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Abstract

Technological improvements in the assays and equipment used for biological,
biochemical, biophysical and microscopy purposes have ensured that methods for
labeling of proteins with reporter molecules remain in high demand. Standard chemical
labeling methods using entities that react with amino acid side chains lack the specificity
to ensure precise placement of reporter groups. Genetic methods, although specific, lack
the versatility afforded by chemical synthesis-most reporters are limited to protein sized
domains or peptide tags to which corresponding antibody based reagents are available.

The first portion of this work is devoted to the establishment of a system that allows
for the site-specific labeling of proteins with a wide variety of chemically synthesized
probes. This system exploits sortases, a class of bacterial transpeptidases, that recognize
a small five amino acid tag genetically fused to the protein of interest and catalyze the
formation of an amide bond between the protein to be studied and the probe.

The second part of this thesis describes how this sortase mediated protein labeling
method has been implemented to explore enzyme structure and function, improve the
physical properties of therapeutic proteins, study glycoproteins important for innate
immune responses in living cells (Appendix A), and visualize influenza glycoproteins in
living, infected cells.

Finally, a protocol is included for this system (Appendix B), which is both versatile
and easy to establish in any lab. The synthetic chemistry demanded is minimal, requiring
only standard, readily available reagents, making the system amenable to labs equipped
for cell and molecular biology experiments.

Thesis Supervisor: Hidde L. Ploegh
Title: Professor of Biology
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Chapter 1: Introduction

Making and Breaking Peptide Bonds: Protein engineering using sortase
(Adapted from: Making and Breaking Peptide Bonds: Protein engineering using sortase,

Angewandte Chemie, Accepted)

Introduction

Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is the

ability to break a peptide bond site-specifically and then reform a new bond with an

incoming nucleophile that makes sortase an attractive tool for protein engineering. This

technique has been adopted for a range of applications running the gamut from

chemistry-based to cell biological to technological. We provide a brief overview of the

biology of the sortase enzyme and current applications to protein engineering. We

identify areas that lend themselves to further innovation and that suggest new

applications.

Biological Function and Biochemistry of Sortase A

Many gram-positive bacteria display virulence factors on their cell wall for successful

colonization and pathogenesis'. Anchoring of proteins to the bacterial cell wall is the

purview of sortase enzymes 2 3 4, a class of thiol-containing transpeptidases. These

enzymes recognize substrate proteins bearing a "sorting motif' (LPXTG in the case of

Staphylococcus aureus) and harbor a catalytic cysteine used to cleave the peptide bond

5 67
between the threonine and glycine within this pentapeptide '. Other sortases from

different bacterial species use the same or similar recognition sequences 9 . For a

database of sortase and their substrates, see

http://bamics3.cmbi.kun.nl/cgibin/jos/sortase substrates/index.py 11 12. This reaction

initially yields a thioacyl intermediate13 14 , in a fashion analogous to the mechanism used
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by cysteine proteases. Where cysteine proteases use water to resolve this intermediate

and generate a hydrolysis product, sortase will accept the N-terminus of an oligo-glycine

nucleophile, resulting in the creation of a new peptide bond (Figure 1.1). In the course

of the normal sorting reaction, the pentaglycine crossbridge in the lipid-II cell wall

precursor carries out the nucleophilic attack on the acyl-enzyme 5 . The cell wall

precursor with its covalently attached protein is then incorporated into the growing

peptidoglycan layer.

In addition to anchoring virulence factors to the cell wall, sortases build the pilus

structure that many bacteria use for attachment to host cells and to form biofilmsie 17 18 19

The details of this process differ between bacterial species 202 1 22 23 24, but in general

terms, it involves a sortase that polymerizes pilin subunits bearing both a sorting signal

and a nucleophilic s-amine of a lysine in an internally located motif25 . This protein-

protein ligation reaction results in polymerization of the pilin subunits, but does not

mediate anchoring of the growing polymer to the cell wall. This is the job of the

housekeeping sortase, which accepts the lipid-II precursor nucleophile2 .

Sortases represent a bona-fide drug target because of their central role in virulence 27 28 29

30 31. For this reason they have been studied extensively both structurally32-34 32 34 35 and

biochemically 36 37 38. The structure of sortase A from S. aureus consists of an eight

stranded beta-barrel-like fold, termed the sortase fold, with a hydrophobic cleft formed by

the 7and 38 strands, surrounded by the $3-p4, 02-63, $6--37, and P7--08 loops (Figure

1.2). This cleft houses the catalytic cysteine residue (Cys 184) and accommodates
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substrate binding. An additional structural feature of the S. aureus enzyme is a calcium

binding site formed by the P3/p4 loop. Calcium binding to this site coordinates a residue

in the p6/p7 loop, slowing its motion, allowing substrate to bind, and stimulating activity

by eight-fold 3 9. The biochemical details of the active site include a key histidine residue

(H120) that can form a thiolate-imidizolium ion pair with the catalytic cysteine 40. It is

the deprotonated form of cysteine that is competent for catalysis. However, at

physiological pH, the ionized forms of these key amino acids are in equilibrium with the

neutral forms, and only a small percentage (-0.06%) of the total enzyme is catalytically

competent at any given time41 -42 . The cysteine attacks the amide bond between the

threonine and glycine residues in the sorting motif. The protonated imidizolium ion acts

as a general acid for the departing glycine axNH2, and gives rise to an acylated form of

sortase. An incoming glycine nucleophile is then deprotonated, attacks the thioester, and

re-establishes an amide bond. If instead water attacks the acyl-enzyme intermediate, the

reaction yields the dead-end hydrolysis product 43.

Bacterial Surface Engineering

The sortase-mediated system of anchoring proteins to the cell wall of gram-positive

bacteria was first exploited to decorate these microbes with heterologous proteins. Such

experiments require the creation of a genetic fusion of the heterologous protein to the

sorting motif. The heterologous protein is then expressed and directed to the surface

though the normal cell wall sorting pathway. In this manner, the enzyme alkaline

phosphatase has been anchored to the cell wall of Staphylococcus aureus44, the E7

protein of HPV16 has been displayed on S. gordonii, a commensal microbe in the oral
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cavity45, and alpha amalyase has been affixed to the peptidoglycan of B. subtilis, helped

by co-expression of the sortase gene from L. monocytogenes46 . The peptidoglycan cell

wall can even be decorated with non-natural entities (fluorescein, biotin, azide) by

incubation of dividing S. aureus cultures with chemical probes appended to the N-

terminus of an LPXTG peptide47. Incorporation of what are in essence N-terminal

labeling probes (see later section) uses the endogenous sortase enzyme and anchors the

exogenously provided probes onto available pentaglycine sidechains of the cell wall.

C-terminal Labeling

The ability of sortase to recognize the sorting motif when transplanted onto

recombinantly expressed proteins allows the site-specific incorporation of moieties and

functional groups that cannot be encoded genetically (Figure 1.1). This method requires

only that the LPXTG motif be solvent exposed and usually results in high yields of the

desired transpeptidation product. Indeed, many substrate proteins have now been labeled

with probes bearing a wide range of functionalities, including biotin, fluorophores, cross-

linkers and multi-functional probes (Table 1.1, Table 1.2) 48. Labeling of recombinant

proteins by sortase A requires no sophisticated synthetic chemistry; most of the probes

are readily accessible by standard peptide synthesis, using off-the shelf reagents.

Production and folding of recombinant substrate proteins is not usually compromised by

the presence of the small LPXTG tag. Because all transformations are carried out using

sortase under physiological buffer conditions (pH, ionic strength, ionic requirements) on

substrates whose proper folding and activity status can be ascertained prior to starting the

reaction, loss of biological activity is rarely, if ever, observed for the final product. The
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ability to engage in a sortase-catalyzed transacylation appears to be determined solely by

accessibility and flexibility of the sorting motif. Intein-based protein engineering

methods usually require that substrates first fold while fused to a protein-sized intein

domain, at times causing solubility issues49.

The utility of the sortase labeling method stems from the fact that the enzyme tolerates

substrates unrelated in structure and sequence immediately upstream from the cleavage

site. This property is not unexpected, given the role of sortase in anchoring a broad range

of protein substrates to the cell wall. The substrate need not even be proteinaceous-

peptide-nucleic acids linked to the sortase cleavage site can be ligated to a glycine-linked

cell penetrating peptide (MAP model amphipathic peptide) to yield active antisense

PNA-CPP conjugates50 . Likewise, the identity of the substituents C-terminal to the

glycine nucleophile seem to matter not at all: D-amino acid-containing peptides, folate,

branched protein transduction domains51, and large polyethylene glycol chains52 have all

been attached using sortase. The cleavage site need not even be near the C-terminus of

the substrate protein. A sufficiently large solvent-exposed loop will suffice. This

property has been exploited to investigate the contribution to substrate binding and

catalysis of a key loop in the deubiquitinating enzyme UCHL35 3 . Because the cleavage

site can be placed in a loop, it is possible to interrupt the connectivity of the protein

backbone, while simultaneously installing a reporter moiety (biotin or fluorophore) to

monitor the behavior of the cleaved enzyme in the presence of uncleaved, wild-type

enzyme. This trait is likely to apply to many proteins whose conformation includes an

exposed, flexible loop.
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The C-terminal labeling technique is particularly useful for the study of type-II

membrane proteins embedded in the living mammalian cell membrane. Type II

membrane proteins have C-termini that are exposed to extracellular space and thus are

excellent candidates for sortase-mediated labeling. Proteins with this type II topology

have been particularly refractory to genetic fusion with fluorescent proteins. N-terminal

placement of a fluorescent protein usually impedes cotranslational insertion of the type II

membrane protein into the ER, while C-terminal tagging with GFP places this bulky

substituent close to the site of interaction with ligands of the type II membrane protein in

question. . CD40L, influenza neuraminidase 54, and osteoclast differentiation factor

(ODF)55 have all been labeled in live cells in this way.

N-terminal Labeling

Protein labeling at the N-terminus can be accomplished simply by moving the placement

of the sortase recognition element from the protein to the short peptide probe and by

inclusion of a suitable number of glycines at the target protein's N-terminus (Figure

1.1). Both methyl-ester mimetics of the sortase motif 56 as well as the complete LPXTG

sortase recognition motif can be used as scaffolds for such probes 57. Conceptually, this

labeling technique is analogous to the C-terminal labeling, except the acyl-enzyme

intermediate is generated between sortase and the peptide probe, and the protein to be

labeled bears several glycines at the N-terminus, the aNH2 of which serves as the

nucleophile. This strategy was used to install fluorescent probes at the N-terminus of

membrane proteins in living mammalian cells after a clever initial unmasking step by
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sortase itself to expose the nucleophilic glycine57. This system was later used to install

reporter fluorphores on the N-terminus of the G protein-coupled receptor, PAFR. This

allowed the direct observation of the trafficking of the cell surface-exposed pool after

labeling. PFAR receptors with key mutations were then shown to traffic aberrantly 58.

For both the C-terminal and N-terminal labeling of cell surface proteins, the sortase

technique allows access only to the cell surface pool of the protein of interest. This is an

advantage when interested in exploring the behavior of only the surface exposed fraction

of a particular protein. If ligand binding is restricted to the cell surface, then this is also

usually the relevant fraction. Genetic fusions to fluorescent proteins, by their very nature

report on the protein of interest from the moment of its genesis inside the cell and

onwards. Although this trait comes with its own advantages, it may complicate the

distinction between proteins in the course of their biosynthesis and the behavior of the

mature, biologically relevant pool of protein. The sortase-based strategies should thus be

viewed as a useful adjunct to the GFP-based methods, but with the added benefit of

increased chemical flexibility.

Labeling at N- and C-termini

By using sortases with distinct substrate specificity, it is possible to combine N-terminal

and C-terminal labeling strategies. The Streptococcus pyogenes enzyme 59 (SrtAstrep)

recognizes and cleaves the LPXTA motif and accepts alanine-based nucleophiles. It also

cleaves the SrtAStaph LPXTG motif, albeit with reduced efficiency. In contrast, the

SrtAstaph enzyme does not cleave the LPXTA motif, and thus the two enzymes are

orthogonal with respect to the LPXTA sequence. This property was exploited to label
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both termini of GFP and UCHL3 with unique fluorophores. A masking strategy was

used in which the N-terminal glycines needed for SrtAstph labeling were exposed after

proteolytic cleavage by thrombin. This step avoids protein oligomerization, likely to

occur during the SrtAstrep C-terminal labeling steps6

Post-translational Modification Mimics

Sortase methodology allows the production of homogenous recombinant protein

preparations that are modified with non-genetcially templated post-translational

modifications. Glycoproteins, normally elaborated by a complex set of enzymatic events

in the secretory pathway, can thus be constructed. LPXTG-tagged proteins and peptides

can be modified with 6-aminohexose-based sugar nucleophiles, including

aminoglycoside antibiotics and their analogs 60. Glycosylphosphatidylinositol (GPI)

anchors, normally attached at the C-terminus of proteins can be phenocopied by ligation

of LPXTG peptides to synthetic glycine nucleophiles, in turn linked to the

61
phosphoethanolamine moiety on a GPI derivative

Various peptides (CD52 fragment, MUC 1 peptide) and small proteins (CD24) have been

attached to GPI mimics with trisaccharide cores62-6 3 63. Lipidation of proteins is yet

another important post-translational modification that is poorly studied because of the

lack of tools available to obtain homogenous preparations of lipoproteins. Sortase has

been used to fill this void64. A glycine-based scaffold was modified with a panel of linear

alkyl chains (length C12 - C24) as well as with cholesterol or amantadine, and then used

to modify a suitably LPETG-tagged version of eGFP. These eGFP lipoproteins

associated with the plasma membranes of living cells in a chain-length dependent
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fashion, the optimum being C22, from where they gained access to the endosomal

compartment.

Piecemeal Assembly of Proteins/Protein Domains/Peptides

Folded proteins with an exposed glycine at the N-terminus may serve as nucleophiles for

sortase labeling. Substrate proteins bearing the LPXTG motif can be fused to the

incoming nucleophile protein, creating large transpeptidation products. By using

independently folded proteins as substrates, it is possible to avoid many of the solubility

issues that plague expression of large genetically encoded fusions. This property was

exploited to facilitate NMR structural analysis, which typically requires highly

concentrated protein preparations, making poor solubility a major obstacle. Sortase was

used to attach an unlabeled, and hence NMR invisible, solubility enhancing tag (G3-GB 1)

onto the C-terminus of the Vav SH3 domain, a domain that is nearly insoluble by itself at

neutral pH65 . The structure of the attached 13C/ 15N-labeled Vav SH3 domain was then

resolved by NMR, without confounding signals from the solubility-enhancing tag. A

versatile panel of immunodetection reagents has been created using sortase. Protein-

protein ligations were carried out between an Fc binding module (ZZ-domain) and

66
several detection enzymes (AP, Luc, GOD) using sortase . Mucin glycopeptides were

synthesized that contain both N- and O-linked glycans with the help of sortase as a

synthetic tool. Separate peptides bearing either 0- or N- linked glycans were constructed

by a combination of chemical synthesis and elaboration of the glycan structure by

enzymatic synthesis. These glycopeptides were then stitched together using sortase to

yield a stereochemcially homogenous preparation67 68. Sortase has been applied to the
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construction of G-protein coupled receptor (GPCR) mimics through a combined

recombinant, enzymatic, and chemical synthesis (CRECS) strategy69 . GPCRs are 7-pass

transmembrane proteins that use three extracellular loops as well as the extracellular N-

terminal segment to bind their ligands. To mimic this arrangement, three loops were

made synthetically, cyclized by native chemical ligation, and appended to a triglycine

linked peptide scaffold. Then the GPCR N-terminus, fused to the sortase cleavage site,

was recombinantly expressed in E.coli and attached to the scaffold via sortase-mediated

ligation. These elegantly engineered soluble mimics should allow the systematic

characterization of the contributions of each region to ligand binding and represent a true

marriage between what can be accomplished through chemical synthesis and molecular

biology.

A unique variant of the protein-protein ligation occurs when the LPXTG motif and N-

terminal glycines are both present in the same construct. If both units are sufficiently

close in space in the folded protein, the N-terminus can form a peptide bond with the

sortase recognition element, resulting in a stable, circular transpeptidation product 70 52.

Circular proteins have useful biochemical properties. They are resistant to aggregation,

require more energy for denaturation, and since they lack exposed termini, are resistant in

their native form to exoprotease attack71 72 73 74 75

Anchoring to Solid Surfaces

Covalent immobilization of proteins onto solid supports has been accomplished by

sortase. By relying on the enzyme specificity to anchor substrates to the solid surface,
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proteins are immobilized uniformly and in defined orientation for subsequent exposure to

the analyte of interest, a major advantage of the method. Stringent wash conditions can be

employed because of the stable amide bond that links the protein to the surface, as was

done by covalently attaching GFP to glycine-derivatized polystyrene beads".

Attachment of adhesion proteins from gram-positive bacteria to fluorescent glycine-

derivatized polystyrene beads was done in a similar manner7 6. Anchoring of GFP and

Tus proteins to glycidyl methacrylate beads derivatized with oligo glycine, as well as to

glycine-modified agarose resin (Affi-Gel), and glycine modified aminosilane coated glass

slides has been achieved77. Directional anchoring of proteins onto triglycine-modified

caroboxymethylated dextran-based Biacore sensor chips for use in surface plasmon

resonance has also been accomplished78 . Recombinant fibronectin-binding protein (rFba-

LPETG) from group A streptococcus (GAS) was anchored in this manner, which then

allowed the measurement of binding of human factor H to the immobilized protein. With

an aim to develop the reagents needed for chemoenzymatic synthesis of glycoconjugates,

immobilized P 1,4-galactosyltransferase (rhGalT) and Helicobacter pylori o 1,3-

fucosyltransferase (rHFucT) were covalently attached to alkylamine-sepharose beads.

