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ABSTRACT

The mTOR protein kinase nucleates two complexes, mTORC1 and mTORC2.
Collectively, the two complexes regulate processes important for cell growth and
proliferation, including protein synthesis, autophagy, metabolism, and cytoskeletal
maintenance. Despite this diverse array of cellular functions, few mTOR substrates are
known. To address this deficit, we defined the mTOR-regulated phosphoproteome by
quantitative mass spectrometry and characterized the primary sequence motif specificity
of mTOR using positional scanning peptide libraries. We found that the phosphorylation
response to insulin is largely mTOR-dependent and that mTOR regulates the
phosphorylation of many proteins not presently appreciated to be linked to mTOR
signaling. The mTOR kinase, moreover, exhibits a preference for proline, hydrophobic,
and aromatic residues at the +1 position which is unique among all kinases previously
profiled. Grbl 0 is an adaptor protein and negative regulator of growth factor signaling
identified as an mTORC1 substrate that mediates the inhibition of P13K typical of cells
lacking TSC2, a tumor suppressor and negative regulator of mTORC1. Phosphorylation
of Grbl 0 is important for its inhibitory function as well as for its stability. While acute
mTORC1 inhibition results in changes in Grb1O and IRS1 phosphorylation which
partially reactivates Akt in TSC2-null cells, chronic mTORC1 inhibition causes Grbl 0
destabilization, IRS protein stabilization, and a complete resensitization of Akt to insulin
and IGF-1. These changes in Grbl 0 and IRS protein abundance are likely to be the
most important effects of mTOR inhibitors to consider in their clinical use. Finally, the
discovery of Grbl 0 as an mTORC1 substrate validates our phosphoproteomic approach
and suggests that the other potential downstream effectors we identified may also serve
as starting points for new areas of investigation in mTOR biology.

Thesis Supervisor: David M. Sabatini
Title: Associate Professor of Biology, MIT; Member, Whitehead Institute for Biomedical
Research
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Chapter 1 : Introduction

Summary

Beginning with the fortuitous discovery of the macrolide antibiotic rapamycin

isolated from bacteria inhabiting the soil of Easter Island, the study of the target

of rapamycin, TOR, has led to a greater understanding of the diverse processes

cumulatively integrated into cell growth. TOR is a highly conserved serine-threonine

kinase, and the mammalian orthologue, mTOR, is the catalytic component of two multi-

protein complexes, mTOR complex 1 and mTOR complex 2. mTORC1 and mTORC2

are both regulated by growth factors while mTORC1 is additionally regulated by amino

acids, hypoxia, and energetic stress. The two complexes exhibit distinct substrate

repertoires, with mTORC1 phosphorylating key factors for translation initiation and

autophagy and mTORC2 acting on regulators of cellular survival and proliferation.

Dysregulation of the mTOR pathway has been implicated in genetic hamartoma

syndromes exemplified by outgrowths, which, while generally benign, cause significant

morbidity and can occasionally lead to cancerous lesions. mTOR hyperactivation

has also been implicated in spontaneous cancers, and the role of mTOR in metabolic

processes central to diabetes is now appreciated to be multi-faceted and complex.

Given its disease relevance, there has been much interest in finding ways to

modulate mTOR function by targeting specific components upstream, downstream,

and at the level of the kinase. While the allosteric inhibitor rapamycin is the founding

member of mTOR inhibitors now employed widely as immunosuppressants and

lucratively as anti-stenosis agents in drug-eluting stents, it is now appreciated that

rapamycin only partially - both qualitatively and quantitatively - inhibits mTORC1.

Therefore, the recent development of kinase domain inhibitors of mTOR that inhibit both

complexes has increased the likelihood of more effective anti-mTOR agents in the clinic.

In this introductory chapter, the current understanding of the complicated

signaling network with mTOR at its center will be reviewed. Emphasis will be placed on

the aspects of the pathway most relevant to the work described in subsequent chapters.



Rapamycin and its molecular target

The discovery of the target of rapamycin

Rapamycin is a macrocyclic polyketide isolated from Streptomyces

hygroscopicus inhabiting the soil of Easter Island, also known in Polynesian as

Rapa Nui, or "Big Rapa" (Abraham and Wiederrecht, 1996). While it was originally

appreciated to have antifungal properties (Sehgal et al., 1975), its potent anti-

proliferative effects on cells of the immune system were noticed and rapamycin was

developed as an immunosuppressant (Morris et al., 1990).

The identification of the target of rapamycin was accomplished genetically in

yeast and biochemically in mammalian cells - a common theme in the history of the

field. In Saccharomyces cerevisiae, rapamycin causes a profound G1 arrest and was

used in genetic screens to identify genes whose mutations led to resistance to the arrest

caused by rapamycin. Mutations in the gene encoding the peptidyl-prolyl cis-trans

isomerase FKBP1 2 (also known as FPR or RBP1) rendered yeast cells indifferent to the

effects of rapamycin (Heitman et al., 1991; Koltin et al., 1991).

Rapamycin, FK506, and cyclosporin A are all immunosuppressants and share

a unique mechanism of action despite inhibiting different steps in T-cell activation

(Abraham and Wiederrecht, 1996). Rapamycin and FK506 are macrolides while
cyclosporin A is a cyclic peptide. Before their direct targets were known, it had been

appreciated that FK506 and cyclosporin A both inhibited transcription downstream of

the transcription factor NFAT while rapamycin blocked a later step in T-cell activation:

proliferation in response to the interleukin-2 cytokine. All three drugs bind to intracellular

proline isomerases called immunophilins. Cyclosporin A binds cyclophilin A while FK506

and rapamycin both bind FKBP12.

Binding of rapamycin, FK506, and cyclosporin A to their respective immunophilins

inhibited proline isomerase activity (Abraham and Wiederrecht, 1996). However, several
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pieces of evidence suggested that it was not the inhibition of the immunophilin which

caused the cellular effects of these drugs, but that it was the drug: immunophilin complex

which was toxic. First, the drugs are toxic at concentrations which do not saturate

immunophilin binding (Bierer et al., 1990a). Second, both FK506 and rapamycin bind

FKBP1 2 but affect different steps of T cell activation (Bierer et al., 1990a). Third,

related compounds which inhibit isomerase activity do not result in arrest (Bierer et al.,

1990b). Finally, as the absence of the immunophilin does not phenocopy drug treatment

(Heitman et al., 1991), it was determined that they were not the real targets. Rather, in

the case of rapamycin, rapamycin binds to FKBP1 2 and together the two form a complex

that inhibits the cellular target responsible for the proliferation arrest. In addition to

FKBP1 2, mutations in two genes, TOR1 and TOR2, named for the target of rapamycin,

were also found to render yeast cells resistant to rapamycin (Heitman et al., 1991).

While TOR1 and TOR2 were suspected to be the true targets of rapamycin, direct

evidence awaited biochemical verification.

Given that rapamycin-FKBP1 2 were thought to bind and inhibit the true target

of rapamycin, several groups concurrently purified mammalian TOR, mTOR, (also

known as FKBP12-rapamycin associated protein (FRAP) and rapamycin and FKBP12

target 1 (RAFT1)) using the rapamycin-FKBP1 2 complex as a biochemical handle

(Brown et al., 1994; Sabatini et al., 1994; Sabers et al., 1995). mTOR belongs to the

phosphatidylinositol-3 kinase-related kinase (PIKK) family, along with the DNA damage

kinases ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), and DNA-

dependent protein kinase (DNA-PK), suppressor of morphogenesis in genitalia (SMG1)

which is involved in nonsense-mediated mRNA decay and transformation/transcription

domain-associated protein (TRRAP) (Lempiainen and Halazonetis, 2009) (Fig. 1). While

they share a homologous domain to the lipid kinase phosphatidylinositide-3-kinase

(P13K), except for TRRAP, they are all protein kinases which phosphorylate serine and

threonine. The adaptor protein TRRAP shares homology with the other members but

lacks kinase activity.

All PIKK family members are large, with mTOR being a zaftig 289 kDa. The
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family members share several common domains. A FRAP, ATM, and TRRAP (FAT)

domain is always accompanied by a C-terminal FAT-C domain (Lempiainen and

Halazonetis, 2009). Both are required for mTOR kinase activity through unclear

mechanisms (Bosotti et al., 2000). The kinase domain of mTOR, like the other members

of the PIKK family, is more homologous to lipid kinases than to protein kinases (Manning

et al., 2002b). The PIKK regulatory domain is required for activity but deletion of parts

of the domain can lead to increased kinase activity (Sekulic et al., 2000). Finally, the

FBKP1 2-rapamycin binding (FRB) domain of mTOR is situated between its FAT and

kinase domain (Chen et al., 1995; Choi et al., 1996; Stan et al., 1994), and two stretches

of HEAT (huntingtin, elongation factor 3, the A subunit of protein phosphatase 2A, and

TOR) repeats present in the N-terminus mediate protein-protein interactions (Perry and

Kleckner, 2003).

ATM, ATR, DNA-PK, and SMG-1 are all involved in nucleotide repair and share

a similar phosphoacceptor motif: (S*/T*)Q (where * indicates the phosphoacceptor

residue) (Abraham, 2002). A consensus motif for mTOR however has not been

described. In known substrates, mTOR either phosphorylates a hydrophobic motif (HM)

present in AGC kinases or proline-directed sites (proline in the +1 position relative to the

phosphoacceptor residue) (Fig. 2) (Brunn et al., 1997a; Burnett et al., 1998; Isotani et

al., 1999). How mTOR can phosphorylate these distinct motifs is the subject of a later

chapter.

Two mTOR complexes

Yeast have two TOR genes, TOR1 and TOR2. TOR1 is inessential, while TOR2

is essential (Kunz et al., 1993). In yeast, it was discovered that the TOR proteins form

two distinct complexes, TOR complex 1 (TORC1) and TOR complex 2 (TORC2) (Loewith

et al., 2002). Yeast TORC1 is sensitive to inhibition by rapamycin and consists of either

Tori p or Tor2p, kontroller of growth 1 (Kog1 p), and lethal with SEC13 protein 8 (Lst8p).

Yeast TORC2 is rapamycin-insensitive and consists of Tor2p, adheres voraciously to

TOR2 1 (Avol p), Avo2p, Avo3p, and Lst8p.
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The two complex organization is conserved from yeast to man. Although the

mammalian TOR protein is encoded by one gene, mTOR still nucleates two complexes

(Fig. 3). mTOR complex 1 (mTORC1) consists of regulatory associated protein of

mTOR (raptor), mammalian LST8 (mLST8), proline-rich Akt substrate of 40 kDa

(PRAS40), and DEP domain containing mTOR-interacting protein (DEPTOR). mTOR

complex 2, mTORC2, consists of mTOR, rapamycin-insensitive companion of mTOR

(rictor), mammalian stress-activated protein kinase interacting protein 1 (mSIN1),

proline-rich protein 5 or protein associated with rictor 1 (PRR5/PROTOR1) or PRR5L

(also known as PROTOR2), DEPTOR, and mLST8. mTORC1 was originally deemed

the rapamycin sensitive complex while mTORC2 was considered rapamycin-insensitive.

However, it is now appreciated that these stereotypes do not necessarily hold true.

Several functions of mTORC1 are rapamycin-resistant (Choo et al., 2008; Feldman et

al., 2009; Thoreen et al., 2009), and mTORC2 assembly is inhibited in certain cell types

with chronic treatment of rapamycin (Sarbassov et al., 2006). The mTOR complex

components can be divided into core members that are required for complex activity

and/or integrity and accessory proteins which modulate but are not essential for mTORC

activity (Fig. 3). At this point, it is likely that the essential mTOR complex components

have all been discovered.

Raptor is the orthologue of yeast Kogi p and a founding member of mTORC1.

A 150 kDa protein, raptor contains an N-terminal conserved (RNC) domain which is

present in all raptor orthologues, and HEAT repeats and WD-40 domains for protein-

protein interactions (Hara et al., 2002; Kim et al., 2002). Raptor is required for the

phosphorylation of mTORC1 substrates in cells. Several lines of evidence indicate

that raptor may be required for substrate binding or proper localization of mTOR with

its activators. Raptor is thought to interact with a TOR signaling (TOS) motif present in

several, but not all, mTORC1 substrates (Nojima et al., 2003; Schalm and Blenis, 2002;

Schalm et al., 2003). Mutation of the TOS motif prevents efficient phosphorylation by

mTORC1. More recently, it has shown that raptor is required for the proper localization

and therefore activation of mTORC1 to the lysosome, where mTORC1, as described in
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more detail later, is activated (Sancak et al., 2010; Sancak et al., 2007).

mLST8, the orthologue of yeast LST8, is a small protein consisting of WD-

40 repeats and is stably present in both mTORC1 and mTORC2 (Kim et al., 2003;

Sarbassov et al., 2004). Acute RNAi-mediated knockdown of mLST8 disrupts mTORC1

activity and integrity, and therefore it was considered to be a core component of

mTORC1 (Kim et al., 2003). It was a great surprise however that in vivo loss of mLST8

was dispensable for mTORC1 signaling while still required for mTORC2 activity (Guertin

et al., 2006). The reason for this discrepancy is a mystery.

The remaining mTORC1 complex components are not essential for activity but

modulate its function. While it was known that mTORC1 activity in cells was regulated

by growth factors, this regulation was difficult to replicate in vitro as mTORC1 activity

purified both from cells deprived of serum or from cells stimulated with growth factors

was constitutively hyperactive (Sancak et al., 2007). Regulation was regained with

reduction of the salt concentration in the buffers used to isolate and wash the kinase.

Thus, it was postulated that a salt-sensitive inhibitor was responsible for mediating the

growth factor signal to mTORC1. PRAS40 (also known as AKT1S1) was identified as

that inhibitor (Fonseca et al., 2007; Oshiro et al., 2007; Sancak et al., 2007; Vander Haar

et al., 2007; Wang et al., 2007). As its name suggests, it is phosphorylated by Akt on

T246 (Kovacina et al., 2003) such that the growth factor signal is transmitted to P13K,

Akt, PRAS40 and then mTORC1 (Fig. 4). The phosphorylation then inhibits PRAS40,

releasing it from mTORC1 and leading to mTORC1 activation. PRAS40 can also

be phosphorylated by mTORC1 on S183, and this site may also be important for the

inhibitory function of the protein (Oshiro et al., 2007).

DEPTOR was identified as an mTOR interacting protein which is present in both

mTOR complexes (Peterson et al., 2009). While not an essential member of either

complex, DEPTOR was found to be an inhibitor of mTOR activity. DEPTOR expression

is negatively regulated at both the mRNA and protein levels by mTORC1. DEPTOR

was found to be highly expressed in a subset of multiple myelomas. While one might

expect that DEPTOR overexpression would lead to a suppression of mTORC1 and
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mTORC2, due to the feedback inhibition of P13K-Akt by mTORC1 and S6K1 which

will be described in more detail later, DEPTOR overexpression chronically leads to

P13K-mTORC2-Akt activation. Multiple myeloma cells which express high amounts of

DEPTOR exhibit hyperactive Akt signaling in the absence of PTEN or P13K mutations

(Peterson et al., 2009).

Turning to mTORC2, rictor, the orthologue of yeast Avo3p, is a 200 kDa

protein (Jacinto et al., 2004; Sarbassov et al., 2004). While it is absolutely required

for mTORC2 activity in vitro and in vivo, its molecular function is unclear. mSinl binds

rictor and is required for a productive rictor-mTOR interaction (Frias et al., 2006; Jacinto

et al., 2006; Yang et al., 2006). mSinl exists in multiple splice isoforms. Interestingly,

mSinl has a putative pleckstrin homology (PH) domain, perhaps responsible for lipid

binding and mTORC2 localization at membranes (Schroder et al., 2007a). The isoform

lacking the PH domain is insensitive to growth factor regulation (Frias et al., 2006),

leading to the possibility that proper localization of mTORC2 is required for its regulation

and also that distinct mTORC2s with differential regulation may exist. In yeast, TORC2

localization to the plasma membrane is required for cell viability and is dependent on the

yeast mSinl homolog, Avoip (Berchtold and Walther, 2009). mSinl also has a putative

Ras-binding domain (Schroder et al., 2007b).

PRR5/Protor is a more recently described member of mTORC2 which also exists

in two isoforms (PRR5 or Protor1 and PRR5L or Protor2) enforcing the idea that different

mTORC2 complexes with different combinations of Protor and mSinl may exist in the

cell (Pearce et al., 2007). It also may be important for PDGFR expression (Woo et al.,

2007). While originally not thought to be required for mTORC2 activity, recent evidence,

as discussed later, suggests that it might be important for phosphorylation of some, but

not all, mTORC2 substrates (Pearce et al., 2011).



Upstream signaling: mTOR senses the nutrient and metabolic state of the
cell

The two mTOR complexes maintain cellular homeostasis by sensing a variety

of intracellular and extracellular signals (Fig. 4) and ensuring that downstream, energy-

consuming processes are matched to the state of the cell.

The TSC1/2 complex: an integrating platform

Tuberous sclerosis complex is a rare, autosomal dominant disease which

affects about 1 in 6000 live births and is marked by hamartomatous outgrowths which

can affect many organs, but most notably the skin, kidneys, and brain (Crino et al.,

2006; Montagne et al., 2001). While the outgrowths tend to be benign, they can cause

significant morbidity, and the presence of cortical tubers can stunt normal childhood

development. The disease is due to loss of function mutations in hamartin (TSC1) and

tuberin (TSC2) which together form a heterodimeric GTPase activating protein (GAP)

for the small Ras-like G-protein Ras homologue expressed in brain (Rheb), an activator

of mTORC1. Loss of TSC1/2 results in hyperactive mTORC1 signaling and repressed

Akt activity (Garami et al., 2003; Inoki et al., 2003; Tee et al., 2003; van Slegtenhorst et

al., 1997; van Slegtenhorst et al., 1998; Zhang et al., 2003b). Rheb was identified in a

Drosophila screens for growth regulators (Saucedo et al., 2003; Stocker et al., 2003).

For a while it was not known how Rheb activated mTORC1, but it has now been shown

that the activation occurs directly (Sancak et al., 2007).

The TSC1/2 complex serves as a platform by which upstream signals are

integrated and sensed by mTOR. Many of these signals are downstream of the major

growth factor pathways. Extracellular signal-regulated knase (ERK) (Ma et al., 2005),

Akt (Inoki et al., 2002; Manning et al., 2002a; Potter et al., 2002), and RSK (Roux et

al., 2007) all inhibit TSC2. The regulation occurs via a series of phosphorylations

which inhibit and/or destabilize TSC2, thereby leading to increased GTP-bound Rheb,

activation of mTORC1. GSK3p does the opposite; its phosphorylation activates TSC1/2



Chapter 1 : Introduction

(Inoki et al., 2006).

While growth factors can signal through TSC2 to mTORC1, they can also signal

directly to the mTORC1 complex through Akt-mediated phosphorylation of PRAS40

(Sancak et al., 2007; Vander Haar et al., 2007), an mTORC1 component described

above.

mTORC1 senses cellular energetic status and oxygen levels

mTORC1 senses energetic depletion, as under glucose or nutrient deprivation

through direct (Dennis et al., 2001) and indirect mechanisms. AMP-activated protein

kinase (AMPK) is activated by a high AMP: ATP ratio and subsequently phosphorylates

TSC2, activating it, and leading to decreased GTP-bound Rheb (Corradetti et al.,

2004; Inoki et al., 2006; Shaw et al., 2004). AMPK can directly inhibit mTORC1

phosphorylation through raptor phosphorylation, affecting its binding to 14-3-3 proteins

(Gwinn et al., 2008).

mTORC1 senses oxygen levels indirectly through AMPK but more directly

through regulated in development and DNA damage response 1 (REDD1) whose

expression is increased under hypoxia (Brugarolas et al., 2004; Reiling and Hafen,

2004). REDD1 promotes TSC1/2 activity by binding inhibitory 14-3-3 proteins which

bind and inhibit TSC2 (DeYoung et al., 2008), thereby activating the inhibitory function of

TSC2.

Amino acid regulation of mTORC1

The mechanism by which mTOR sensed amino acids was until recently a

complete mystery. The signal was known to be sensed independently of TSC1 or 2

as TSC2-null cells, while insensitive to serum deprivation, are still sensitive to amino

acid starvation (Smith et al., 2005). The heterodimeric Rag proteins consisting of either

RagA or Rag B bound to Rag C or Rag D are homologous to the yeast Gtr1 p and

Gtr2p and were found to relay the amino acid signal (Kim et al., 2008; Sancak et al.,

2008). Knockdown of the Rag proteins prevented mTORC1 activation by amino acids
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while overexpression of an activating RagB mutant caused mTORC1 to be insensitive

to amino acid starvation. Rags act by regulating mTORC1 localization (Sancak et

al., 2008). mTORC1 is diffuse in the cytoplasm in the absence of amino acids and

subsequently recruited to the lysosome by the Rag proteins. Under nutrient replete

conditions, RagA and RagB are GTP-loaded while Rag C and RagD are GDP-loaded,
allowing interaction with raptor and recruitment of mTORC1 to the lysosome where the

Rag proteins are located, tethered by the heterotrimeric p14, p18, MAPK scaffold protein

1 (MP1) Ragulator complex (Sancak et al., 2010). At the lysosome, mTORC1 can then

be activated by GTP-bound Rheb.

These results explain several observations of amino acid signaling. First, it

explains how amino acids are a necessary requirement for growth factor activation of

mTORC1 (Hara et al., 1998; Wang et al., 1998). Even if Rheb is GTP-bound, it cannot

activate mTORC1 if the complex is not at the lysosome. Moreover, it suggests that one

of the primary roles of raptor is to localize mTORC1 to its activators, perhaps explaining

how mTOR can phosphorylate some of its substrates in vitro in the absence of raptor but

cannot do so in the cell (Burnett et al., 1998; Yip et al., 2010). How the actual sensing

of amino acids occurs is unclear, but one can hypothesize that lysosomal amino acids

are the pool of amino acids being sensed, or that the sensor senses some lysosomal

parameter dependent on amino acids (Korolchuk et al., 2011).

Growth factor regulation of mTORC2

mTORC2 is regulated by growth factors and is downstream of the receptor

tyrosine kinase - P13K pathway (Sarbassov et al., 2005). The mechanism by which

mTORC2 is regulated by growth factors is a mystery, although it was recently shown

that mTORC2 binding to the ribosome is involved in its activation (Zinzalla et al., 2011).

A ribosome biogenesis factor was found to be required for yeast TORC2 and mTORC2

activity, and growth factor stimulation resulted in recruitment of mTORC2 to the

ribosome.

Given that mTORC1 is directly activated by the small G-protein Rheb, one
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might wonder if a G-protein is also required for mTORC2 activation. Accordingly, a

Ras homologue (RasC) in Dictylostelium seems to be important for TORC2 activity and

chemotaxis, a TORC2-regulated process in the organism (Charest et al., 2010; Lee et

al., 2005)
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Cell growth is an accumulation in mass, in contrast to cell proliferation, which

is an increase in cell number. While we refer to mTOR as the master regulator of

cell growth, mTORC1 is traditionally considered to be the growth-regulating complex

while mTORC2 is thought to regulate cell surivival and proliferation. Cell growth is

required for cell division (Johnston et al., 1977) and the two are tightly linked processes,

both contributing to the determination of organismal size (Conlon and Raff, 1999).

Inactivation of the TOR pathway by pharmacologic inhibitors, genetic loss of key

components, or nutrient starvation results in decreased cell size in a variety of organisms

(Fingar et al., 2002; Montagne et al., 1999; Oldham et al., 2000; Zhang et al., 2000).

