Gm}+ {wi, Hm} + {pi, Rm}) Ym
dt

- ({ui, Fmn} + {vi, Gmn} + {Wi, Hmn} + {pi, Rmn}) (YmYn - CYm(t)Yn(t))

+ ({Cpxr (x, t) , uJ + {pyr (x, t) , vi} + {'Pzr (x, t) , wil) Zr (t; ) -
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Appendix B

Numerical implementation of 2D

DO for Navier-Stokes

In the following paragraphs we will give a brief description of the numerical com-

ponents used in the computational algorithm. The numerical implementation of the

DO field equations for the description of stochastic fluid flows (Chapter 5) was per-

formed in Matlab. In Figure B-1 we present the diagram describing the computational

algorithm.

B.1 Initial conditions formulation

The first component of the algorithm is the formulation of the initial conditions.

This is done by numerically solving the eigenvalue problem of Section 2.5 (Theorem

7). We use the covariance matrix describing the spatial stochastic information of the

initial conditions. After spatial discretization of the domain the continuous eigenvalue

problem takes the form of a finite-dimensional eigenvalue problem, with symmetric

matrix (symmetry follows from the properties of the covariance matrix). Note that

for a domain discretized using M2 the size of the matrix to be diagonalized is M4 .

Therefore to avoid excessive computational cost it is essential to use a coarser grid

for the diagonalization of the covariance matrix and then interpolate on the finer

computational grid.
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Through the diagonalization procedure we obtain a set of eigenvectors (uio (x),

i = 1, 2, ... ) and the corresponding eigenvalues. As it was discussed in Section 2.5 the

eigenvalues represent the variance along the direction defined by the corresponding

eigenvector. By a choosing a critical amount of variance below which uncertainty is

considered negligible we obtain the initial dimension of the stochastic subspace, s.

The next step is the representation of the stochastic coefficients Y (w), i =

1, 2, ...s which can be in general non-Gaussian. To represent their arbitrary stochastic

structure we use a random number generator for the following random vector

Yoi (W) = (uo (x;W) , uso (x)) , i = 1, 2, .....

Note, that the relatively small size of s (i.e. s - 10) allows for the use of a large

number of random samples to represent the random vector.

B.1.1 Storage of orthonormal basis

For the application of the adaptive criteria it is essential to have a basis that will be

able to approximate satisfactory any flow realization. The eigenvectors produced by

the diagonalization of the initial conditions covariance matrix are spatially smooth

but also consist an orthonormal basis that can approximate (up to the ability given

by the computational grid) any flow realization. To this end we use the set of basis

elements obtained from the previous diagonalization process. Note that, assuming

the initial conditions respect the boundary conditions of the problem, the obtained

base from the diagonalization process respects the geometry and boundary conditions

of the problem as well.

B.2 Evolution of stochastic state

Having the initial stochastic conditions for the DO equations we may now proceed for

their numerical solution. We have to solve a stochastic ODE having dimensionality s

coupled with s + 1 deterministic PDEs (see Chapter 5). For the spatial discretization
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of the deterministic PDEs we use a C-grid in combination with a central difference

scheme (see [541). For the solution of the involved pressure equations we use the

Gauss-Seidel method also described in [54]. Time discretization is performed using

Euler's method which employs first-order difference quotients.

For the solution of the stochastic differential equation we evolve each one of the

random samples (in a deterministic sense) created previously for the representation

of the stochastic coefficients Yo (w), i = 1, 2, ...s. Note that because of the low

dimensionality, s, the computational cost involved in the solution of the stochastic

differential equation is negligible relative to the evolution of the s + 1 deterministic

fields. Using the statistics of the evolved random samples we are able to compute all

the moments required for the evolution of the deterministic fields.

At the end of each time step we orthonormalize the stochastic subspace basis ele-

ments ui (x,t) , i = 1, 2, ...s. Even though the orthonormality is theoretically preserved

by the DO equations we reenforce it numerically at the end of each time step to avoid

round-off errors. The numerical algorithm that we use is the modified Gram-Schmidt

method which guarantees smaller errors in finite-precision arithmetic (see e.g. [11]).