These enzymes are both active and reusable when directionally anchored to the solid-

phase79.

Protein Expression and Purification

Genetic fusions between sortase and a protein of interest have been constructed for the

purposes of protein purification. A linear fusion between hexahistidine-tagged sortase,

followed by the LPETG tag, and the protein of interest is first purified by Ni-NTA IMAC
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and then cleaved off of the resin by addition of Ca 2 2and triglycine to yield highly pure

protein with one additional glycine"0 (Fig. 1.3) . This method was adapted for protein

production in a wheat germ cell-free translation system, with the goal of creating a

general purification method that can be used in automated, high throughput protein

production. In this version, a biotin acceptor peptide (a 15 amino acid peptide that is the

target of E. coli biotin ligase) replaces the hexahistidine tag and the proteins are purified

with strepavidin resin in the presence of calcium chelators to prevent premature

cleavage 1. Both methods yield the target protein with one extra glycine at the N-

terminus, a configuration that is poised for N-terminal labeling by sortase if desired

(Figure 1.3). Sortase A from S. aureus is an extremely soluble enzyme that can be

produced in high yield (>40mg/L of culture)-this property has been exploited to enhance

the solubility of proteins of interest by fusion to a version of sortase lacking the catalytic

cysteine82

Conclusion

This thesis will describe the efforts we have made to establish the sortase-mediated

labeling system for N-terminal, C-terminal and dual-terminus labeling of proteins. We

have expanded the utility of the method to include labeling of purified proteins, proteins

in heterogenous complex mixtures, and on the living cell surface. A diverse array of

functionalities has been appended to proteins in each case, creating a toolbox that has

expanded what can be accomplished by marrying molecular biology with chemical

synthesis. We further describe how we have applied this technology to accomplish feats
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that would not have been possible otherwise in the areas of protein engineering and cell

biology.
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Figure Legends

Figure 1.1. Site-specific C- and N-terminal labeling scheme using sortase A.

C-terminal labeling (left) and N-terminal labeling (right) proceed through a substrate

recognition step (top), followed by generation of a thioacyl intermediate (middle) and

resolution of the acylated enzyme by an exogenously added nucleophile (bottom). See

text for details.

Figure 1.2. Structre of sortase A from Staphylococcus aureus.

NMR structure of sortase A from Staphylococcus auerus (pdb id: 1I JA)33. The active site

cysteine (Cys 184) is in red and the active site Histidine (His 120) is in blue. The P7 and

P8 strands that form the floor of the active site are labeled and the p6-p7 loop, involved

in substrate recognition83 is in purple. Residues that coordinate calcium are shown as

sticks39.

Figure 1.3. Protein purification using sortase A.

Recombinant expressed proteins are produced as fusion proteins containing either a

hexahistidine tag (top)80 or a biotin acceptor peptide (bottom)81 followed by the catalytic

core of sortase, the LPXTG tag, and the protein of interest. Addition of Ca2" ions and

oligoglycine to the immobilized fusion protein stimulates sortase activity. The protein of

interest is released as a purified preparation with one additional N-terminal glycine.



Chapter 1: Introduction

Figure 1.1
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Figure 1.2
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Figure 1.3.
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Table 1.1. Examples of synthetic nucleophiles used in site-specific sortase A
transpeptidation reactions.

Probe N-or C-terminal Property Endowed Reference(s)
Labeling

1 H-G 5K(Biotin)L-OH C-terminal Biophysical handle 3

2 H-G 5K(ANP)K(Biotin)L-OH C-terminal Biophysical
handle/Photocleavage

3 H-G 5K(Phenylazide)K(Biotin)G-OH C-terminal Biophysical
handle/Photocrosslinke
r

4 H-G3K(FITC)-NH2  C-terminal Fluorescence 54

5 H-G3K(K(TAMRA))-NH 2  C-terminal Fluorescence 54,70

6 H-G3YC(Biotin)-NH 2  C-terminal Biophysical Handle 55

7 H-G3YC(Alexa 488)-NH2  C-terminal Fluorescence 55

8 H-AA-Ahx-K(K(TAMRA))-NH 2  C-terminal (S. Fluorescence
pyogenes)

9 H-G3K(CI2-C24)-NH 2  C-terminal Lipidation
10 H-G3K(l-ad)-NH 2  C-terminal Hydrophobicity
11 H-G3WK(Cholesterol)-NH 2  C-terminal Lipidation
12 D-Tat (1s residue is G) C-terminal Cell Penetration 51

13 H-G2Y-PTD5-NH 2  C-terminal Cell Penetration 51

14 (H2NRRQRRTSKLMKRAhx) 2KYK(GG- C-terminal Cell Penetration 51

NH 2 )-NH
2

15 H-G3K(Folate)-NH 2  C-terminal Folic Acid 51

16 H2N-PEG C-terminal Inert Polymer 52

17 H-G3K(PEG)-OH C-terminal Inert Polymer
18 H-G3-MAP-NH 2  C-terminal Cell Penetration 50

19 Aminoglycoside antibiotics (various) C-terminal Antibiotic
20 C -terminal GPI Mimic 61

O-P- OH
.-0

OH HO 

_ __O

I owe

21 GPI mimics based on 19 with trisaccharide C-terminal GPI Mimic ,26
cores

22 Biotin-PEG-YGLPETGG-NH 2  N-terminal Biophysical handle -57

23 Alexa 647-LPETGG-NH2  N-terminal Fluorescence 57

24 Alexa 488-LPETGG-NH 2  N-terminal Fluorescence 5 _ _

25 Biotin-LPRT-OMe N-terminal Biophysical handle 56

26 FITC-Ahx-LPRT-OMe N-terminal Fluorescence 56

27 FAM-LPETG-NH 2  N-terminal Fluorescence 47

28 Biotin-GGLPETG-NH 2  N-terminal Biophysical handle 47

29 N3-ALPETG-NH 2  N-terminal Handle for
bioorthognal chemical
reactions
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Table 1.2. Examples of proteins labeled by sortase A transpeptidation.

Substrate Solution/Cell N-or C-terminal Label(s) Reference(s)
Surface Labeling

H-2K' Solution C-terminal 1,2,3,4,5 54

CD154 Cell Surface C-terminal 1,5 54

Neuramnidase Cell Surface C-terminal 1 54

ODF Cell Surface C-terminal 6,7 "
Cre Solution C-terminal 5 70

UCHL3 Solution C-terminal (loop) 1,5 53

p97 Solution C-terminal 5 74

eGFP Solution C-terminal 9,10,11 64

GFP Solution C-terminal 13,14,15 51

PNA Solution C-terminal 18 50

eGFP Solution C-terminal 16,17 52

Mrp Solution C-terminal 19 60

YALPETGK Solution C-terminal 19 60

(His) 6YALPETGKS Solution C-terminal 20 61

CD52 Peptides Solution C-terminal 21 62

CD24 Solution C-terminal 21 62

MUC1 Solution C-terminal 21 63

LPETG5-ECFP-TM Cell Surface N-terminal 22,23 "
LPETG5-PAFR Cell Surface N-terminal 24 58

G3-/G5-CTXB Solution N-terminal 25,26 56

G3-eGFP Solution N-terminal 26 56

G-UCHL3 Solution N-terminal 26 56

S. aureus Surface Cell Surface N-terminal 27,28,29 47

Peptidoglycan
eGFP Solution N-and C-terminal 26&8 56
UCHL3 Solution N-and C-terminal 26&8 56
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Sortagging (sortase-mediated transpeptidation): A versatile method for site-specific
labeling of proteins in solution and on live cells

This chapter is an expanded version of: Popp, M.W., Antos, J.M., Grotenbreg, G.M.,
Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat

Chem Biol 3, 707-708 (2007).

Abstract

Genetically encoded reporter constructs that yield fluorescently labeled fusion proteins

are a powerful tool for observing cell biological phenomena, but have their limitations.

We describe a versatile chemo-enzymatic system for site-specific labeling of proteins,

called sortagging (sortase-mediated transpeptidation), which combines the precision of a

genetically encoded tag with the specificity of an enzymatic reaction and the ease and

chemical versatility of peptide synthesis. We use sortase-mediated transpeptidation to

install on proteins of interest a variety of small probes, readily accessible by standard

peptide synthesis, which then allow interrogation by affinity-based methods or direct

visualization by fluorescence. Sortagging may be applied in solution and on the surface

of living cells, where the creation of GFP fusion proteins interferes with the function of

the tagged protein and thus mandates the use of fluorophores of smaller size.

Main Text

The use of green fluorescent protein (GFP) and its derivatives has revolutionized the

study of protein behavior in living cells 1. It has further opened up the possibility of

tracking cells bearing GFP-tagged proteins in living organisms. However, not all

proteins tolerate the installation of GFP without compromising function or intracellular

distribution 2. Chemical methods for the installation of fluorescent or affinity labels have
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the advantage of ease of use, but lack the precision of genetically encoded tags. To

overcome this challenge, chemoenzymatic methods and small molecule binding peptide

sequences that allow site-specific incorporation of labels have been developed, including

transglutaminase-catalyzed reactions 3, acyl carrier-protein-based labeling 4, 06-

alkylguanine DNA alkyltransferase fusions 5, dihydrofolate reductase fusions 6, biotin

ligase 7 , FlAsH 8, and Texas-red binding peptide 9. However, several of these methods

require the installation of a protein-sized module to afford selective labeling, or

necessitate the insertion of recognition sequences that vary in size from 6 to 38 residues,

with varying degrees of labeling selectivity. The nature of the labeling method also

dictates the types of reporter molecules that can be installed, some of which require

synthetic capabilities beyond the reach of most laboratories involved in biochemical or

cell-biological studies. For example, the system that has perhaps enjoyed the widest

application, FlAsH, is limited to installation of fluorophores, requires lengthy washouts to

remove the biarsenical compound from endogenous monothiolsio, and is not easily

applied to proteins that traverse the secretory pathway unless free thiols are present or

generated by reduction. Despite these limitations, the range of applications 10-12

demonstrates the utility of site-specific chemical labeling. Key features of these

different labeling methods have been reviewed 13

Here we exploit the transpeptidase activity of bacterial sortases, thiol-containing enzymes

that covalently attach proteins to the bacterial cell wall 14, for selective labeling of

proteins in solution, in cell lysates of complex composition, and on the surface of living

cells, with a diverse set of probes suitable for the study of protein interactions and protein

36
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trafficking. Staphylococcus aureus sortase A recognizes a set of structurally and

functionally diverse substrates via an LPXTG motif, cleaving the peptide bond between

threonine and glycine and subsequently forming an amide linkage with the N-terminus of

a pentaglycine nucleophile provided in vivo by a cell wall precursor . Sortase A has

been used previously in vitro to affix cell permeable peptides' 6 as well as poly(ethylene

glycol) and polystyrene beads17, but the reactions were limited to a single model

substrate, GFP. We use a set of oligoglycine-based nucleophiles and reaction conditions

that allow efficient and selective labeling of biologically relevant protein complexes with

affinity probes, photocrosslinkers, or fluorophores, both in vitro and on the surface of

living cells (Fig. 2.1).

Expression of recombinant (His) 6 tagged sortase A in E coli allows recovery in good

yield (60 mg/liter of culture) of a highly purified preparation 14. As a substrate, we

generated a construct composed of the coding sequence for the luminal portion of the

murine Class I MHC heavy chain H-2Kb, followed by an LPETG motif and a C-terminal

15 amino acid acceptor peptide (AP) sequence for E. coli BirA biotin ligase. We

expressed the recombinant H-2Kb protein and reconstituted it with p2-microglobulin

(p2m) and the SIINFEKL peptide. We then biotinylated the AP portion of our refolded

H-2K using the BirA enzyme 18. For sortagging, we incubated our LPETG-containing

H-2K monomers (15 pM) bearing the biotinylated C-terminal AP tag with sortase A

(150 pM) in the presence or absence of biotinylated pentaglycine probe 1 (5 mM, Fig.

2.2a). In contrast to previous reports on the use of sortase-mediated transpeptidation to

append oligoglycine derivatives to GFP 16-17, excess sortase A was employed to drive the
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transpeptidation reaction to completion within a reasonable period of time. In the

absence of probe 1 we observed loss of biotin, corresponding to departure of the

biotinylated AP tag and the concomitant formation of both a higher molecular weight and

a lower molecular weight species (Fig. 2.2a). We excised the high molecular weight

polypeptide from a silver stained gel and sequenced it after trypsinolysis by electrospray

ionization tandem mass spectrometry (Supplementary Figs. 2.1a and 2.1b).

Remarkably, it was comprised of both sortase A and the H-2Kb input substrate, indicating

that it was in fact the acyl-enzyme intermediate 19. Hydrolysis of this thioester

intermediate generates the lower molecular weight band also observed in the absence of

probe 1. Upon addition of probe 1 to the reaction mixture, we observed rapid formation

of the expected transpeptidation product: a sortase-cleaved, biotinylated H-2Kb molecule

lacking the 15 amino acid AP tag (Fig. 2.2a). The distinct electrophoretic mobility of the

input substrate and the sortagged product allowed for convenient monitoring of the

reaction by immunoblot with streptavidin-horseradish peroxidase (HRP). Quantitative

replacement of the biotinylated AP tag with probe 1 occurred within 60 minutes.

To demonstrate that the reaction product was conformationally intact H-2K , we

tetramerized the quantitatively sortagged H-2Kb by incubation with streptavidin-

phycoerythrin (PE). Fully assembled SIINFEKL-loaded H-2Kb tetramers will stain OT-1

cells, T cells from an ovalbumin specific H-2Kb restricted T cell receptor transgenic line

of mice 2. Our sortagged tetramers indeed retained functional integrity, as assessed by

robust fluorescent staining of OT- 1 TCR transgenic T cells (Fig. 2.2b). Therefore,

neither the LPETG tag nor the transpeptidation reaction perturbs the fold of this protein
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complex. Because very little is known about the structural requirements for recognition

of the LPXTG motif in natural bacterial substrates, we investigated the requirements for

placement of the LPETG tag within the defined structure of the H-2Kb protein.

Additional H-2Kb substrates were prepared in which the LPETG motif was moved from

the C-terminus to seven surface-exposed loop regions (Supplementary Fig. 2.3a and

Supplementary Table 2.1). Proper folding of these substrates was largely retained, as

indicated by their ability to stain OT- 1 T cells following tetramerization (Supplementary

Fig. 2.3b). However, upon exposure to sortase A and probe 1, no transpeptidation was

detected (Supplementary Fig. 2.3c). Thus, we conclude that the LPETG tag must be

placed in a flexible, unstructured region close to the C-terminus of the substrate protein.

With the reaction conditions for quantitative labeling in hand, we next synthesized

additional oligoglycine nucleophiles (probes 2-5) compatible with the sortagging system

and demonstrated their ability to efficiently label the H-2Kb substrate (Fig. 2.3). A probe

in which the biotin moiety is separated from the (Gly)s motif by a 3-amino-3-(o-

nitrophenyl) propionic acid residue (probe 2) allows photocleavage of the tag, with

concomitant release of the biotin label. Sortagging can thus be reversed photochemically

under mild conditions (Fig. 2.4a). We also generated a probe containing both a biotin

moiety and an aryl azide photocrosslinker appended to the (Gly) 5 motif (probe 3) and

found this to be sufficient to crosslink the sortagged H-2Kb heavy chain to p2-

microglobulin (Fig. 2.4b). Finally, for fluorescent visualization, we successfully

installed either a fluorescein (FITC) or tetramethyl rhodamine (TAMRA) dye by means

of the correspondingly modified triglycine peptide (probes 4 and 5 respectively). All of
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the probes described here can be quantitatively appended with similar efficiencies, were

accessed through standard solid phase peptide synthesis with commercially available

building blocks, and illustrate the diversity of functionalities that can be used in the

sortagging system. In addition to our H-2Kb substrate, we have also successfully labeled

an LPETG tagged version of the chemokine CXCL14 in solution (Supplementary Fig.

2.2).

Having shown the feasibility of sortagging purified proteins in solution, we turned to

labeling substrates in complex mixtures of proteins in order to demonstrate the specificity

of the transpeptidation reaction. We chose as a model substrate the human CD 154

(CD40L) molecule, a type II membrane glycoprotein present on activated T lymphocytes

and platelets 2, which functions as a ligand for CD40. CD154-induced CD40 signaling

is essential for a productive interaction between T and B cells to bring about class switch

recombination and somatic hypermutation 22-23 and also correlates with interactions

between dendritic cells and T cells 24. We installed at the C-terminus of CD40L an

LPETG tag preceded by a short flexible linker and followed by the HA epitope tag, and

expressed this construct in HEK 293T cells. The CD40L species was the only

polypeptide labeled by sortagging in vitro on cell lysates, as detected by subsequent

immunoblotting using streptavidin-HRP (Supplementary Fig. 2.4a). Similarly, we have

also sortagged soluble H-2Kb complexes when present in a crude bacterial lysate

(Supplementary Fig. 2.4b).
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Cell surface molecules play a key role in signal transduction and cell-cell

communication. Thus, we sought to demonstrate that the sortagging method can label

protein substrates on the surface of live cells for direct visualization. HEK 293T cells

transfected with the CD40L construct were incubated with serum-containing media and

sortase A together with probe 1. Upon incubation, sortagged CD40L was readily

visualized with streptavidin-HRP, with almost no labeling of endogenous polypeptides

(Fig. 2.5a, Supplementary Fig. 2.5). We detected the persistence of HA-tagged CD40L,

indicating that sortase A does not attack the entire pool of CD40L substrate, since

transpeptidation is accompanied by loss of the C-terminal HA tag (Fig. 2.1). This could

be because not all CD40L is expressed at the cell surface in HEK 293T transfectants, or

because only a portion of all surface CD40L is accessible to sortase. We cotransfected

HEK293T cells with tagged CD40L substrate and a construct that specifies soluble eGFP.