Activation of mTORC1 results in increased cell size (Ito and Rubin, 1999; Stocker et

al., 2003). Attesting to its importance in many processes involved in cell growth, mice

without mTOR die very early in embryonic development (e12.5) (Gangloff et al., 2004;

Murakami et al., 2004).

mTORC1 and protein synthesis

4 high-energy phosphate bonds are hydrolyzed with each peptide bond forged

during mRNA translation: 2 from ATP for tRNA charging, 1 from GTP for tRNA binding,

and an additional GTP molecule for translocation. Coupled to the cost of biogenesis of

the ribosomal machinery itself, protein synthesis is an energetically expensive process.

Not surprisingly, the regulation of translation is tightly linked to the nutrient and metabolic

state of the cell. mTORC1 plays an important role in regulating translation through its

substrates, S6K1 and 4E-BP1.

S6K1. S6 is a component of the 40S ribosomal subunit. Highly abundant in the

cell, it was the among the first serine-threonine phosphorylations shown to be regulated

by rapamycin (Chung et al., 1992; Kuo et al., 1992). The kinases for S6 were identified

through biochemical purification (Blenis et al., 1987; Price et al., 1989). There are two
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S6 Kinases, S6K1 and S6K2. S6K1 is additionally present in two splice isoforms (p70

and p85), one of which (p85) is present in the nucleus. p70 S6K1 was subsequently

shown to be a direct substrate of mTOR (Burnett et al., 1998; Isotani et al., 1999).

S6K is a member of the Protein Kinase A, G, and C (AGC) family of kinases.

Several AGC kinases, such as S6K, Akt, and SGK, are downstream of P13K (Pearce

et al., 2010). Phosphorylation of two AGC kinase sites is required for their activity.

The first, the activation loop or T-loop site, is phosphorylated by 3-phosphoinositide-

dependent protein kinase 1 (PDK1) (Mora et al., 2004). PDK1 is itself also an AGC

kinase. While the PDK1 sites are regulated by P13K and growth factor signaling, the

activity of PDK1 itself is not regulated. Rather, the regulation occurs at the level of

the substrate (Pearce et al., 2010). In the case of S6K, the phosphorylation of its

C-terminal hydrophobic motif by mTOR serves as a docking motif for PDK1. mTOR

phosphorylation of the T389 hydrophobic motif residue by mTORC1 is therefore

essential for S6K1 activity (Burnett et al., 1998).

S6K1 in turn regulates many substrates involved in translation. The

phosphorylation of the S6 subunit of the 40S ribosome had been correlated with active

translation initiation complexes (Duncan and McConkey, 1982; Thomas et al., 1982).

However, cells in which S6 is replaced with an S6 in which the phosphorylation sites

have been mutated to alanines, while smaller, did not have defects in global protein

synthesis or in the translation of a subset of 5' terminal oligopyrimidine tract mRNAs

described later in this section (Ruvinsky et al., 2005). Thus, despite being a highly

abundant phosphorylation event and a marker of mTORC1 and S6K1 activity, the

phosphorylation of S6 is of unclear significance.

S6K1, however, additionally regulates translation through several other

substrates. S6K1 binds and phosphorylates S6K1 Aly/REF-like target (SKAR) which

is present at the exon-junction complexes (Ma et al., 2008). Together, SKAR and S6K1

increase the efficiency of newly-spliced mRNAs. S6K1 also phosphorylates eIF4B which

is important for its ability to stimulate the translation initiation helicase eIF4A (Raught

et al., 2004). Programmed cell death protein 4 (PDCD4) is another S6K1 substrate,
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and it inhibits eIF4A (Dorrello et al., 2006). Phosphorylation by S6K1 leads to PDCD4

ubiquitination by SCF (PTRCP) and its proteasomal destruction. S6K1 also increases

translation elongation by phosphorylating elongation factor 2 kinase (eEF2K) (Wang et

al., 2001).

4E-BP1. In addition to S6K1, the other canonical mTORC1 substrates are the

elF-4E binding proteins (4E-BP1 and 4E-BP2) on which mTOR phosphorylates several

proline-directed sites (T37, T46, S65, T70) (Brunn et al., 1997b; Hara et al., 1997).

Phosphorylation of 4E-BP1 has been known to be rapamycin-sensitive (Beretta et al.,

1996). However, it is now appreciated that 4E-BP1 contains both rapamycin-sensitive

and -insensitive mTORC1 sites (Choo et al., 2008; Feldman et al., 2009; Thoreen et al.,

2009; Wang et al., 2005). T37 and 46 are rapamycin-insensitive and less well-regulated

by serum while S65 is rapamycin-sensitive and highly serum-regulated.

The translation of the majority of mRNAs is cap-dependent. The 5'7-methyl-

guanosine cap is recognized by the translation initiation factor eIF4E. eIF4E

subsequently recruits the scaffold protein eIF4G which in turn binds the poly-A binding

protein at the 3' end of the mRNA and leads to mRNA circularization (Ma and Blenis,

2009). The eIF4A RNA helicase is the third component of the eIF4F translation initiation

complex. The entire eIF4F complex must be assembled before the small ribosomal

subunit can be recruited and begin scanning. The 4E-BPs are negative regulators of

translation by binding the 7-methyl-GTP cap binding protein eIF4E, preventing it from

binding eIF4G and forming a translation-competent initiation complex (Haghighat et

al., 1995). Phosphorylation of the 4E-BPs releases eIF4E and allows it to incorporate

into eIF4F. Mice lacking both 4E-BP1 and 4E-BP2 are viable with increased cell size in

adipocytes (Le Bacquer et al., 2007). Recent work also suggests 4E-BP1 and 2 -null

cells do not have defects in cell size but have effects primarily on proliferation through

translational regulation of several pro-proliferative mRNAs encoded by the ornithine

decarboxylase (ODC), cyclin D3, and vascular endothelial growth factor (VEGF) genes

(Dowling et al., 201 0a).

mTORC1 has other effects on translation which are independent of S6K1 and the
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4E-BPs. While much of the support for this occurs in yeast, mammalian TOR increases

the production of ribosomes through regulating the activity and localization of the

regulatory protein TIF-1 A, which is a required cofactor for RNA polymerase I responsible

for the transcription of rRNA genes (Mayer et al., 2004).

Many mRNAs encoding ribosomal proteins or other components of the

translational machinery have a tract of oligopyrimidines in their 5' UTRs (Levy et al.,

1991). Rapamycin was shown to inhibit the translation of 5' terminal oligopyrimidine

tract (5' TOP) mRNAs, and this inhibition was thought to be a mechanism by which

mTOR regulated translation (Jefferies et al., 1994; Terada et al., 1994). However, the

mechanism by which mTOR regulates these mRNAs is unknown as 5' TOP mRNAs

are regulated in the absence of S6K and phosphorylateable S6 (Pende et al., 2004;

Ruvinsky et al., 2005).

mTORC1 and autophagy

Macroautophagy is the process by which organelles and cytosol are sequestered

in a double-membrane compartment, called the autophagosome, and then degraded

and recycled when the autophagosome fuses with the lysosome (Rabinowitz and White,

2010; Yang and Klionsky, 2010). Autophagosome formation is conserved from yeast to

mammalian cells and is orchestrated by several important complexes. The unc-51 -like

kinases (ULK1 and ULK1, equivalent to yeast Atgl p) are key regulators of autophagy

induction. Beclin-1 (yeast Atg6p) recruits VPS34 which produces phosphatidylinositol-

3-phosphate. Extension of the autophagosome involves two ubiquitin-like protein

conjugation systems with two ubiquitin-like proteins, Atgl 2 and LC3 (yeast ATG8). LC3

is cleaved, lipidated, and inserted into the autophagosome membrane, a key marker

for autophagy but a relatively late step in autophagy induction. The autophagosome

subsequently fuses with the lysosome to form the autolysosome resulting in degradation

and recycling of the macromolecules contained within. A basal level of autophagy

is important for cellular homeostasis, especially in the maintenance of terminally

differentiated cells. However, under conditions of starvation or stress, autophagy can be



Downstream functions: mTOR is the master regulator of cell growth

upregulated as an adaptive survival mechanism to provide a source of nutrients. While

TOR/mTOR has been known to be a negative regulator of autophagy (Rabinowitz and

White, 2010; Yang and Klionsky, 2010), its relevant substrates were not elucidated until

recently.

ULK1 and ATG13. In mammalian cells, ULK1, mammalian ATG13, and FAK

family kinase-inhibitory protein (FIP200) are in a complex with mTORC1 under nutrient

replete conditions (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009).

mTORC1 phosphorylates ULK1 and ATG13, resulting in inhibition of autophagosome

formation. Under starvation conditions, mTORC1 is released allowing for autophagy

to occur. While autophagy in mammalian cells has traditionally been probed with

rapamycin, mTOR catalytic domain inhibitors result in a stronger induction of autophagy

(Thoreen et al., 2009), suggesting that other rapamycin-insensitive mechanisms may

exist. The degradation of macromolecules in the autolysosomes leads to a reactivation

of mTOR which subsequently leads to a termination of autophagy and the reformation of

lysosomes (Yu et al., 2010).

mTORC1 and metabolism

In a cell-autonomous manner, mTOR senses the nutrient and energy status of

the cell and coordinates downstream processes accordingly. In multicellular organisms,

mTOR also has roles in whole-body sensing of nutrients and coordinates organismal

metabolism. While the molecular mechanisms involved are often unknown, the

physiological consequences can be quite profound.

In a transcriptional screen for metabolic regulators downstream of mTORC1, it

was found that mTORC1 hyperactivation led to increased processing of sterol regulatory

element-binding protein (SREBP1) which is a key regulator of lipid and cholesterol

biosynthesis and increased expression of genes involved in lipid metabolism (Duvel

et al., 2010). The increase in processed SREBP was dependent on the mTORC1

substrate S6K1. It has also been shown that regulation of SREBP1 is important for

cell growth by regulating the key enzymes in lipid synthesis, fatty acid synthase (FAS),
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acetyl-CoA carboxylase (ACC), and ATP citrate lyase (ACLY) (Porstmann et al., 2008).

SREBP1 knockdown resulted in decreased cell size, suggesting that mTORC1 also

regulates growth through its effects on lipid metabolism.

mTORC1 regulates mitochondrial respiration and biogenesis by modulating

the interaction between the transcription factor yin-yang 1 (YY1) with the peroxisome-

proliferator-activated receptor coactivator (PGC)-1 a (PGC-1 a) (Cunningham et

al., 2007). Conversely, the loss of raptor in muscle results in muscular dystrophy,

decreased oxidative capacity, and decreased expression of PGC-1 a transcript

(Bentzinger et al., 2008). Unlike in muscle where mTORC1 activates mitochondrial

respiration, in adipose tissue it seems to do the opposite. mTORC1 increases the

expression of the master regulator of adipogenesis, peroxisome-proliferator-activated

receptor y (PPARy) partly through both transcriptional and translational mechanisms

(Kim and Chen, 2004; Le Bacquer et al., 2007). TSC2-null MEFs exhibit increased

PPARy levels and increased adipogenic potential (Zhang et al., 2009). Adipose-specific

loss of mTORC1 results in decreased adipose tissue and resistance to diet-induced

obesity due to increased mitochondrial uncoupling and fatty acid oxidation (Polak et al.,

2008).

Just as mTOR initiates autophagy during periods of starvation, on an organismal

level, mTOR also initiates metabolic programs required for the fasting response. The

liver produces ketone bodies when glucose levels in the blood are low; these ketone

bodies are then used by many tissues. mTORC1 mediates this process by negatively

regulating peroxisome-proliferator-activated receptor a (PPARa) through effects on

nuclear coreceptor 1 (NCoR1) (Sengupta et al., 2011). NCoR1 is constitutively in the

nucleus in mice with liver-specific loss of TSC1, thereby inhibiting PPARa and resulting

in attenuated ketogenesis upon starvation. Mice with liver-specific loss of raptor have

the opposite phenotype with NCoR1 in the cytoplasm with constituitive activation of

ketone body production.

S6K1 negatively regulates P13K-Akt signaling. This signaling connection is

referred to as the negative feedback loop and will be discussed again later in this



Downstream functions: mTOR is the master regulator of cell growth

chapter as well as in subsequent chapters of this thesis. Mice null for S6K1 are resistant

to diet-induced obesity enhanced insulin sensitivity and increased insulin receptor

substrate (IRS) phosphorylation while TSC-null cells, conversely are insulin resistant

(Harrington et al., 2004; Shah et al., 2004; Um et al., 2004).

Finally, caloric restriction has been shown to extend lifespan in both lower and

higher eukaryotes, including S. cerevisiae (Kaeberlein et al., 2005; Powers et al., 2006),

C.elegans (Eguez et al., 2005; Jia et al., 2004; Vellai et al., 2003), D. melanogaster

(Bjedov et al., 2010; Kapahi et al., 2004) and most recently mice (Harrison et al., 2009).

The mechanism by which mTOR regulates lifespan in mice is under investigation, but

may involve different tissue-specific functions of mTOR signaling.

mTORC2 and cell proliferation, survival, and glucose metabolism

Yeast TORC2 regulates the actin cytoskeleton (Loewith et al., 2002). A

cytoskeletal role for mTORC2 was initially presumed, in concordance with its role in

yeast, and mTORC2 was thought to regulate PKCa (Sarbassov et al., 2004) or the

Rho GTPase pathway (Jacinto et al., 2004). However, mTORC2-null MEFs do not

have cytoskeletal defects (Guertin et al., 2006). Whether this discrepancy is due to the

cell type examined or the differences between acute knockdown and chronic loss is

unknown. However, more evidence has accumulated for mTORC2 having a key role in

cell survival and proliferation, by virtue of its regulating several important mediators of

these processes.

It was an investigation into a rapamycin-resistant version of S6K1 that led

to the subsequent identification of mTORC2 substrates (Ali and Sabatini, 2005)

(Fig. 5). When expressed in cells, a truncated form of S6K1 lacking its C-terminal

autoinhibitory domain and the N-terminal TOS motif is phosphorylated on its hydrophobic

motif. This phosphorylation, however, is no longer sensitive to rapamycin because it

is phosphorylated by "rapamycin-resistant" mTORC2. While the C-terminal domain

prevents mTORC2 from regulating the native S6K1 protein, it indicated that mTORC2

might phosphorylate other AGC kinases which possess a hydrophobic motif but lack this
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C-terminal extension. This finding also suggested that the two complexes may have

similar preferences for phosphoacceptor motifs but that the selectivity of substrates

between the complexes is due to extracatalytic factors.

Akt. As P13K and its counterpart PTEN are frequently mutated in cancers

and result in Akt hyperactivation (Faivre et al., 2006), Akt has been widely studied. Like

S6K, Akt is also an AGC kinase which must be phosphorylated on both its T-loop site

as well as its hydrophobic motif (HM) for full activation. Unlike S6K, however, it lacks a

C-terminal autoinhibitory domain. While the kinase which phosphorylated the activation

loop site had long been known to be PDK1, the kinase which phosphorylated the S473

hydrophobic motif residue, deemed "PDK2," was unknown, its identity controversial.

PDK1 (Balendran et al., 1999), Akt itself (Toker and Newton, 2000), DNA-PK (Feng et

al., 2004), and integrin-linked kinase (ILK) (Persad et al., 2001) had all been proposed

to be PDK2. However, several pieces of evidence suggested that none were the true

PDK2. Drosophila haveproper phosphorylation of the Akt HM despite not possessing a

DNA-PK homologue (Dore et al., 2004). DNA-PK-null mice, furthermore, do not have

defects in insulin signaling (Taccioli et al., 1998). PDK1-null cells also have proper HM

phosphorylation of Akt despite lacking T-loop phosphorylation (Williams et al., 2000).

The fact that mTORC2 could phosphorylate a truncated version of S6K (Ali and

Sabatini, 2005) suggested that it might phosphorylate other AGC kinases. mTORC2

was found to efficiently phosphorylate the HM of Akt in vitro while mTORC1 could

not (Sarbassov et al., 2005). Moreover, knockdown of mTORC2 in a variety of cell

types led to the elimination of S473 phosphorylation. Finally, in mice null for mTORC2

components and MEFs derived from those mice, Akt S473 phosphorylation was

completely absent (Guertin et al., 2006). The convergence of in vitro and in vivo data

proved that mTORC2 was PDK2. The importance of the finding was immediately

evident as it provided a marker for mTORC2 activity, tied mTORC2 to processes

regulated by Akt, and indicated that pharmacologic inhibition of mTORC2 might prove to

be an important anti-cancer strategy. In addition to the hydrophobic motif, mTORC2 may

also regulate turn motif phosphorylation of Akt (Facchinetti et al., 2008; ikenoue et al.,
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2008).

There are 3 Akt isoforms: Akt1, Akt2, and Akt3. Given its importance in cancer,

the specificity of Akt towards a specific phosphoacceptor motif, and the existence of an

antibody which recognizes this motif present in Akt substrates, many Akt substrates have

been identified (Manning and Cantley, 2007). These include many proteins involved in

the regulation of cell survival and metabolism. Akt regulates the cell survival regulators

MDM2 (Mayo and Donner, 2001; Zhou et al., 2001); FOXO1, 3A, and 4 (Brunet et al.,

1999); BAD (Datta et al., 1997; del Peso et al., 1997); and caspase 9 (Cardone et al.,

1998). Phosphorylation of FOXO3A retains it in the cytoplasm and prevents transcription

of pro-apoptotic genes (Brunet et al., 1999). Akt also negatively regulates TSC2, thereby

placing mTORC2 upstream of mTORC1 (Manning et al., 2002a).

Akt regulates nutrient uptake through the phosphorylation of AS1 60/TBC1 D4

which controls insulin-stimulated Glut4 translocation to the plasma membrane (Eguez

et al., 2005; Sano et al., 2003). Indeed, Akt plays an important role downstream of

insulin signaling by increasing glucose uptake from the membrane. Under conditions of

insulin resistance, Akt is not activated upon insulin or IGF, resulting in decreased glucose

uptake and hyperglycemia. Akt also inhibits glycogen synthase 3 P (GSK3P) and

thereby increases glycogen synthesis (Cross et al., 1995).

While TSC2 and GSK3P are considered bona fide targets of Akt, it was a great

surprise when loss of mTORC2 in mice and MEFs did not impair the phosphorylation of

those two substrates, while FOXO3A phosphorylation was severely impaired (Guertin

et al., 2006). One explanation for this finding is that residual T-loop phosphorylation by

PDK1 is sufficient to maintain enough activity to phosphorylate TSC2 and GSK33, but

not of FOXO3A T32.

SGK1. Serum- and glucocorticoid-induced protein kinase (SGK), of which

there are 3 isoforms, SGK1 -3, is another serum-regulated AGC kinase which is

phosphorylated by mTORC2 (Garcia-Martinez and Alessi, 2008). SGK regulates

the NEDD4-2 ubiquitin ligase which is responsible for the degradation of epithelial

sodium channels (ENaC) and thereby regulates sodium transport into epithelial cells
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(Debonneville et al., 2001).

The only other well-documented substrates unique to SGK are N-myc

downregulated 1 (NDRG1) and NDRG2. Interestingly, as the focus of later work

described in this thesis is on the identification of downstream substrates of mTOR,

it's worth briefly discussing how NDRG1 and 2 were identified to be SGK substrates.

The NDRG proteins were found as SGK substrates by kinase substrate tracking

and elucidation (KESTREL) in which cellular or tissue extracts are fractionated and

radioactive in vitro kinase assays are performed with related kinases (Murray et al.,

2004). To remove background phosphorylation, the extracts are first depleted of

ATP and the substrates separated from their endogenous kinases by ion-exchange

chromatography. By KESTREL, it was found that NDRG1 and 2 were substrates

of SGK1, but not Akt, and therefore good markers of SGK1 -specific activity. NDRG

is upregulated under stress (Shimono et al., 1999), upregulated with loss of N-myc

(Shimono et al., 1999), and mutated in Charcot-Marie-Tooth disease type 4D

(Kalaydjieva et al., 2000). However its molecular function is unknown.

SGK and Akt may share substrates. In mTORC2-null cells, Akt has residual

activity, presumably because it can still be recruited to the plasma membrane through its

PH domain and phosphorylated by PDK1 (Guertin et al., 2006). PDK1, however, does

not phosphorylate SGK1 in the absence of mTORC2 (Garcia-Martinez and Alessi, 2008),

suggesting that the hydrophobic motif phosphorylation recruits PDK1 by its PDK1 -

interacting fragment (PIF)-pocket, similar to S6K1. Therefore, in mTORC2-null cells

SGK activity is markedly reduced. These results may explain why TSC2 and GSK33 are

still phosphorylated in mTORC2-null MEFs as the residual Akt activity is sufficient to act

on these substrates. SGK, however, may instead be the main regulator of FOXO3A T32

phosphorylation, and therefore in the absence of SGK activity, FOXO3A phosphorylation

is then absent. Assessing the relative contributions of SGK and Akt in mTORC2

signaling is an area of great interest.

While little is known about the Protor components of mTORC2, it has recently

been shown that while Protor loss does not affect phosphorylation of Akt, Protor and
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Protor2 deficient cells have markedly diminished SGK phosphorylation, suggesting that

Protor is required for substrate selection by mTORC2 (Pearce et al., 2011).
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The pathway is complex: interconnected feedback loops

Adding to the complexity of the signaling is the fact that mTORC1 and mTORC2

are both upstream and downstream of each other, highlighting the importance of

coordinating cell growth and nutrient sensing with proliferation and growth factor

signaling. Given that one of the focuses of the work described later is the mechanism

by which mTORC1 inhibits PI3K-Akt signaling, several of the interconnections are

mentioned or briefly reiterated here.

Akt-TSC2

In a search for Akt substrates using a phosphomotif antibody recognizing

the AGC kinase motif (RXRXX(S*/T*)), it was found that a large molecular weight

protein was phosphorylated in response to growth factor inhibition and possessed a

site corresponding to the AGC motif (Manning et al., 2002a). Based on bioinformatic

predictions, the large protein was determined to be TSC2. While it had been known that

Akt activated S6K1, the mechanism had not been known. Therefore, PTEN loss, P13K

activation, or growth factor stimulation results in Akt activation, TSC2 inhibition, and

mTORC1 activation. Akt therefore activates cell growth in conjunction with its role in

inhibiting cell survival.

Akt-PRAS40-mTORC1

As described above, Akt phosphorylates the mTORC1 inhibitor PRAS40 and

thereby also activates mTORC1 directly (Kovacina et al., 2003).

S6K1 -IRS

There are 4 insulin receptor substrate proteins (IRS1 -4) (Taniguchi et al., 2006).

Upon insulin or IGF-1 stimulation, the insulin and IGF-1 receptors autophosphorylate

on tyrosine residues, recruiting the IRS proteins by their phosphotyrosine-binding (PTB)

domain. This recruitment allows for receptor phosphorylations on tyrosine residues
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which then results in recruitment of the p85 regulatory subunit of P13K (Taniguchi et

al., 2006). Active P13K then initiates a signaling cascade which leads to increased

phosphatidylinositol-3,4,5-triphosphate (PIP 3 ), Akt activation, and signal transduction

cascades downstream of the receptor.