B.3 Diagonalization of covariance matrix - Adap-

tive criteria

We evolve the stochastic state as described above for N time steps. where N is a small

integer number (usually chosen between 10 an 100). After N time steps the solution is

expressed in the special reference frame where the the stochastic coefficients Y (t; w),

i = 1, 2, ... s are uncorrelated. This is done by diagonalizing the low-dimensional

matrix Cyy and subsequently rotating the stochastic coefficients and the stochastic

subspace basis elements as described in Section 4.3.1.

At this point the stochastic state of the system is expressed in suitable form

so that the adaptive criteria can be applied (Chapter 4). Specifically, the diagonal

form of Cyy allows for the removal of the mode with the smallest variance (if the
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Figure B-1: Computational algorithm for the adaptive DO equations.
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corresponding criteria are satisfied) or the addition of a the most unstable mode (if

the variance of the modes satisfies the corresponding criteria). In the latter case the

computation of the most unstable mode is performed using the orthonormal base

computed at the beginning but also the current state of the system.

After the application of the adaptive criteria the updated form of the system state

returns to the 'evolution' component of the algorithm.

B.4 Storage - Plotting

The storage and plotting is performed after the diagonalization of the covariance ma-

trix and the rotation of the stochastic state in the corresponding reference frame. We

store i) the random samples for the stochastic coefficients Y (t; w), i = 1, 2, ...s, ii)

the mean field, and iii) the stochastic subspace basis elements ui (x,t) , i = 1, 2, ....

The flow fields are visualized using either the streamfunction or the vorticity func-

tion. The samples for the stochastic coefficients are used to obtain the corresponding

probability density function. This is done using a kernel smoothing density estimate

method (see [23]) that allows us to obtain smooth probability density functions of

general form.
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Appendix C

Normal local stability of general

invariant manifolds

In this appendix we will first state a general result describing the normal stability

properties of invariant manifolds and then we will apply it to generalize the results

presented in section 6.2.2 for the stability of neutrally buoyant particles. The results

presented in the current section are part of the publication [57].

Invariant manifolds are distinguished sets of trajectories that organize the global

geometry of trajectories in a dynamical system. Even if an invariant manifold is

attracting (i.e., all close enough trajectories ultimately converge to the manifold), it

may admit localized regions of instability where nearby trajectories temporarily de-

part from the manifold. These departures and later returns may manifest themselves

in spectacular jumps along the manifold. Such transient jumps are often important

to locate in applications.

In this section, we extend the ideas from the specialized setting considered in sec-

tion 6.2.2 to identify localized transverse instability and attraction on general invari-

ant manifolds. Our main tool in achieving this is the normal infinitesimal Lyapunov

exponent (NILE), defined as the leading order short-term stretching or contraction

rate at points of an invariant manifold. We derive a general explicit formula for the

NILE, and hence for the normally stable and unstable domains of an invariant man-

ifold. Subsequently, we apply our results to characterize the stability properties of
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the dynamics of non-neutrally buoyant particles.

C.1 Set-up and definitions

Consider a dynamical system of the form

X=F(X, t), X Rn, (C.1)

with n > 2, and with a smooth function F: R' x R -+ R". A trajectory X(t; to, Xo)

of this system is a solution of the initial value problem X(to) = Xo. The flow map

associated with (C.1) is a two-parameter family of transformations defined as

F: R" ->R,

Xo' X(t; to, Xo),

The linearized flow map DFo is defined as

DFt: TR" -- TR",

(p, v) (Fto(p), Dxo X(t; to, p)ov) ,

mapping vectors v based at a point p to vectors Dx0 X(t; to, p)v based at the point

Ft (p). The notation TR" refers to the tangent bundle of R" ; a local fiber of this

bundle at a point p E R" will be denoted by TR".

We assume that M(t) C R" be a k-dimensional differentiable manifold that is

locally invariant over under the map Ft over the time interval [ti, t2]. This means

that

Ft (M (to)) C M(t), (C.2)

for all times to, t E [ti, t 2) with t > to.

Beyond invariance and smoothness, we make no further assumption about the

manifold M(t). We do note that M(t) will typically only be of interest in physi-
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cal applications if it is robust, i.e., persists under small perturbations. As Fenichel

[42] showed, such persistence is ensured if M(t) is time-independent, compact, and

normally hyperbolic.