We detected specific labeling with the TAMRA-containing probe 5 only on GFP*

(transfected) cells, even after an exposure to the labeling mixture for a mere 10 minutes

(Fig. 2.5b). In addition to the CD40L molecule, we have also successfully labeled the

surface-displayed influenza A/WSN/33 neuraminidase, the enzyme responsible for

release of new virions from host cells (Supplementary Fig. 2.6). These experiments

demonstrate the feasibility of rapid and highly selective chemo-enzymatic labeling of

proteins with a suitably exposed C-terminal LPETG tag on the surface of living cells.

Our results show that few if any endogenous mammalian proteins are attacked by sortase

A. For labeling to occur, target proteins must be genetically tagged, a trait that further

enhances the utility of sortagging.
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Sortagging provides a robust and general method for site-specific protein labeling and

unlike other labeling methods, allows single-step incorporation of a variety of probes

well-suited for the study of protein interactions and protein trafficking via a stable amide

linkage. Recombinant (His)6 tagged sortase A can be readily produced in good yield and

purity and, because of the nature of the transpeptidation reaction mechanism, may be

simultaneously removed from crude reaction mixtures along with unreacted substrate if a

(His)6 tag is included C-terminal to the requisite LPXTG motif, to afford a pure probe-

bearing species. When used on intact cells, simple washing effectively removes sortase

A. In addition, the oligoglycine probes themselves are accessible by standard solid phase

methods for peptide synthesis. The sortagging method described here derives its utility

from the exploitation of a genetically encoded tag of only 5 residues 25-26 preceded by a

short spacer. The multiplicity of sortases and their distinct recognition sequences 2in

principle immediately expands the range of labeling possibilities to the simultaneous use

of several uniquely tagged proteins and various probes in a single experimental setting.

Methods

H-2Kb Labeling. Soluble H-2Kb monomers were first biotinylated on the AP region by

incubation with BirA enzyme in 50 mM bicine buffer, pH 8.3, 10 mM ATP, 10 mM

MgOAc, and 50 ptM d-biotin at 40 C overnight. The complexes were purified by size

exclusion chromatography on S75 Sephadex resin using 20mM Tris, 50mM NaCl, pH 8.0
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buffer as eluent. Purified, soluble H-2Kb monomers (15 pM) were labeled by incubation

with 150 pM SrtA, 5 mM of the indicated probe in sortase buffer (50 mM Tris pH 7.5,

150 mM NaCl, 10 mM CaCl2) at 37 C. At the indicated time points, aliquots were

removed and the reaction was halted by addition of reducing, denaturing SDS-PAGE

sample buffer. For labeling of H-2Kb monomers with LPETG substituted in loop

regions, 500 ptM probe was used. For fluorescence labeling, gels were visualized by

scanning with a Typhoon Imager (GE Healthcare).

H-2Kb Tetramerization and FACS analysis. For H-2Kb with the LPETG tag at the C-

terminus followed by the BirA AP, monomers were labeled to completion under the same

conditions as in Fig. 2.2 with probe 1 at 15 mM. Labeled monomers were then subjected

to gel filtration over Sephadex S-75 resin and concentrated. Sortagged monomers (30

jig) were tetramerized by 5 hourly additions of 9 jig each (45 pig total) of streptavidin-PE

on ice. Sortagged tetramers, propidium iodide (PI), and anti-CD8 antibody conjugated to

FITC (BD Biosciences) were used to stain splenocytes isolated from OT-1 and 2C mice.

FACS analysis was performed with a BD LSR flow cytometer. Dead cells (PI high) were

gated out and live cells were displayed. H-2Kb loop constructs were biotinylated on the

BirA AP as described, subjected to gel filtration (Sephadex S-75) and concentrated.

Constructs (8 pig) were tetramerized by 5 hourly additions of 2.4 jig (12 jig total) of

streptavidin-PE on ice. Tetramers, propidium iodide (PI), and anti-CD8 antibody

conjugated to FITC (BD Biosciences) were used to stain splenocytes isolated from OT-1
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and Balb/C mice. FACS analysis was performed with a BD LSR flow cytometer. Dead

cells (PI high) were gated out and live cells were displayed.

Photocleavage and Photocrosslinking of Sortagged H-2Kb (probes 2 and 3). A large

scale labeling (144 pL total reaction volume) of soluble H-2K monomers with probes 2

and 3 was performed following the standard protocol described above. For these

reactions, the BirA AP region of H-2Kb was not biotinylated prior to sortagging. The

ligation products were then purified by size exclusion chromatography (S75 Sephadex;

20 mM Tris, 50 mM NaCl, pH 8.0 buffer). The labeled H-2Kb monomers were

concentrated by centrifugal ultrafiltration to a final concentration of -10 pM in 20 mM

Tris pH 8.0, 50 mM NaCl as determined by Bradford assay. For photocleavage of H-

2Kb-(Probe 2) the ligation product, purified H-2Kb-(Probe 2) (1.0 uL of a 10 IM stock)

and 8.0 uL of 50 mM phosphate pH 6.5 containing 6.25 mM DTT as a scavenger for

reactive by-products of photocleavage 28 were mixed. Biotinylated, uncleaved H-2Kb

(1.0 uL of a 10 pM stock in 20 mM Tris pH 8.0, 50 mM NaCl) was then added to provide

an internal reference that was resistant to photocleavage. Five individual reactions were

prepared, placed on ice, and irradiated for 0, 15, 30, 60 and 90 min (one reaction for each

time point) in a UV Stratalinker 2400 crosslinker (Stratagene, USA) fitted with lamps

emitting at 365 nm. Reactions were terminated with 40 uL of reducing, denaturing SDS-

PAGE sample buffer. Immunoblot analysis with streptavidin-HRP revealed no loss of

biotin label for uncleaved H-2Kb and significant loss of biotin label for H-2Kb-(Probe 2)

(Figure 2.4a). The maximum level of photocleavage was observed at the first time point

(15 min), and no significant increase in the level of photocleavage was detected with
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longer irradiation times. For photocrosslinking of H-2Kb-(Probe 3) Ligation Product to

p2m, purified H-2Kb-(Probe 3) (1.0 uL of a 10 pM stock) and 9.0 uL of 50 mM

phosphate pH 8.0 were mixed. Five individual reactions were prepared, placed on ice,

and then irradiated for 0, 15, 30, 60 and 90 min (one reaction for each time point) in a UV

Stratalinker 2400 crosslinker (Stratagene, USA) fitted with lamps emitting at 365 nm.

Reactions were terminated with 40 uL of reducing, denaturing SDS-PAGE sample buffer.

Immunoblot analysis with streptavidin-HRP revealed the appearance of a higher

molecular weight species only after UV irradiation (Figure 2.4b). The apparent

molecular weight increase from H-2Kb-(Probe 3) was appropriate for crosslinking to 2 m

(MW ~11 kD). No additional characterization of the crosslinked species was performed.

The maximum level of crosslinking was observed at the first time point (15 min) and no

significant increase in the level of crosslinking was detected with longer irradiation times.

Cell Surface Labeling. Approximately 12-24 hours after transfection, cells were labeled

by incubating in DME/10 % IFS media containing 200 pM sortase A and 500 pM

biotinylated probe 1 at 370 C. At the indicated time points, media was aspirated and cells

were washed and harvested by scraping into ice-cold PBS. Labeled cells were pelleted

and washed repeatedly with ice-cold PBS. Cells were lysed in 1 % SDS/PBS containing

complete mini-protease inhibitor (Roche) and protein concentration was determined by

BCA assay (Pierce). 20 pg of lysate was loaded onto 12.5 % SDS-PAGE gel for

immunoblot.



Chapter 2: Sortagging (sortase-mediated transpeptidation): A versatile method for site-
specific labeling of proteins in solution and on live cells

Cell Imaging. Approximately 12-24 hours after transfection, cells were trypsinized,

replated onto poly-lysine coated 18 mm circular glass coverslips (VWR International) in

a 12-well dish at a density of 3x1 05 cells/well, and allowed to attach overnight. Cells

were labeled by inverting coverslips onto a drop of 50 d of DME/10 % IFS media

containing 200 ptM SrtA and 100 pM probe 5 on parafilm. After 10 minutes of

incubation at 370 C, coverslips were removed and washed repeatedly in ice-cold PBS

with 1 mM MgCl2 and 1 mM CaC12. Cells were fixed by inversion onto a drop of 4 %

paraformaldehyde in PBS for 10 minutes at room temperature on parafilm. Coverslips

were removed and again washed repeatedly in ice-cold PBS with 1 mM MgCl2 and 1 mM

CaCl2. Coverslips were mounted with Fluoromount G (Southern Biotech) and analyzed

using a Nikon spinning disk confocal microscope with Metamorph software.

Multidimensional acquisition was used to collect images in the 488-, 568-, and DIC

channels from the same focal plane.
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Figure Legends

Figure 2.1. Scheme for sortagging of proteins in solution and on the cell surface.

Proteins equipped with the LPETG tag are cleaved by sortase A at the threonine-glycine

peptide bond. The glycine and residues C-terminal of it are released from the substrate

protein with concomitant formation of a thioester-linked acyl-enzyme intermediate. This

intermediate is resolved by a suitably functionalized oligoglycine nucleophile, resulting

in the selective labeling of the protein substrate.

Figure 2.2. Sortase A-mediated transpeptidation quantitatively labels the H-2Kb

complex in vitro.

(a) H-2K monomers (15 pM) with a C-terminal LPETG tag followed by a fully

biotinylated 15 amino acid BirA acceptor peptide tag were incubated with 150 pM

sortase A in the presence or absence of 5 mM probe 1 for 1 hour at 370 C and resolved by

SDS-PAGE for both coomassie staining and streptavidin-HRP immunoblot. In the

absence of probe 1, the acyl-enzyme intermediate is formed, along with the H-2Kb

hydrolysis product indicated (lane 4). In the presence of sortase A and probe 1, a species

of lower molecular weight (relative to input material) corresponding to the

transpeptidation product (which lacks the 15 amino acid C-terminal BirA AP tag) is

formed (lanes 5-7). Both the input H-2Kb substrate that is biotinylated on the BirA AP

tag and the lower molecular weight transpeptidation product containing biotinylated

probe 1 are revealed by streptavidin-HRP immunoblot (compare lanes 2-4 and 5-7).

(b) FACS analysis of tetramerized sortagged H-2Kb molecules labeled to completion

with probe 1 and loaded with SIINFEKL peptide. Sortagged tetramers were used to stain
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both OT-1 splenocytes (left) and 2C splenocytes (right), which recognize a distinct

20peptide-MHC combination

Figure 2.3. Sortase-mediated transpeptidation allows site-specific incorporation of

an array of probes suitable for biophysical studies and for direct visualization.

Biotinylated pentaglycine probes bearing a photocleaveable 3-amino-3-(o-nitrophenyl)

propionic acid residue (2) or an aryl azide for photocrosslinking (3) are quantitatively

appended to H-2Kb under the same conditions as in Fig. 1. Fluorescent triglycine

derivatives containing FITC (4) or TAMRA (5) allow direct visualization of

transpeptidation products.

Figure 2.4. H-2Kb sortagged with probes 2 and 3 were found to undergo

photocleavage or crosslinking, respectively, upon irradiation with UV light.

(a) A mixture of sortagged H-2K -(Probe 2) and uncleaved, biotinylated H-2Kb input

material was subjected to UV irradiation and analyzed by streptavidin immunoblot. Loss

of the biotin label was observed only for the sortagged conjugate containing the

photocleavable 3-amino-3-(o-nitrophenyl) propionic acid functional group.

(b) UV irradiation of sortagged H-2Kb-(Probe 3) resulted in the formation of a higher

molecular weight band consistent with covalent crosslinking of p2-microglobulin to the

H-2Kb heavy chain.
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Figure 2.5. Sortagging LPETG-bearing proteins on the surface of live cells.

(a) CD 154 (CD40L) was fused to a flexible linker followed by the LPETG tag and an

HA epitope at the C-terminus and transfected into HEK 293T cells. Transfected and

untransfected cells were incubated in serum-containing media with sortase A and probe 1

for the indicated times and collected for analysis by streptavidin-HRP and anti-HA

immunoblot.

(b) Cells cotransfected with plasmids encoding soluble, cytoplasmic eGFP and the

sortagged CD 154 molecule were plated on glass coverslips, incubated with sortase A and

probe 5 for 10 minutes, fixed, and imaged by spinning-disk confocal microscopy. (Scale

bars, 10 pM).
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Figure 2.2
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Figure 2.3
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Figure 2.4
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Figure 2.5
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Supplementary Figure Legends

Supplementary Figure 2.1 The high molecular weight adduct formed during

incubation of H-2K with sortase A in the absence of oligoglycine probe is the acyl-

enzyme intermediate.

Excision of the high molecular weight band from a sliver stained gel followed by

trypsinolysis and electrospray ionization tandem mass spectrometry of the resulting

peptides allow the positive identification of a number of peptides derived from (a) S.

aureus sortase A and (b) H-2Kb

Supplementary Figure 2.2 Sortagging LPETG-bearing human CXCL14.

LPETG-fused CXCL14 was treated with 150 pM sortase A and 5 mM 5 for 22 hours at

RT and analyzed by SDS-PAGE.

Supplementary Figure 2.3 Substitution of the LPETG tag into each of 7 defined

loop regions in H-2Kb renders these molecules refractory to cleavage by sortase A.

(a) The LPETG tag was substituted into each of the loop regions shown in red and each

H-2Kb construct was fused at the C-terminus to the BirA AP (Supplementary Table 1).

(b) H-2K loop constructs were biotinylated on the BirA AP, tetramerized by incubation

with streptavidin-PE, and used to stain splenocytes from OT- 1 and Balb/C (H-2 ) mice.

The loop 7 replacement was non-functional. (c) Reconstituted H-2Kb loop constructs were

incubated in the presence of sortase A and probe 1 for 1 hour at 370 C. As a positive

control, the refolded H-2Kb monomer bearing a C-terminal LPETG tag followed by a 15
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amino acid BirA AP tag is also included. Reaction mixtures were resolved by SDS-PAGE

and stained with coomassie.

Supplementary Figure 2.4 Sortagging installs probes onto suitably tagged molecules

in crude mammalian and bacterial lysates.

(a) HEK 293T cells were transfected with a plasmid expressing the CD 154 molecule C-

terminally fused to a flexible linker followed by the LPETG tag and an HA epitope.

Transfected and untransfected cells were lysed in NP-40 (0.5%) and lysates were

incubated in the presence of probe 1 with or without sortase A for 1 hour at 370 C.

Reactions were resolved by SDS-PAGE for both streptavidin-HRP and anti-HA

immunoblot. Reactions were also resolved by SDS-PAGE and gels were stained with

coomassie to reveal the complexity of polypeptides in the lysates.

(b) BL-21 E. coli were lysed by French press and soluble, refolded H-2K monomer

containing a C-terminal LPETG tag followed by a 15 amino acid BirA AP tag was added.

These lysate mixtures were incubated in the presence of probe 1, with or without sortase

A for 1 hour at 37 C. SDS-PAGE resolved reactions were probed by streptavidin-HRP

immunoblot and also stained with coomassie to indicate the complexity of polypeptides

in the lysates. Longer exposure of stretavidin-HRP immunoblots for both (a) and (b) are

shown.

Supplementary Figure 2.5 Longer exposure of streptavidin-HRP blot from Figure

5a reveals no endogenous sortagged polypeptides.
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A longer exposure of the cell surface labeling experiment with biotinylated probe 1 from

Figure 2.5a is shown.

Supplementary Figure 2.6 Sortagging LPETG-bearing influenza A/WSN/33

neuraminidase on the surface of live cells.

LPETG-fused neuraminidase as well as LPETG-fused CD 154 were trasfected into HEK

293T cells. Cells were incubated in serum-containing media and 500 IM probe 1, either

with or without 200 IM sortase A for 20 minutes and collected for streptavidin-HRP

immunoblot.

Supplementary Figure 2.7 Synthesis and characterization of biotinylated probes 1-

2.

(a) The core structures of 1 and 2 were assembled on MBHA resin with an acid labile

HMPB linker using standard solid phase peptide synthesis.

(b) The identity and purity of 1 and 2 were confirmed by electrospray LC/MS.

Supplementary Figure 2.8 Synthesis and characterization of aryl azide probe 3.

(a) The core structure of 3 was assembled on Rink Amide resin using standard solid

phase peptide synthesis.

(b) The identity and purity of 3 were confirmed by electrospray LC/MS.
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Supplementary Figure 2.9 Synthesis and characterization of fluorescent probes 4-5.

(a) The core structure of 4 and 5 was assembled on Rink Amide resin using standard

solid phase peptide synthesis.

(b) The identity and purity of 4 and 5 were confirmed by electrospray LC/MS.