While mTORC2 and its substrate Akt are upstream of mTORC1 through TSC2

and PRAS40 phosphorylation, mTORC1 is also upstream of mTORC2 via a negative

feedback loop first described in cells null for TSC1/2 (Harrington et al., 2004; Shah and

Hunter, 2006; Shah et al., 2004). TSC-null cells exhibit a profound insulin and IGF-1

resistance due to increased inhibitory phosphorylation of IRS1 on serines 302, 636, and

639 as well as decreased stability of IRS1 and IRS2 proteins, thereby preventing signal

transduction from the receptor to P13K. The phosphorylation and effects on stability

are thought to be mediated by S6K1, and in accordance with this hypothesis, mice

null for S6K1 have increased inhibitory phosphorylation of IRS1 on S307, S636, and

S639 and slightly increased IRS1 levels (Um et al., 2004). As a result, these mice are

resistant to diet-induced obesity and exhibit enhanced insulin sensitivity. A more detailed

investigation of this feedback loop is presented in the second part of the thesis work.

S6K1-mTORC2

Rictor has been shown to be phosphorylated on T1135 by S6K1 (Dibble et al.,

2009; Julien et al., 2010; Treins et al., 2010). While the phosphorylation does not affect

mTORC2 in vitro activity, mutation of the phosphorylation site in cells results in increased

Akt phosphorylation and regulates the binding of rictor to 14-3-3 proteins.

TSC2-mTORC2

While the TSC1/2 complex has canonically been considered a negative regulator

of mTORC1, it has been reported that TSC2 can directly bind mTORC2 and is required

for its activity (Huang et al., 2008). Mutations which retain GAP activity but still bind

mTORC2 may be important for separating out the functions of TSC2 towards the two

complexes.
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TSC-PDGFR

mTORC1 hyperactivation leads to platelet derived growth factor (PDGF) receptor

downregulation in cells null for TSC (Zhang et al., 2003a). Interestingly, however,

reintroduction of PDGFR expression leads to increased sensitivity of TSC null cells

not only to PDGF but also to insulin and serum. Reintroduction of the receptor also

increases the tumorigenicity of TSC null tumors which are normally indolent, presumably

due to repressed Akt signaling (Zhang et al., 2007).

DEPTOR

As described above, DEPTOR is an mTOR-binding protein which interacts with

both complexes (Peterson et al., 2009). While it is considered a negative regulator

of both complexes, its net effect in the cells is inhibition of mTORC1 with subsequent

disinhibition of P13K-Akt signaling and activation of mTORC2 through the proposed

feedback from mTORC1 and S6K to P13K-Akt. DEPTOR is not universally expressed

in different cell types (Peterson et al., 2009), and its expression may be predictive of the

level of feedback activities.
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Genetic hamartoma syndromes linked to the mTOR pathway

Genetic deregulation of mTOR-mediated growth control can result in several

hereditary hamartoma syndromes. The one most proximal to mTOR is the tuberous

sclerosis complex in which patients exhibit benign, yet still morbidity-causing, tubers in

the brain, kidney, lung, and heart (Crino et al., 2006). TSC patients are also predisposed

to angiomyolipomas and renal cell carcinomas. While the syndrome is autosomal

dominant and therefore the patients are germ-line heterozygous for TSC1 /2 loss of

function, the patients eventually gain a second mutated copy. The mutations can either

occur in TSC1, required for TSC2 stabilization, or TSC2, the active GTPase activating

protein (Crino et al., 2006; Jones et al., 1999). Some patients with tuberous sclerosis

complex develop lymphangiomyomatosis (LAM) (Muzykewicz et al., 2009). Affecting

mostly women, LAM is marked by cysts which destroy the lung parenchyma and an

infiltration of smooth muscle cells in the lung. The disease is fatal, and the cysts return

even upon lung transplantation. The "LAM" cell, the causative cell of origin, is elusive,

but as many LAM patients also have angiomyolipomas, one hypothesis is that LAM cells

may be derived from the angiomyolipoma and then metastasize to the lung (Yu and

Henske, 2010).

Other tumor suppressors upstream of mTOR also result in genetic hamartoma

syndromes associated with increased risk of cancer. Cowden disease is caused by

germline loss of PTEN and is marked by small hamartomas of the skin and epithelium

which are also largely benign, although patients can also develop breast, prostate,
and thyroid cancer (Krymskaya and Goncharova, 2009). Peutz-Jeghers is marked by

polyps which affect the small intestine (Krymskaya and Goncharova, 2009). It is caused

by mutations in LKB1, the kinase upstream of AMPK. Neurofibromatosis (also known

as von Recklinghausen disease) is a syndrome due to mutations in Neurofibromatosis

factor 1, NF1, which is the GAP for the Ras and is marked by aberrant outgrowths of

neural crest-derived cells, resulting in neurofibromas and aberrant pigmentation of
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the skin (McClatchey, 2007). Germline mutation of NF1 also results in an increased

likelihood of meningiomas and gliomas. Birt-Hogg-Dube syndrome is caused by

mutation in folliculin which leads to benign tumors of the hair follicles, cysts in both

lungs, and an increased likelihood of renal cell carcinoma (Menko et al., 2009). While its

molecular connection to mTOR is still unclear, the constellation of clinical manifestations

of folliculin loss places it securely in the mTOR pathway.

mTOR signaling is activated in spontaneous cancers

Given that loss of common tumor suppressors and activation of common

oncogenes can lead to increased flux through the mTOR pathway (Fig. 4), hyperactive

mTOR signaling and deregulated cell growth may be a frequent event in cancer (Faivre

et al., 2006; Menon and Manning, 2008). P13K and PTEN are commonly mutated

in cancers, with PTEN being the second-most frequently mutated tumor suppressor

besides p53. P13K and PTEN loss activate mTORC2 and Akt activity and lead to

TSC1/2 inhibition, and mTORC1 hyperactivation. Receptor tyrosine kinases are

frequently amplified or mutated, leading to downstream inhibition of TSC1/2. And

mutations in Ras and Raf are also common cancer-initiating events. LKB1 mutation in

cancers leads to reduced AMPK activation, thereby further increasing mTORC1 activity

through its effects on TSC1/2 as well as on raptor (Gwinn et al., 2008).

Deregulated mTOR signaling results in cell growth, cell survival, and proliferation

uncoupled from growth factors, nutrient, oxygen, or ATP levels. Translational control

downstream of mTORC1 also seems to be an important arm of oncogenic mTOR

signaling. eIF4E has emerged as an oncogene (Ruggero et al., 2004; Wendel et al.,

2004). Translational upregulation may be a common feature of many tumors and

phospho-4E-BP1 an adverse prognostic marker (Armengol et al., 2007). Inhibition of

the 4E-BPs is pro-proliferative (Dowling et al., 201 0a) and is important for tumorigenicity

(Petroulakis et al., 2009; She et al., 2010). Accordingly, overexpression of 4E-BP1 in an

Akt-driven lymphoma model resulted in reduction in tumor size, as did pharmacologic

inhibition of mTOR (Hsieh et al., 2010).



The role of mTOR in cancer

The effects of mTOR on angiogenesis is another way in which mTOR signaling

may promote tumor formation. mTOR increases the expression of hypoxia-inducible

factor-1 alpha (HIF-1alpha) (Duvel et al., 2010; Hudson et al., 2002; Thomas et al., 2006;

Zhong et al., 2000) which results in increased fitness under hypoxic conditions through

stimulation of angiogenesis and a metabolic switch to glycolysis.
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mTOR inhibitors

Rapalogs in clinical use

Owing to its unique mechanism of inhibition, rapamycin is one of the original

selective kinase inhibitors. Rapamycin analogs, also known as rapalogs, such

as RAD001 (everolimus) and CCI-779 (temsirolimus), are a mainstain of organ

transplantation pharmacotherapy (Yatscoff et al., 1993), and rapalogs are also widely

employed in drug-eluting stents to prevent restenosis of the opened artery (Wessely,

2010).

Rapalogs have also been used for the treatment of various aspects of tuberous

sclerosis complex or lymphangiomyomatosis. Rapamycin treatment resulted in a

regression of associated renal angiomyolipomas, although withdrawal of the rapamycin

led to a regrowth of the existing tumor (Bissler et al., 2008; Davies et al., 2008; Franz

et al., 2006). Encouragingly, LAM patients on rapamycin treatment experienced some

improvement in respiratory function that persisted after treatment was withdrawn (Bissler

et al., 2008). Everolimus has also been shown to be helpful in patients with tuberous

sclerosis complex with subependymal giant-cell astrocytomas (SEGA) with reduction in

volume and seizure frequency (Krueger et al., 2010). Rapalogs may present a viable

alternative to surgical resection of these tubers, the previous standard of care.

Rapalogs have now been in well over a hundred clinical trials for many

different spontaneous cancers, but have yielded disappointing results (Chiang and

Abraham, 2007; Dowling et al., 201 Ob; Faivre et al., 2006). One exception is the recent

approval of CCI-779 for renal cell carcinoma where it improved the survival of patients

with metastatic disease (Hudes et al., 2007). There are several reasons to explain

why rapalogs have not been more effective as anti-cancer agents despite mTOR

hyperactivation being fairly common in cancer. First, rapamycin does not fully inhibit

mTORC1 and all of its functions, including translation (Feldman et al., 2009; Thoreen et

al., 2009). Second, rapamycin does not always inhibit mTORC2, although it can prevent

mTORC2 assembly in different cell types (Sarbassov et al., 2006). And third, mTORC1
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inhibition can lead to activation of Akt by the aforementioned negative feedback

signaling.

Catalytic domain inhibitors of P13K and mTOR

Recently, ATP-competitive kinase domain inhibitors have been developed which

inhibit phosphorylation downstream of both complexes by inhibiting the mTOR kinase

itself (Chresta et al., 2010; Feldman et al., 2009; Garcia-Martinez et al., 2009; Thoreen

et al., 2009; Yu et al., 2009), and preliminary results indicate that they are more effective

than rapamycin at inhibiting tumorigenesis. The mTOR catalytic domain inhibitor PP242,

but not rapamycin, was effective in reducing tumor size in an Akt-driven lymphoma

model (Hsieh et al., 2010). PTEN-null xenografts (U87-MG) were inhibited profoundly

with mTOR inhibitor treatment (Chresta et al., 2010). And glioma cells in vitro and

glioma-derived xenografts in vivo were arrested by mTOR inhibitor treatment resulting in

prolonged survival (Liu et al., 2009).

Given the homology of mTOR to P13K, a class of mTOR inhibitors also inhibits

P13K (Fan et al., 2006; Maira et al., 2008). The advantage of such a compound is

that it also inhibits phosphorylations independent of the Akt/mTORC2 arm of signaling

downstream of P13K. As Akt still has residual activity even with genetic ablation of

mTORC2, these dual inhibitors may also inhibit Akt more profoundly (Guertin et al.,

2006). Rapamycin, PP242 (an mTOR inhibitor), and PI-103 (a dual P13K/mTOR

inhibitor) were compared in terms of their effects on Philadelphia chromosome

models of leukemia (Janes et al., 2010). PP242 caused leukemia cell death while

rapamycin did not and was more effective in vivo. Most surprisingly, PP242 was less

immunosuppressive than rapamycin, having less of an effect on normal hematopoietic

cells. Moreover, inhibition of P13K in addition to mTOR had much stronger

immunosuppressive effects on normal B and T cells compared to the mTOR inhibitors,

suggesting that some toxicity may arise with dual inhibitors.

Even though mTOR is hyperactivated in many tumor types, it is possible that

inhibition of mTOR results in cell death only in certain contexts. Just as EGFR mutations,
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rather than EGFR overexpression, can predict efficacy of EGFR inhibitors (Lynch et al.,

2004), genetic information may be used to predict clinical response to mTOR inhibitors.

A recent study of pancreatic neuroendocrine tumors (PanNET) and pancreatic ductal

adenocarcenomas (PDAC) found that the two tumor types harbored distinct sets of

mutations (Jiao et al., 2011). Interestingly, in PanNETS, mutations in mTOR pathway

genes were found in 14% of tumors and were uncommon in PDACs. These included

mutations in PTEN, PIK3CA, as well as TSC2. Ongoing sequencing of various tumors

may reveal a subset of cancers with a specific genetic signature which may prove to be

more sensitive to mTOR inhibitors.



Introduction to the work presented in this thesis

The emergence of mTOR kinase domain inhibitors has reenergized the field by

renewing hope in the clinical use of mTOR inhibitors as anti-cancer agents. Moreover,

rapamycin-resistant functions of mTOR can now be probed, and, as illustrated by the

work in this thesis, additional substrates can be systematically identified. Despite all

that is known about the upstream signaling to mTOR and the many ascribed functions

of the kinase, the number of well-characterized substrates remains surprisingly few.

The focus of the first part of this work is therefore a multi-pronged attempt to define the

mTOR-regulated phosphoproteome, candidate substrates of mTOR, and downstream

effector pathways. We find that mTOR regulates a majority of the insulin-stimulated

phosphoproteome and the phosphorylation of many proteins involved in aspects of cell

growth as well as in processes not previously linked to the pathway. These proteins may

serve as exciting starting points for new areas of investigation in mTOR biology.

The second part of the thesis is focused on the description of a novel mTORC1

substrate, Grbl0, and the clarification of the negative feedback loop between mTORC1

and P13K-Akt. We show that mTORC1 orchestrates inhibition of P13K through two

parallel signaling arms, one involving S6K1-IRS1 and the other involving Grb10.

mTORC1 inhibition results in both acute effects on Grb1O and IRS1 phosphorylation as

well as chronic effects on their stability. These changes in Grbl 0 and IRS protein levels

which occur with chronic mTOR inhibition are likely to be the most important aspect of

mTOR inhibitors to consider in their therapeutic use.
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Figure 1. The phosphatidylinositol-3 kinase-related kinase (PIKK) family. Members

of the PIKK family contain several conserved domains: FAT and FATC domains which

flank the kinase domain and a PIKK-regulatory domain. The FKBP12-rapamycin

complex binds the FRB domain of mTOR.
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Figures

Figure 2. mTOR phosphorylates two distinct motifs. mTOR phosphorylates proline-
directed sites present in substrates like 4E-BP1 and hydrophobic motifs present in

AGC family kinases. The numbering of the positions is relative to the central phospho-

acceptor serine or threonine.
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Figure 3. The core and accessory components, inhibitor sensitivity, upstream and

downstream regulation, and substrates of mTOR complex 1 and 2.
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Figure 4. An overview of the mTOR signaling pathway.
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Figure 5. mTORC1 phosphorylates S6K1 while mTORC2 phosphorylates Akt and
a rapamycin-resistant form of S6K1. mTORC1 is recruited to some substrates like

S6K1 by a TOR signaling (TOS) motif, allowing for its hydrophobic motif phosphorylation

on T389. mTORC2, however, cannot phosphorylate full-length S6K1 due to a

C-terminal autoinhibitory domain. Truncation of the C-terminal domain allows for

mTORC2 phosphorylation of S6K1 and deletion of the TOS motif prevents effective

phosphorylation by mTORC1, thereby generating a "rapamycin-resistant" form of S6K1

which is phosphorylated predominantly by mTORC2 in cells. Adapted from (Ali et al,

2005).
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Summary

The mTOR protein kinase is a master growth promoter that nucleates two

complexes, mTORC1 and mTORC2. Despite the diverse processes controlled

by mTOR, few substrates are known. In order to identify additional downstream

components of the mTOR signaling pathway, we adopted a tripartite approach. First,

we identified candidate AGC kinase substrates downstream of mTOR by immunoaffinity

phosphopeptide isolation coupled to semiquantitative mass spectrometry. Second, we

defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry with

isobaric mass tags. Third, we characterized the primary sequence motif specificity of

mTOR using positional scanning peptide libraries. Globally, mTOR inhibition mimics

serum starvation and results in the dephosphorylation of many proteins involved in

processes not previously linked to the pathway. Moreover, mTOR exhibits a preference

for proline, hydrophobic, and aromatic residues at the +1 position, unique among all

kinases previously profiled. We classified the mTOR regulated phosphorylation sites

as belonging to the mTORC1 or mTORC2 pathways and by motif as candidate direct

or indirect effectors. Our results implicate mTOR in an even broader array of biological

processes than presently appreciated and open new areas of investigation in mTOR

biology.



Introduction

The serine-threonine kinase mechanistic target of rapamycin (mTOR) is a

major controller of growth that is deregulated in cancer and diabetes (Laplante and

Sabatini, 2009; Zoncu et al., 2011). mTOR is the catalytic subunit of two multi-protein

complexes, mTORC1 and mTORC2. mTORC1 is activated by growth factors and

nutrients through a pathway that involves the tuberous sclerosis complex (TSC1 -TSC2)

tumor suppressors as well as the Rag and Rheb guanosine triphosphatases (GTPases).

mTORC1 phosphorylates the translational regulators S6 Kinase 1 (S6K1) and the elF-

4E binding proteins (4E-BP1 and 4E-BP2) while mTORC2 activates Akt and serum/

glucocorticoid regulated kinase 1 (SGK1) and is part of the growth factor-stimulated

phosphoinositide-3-kinase (P13K) pathway. Collectively, mTORC1 and mTORC2

regulate cell growth, proliferation, survival, autophagy, and glucose and lipid metabolism.

The few mTOR substrates with defined phosphorylation sites likely cannot

explain all processes under the control of mTOR (Laplante and Sabatini, 2009;

Zoncu et al., 2011). Several reasons exist as to why more substrates have not been

identified. First, mTOR only transiently interacts with several of its substrates, making

biochemical isolation of a stable kinase-substrate interaction difficult. Second, unlike

the other PIKK family kinases, or the AGC kinases downstream of mTOR, a consensus

phosphoacceptor motif is not known, such that phosphorylation sites cannot be predicted

to be, or excluded from being, mTOR-mediated. mTOR phosphorylates both the

hydrophobic motif (HM) on AGC kinases, as well as proline-directed sites on substrates

such as 4E-BP1 (Chapter 1, Fig. 2). Whether or not mTOR has any motif specificity is

an outstanding question. Finally, the biggest challenge to the identification of mTOR

substrates is that until recently it was not possible to acutely inhibit within cells all the

kinase-dependent functions of mTOR. The well-known drug rapamycin is an allosteric

inhibitor of mTOR that only inhibits a subset of mTORC1 -mediated phosphorylations

and at short treatment times does not inhibit mTORC2 (Choo et al., 2008; Feldman et
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al., 2009; Thoreen et al., 2009). Thus, the recent development of potent ATP-competitive

inhibitors of mTOR that block all known phosphorylations downstream of mTORC1 and

mTORC2 (Feldman et al., 2009; Garcia-Martinez et al., 2009; Thoreen et al., 2009; Yu

et al., 2009) has opened the door to a systematic investigation of the mTOR-regulated

phosphoproteome.

Here, we adopted a three-pronged approach to identify downstream effectors

of mTOR. First, we used semi-quantitative mass spectrometry and phosphospecific

motif antibody enrichment to identify proline-directed phosphorylation sites and AGC

kinase substrates downstream of mTOR. Second, we employed quantitative mass

spectrometry with isobaric mass tags to define the mTOR-regulated phosphoproteome

in cells in which mTOR signaling is hyperactivated and subsequently inhibited. Finally,
we defined the consensus mTOR phospho-acceptor motif by in vitro phosphorylation of

a positional scanning peptide library and used this motif to stratify the mTOR-regulated

sites by likelihood of direct phosphorylation by mTOR. We found that a majority of

insulin-stimulated phosphorylations are mTOR-dependent, that many Torin1-sensitive

phosphorylation sites are rapamycin-resistant, and that mTOR may regulate the

phosphorylation of proteins involved in processes not previously linked to it. Our results

indicate that many additional mTOR substrates exist, awaiting further characterization,

and may serve as starting points for new areas of investigation in mTOR biology.



Results and Discussion

Identification of AGC kinase substrates and proline-directed phosphorylations

downstream of mTOR by immunoaffinity phosphopeptide isolation

In contrast to phosphosite-specific antibodies that recognize a specific

phosphorylation site on a single protein substrate, phospho-motif antibodies are

broadly reactive against consensus phosphorylation motifs that appear in substrates

downstream of a kinase or kinase family (Zhang et al., 2002). Phosphopeptides can be

isolated from cell lysates using these motif antibodies, and their abundances estimated

across several conditions by semi-quantitative mass spectrometry (Rush et al., 2005;

Stokes et al., 2007). This strategy has been successfully employed to globally profile

signaling downstream of the PIKK family DNA-damage response kinases, ATM and ATR,

which phosphorylate a (S*/T*)Q motif (where X can be any amino acid, and * indicates a

phosphoacceptor residue) (Matsuoka et al., 2007; Stokes et al., 2007). More recently, a

similar approach has been used to profile AGC kinase substrates that are recognized by

a motif antibody against RXX(S*/T*), with minor selectivity for arginine at the -5 and -3

positions, downstream of activated growth factor receptors (Moritz et al., 2010). Given

that mTOR is known to activate several AGC kinases, including S6K1, Akt, SGK1, and

PKCa, as well as phosphorylate proline-directed sites, we adopted this method using the

same AGC kinase substrate antibody mentioned above (RXX(S*/T*)), and an antibody

recognizing a T*P motif.

Human embryonic kidney (HEK)-293E cells were deprived of serum and then

stimulated with insulin in the presence or absence of rapamycin or Torin1, a recently

developed ATP-competitive mTOR kinase domain inhibitor that blocks all known

phosphorylations downstream of mTORC1 and mTORC2 (Thoreen et al., 2009). Insulin

stimulates and Torin1 inhibits both mTORC1 and mTORC2, while rapamycin only

prevents a subset of mTORC1 -regulated phosphorylations. With the AGC kinase motif

antibody, we identified 90 phosphorylation sites on 40 proteins whose abundances were
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two-fold less under Torin1 treatment (log2(Torinl /Insulin) < -1) (Fig. 1). With the proline-

directed motif antibody, 84 sites on 45 proteins were two-fold less abundant with mTOR

inhibition (Fig. 2).

We identified several AGC kinase sites on well-known mTOR pathway

components, including the S6K1 substrates PDCD4 S67, Rictor T1 135, and S6 S235,

S236, S240, S244, the Akt substrates TBC1 D4/AS1 60 S588, T642 and AKT1 Si/
PRAS40 T246, and the SGK1 substrates NDRG1 T328, S330, T366 and NDRG2 T330,

S332 (Fig. 1). With T*P enrichment, we detected phosphorylated threonines including

sites on IRS2, a known downstream effector of mTOR, as well as a few proline-directed

serine phosphorylations such as S65 on the mTORC1 substrate 4E-BP1 (Fig. 2). In

addition, we detected several other proline-directed phosphorylations, a subset of which

could represent new mTOR substrates and require further characterization (Fig. 2).

While immunoaffinity isolation has certain advantages, including enrichment and

detection of lower abundance phosphorylations, the method has certain drawbacks.

First, it depends on the existence of a specific phospho-motif antibody, and on that

antibody recognizing an appropriate motif. Given that a consensus motif for mTOR

has not been defined, as we address later in this chapter, even a relatively nonspecific

antibody like the one recognizing T*P could still exclude many relevant phosphorylations.

The antibody, for example, does not recognize S*P as well, and while it is known that

mTOR can phosphorylate proline-directed sites, mTOR specificity at the +1 position

has never been determined, and thus the approach may fail to detect mTOR-mediated

phosphorylation sites which are not proline-directed. Moreover, while it is true that

several AGC kinases are activated by mTOR, other groups have already profiled many

of these phosphorylations with rapamycin (Moritz et al., 2010), and the AGC kinase

substrates detected by this method are one step removed from mTOR. Therefore,

we turned to a motif-agnostic, quantitative approach to identify novel downstream

substrates.