C.2 Normally stable and normally unstable sub-

sets

Instead of the asymptotic behavior along M(t), our focus here is the instantaneous

behavior of trajectories close to M(t). Specifically, we would like to locate points on

M(t) at which most transverse perturbations to M(t) start growing in norm over in-

finitesimally short times. (A measure zero set of transverse perturbations are allowed

to decrease at such points due to the presence of stable directions.) The union of such

points will form the normally unstable subset Mu(t) of M(t). Similarly, the normally

stable subset M,(t) of M(t) is the union of points in M(t) at which all transverse

perturbations to M(t) decay over infinitesimally short times.

Note that M,(t) and Mu(t) are typically not invariant subsets of M(t): trajecto-

ries in M(t) will generally either avoid both of these subsets, or simply cross them.

Likewise, trajectories near M(t) may either stay away from the subsets M,(t) and

Mu(t) of M(t), or pass over these regions. In the latter case, however, the passing

trajectories will break away from M(t) while near Mu(t), and approach M(t) while

near M,(t) (see Fig. C-1).

If M8 (t) = M(t), then M(t) is a normally hyperbolic locally invariant manifold

that only admits stable normal directions; in this case, M(t) has an n-dimensional

stable manifold (or domain of attraction). If M,(t) = M(t), then M(t) is a normally

hyperbolic locally invariant manifold that only admits unstable normal directions; in

this case, M(t) has an n-dimensional unstable manifold.

The stable and unstable subsets described above have a major impact on the

dynamics near M(t). As it turns out below, locating them is possible from explicit

calculations, and hence they offer a feasible alternative to Lyapunov-type numbers in
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Figure C-1: Trajectories jump away from M(t) over the unstable subset M,(t), but
return to M(t) over the stable subset Ms(t). The figure assumes that M(t) is a
normally hyperbolic attracting manifold, in which case the jumping trajectory keeps
approaching the same underlying trajectory on M(t) by the invariant foliation of the
stable manifold Ws(M(t)).

the analysis of impact of M(t) on phase space geometry. We make these ideas more

precise below.

Definition 17 Let TM(t) and NM(t) denote the tangent and normal space of M(t)

at p E M(t), respectively. Also, let

cr; t) TR m logTM(t) NM(t) NM(t),

(n, Iv) V ,

denote the natural projection from TR", the tangent space of R" at p, to NM(t). We

then define the normal infinitesimal Lyapunov exponent (NILE) at a point p M(t)

as

So(p; t ) = lim - log afvt DF+s . (C.3)S-+o S Ft (P) INpM(t)

The limit in the definition of o-(p; t) exists for any v by the differentiability of the

linearized flow map DFtto and of the normal projection HI, in t. Also note that

FFtto (p)
the limit is finite because DFt = I by definition, and hence DFtt+s - I = O(s). The

action of the operator Ult+',DF+' on a vector vo E NM(t) is shown in Fig. C-2.

Next, we want to argue that exponent o(p; t) is independent of the choice of the

transverse bundle in which we seek to measure growth rates from M(t). To describe
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M(t+s)NM(t)

T7 M(t+s)

Figure C-2: The operator II'F DF+s NM(t) maps vectors in the normal space

NM(t) to vectors in the normal space NFt+.(P)M(t + s). The NILE a-(p; t) is the
exponential rate at which the norm of the above operator grows in the limit of in-
finitesimally small s. Therefore, o(p; t) measures the exponential rate at which the
normal component of vectors normal to the manifold M(t) grows over very short
times. (The time r is arbitrary within the interval [t, t + s].)

this independence in more precise terms, we let NM(t) be another smoothly varying

n-dimensional vector bundle that is a fibration over M(t); we require this bundle to

be transverse to M(t), by which we mean NM(t) rh TM(t) within TR", for all

p E M(t).

We can then view TR" as the direct sum of NM(t) and TM(t),

TR"n = NM(t) E TM(t),

and define the natural projection from TR" onto NM(t) as

II : TR" =TM(t) E AM (t) -+P RM(t),

We require each fiber NM(t) to have the same constant position relative to the

tangent space TM(t) and the normal space and normal space NpM(t). Specifically,
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we require NM(t) to be such that the tangential projection from NM(t) to NM(t),

Q: NM(t) -+NM(t),

Q = Ug|NM(t), (C.4)

is independent of t and p. This latter condition is important, otherwise the value of

the NILE computed on NM(t) would be affected by the s-dependence of the fiber

family NFst(P)M(t + s) along the trajectory Ft+s(p) starting from p at time t.