Supplementary Table 2.1 Table of surface-exposed loop sequences in murine H-2Kb

and the sequences of LPETG substituted loops shown in Supplementary Fig. 2a.
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Supplementary Figure 2.1

a

Sortase A

I I I 1 ,I ,
Protein;

MQAKPQIPKD KSKVAGYIEI PDADIKEPVY PGPATPEQLN RGVSFAEENE
SLDDQNISIA GHTFIDRPNY QFTNLKAAKK GSMVYFKVGN ETRKYKMTSI
RDVKPTDVGV LDEQKGXDKQ LTLITCDDYN EKTGVWEKRK IFVATEVK

Protein Coverage:

Sequence tA
VAGYIEIPDADIK 140348- 26
VAGYIEIPDADIKEPVYPOPATPEQLNR 3052.56 18.26 14 - 41 18.92
EPVYPGPATPEQLNR 1667.84 9.98 27 - 41 10.14
KGSKVYfM 959.50 5.74 80 - 87 5.41
UTSIRDVKPTDVGVLDEQK 2131.11 12.75 97 - 115 12.84
DVKPTDVGVLDEQX 1542.80 9.23 102 - 115 9.46
DVKPTDVGVLDZQKGK 1727.92 10.34 102 - 117 10.81
DKQLTLITCDYNEK 1798.85 10.76 118 - 132 10.14
QLTLITCDDYNhK 1555.73 9.31 120 - 132 8.78

Totals: 8070.09 48.27 72 48.65

b

H-2Kb

Protein:

TEFVRFDSDA ENPRYEPRAR
LLGYYNQSKG GSHTIQVISG
KTWTAADMAA LITKHKWEQA

Protein Coverage:

Sequence
YFVTAVSR
YFVTAVSRPGLGZPR
YMEVGYVDDTEFVR
FDSDAENPR
FDSDAENPRYEPR
ARMNEQIGPEYWER
MEQEGPIYWER

WIQUGPIYWNRTQK
ETQKAKGNEQSFR
GNEQSFR
TLLGYYNQSR
GGSBTIQVISGCRVGSDGR
TWTAADKAALITK
NKWEQAGRAER
WEQAGRAER

Totals:

94250 4.70 7 -14 462
1648.88 8.22 7 - 21 8.67
1722.77 8.58 22 - 35 8.09
1050.45 5.23 36 - 44 5.20
1595.71 7.95 36 - 48 7.51
1866.82 9.30 49 - 62 8.09
1639.68 8.17 51 - 62 6.94
2125.93 10.59 51 - 66 9.25
1522.76 7.59 63 - 75 7.51

837.38 4.17 69 - 75 4.05
1186.61 5.91 80 - 89 5.78
1858.87 9.26 90 - 108 10.98
1392.72 6.94 132 - 144 7.51
1340.63 6.68 145 - 155 6.36
1075.48 5.36 147 - 155 5.20

12420.87 61.89 109 63.01

GPHSLRYFVT
WMQEGPEYW
CEVGSDGRLL
GEAERLRAYL

AVSRPGLGEP
ERETQKAKGN
RGYQQYAYDG
EGTCVEWLRR

RYMEVGYVDD
EQSFRVDLRT
CDYIALNEDL
YLK
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Supplementary Figure 2.2
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Supplementary Figure 2.3
a

p oo p Loop 3 Loop 4

Lop5Loop 6 Loop 7
Splenocytes:

Balb/C
OT-1

H-2Kb(Sil)-PE

C

50kD -

37kD -

25kD -

20kD -

1 2 3 4 5 6 7 C-Term H-2Kb Loop

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Time (hrs.)

}HS2Kb

15kD -

-P2m

coomassie



Chapter 2: Sortagging (sortase-mediated transpeptidation): A versatile method for site-
specific labeling of proteins in solution and on live cells

Supplementary Figure 2.4
a
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Supplementary Figure 2.5
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Supplementary Figure 2.6
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Loop Residue Numbers H-2Kb Sequence Replaced Sequence
1 14-21 SRPGLGEP SLPETGEP

2 39-50 SDAENPRYEPRA SLPETGRYEPRA

3 87-94 NQSKGGSH LPETGGSH

4 104-110 VGSDGRL VLPETGL

5 127-134 LNEDLKTW LPETGKTW

6 181-186 LRTDSP LPETGP

7 221-235 NGEELIQDMELVETR NGELPETGMELVETR
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Supplementary Methods

Sortase A Expression. Soluble S. aureus sortase A was expressed and purified as

described 4 .

Substrate Cloning and Expression. Murine H-2Kb lacking the transmembrane domain,

cytosolic domain, and signal peptide, was fused to the LPETG tag followed by the BirA

acceptor peptide tag (GLNDIFEAQKIEWHE) at the C-terminus and cloned into the

pET28a(+) vector (Novagen). H-2K constructs with the LPETG tag substituted into the

indicated loop regions (Supplementary Fig. 2a) were also fused at the C-terminus to the

BirA acceptor peptide and cloned into pET28a(+). The positions of the loop regions are

as follows, starting from an N-terminal methionine that has been fused to the H-2Kb after

truncation of the signal peptide: Loop 1 = amino acids 15-19, Loop 2 = 40-44, Loop 3 =

87-91, Loop 4 = 105-109, Loop 5 = 127-13 1, Loop 6 = 181-185, Loop7 = 224-228 (see

Supplementary Table 1). H-2Kb constructs were expressed in BL-21 E. coli and soluble

monomers were reconstituted in the presence of SIINFEKL peptide and p2-

microglobulin, as described previously 29. After reconstitution, soluble H-2Kb monomers

were purified by size exclusion chromatography on S75 Sephadex resin using 20mM

Tris, 50mM NaCl, pH 8.0 buffer as eluent.

Human CD 154 (CD40L) cDNA was obtained from Open Biosystems, fused to a flexible

linker of the sequence (Gly4Ser)2 followed by the LPETG tag and HA epitope

(YPYDVPDYA) at the extreme C-terminus and cloned into pcDNA3.1 (+) (Invitrogen).
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LPETG-tagged influenza A/WSN/33 was amplified and cloned similarly into

pcDNA3.1 (+).

CXCL14 Substrate Cloning, Expression, and Purification. The cDNA for human

CXCL14 was obtained from the laboratory of Craig Gerard (Harvard Medical School,

Boston, MA). Residues 23-99 of human CXCL14 containing an additional N-terminal

glycine residue and fused to a C-terminal LPETG tag were cloned into the pET28a(+)

vector (Novagen) using NcoI and XhoI restriction sites to generate a C-terminal His6

affinity handle. The CXCL 14 construct was expressed in BL-21 E. coli and isolated by

Ni-NTA chromatography (Qiagen) following the general procedures described for

murine CXCL1430. Refolding of the purified CXCL14 substrate was achieved as follows:

A 1 mL aliquot of the eluate from Ni-affinity purification (5.5 mg/mL of CXCL 14

substrate in 20 mM Tris pH 8.0 containing 6 M urea, 0.5 M NaCl, and 300 mM

imidazole) was treated with 1 uL of 1 M TCEP and incubated for 1 h at RT. This

material was then diluted into 100 mL of 20 mM Tris pH 8.0 and stirred rapidly at RT for

70 h. The resulting material was concentrated to ~1 mL by centrifugal ultrafiltration.

The concentrated material was further centrifuged to pellet any precipitated protein, and

the supernatant was collected. The refolded protein was analyzed by reversed-phase

HPLC and eluted as a single peak with a retention time distinct from CXCL14 pretreated

with excess TCEP (data not shown). No additional characterization was performed.

CXCL14 Labeling. Purified, refolded CXCL14 (100 pM) was labeled by incubation

with 150 pM SrtA and 5 mM 5 in sortase buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10
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mM CaCl2) for 22 h at RT. The reaction was quenched by addition of reducing,

denaturing SDS-PAGE sample buffer. Proteins were resolved on a 15% gel and

visualization of fluorescent labeling was achieved with a Typhoon Imager (GE

Healthcare) followed by coomassie staining of the gel (Supplementary Figure 2).

Solid Phase Synthesis of Probes 1-5

General Procedures and Materials. Rink Amide resin (100-200 mesh, 0.57 mmol/g),

4-methylbenzylhydrylamine (MBHA) resin HL hydrochloride salt (100-200 mesh, 1.1

mmol/g), 4-(4-hydroxymethyl-3-methoxyphenoxy)-butyric acid (HMPB), Fmoc-Gly-OH,

Fmoc-Lys(biotin)-OH, Fmoc-Lys(Mtt)-OH, and Fmoc-Leu-OH were obtained from

EMD Biosciences/Novabiochem (San Diego, CA). Racemic 3-Na-Fmoc-amino-3-(o-

nitrophenyl) propionic acid (ANP linker) was purchased from Advanced ChemTech

(Louisville, KY). Fluorescein isothiocyanate isomer I (FITC) and N-

hydroxysuccinimidyl 4-azidobenzoate were obtained from Sigma. Na-Fmoc-Ne-

tetramethylrhodamine-(5-carbonyl)-L-lysine was purchased from Invitrogen/Molecular

Probes (Eugene, OR). All other reagents and solvents were obtained from commercial

sources and used without further purification.

The identity and purity of 1-5 was confirmed by electrospray LC/MS analysis using a

Micromass LCT mass spectrometer and an Agilent 1100 Series HPLC system equipped

with a Waters Symmetry 3.5 jiM C18 column (2.1 x 50 mm, MeCN:ddH20 gradient

mobile phase containing 0.1% formic acid, 300 pL/min). HPLC purification of 2 and 3

was achieved using an Agilent 1100 Series HPLC system equipped with a Waters Delta
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Pak 15 pM C18 column (7.8 x 300 mm, MeCN:ddH20 gradient mobile phase containing

0.1% trifluoroacetic acid, 4 mL/min)

The peptide scaffolds (S1-S4, Supplementary Figs. 4-6) for probes 1-5 were synthesized

manually using standard Fmoc-based chemistry. Unless otherwise indicated, all

manipulations were conducted in glass solid-phase reaction vessels containing a fritted

glass filter and a Teflon stopcock with agitation on a wrist action shaker. The following

general procedure for amino acid coupling and Fmoc deprotection was employed: 2-5

equivalents (relative to initial resin loading) of Fmoc-protected amino acid was dissolved

in N-methyl-2-pyrrolidone (NMP) to a final concentration of -250 mM. Benzotriazole-1-

yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP) (1 equivalent

relative to amino acid building block), N-hydroxybenzotriazole (HOBt) (1 equivalent

relative to amino acid building block), and N,N'-diisopropylethylamine (DIPEA) (3

equivalents relative to amino acid building block) were then added and the solution was

incubated for 2 min at RT. This pre-activated amino acid solution was then added to a

reaction vessel containing the appropriate resin. The reaction mixture was then incubated

for 3-15 h at RT. The resin was then washed with three portions of NMP (3-5 min per

wash). The extent of coupling was assessed by Kaiser test. In the event that coupling

was incomplete, the above procedure was repeated. Fmoc removal was then achieved by

exposing the resin to 80:20 NMP/piperidine for 15 min at RT. The resin was then

washed with three portions of NMP (3-5 min per wash). Additional manipulations

necessary for the synthesis of 1-5, including resin loading, fluorophore attachment, aryl

azide attachment, resin cleavage, and purification are described below.
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Synthesis of Biotinylated Probes 1-2. Probes 1 and 2 were synthesized on MBHA resin

employing an acid labile HMPB linker (Supplementary Fig. 4a). MBHA resin (1.00 g,

1.1 mmol) was first washed/swollen with 20 mL of NMP (3x, 3 min per wash). The resin

was then treated with a solution of HMPB (793 mg, 3.30 mmol), PyBOP (1.72 g, 3.31

mmol), HOBt (446 mg, 3.30 mmol) and DIPEA (1.14 mL, 6.62 mmol) in NMP (15 mL)

and incubated overnight at RT. The resin was then washed with 20 mL of NMP (3x, 3

min per wash) followed by 20 mL of CH 2Cl2 (3x, 3 min per wash). Next, the resin was

transferred to a round bottom flask and co-evaporated three times with 20 mL of

dichloroethane (DCE). Attachment of the C-terminal Leu residue was then achieved by

treating the resin with a solution of Fmoc-Leu-OH (1.17 g, 3.31 mmol), N,N'-

diisopropylcarbodiimide (DIC) (564 gL, 3.64 mmol) and 4-dimethylaminopyridine

(DMAP) (22 mg, 0.18 mmol) in CH 2Cl 2 (15 mL) for two hours at RT. The resin was then

filtered and washed with 20 mL of CH2Cl2 (3x, 3 min per wash). The coupling of Fmoc-

Leu-OH was then repeated to achieve maximum resin loading. The resin was then

thoroughly dried and loading was estimated to be 0.5 mmol/g by standard

spectrophotometric Fmoc quantification. The dried resin was then transferred to solid-

phase reaction vessels and standard cycles of Fmoc removal and amino acid coupling

were used to assemble resin bound intermediates S1 and S2. Removal of the N-terminal

Fmoc group was then achieved by exposing the resin to 80:20 NMP/piperidine for 15 min

at RT. The resin was then washed with NMP (3x, 3-5 min per wash) and CH2Cl2 (3x, 3-5

min per wash). Probes 1 and 2 were cleaved from the solid support by treatment with 1%

TFA in CH 2C12 at RT (3x, 1 st cleavage 15 min, 2"d cleavage 1.5 h, 3 rd cleavage 15 min).
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The combined cleavage solutions were then mixed with an equal volume of toluene and

concentrated. The crude residues were then redissolved in 1:1 CH2Cl2/toluene and

evaporated (3x) to remove excess TFA. Crude 1 and 2 were then precipitated from cold

diethyl ether. Probe 2 was further purified by reversed-phase HPLC while probe 1 was

used without additional purification. The identity and purity of 1 and 2 were confirmed

by electrospray LC/MS (Supplementary Fig. 4b). Yield not determined. [Note: 2 was

obtained as a mixture of diastereomers resulting from the use of racemic ANP-linker.

This mixture was used for all subsequent experiments.]

Synthesis of Aryl Azide Probe 3. Probe 3 was synthesized on Rink Amide resin

(Supplementary Fig. 5a). Rink Amide resin (1.00 g, 0.57 mmol) was first

washed/swollen extensively with NMP. The Fmoc protecting group was then removed

by treatment with 80:20 NMP/piperidine (30 mL) for 15 min at RT. The resin was then

washed with 20 mL of NMP (3x, 3-5 min per wash). A solution of Fmoc-Gly-OH (847

mg, 2.85 mmol), PyBOP (1.48 g, 2.84 mmol), HOBt (385 mg, 2.85 mmol) and DIPEA

(1.47 mL, 8.53 mmol) in NMP (11 mL) was then prepared and incubated for 2 min at RT.

This pre-activated amino acid solution was then added to the deprotected Rink Amide

resin and the mixture was incubated for 16 h at RT. The resin was then washed with 30

mL of NMP (3x, 3-5 min per wash). Kaiser test revealed the presence of free amino

groups, so the coupling of Fmoc-Gly-OH was repeated. The resin was then washed with

30 mL of NMP (3x, 3-5 min per wash) and 30 mL of CH 2 Cl 2 (5x, 5 min each for first

four washes, 12 h for last wash). The resin was then thoroughly dried and loading was

estimated to be 0.4 mmol/g by standard spectrophotometric Fmoc quantification. The
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dried resin was then transferred to a solid-phase reaction vessel and standard cycles of

Fmoc removal and amino acid coupling were used to assemble resin bound intermediate

S3. Resin S3 was then washed with CH2 Cl 2 (3x, 3-5 min per wash) and dried. Dry S3

resin (50 mg) was then transferred to a 3.0 mL fritted polypropylene syringes equipped

with a capped hypodermic needle. Next, the 4-methyltrityl (Mtt) protecting group was

removed by treatment with 2 mL of 94:5:1 CH2Cl2/TIPS/TFA at RT (5x, 3-5 min each).

The resin was then washed with 2 mL of NMP (3x, 3-5 min per wash). Attachment of

the aryl azide moiety was achieved by incubation with a solution of N-

hydroxysuccinimidyl 4-azidobenzoate (17 mg, 65 itmol) and DIPEA (33.3 pL, 193 pLmol)

in NMP (0.5 mL) for 60 h at RT. The resin was then washed with 2 mL of NMP (3x, 3-5

min per wash). The N-terminal Fmoc group was then removed with 2 mL of 80:20

NMP/piperidine for 15 min at RT followed by washing with 2 mL of NMP (3x, 3-5 min

per wash) and 2 mL of CH2Cl2 (3x, 3-5 min per wash). Probe 3 was then cleaved from

the solid support with 2 mL of 95:3:2 TFA/TIPS/H 20 at RT (3x, 1St cleavage 1 h, 2nd and

3rd cleavage 10 min). The combined cleavage solutions were concentrated and then co-

evaporated two additional times with toluene to remove excess TFA. Crude 3 was then

dried under vacuum, precipitated from cold diethyl ether, and purified by reversed-phase

HPLC. The identity and purity of 3 were confirmed by electrospray LC/MS

(Supplementary Fig. 5b). Yield not determined.

Synthesis of Fluorescent Probes 4-5. Probes 4 and 5 were synthesized on Rink Amide

resin (Supplementary Fig. 6a). Rink Amide resin (1.00 g, 0.57 mmol) was first

washed/swollen extensively with NMP. Standard cycles of Fmoc removal and amino
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acid coupling were then used to assemble resin bound intermediate S4 (resin loading was

assumed to be the value given by the manufacturer, 0.57 mmol/g). Resin S4 was then

washed with CH2 Cl 2 (3x, 3-5 min per wash) and dried. Dry S4 resin (50 mg per reaction)

was then transferred to two separate 3.0 mL fritted polypropylene syringes equipped with

capped hypodermic needles for fluorophore attachment. Next, the 4-methyltrityl (Mtt)

protecting group was removed by treatment with 2 mL of 94:5:1 CH2Cl2/TIPS/TFA at

RT (4x, 3-5 min each). The resin was then washed with 2 mL of NMP (3x, 3-5 min per

wash). For FITC attachment (probe 4), the resin was incubated with a solution of

fluorescein isothiocyanate isomer I (23 mg, 59 pmol) and DIPEA (31 pL, 180 pmol) in

NMP (0.4 mL) for 21 h at RT. For tetramethylrhodamine attachment (probe 5), the resin

was incubated with a solution of Na-Fmoc-Ne-tetramethylrhodamine-(5-carbonyl)-L-

lysine (25 mg, 32 pmol), PyBOP (17 mg, 33 pmol), HOBt (4.3 mg, 32 gmol), and

DIPEA (16 pL, 93 ptmol) in NMP (0.2 mL) for 21 h at RT. Following fluorophore

coupling, resins were washed with 2 mL of NMP (4x, 3-5 min per wash). The N-

terminal Fmoc group was then removed with 2 mL of 80:20 NMP/piperidine for 15 min

at RT followed by washing with 2 mL of NMP (4x, 3-5 min per wash) and 2 mL of

CH2Cl 2 (3x, 3-5 min per wash). Probes 4 and 5 were cleaved from the solid support with

2 mL of 95:3:2 TFA/TIPS/H 20 at RT (3x, 1st cleavage 1 h, 2nd and 3rd cleavage 10 min

each). The combined cleavage solutions were then concentrated and crude 4 and 5 were

precipitated from cold diethyl ether. Precipitation provided 4 and 5 with sufficient purity

for transpeptidation as indicated by electrospray LC/MS (Supplementary Fig. 6b).