Results and Discussion

Identification of the mTOR-regulated phosphoproteome by quantitative mass

spectrometry

Taking a non-motif based approach to substrate identification, we conducted

a systematic investigation of the mTOR-regulated phosphoproteome using mass

spectrometry and isobaric tags that permit 4-way multiplexed relative quantification of

phosphopeptide abundances (iTRAQ) (Ross et al., 2004). With duplicate analyses for

each, we analyzed phosphopeptides from two sets of cells in which the pathway was

hyperactivated and then inhibited with Torin1, HEK-293E cells were deprived of serum

and then stimulated with insulin in the presence or absence of rapamycin or Torin1 (Fig.

3A). Wild-type (TSC2+'+) and TSC2-null (TSC2-'-) mouse embryonic fibroblasts (MEFs),

which have increased mTORC1 signaling, were also treated with or without Torin1

(Fig. 3A). Under these conditions, phosphorylation events known to be downstream of

mTORC1 (e.g. rapamycin-sensitive T389 S6K1 and rapamycin-insensitive T37 and T46

4E-BP1) and mTORC2 (e.g. S473 Akt, T246 PRAS40/AKT1 S1, T346 NDRG1) behaved

as expected (Fig. 3B).

Cells were lysed in urea and digested, peptides labeled with iTRAQ reagent,

phosphopeptides nitrilotriacetic (NTA)-Fe3+ enriched based on their charge, and analyzed

by liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) with the

iTRAQ reporter ion intensity values used to determine phosphopeptide abundance. By

this method, we detected many phosphorylations whose abundances were affected by

mTOR inhibition. From the HEK-293E cells, we identified 4256 unique phosphopeptides

corresponding to 47 phosphotyrosine and 4204 phosphoserine-threonine sites on 1661

distinct proteins (FDR ~1%, Fig. 3C). Using a cutoff of 2.5 median absolute deviations

(MADs) below the median log2(Torinl/Insulin ratio) (robust z-score < -2.5), 127

phosphopeptides from 93 proteins were identified as sensitive to Torin1 and designated

as mTOR-regulated (Fig. 3C). From the MEFs, 7299 unique phosphopeptides

corresponding to 110 phosphotyrosine and 7145 phosphoserine-threonine sites on 2406

distinct proteins were identified (FDR~1%, Fig 3D), of which 231 phosphopeptides from

174 proteins were regulated by mTOR (-2.5 MAD, log2(TSC2-'- Torin1/TSC2-'-vehicle)
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(Fig. 3D). By this -2.5 MAD cutoff for both the HEK-293E and MEF datasets, the mTOR-

regulated sites were highly enriched in canonical mTOR pathway phosphorylations

(Fisher's exact test p-value = 5.2 x 1024 and 6.5 x 1023, respectively; Fig. 3C, 3D), an

indication of the predictive potential of the data to identify mTOR pathway components.

We also identified sites on known mTOR substrates with less well-characterized sites

(CAP-GLY domain containing linker protein 1 (CLIP1) S1158 (Choi et al., 2002), Unc-

51 like kinase 1 (ULK1) S638 (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al.,

2009), and insulin receptor substrate 2 (IRS2) S616 (Shah et al., 2004)). Additionally,

several of the proteins detected as mTOR-regulated by immunoaffinity phosphopeptide

enrichment were also detected by iTRAQ in either one of the datasets to contain Torin1 -

sensitive sites: ACLY, AKAP1 2, 4E-BP1, FOXK2, HIRIP3, IRS2, KIAA0528, MAP1 B,

MDC1, MYCBP2, NDRG1, PDCD4, PRAS40, REPS1, RPS6, STX7, TCF12, and TMPO.

Pathway analysis of the candidate mTOR-regulated proteins revealed enrichment

(FDR < 10%) in the mTOR signaling pathway (KEGG 04150) and processes known

to be downstream of mTOR, such as translation (GO:0006417), regulation of cell size

(GO:0008361), and aging (GO:0007568) as well as some not generally considered to

be under mTOR control. These include RNA splicing (GO:0008380), DNA replication

(GO:0006260), vesicle-mediated transport (GO:001 6192), and regulation of mRNA

processing bodies (GO:0000932), signifying a broader role for mTOR signaling than

presently appreciated.

Torin1 mimics serum deprivation and is a more complete inhibitor than rapamycin

Global comparisons of the iTRAQ datasets revealed several interesting features.

In the HEK-293E cells, phosphorylation changes resulting from Torin1 treatment were

strikingly similar to those observed under serum deprivation (Spearman's p = 0.66,

p-value ~ 0, Fig. 4A), revealing that insulin-regulated phosphorylations (both down- and

up-) are largely mTOR-dependent. mTORC2 pathway phosphorylations, moreover,

were better inhibited by serum deprivation than by Torin1 treatment while T37 and T46

phosphorylation on 4E-BP1 and 4E-BP2 were the opposite (Fig. 3B, 4A). The effects
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of rapamycin and Torin1 treatment were similar (Spearman's p = 0.48, p-value ~ 0,

Fig. 4B), but a subset of Torin1 -sensitive sites were not rapamycin-sensitive (upper left

quadrant, Fig. 4B), including T37 and T46 of 4E-BP1 and 4E-BP2 (Choo et al., 2008;

Feldman et al., 2009; Thoreen et al., 2009) and the mTORC2-mediated S472 Akt3

and S330 NDRG1. These results suggest that mTOR kinase domain inhibitors may

be more effective clinically than rapamycin analogs due to their greater ability to mimic

serum deprivation and also confirm that substrates may have been missed previously

in an era when rapamycin was the sole mTOR inhibitor available. Analysis of the MEF

dataset revealed that phosphoryations that increase with TSC2 loss are more likely to be

inhibited by Torin1 (Spearman's p = -0.25, p-value = 1.4 x 10-130) (Fig. 4C).

Hierarchical clustering of the conditions and sorting of the phosphopeptide

abundances in the HEK-293E cells also verified the similarity between serum

starvation and Torin1 treatment (Fig. 5) and our ability to discriminate between known

rapamycin-sensitive (top, Fig. 5) and -insensitive (bottom, Fig. 5) sites and showed that

phosphorylations that are rapamycin-sensitive tend to be inhibited to a greater extent by

Torin1 treatment than those that are not (Fig. 5).

Definition of a consensus mTOR phospho-acceptor motif

As the mTOR-regulated sites may be phosphorylated by mTOR or by

downstream kinases we sought to distinguish direct substrates from indirect effectors

by determining a consensus phospho-acceptor motif for mTOR. It is unknown if the

kinase exhibits any motif specificity or if the choice of sites is entirely determined by

factors beyond the primary substrate sequence (e.g. docking interactions, auxiliary

scaffolding proteins, subcellular colocalization). How mTOR can phosphorylate the

hydrophobic motifs of the AGC kinases as well as the quite distinct proline-directed

sites of proteins such as 4E-BP1 and 4E-BP2 (Chapter 1, Fig. 2) is an outstanding

mystery. A nonpolar pocket present in the substrate binding site of other proline-

directed kinases and phosphatases interacts with the +1 proline but cannot satisfy the

hydrogen-bonding requirement of the amide nitrogen in other amino acids (Brown et



Chapter 2 : Characterization of the mTOR-regulated phosphoproteome

al., 1999; Gray et al., 2003). Proline-directed specificity should therefore be mutually

exclusive with hydrophobic motif specificity. Moreover, even within the AGC kinase HM,
it is unclear whether certain residues present within the motif are required by mTOR for

phosphorylation or are simply structural components of AGC kinases (Chapter 1, Fig.

2) (Gold et al., 2006). As alluded to earlier, this lack of knowledge regarding substrate

preference has partially impeded the discovery of additional mTOR substrates.

To date, a phosphorylation motif for mTOR has not been determined because

previous attempts to phosphorylate peptides with mTOR have not been successful. We

found that when combined with its activator, GTP-bound Rheb, highly pure and intact

mTORC1 (Yip et al., 2010) robustly phosphorylated an arrayed positional scanning

peptide library (PSPL), a collection of peptides in which one position is fixed to a

specific amino acid relative to a central phosphoacceptor serine or threonine and all

other positions in the peptides are randomized (Hutti et al., 2004) (Fig. 6A). Although

mTORC1 and mTORC2 phosphorylate distinct sets of substrates, they are likely to have

similar phospho-acceptor preferences because they share the same catalytic domain. A

case in point is that mTORC2 can phosphorylate the HM of truncation mutants of S6K1

(Ali and Sabatini, 2005), suggesting that its inactivity towards full length S6K1 is a result

of structural constraints in the intact protein rather than an inability to recognize the

HM of S6K1. This unbiased assay revealed that mTOR possesses selectivity towards

peptide substrates concordant with known mTOR sites (Chapter 1, Fig. 2; this chapter,

Fig. 6A-C), primarily at the +1 position at which mTOR prefers proline, hydrophobic (L,

V), and aromatic residues (F, W, Y). We detected minor selectivity at other positions,

including glycine at the -1, hydrophobic residues at the -5, and prolines at the -1 and -2

positions (Fig. 6A-C). mTOR also phosphorylates serines in a specific register, indicating

a preference to act on serines spaced two apart (-2, +2) (Fig. 6A). This pattern of

specificity, especially at the +1 position, is unique amongst all kinases previously profiled

by this method (Mok et al., 2010).

These data suggest that mTOR inherently prefers proline residues and are less

consistent with mTOR activating a proline-directed kinase or regulating a proline-directed
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phosphatase (Alessi et al., 2009). These findings also indicate that within the HM of the

AGC kinases (Chapter 1, Fig. 2) the -4 and -1 hydrophobic residues are dispensable for

mTOR recognition and rather are required for AGC kinase function. Indeed, other AGC

kinases (e.g. PKA) have truncated hydrophobic motifs lacking the phosphorylatable and

following +1 hydrophobic residue but still have hydrophobic residues in the -4 and -1

position. Structural information will be required to resolve how mTOR can phosphorylate

two very distinct motifs and more detailed biochemical characterization with model

peptides will be helpful in determining whether the consensus motif represents only one

motif or a conflation of two or more.

Classification of the mTOR-regulated phosphoproteome

Combining our approaches, we classified the mTOR-regulated phosphorylation

sites as determined by iTRAQ, first by rapamycin sensitivity (HEK-293E -2.5 MAD

log 2 (Rapamycin/insulin) or by increased phosphorylation in cells lacking TSC2 (MEFs,

+2.5 MAD log2(TSC2-' vehicle/TSC2+'+ vehicle) (Fig. 7, 8). Rapamycin-sensitive sites

or those upregulated in TSC2-'- cells are likely mTORC1 -regulated while the remaining

could be downstream of either complex. Second, we scored the sites by motif into

the following categories: (1) candidate direct mTOR sites as scored by the Scansite

algorithm using a scoring matrix derived from the quanititation of our in vitro PSPL

results (Obenauer et al., 2003), (2) candidate AGC kinase substrates containing an (R/K)

X(R/K)XX(S*/T*) sequence, or (3) mTOR-regulated but by an undetermined mechanism

(Fig. 7, 8).

Of the 127 phoshopeptides regulated by mTOR in HEK-293E cells, only 34

met the cut-off for rapamycin sensitivity and are likely mTORC1 -phosphorylated, while

the remaining could be downstream of either complex. 20 and 16 phosphopeptides

contained putative mTOR and AGC kinase phosphorylation sites, respectively (Fig. 7).

In the MEFs, 25 of the mTOR-regulated phosphopeptides were confidently upregulated

in TSC2-null MEFs compared to wild-type cells, and 47 and 34 of the mTOR-regulated

phosphopeptides matched the consensus mTOR and AGC kinase motifs, respectively
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(Fig. 8).

Several candidate mTOR substrates implicate mTOR in new aspects of growth

control. For example, the molecular mechanisms through which mTORC1 regulates

autophagy remain unclear. WD repeat domain, phosphoinositide interacting 2 (WIPI2)

(Fig. 8), a sparsely characterized orthologue of the yeast Atg18p, is a potential mTOR

substrate and recent work suggests it is required for early events in autophagosome

formation (Poison et al., 2010). We also found the translation initiation factor eIF4G1

to be a candidate mTOR substrate (Fig. 8). Others have previously shown that eIF4G1

depletion strongly phenocopies nutrient deprivation or raptor loss and result in induction

of autophagy, and that mTORC1 can phosphorylate eIF4G1 directly (Ramirez-Valle

et al., 2008). Their and our data indicate that mTOR may control translation through

the regulation of multiple components. In addition, the candidate substrates protein

associated with topoisomerase 11 homolog 1 (PATL1) (Fig. 7, 8) and La ribonucleoprotein

domain family member 1 (LARP1) (Fig. 7, 8) bind RNA, localize to P-bodies, and control

mRNA stability (Nykamp et al., 2008; Parker and Sheth, 2007). A recent proteomic

effort identified yeast Patip phosphorylation as rapamycin-sensitive in yeast (Huber

et al., 2009), and Patip deficient yeast do not repress mRNA translation upon amino

acid withdrawal (Coller and Parker, 2005), suggesting that the regulation of mRNA

degradation may be important for mTOR-dependent growth control.

Other potential substrates point to nascent, clinically-relevant areas of mTOR

biology. mTOR putatively regulates the phosphorylation of Nestin (Fig. 8), the AP-1

transcription factor c-Jun (Fig. 8), and forkhead box K1 (FoxK1) (Fig. 8). While little is

known about the function of the intermediate filament protein Nestin, it is widely used

as a marker of neural stem cells (Singh et al., 2004). c-Jun is a pleiotropic transcription

factor involved in proliferation, apoptosis, and responses to hypoxia and is thought to

play a role in various cancers (Rowe et al., 2010; Shaulian, 2010). FoxK1 expression is

greatly enriched in myogenic stem cells, and mice lacking FoxK1 have impaired satellite

cell function and muscle atrophy (Garry et al., 2000).

These and other candidate substrates may prompt future work into the role of
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mTOR in cellular processes in which it has not yet been implicated and open new areas

of investigation in mTOR biology. In the following chapter, we describe the detailed

molecular characterization of one of the candidate substrates identified by these

phosphoproteomic approaches.
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Figure 1. Immunoaffinity phosphopeptide isolation and semi-quantitative mass

spectrometry identifies RXX(S*/T*) sites regulated by mTOR.

HEK-293E cells were deprived of serum for 4 hrs, treated with 100 nM rapamycin, 250

nM Torin1, or vehicle control for 1 hr, and then stimulated with 150 nM insulin for 20 min.

Phosphopeptide enrichment with a phospho-motif antibody recognizing RXX(S*/T*) with

minor preferences for R in the -5 and -3 positions was followed by semi-quantitative

mass spectrometry to determine those phosphopeptides whose abundances decreased

upon Torin1 treatment. Those phosphorylation sites whose log2(Torinl/Insulin) were

less than -1 are shown here. The relevant log2(ratios) and known mTOR-regulated

proteins are all indicated.
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Figure 2. Immunoaffinity phosphopeptide isolation and semi-quantitative mass

spectrometry identifies T*P sites regulated by mTOR.

HEK-293E cells were deprived of serum for 4 hrs, treated with 100 nM rapamycin, 250

nM Torin1, or vehicle control for 1 hr, and then stimulated with 150 nM insulin for 20

min. Phosphopeptide enrichment with a phospho-motif antibody recognizing T*P was

followed by semi-quantitative mass spectrometry to determine those phosphopeptides

whose abundances decreased upon Torin1 treatment. Those phosphorylation sites

whose log2(Torinl/Insulin) were less than -1 are shown here. The relevant log2(ratios)

and known mTOR-regulated proteins are all indicated.
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Figure 3. Identification of the mTOR-regulated phosphoproteome by quantitative

mass spectrometry with isobaric mass tags.

(A) Phosphopeptide abundances were determined using isobaric tags for relative and

absolute quantitation (iTRAQ) from two sets of samples: HEK-293E cells serum starved

for 4 hrs, treated with 100 nM rapamycin, 250 nM Torin1, or vehicle control for 1 hr, and

then stimulated with 150 nM insulin for 20 min and TSC2+'+ and TSC2-' MEFs treated

with 100 nM Torin1 or vehicle control for 1 hr. (B) Cells treated as in (A) were analyzed

by immunoblotting. (C and D) Distributions of robust z-scores (median absolute

deviations (MADs) away from the median (C) log2(Torinl/Insulin) for HEK-293Es or (D)

log2(TSC2-- Torin1/TSC2-'- vehicle) for MEFs). p-values associated with enrichment for

known mTOR-modulated sites among the -2.5 MAD Torin1 -sensitive phosphopeptides

were determined by Fisher's exact test. Phosphopeptides detected in both replicates

had to meet the -2.5 MAD threshold both times to be considered mTOR-regulated.
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Figure 4. Correspondence between Torin1 treatment and serum deprivation,

rapamycin treatment, or TSC2 loss.

Correspondence between (A) Torin1 treatment and serum deprivation in HEK-

293Es, (B) Torin1 and rapamycin treatment in HEK-293Es, and (C) Torin1 treatment

and upregulation in TSC2' MEFs. The relevant robust z-scores for both replicates,

phosphopeptides corresponding to known mTOR-modulated sites, Spearman's rank

correlation coefficient (p), and associated p-values are indicated. Outliers were excluded

to aid in visualization.
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Figure 5. Visualization of the phosphopeptide abundances for the HEK-293E

mTOR-regulated phosphopeptides.

Heat map visualization of the robust z-scores for the HEK-293E mTOR-regulated

phosphopeptides reveals the similarity between serum starvation and Torin1 treatment,

the ability to differentiate rapamycin-sensitive from -insensitive sites, and the greater

extent of inhibition of rapamycin-sensitive phosphorylation sites with Torin1. Conditions

were hierarchically clustered while phosphopeptides were sorted based on rapamycin-

sensitivity. Yellow indicates positive z-scores, and blue indicates negative z-scores.

Those z-scores less than -10 were binned together as one color for ease of visualization.

Known mTOR-modulated sites are indicated.



Chapter 2 : Characterization of the mTOR-regulated phosphoproteome

Figure 6

K I H G F E D C A V R Q P N M L Y W T S

B K I H G FE D C AV R Q P NM L Y W
-5 -1. -06 -12 -0.4 2.9 -0.1 -2.4 1.1 -1.6 -1.1 -2. -1.1 0.4 -1.7 -1.6 1.3 3.9 5.9

-4 -0.8 -0.6 -1.0 -1.7 -0.1 -1.9 -1.1 -0.2 0.0 0.3 -1.1 -0.8 2.0 0.9 0.6 1.3 2.4 1.8

-3 -1.3 -0.3 -1.6 0.0 1.0 -0.4 -0.4 0.0 -0.8 -1.7 0.1 0.0 0.9 1.9 0.9 0.0 2.6 -0.9

-2 -2.0 -0.9 4.6 0.9 -2.8 -1.4 -0.8 4.8 3.3 1.5 0.0 3.6 1.5 -0.2 1.5 -0.3 -1.7

-1 0.7 7.9 0.9 0.2 -0.1 -0.9 0.4 -1.4 -0.8 3.8 3.2 2.8 0.7 -. -6

+1 -115 -1 -0.4 5.8 1.9 11.4 5.8 10.0

+2 12 -3.0 3.4 0.1 0.4 0.1 0.4 -2.1 -0.9 -0.2 1.3 -0.8 2.0 1.0 0.6 -0.9 -1.1 -1,4

+3 -1.1 -07 0.7 -5 1.8 -1.0 -0.1 -2.1 -0.9 -0.5 0.4 -1.1 1.2 2.5 0.7 -0.3 -0.1 0.8

+4 -2.4 -09 0.5 -0.8 0.1 -0.6 -2.5 -0.2 -0.8 -0.1 1.4 -0.5 2.1 0.3 0.9 0.1 3.2 0.2

selected

deselected

small/nonpolar
AVFPMILW
acidic
DE
basic
RHK
polar
STYCNGQ

F
P
Lw

I~ F0=WV

-5 -4 -3 -2 -1 @ +1 +2 +3 +4

T



Figures

Figure 6. Definition of a consensus mTOR motif by positional scanning peptide

libraries.

(A) In vitro phosphorylation of a positional scanning peptide library (PSPL) with mTORC1

purified from HEK-293T cells stably expressing FLAG-raptor in the presence of Rheb

and radiolabeled ATP. Each reaction consists of a mixture of biotinylated peptides

containing one fixed residue relative to the central phospho-acceptor and other residues

randomized. Aliquots of each reaction were spotted onto a streptavidin membrane and

developed by Phosphorlmaging. The scan was pseudo-colored to aid in visualization.

The numbering of the positions is relative to the central phospho-acceptor serine or

threonine. (B) The position-specific scoring matrix (PSSM) resulting from quantification

of the in vitro phosphorylation of a PSPL by mTORC1. (C) The visualized mTOR

consensus motif. Letter height is proportional to the PSSM score. Only those selected

residues with scores greater than a standard deviation from the average PSSM score

within a row are shown.
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Figures

Figure 7. Classification of the mTOR-regulated phosphopeptides in HEK-293E

cells.

Classification of the mTOR-regulated phosphopeptides in HEK-293E cells organized by

rapamycin sensitivity (-2.5 MAD (1092 (Rapamycin/Insulin), consistency with the mTOR

motif (5th percentile by Scansite) or presence of an AGC motif ((R/K)X(R/K)XX(S*/T*).

The numbers before the slash represent the number of unique phosphopeptides while

the numbers after the slash represent the number of unique proteins represented by

those phosphopeptides within each category. The phosphorylation sites present in the

phosphopeptides and the known mTOR-modulated proteins detected as Torin1 -sensitive

are indicated to the right.
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Figures

Figure 8. Classification of the mTOR-regulated phosphopeptides in MEFs.

Classification of the mTOR-regulated phosphopeptides in MEFs organized by

upregulation in the absence of TSC2 (+2.5 MAD log2(TSC2-'- vehicle/TSC2+'+vehicle),

consistency with the mTOR motif (5 th percentile by Scansite) or presence of an AGC

motif ((R/K)X(R/K)XX(S*/T*). The numbers before the slash represent the number

of unique phosphopeptides while the numbers after the slash represent the number

of unique proteins represented by those phosphopeptides within each category. The

phosphorylation sites present in the phosphopeptides and the known mTOR-modulated

proteins detected as Torin1 -sensitive are indicated to the right.
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Materials and Methods

Materials

Reagents were obtained from the following sources: antibodies to

phospho-S2481 mTOR, phospho-T389 S6K1, phospho-S235/S236 S6, phospho-T37/

T46 4E-BP1, phospho-S65 4E-BP1, phosho-T308 Akt, phospho-S473 Akt, phospho-T24/

T32 FOXO1/3a, phospho-T246 PRAS40, phospho-T346 NDRG1, Akt from Cell

Signaling Technology; an antibody to mouse Grbl0 and HRP-labeled anti-mouse

and anti-rabbit secondary antibodies from Santa Cruz Biotechnology; L-glutathione,

FLAG M2 affinity gel, ATP, insulin from Sigma-Aldrich; [y- 32P]ATP from Perkin-Elmer;

FuGENE 6, PhosSTOP, and Complete Protease Cocktail from Roche; rapamycin from

LC Laboratories, DMEM from SAFC Biosciences; Inactivated Fetal Calf Serum (IFS),

Superose 6 10/300 GL and HiLoad 16/60 Superdex 200 from GE Healthcare; BCA

assay reagent, protein G-sepharose and immobilized glutathione beads from Pierce; and

Whatman grade P81 ion exchange chromtagraphy paper from Fisher Scientific. Torin1

was provided by Nathanael Gray (Harvard Medical School) (Thoreen et al., 2009).

Cell lines and tissue culture

All cells (HEK-293E, MEFs) were cultured in DMEM with 10% IFS and antibiotics.