Proposition 18 If we define

m1 F pD
(P; t) = lim- log +It, DF+sI

+ s-+o F (p) NM(t)

then we have &(p; t) _ O-(p; t)

Proof: See Haller and Sapsis, 2010 [571.

We conclude that the o-(p; t) is independent of the choice of transverse directions

to the invariant manifold, and hence gives an intrinsic characterization of the local

stability of M(t) at t. Motivated by this observation, we introduce the following

definition of normally stable and unstable subsets of M(t).

Definition 19 We define the normally unstable subset of M(t) as

M (t) = {p E M I o(p;t) > 0},

and the normally stable subset of M(t) as

Ms(t) = {p E M | o-(p; t) < 0}.

The subsets Mu(t) and Ms(t)-described informally above are now defined pre-

cisely through the Lyapunov-type number u(p; t). Unlike the Lyapunov-type numbers

arising in Fenichel's theory, however, u(p; t) turns out to be computable explicitly.
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MWt
y = (p(x,t)

Figure C-3: The manifold M(t) as a local graph over the x variables.

Consequently, M.(t) and M,(t) can be identified in any application, provided the

invariant manifold M(t) is known to exist.

C.3 Computing the NILE

In this section, we give two alternative expressions that can be used for computing the

NILE in specific examples. The first expression will assume the explicit knowledge

of nornial vectors along the manifold M(t). The resulting form of the NILE reveals

that-in the language of mechanics-o-(p, t) is equal to the maximal normal rate of

strain relative to M(t) at the point p E M(t).

The second expression will utilize a local coordinate representation of M(t). In

appropriate coordinates (x, y) E Rk x Rnk, the k-dimensional invariant manifold

M(t) can always be written locally as a smooth graph:

M(t) = {(x, y) E Rk x Rn~k: y = p(x,t), x E D(t)}, t E [t, t2); (C.5)

here D(t) is an open domain on which the local coordinate x is defined at time t (see

Fig. C-3). The vector variable x may contain some parameters (dummy variables)

on which the dynamical system depends; this is why we have suppressed any explicit

parameter dependence in (C.1) and (C.6).
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In the local variables (x, y), the dynamical system (C.1) takes the form

= f(xy, t),

y g(x, y, t), (C.6)

where f and g are sufficiently smooth functions of their arguments.

Theorem 20 (i) Let n(p, t) be a unit normal vector field to M(t), that is smooth

both in p E M(t) and in t. We then have

u(p, t) = max
n(p,t)E:NpM(t)

(n(p, t), DF(p, t)n(p, t)) ,

with ( . , . ) denoting the standard Euclidean inner product.

(ii) Using the local form y = W(x, t) of M(t) and the vector field (C. 6), we define the

matrix field

(C.7)(x, t) = gY(x, p (x, t) , t) - pO(x, t)f,(x, p (x, t) , t),

where the subscript refers to differentiation with respect to the variable in the

subscript. We then have

u(x, t) = Amax [F(x, t) + FT(x t)] /2,

where Aax.[ ] refers to the largest eigenvalue of a symmetric matrix.

Proof: See Haller and Sapsis, 2010 [57].

C.4 Locating stable and unstable neighborhoods

of M(t)

The normally stable and unstable subsets partition M(t) into subsets in which in-

finitesimally small perturbations transverse to M(t) start decaying or growing, re-
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spectively. The norm of such small perturbations is instantaneously constant on the

boundary between M,(t) and M, (t).

As trajectories leave the vicinity of M(t), the growth of their distance is no longer

captured accurately by the linearized flow along M(t). To locate finite-size neighbor-

hoods of M(t) where trajectories increase their distances from M(t), we again assume

that M(t) is given locally in the form of a graph (C.5). As in the proof of Theorem

20, we use the change of coordinates

z = y - p (x, t)

to transform M(t) to the z = 0 plane. In the transformed coordinates, the flow

satisfies

=f(x,z+ (x, t) ,t),

= g (x, z + p(x, t), t) - cp (x, t) f (x,z + p (x, t),t) -SO (x, t).