Yield not determined.



Chapter 2: Sortagging (sortase-mediated transpeptidation): A versatile method for site-
specific labeling of proteins in solution and on live cells

Immunoblotting. Proteins were separated by SDS-PAGE (12.5% gel), and transferred

to a nitrocellulose membrane. Membranes were blocked with 5% nonfat dried milk in

PBST (PBS, 0.1% Tween 20, pH 7.4) overnight at 4 C or for 1 hour at room

temperature. Membranes were washed with PBST and incubated with either

streptavidin-HRP (1:3000 in PBST, Amersham Biosciences) for 1 hour to detect

biotinylated proteins, or murine anti-HA antibody (12CA5, 1:4000) followed by HRP-

conjugated anti-mouse antibody (1:5000 in 5% milk, GE Healthcare). Blots were

developed with Western Lighting Chemiluminescence Reagent Plus (Perkin Elmer).

Cell Culture and Transfection. HEK 293T cells were cultured in DME media

supplemented with 10% inactivated fetal serum (IFS), 50 units/mL penicillin, 50 pg/mL

streptomycin sulfate, and 0.125 pg/mL amphotericin B (Fungizone). Cells were

incubated in a 5% CO2 humidified incubator at 370 C. For cell surface labeling and

mammalian lysate labeling with probe 1, HEK 293T cells were transfected with CD 154-

(Gly 4Ser) 2-LPETG-HA plasmid using Lipofectamine 2000 (Invitrogen) following the

manufacturer's directions. For cell surface labeling with fluorescent probe 5 and

subsequent microscopy, cells were transfected using Lipofectamine 2000 with a mixture

of 9/10 CD154-(Gly 4Ser) 2-LPETG-HA plasmid and 1/10 plasmid containing soluble

enhanced GFP cloned into pcDNA 3.1(+).

H-2K Acyl-enzyme Identification. Labeling reactions in the absence of probe were

resolved by SDS-PAGE and silver-stained. The high molecular weight band indicated

(Fig. 2A) was excised, destained, and subjected to trypsinolysis. Recovered peptides
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were analyzed by reversed-phase liquid chromatography electrospray ionization mass

spectrometry using a Waters nanoACQUITY-UPLC coupled to a Thermo LTQ linear

ion-trap mass spectrometer. MS/MS spectra were searched against NCBI database

(nr.fasta.hr 6/27/2006) using SEQUEST. SEQUEST results were analyzed with

Bioworks Browser 3.2 and filtered with the following criteria: different peptides,

minimum cross correlation coefficients (1, 2, 3 charge states) of 1.50, 2.00, 2.50, number

different peptides of 2 per protein and Sp - preliminary score of 300.

HEK 293T Lysate Labeling. Approximately 12-24 hours after transfection, cells were

harvested into ice-cold PBS by scraping and pelleted. Cell pellets were lysed in ice-cold

0.5 % NP-40 in sortase buffer and protein concentration was determined by BCA assay

(Pierce). SrtA (5 jig) was mixed with lysate (10 ptg) and biotinylated probe 1 (100 pM),

supplemented with sortase buffer to give a final concentration of 50 mM Tris pH 7.5, 150

mM NaCl, 10 mM CaCl2 and incubated for 1 hour at 370 C. Reactions were halted by

addition of reducing, denaturing SDS-PAGE sample buffer.

Bacterial Lysate Labeling. BL-21 E coli were resuspended in sortase buffer and lysed

by French Press. Protein concentration was determined by BCA assay. Lysate (10 jig)

was spiked with soluble, refolded sortagged H-2Kb monomer (2.24 jig) bearing BirA AP,

incubated with SrtA (10 jig) and biotinylated probe 1 (500 jiM), and supplemented with

sortase buffer to give a final concentration of 50 mM Tris pH 7.5, 150 mM NaCl, 10 mM

CaCl 2 for Ihour at 370 C. Reactions were halted by addition of reducing, denaturing
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SDS-PAGE sample buffer. For these reactions the BirA AP region of H-2Kb was not

additionally biotinylated with BirA prior to sortagging.

Supplementary Methods References
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Print Article (reprinted with permission from Nature Chemical Biology):
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natue
chemical biology

Sortagging: a versatile method
for protein labeling
Maximilian W Poppl*2, John M Antos', Gijsbert M Grotenbreg',
Eric Spooner' & Hidde L Ploeghi, 2

Genetically encoded reporter constructs that yield
fluorescently labeled fusion proteins are a powerful tool for
oberving cell biological phenomena, but they have initations.
Sortagging (sortase-nediated transpeptidation) is a versatile
chemoetymatic system for site-specific labeling of protehn
with siana (<2 kDa) probes. Sortaning combines the
precision of a geneticaly encoded tag with the specificity of
an enzynatic reaction and the cue and demical versatility
of peptide synthesis. Here we apply this technique to proteins
in vitro and on the srflace of living cells.

The use of green fluorescent protein (GFP) and its derivatives has
revolutionized the study of protein behavior in living cells'. However,
not all proteins tolerate the installation of GFP without compromising
function or intracellular distribution2

. Chemical methods for the
installation of fluorescent or affinity labels have the advantage of
ease of use, but they lack the precision of genetically encoded tags.
To overcome this challenge, chemoenzymatic methods and small-
molecule-binding peptide sequences that allow site-specific incorpora-
tion of labels have been developed. However, several of these methods
are limited by the large protein-sized fusions required or the demands
of synthetic skills involved in producing the reporter molecules that
can be installed3 4 

(reviewed in ref. 5).
Bacterial sortases are thiol-containing enzymes that covalently

attach proteins to the bacterial cell wall
6
. Staphylococcus aures sortase

A recognizes a set of structurally and functionally diverse substrates via
an LPXTG motif and cleaves the peptide bond between threonine and
glycine, thereby releasing the residues C-terminal to the threonine and
yielding an amide linkage with the N terminus of a pentaglycine
nucleophile, which is provided in vivo by a cell wall precursor'. Sortase
A has been used in vitro to affix cell-permeable peptides", PEG and
polystyrene beads

9 
to a single model substrate, GFP; it has also been

Figure 1 Probes compatible with sortagging and quantitative labeling of
H-2Kb complexes in vitro. (a) Structures of probes used. (b) H-2Kb monomers
with a C-terminal LPETG tag followed by a BirA acceptor peptide were
incubated with sortase A in the presence or absence of probe 1. See text
for details. (C) Probes 2 and 3 are quantitatively appended to H-2Kb as
assessed by streptavidin-HRP immunoblot, as are probes 4 and 5. as
assessed by Coomassie staining (top) and fluorescence imaging (bottom).
k m, 02-microglobulin.

used in the synthesis of peptide nucleic acid-peptide conjugateso.
However, the range of applications was limited and did not include
intact cells. Here we exploit the transpeptidase activity of sortase A for
selective labeling of proteins in solution, in cell lysates of complex
composition and on the surface of living cells with a diverse set of
readily synthesized probes suitable for the study of protein interactions
and protein trafficking (Fig. Ia).

As a substrate, we used soluble mouse class I major histocompat-
ibility complex (MHC) H-2Kb molecules equipped with an LPETG
motif followed by a C-terminal 15 amino acid acceptor peptide
sequence for Escherichia coi BirA biotin ligase and loaded with the
octapeptide ligand SIINFEKL (ref. 11). We biotinylated the acceptor
peptide portion and incubated the LPETG-containing H-2Kb mono-
mers (15 stM) with sortase A (150 gM) in the presence or absence of
biotinylated pentaglycine probe 1 (5 mM; Fig. Ib and Supplemsentary
Methods online). In the absence of probe I we observed loss of biotin,
which corresponds to departure of the biotinylated acceptor peptide
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Figure 2 Labeling of proteins on cell surfaces. (a) HEK 293T cells
expressing CD40L fused to an LPETG motif followed by a C-terminal HA
epitope were incubated with sortase A and probe I and analyzed by
streptavidin-HRP immunoblot. (b) Cells expressing soluble, cytoplasmic
eGFP and LPETG-fused CD40L were incubated with sortase A and probe
5 for 10 min, fixed and imaged. Scale bars, 10 pM.

tag and the concomitant formation of the acyl-enzyme intermediate' 2,
as determined by mass spectrometry (Supplementary Fig, la,b
online). When we added probe I and drove the reaction to completion
by excess sortase A, we observed the expected transpeptidation
product a sortase-deaved, biotinylated H-2Kb molecule (Fig. Ib).

Neither the LPETG tag nor the transpeptidation reaction perturbs
the fold of this complex, as verified by fluorescence-activated cell
sorting (FACS) staining of OT-1 T cells with tetramerized, sortagged
H-2Kb molecules (Supplementary Fig. Ic). We investigated the
requirements for LPETG tag placement within the defined structure
of the H-2Kb protein by preparing H-2Kb substrates in which the
LPETG motif was moved to seven surface-exposed loop regions
(Supplesuentary Fig. 2a and Supplementary 'ible I online). Proper
filding of these substrates was largely retained, as indicated by their
ability to stain OT-l T cells after tetramerization (Supplenentary
Fig. 2b). However, on exposure to sortase A and probe 1, no
transpeptidation product was detected (Supplemetary Fig. 2c).
Thus, we conclude that the LPETG tag must be placed in a flexible,
unstructured egion close to the C terminus of the substrate.

We synthesized additional oligoglycine nucleophiles (probes 2, 3, 4
and 5) and demonstrated their ability to efficiently label the H-2Kb
substrate (Fig. lc). Introduction of a 3-amino-3-(o-nitrophenyl)pro-
pionic acid residue (probe 2) allowed photodeavage of the tag under
mild conditions, with concomitant release of the biotin label (Sup-
plementary Fig. 3a online). Similarly, an aryl azide photocross-linker
(probe 3) was sufficient to cross-link the sortagged H-2Kb heavy chain
to JN-microglobulin (Supplementary Fig. 3b). Finally, a fluorescein
(FIC) or tetramethyirhodamine (TAMRA) dye (probes 4 and 5,
respectively) allowed fluorescent visualization. In addition to H-2Kb,
we have also successfully labeled an LPFTG-tagged version of the
chemokine CXCL14 in solution (Supplemntary Fig. 3c).

We investigated the specificity of the transpeptidation reaction in
complex mixtures. Human CD154 (CD40L), a type I membrane
protein, was equipped with a C-terminal LPErG tag preceded by a
short flexible linker and followed by the HA epitope tag. Confirming
the specificity of the method, CD4OL and H-2Kb were the only species
labeled in transfected human embryonic kidney (HEK) 293T cell

lysates (Supplementary Fig. 4a online) and bacterial lysates (Supple-
mentary Fig. 4b), respectively.

Next, live HEK 293T cells transfected with the CD40L construct
were incubated with serum-containing medium and sortase A
together with probe 1. Streptavidin-HRP immunoblotting revealed
selective labeling of CD40L with almost no labeling of endogenous
polypeptides (Fig. 2a). We detected the persistence of HA-tagged
CD40L, which indicates that sortase A does not attack the entire pool
of CD40L substrate, possibly because not all CD40L is expressed at the
cell surface, or because only a portion is accessible to sortase
(Supplesmentary Fig. 5& online). HEX 293T cells cotransfected with
the CD40L substrate and soluble eGFP were labeled with the TAMRA-
containing probe 5 after just 10 min (Fig. 2b). We have also labeled
surface-displayed influenza A/WSN/33 neuraminidase by sortagging
(Supplemetary Fig. 5b).

Recombinant His.-tagged sortase A can be produced in good yield
and purity, and because of the transpeptidation reaction mechanism,
may be simultaneously removed from crude reaction mixtures along
with unreacted substrate by including a His6 tag C-terminal to the
requisite LPXTG motif. When used on intact cells, simple washing
effectively removes sortase A. In addition, oligoglycine probes are
accessible by standard solid-phase methods for peptide synthesis
(Supplementary Fig. 6 online). Sortagging derives its utility from a
genetically encoded tag of five residues 3

"
4 

preceded by a short spacer
and is suitable for labeling purified and surface-displayed proteins
with a suitably exposed LPETG motif close to the C terminus. The
multiplicity of sortases and their distinct recognition sequences]- in
principle immediately expands the range of labeling possibilities to the
simultaneous use of several uniquely tagged proteins and various
probes in a single experimental setting.

Note Supplementary iafinformation and chemical compound information is availale on
the Nature Chemical Biology vslitr.
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Site-specific N- and C-terminal labeling of a single polypeptide using sortases of
different specificities

(from J. M. Antos, G. L. Chew, C. P. Guimaraes, N. C. Yoder, G. M. Grotenbreg, M. W.
Popp, H. L. Ploegh, JAm Chem Soc 2009, 131, 10800)

Abstract

The unique reactivity of two sortase enzymes, SrAstaph from Staphylococcus aureus and

SrtAstrep from Streptococcus pyogenes, is exploited for site-specific labeling of a single

polypeptide with different labels at its N and C termini. SrtAstrep is used to label the

protein's C terminus at an LPXTG site with a fluorescently labeled dialanine nucleophile.

Selective N-terminal labeling of proteins containing N-terminal glycine residues is

achieved using SrtAstaph and LPXT derivatives. The generality of N-terminal labeling

with SrtAstaph is demonstrated by near-quantitative labeling of multiple protein substrates

with excellent site specificity.

Main Text

Methods for site-specific modification of proteins remain in high demand. The

transpeptidation reaction catalyzed by sortase A from Staphylococcus aureus (SrtA staph)

allows site-specific derivatization of proteins with virtually any type of functional

material.(1) Target proteins are engineered to contain the SrtAstaph recognition site

(LPXTG) near their C terminus, thus allowing a transacylation reaction in which the

residues C-terminal to threonine are exchanged for a synthetic oligoglycine peptide

(Scheme 3.1). While the range of applications for this technology has expanded

considerably' the ligation chemistry itself has seen relatively few modifications or

improvements. Since nearly all Gram-positive bacteria possess sortases, many with
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reactivity distinct from SrtAstaph, there is an exciting opportunity to develop

complementary strategies for protein engineering using other members of this enzyme

family2 3 . Here we present a strategy for placing discrete labels at both termini in the

same polypeptide through the use of multiple sortases. We first describe the ability of

SrtAstaph to append labels at the protein N terminus and then demonstrate how this can be

used in conjunction with the activity of sortase A from Streptococcus pyogenes (SrtA strep)

to yield dual-labeled proteins.

With regard to N-terminal labeling mediated by SrtA staph we reasoned that labeled

synthetic peptides containing the LPXTG recognition motif, or structural analogues

thereof, could generate the requisite acyl-enzyme intermediate necessary for

transpeptidation. In combination with protein nucleophiles containing one or more N-

terminal glycines, this should result in transfer of the label to the protein N terminus

(Figure 3.1a). We synthesized FITC (1) and biotin (2) derivatives of an LPRT peptide in

which the glycine of the normal LPXTG motif was replaced by a methyl ester (Figure

3.1b and Supplementary Figure 3.1 in the Supporting Information). The use of an

ester derivative rather than the entire LPXTG motif was motivated by our concern that

the glycine residue released after LPXTG cleavage might compete with the protein

nucleophile, potentially complicating the desired N-terminal-labeling reaction. In

contrast, transacylation with 1 and 2 would generate MeOH, a poor nucleophile for

transacylation compared with glycine. It should be noted that concurrently with the work

described here, it was demonstrated that labeled LPETGG peptides are viable tools for N-

terminal labeling using SrtA staph
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With 1 and 2 in hand, we expressed a series of model proteins containing N-terminal

glycine residues. We prepared variants of the cholera toxin B subunit (CtxB) with one,

three, or five N-terminal glycines. In order to verify the selectivity for glycine, we

prepared a control construct containing an N-terminal alanine residue. In the presence of

SrtAstaph, we observed robust labeling of G3-CtxB and G -CtxB using 500 gM 1 for 2 h at

37 'C, with no apparent labeling of the alanine-containing control (Figure Ic).

Electrospray ionization mass spectrometry (ESI-MS) revealed quantitative labeling of

G3-CtxB and G5-CtxB, with no modification observed for G1-CtxB and AG 4-CtxB

(Supplementary Figure 3.2). Similar experiments with biotinylated derivative 2 and G 5 -

CtxB yielded comparable results, as verified by ESI-MS and streptavidin immunoblot

(Supplementary Figure 3.3). In all cases, residual labeling of SrtAstaph itself, attributable

to the formation of a covalent acyl-enzyme intermediate, was detected. N-terminal

transpeptidation was also successful for two additional protein substrates, eGFP with five

N-terminal glycines and UCHL3 containing a single N-terminal glycine (Supplementary

Figure 3.4).