HEK-293Es were generously provided by John Blenis (Harvard Medical School), TSC2+'+

p53-'- and TSC2-'- p53-'- MEFs by David Kwiatkowski (Harvard Medical School).

Immunoaffinity isolation and semi-quantitative mass spectrometry

Actively proliferating HEK-293E cells were serum starved for 4 hrs, treated with

100 nM rapamycin, 250 nM Torin1, or DMSO for 1 hr, stimulated with 150 nM insulin

for 20 minutes, and then lysed. Phosphopeptide enrichment using motif antibodies

(#9614 and T*P), LC-MS/MS, and semiquantitative data collection were described
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previously (Moritz et al., 2010; Stokes et al., 2007). The T*P dataset was analyzed

twice. Abundance estimates for phosphorylation sites detected multiple times on either

the same or different peptides were averaged.

Quantitative mass spectrometry

Cell lysis and protein digestion: Actively proliferating HEK-293E cells were serum

starved for 4 hrs, treated with 100 nM rapamycin, 250 nM Torin1, or DMSO for 1 hr,

stimulated with 150 nM insulin for 20 minutes, and then lysed. Actively proliferating

MEFs in fresh media were treated with 1OOnM Torin1 or DMSO for 1 hr and then lysed.

Cells were lysed with 8M urea, 20mM HEPES pH 8.0, 1 mM sodium orthovanadate,

2.5mM pyrophosphate, and 1 mM glycerophosphate. Protein concentration was

determined using the BCA assay. Proteins were reduced with 10 mM dithiothreitol for

30 min at 560C, then alkylated with 55 mM iodoacetamide for 1 hr at room temperature

in the dark. Cell lysates were diluted to a final urea concentration of 1.6M with 50 mM

ammonium bicarbonate, and digested with trypsin (substrate:enzyme = 50) at 370C

overnight with end-over-end rotation. The resulting peptide solutions were acidified with

10% TFA, and desalted on a Waters C18 solid phase extraction plate. Eluted peptides

were divided into -100ug aliquots, lyophilized to complete dryness, and stored at -800C

until needed.

iTRAQ labeling: For both samples, duplicates were performed such that peptides

were independently labeled and analyzed by LC-MS/MS twice. Desalted peptides

(400pg or 800ug in total) were labeled with iTRAQ (Ross et al., 2004) 4plex or 8plex

reagents according to the manufacturer's instructions. Briefly, 100 pg aliquots of dried

peptides were reconstituted with 30 pL 0.5 M triethylammonium bicarbonate. One tube

of iTRAQ reagent (114, 115, 116, or 117 for 4plex, 113, 114, 115, 116, 117, 118, 119,

or 121 for 8plex) was reconstituted with 70 pL ethanol (4plex) or 50pl of isopropanol

(8plex), and added to each peptide solution. The reaction was allowed to proceed for

1 hr (4plex) or 2 hr (8plex) at room temperature. Derivatized peptides were combined,
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dried by vacuum centrifugation, and desalted on a Waters C1 8 solid phase extraction

plate. iTRAQ labeled peptides were lyophilized to complete dryness and stored at

-800C until needed. The MEF samples were labeled with iTRAQ 4plex reagent (TSC2+'+

Vehicle: 114; TSC2+'+Torin1: 115; TSC2- Vehicle: 116; TSC2-/- Torin1: 117). The HEK-

293E samples were labeled with iTRAQ 8plex (Starved: 113; Insulin: 114; Torin: 117 or

115 for the first and second replicates, respectively; Rapamycin: 118) with the remaining

channels used for other analyses not discussed here.

Phosphopeptide enrichment: Magnetic Ni-NTA agarose beads (100 pL of a 5%

bead suspension/400 pg tryptic peptides) were treated with 400 pL of 100 mM EDTA,

pH 8.0 to remove Ni(II). NTA-agarose beads were then charged with 200 pL of 100

mM aqueous FeC13 solution (Ficarro et al., 2009). Beads were washed 4x with 400 pL

80% acetonitrile/0.1 % TFA to remove excess metal ions. iTRAQ labeled peptides were

reconstituted with 80% MeCN/0. 1 % TFA at a concentration of 1-2 pg/pL, were then

mixed with the beads. The mixture was incubated for 30 min at room temperature with

end-over-end rotation. After removing the supernatant, beads were washed 3x with 400

pL 80% acetonitrile/0.1% TFA, and 1x with 400ul of 0.01% acetic acid. Phosphopeptides

were eluted with 50 pL of 20 mM ammonium formate buffer pH 10.

LC-MS/MS analysis: Enriched phosphopeptides were separated into 40 fractions

by high-pH reversed phase and strong anion exchange chromatography, respectively,

followed by low-pH reversed phase LC-MS/MS on a QSTAR Elite (AB Sciex, Foster City,

CA) hybrid quadrupole time-of-flight mass spectrometer. The spectrometer was operated

in data-dependent mode with dynamic exclusion. A precursor was selected for MS/MS

when its signal intensity was at least 50 counts, and its charge state is 2+, 3+ or 4+. Up

to 5 most abundant precursors in each MS scan could be selected for MS/MS, and then

excluded for 20 sec. The MS/MS scan was acquired for 0.5 sec with a multiplier value of

4.
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Data processing: MS/MS spectra from each acquisition were extracted and

converted into .mgf files, and then searched against NCBI mouse and human RefSeq

databases (downloaded June 2008) using Mascot. Precursor and product ion tolerances

were set at 200ppm and 0.2 Da respectively. Search parameters included tyrpsin

specificity with up to 2 missed cleavages, fixed carbamidomethylation on cysteine, fixed

iTRAQ modification on N-terminus and lysine (8plex for HEK-293E, 4plex for MEF),

variable deamidation on asparagine and glutamine, variable oxidation on methionine

and variable phosphorylation on serine, threonine and tyrosine. The search results

were further collated using our Multiplierz software framework (Askenazi et al., 2009;

Parikh et al., 2009) for peptides above a mascot score cutoff of 25, corresponding to a

FDR of -1 %. iTRAQ reporter ion intensities were extracted and corrected for isotope

impurities. Results from multiple fractions were combined for each sample. iTRAQ

reporter ion signals were summed for each unique phosphopeptide. A small aliquot from

the supernatant of phosphopeptide enrichment was also analyzed for each sample.

The intensity values of iTRAQ reporter ion were summed for each channel across all

identified peptides, and were used to correct for minor variation in source protein amount

in each labeled sample.

Hit identification: The following log2(ratios) were calculated based on the

corrected ion intensities: (Starved/Insulin), (Rapamycin/Insulin), (Torin1 /Insulin) for HEK-

293E samples and (TSC2+'+ Torin1 / TSC2+'' vehicle), (TSC2-' vehicle/ TSC2+'' vehicle),
and (TSC2-1- Torin1/ TSC2-'- vehicle) for the MEF samples. The binary logarithms were

then median centered and median absolute deviation (MAD) scaled separately for each

technical replicate. The mTOR-regulated phosphopeptides ("hits") were those with a

robust z-score (MADs away from the median) of at least -2.5 in log2(Torinl/Insulin) or

log2(TSC2-'- Torin1 / TSC2-/- vehicle). Those phosphopeptides detected in both replicates

had to score below the threshold both times in order to be counted among the regulated

phosphopeptides. The phosphopeptides which qualified as "rapamycin-sensitive" or

"TSC2-upregulated" were those whose log2(Rapamycin/insulin) or (TSC2-'- vehicle/
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TSC2+'+ vehicle) met the -2.5 MAD or +2.5 MAD cutoffs, respectively. Enrichment of

control peptides was determined using Fisher's Exact Test and a list of well-accepted

mTOR pathway phosphorylation sites which were detected in the datasets (Table Si).

Correlation of features was measured using Spearman's rank correlation coefficient and

significance was tested using a p test. p-values ~ 0 are lower than the smallest number

able to be represented computationally.

Heat map visualization: The HEK-293E mTOR-regulated phosphopeptides were

sorted based on their log2(Rapamycin/insulin) robust z-score and negative outliers were

set to -10 in the heatmap for improved visualization. Conditions were clustered using

complete-linkage hierarchical clustering with the Euclidian distance metric. Statistical

analyses and data processing were performed in R 2.11.1 and Bioperl 1.6 (Stajich et al.,

2002).

Pathway analysis: Enrichment was determined at the protein level by collapsing

the mTOR-regulated phosphopeptides at the -2 MAD cutoff from both datasets into

gene symbols. Analysis was performed using DAVID (Huang da et al., 2009a, b), and

SPPIRKEYWORDS, the GO FAT categories, Interpro domains, and Biocarta and

KEGG pathways. Terms were defined as enriched if they contained at least 2 hits from

the screen and had p-values < 0.01 and a FDR < 10%.

Positional scanning peptide library screening

PSPL screening: mTORC1 purification from HEK-293T cells stably expressing

FLAG-raptor and Rheb purification from transiently transfected HEK-293T cells were

performed as described previously (Sancak et al., 2007; Yip et al.). PSPL screening

was done according to the published protocol (Hutti et al., 2004) with the final reaction

conditions as follows: 20 mM HEPES, pH 7.4, 10 mM MgCl 2, 4 mM MnCI 2, 1 mM DTT,

50 ng Rheb, 150 ng mTORC1, 50 pM biotinylated peptides, 50 pM ATP, 2 pCi [y- 32P]ATP.

Each reaction consists of purified mTORC1, Rheb, radiolabeled ATP, and a mixture of
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peptides containing one fixed residue relative to the central phospho-acceptor and other

residues randomized. After incubating for 6 hrs. at 30*C, aliquots of the reactions were

spotted onto streptavidin membrane and analyzed by Phosphorlmaging.

Data analysis: A position specific scoring matrix (PSSM) was generated based

on the normalized average intensities of the spots in the PSPL plot. A PSSM entry Si for

residue i in position j was calculated using the formula

I) -Ij
Si] =e

where Ii. is the normalized average intensity of the spot for residue i in position j, Ii
is the mean of the average normalized intensities in position j, and sj is the standard

deviation of the average normalized intensities in position j. The Scansite algorithm was

used to predict likely mTOR phospho-acceptor sites (Obenauer et al., 2003). Confidence

thresholds for predictions were set based on the 0.2nd, 1.5th, and 5th percentile of

the empiric score distributions of all serine and threonine sites in NCBI human and

mouse RefSeq databases (downloaded June 2008). This setting corresponds to high,

medium, and low stringency, respectively, in the standard Scansite configuration. For

the classification of the mTOR-regulated phosphopeptides, those phosphopeptides

containing sites whose Scansite scores were below the 5th percentile were considered as

possessing a putative mTOR motif. AGC kinase motifs were determined by querying the

sites for an (R/K)X(R/K)XX(S*/T*) sequence.
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Summary

The mTORC1 serine-threonine kinase is a master regulator of cell growth

and metabolism that phosphorylates the translational regulators, S6K1 and 4E-BP1.

Cells without the TSC1 or TSC2 tumor suppressors exhibit hyperactive mTORC1 and

repressed P13K-Akt signaling. This connection from mTORC1 to Akt is referred to as

the negative feedback loop, and its most well-accepted mechanism is the inhibitory

phosphorylation by S6K1 of insulin-receptor substrate 1 (IRS1), leading to IRS1

destabilization. Here, we identify the adaptor protein and negative regulator of growth

factor signaling Grb1 0 as a direct mTORC1 substrate that mediates the inhibition of

P13K typical of cells lacking TSC2 without affecting inhibitory phosphorylation of IRS1 or

IRS1 protein levels. mTORC1 phosphorylation positively regulates Grb1O function and

stability. Therefore, mTORC1 activates and stabilizes Grb10 while also inhibiting and

destabilizing the IRS proteins. These findings clarify the nature of feedback inhibition to

PI3K-Akt and confirm the primacy of mTORC1 in regulating growth factor signaling.
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Introduction

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved

serine-threonine kinase which regulates a diverse array of cellular processes, including

cell growth, translation, autophagy, proliferation, cell survival, and metabolism (Laplante

and Sabatini, 2009; Zoncu et al., 2011). mTOR is the catalytic subunit of two distinct

complexes, mTOR complex 1 (mTORC1) and mTORC2. Prototypical mTORC1

substrates include the translational regulators, elF4E-binding protein 1 (4E-BP1) and

ribosomal S6 Kinase 1 (S6K1) while mTORC2 phosphorylates Akt and serum and

glucocorticoid-regulated kinase 1 (SGK1). Both complexes are regulated by growth

factors while mTORC1 additionally senses amino acids, hypoxia, and energetic stress.

Most of the signals to mTORC1 are integrated by the hamartin-tuberin complex, TSC1/2,

which is a heterodimeric GTPase activating protein (GAP) for Ras homolog enriched in

brain (Rheb), a direct activator of mTORC1.

Small molecules derived from rapamycin, an allosteric mTORC1 inhibitor, have

been in many trials for anti-cancer uses. However, several explanations exist as to

why rapamycin analogs have been disappointing clinically. First, while mTORC1 was

traditionally considered the "rapamycin-sensitive" complex, it is now appreciated that

rapamycin does not inhibit all phosphorylations downstream of mTORC1 (Choo et

al., 2008; Feldman et al., 2009; Thoreen et al., 2009). Moreover, rapamycin at short

treatment times does not inhibit mTORC2 (Jacinto et al., 2004; Sarbassov et al., 2004;

Sarbassov et al., 2006). And perhaps most importantly, mTORC1 inhibition leads

to feedback activation of the PI3K-Akt pathway which may promote cell survival and

proliferation (Efeyan and Sabatini, 2010).

The most well-accepted mechanism by which mTORC1 inhibits P13K is the

phosphorylation of IRS1 on inhibitory serine sites by S6K1 leading to a destabilization

of the protein and inhibition of signal transduction from the insulin and IGF-1 receptors

to Akt (Harrington et al., 2004; Shah et al., 2004). S6K1-null mice are resistant to
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diet-induced obesity and exhibit enhanced insulin sensitivity due to disinhibition of this

negative feedback signaling and decreased inhibitory phosphorylation of IRS1 (Um

et al., 2004). Akt phosphorylation has been shown to be activated in clinical tumor

samples treated with rapamycin alone (Faivre et al., 2006; O'Reilly et al., 2006), and

the addition of either Akt or IGF1 R inhibition has shown to sensitize cells to rapamycin

(O'Reilly et al., 2006; Sun et al., 2005; Takeuchi et al., 2005; Wan et al., 2007). A

detailed molecular understanding of the signaling between mTORC1 and P13K could

potentially lead to more targeted use of rapamycin mono- or combination therapy.

Here, we identify Grb1 0 as a direct substrate of mTORC1 which, similar to 4E-

BP1, contains both rapamycin-sensitive and -insensitive mTOR phosphorylation sites.

Grb1 0 is important for the inhibition of growth factor signaling typical of cells with loss

of TSC2 and phosphorylation is required for both its function and its stability. Grb1 0

inhibition of Akt is independent of effects on IRS1 serine phosphorylation or protein

levels. We propose that S6K1-IRS1 and Grb10 comprise two parallel arms of feedback

inhibition of Pl3K-Akt signaling, both orchestrated by mTORC1.
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Grb1O phosphorylation is regulated in an mTORC1-dependent manner

In a phosphoproteomic screen to identify new downstream effectors of mTOR,

one candidate mTOR substrate was the adaptor protein growth-receptor bound protein

10 (Grbl 0) (Chapter 2, Fig. 8). By quantitative mass spectrometry with isobaric mass

tags (iTRAQ), the abundance of a Grbl 0 phosphopeptide with sites consistent with the

consensus mTOR motif defined by positional scanning peptide library screening was

increased in the absence of TSC2 and decreased after Torin1 treatment in both wild-type

(TSC2+/+) and TSC2-null (TSC2-/-) mouse embryonic fibroblasts (MEFs) (Chapter 2,

Fig. 8), patterns consistent with being in the mTORC1 pathway.

Conserved among vertebrates, Grbl 0 is an adaptor protein which negatively

regulates growth factor signaling (Holt and Siddle, 2005). Grbl0 is related by sequence

and function to two other adaptor proteins, Grb7 and Grb14. While Grb10 was originally

identified as an EGF receptor binding protein (Ooi et al., 1995) and can bind a variety

of growth factor receptors, the interaction between Grbl0 and the insulin and IGF-1

receptors seems to be the strongest as well as the most well-characterized (Holt and

Siddle, 2005).

Grb7, Grbl0, and Grbl4 all share the same domain structure. The N-terminal

proline-rich domain contains motifs corresponding to the minimal consensus for SH3

domain binding (Fig. 2C). Two proteins, Grb10 interacting GYF protein 1 (GYGYF1)

and GIGYF2, bind the proline-rich domain of Grbl0, but the functional consequence of

this interaction is unknown (Giovannone et al., 2003). Grbl0 also contains a putative

pleckstrin homology (PH) domain and Ras-binding domain, but the lipids and small

G-proteins bound by Grb10 in the cell have not been characterized. The SH2 domain of

Grbl 0 is important for its binding of phosphorylated tyrosine residues on the activated

insulin and IGF-1 receptor (Hansen et al., 1996). Uniquely shared by only Grb7, Grb10,

and Grbl4 (Kasus-Jacobi et al., 1998), the between PH and SH2 domain (BPS) of
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Grbl0 contributes to receptor binding (He et al., 1998).

In both mouse and human cells, Grbl 0 is expressed as multiple isoforms which

mostly differ in their N-termini as a result of alternative splicing or translation initiation.

(Holt and Siddle, 2005). The functional differences between isoforms are not known.

With the exception of the human isoform b which is missing a small portion of the PH

domain, all mouse and human Grbl0 proteins contain the aforementioned domains.

Grbl 0 mRNA expression is highest in insulin-responsive tissues. In the adult mouse,

Grbl 0 is expressed most highly in skeletal muscle, adipose tissue, heart, and kidney

(Laviola et al., 1997; Ooi et al., 1995). Human Grbl0 mRNA is highly expressed in

skeletal muscle, and pancreas, cardiac muscle, and brain (Frantz et al., 1997; Liu and

Roth, 1995; O'Neill et al., 1996).

Mice without Grbl0 are larger and exhibit enhanced insulin sensitivity

(Charalambous et al., 2003; Smith et al., 2007; Wang et al., 2007a). Although the E3

ubiquitin ligase neural precursor cell expressed, developmentally down-regulated 4

(Nedd4) does not directly ubiquitinate Grbl0 (Morrione et al., 1999), Nedd4-null mice

have more Grbl0 protein and are insulin- and IGF-resistant, a signaling phenotype

reminiscent of cells lacking TSC1 or TSC2 (Cao et al., 2008). Therefore, we speculated

that Grbl 0 might function downstream of mTORC1 to inhibit P13K-Akt signaling.

In SDS-PAGE analyses, Grbl0 exhibited an insulin-stimulated mobility shift that

is partially sensitive to rapamycin (Fig. 1A), mirroring the mobility shift in the mTORC1

substrate, 4E-BP1. In vitro phosphatase treatment eliminated the shift, as did Torin1,

indicating that the shift results from phosphorylation and is dependent on mTOR activity

(Fig. 1 A, 1 B). Amino acids stimulated Grbl 0 phosphorylation and were required for

the serum-dependent phosphorylation of Grbl 0, 4E-BP1, and S6K1 but not of Akt (Fig.

1C). Moreover, in TSC2-/- MEFs, Grbl0 phosphorylation was retained in the absence

of serum but lost upon acute rapamycin and Torin1 treatment (Fig. 1 D). TSC2-null

cells also have more Grbl0 protein, an observation elaborated upon later. These data

point to mTORC1, but not mTORC2, as the main regulator of Grbl 0. Consistent with

this conclusion, the loss of rictor, a core component of mTORC2, did not affect Grbl0
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phosphorylation (Fig. 1 E, 1 F).

Grb10 is an mTORC1 substrate with rapamycin-sensitive and -insensitive sites

In cells lacking S6K1 and S6K2, Grbl0 was still regulated in an mTOR-

dependent manner (Fig. 2A), suggesting that it might be a direct substrate. Indeed,

Grbl 0 was phosphorylated in vitro by mTORC1 to an extent comparable with known

substrates (Fig. 2B).

The sites regulated by mTOR in vitro were mapped by mass spectrometry

primarily to S476 and secondarily to T155 and S428 (Fig. 2D), and the sites regulated

in cells were mapped to S104, S150, S428, and S476 (Fig. 2E). In cells, all identified

sites were Torin1 -sensitive, while S476 was also rapamycin-sensitive (Fig. 2E). Grbl 0

is therefore similar to 4E-BP1, an mTORC1 substrate with both rapamycin-sensitive

and -insensitive sites (Fig. 2F). These sites are located either in or near the N-terminal

proline-rich region or the BPS domain of Grbl 0 (Fig. 2C). Grbl 0 is highly related

both at the primary sequence level and functionally to Grb14. However, the only

phosphorylation site conserved between Grbl0 and the related Grbl4 is S428, and

preliminary data suggests that Grb14 is not regulated in an mTOR-dependent manner

(Peggy Hsu, unpublished data).

We verified our characterization of these sites with phospho-specific antibodies

against S150, S428, and S476 (Fig. 2G), which confirmed their Torin1 -sensitivity and

the rapamycin-sensitivity of S476. Mutation of all identified sites along with a few

neighboring residues (9A mutant) eliminated the mobility shift (Fig. 2H), indicating that

most if not all mTOR-regulated sites were localized.

Grb10 mediates the insulin and IGF-1 resistance of cells with TSC2 loss

mTORC1 inhibits Pl3K-Akt signaling, but the molecular connections involved

are poorly understood. One mechanism is the destabilization of insulin receptor

substrate 1 (IRS1) by S6K1 phosphorylation (Harrington et al., 2004; Shah et al., 2004).

However, other mechanisms likely exist because loss of raptor, an essential mTORC1
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component, in S6K1 -/-S6K2-/- cells still activated Akt phosphorylation without affecting

IRS1 abundance (Fig. 3A). Therefore, we tested whether mTORC1 might also inhibit

the P13K pathway through Grbl 0. Consistent with this possibility, the shRNA-mediated

knockdown of Grbl0 in HEK-293E and HeLa cells boosted Akt phosphorylation (Fig. 3B,

3C). This boost was increased with rapamycin treatment and, to a lesser extent, with

S6K inhibition (Pearce et al., 2010), suggesting that Grbl 0 is important for feedback but

that other mTOR-dependent mechanisms are also at play. In all cells tested, the Grbl 0

knockdown caused a stronger boost in Akt phosphorylation than the S6K inhibitor alone,

suggesting that the contribution of Grbl0 in feedback signaling is at least as important

as that of S6K (Fig. 3B, 3C, unpublished data). Moreover, rapamycin treatment had an

equal or greater effect than the S6K inhibitor, confirming that mTORC1 also mediates

feedback inhibition through an S6K-independent component (Fig. 3B, 3C).

We then examined signaling in TSC2-null cells, which, due to mTORC1

hyperactivity, are sensitized to changes in feedback inhibition. At baseline, cells

without TSC2 are insulin and IGF-1 resistant (Harrington et al., 2004; Shah et al.,

2004). Strikingly, loss of Grbl 0 in TSC2-/- MEFs also restored insulin sensitivity to Akt

phosphorylation without affecting total IRS1 levels or the phosphorylation of S636 and

S639 on IRS1, thereby acting independently of known feedback mechanisms (Fig. 3D).