Taking the inner product of the second equation with z gives

1id
2 djiz| 2 = (g (x, z+ (x, t), t) - cx (x, t) f (x,z + p (x, t),t) - Wt (x,t), z).

The boundary between domains of instantaneous growth from, and decay to, the

{z = 0} plane is given by the instantaneous stability boundary

B(t) = {(x, z) :(g (x, z + o (x, t) , t) - o2 (x, t) f (x,z + w (x, t) ,t) - wt (x, t) , z) = 0}.

(C.8)

The stable and unstable neighborhoods of M(t) are given by

S(t) = {(xz) : (g (x, z + W (x, t), t) - W2 (x, t) f (x,z + W (x, t),t) - Wt (x, t), z) < 01,

U(t) = {(x, z) : (g (x, z + W (x, t),) - W (x, t) f (x,z + p (x, t) ,t) -5O (x, t) , z) > 0}.

237



Note that

(g (x, z + y (x, t) , t) - Px (x, t) f (x,z + y (x, t) ,t) - pt (x, t) , z)

= ([gy (x,'P (x, t), t) -- Px (x, t) f, (x, (x, t) ,t)] z, z) + 0 (1z| 3)

= |z2 K [F(x, t) + PT (x, t)] ez, e2+O(Iz) (C.9)

therefore

M(t) n S(t) = (x, z) : z = 0, Amax [F(x, t) + FT(x, t)] <0

M(t) n U(t) = 1(x, Z) : z = 0, Amax [r(x, t) + r T(X, t)] > 0 .

As a result, we conclude that

Ms(t) M(t) n S(t),

Mu(t) c M(t) n U(t).

Also note that by (C.8) and (C.9), both the instantaneous stability boundary B(t)

and the cylindrical surface

B(t) = {(x, z) : u(x, t) = 0} (C.10)

have the same intersection with the manifold M(t). Therefore, near the manifold

M(t), the condition u(x, t) = 0 gives an approximation to the instantaneous stability

boundary B(t); the error of the approximation grows linearly in the order of the

distance from the manifold. This error can be decreased to quadratic in the distance

if we also include the 0 (1z13) term in (C.9) in our calculations. In that case, the

calculated dividing surface B(t) will have a quadratic tangency with B(t) along M(t).

The instantaneous stability boundary B(t) between stable and unstable neighbor-

hoods of M(t) can also be computed directly from (C.8) without Taylor expansion in

the z variable. Specifically, for any fixed z value, we can locate the curve of x values
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satisfying (C.8). Putting all these curves together, we obtain the surface B(t).

C.5 Stability properties of non-neutrally buoyant

particles

Note that (6.3) is of the form (C.6) with x = x E R2 , y = v E R2 , and with

f (x, v, t) = v,

1
g(x, v, t) = -- {v - u(x, t)]

3R Du(x, t)
2 Dt

In chapter 6 we proved that for any fixed c > 0 small enough, equation (6.3)

admits a globally attracting two-dimensional invariant manifold of the form

M(t) = (xv) E R:v u(x,t) + R
Du (x, t)

Dt
-

]
+ 0o(C 2)}

(C.12)

By comparison with the general form (C.5), formula (C.12) yields

(x, 0) = U (x t) + E 23R-
1]

Du (x, t)
Dt g] + 0 (E2). (C.13)

We apply Theorem 20 to identify the stable and unstable subsets of M(t). Using

(C.11) and (C.13), we obtain that the matrix F(x, t) satisfies

F(x, t) = gV - cPXfV]V=(Xt)

= I - X1

1
- -I -

E
Vu(x, t) + 0 (E),
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and hence the NILE can be written as

o-(x, t) = Amax [FT (x, t) + F(x, t)] /2

= Amax [ I - I (x (x, t) + 'Px (x, t)T

= + Amax [Vu(x,t)+Vu(x,t)T] +( 6 .

Here we used the fact that by incompressibility of the flow, the two-dimensional

symmetric matrix Vu (x, t) + Vu (x, t)T has zero trace; as a result, its eigenvalues

have opposite signs.

Up to an order O (E) error, therefore, the stable and unstable subsets of M(t)

satisfy

Amax

Amax

Vu (x, t) + Vu (x, t)T

2

Vu(x,t) + Vu(x,t)T

2
(C.14)
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