With the ability of SrtA staph to append labels at either terminus, we pursued the possibility

of installing two modifications within the same protein. Attempts to execute this type of

transformation using SrtAstaph alone were unsuccessful, as intramolecular transpeptidation

between N-terminal glycines and the C-terminal LPXTG motif was unavoidable in most

cases. Therefore, we considered the possibility of using a second, distinct sortase, an idea

1,5that has been suggested but never reduced to practice . We initially sought to use
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sortase B (SrtB) from either Staph. aureus or Bacillus anthracis as enzymes with

recognition sequences (NPQTN and NPKTG, respectively) orthogonal to that of

SrtAstaph6,7. Both SrtB enzymes were easily produced in Escherichia coli and purified to

homogeneity. We reproduced the reported in vitro enzyme activity using a FRET-based

assay to measure cleavage of short peptides substrates6'7. However, to date we have

failed to obtain transpeptidation with either SrtB on protein substrates modified with the

appropriate recognition sequences on a time scale or with yields that compare favorably

with SrtAstaph (data not shown).

We ultimately arrived at a successful orthogonal strategy using SrtAstrep, which

recognizes the same LPXTG sequence used by SrtAstaph but can accept alanine-based

nucleophiles8 . This leads to the formation of an LPXTA sequence at the site of ligation, a

motif refractory to cleavage by SrtA stap. This allows SrtAstaph to act on the N terminus

without affecting the C-terminal modification installed with SrtAstrep'

Our final strategy for dual-terminus labeling is outlined in Figure 3.2b. We first

synthesized a tetramethylrhodamine-labeled peptide (3) containing two N-terminal

alanine residues to serve as the nucleophile for SrtA strep-mediated protein ligation (Figure

3.2a and Supplementary Figure 3.5). We prepared two model substrates (eGFP and

UCHL3) containing masked N-terminal glycines that are exposed only upon thrombin

cleavage. Masking was required because SrtAstrep was observed to ligate both glycine and

alanine nucleophiles (data not shown). Substrates also contained an LPXTG motif at the
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C terminus to allow a first round of labeling with SrtAstrep. For both eGFP and UCHL3,

C-terminal labeling using 3 and SrtA resulted in >90% conversion to the desired

adduct, as revealed by ESI-MS (Supplementary Figure 3.6). SrtAstrep was quenched by

the addition of MTSET followed by removal of His 6-tagged SrtAstrep using Ni-NTA.

Residual 3 was then removed using a disposable desalting column. Thrombin cleavage

proceeded in quantitative fashion using commercial thrombin agarose resin

(Supplementary Figure 3.6). The exposed N-terminal glycines were then labeled by

treatment with 500 tM 1 and 50 gM A59-SrtAstaphl0 for 1 h at 37 0C. ESI-MS of crude

reaction mixtures showed the dual-labeled material as the major component, with only

minor amounts of byproduct (Supplementary Figure 3.6). A final separation by anion-

exchange chromatography yielded dual-labeled eGFP and UCHL3 with excellent purity,

as determined by both SDS-PAGE and ESI-MS (Figure 3.2c,d and Supplementary

Figure 3.6). In the case of UCHL3, we observed some additional low-intensity bands in

the fluorescent gel scan (Figure 3.2d). However, quantitative densitometric analysis of

coomassie-stained gels indicated purity in excess of 95% for both dual-labeled eGFP and

UCHL3.

In summary, we have developed a strategy for placing different chemical labels at the

two ends of the same polypeptide using two sortase enzymes with unique reactivities. We

anticipate that this method will be applicable to the preparation of protein conjugates for

refolding studies or for the construction of protein sensors, where measuring

conformational changes by FRET is a common mode of detection. In more general terms,

this work begins to explore the range of protein modifications that can be accessed using
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alternative sortases. The number of sortases that have been produced in recombinant form

with retention of activity is continually increasing, and we are exploring the use of these

unique enzymes as tools for protein engineering.
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Figure Legends

Scheme 3.1. C-terminal labeling using SrtAstaph-

Figure 3.1. N-terminal labeling using SrtAstaph'

(a) SrAstaph catalyzes a transacylation reaction using labeled LPRT methyl esters as

substrates. The labeled LPRT fragment is transferred to proteins containing N-terminal

glycines in a site-specific fashion.

(b) FITC (1) and biotin (2) LPRT methyl esters for N-terminal transacylation.

(c) CtxB derivatives (50 pM) were treated with 500 pM 1 and 50 pM SrtAstaph for 2 h at

37 *C in 50 mM Tris (pH 7.5), 150 mM NaCl, and 10 mM CaCl 2. Reactions were

analyzed by SDS-PAGE with visualization by coomassie staining and fluorescent gel

scanning.

Figure 3.2. Site-specific N- and C-terminal labeling using multiple sortases.

(a) Tetramethylrhodamine-labeled dialanine nucleophile (3) for SrtA -mediated

transpeptidation.

(b) Strategy for the installation of discrete labels at both termini of the same protein using

A59-SrtA and SrtA .
staph strep

(c, d) SDS-PAGE characterization with fluorescent gel scanning of dual-labeled (c) eGFP

and (d) UCHL3.
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Figure 3.2
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Supplementary Figure Legends

Supplementary Figure 3.1. Synthesis of FITC-LPRT-OMe

(a) Synthesis of FITC-LPRT-OMe (1) and biotin-LPRT-OMe (2).

(b) RP-HPLC chromatogram (280 nm) for purified 1 and ESI-MS characterization. (c)

RP-HPLC chromatogram (210 nm) for purified 2 and ESI-MS characterization.

Supplementary Figure 3.2. Reconstructed ESI-MS spectra for N-terminal labeling

reactions

Reconstructed ESI-MS spectra for N-terminal labeling reactions on (a) Gi-CtxB, (b) G3-

CtxB, (c) G5-CtxB, and (d) AG4-CtxB substrates. Conditions: 50 pM CtxB, 50 pM

0

SrtAstaph, 500 pM 1, 50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2, 2 hat 37 C.

Supplementary Figure 3.3. Site-specific N-terminal biotinylation of G5-CtxB.

Conditions: 33 ptM G5-CtxB, 50 pM SrtAstaph, 500 iM 2, 50 mM Tris pH 7.5, 150 mM

0

NaCl, 10 mM CaCl 2, 2 h at 37 C.

(a) ESI-MS characterization of biotinylation.

(b) Verification of biotinylation by streptavidin immunblot.

Supplementary Figure 3.4. Additional substrates for N-terminal labeling.

(a) ESI-MS spectra for G5-eGFP labeling. Conditions: 50 pM G5-eGFP, 50 pM SrtAstaph,

0

500 iM 1, 50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl 2, 2h at37 C. (b) ESI-MS

spectra for Gi-UCHL3 labeling. Conditions: 50 pM Gi-UCHL3, 50 piM SrtAstaph, 500
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0

pM 1, 50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2, 2 hat 37 C.

Supplementary Figure 3.5. Synthesis of AA-TMR

(a) Synthesis of AA-TMR (3).

(b) RP-HPLC chromatogram (280 nm) for purified 3 and ESI-MS characterization.

Supplementary Figure 3.6. Site-specific labeling at the N and C termini of eGFP and

UCHL3.

(a) ESI-MS spectra for all intermediates generated during the double labeling procedure.

From top to bottom, this includes the eGFP starting material (m/z = 31080 Da), the

intermediate formed after C-terminal modification with 3 mediated by SrtAstrep (m/z =

29470 Da), the product of thrombin cleavage (m/z = 28855 Da), crude dual labeled eGFP

(m/z = 29726 Da), and dual labeled eGFP after anion exchange chromatography (m/z =

29725 Da).

(b) ESI-MS spectra for all intermediates generated during double labeling of UCHL3.

From top to bottom, this includes the UCHL3 starting material (m/z = 29252 Da), the

intermediate formed after C-terminal modification with 3 mediated by SrtAstrep (m/z =

29050 Da), the product of thrombin cleavage (m/z = 28458 Da), crude dual labeled

UCHL3 (m/z = 29412 Da), and dual labeled UCHL3 after anion exchange

chromatography (m/z = 29412 Da). The MTSET reagent used to quench SrtAstrep also

modifies the active site cysteine of UCHL3 creating an extra +118 Da signal in the mass

spectrum. This modification is easily removed from the final product by brief treatment
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with DTT.

Supplementary Figure 3.1
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Supplementary Figure 3.2
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Supplementary Figure 3.3
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Supplementary Figure 3.5
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Supplementary Figure 3.6
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Supplemental Text

Unless otherwise noted, all chemicals were obtained from commercial sources and used

without further purification. 4-Methylbenzylhydrylamine (MBHA) resin HL

hydrochloride salt (100-200 mesh, 1.1 mmol/g), 4-(4-hydroxymethyl-3-

methoxyphenoxy)-butyric acid (HMPB), Fmoc-Leu-OH, FmocPro-OH, Fmoc-Arg(Pbf)-

OH, Fmoc-Thr(tBu)-OH, Fmoc-Ala-OH, and Fmoc--Ahx-OH were obtained from EMB

Biosciences/Novabiochem. Rink amide resin (100-200 mesh, 0.7 mmol/g) was obtained

from Advanced Chemtech. FITC isomer I was purchased from Sigma (F7250). a-Fmoc-

c-TMR-Llysine was purchased from Invitrogen. Water used in biological procedures or

as a reaction solvent was purified using a MilliQ purification system (Millipore).

@ @
DriSolv anhydrous CH2Cl2 and DriSolv anhydrous MeOH were purchased from EMD

Chemicals. Redistilled, anhydrous N,N'diisopropylethylamine (DIPEA) was obtained

from Sigma-Aldrich.

Mass Spectrometry. LC-ESI-MS analysis was performed using a Micromass LCT mass

@
spectrometer (Micromass MS Technologies, USA) and a Paradigm MG4 HPLC system

equipped with a HTC PAL autosampler (Michrom BioResources, USA) and a Waters

Symmetry 5 p.m C8 column (2.1 x 50 mm, MeCN:H20 (0.1% formic acid) gradient

mobile phase, 150 tL/min).

HPLC/FPLC. HPLC purifications were achieved using an Agilent 1100 Series HPLC

system equipped with a Waters Delta Pak 15 im, 100 A C18 column (7.8 x 300 mm,

MeCN:H20 gradient mobile phase, 3 mL/min) as indicated below. Size exclusion and
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cation exchange chromatography were performed on a Pharmacia AKTA Purifier system

equipped with a HiLoad 16/60 Superdex 75 column (Amersham) or a Mono Q 5/50 GL

column (Amersham), respectively.

UV-vis Spectrocopy. UV-vis spectroscopy was performed on a Nanodrop ND- 1000

spectrophotometer (Thermo Scientific, USA). In-gel Fluorescence. Fluorescent gel

images were obtained using a Typhoon 9200 Variable Mode Imager (GE Healthcare).

11. Synthesis and Characterization of FITC-LPRT-OMe (1), biotin-LPRT-OMe (2)

and AA-TMR (3)

Fmoc-LPRT-OH (S2). MBHA resin (1.05 g, 1.15 mmol) was first washed/swollen with

25 mL of NMP (3x, 3-5 min per wash). The resin was then treated with a solution of

HMPB (690 mg, 2.87 mmol), PyBOP (1.49 g, 2.86 mmol), HOBt (387 mg, 2.86 mmol),

and DIPEA (1.48 mL, 8.59 mmol) in

11.5 mL of NMP and incubated for 14 at RT with gentle agitation on a wrist action

shaker. The resin was then washed with 25 mL of NMP (3x, 3-5 min per wash) followed

by 25 mL of CH2Cl2 (3x, 10 min per wash). The resin was then dried and 370 mg of the

dry resin was transferred to a new solid phase reaction vessel. The resin was washed with

CH 2Cl2 and then treated with a solution of Fmoc-Thr(tBu)OH (477 mg, 1.20 mmol), DIC

(186 tL, 1.20 mmol), and DMAP (14 mg, 0.11 mmol) in 5 mL of anhydrous CH 2 Cl 2 .

The resin was incubated for 16 h at RT and then washed with 20 mL of CH 2Cl 2 (3x, 3-5

min per wash). The coupling of Fmoc-Thr(tBu)-OH was then repeated to achieve
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maximum resin loading. The resin was then washed with 20 mL of NMP (3x, 3-5 min per

wash). Deprotection was achieved with 80:20 NMP/piperidine (20 mL) for 20 min at RT

followed by washing with 20 mL of NMP (3x, 3-5 min per wash). The remaining amino

acid building blocks (R,P,L) were then coupled as follows: Fmoc-protected amino acid

(1.50 mmol, 5.0 equivalents relative to estimated resin loading), PyBOP (781 mg, 1.50

mmol), HOBt (203 mg, 1.50 mmol), and DIPEA (775 iL, 4.50 mmol) were dissolved in

NMP to a final volume of 7.00 mL. This solution was mixed until all reagents had

dissolved, and then added to the deprotected resin. Couplings were incubated for 12-24 h

at RT. The resin was then washed with -30 mL of NMP (3x, 3-5 min per wash). The

extent of coupling was assessed by Kaiser test. In the event that the coupling was

incomplete, the above procedure was repeated. Fmoc removal was then achieved by

exposing the resin to 20 mL of 80:20 NMP/piperidine for 20 min at RT, followed by

additional washing with -30 mL of NMP (3x, 3-5 min per wash). Repeated cycles of

amino acid coupling and Fmoc deprotection were then repeated to complete the synthesis

of resin-bound intermediate S1. Resin S1 was cleaved by treatment with -5 mL of 95:3:2

TFA/TIPS/H 20 (5x, -30 min each) and the combined cleavage solutions were

concentrated. Crude S2 was precipitated from cold diethyl ether and dried (184 mg, 87%

yield based on estimated resin loading). The identity of S2 was confirmed by ESI-MS

([M+H ]= 708.4 calcd, 708.4 obsd). S2 was used without further purification.

H2N-LPRT-OH (S3). Peptide S2 (28 mg, 40 pmol) was dissolved in 160 ptL of NMP

and treated with 30 tL of piperidine. The reaction was incubated at room temperature for

20 min. Crude S3 was precipitated from cold diethyl ether followed by washing of the
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resulting solid with three additional portions of diethyl ether. The solid was then dried

and used without further purification (8 mg, 4 1%). The identity of S3 was confirmed by

ESI-MS ([M+H ]= 486.3 caled, 486.1 obsd).

H2N-Ahx-LPRT-OMe (S4). Intermediate S3 (8.0 mg, 16 pimol) was combined with

Fmocaminohexanoic acid NHS ester (Fmoc-Ahx-NHS) (8.1 mg, 18 pmol), and DIPEA

(15 pL, 86 ptmol) in 172 pL of NMP. The reaction was incubated at room temperature for

19 h. The crude product was then precipitated from cold diethyl ether and the resulting

solid washed with two additional portions of diethyl ether. The solid was then dissolved

in 750 ptL of anhydrous MeOH and treated with 5 pL of concentrated H2 SO 4 . The

0

reaction was incubated for 4 h at 50 C. Formation of the desired methyl ester was

verified by ESI-MS. The reaction was then diluted with 20 mL of H20 and passed over a

@
Waters Sep-Pak Plus C 18 Cartridge (cartridge was pre-equilibrated with 20 mL of 1:1

MeCN/H20 followed by 20 mL of H20). The cartridge was washed with 20 mL of H2 0

and the crude methyl ester was eluted with 10 mL of 1:1 MeCN/H 20. This material was

then concentrated and treated with 100 pL of 80:20 NMP/piperidine for 20 min at RT.

Crude S4 was then precipitated from cold diethyl ether, washed with two additional

portions of diethyl ether, and dried under vacuum. S4 was used without further

purification (7 mg, 71% from S3). The identity of S4 was confirmed by ESI-MS ([M+H ]

= 613.4 calcd, 613.3 obsd).

FITC-LPRT-OMe (1). Intermediate S4 (7.0 mg, 11 imol) was combined with FITC

isomer 1 (4.9 mg, 13 pmol), and DIPEA (15 pL, 86 jimol) in 120 pL of NMP. The
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reaction was incubated at room temperature for 2 h. Crude 1 was then precipitated from

cold diethyl ether and the resulting solid washed with two additional portions of diethyl

ether. The material was then purified by RP-HPLC [Waters C 18 column, MeCN:H20

gradient mobile phase, 3 mL/min, 5% MeCN (0-2 min), 5% MeCN

--+ 40% MeCN (2-25 min)] to yield 1 (3.8 mg, 35%). The identity and purity of 1 was

confirmed by RPHPLC and ESI-MS (Figure Sib). A 10 mM stock solution of t in

DMSO was used in all transpeptidation experiments.

Fmoc-LPRT-OMe (S5). Peptide S2 (35 mg, 49 ptmol) was dissolved in 750 iL of

anhydrous MeOH and treated with 5 tL of concentrated H2 SO 4 . The reaction was

0

incubated for 3 h at 55 C followed by an additional 15 h at RT. The reaction was then

@
diluted with 20 mL of H20 and passed over a Waters Sep-Pak Plus C18 Cartridge

(cartridge was pre-equilibrated with 20 mL of 1:1 MeCN/H20 followed by 20 mL of

H20). The cartridge was washed with 20 mL of H2 0 and then crude S5 was eluted with

10 mL of 1:1 MeCN/H20. S5 was then concentrated and used without further

purification (24 mg, 68%). The identity of S5 was confirmed by ESI-MS ([M+H ]=

722.4 calcd, 722.5 obsd).

H2N-LPRT-OMe (S6). Methyl ester S5 (23 mg, 32 pmol) was dissolved in 125 iL of

NMP and treated with 30 pL of piperidine. The reaction was incubated at room

temperature for 20 min. Crude S6 was precipitated from cold diethyl ether followed by

washing of the resulting solid with three additional portions of diethyl ether. The solid

was then dried and used without further purification (16 mg, quantitative). The identity
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of S6 was confirmed by ESI-MS ([M+H ]= 500.3 calcd, 500.2 obsd).