While in TSC2-/- cells Grb1O suppression or acute rapamycin treatment each did not

rescue insulin signaling to the same level as in wild-type cells, the two in combination

approximated the wild-type level of Akt activation (Fig. 3E). This restoration in growth

factor sensitivity also applied to increased autophosphorylation of the insulin and IGF

receptors, Erkl/2 activation, and IGF-1, but not EGF or PDGF, stimulation (Fig. 3F, 3G).

Finally, suppression of Grb1O also increased tyrosine phosphorylation of IRS1 and IRS2

and p85 P13K recruitment by IRS, again independently of IRS protein levels (Fig. 3H).

Grb1O phosphorylation is important for its function

To examine the importance of the mTOR phosphorylation sites of Grbl 0

on feedback signaling to Akt, we generated TSC2-null cells in which we replaced
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endogenous Grbl0 with wild-type Grbl0 or mutants lacking the phosphorylation sites.

Compared to cells expressing wild-type Grb1O, cells expressing an equivalent amount

of non-phosphorylatable Grbl 0 had increased Akt phosphorylation, confirming that

mTORC1 phosphorylation is necessary for its inhibitory function (Fig. 4A).

Given that some of the mTOR sites are located in the BPS domain important for

binding to the activated insulin and IGF-1 receptors (He et al., 1998), we asked if Grbl0

phosphorylation was important for this interaction. In cell lines overexpressing either

the insulin or the IGF-1 receptor, we found that, consistent with the literature, growth

factor stimulation increased binding of Grbl 0 to the receptors, presumably by inducing

autophosphorylation of the receptors on tyrosine residues and recruitment of Grbl 0 by

its SH2 domain (Fig. 4B). However, this interaction was not regulated by mTOR activity

(Fig. 4B). We also found that Grb1O was both membrane associated and diffusely

cytoplasmic, but we did not appreciate a significant change in Grbl 0 localization either

with growth factor stimulation or with Torin1 treatment (Nora Kory, unpublished data).

mTORC1 positively regulates the stability of Grb10

Although we were not able to pinpoint the exact mechanism by which

phosphorylation regulates Grb1 0 function, we also suspected that mTORC1 -mediated

phosphorylation of Grbl 0 might affect its stability. We found that the more sites we

mutated to alanine, the more lentiviral expression construct was required to achieve

expression levels equivalent to the wild-type protein. Grb1 0 is also highly abundant

in the TSC2-/- cells with hyperactive mTORC1 signaling (Fig. 5A), and chronic mTOR

inhibition decreased Grbl 0 protein abundance (Fig. 1D, 5B) without significantly

affecting mRNA levels (Fig. 5B). Indeed, determination of Grb1 0 half-life by pulse-chase

experiments revealed at least a two-fold decrease (~12 hrs. to ~5 hrs.) in stability with

either mTOR inhibitor treatment (Fig. 5C) or mutation of the mTOR sites to alanines (Fig.

5D). Proteasome inhibition (Fig. 5E), suppression of Nedd4 (Fig. 5F), or phosphomimetic

mutation of the mTOR sites (Fig. 5G) rescued the decrease in Grbl 0 protein caused by

mTOR inhibition. Therefore, mTORC1 inhibits and destabilizes IRS1 and simultaneously
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activates and stabilizes Grb1 0.

We compared the acute and chronic effects of the S6K1 inhibitor PF-4708671,

rapamycin, and Torin1 treatment on Akt activation in TSC2-null cells. We serum

deprived cells for either one or 24 hours in the presence of the inhibitors and then

stimulated with 100 nM insulin for 15 minutes. After acute treatment, we found that the

S6K inhibitor caused inhibition of S302 phosphorylation but did not have effects on S636

and S639 on IRS1 and, as expected, had no effect on Grb10 phosphorylation (Fig. 6).

Rapamycin inhibited S302, S636, and S639 phosphorylation on IRS1 as well as S476

on Grb10 and rescued Akt activation to a greater extent than the S6K inhibitor. Torin1

treatment prevented phosphorylation of all the aforementioned sites as well as S1 50

on Grbl 0 but Akt phosphorylation was still inhibited due to its effects on hydrophobic

motif phosphorylation. At longer treatment times, rapamycin and Torin1 led to effects

on Grb10 and IRS levels (Grb10 being destabilized, IRS1 and IRS2 stabilized) while

S6K inhibition, in accordance with similar results reported by Pearce et al., 2010, did

not (Fig. 6). These effects on IRS and Grb10 stability caused by mTOR inhibition

were correlated with full rescue in insulin sensitivity of TSC2-null cells comparable to

the extent of Akt activation in wild-type cells. With chronic treatment of Torin1, despite

residual inhibition of S473 phosphorylation of Akt, T308 phosphorylation was rescued

presumably due to disinhibition of the negative feedback loop and incomplete inhibition

of mTORC2 chronically, similar to the effects of DEPTOR overexpression (Fig. 6)

(Peterson et al., 2009). Collectively, these results establish the primacy of mTORC1

itself in mediating feedback inhibition of P13K-Akt through several parallel signaling arms

involving S6K-IRS and Grb10.

mTORC1 may regulate the trafficking of growth factor receptors through Grbl0

While it is now well established that Grbl 0 is a negative regulator of growth

factor signaling, no consensus exists in the literature as to the mechanism of Grbl 0

action. One proposed mechanism is that Grbl 0 directly inhibits the kinase activity of the

receptor (Stein et al., 2001). Another is that Grbl0 prevents recruitment of IRS proteins
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to the receptor (Wick et al., 2003). A third mechanism is that Grbl 0 binds the ubiquitin

ligase Nedd4 which then subsequently targets the receptor for degradation (Vecchione

et al., 2003). A fourth mechanism is that Grbl 0 regulates the trafficking of the receptor

in a Nedd4-dependent mechanism (Monami et al., 2008; Vecchione et al., 2003).

Several of these mechanisms may be occurring simultaneously. We detected

modest increases in receptor autophosphorylation upon Grbl 0 loss, consistent with

Grbl 0 affecting the catalytic activity of the receptor (Fig. 3F). While we did not directly

examine IRS recruitment to the receptor, as described above, tyrosine phosphorylation

of IRS1 and IRS2 as well as consequent p85 P13K activation were increased upon

Grbl 0 loss, not inconsistent with Grbl 0 perhaps affecting the recruitment and

phosphorylation of receptor substrates (Fig. 3H). We did not however detect any

significant changes in insulin or IGF-1 receptor levels upon Grbi 0 suppression (Fig. 3F).

Nedd4 is a ubiquitin ligase originally thought to be responsible for PTEN

degradation (Trotman et al., 2007; Wang et al., 2007b). Nedd4-null mice exhibit severe

growth retardation and perinatal lethality (Cao et al., 2008). Nedd4-/- MEFs, similar

to MEFs null for TSC1 or TSC2, are resistant to insulin and IGF-1 stimulation with

decreased Akt T308 and S473 phosphorylation, IGF-1 R autophosphorylation, and

tyrosine phosphorylation of IRS-1. When the authors examined the levels of several

putative Nedd4 targets, including PTEN, they also saw no differences between wild-

type and Nedd4-null cells, with the exception of Grbl0 whose protein levels were highly

elevated. Of note, while Grb10 had previously been shown to bind Nedd4, it was

determined not to be directly ubiquitinated by it (Morrione et al., 1999). Moreover, even

though total receptor levels were similar to wild-type cells, Nedd4-/- MEFs had less

IGF-1 R at the cell surface. Finally, the perinatal lethality of the Nedd4-/- mice could be

reversed with loss of one allele of Grb1 0, suggesting that Grbi 0 is the key growth factor

signaling molecule downstream of Nedd4.

While TSC1 or TSC2 loss results in mTORC1 hyperactivation and overgrowth,

rather than growth retardation, the PI3K-Akt signaling and insulin/IGF-1 resistance of

TSC-null cells resembles that of Nedd4-null cells, with both perturbations correlated with
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elevated levels of Grbl0 protein. And in both TSC and Nedd4 loss, Grbl0 suppression

rescued growth factor signaling. Given the similarities, we wondered if the insulin or

IGF-1 receptors might also be mislocalized in the TSC2-/- MEFs as they had been in the

Nedd4-/- MEFs.

We biotinylated cell surface proteins and found that, while wild-type and TSC2
null cells both expressed similar levels of IGF-1 receptor, in TSC2-/- cells, the receptor

was not at the plasma membrane (Fig. 7A). Surface localization was rescued either with

rapamycin treatment or suppression of Grb1 0 (Fig. 7A), conditions which also lead to

reactivation of Akt phosphorylation (Fig 3E).

As an alternative method to assess the amount of receptor at the surface, we

modified a protease protection assay, taking advantage of the fact that the P chain of

the IGF-1 receptor is 627 amino acids, 195 of which are extracellular. We kept either

wild-type or TSC2-null cells on ice and treated the cells with Proteinase K. As the

antibody to the @ chain recognizes the intracellular domain, protease cleavage resulted

in a -20 kDa molecular weight shift in wild-type cells while the intracellular domain

was protected (Fig. 7B). The IGF-1 receptor is initially synthesized as one long chain

which is subsequently cleaved into an a and P chain. The precursor IGF1 R protein

was protected from the protease, as was S6K1 (Fig. 7B). Treatment of the cells with

detergent led to increased access of the protease to intracellular compartments and

degradation of the mature @ chain, the pro-IGF1 R, and S6K1 (Fig. 7B). Interestingly, in

cells without TSC2, a fraction of the receptors was resistant to cleavage, suggesting that

some of it is protected within the cell (Fig. 7B).

While these preliminary data suggest that mTORC1 may regulate the trafficking

of insulin and IGF-1 receptors through Grb1 0 and that mTORC1 hyperactivation may

result in a sequestration of receptors inside the cell, thereby partially explaining the

insulin and IGF-1 resistance of TSC-null cells, additional experimental verification is

required.
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These results confirm the importance of the mTORC1 pathway in regulating

growth factor signaling and clarify the nature of the feedback loop to Pl3K-Akt. While

acute mTORC1 inhibition leads to dephosphorylation of IRS1 and Grbl0, chronic

mTORC1 inhibition leads to changes in the levels of IRS and Grbl0 proteins which are

likely to be the most important effects of mTOR inhibitors to consider in their clinical use

(Fig. 8).

While S636 and S639 on IRS1 are thought to be phosphorylated by S6K1 (Um et

al., 2004), they do not correspond to the consensus AGC kinase motif. S302 (in mouse,

S307 in human), however, does, and was the only IRS1 phosphorylation site which we

found to be sensitive to S6K inhibition (Fig. 6). Given that mTORC1 has been shown

to phosphorylate IRS1 directly (Tzatsos and Kandror, 2006), we propose that S6K1 and

mTORC1 both phosphorylate IRS1 and perhaps also IRS2, and that mTORC1 inhibition

prevents all of these phosphorylations from occurring while S6K inhibition only affects

a subset. In accordance with this theory, chronic treatment with rapamycin or Torin1

affects IRS1 and IRS2 levels, while S6K inhibition does not under the conditions which

we tested (Fig. 6) (Pearce et al., 2010).

Furthermore, mTORC1 inhibition has greater effects on Akt reactivation in

TSC2-null cells due to its additional effects on Grbl0. Rapamycin and Torin1 treatment

destabilized Grbl 0 to similar extents (Fig. 5C), leading us to suspect that the rapamycin-

sensitive site (S476) on Grbl 0 is likely to be responsible for regulating stability.

However, upon addition of the inhibitors to cells, Torin1 has a greater effect on Grb1 0

stability than rapamycin (Fig. 5A), suggesting that mTOR may additionally regulate the

synthesis of Grb1O protein.

Reintroduction of the platelet-derived growth factor receptor (PDGFR) has been

shown to restore sensitivity of TSC2 null cells to other growth factors, including EGF

and insulin (Zhang et al., 2003). Since Grbl0 can in fact bind PDGFR (Frantz et al.,
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1997; Wang et al., 1999), albeit with supposedly lower affinity than its binding to the

insulin or IGF receptors, one possible explanation for this phenomenon in light of the

results presented here is that overexpression of PDGFR titrates Grbl 0 away from other

receptors, leading to enhanced signaling through the receptors normally bound to Grb10.

Nedd4 suppression profoundly suppresses insulin and IGF-1 signaling (Cao et

al., 2008). While several groups had proposed that Nedd4 was responsible for PTEN

degradation (Trotman et al., 2007; Wang et al., 2007b), we support the thought that the

primary target of Nedd4 is Grbl 0. Mouse models of Nedd4 loss do not have increased

PTEN protein (Cao et al., 2008; Fouladkou et al., 2008). Nedd4-null mice however, do

have elevated Grb10 levels (Cao et al., 2008). Furthermore, one group reported no

effect of Nedd4 loss on Akt signaling (Fouladkou et al., 2008), in contrast to Cao et al.,

or our own experiments with Nedd4 knockdown (Peggy Hsu, unpublished data). One

reason for this discrepancy is that the authors of this work used serum to stimulate

the cells, rather than specific growth factors. We hypothesize that had the authors

attempted selective growth factor stimulation with insulin and IGF-1, the insulin and IGF

receptors being most preferred by Grbl 0, a defect in growth factor signaling would have

been apparent. How Nedd4 loss leads to an increase in Grbl 0 protein levels remains to

be determined.

Interestingly, Grbl 0 is an imprinted gene. In mice, most tissues express the

maternal copy, while the brain expresses the paternal copy (Garfield et al., 2011). Mice

with loss of the maternal copy exhibit tissue overgrowth which does not affect the brain,

while disruption of the paternal allele results in increased displays of social dominance

(Garfield et al., 2011). In humans, Grb10 seems to be similarly imprinted with most

tissues expressing the maternal copy (Abu-Amero et al., 2008; Holt and Siddle, 2005).

Silver-Russell syndrome (SRS) is a genetic disorder characterized by intrauterine growth

retardation, poor postnatal growth, craniofacial malformations, and difficulty feeding

(Abu-Amero et al., 2008). A subset of SRS patients are maternal uniparental disomic

for a region of chromosome 7 where GRB10 is located and would therefore express two

doses of the gene and be expected to have increased Grbl 0 protein, similar to Nedd4
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or TSC loss. One hypothesis that springs from the work presented here is that these

SRS patients might, counterintuitively, benefit from treatment with rapamycin. While

they do have difficulties in growth and therefore would not be expected to tolerate mTOR

inhibition, rapamycin treatment might actually lead to the destabilization of Grbl0 and a

reduction in levels of the inhibitory protein.
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Figure 1
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Figures

Figure 1. Grb1O is regulated in an mTORC1 -dependent manner.

(A) HEK-293E cells were deprived of serum for 4 hrs, treated with 100 nM rapamycin

or 250 nM Torin1 for 1 hr, and then stimulated with 150 nM insulin for 15 min. Cell

lysates were analyzed by immunoblotting. (B) TSC2+/+ MEFs stably expressing

FLAG-Grbl0 were serum deprived for 4 hours, treated with 250 nM Torin1 for 1 hr,

and then stimulated with 150 nM insulin for 15 min. All FLAG-tagged Grb1O constructs

correspond to isoform c of human Grb1 0. FLAG-immunoprecipitates were incubated

in buffer, CIP, or heat-inactivated CIP and analyzed by immunoblotting. (C) HEK-293E

cells were deprived of amino acids or both amino acids and serum for 50 min, and then

stimulated with either amino acids or serum for 10 min and analyzed by immunoblotting.

(D) TSC2+/+ and TSC2-/- MEFs were treated and analyzed as in (A). (E) rictor+/+ and

rictor-/- MEFs treated and analyzed as in (A). (F) rictor+/+ and rictor-/- MEFs were

treated and analyzed as in (C).

129



Chapter 3 : The mTORC1 substrate Grb1 0 mediates feedback inhibition to PI3K-Akt

Figure 2
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Figures

Figure 2. mTORC1 phosphorylates Grb1O on rapamycin-sensitive and -insensitive

sites.

(A) S6K1 -/- S6K2-/- or control cells were treated with 250nM Torin1 or vehicle control

for 1 hr and analyzed by immunoblotting. (B) mTORC1 in vitro kinase assays with

substrates in the presence of the indicated inhibitors and radiolabeled ATP were

analyzed by autoradiography. (C) Schematic representation of Grbl 0 protein structure

with the phosphorylation sites from vertebrate orthologs aligned below. Numbering is

according to human isoform a. (D) The phosphorylation state of Grbl0 from kinase

assays performed similarly to (B) were analyzed by targeted mass spectrometry (MS)

and phosphorylation ratios determined from chromatographic peak intensities. (E)

FLAG-immunoprecipitates from HEK-293E cells stably expressing FLAG-Grbl0 treated

as in (A) were analyzed as in (G). Data are means± s.e.m (n=2-6). *Mann-Whitney

t-test p-values < 0.05 for differences between stimulated and treated conditions.

(F) A summary of (C), (D), and (E) for each Grbl 0 phosphorylation site. (G) FLAG-

immunoprecipitates from TSC2-/- MEFs stably expressing FLAG-Grbl 0 treated with 100

nM rapamycin or 250 nM Torin1 for 1 hr were analyzed by immunoblotting with Grbl0

phospho-specific antibodies. (H) TSC2-/- MEFs stably expressing FLAG-Grbl 0, 5A

(S1 50A T1 55A S1 58A S474A S476A), or 9A (5A + S1 04A S426A S428A S431 A) mutants

treated with 250 nM Torin1 for 1 hr were analyzed by immunoblotting.
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Figure 3
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Figures

Figure 3. Grb10 is important for feedback inhibition from mTORC1 to PI3K-Akt.

(A) S6K1 -/- S6K2-/- or control cells expressing short hairpin RNA (shRNA) constructs

against GFP or raptor were treated with 250 nM Torin1 for 1 hr, and lysates were

analyzed by immunoblotting. (B) HEK-293E and (C) HeLa cells expressing shRNAs

against GFP or human Grbl 0 were treated for 100 nM rapamycin, 10 pM PF-

4708671 (an S6K inhibitor), or vehicle control for 1 hr, and lysates were analyzed by

immunoblotting. (D) TSC2+/+ and TSC2-/- MEFs expressing shRNAs against GFP

or mouse Grbl 0 were starved for 4 hrs, treated with rapamycin or vehicle control for

1 hr, and then stimulated with 1 OOnM insulin where indicated for 15 min and analyzed

by immunoblotting. (E) TSC2+/+ and TSC2-/- MEFs expressing shRNAs against GFP

or mouse Grb1 0 were starved for 4 hrs, treated with rapamycin or vehicle control for 1

hr, and then stimulated with 1OOnM insulin where indicated for 15 min and analyzed by

immunoblotting. (F) TSC2-/- MEFs expressing either an empty vector or shRNA against

Grbl 0 were starved for 4 hrs and then stimulated where indicated with 10 or 100 nM

insulin, 10 or 100 ng/ml IGF-1, 10 or 100 ng/ml EGF, or 10 or 100 ng/ml PDGFbb for 15

minutes analyzed by immunoblotting. (G) TSC2-/- MEFs expressing shRNAs against

GFP or mouse Grbl 0 were serum starved for 4 hrs and then stimulated where indicated

with 100 ng/ml IGF-1 for 15 min and analyzed by immunoblotting. (H) TSC2-/- MEFs

expressing a control shRNA or shRNA against Grb1 0 were treated as in (D). IRS1 and

IRS2 immunoprecipitates and cell lysates were analyzed by immunoblotting.
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Figures

Figure 4. Phosphorylation is important for Grb1O function, but not binding to the

receptor.

(A) TSC2-I- MEFs coexpressing an shRNA against the mouse Grbl 0 3'UTR and an

empty vector, FLAG-Grbl 0, or 5A cDNA expression construct were starved for 4 hrs,

treated with rapamycin or vehicle control for 1 hr, and then stimulated with 100 nM

insulin where indicated for 15 min and analyzed by immunoblotting. (B) TSC2+/+ MEFs

over-expressing the insulin receptor were starved overnight and then treated with

250 nM Torin1 for the indicated times and then stimulated with 100 nM insulin for 15

min. Endogenous Grbl 0 and control S6K1 immunoprecipitates and cell lysates were

analyzed by immunoblotting.
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Figures

Figure 5. mTORC1 phosphorylation stabilizes Grb10.

(A) Abundance of Grbl0 in TSC2+/+ and TSC2-/- MEFs treated with 10 or 100 nM

rapamycin, Torin1, or vehicle control for 24 hrs. Cells were lysed and analyzed by

immunoblotting. (B) RNA was isolated from TSC2+/+ and TSC2-/- MEFs treated as

in (A). Grbl0 mRNA was measured by qRT-PCR and normalized to the level of

RplpO mRNA. Data are means± s.e.m. (n=7); *Mann-Whitney t-test p-value < 0.05 for

differences between vehicle treated TSC2+/+ and TSC2-/- MEFs. Other comparisons

are not significant. (C) TSC2-/- MEFs stably expressing FLAG-Grbl 0 were labeled

for 2 hours with [35S]cysteine and methionine and then chased for the indicated

times in the presence of vehicle control, 100 nM rapamycin, or 100 nM Torin1. FLAG-

immunoprecipitates were analyzed by autoradiography. Data are means ± s.e.m

(n=3). *Two-way ANOVA p-values < 0.05 for differences between vehicle and inhibitor

treatment. (D) TSC2-/- MEFs stably expressing FLAG-Grbl 0 or 9A mutant were treated

and analyzed as in (C) but without inhibitor treatment. (E) Abundance of Grbl 0 in

TSC2-/- MEFs treated with 1 OOnM Torin1 or vehicle control for the indicated number

of hrs in the absence or presence of 10 pM MG132. Cells were lysed and analyzed

by immunoblotting. (F) Abundance of Grbl 0 in TSC2-/- MEFs expressing shRNAs

against GFP or mouse Nedd4 and treated with 100 nM rapamycin, Torin1, or vehicle

control for 24 hrs. Cells were lysed and analyzed by immunoblotting. (G) Abundance

of endogenous Grbl 0 or exogenous FLAG-Grbl 0 in TSC2-/- stably expressing FLAG-

Grbl0, 2D (S474D S476 D), or 5D (S150D T155D S158D S474D S476D) mutants

treated with 20 nM rapamycin or vehicle control for the indicated lengths of time. Cells

were lysed and analyzed by immunoblotting.
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Figures

Figure 6. mTORC1, but not S6K1, inhibition results in rescue of Akt signaling in

TSC2-null cells.

TSC2+/+ and TSC2-/- MEFs expressing shRNA constructs against GFP or Grbl 0 were

starved for one or 24 hrs in the presence of 100 nM rapamycin, 10 pM PF-4708671, 100

nM Torin1, or vehicle control as indicated, and then all samples were stimulated with 100

nM insulin for 15 min and analyzed by immunoblotting.
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Figure 7. mTORC1 hyperactivation leads to Grbl0-mediated sequestration of

growth factor receptors inside the cell.

(A) TSC2+/+ and TSC2-/- MEFs expressing shRNA constructs against GFP or Grb10

were treated for 1 hr with 100 nM rapamycin. Cell surface proteins were biotinylated,

and then cells were lysed. Biotinylated proteins were isolated by affinity purification with

streptavidin and analyzed, along with cell lysates, by immunoblotting. (B) TSC2+/+ and

TSC2-/- MEFs growing in replete media were treated with Proteinase K at the indicated

concentrations for 30 min, either in the presence or absence of 1 % Triton X-1 00.

Lysates were immediately boiled in sample buffer and analyzed by immunoblotting.
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Figures

Figure 8. mTORC1 inhibits PI3K-Akt signaling through effects on IRS and Grb1O

function and stability.

mTORC1 hyperactivation results in acute increases in IRS1, IRS2, and Grb10

phosphorylation which stabilize Grb10 and destabilize the IRS proteins, leading to insulin

and IGF-1 resistance. Acute mTORC1 inhibition results decreased phosphorylation of

IRS and Grbl0 proteins while chronic mTORC1 inhibition, either by rapamycin or kinase

domain inhibitors, result in IRS protein stabilization and Grb1O destabilization.
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Materials and Methods

Materials

Reagents were obtained from the following sources: antibodies to phospho-T389

S6K1, phospho-S235/S236 S6, phospho-T37/T46 4E-BP1, phospho-S65 4E-BP1,

phosho-T308 Akt, phospho-S473 Akt, phospho-S302 IRS 1, phospho-S636/S639

IRS1, phospho-T202/T204 Erkl/2, phospho-tyrosine, phospho-Y1135/1136 IGF1-

Rb/phospho-Y 1 50Y1 151 InRb, phospho-Y1 131 IGF-1 Rb/phospho-Y1 146 InRb,

phospho-Y980 IGF-1 Rb, phospho-S1 50 Grbl 0, phospho-S428 Grbl 0, phospho-S476

Grb10, Akt, S6K1, 4E-BP1, TSC2, FLAG, rictor, IRS1, IRS2, Nedd4, Erkl/2, IGF-1R,

InR, p85 P13K, and human Grbl 0 from Cell Signaling Technology; an antibody to mouse

Grbl 0 and HRP-labeled anti-mouse and anti-rabbit secondary antibodies from Santa

Cruz Biotechnology; an antibody to IRS1 from Upstate/Millipore; FLAG M2 affinity

gel, ATP, staurosporine, FKBP12, L-glutathione, amino acids, insulin, IGF-1, EGF, and

PDGFbb from Sigma-Aldrich; CIP from New England Biolabs, MG-132 from Calbiochem;

[[y-32P]ATP and [35S]cysteine and methionine from Perkin-Elmer; FuGENE 6,

PhosSTOP, and Complete Protease Cocktail from Roche; rapamycin from LC

Laboratories, PF-4708671 from Tocris Bioscienes, Proteinase K from EMD Chemicals,

DMEM from SAFC Biosciences; Inactivated Fetal Calf Serum (IFS), MagicMedia E.

coli expression medium and SimplyBlue Coomassie G from Invitrogen, amino acid-free

RPMI from US Biological, Superose 6 10/300 GL and HiLoad 16/60 Superdex 200

from GE Healthcare; sulfo-NHS-LC-Biotin, BCA assay reagent, protein G-sepharose,

streptavidin-agarose, and immobilized glutathione beads from Pierce; Ni-NTA agarose

from Qiagen; QuikChange XLII mutagenesis kit and BL21 (DE3) Competent Cells from

Stratagene. Torin1 was provided by Nathanael Gray (Harvard Medical School) (Thoreen

et al., 2009).
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cDNA manipulations and mutagenesis

The cDNA for human GRB10 (NCBI NM_001001550.2 isoform c) in the

pOTB7vector was obtained from OpenBiosystems. The GRBi 0 cDNA was amplified

by PCR, and the product was subcloned into the Sal1 and Not1 sites of FLAG-pRK5

for transient expression, the Xhol and Notl sites of the pMSCV retroviral vector for

stable expression, or the Xbal and Xhol sites of pET303/CT-His vectors for bacterial

expression. The INR and IGF R cDNAs were also cloned by a multi-step process into

the MCS of pMSCV. The HA-GST-S6K1-pRK5 and GST-4E-BP1-pGEX-4T constructs

were described previously (Burnett et al., 1998; Sancak et al., 2007).

The Grb1 0-pMSCV and HA-GST-S6K1 -pRK5 were mutagenized with the

QuikChange XLII mutagenesis kit with oligonucleotides obtained from Integrated DNA

Technologies. The Grbi 0 mutants used in our experiments are (amino acid numbering

according to NCBI NM_005311.4 isoform a although all clones used in this study are the

human isoform c): 5A = Si 50A Ti 55A Si 58A S474A S476A Grb1 0, 9A = Si 04A Si 50A

Ti 55A Si 58A S426A S428A S431 A S474A S476A, 2D = S474D S476, and 5D = Si 50D

Ti 55D Si 58D S474D S476D. T229 of S6K1 in the HA-GST-pRK5 vector was mutated

to an alanine to attenuate its catalytic activity. All constructs were sequenced verified.

Cell treatments, lysis, immunoprecipitations, and phosphatase treatment

For growth factor stimulation, almost confluent cells were rinsed once and

incubated in serum-free DMEM for times as indicated in figure legends, and then

stimulated for 15 or 20 minutes. Inhibitors and doses of growth factors were added as

indicated. Insulin and IGF-1 were most commonly used at 100 or 150nM and 1oong/

ml, respectively. Amino acid starvation was done as described previously (Sancak et al.,

2010).

Cells rinsed once with ice-cold PBS and lysed in ice-cold lysis buffer (50 mM

HEPES [pH 7.4], 40 mM NaCl, 2 mM EDTA, 1 mM orthovanadate, 50 mM NaF, 10 mM

pyrophosphate, 10 mM glycerophosphate, and 1 % Triton X-1 00 or 0.3% CHAPS (for

immunoprecipitations), and one tablet of EDTA-free protease inhibitors per 25ml. The
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soluble fractions of cell lysates were isolated by centrifugation at 13,000 rpm for 10

minutes by centrifugation in a microfuge. For immunoprecipitations, one PhosSTOP

tablet was added per 25 ml of CHAPS lysis buffer, and primary antibodies were added

and the lysates and incubated with rotation overnight at 40C. 50% slurry of protein

G-sepharose was then added and the incubation continued for an additional 1 hour.

Immunoprecipitates were washed three times with lysis buffer containing 150mM NaCl.

Immunoprecipitated proteins were denatured by the addition of sample buffer, boiled

for 5 minutes, resolved by SDS-PAGE, and analyzed by immunoblotting as previously

described (Kim et al., 2002).

For FLAG purification, FLAG M2 affinity resins were washed 2 times in lysis

buffer, added to pre-cleared lysates, and incubated with rotation for 2 hours at 40C.

FLAG-Grbl0 purified from a 10cm plate of insulin stimulated TSC2+/+ MEFs stably

expressing FLAG-Grb1 0 was phosphatase treated while still bound to FLAG resin. The

resin-bound FLAG-Grbl 0 washed once in 1 X NEBuffer 3, divided among the reaction

tubes, and incubated in 20pl of buffer alone, buffer with 20 units of CIP, or 20 units of

CIP previously inactivated by boiling for 10 minutes for 60 minutes at 370C. FLAG-

Grb1 0 from serum starved or Torin1 -treated cells was incubated in buffer alone. The

reactions were stopped with the addition of sample buffer, boiled, and analyzed by

immunoblotting.

mTORC1 kinase assays

HA-GST-S6K1 (T229A) was purified from transiently transfected HEK-293T cells

treated with 250nM Torin1 for one hour and lysed in Triton lysis buffer. The cleared

lysates were incubated with glutathione resin for 2 hours at 40C, eluted as described

previously (Sancak et al., 2007), concentrated, quantified, and stored in 50% glycerol

at -20'C. BL21 (DE3) cells carrying GST-4E-BP1 -pGEX-4T were grown in MagicMedia

for 24 hours, and lysed by sonication in ice-cold Triton lysis. GST-4E-BP1 purification

proceeded as detailed for HA-GST-S6K1, but was further purified by gel filtration using

a HiLoad 16/60 Superdex 200 column and stored at -800C. BL21 (DE3) cells carrying
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pET303-Grbl0 were grown in MagicMedia for 24 hours, and lysed by sonication in

ice-cold His-tag lysis buffer (25 mM Hepes [pH 7.4], 500 mM NaCl, 5 mM Imidazole,

1 % Triton + protease inhibitor tablets). The cleared lysate was incubated with Ni-

NTA agarose, incubated for 20 minutes at 40C, washed, eluted in 150 mM imidazole-

containing buffer, and further purified by gel filtration using a HiLoad 16/60 Superdex 200

column and stored at -800C.

mTORC1 was purified from HEK-293T cells stably-expressing FLAG-raptor as

described (Yip et al.). Kinase assays were preincubated for 10 minutes at 40C before

addition of ATP, and then for 30 minutes at 300C in a final volume of 20pI consisting of:

kinase buffer (25 mM HEPES, pH 7.4, 50 mM KCI, 10 mM MgCl2, 1uM staurosporine),

active mTORC1, 500 nM substrate, 50 uM ATP, 2 pCi [[y-32P]ATP, and when indicated

250 nM Torin1 or 250nM rapamycin/FKBP1 2. Samples were stopped by the addition

of 10 pl of sample buffer, boiled for 5 minutes, and analyzed by SDS-PAGE followed by

autoradiography.

Grb10 phosphorylation site mapping

mTORC1 kinase assays were performed as detailed above, except with a one

hour reaction time and in the presence of 500 pM cold ATR For the in vitro kinase

assay samples, urea was added to a final concentration of 1.6M. Proteins were

reduced with 10 mM DTT at 56 *C for 30 min., alkylated with 55 mM iodoacetamide

for 1 hr at room temperature in the dark, then digested with trypsin at 37 0C overnight.

The solution was then acidified with 10% TFA. Peptides were extracted using c1 8

ZipTip, were lyophilized to dryness, and were stored at -80 0C until needed. A third of

each sample was analyzed by LC/MS/MS on an orbitrap velos mass spectrometer

in data-dependent mode. Identified phosphopeptides were manually validated and

combined into a single list. A targeted MS method was then created to perform MS/MS

on those selected phosphopeptides, as well as the top 5 most abundant precursors in

each cycle. The in vitro kinase samples were then re-analyzed with the targeted MS

method. Peak intensity values of extract ion chromatogram were obtained for both the
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phosphorylated and unphosphorylated forms. Their ratios were used to compare the

phosphorylation level in different samples. FLAG-Grb10 immunoprecipitates from

HEK-293E cells stably expressing Grbl 0 were separated on SDS-PAGE and stained

with Coomassie. The bands corresponding to Grbl 0 were excised and digested in situ.

Peptides were extracted and analyzed using the targeted MS method. Phosphorylation

levels on identified phosphopeptides were estimated as described above. p-values were

determined by a one-tailed Mann-Whitney t-test.

Antibody detection of Grb1O

The human Grbl 0 antibody (CST) detects one isoform of Grbl 0 while the mouse

Grb10 antibody detects multiple isoforms (Santa Cruz). Phosphospecific antibodies

against S150, S428, and S476 of Grbl0 were provided as bleeds from Cell Signaling

Technology. All work well on immunoprecipitated proteins, and the antibodies against

S150 and S476 work well on mouse lysates.

Lentiviral shRNAs

TRC lentiviral shRNAs targeting Grbl 0 and Nedd4 were obtained from the

RNAi consortium (Broad Institute of MIT and Harvard) (Moffat et al., 2006). The TRC

identifications for each shRNA are as follows:

Human GRB10 shRNA #1: TRCN0000063686; NM_001001549.1-1459s1c1

Human GRB1 0 shRNA #2: TRCN0000063687; NM_001 001549.1-524s1 c1

Mouse Grbl 0 shRNA #1: TRCN00001 09915; NM01 0345.2-2392s1 ci

Mouse Grbl 0 shRNA #2: TRCN00001 09917; NM01 0345.2-1841 si ci

Mouse Nedd4 shRNA #1: TRCN000009235; XM486230.1-2082s1c1

Mouse Nedd4 shRNA #2: TRCN0000092436; XM_486230.1-1319s1 ci

The shGFP control shRNA and the shRNA targeting mouse raptor were

previously described and validated (Sarbassov et al., 2005; Thoreen et al., 2009). The
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mouse Grbl0 shRNAs were also additionally cloned into a pLKO.1 derivative, pLKO_

TRC01 6, obtained from the RNAi consortium (Broad Institute of MIT and Harvard) with

a blasticidin resistance gene. Virus production was performed as previously described

(Sarbassov et al., 2005). Virus-containing supernatants were collected 48 hours after

transfection, filtered to eliminated cells, and target cells were infected in the presence of

8 pg/ml polybrene. 24 hours later, cells were selected with puromycin or blasticidin and

analyzed starting at the 3rd day after infection. Grbl 0 knockdown cells were passaged

with persistent antibiotic selection.

For replacement of endogenous murine Grbl0 with human Grbl0 isoform c,

TSC2-/- p53-/- MEFs were infected with retroviruses (pMSCV) expressing empty vector,

FLAG-Grbl 0, FLAG-Grbl 0 5A, or FLAG-Grbl 0 9A mutants, and selected for 4 days in

puromycin. The resulting stable cell lines were subsequently infected with lentiviruses

expressing either the control hairpin or mouse Grbl 0 shRNA #1 that recognizes the

mouse Grbl0 3' untranslated region, but not the human cDNA. Cells were then kept in

puromycin and additionally selected in blasticidin, and analyzed starting at the 7th day

after lentiviral infection. Grbl 0 replacement cells were passaged with persistent dual

antibiotic selection.

Pulse chase

Cells were labeled with 1 mCi [35S]methionine/cysteine (1175 Ci/mmol;

PerkinElmer Life Sciences) in 15ml methionine- and cysteine-free DMEM at 37 0C for

2 hours and chased with DMEM and 10% IFS supplemented with nonradiolabeled

methionine (2.5 mM) and cysteine (0.5 mM) at 37 0C for the indicated times. mTOR

inhibitors were added to the chase as indicated. Cells were lysed in 1% SDS in PBS.

Immunoprecipitations were performed in Nonidet P-40 lysis buffer (50 mM Tris [pH 7.5],

150 mM NaCl, 5 mM EDTA, 0.5% NP-40, and protease inhibitors) with 0.1% SDS and 30

pl of anti-FLAG M2-agarose for 3 hr at 4 *C. Immunoprecipitates were boiled in sample

buffer, subjected to 10% SDS-PAGE, and visualized by autoradiography or quantified by

Phosphorlmaging. p-values were determined by a two-way ANOVA.
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Grb1O mRNA expression analysis

For quantification of Grb10 mRNA expression, total RNA was isolated from cells

grown in the indicated conditions and reverse-transcription was performed. The resulting

cDNA was diluted in DNase-free water (1:100) before quantification by real-time PCR.

Data are expressed as the ratio between the expression of Grbl0 and the housekeeping

gene RplpO. p-values were determined by a two-tailed Mann-Whitney t-test.

The following primers were used for quantitative real-time PCR:

Grb1O (M. musculus):

Forward: ACAGGATCATCAAGCAACAA

Reverse: TCTTTGTGAAGTCCAATAAC

RplpO (M. musculus):

Forward: TAAAGACTGGAGACAAGGTG

Reverse: GTGTACTCAGTCTCCACAGA

Cell-surface biotinylation and proteinase K cleavage assays

For cell surface biotinylation, cells in 6 cm plates were put on ice and then

washed two times in cold PBS+. They were then incubated in PBS containing 1 mg/ml

sulfo-NHS-LC-Biotin for 30 min at 40C. The cells were then washed three times in cold

PBS containing 100mM glycine, once with PBS, and then lysed in 1 % Triton lysis buffer.

The cleared lysates were incubated with strepatividin-agarose beads for at least 1 hr at

40C. The beads were washed in lysis buffer and then boiled in sample buffer.

For protease cleavage and protection assays, cells in 6-well dishes were put on

ice and then washed once in cold PBS+. Cells were then covered in 250 pl of cold PBS

+ with proteinase K (25 or 100 pg/ml) and incubated with rocking for 30 min at 40C. 5

mM PMSF was added for 5 min to stop the reaction. The cell/PBS mixture was then

transferred to microcentrifuge tubes (either by scraping or pipetting if cells had detached)

and then boiled with sample buffer supplemented with PMSF.
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Summary

mTOR is a serine-threonine kinase which plays a conserved role in cell growth,
proliferation, homeostasis, and metabolism and whose activity is dysregulated in

diabetes, genetic hamartoma syndromes, and cancer. Although the understanding of

the mechanisms by which various cellular and environmental cues regulate mTOR has

accelerated, in contrast, the number of direct substrates has remained a small handful

and a mechanistic appreciation of how mTOR executes its functions has often been

lacking.

We believe that the work presented in this thesis makes three contributions to

the field. First, what is potentially the most exciting advance, is a catalogue of mTOR-

regulated phosphorylations, some of which point to processes known to be downstream

of mTOR, and many more of which implicate mTOR in processes not presently

associated with the pathway. Second, we defined a consensus motif that may aid in the

identification of direct substrates and serve as a starting point for understanding how

mTOR recognizes its substrates. Finally, we clarified the nature of feedback inhibition,

which is often discussed, but poorly understood. In the following chapter, we discuss

several questions to emerge from this work.
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Discussion

How many more mTOR substrates remain to be discovered?

It is a provocative question with an unclear answer. If the complexity of upstream

regulation is an indication of a similar complexity of downstream effector pathways,

then it is likely that the number of known substrates could be a small fraction of the

total. Given that mTOR senses many intracellular and extracellular cues, it would not

be surprising if mTOR controls a large number of homeostatic functions. Our results

show that mTOR regulates the majority of insulin-stimulated phosphorylations, and

so is likely to have additional substrates. Preliminary experiments have indicated that

several additional candidate substrates (e.g. LARP1, FOXK1) from our iTRAQ dataset

are indeed mTOR-regulated (Peggy Hsu, unpublished results). The significance and

function of these mTOR phosphorylations, however, must still be tested.

Besides the phosphorylation sites directly detected through our proteomic

efforts, it may be possible to bioinformatically mine our datasets to identify additional

downstream effectors. For example, one could examine the remaining phosphorylation

sites which were not predicted to be AGC or mTOR sites, and based on known kinase

motifs predict which kinases may be activated or inhibitied by mTOR.

It is becoming increasingly clear that even for processes known to be regulated

by mTOR, mTOR does so through multiple mechanisms. For example, mTOR is a

central regulator of cell growth and size, through the phosphorylation of the inhibitors of

the elF-4E cap-binding protein, 4E-BP1 and 4E-BP2 as well as through S6K1. mTOR

also regulates the activity of eEF2K, as well as possibly eIF4G1, both of which we

confirmed to be mTOR-regulated in our phosphoproteomic screen. Furthermore, our

identification of PATL1 as a putative substrate indicates that mTOR may also regulate

the dynamics of P-body formation and mRNA decapping and therefore indirectly the

rates at which mRNAs are translated. Turning to autophagy, while the molecular

mechanisms are just beginning to be characterized, mTOR phosphorylates both
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ULK1 and ATG13. Our data also suggests that the Atgl8 homologue WIP12 may

also be a possible substrate. mTORC2 is an important regulator of cell survival and

phosphorylates both Akt and SGK, each of which has multiple substrates implicated

in apoptosis and cell proliferation. Finally, the identification of Grb10 as an mTORC1

substrate indicates that feedback inhibition occurs through multiple mechanisms:

mTORC1 activates S6K1 which inhibits and destabilizes IRS1, and mTORC1 may

directly phosphorylate IRS and Grb10 proteins. mTORC1 thereby inhibits an activator

and activates an inhibitor of growth factor signaling. Even among processes in which

mTOR is already known to play a role, it is likely that mTOR does so through multiple

substrates, some of which have yet to be discovered.

Is the consensus mTOR motif one motif or two?

It was a great surprise to us to find that mTOR recognizes hydrophobic and

aromatic residues at the +1 position, in addition to proline. The structures of known

proline-directed kinases and phosphatases are distinct beause the active sites cannot

satisfy the hydrogen bonding requirements of other amino acids besides proline (Brown

et al., 1999; Gray et al., 2003). Therefore, how mTOR phosphorylates these proline-

directed sites in addition to sites with hydrophobic and aromatic residues at the +1

is still a mystery. While others have proposed that mTOR regulates an intermediate

proline-directed kinase or phosphatase our in vitro results suggest that mTOR directly

phosphorylates these sites. One possible explanation is that the motif is a conflation of

two (or more) motifs and that mTOR can exist in two different conformations, one which

prefers proline-directed sites, and the other which prefers aromatic and hydrophobic

residues. We speculate that basal mTOR activity allows it to phosphorylate +1

hydrophobic residues but fully activated mTOR can act on proline directed sites. One

mechanism by which Rheb acts may be to cause a motif switch in the mTOR kinase.

Rheb addition in vitro leads to a profound mobility shift in S6K1 (Sancak et al., 2007).

These mobility shifts are usually due to proline-directed phosphorylations. It would

therefore be interesting to repeat the PSPL screening with mTORC1 purified from cells
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grown from replete media but without in vitro Rheb addition. It would also be interesting

to see how the presence of FKBP1 2-rapamycin would affect the mTOR motif. Based on

our consensus motif, one could design model peptides to further characterize the motif

preference of mTOR. Ultimately, however, structural studies of the kinase domain will be

required to fully understand how mTOR phosphorylation occurs.

What factors determine the sites and proteins phosphorylated by mTOR?

The definition of a consensus motif for mTOR now allows us to rule-in and

rule-out phosphorylation sites from being direct substrates. However, the motif is not

restricted enough to allows us to bioinformatically predict mTOR substrates without

additional information. mTOR, therefore, must utilize additional "information" to select

its substrates. Raptor has already been shown to be important in recognizing the

TOR signaling (TOS) motif present in some of its substrates. The other members

of the mTOR complexes are likely to play a role. One could potentially mine the

sequences of those proteins which we determined to be mTOR-regulated by quantitative

mass spectrometry in order to refine the TOS signaling motif. Colocalization and/or

compartmentalization are also likely to be factors in determining the accessibility of

mTOR to various substrates.

Does mTORC1 regulate the trafficking of growth factor receptors?

Our preliminary results indicate that mTORC1 may regulate the localization of

the insulin and IGF-1 receptors through Grbl0. Additional experiments are required

to verify this finding. We had previously tried to directly visualize the receptors by

immunofluorescence, but the results were inconclusive. We found that the antibodies

to the insulin and IGF-receptors mostly recognized the intracellular portion of the P
chain, and therefore the cells needed to be permeabilized before staining. Because the

TSC2-null cells are very flat and had been permeabilized, it was difficult to differentiate

plasma membranes from internal membranes. To address these problems, we have

created different receptor constructs, tagging them on both extracellular and intracellular
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domains. These constructs would allow us to use anti-epitope antibodies on cells with

and without permeabilization to track the amount of receptor at the surface and total

receptor by immunofluorescence or flow cytometry.

mTORC1 is localized to the lysosome, which serves as a signaling platform.

mTORC1 is recruited to the lysosome upon amino acid stimulation by the Rag

GTPases where it is then activated by Rheb (Sancak et al., 2010; Sancak et al., 2008).

One explanation as to why mTORC1 requires lysosomal localization is that amino

acid sensing occurs at the lysosome. An alternative idea is that mTORC1 requires

membrane localization in order to execute its downstream functions. mTORC1 regulates

autophagy, and recent work has shown that mTORC1 localization at the lysosome is

coordinated with its regulation of autophagosome-lysosome fusion (Korolchuk et al.,

2011). In addition, mTORC1 may also be membrane-localized to regulate the trafficking

of growth factors. It would be interesting to test which of mTORC1's substrates or

functions require membrane approximation. One could localize mTORC1 and Rheb in

Ragulator-null cells to other compartments and assess if some substrates, like S6K1,
which are soluble inside the cytoplasm, would therefore still be activated, while other

substrates would require mTORC1 localization specifically on the lysosome.

Will mTOR catalytic domain inhibitors be effective anti-cancer agents?