Biotin-LPRT-OMe (2). Intermediate S6 (5.0 mg, 10 pmol) was combined with biotin-

2
NHS (3.8 mg, 11 ptmol), and DIPEA (10 [.L, 58 imol) in 105 p.L of NMP. The reaction

was incubated at room temperature for 18 h. The material was then purified by RP-HPLC

[Waters C18 column, MeCN:H 20 gradient mobile phase, 3 mL/min, 5% MeCN (0-2

min), 5% MeCN -+ 60% MeCN (2-30 min)] to yield 2 (3 mg, 41%). The identity and

purity of 2 was confirmed by RP-HPLC and ESI-MS (Supplementary Figure 3.1d). A

10 mM stock solution of 2 in DMSO was used in all transpeptidation experiments.

AA-TMR (3). Resin bound intermediate S7 was synthesized on Rink amide resin using

standard Fmoc synthesis. Couplings were performed using 5 equivalents (relative to

estimated resin loading) of the suitably protected Fmoc amino building block, 5

equivalents of PyBOP, 5 equivalents of HOBt, and 15 equivalents of DIPEA in NMP

(final concentration of Fmoc amino acid was -170 mM). Couplings

were run for 5-72 h at room temperature with gentle agitation on a wrist action shaker.

Fmoc deprotection was achieved with 80:20 NMP/piperidine for 20 min at room

temperature. The resin was washed with NMP between each transformation. Following

completion of S5, the resin was washed with NMP (4x, 3-5 min per wash) and CH2Cl2

(5x, 3-5 min per wash). The resin was then dried. Dry S5 resin (43 mg, 21 pimol, 0.5

mmol/g estimated resin loading) was then transferred to a 3.0 mL fritted

polypropylene syringe equipped with a hypodermic needle. The 4-methyltrityl (Mtt)

protecting group was removed by treatment with 2.5 mL of 94:5:1 CH2Cl2/TIPS/TFA at
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room temperature (5x, 5 min each) followed by washing with 2.5 mL of CH2Cl2(3x, 3-5

min per wash) and 2.5 mL of NMP (3x, 3-5 min per wash). The resin was then treated

with a solution of a-Fmoc-c-TMR-L-lysine (25 mg, 32 prmol), PyBOP (17 mg, 33 prmol),

HOBt (9 mg, 70 pmol), and DIPEA (16.5 pL, 95.8 pimol) in 1.0 mL of NMP. The

reaction was incubated at RT for 20 h followed by washing with 2.5 mL of NMP (3x, 3-5

min per wash). Fmoc removal was achieved by treatment with 2.5 mL of 80:20

NMP/piperidine for 20 min at RT followed by washing with 2.5 mL of NMP (3x, 3-5 min

per wash) and 2.5 mL of CH2Cl2(3x, 3-5 min per wash). The peptide was cleaved from

the resin with 2.5 mL of 95:3:2 TFA/TIPS/H20 (5x, 15 min each) and the combined

cleavage solutions were concentrated in vacuo. Crude 3 was precipitated from cold

diethyl ether, and then purified by RP-HPLC [Waters C18 column, MeCN:H20 gradient

mobile phase containing 0.1% TFA, 3 mL/min, 5% MeCN (0-2 min), 5% MeCN --* 60%

MeCN (2-30 min)]. The identity and purity of 3 (8 mg, 40%) was confirmed by RP-

HPLC and ESI-MS (Supplementary Figure 5.b). A 100 mM stock solution of 3 in water

was used for transpeptidation experiments.

UL1. Protein Cloning and Expression

SrtAstrep. The expression plasmid for SrtAstrep (residues 82-249) including an N-

3
terminal His6 tag has been described. The construct was transformed into K coli BL-21.

Cells were grown in 2 L of sterile LB containing kanamycin (30 [tg/mL) to an optical

0

density of -0.7 at 600 nm. Cells were induced with IPTG (1 mM) for 3 h at 37 C. Cells

0

were harvested by centrifugation and the pellet was stored overnight at -20 C. The pellet

was thawed and resuspended in 70 mL of 50 mM Tris pH 8.0, 150 mM NaCl, 20 mM
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imidazole and 10% glycerol. Cells were then treated with 300 p.L of DNAse I (10 mg/mL

in PBS), 500 L of lysozyme (50 mg/mL in PBS), and 10 ptL of MgCl 2 (1 M in PBS).

0

The lysis reaction was incubated for 1 h at 4 C. The cells were then sonicated and

centrifuged to remove insoluble material. The clarified lysate was then applied to a Ni-

NTA column consisting of 5.0 mL of commercial Ni-NTA slurry (Qiagen) equilibrated

with 50 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole, and 10% glycerol. The

column was washed with 80 mL of 50 mM Tris pH 8.0, 150 mM NaCl, 20 mM

imidazole, and 10% glycerol. Protein was eluted with five 5 mL portions of 50 mM Tris

pH 8.0, 150 mM NaCl, 300 mM imidazole, and 10% glycerol. Fractions containing

SrtAstrep were pooled and further purified by size exclusion chromatography on a HiLoad

16/60 Superdex 75 column (Amersham), eluting with 20 mM Tris pH 8.0, 150 mM NaCl

at a flow rate of 1 mL/min. Fractions containing SrtAstrep were pooled and subjected to a

second round of Ni-affinity chromatography. Purified SrtAstrep was then dialyzed against

50 mM Tris pH 8.0, 150 mM NaCl, and 10% glycerol. These solutions were stored at -

0

80 C until further use. Protein concentration was estimated by Bradford assay.

SrtAstaph. Recombinant SrtAstaph (residues 26-206) containing an N-terminal His6 tag was

4
produced in F. coli as previously described. SrtAstaph does not contain an N-terminal

glycine residue (retains initiator methionine). Purified SrtAstaph was stored in 10% (w/v)

glycerol, 50 mM Tris pH 8.0, 150 NaCl at -80 'C until further use. Protein concentration

was estimated by Bradford assay.

A59-SrtAstaph. Recombinant A59-SrtAstaph (residues 60-206) containing an N-terminal

His6 tag was cloned into pET28a+. A59-SrtAstaph does not contain an N-terminal glycine
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residue (retains initiator methionine). Expression of A59-SrtAstaph was achieved following

the protocol described above for SrtAstrep. Purification by size exclusion chromatography

was not necessary because A59-SrtAstaph was sufficiently pure following Ni-affinity

chromatography.

CtxB. The template for construction of G1-CtxB, G3-CtxB, G5-CtxB, and AG4-CtxB

consisted of the B-subunit of cholera toxin fused at its N terminus to the signal peptide

5
sequence of E. coli heat labile enterotoxin LTIIb. This targets the expressed protein to

the periplasm where the signal peptide is removed. Glycine and/or alanine residues were

inserted between the signal sequence and CtxB via Quickchange@ II Site-Directed

Mutagenesis (Stratagene). Plasmids were transformed into E. coli BL

21. Cells were grown in 1 L of sterile LB containing chloroamphenicol (34 pg/mL) to an

optical density of -0.5-1.0 at 600 nm. Cells were induced with arabinose (0.25% w/v) for

0

3 h at 37 C. Cells were harvested by centrifugation and the pellet was stored overnight at

0

-20 C. The pellet was thawed and resuspended in 30 mL of 50 mM Tris pH 8.0 and 300

mM NaCl. This suspension was then treated with 3 mL of polymixin B solution (5

mg/mL freshly made in water). This was mixture was gently stirred at room temperature

for 1 h and then centrifuged. The clarified lysate was treated with 2.5 mL of Ni-NTA

slurry (Qiagen). CtxB has a naturally affinity for Ni-NTA although it does not possess a

0

His6 tag. The Ni-NTA mixture was incubated at 4 C for 1 h and then poured into a fritted

plastic column (Bio-Rad). The resin was washed with 40 mL of 50 mM Tris pH 8.0 and

300 mM NaCl. Protein was eluted with two 10 mL portions of 50 mM Tris pH 8.0, 300

mM NaCl, and 300 mM imidazole. Purified CtxB was buffer exchanged into 20 mM Tris
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O

pH 8.0 and 150 mM NaCl. Solutions were stored at 4 C. Protein concentration was

estimated by Bradford assay.

G5-eGFP and dual labeling eGFP substrate. G5-eGFP (containing a C-terminal His6

tag) and the eGFP dual labeling substrate (containing an N-terminal thrombin cleavage

site and a C-terminal LPETG motif followed by a His 6 tag) and were prepared in

pET28a+ (Novagen) using a Quickchange@ II Site-Directed Mutagenesis Kit

6
(Stratagene). The template plasmid used for mutagenesis has been described. Plasmids

were then transformed into E. coli BL-2 1. In a typical experiment, cells were grown in

sterile LB containing kanamycin (30 tg/mL) to an optical density of ~0.6-0.9 at 600 nm.

0

Cells were induced with IPTG (1 mM) for 3 h at 37 C. Cells were harvested by

0

centrifugation and the pellet was stored overnight at -20 C. The pellet was thawed and

resuspended in 20 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole and 1% NP-40.

The cell suspension was then lysed by French press and centrifuged. The clarified lysate

was then applied to a Ni-NTA column consisting of 5.0 mL of commercial Ni-NTA

slurry (Qiagen) equilibrated with 20 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole

and 1% NP-40. The column was washed with 40 mL of 20 mM Tris pH 8.0, 150 mM

NaCl, 20 mM imidazole and 1% NP-40, followed by 40 mL of 20 mM Tris pH 8.0, 150

mM NaCl, and 20 mM imidazole. Protein was eluted with 20 mM Tris pH 8.0, 150 mM

NaCl, and 300 mM imidazole until the characteristic green color was fully removed from

the column. This material was concentrated and further purified by size exclusion

chromatography on a HiLoad 16/60 Superdex 75 column (Amersham), eluting with 20

mM Tris pH 8.0, 150 mM NaCl at a flow rate of 1 mL/min. Fractions containing eGFP

112



Chapter 3: Site-specific N- and C-terminal labeling of a single polvpeptide using
sortases of different specificities

were pooled and subjected to a second round of Ni-affinity chromatography. Purified

eGFP was then buffer exchanged into 20 mM Tris pH 8.0, 150 mM NaCl using a PD-10

TM
Sephadex column (GE Healthcare), concentrated, and treated with glycerol (10% v/v

0

final concentration). These solutions were stored at 80 C until further use. Protein

concentration was estimated by UV-vis spectroscopy using the absorbance of eGFP at

-1 -1 7

488 nm (extinction coefficient 55,900 M cm ).

UCHL3 and dual labeling UCHL3 substrate. UCHL3 containing a single N-terminal

8

glycine residue was produced in K coli as described previously. This construct (in

pET28a+, Novagen) was then used to prepare the dual labeling UCHL3 substrate.

Synthetic 5'-phosphorylated oligonucleotide duplexes containing appropriate sticky ends

were designed to achieve insertion of an N-terminal thrombin site and a C-terminal

LPETG sequence separated from UCHL3 by a GGGGSGGGGS spacer in two sequential

cloning steps. Duplexes were annealed before ligation into the parent vector. The C-

terminal insertion was performed first using the PstI and XhoI restriction sites. The result

of using the XhoI site was the addition of a His6-tag after the LPETG sequence. The N-

terminal insertion was then achieved using the XbaI and NdeI restriction sites. This

plasmid was then transformed into . coli BL2 1. Cells were grown in sterile LB

containing kanamycin (30 pg/mL) to an optical density of ~0.6-0.9 at 600 nm. Cells

0

were induced with IPTG (1 mM) for 3 h at 37 C. Bacteria were then harvested by

0

centrifugation and the pellet was stored overnight at -20 C. The pellet was thawed and

resuspended in 20 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole and 1% NP-40.
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The cell suspension was then lysed by French press and centrifuged. The clarified lysate

was then applied to a Ni-NTA column consisting of 5.0 mL of commercial Ni-NTA

slurry (Qiagen) equilibrated with 20 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole

and 1% NP-40. The column was washed with 40 mL of 20 mM Tris pH 8.0, 150 mM

NaCl, 20 mM imidazole and 1% NP-40, followed by 40 mL of 20 mM Tris pH 8.0, 150

mM NaCl, and 20 mM imidazole. Protein was eluted with 20 mM Tris pH 8.0, 150 mM

NaCl, and 300 mM imidazole. This material was then purified by anion-exchange

chromatography on a Mono Q 5/50 GL column (Amersham) [Buffer A (50 mM Tris pH

7.5, 5 mM DTT, 0.5 mM EDTA), Buffer B (50 mM Tris pH 7.5, 5 mM DTT, 0.5 mM

EDTA, 500 mM NaCl), 1.5 mL/min, gradient: 100% Buffer A (0-15 mL), 0% Buffer B

--* 50% Buffer B (15-45 mL), 50% Buffer B (45-50 mL)]. Fractions containing UCHL3

were pooled and further purified by size exclusion chromatography on a HiLoad 16/60

Superdex 75 column (Amersham), eluting with 20 mM Tris pH 8.0, 150 mM NaCl at a

flow rate of 1 mL/min. Fractions containing UCHL3 were pooled and subjected to a final

purification step by anion-exchange chromatography on a Mono Q 5/50 GL column

(Amersham) [Buffer A (50 mM phosphate pH 6.0), Buffer B (50 mM phosphate pH 6.0,

500 mM NaCl), 1.5 mL/min, gradient: 100% Buffer A (0-15 mL), 0% Buffer B -> 50%

Buffer B (15-45 mL), 50% Buffer B (45-50 mL)]. The dual labeling UCHL3 substrate

was buffer exchanged into 20 mM Tris pH 8.0, 150 NaCl and protein concentration was

estimated by Bradford assay.

IV. Sortase-Mediated Labeling of Protein Substrates

N-terminal labeling. N-terminal transpeptidation reactions were performed by

114



Chapter 3: Site-specific N- and C-terminal labeling of a single polypeptide using
sortases of different specificities

combining the necessary proteins/reagents at the specified concentrations in the presence

of SrtAstaph or A59-SrtAstaph in sortase reaction buffer (50 mM Tris pH 7.5, 150 mM

NaCl, 10 mM CaCl2) and incubating at 37 *C for the times indicated. Reactions were

either diluted with 2x reducing Laemmli sample buffer for SDSPAGE analysis or diluted

with water (-50 fold) for ESI-MS analysis. Gels were visualized by staining with

coomassie blue. Fluorescence was visualized on a Typhoon 9200 Imager (GE

Healthcare). For detection of biotinylation, proteins were separated by SDS-PAGE and

transferred to a nitrocellulose membrane. The membrane was then probed with a

streptavidin-horseradish peroxidase conjugate (GE Healthcare) and visualized by

chemiluminescence. ESI-MS was performed on a Micromass LCT mass spectrometer

(Micromass@ MS Technologies, USA) and a Paradigm MG4 HPLC system equipped

with a HTC PAL autosampler (Michrom BioResources, USA) and a Waters Symmetry 5

ptm C8 column (2.1 x 50 mm, MeCN:H20 (0.1% formic acid) gradient mobile phase,

150 ptL/min).

Dual Labeling of eGFP

Immediately prior to starting the dual labeling sequence, the eGFP stock was thawed and

again purified by affinity chromatography over commercial Ni-NTA resin. After binding

eGFP to the resin, the column was washed with 20 mM Tris pH 8.0, 150 mM NaCl, and

20 mM imidazole. The protein was eluted with 20 mM Tris pH 8.0, 150 mM NaCl, and

300 mM imidazole. This material was buffer exchanged into 20 mM Tris pH 8.0, 150

TM TM

mM NaCl using a NAP 5 Sephadex column (GE Healthcare) and concentrated. The

concentration was estimated to be 84 pM by UV-vis spectroscopy using eGFP
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-1 -1 7
absorbance at 488 nm (extinction coefficient 55,900 M cm ).

C-terminal modification of eGFP with 3 and SrtAstrep. 400 p.L of the freshly purified

eGFP solution was then treated with SrtAstrep (87 pL of a 140 pM stock solution) and 3

2+ 3
(4.9 ptL of a 100 mM stock solution) [Note: SrtAstrep does not require Ca for activity].

0

The reaction was incubated for 7 h at 37 C. ESI-MS analysis of the crude reaction

mixture revealed excellent conversion to the desired product (Supporting Figure S6a).

The reaction was then treated with [2-(trimethylammonium)ethly] methane thiosulfonate

bromide (MTSET) (2.5 pL of a 500 mM solution in 1:1 DMSO/H20) for 10 min at room

temperature to quench SrtAstrep. The entire reaction was then diluted with 5 mL of 20 mM

Tris pH 8.0, 500 mM NaCl, and 20 mM imidazole. This solution was then passed over a

1.5 mL column of Ni-NTA that been equilibrated with 20 mM Tris pH 8.0, 500 mM

NaCl, and 20 mM imidazole. The column was then washed with 1.5 mL of 20 mM Tris

pH 8.0, 500 mM NaCl, and 20 mM imidazole. His6-tagged SrtAstrep was bound by Ni-

NTA while the eGFP product (which lost its His6 tag during the course of

transpeptidation) was not retained. The eGFP solution was then concentrated and passed

TM
over a PD-10 Sephadex desalting column (equilibrated with 20 mM Tris pH 8.0, 150

mM NaCl) to remove excess 3. This material was concentrated to -800 pL and subjected

to thrombin cleavage.

Thrombin cleavage of eGFP. All 800 uL of the solution described above was combined

with 100 pL of 1 Ox cleavage buffer and 100 ptL of thrombin agarose beads (from
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TM 0

Thrombin CleanCleave Kit, Sigma). This mixture was incubated for 1 h at 37 C, and

then checked by ESI-MS to ensure quantitative cleavage (Supporting Figure S6a). The

reaction was then filtered to remove the thrombin beads.