Dysregulated growth factor signaling is a hallmark of cancer (Hanahan and

Weinberg, 2011). Several anti-cancer therapies target this signaling at the level of the

receptor, either through anti-receptor antibodies or catalytic domain inhibition. While

we had expected that mTOR might regulate some insulin-stimulated phosphorylations,

we were quite surprised to find that a majority of the insulin-stimulated phosphorylation

program is mTOR-dependent. Similar kinds of quantitative phosphoproteomic

experiments could be performed with additional growth factors or with activation of

different growth factor receptors to examine the extent of mTOR involvement in other

signaling contexts. Our work with insulin stimulation suggests that mTOR, if fully

inhibited, is an effective mimetic of serum deprivation. Our results also confirm that
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mTOR catalytic domain inhibitors, at least globally, are better inhibitors of mTOR than

rapamycin, as a significant fraction of Torin1 -sensitive sites are rapamycin-insensitive.

One thing to keep in mind, however, is that the pathway has ways in which to

reactivate signaling under conditions of mTOR inhibition. The feedback loop to P13K-

Akt is one example, as are effects on DEPTOR expression or PDGFR downregulation.

While our phosphoproteomic data suggested that acute mTOR inhibition is a mimetic

of serum deprivation, our data on Grbl 0 suggests that chronic mTOR inhibition leads

to Grb10 degradation and IRS protein stabilization, effects which lead to reactivation of

insulin and IGF-1 pathway signaling and increased phosphorylation of Akt on T308 by

PDK1. S473 phosphorylation may also increase if mTORC2 is not sufficiently inhibited.

Our data therefore supports the existing idea that mTOR inhibitors in combination with

IGF1 R inhibition would be more effective as an anti-cancer regimen (O'Reilly et al.,

2006; Wan et al., 2007). It would be interesting to define the phosphoproteomic changes

which occur with chronic mTOR inhibition. While acute inhibitor treatment is required to

identify direct substrates and immediate phosphorylation changes, the effects of chronic

mTOR inhibition are likely to be more relevant clinically.

What determines how cells respond to chronic mTOR inhibition?

Given that mTOR signaling is upregulated across cancer types, consistent with

it being regulated by a diverse array of oncogenes and tumor suppressors, it might be

expected that mTOR inhibition could be a universal anti-cancer strategy. However,

not all cell types behave similarly when treated with rapamyin or with kinase domain

inhibitors. Determining the context in which to employ mTOR inhibitors is the next major

hurdle for the field.

Several factors could contribute to the heterogeneity of signaling responses.

First, different tissues express varying levels of Grbl 0, Nedd4, and DEPTOR. The

relative contributions of the different components of the feedback loop (i.e. S6K1, IRS1,

IRS2, Grb10, mTORC1) may also vary across different cell types. While acute mTOR

inhibition leads to dephosphorylation of its substrates, including Grbl0 and IRS, not
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all cells activate Akt with chronic treatment. Moreover, we found that Torin1 treatment

caused a decrease in Grb1O and an increase in IRS proteins (Chapter 3, Fig. 6 and

Peggy Hsu, unpublished data), however the magnitude of these abundance changes

varied depending on cell type. Cells even have varying amounts of the two complexes

basally, and mTORC2 assembly is affected by rapamycin treatment in some cell types

but not others. Finally, the combination of oncogenes activated and tumor suppressors

lost (e.g. the PTEN/P13K status of the cell) may determine the effect of mTOR inhibitors

on the cell. Ultimately, a systems level approach will be required to tease apart the

complexity of the mTOR signaling pathway and to assess which markers may be

predictive of response to mTOR inhibitors.
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Introduction

It is hard to begin a discussion of cancer cell metabolism without first mentioning

Otto Warburg. A pioneer in the study of respiration, Warburg made a striking discovery

in the 1920s. He found that, even in the presence of ample oxygen, cancer cells prefer

to metabolize glucose by glycolysis, a seeming paradox as glycolysis, when compared

to oxidative phosphorylation, is a less efficient pathway for producing ATP (Warburg,

1956). The Warburg effect has since been demonstrated in different cancer types and

the concomitant increase in glucose uptake has been exploited clinically for the detection

of tumors by fluorodeoxyglucose positron emission tomography (FDG-PET). Although

aerobic glycolysis has now been generally accepted as a metabolic hallmark of cancer,

its causal relationship with cancer progression is still unclear.

In this essay, we discuss the possible drivers, advantages, and potential liabilities

of the altered metabolism of cancer cells (Fig. 1). Although our emphasis on the Warburg

effect reflects the focus of the field, we would also like to encourage a broader approach

to the study of cancer metabolism that takes into account the contributions of all

interconnected small molecule pathways of the cell.

The tumor microenvironment selects for altered metabolism

One compelling idea to explain the Warburg effect is that the altered metabolism

of cancer cells confers a selective advantage for survival and proliferation in the unique

tumor microenvironment. As the early tumor expands, it outgrows the diffusion limits

of its local blood supply, leading to hypoxia and stabilization of the hypoxia-inducible

transcription factor, HIF. HIF initiates a transcriptional program that provides multiple

solutions to hypoxic stress (reviewed in Kaelin and Ratcliffe, 2008). Because a

decreased dependence on aerobic respiration becomes advantageous, cell metabolism

is shifted towards glycolysis by the increased expression of glycolytic enzymes, glucose

transporters, and inhibitors of mitochondrial metabolism. In addition, HIF stimulates

angiogenesis (the formation of new blood vessels) by upregulating several factors,
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including most prominently vascular endothelial growth factor (VEGF).

Blood vessels recruited to the tumor microenvironment, however, are

disorganized, may not deliver blood effectively, and therefore do not completely alleviate

hypoxia (reviewed in Gatenby and Gillies, 2004). The oxygen levels within a tumor

vary both spatially and temporally, and the resulting rounds of fluctuating oxygen levels

potentially select for tumors that constitutively upregulate glycolysis. Interestingly, with

the possible exception of tumors that have lost the von Hippel-Lindau protein (VHL),

which normally mediates degradation of HIF, HIF is still coupled to oxygen levels, as

evident from the heterogeneity of HIF expression within the tumor microenvironment

(Wiesener et al., 2001; Zhong et al., 1999). Therefore, the Warburg effect---that is, an

uncoupling of glycolysis from oxygen levels---cannot be explained solely by upregulation

of HIF expression. Other molecular mechanisms are likely to be important, such as the

metabolic changes induced by oncogene activation and tumor suppressor loss.

Oncogene activation drives changes in metabolism

Not only may the tumor microenvironment select for a deranged metabolism,

but oncogene status can also drive metabolic changes. Since Warburg's time, the

biochemical study of cancer metabolism has been overshadowed by efforts to identify

the mutations that contribute to cancer initiation and progression. Recent work,

however, has demonstrated that the key components of the Warburg effect---increased

glucose consumption, decreased oxidative phosphorylation, and accompanying lactate

production---are also distinguishing features of oncogene activation. The signaling

molecule Ras, a powerful oncogene when mutated, promotes glycolysis (reviewed in

Dang and Semenza, 1999; Ramanathan et al., 2005). Akt kinase, a well-characterized

downstream effector of insulin signaling, reprises its role in glucose uptake and utilization

in the cancer setting (reviewed in Manning and Cantley, 2007), whereas the Myc

transcription factor upregulates the expression of various metabolic genes (reviewed in

Gordan et al., 2007). The most parsimonious route to tumorigenesis may be activation

of key oncogenic nodes that execute a proliferative program, of which metabolism
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may be one important arm. Moreover, regulation of metabolism is not exclusive to

oncogenes. Loss of the tumor suppressor protein p53 prevents expression of the gene

encoding SCO2 (the synthesis of cytochrome c oxidase protein), which interferes with

the function of the mitochondrial respiratory chain (Matoba et al., 2006). A second p53

effector, TIGAR (TP53-induced glycolysis and apoptosis regulator), inhibits glycolysis

by decreasing levels of fructose-2,6-bisphosphate, a potent stimulator of glycolysis

and inhibitor of gluconeogenesis (Bensaad et al., 2006). Other work also suggests

that p53-mediated regulation of glucose metabolism may be dependent on the master

transcription factor NF-OB (Kawauchi et al., 2008).

It has been shown that inhibition of lactate dehydrogenase A (LDH-A) prevents

the Warburg effect and forces cancer cells to revert to oxidative phosphorylation in order

to reoxidize NADH and produce ATP (Fantin et al., 2006; Shim et al., 1997). While the

cells are respiratory-competent, they exhibit attenuated tumor growth, suggesting that

aerobic glycolysis might be essential for cancer progression. In a primary fibroblast

cell culture model of stepwise malignant transformation through overexpression

of telomerase, large and small T antigen, and the H-Ras oncogene, increasing

tumorigenicity correlates with sensitivity to glycolytic inhibition. This finding suggests

that the Warburg effect might be inherent to the molecular events of transformation

(Ramanathan et al., 2005). However, the introduction of similar defined factors into

human mesenchymal stem cells (MSCs) revealed that transformation can be associated

with increased dependence on oxidative phosphorylation (Funes et al., 2007).
Interestingly, when introduced in vivo these transformed MSCs do upregulate glycolytic

genes, an effect that is reversed when the cells are explanted and cultured under

normoxic conditions. These contrasting models suggest that the Warburg effect may

be context-dependent, in some cases driven by genetic changes and in others by the

demands of the microenvironment. Regardless of whether the tumor microenvironment

or oncogene activation plays a more important role in driving the development of a

distinct cancer metabolism, it is likely that the resulting alterations confer adaptive,
proliferative, and survival advantages on the cancer cell.
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Altered metabolism provides substrates for biosynthetic pathways

Although studies in cancer metabolism have largely been energy-centric, rapidly

dividing cells have diverse requirements. Proliferating cells not only require ATP, but

also nucleotides, fatty acids, membrane lipids, and proteins, and a reprogrammed

metabolism may serve to support synthesis of macromolecules. Recent studies have

shown that several steps in lipid synthesis are required for and may even actively

promote tumorigenesis. Inhibition of ATP citrate lyase, the distal enzyme that converts

mitochondrial-derived citrate into cytosolic acetyl coenzyme A, the precursor for many

lipid species, prevents cancer cell proliferation and tumor growth (Hatzivassiliou et al.,

2005). Fatty acid synthase, expressed at low levels in normal tissues, is upregulated

in cancer and may also be required for tumorigenesis (reviewed in Menendez

and Lupu, 2007). Furthermore, cancer cells may also enhance their biosynthetic

capabilities by expressing a tumor-specific form of pyruvate kinase (PK), M2-PK.

Pyruvate kinase catalyzes the third irreversible reaction of glycolysis, the conversion

of phosphoenolpyruvate (PEP) to pyruvate. Surprisingly, the M2-PK of cancer cells is

thought to be less active in the conversion of PEP to pyruvate and thus less efficient at

ATP production (reviewed in Mazurek et al., 2005). A major advantage to the cancer

cell, however, is that the glycolytic intermediates upstream of PEP might be shunted into

synthetic processes. Recent work has found that the cancer-specific M2-PK causes

an increase in the incorporation of glucose carbons into lipids and, expanding the

connection between growth factor signaling and cancer metabolism, may be regulated

by phosphotyrosine binding (Christofk et al., 2008a, b).

Making the building blocks of the cell, however, incurs an energetic cost

and cannot fully explain the Warburg effect. Biosynthesis, in addition to causing an

inherent increase in ATP demand in order to execute synthetic reactions, also causes

a decrease in ATP supply as various glycolytic and Krebs cycle intermediates are

diverted. Lipid synthesis, for example, requires the cooperation of glycolysis, the Krebs

cycle, and the pentose phosphate shunt. Pyruvate must enter the mitochondria, avoid
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conversion to lactate and then contribute to glycolysis-derived ATR In addition, whereas

increased biosynthesis may explain the glucose hunger of cancer cells, it cannot explain

the increase in lactic acid production originally described by Warburg, suggesting that

lactate must also result from the metabolism of non-glucose substrates. Recently, it has

been demonstrated again that glutamine may be metabolized by the citric acid cycle

in cancer cells and converted into lactate, producing NADPH for lipid biosynthesis and

oxaloacetate for anaplerosis (DeBerardinis et al., 2007).

Metabolic pathways regulate apoptosis

In addition to involvement in proliferation, altered metabolism may promote

another cancer-essential function: the avoidance of apoptosis. Loss of the p53 target

TIGAR sensitizes cancer cells to apoptosis, most likely by causing an increase in

reactive oxygen species (Bensaad et al., 2006). On the other hand, overexpression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents caspase-independent

cell death, presumably by stimulating glycolysis, increasing cellular ATP levels, and

promoting autophagy (Colell et al., 2007). Whether or not GAPDH plays a physiological

role in the regulation of cell death remains to be determined.

Intriguingly, Bonnet et al. (2007) have reported that treating cancer cells with

dichloroacetate (DCA), a small molecule inhibitor of pyruvate dehydrogenase kinase,

has striking effects on their survival and on xenograft tumor growth. DCA, a currently

approved treatment for congenital lactic acidosis, activates oxidative phosphorylation

and promotes apoptosis by two mechanisms. First, increased flux through the electron

transport chain causes depolarization of the mitochondrial membrane potential (which

the authors found to be hyperpolarized specifically in cancer cells) and release of the

apoptotic effector cytochrome c. Second, an increase in reactive oxygen species

generated by oxidative phosphorylation upregulates the voltage-gated K+ channel,

leading to potassium ion efflux and caspase activation. Their work suggests that cancer

cells may shift their metabolism to glycolysis in order to prevent cell death and that

forcing cancer cells to respire aerobically can counteract this adaptation. Although
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this preliminary work has prompted some cancer patients to self-medicate with DCA,

a controlled clinical trial will be essential to demonstrate unequivocally the safety and

efficacy of DCA as an anti-cancer agent.

Cancer cells may signal locally in the tumor microenvironment

Cancer cells may rewire metabolic pathways to exploit the tumor

microenvironment and to support cancer-specific signaling. Without access to the

central circulation, it is possible that metabolites can be concentrated locally and reach

suprasystemic levels, allowing cancer cells to engage in metabolite-mediated autocrine

and paracrine signaling that does not occur in normal tissues. So-called androgen-

independent prostate cancers may only be independent from exogenous, adrenal-

synthesized androgens. Androgen-independent prostate cancer cells still express

the androgen receptor and may be capable of autonomously synthesizing their own

androgens (Stanbrough et al., 2006).

Perhaps the more provocative but as yet untested idea is that metabolites in

the diffusion-limited tumor microenvironment could be acting as paracrine signaling

molecules. Traditionally thought of as a glycolytic waste product, lactate may be one

such signal. As noted above, it has been found that inhibition of lactate dehydrogenase

can block tumor growth, most likely by multiple mechanisms. Much of the evidence

for lactate as a multifunctional metabolite comes from work in exercise physiology

and muscle metabolism (reviewed in Philp et al., 2005). Transported by several

monocarboxylate transporters, lactate may be shared and metabolized among cells,

although the idea is still controversial (Hashimoto et al., 2006; Yoshida et al., 2007). The

interconversion of lactate and pyruvate might alter the NAD+/NADH ratio in cells, and

lactate exchange may serve to coordinate the metabolism of a group of cells. The tumor-

stroma interaction may therefore have a metabolic component to it (Koukourakis et al.,

2006). Cancer cells respond cell-autonomously to hypoxia to initiate angiogenesis,

and so it would be exciting if a metabolite such as lactate could positively amplify this

angiogenic program, a process that requires a semi-coordinated effort among multiple
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cells. Indeed, acidosis often precedes angiogenesis, and lactate may stimulate HIF

expression independently of hypoxia (Fukumura et al., 2001; Lu et al., 2002; Shi et al.,

2001). Cancer cells, by participating in a kind of quorum sensing and coordinating their

metabolism, may therefore act as a pseudo-organ.

Metabolism as an upstream modulator of signaling pathways

Not only is metabolism downstream of oncogenic pathways, but an altered

upstream metabolism may affect the activity of signaling pathways that normally sense

the state of the cell. Individuals with inherited mutations in succinate dehydrogenase

and fumarate hydratase develop highly angiogenic tumors, not unlike those exhibiting

loss of the VHL tumor suppressor protein that acts upstream of HIF (reviewed in Kaelin

and Ratcliffe, 2008). The mechanism of tumorigenesis in these cancer syndromes is

still contentious. However, it has been proposed that loss of succinate dehydrogenase

and fumarate hydratase causes an accumulation of succinate or fumarate, respectively,
leading to inhibition of the prolyl hydroxylases that mark HIF for VHL-mediated

degradation (Isaacs et al., 2005; Pollard et al., 2005; Selak et al., 2005). In this rare

case, succinate dehydrogenase and fumarate hydratase are acting as bona fide tumor

suppressors.

Mutations in metabolic genes, however, need not be a cancer-causing event.

More subtly, the activation of various metabolic pathways might modulate the activity of

downstream pro-cancer factors. Whereas it is well-accepted that growth factor signaling

is commonly dysregulated in cancer, the involvement of nutrient or energy signaling in

cancer remains unclear. In prokaryotes, various metabolites are sensed directly by the

signaling machinery. The mammalian pathways that respond to energy and nutrient

status may also interface with metabolites directly. It is well established that AMP-kinase

senses the ATP/AMP ratio, and it has been proposed that mTOR (the mammalian

target of rapamycin) may sense amino acid concentrations through an as yet unclear

mechanism (reviewed in Guertin and Sabatini, 2007; reviewed in Hardie, 2007). Both

AMP-kinase and mTOR have been linked to tumor syndromes. It is possible that one
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way to upregulate these pro-growth signaling pathways is to increase the levels of the

normal metabolites that they sense.

Metabolism upregulation generates toxic byproducts

Although altered metabolism confers several advantages on the cancer cell,

it does not come without disadvantages. As a consequence of a deranged or simply

overactive metabolism, cancer cells may be burdened with toxic byproducts that require

disposal. So far, there is relatively little evidence for this hypothesis in the existing

literature, but a few examples do suggest that cancer cells require detoxification

mechanisms to maintain survival. Although there are enzymes that detoxify exogenous

toxins, several "house-cleaning" enzymes, a term coined from studies in bacteria,

deal with endogenous toxic metabolites (reviewed in Galperin et al., 2006). The best

example of "house-cleaning" enzymes are the NUDIX (non-canonical nucleoside

diphosphate linked to some other moiety X) hydrolases, a family of enzymes that act

on the nucleotide pool and remove non-canonical nucleoside triphosphates. When

incorporated into the DNA, these aberrant nucleotides can lead to mismatches,

mutations, and eventually cell death. The dUTP pyrophosphatase (DUT), which

hydrolyzes dUTP to dUMP and prevents the incorporation of uracils into DNA, may play

a role in resistance to thymidylate synthase inhibitors. Suppression of DUT sensitizes

some cancer cells to pyrimidine antimetabolites, suggesting that inhibition of these

cellular house-cleaning enzymes may be an effective adjunct chemotherapeutic strategy

(Koehler and Ladner, 2004).

The lactate production associated with the shift to a glycolytic metabolism is

thought to contribute to the acidification of the microenvironment. Able to adapt to and

even benefit from an acidic environment, cancer cells have been shown to upregulate

vacuolar H+-ATPases, Na+-H+ antiporters, and H+-linked monocarboxylate transporters

(reviewed in Gatenby and Gillies, 2004). Inhibition of these adaptive mechanisms leads

to decreased viability of cancer cells and increased sensitivity to chemotherapeutic

agents (reviewed in Fais et al., 2007; Fang et al., 2006).
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Uncharted territory

Many mysteries remain unsolved in our understanding of even normal human

metabolism let alone that of cancer cells. The metabolic pathways of the mammalian cell

and their many interconnections are incomplete, as many enzymes remain unannotated

in the human genome. Although we have guesses by homology, the identities of the

human enzymes that catalyze reactions we know must occur are still elusive. In addition

to annotating all human metabolic genes, the "ins" and the "outs" (i.e. the metabolites

that enter and exit cells) should be measured and catalogued. It is also entirely unclear

what percentage of the cellular fuel is normally used for ATP generation, biosynthesis, or

other processes. And with few exceptions surprisingly little is known about intercellular

metabolism. Much of our understanding of metabolism has been inherited from work in

simple organisms; the compartmental nature of human metabolism is an exciting area of

potential exploration.

Although aerobic glycolysis is the most characterized, although still puzzling,
metabolic phenomenon in cancer, many other aspects of cancer metabolism are likely

to be derangements of normal metabolism and ought to be elucidated. The nutrient

conditions of the tumor microenvironment have not yet been carefully examined. Cancer

cells, despite engaging in energy-costly processes, must still be able to maintain ATP

levels, by relying either on increased flux through glycolysis or utilizing a diversity of

fuel sources. Several explanations exist as to why a fraction of tumors are refractory

to imaging by FDG-PET. One possibility is that certain cancer cells may not be

primarily glucose-metabolizers but may rely on alternative fuel sources, the detailed

characterization of which may lead to the detection and inhibition of "PET-negative"

tumors. Furthermore, there are more complex questions to be answered: Is it possible

that cancer cells exhibit "metabolite addiction?" Are there unique cancer-specific

metabolic pathways, or combinations of pathways, utilized by the cancer cell but not by

normal cells? Are different stages of metabolic adaptations required for the cancer cell

to progress from the primary tumor stage to invasion to metastasis? How malleable is
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cancer metabolism?

From a therapeutic perspective, knowledge of the causes, benefits, and

vulnerabilities of cancer cell metabolism will enable the identification of new drug targets

and will facilitate the design of metabolite mimetics that are uniquely taken up by a

cancer cell or converted into the active form by enzymes upregulated in cancer cells.

Profiling of either metabolites or enzymatic activities may allow us to develop diagnostic

tests of cancer, and metabolite derivatives can be used for the molecular imaging of

cancer, as exemplified by FDG-PET. We find the possibility of a new class of cancer

therapeutics and diagnostic tools especially exciting. Therefore, we emphasize the need

to explore beyond a glucose and energy-centric driven model of cancer metabolism to a

broader one that encompasses all of the metabolic needs of a cancer cell. Perhaps it is

time to step out from under Warburg's shadow.

179



Appendix: Cancer Cell Metabolism: Warburg and Beyond

Figure 1
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Figure 1. The altered metabolism of cancer cells.

Drivers (A, B). Metabolic derangements in cancer cells may arise either from the

selection of cells that have adapted to the tumor microenvironment or from aberrant

signaling due to oncogene activation. The tumor microenvironment is spatially and

temporally heterogeneous, containing regions of low oxygen and low pH (purple).

Moreover, many canonical cancer-associated signaling pathways induce metabolic

reprogramming. Target genes activated by hypoxia-inducible factor (HIF) decrease

the dependence of the cell on oxygen, whereas Ras, Myc, and Akt increase glucose

consumption and glycolysis. Loss of p53 may also recapitulate the features of the

Warburg effect, that is, the uncoupling of glycolysis from oxygen levels.

Advantages (C-E). The altered metabolism of cancer cells is likely to imbue them with

several proliferative and survival advantages, such as enabling cancer cells to execute

the biosynthesis of macromolecules (C), to avoid apoptosis (D), and to engage in local

metabolite-based paracrine and autocrine signaling (E).

Potential Liabilities (F-G). This altered metabolism, however, may also confer several

vulnerabilities on cancer cells. For example, an upregulated metabolism may result

in the build up of toxic metabolites, including lactate and non-canonical nucleotides,

which must be disposed of (F). Moreover, cancer cells may also exhibit a high energetic

demand, for which they must either increase flux through normal ATP-generating

processes, or else rely on an increased diversity of fuel sources (G).
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