N-terminal labeling of eGFP with 1 and A59-SrtAstaph. 389 %L of the thrombin cleaved

material was combined with 1 (25 pL of a 10 mM DMSO solution), A59-SrtAstaph (36 IL

of a 700 p.M stock solution), and lOx sortase reaction buffer (50 pL of 500 mM Tris pH

8.0, 1.5 M NaCl, 100 mM CaCl 2). The reaction was incubated for 75 min at 37 C. ESI-

MS of the crude reaction mixture showed clean formation of the dual labeled product as

the major reaction product (Supporting Figure S6a). The reaction was then diluted with 5

mL of 20 mM Tris pH 8.0, 500 mM NaCl, and 20 mM imidazole. This solution was

passed over a 1.5 mL column of Ni-NTA that been equilibrated with 20 mM Tris pH 8.0,

500 mM NaCl, and 20 mM imidazole in order to remove His6-tagged A59-SrtAstaph. 2.5

TM

mL of this eluate was then passed over a PD-10 Sephadex desalting column

(equilibrated with 20 mM Tris pH 8.0). This material was then purified by anion-

exchange chromatography on a Mono Q 5/50 GL column (Amersham) [Buffer A (20 mM

Tris pH 8.0), Buffer B (20 mM Tris pH 8.0, 1 M NaCl), 1.5 mL/min, gradient: 100%

Buffer A (0-15 mL), 0% Buffer B -+ 50% Buffer B (15-45 mL), 50% Buffer B (45-50

mL)]. Fractions containing dual labeled eGFP were pooled and analyzed by SDS-PAGE

and ESI-MS. Coomassie stained gels were imaged using a CanoScan 8600F scanner.

Protein purity was estimated from these images using ImageJ 1.42q densitometry

software.
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Dual labeling of UCHL3

C-terminal modification of UCHL3 with 3 and SrtAstrep. UCHL3 (350 pL of a 65 aM

stock solution) was treated with SrtAstrep (76 p.L of a 140 pM stock solution) and 3 (4.3

2+ 3
pL of a 100 mM stock solution) [Note: SrtAstrep does not require Ca for activity]. The

0

reaction was incubated for 15 h at 37 C. ESI-MS analysis of the crude reaction mixture

revealed excellent conversion to the desired product (Supporting Figure S6b). The entire

reaction was then diluted with 5 mL of 20 mM Tris pH 8.0, 500 mM NaCl, and 20 mM

imidazole. This solution was then treated with [2-(trimethylammonium)ethly] methane

thiosulfonate bromide (MTSET) (5.0 ptL of a 500 mM solution in 1:1 DMSO/H 20) for 10

min at room temperature to quench SrtAstrep. [Note: UCHL3 contains an active site

cysteine residue and is therefore modified by MTSET. The resulting modification is

disulfide linked, and is easily removed by treatment with DTT following completion of

the dual labeling procedure]. The diluted reaction solution was then passed over a 1.5 mL

column of Ni-NTA that been equilibrated with 20 mM Tris pH 8.0, 500 mM NaCl, and

20 mM imidazole. The column was then washed with 1.5 mL of 20 mM Tris pH 8.0, 500

mM NaCl, and 20 mM imidazole. The UCHL3 solution was then concentrated and

TM

passed over a PD-10 Sephadex desalting column (equilibrated with 20 mM Tris pH

8.0, 150 mM NaCl) to remove excess 3. This material was concentrated to 1 mL and

subjected to thrombin cleavage.

Thrombin cleavage of UCHL3. All 1 mL of the solution described above was combined

with 100 ptL of lOx cleavage buffer and 100 pL of thrombin agarose beads (from

TM 0
Thrombin CleanCleave Kit, Sigma). This mixture was incubated for 1 h at 37 C, and
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then checked by ESI-MS to ensure quantitative cleavage (Supporting Figure S6b). The

reaction was then filtered to remove the thrombin beads.

N-terminal labeling of UCHL3 with 1 and A59-SrtAstaph. 778 %tL of the thrombin cleaved

material was combined with 1 (50 iL of a 10 mM DMSO solution), A59-SrtAstaph (72 gL

of a 700 pM stock solution), and 1 Ox sortase reaction buffer (100 pL of 500 mM Tris pH

0

8.0, 1.5 M NaCl, 100 mM CaCl2). The reaction was incubated for 60 min at 37 C. ESI-

MS of the crude reaction mixture showed clean formation of the dual labeled product as

the major reaction product (Supporting Figure S6b). The reaction was then diluted with 5

mL of 20 mM Tris pH 8.0, 500 mM NaCl, and 20 mM imidazole. This solution was

passed over a 1.5 mL column of Ni-NTA that been equilibrated with 20 mM Tris pH 8.0,

500 mM NaCl, and 20 mM imidazole in order to remove His 6-tagged A59-SrtAstaph. The

column was then washed with 2.0 mL of 20 mM Tris pH 8.0, 500 mM NaCl, and 20 mM

TM

imidazole. The eluate was then desalted using PD-10 Sephadex columns (equilibrated

with 20 mM Tris pH 8.0). This material was then purified by anion-exchange

chromatography on a Mono Q 5/50 GL column (Amersham) [Buffer A (20 mM Tris pH

8.0), Buffer B (20 mM Tris pH 8.0, 1 M NaCl), 1.5 mL/min, gradient: 100% Buffer A (0-

15 mL), 0% Buffer B -+ 50% Buffer B (15-45 mL), 50% Buffer B (45-50 mL)].

Fractions containing dual labeled UCHL3 were pooled and analyzed by SDS-PAGE and

ESI-MS. Prior to ESI-MS, dual labeled UCHL3 was treated with 10 mM DTT for 10 min

at RT to remove the MTSET modification on the active site cysteine residue. Coomassie

stained gels were imaged using a CanoScan 8600F scanner. Protein purity was estimated

from these images using ImageJ 1.42q densitometry software.

119



Chapter 3: Site-specific N- and C-terminal labeling of a single polypeptide using
sortases of different specificities

References
(1) Zumbuehl, A.; Jeannerat, D.; Martin, S. E.; Sohrmann, M.; Stano, P.; Vigassy, T.;

Clark, D. D.; Hussey, S. L.; Peter, M.; Peterson, B. R.; Pretsch, E.; Walde, P.;
Carreira, E. M. Angew Chem Int Ed Engl 2004, 43, 5181-5.

(2) Kottani, R.; Valiulin, R. A.; Kutateladze, A. G. Proc Natl Acad Sci US A 2006,
103, 13917-21.

(3) Race, P. R.; Bentley, M. L.; Melvin, J. A.; Crow, A.; Hughes, R. K.; Smith, W.
D.; Sessions, R. B.; Kehoe, M. A.; McCafferty, D. G.; Banfield, M. J. JBiol
Chem 2009, 284, 6924-33.

(4) Ton-That, H.; Liu, G.; Mazmanian, S. K.; Faull, K. F.; Schneewind, 0. Proc.
Natl. Acad Sci. US.A. 1999, 96, 12424-9.

(5) Jobling, M. G.; Palmer, L. M.; Erbe, J. L.; Holmes, R. K. Plasmid 1997, 38, 158-
73.

(6) Antos, J. M.; Miller, G. M.; Grotenbreg, G. M.; Ploegh, H. L. JAm Chem Soc
2008, 130, 16338-43.

(7) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509-544.
(8) Popp, M. W.; Artavanis-Tsakonas, K.; Ploegh, H. L. Journal ofBiological

Chemistry 2008, 284, 3593-3602.

120



Chapter 3: Site-specific N- and C-terminal labeling of a single polpe ptide using
sortases of different specificities

Print Article (Reprinted with permission from Journal of the American Chemical
Society):

JcIAICIS
COMMUNICATIONS

PubSlhie on Web 07117/2009

Site-Specific N- and C-Terminal Labeling of a Single Polypeptide Using
Sortases of Different Specificity

John M. Antos, Guo-Liang Chew, Carla P. Guimaraes, Nicholas C. Yoder, Gijsbert M. Grotenbreg,
Maximilian Wei-Lin Popp, and Hidde L. Ploegh*

Whitehead Institute for Biomedical Research. 9 Cambridge Center, Cambridge. Massachusetts 02142

Received April 3. 2009; E-mait ploeOwi.mit.edu

Methods for site-specific modifieation of proteins remain in high
demand. The transpeptidation reaction catalyzed by sortase A from
Staphylococcus aurers (SrtA.) allows site-specific derivatization
of proteins with virtually any type of functional material.' Target
proteins are engineered to contain the SrtA,, 5 recognition site
(LPXTG) near their C tenninus. thus allowing a transacylation
reaction in which the residues C-terminal to threonine are exchanged
for a synthetic oligoglycine peptide (Scheme 1). While the range
of applications for this technology has expanded considerably.' the

ligation chemistry itself has seen relatively few modifications or
improvements. Since nearly all Gram-positive bacteria possess
sortases. many with reactivity distinct from SrtAmg. there is an
exciting opportunity to develop complementary strategies for protein
engineering using other members of this enzyme family.

2 3 
Here

we present a strategy for placing discrete labels at both termini in
the same polypeptide through the use of multiple sortases. We first
describe the ability of SrtAjg to append labels at the protein N
terminus and then demonstrate how this can be used in conjunction
with the activity of sortase A from Streptococcus pyogenes (SrtASJ,)
to yield dual-labeled proteins.

Scheme 1. C-temninal Labeling Using SrtA,."
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With regard to N-terminal labeling mediated by SrtAgs. we
reasoned that labeled synthetic peptides containing the LPXTG
recognition motif. or structural analogues thereof, could generate
the requisite acyl-enzyme intermediate necessary for transpepti-
dation. In combination with protein nucleophiles containing one
or more N-terminal glycines, this should result in transfer of the
label to the protein N terminus (Figure la). We synthesized FITC
(1) and biotin (2) derivatives of an LPRT peptide in which the
glycine of the normal LPXTG motif was replaced by a methyl ester
(Figure Ib and Figure SI in the Supporting Information). The use
of an ester derivative rather than the entire LPXTG motif was
motivated by our concern that the glycine residue released after
LPXTG cleavage might compete with the protein nucleophile.
potentially complicating the desired N-terminal-labeling reaction.
In contrast. transacylation with I and 2 would generate McOH, a
poor nucleophile for transacylation compared with glycine. It should
be noted that concurrently with the work described here, it was
demonstrated that labeled LPETGG peptides are viable tools for
N-terminal labeling using SrtAwo:

4

With I and 2 in hand. we expressed a series of model proteins
containing N-terminal glycine residues. We prepared variants of
the cholera toxin B subunit (CtxB) with one, three, or five
N-terminal glycines. In order to verify the selectivity for glycine.
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Fgw 1. N-terminal labeling using SrtA,e. (a) SrtA.0 catalyzes a
transacylation reaction using labeled .PIT methyl esters as substrates. The
labeled LPRT fragment is transferred to proteins containing N-terminal
glycines in a site-specific fashion. (b) FITC(l) and biotin (2) LPRT methyl
esters for N-terminal transacylation. (c) CtxB derivatives (50 pM) were
treated with 500#M I and 50 p.M SrtA, for 2 h at 37 -C in 50 mM Tris
(pH 7.5), 150 mM NaCl. and 10 mM CaCI2 . Reactions were analyzed by
SDS-PAGE with visualization by couomassie staining and ltuorescent gel
scanning.

we prepared a control construct containing an N-terminal alanine
residue. In the presence of SrtAmp, we observed robust labeling
of G-CtxB and G$-CtxB using 500 pM I for 2 h at 37 *C, with no
apparent labeling of the alanine-containing control (Figure 1c).
Electrospray ionization mass spectrometry (ESI-MS) revealed
quantitative labeling of G-CtxB and Gy-CtxB. with no modification
observed for GI-CtxB and AGr-CtxB (Figure S2). Similar experi-
ments with biotinylated derivative 2 and Gy-CtxB yielded compa-
rable results. as verified by LSI-MS and streptavidin immunoblot
(Figure S3). In all cases. residual labeling of SnAm, itself.
attributable to the formation of a covalent acyl-enzyme intermedi-
ate. was detected. N-terminal transpeptidation was also successful
for two additional protein substrates. eGFP with five N-terminal
glycines and UC1L3 containing a single N-terminal glycine (Figure
S4).

With the ability of SrtA..a, to append labels at either terminus.
we pursued the possibility of installing two modifications within

ie.102*42001k CCC: 40.7 e 2M Am aem Chmk" Samc
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the same protein. Attempts to execute this type of transformation
using SrmAw alone were unsuccessful, as intramolecular transpep-
tidation between N-terminal glycines and the C-terminal LPXTG
motif was unavoidable in most cases. Therefore, we considered
the possibility of using a second, distinct sortase, an idea that has
been suggested but never reduced to practic" We initially sought
to use sortase B (SrtB) from either Stask. anarvi or Bac rm
anthracis as enzymes with recognition sequences (NPQTN and
NPKTG. respectively) orthogonal to that of StA,. 6

,
7 

Both SrtB
enzymes were easily produced in Escherichia coli and purified to
homogeneity. We reproduced the reported in vitro enzyme ativity
using a FRET-based assay to measure cleavage of short peptides
substrates' 7 

However, to date we have failed to obtain transpep-
tidation with either SrtB on protein substrates modified with the
appropriate recognition sequences on a time scale or with yields
that comipare favorably with SrtA, (data not shown).

We ultimately arrived at a successful orthogonal strategy using
SrtA.,, which recognises the same LPXTG sequence used by
SrtAm but can accept alanine-based nucleophiles." This leads to
the formation of an LPXTA sequence at the site of ligation, a motif
refractory to cleavage by SrtA.,.

9 
This allows SrtA 0 # to act on

the N terminus without affecting the C-terminal modification
installed with SrtA.,.
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PWMe Sie-specific N- and C-termsinal labeling usag nuhple sstases.
(a) TeMhm-labeled ai--r naceleophile (3) for getA.,-
mae-ied tramupeptidati. (b) Srstegy for the installation of discrete labels
at bat teramini of the sam protis saing A59-StAma sad StA., (c, d)
SDS-PAGE characteriatee with gNesest gel scamig of dal-labeled
(e) eGFP sad (d) UCHL3.

Our nal strategy for dual-terminus labeling is outlined in Figure
2b. We first synthesized a tetlraethylrhodminde-abeled peptide
(3) containing two N-tirminal alanine residues to serve as the
nucleophile for SrtAmarmadteid protein ligation (Figure 2a and
Figtre SS). We prepared two model substrates (eGFP and UCHIL3)
conining mase N-terminal glycines that ae exposed only upon
thrombin cleavage. Masking was required because SrnA.,, was

observed to ligate both glycine and alani nucleophiles (data not
shown). Substrates also contained an LTIU motif at the C
terminus to sHow a first round of labeling with SntA.,. For both
eGFP and UCHL3, C-terminal labeling using 3 and SrtA.., resulted
in >90% conversion to the desired adduct, as revealed by ESI-MS
(Figure S6). SrtA. was quenched by the addition of MTSET
followed by removal of Hiss-tagged StA,, using Ni-NTA.
Residual 3 was then removed using a disposable desalting column.
Thrombin cleavage proceeded in quantitative fashion using com-
mercial tuntmbin agarose resin (Figim S6). The exposed N-terminal
glycines were then labeled by treatment with 500 #M I and 50
pM A59-SrtA.,,h'

t 
for -1 h at 37 'C. ESI-MS of crude reaction

mixtures showed the dual-labeled material as the major component,
with only minor amounts of byproduct (Figure S6). A final
separation by ano-nhnechromatography yielded dual-labeled
eGFP and UCHL3 with excellent purity, as determined by both
SDS-PAGE and ESI-MS (Figure 2cd and Figure 56). In the case
of UCHL3, we observed some additional low-intensity bands in
the fluorescent gel scan (Figure 2d). However, quantitative densi-
tometric analysis of cooma g-stained gels indicated purity in
excess of 95% for both dual-labeled eGFP and UCHL3.

In summary, we have developed a strategy for placing different
chemical labels at the two ends of the same polypeptide using two
sortase enzymes with unique reactivities. We anticipate that this
method will be applicable to the preparation of protein conjugates
for refolding studies or for the construction of protein sensors, whoe
measuring confomational changes by FRET is a common mode
of detection. In more general terms, this woe begins to explore
the range of protein modiications that can be accessed using
alternative sortases. The number of sortases that have been produced
in recombinant form with retention of activity is continually
increasing, and we are exploring the use of these unique enzymes
as tools for protein engineering.
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A Straight Path to Circular Proteins
(From: J. M. Antos, M. W. Popp, R. Ernst, G. L. Chew, E. Spooner, H. L. Ploegh, JBiol

Chem 2009, 284, 16028)

Abstract

Folding and stability are parameters that control protein behavior. The possibility of

conferring additional stability on proteins has implications for their use in vivo, and for

their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to

78 amino acids occur naturally and often show enhanced resistance toward denaturation

and proteolysis when compared to their linear counterparts. Native chemical ligation and

intein-based methods allow production of circular derivatives of larger proteins, resulting

in improved stability and refolding properties. Here we show that circular proteins can

be made reversibly with excellent efficiency by means of a sortase-catalyzed cyclization

reaction, requiring only minimal modification of the protein to be circularized.

Introduction

Sortases are bacterial enzymes that predominantly catalyze the attachment of surface

proteins to the bacterial cell wall P. Other sortases polymerize pilin subunits for the

construction of the covalently stabilized and covalently anchored pilus of the gram-

positive bacterium 3.5. The reaction catalyzed by sortase involves the recognition of short

5-residue sequence motifs, which are cleaved by the enzyme with the concomitant

formation of an acyl enzyme intermediate between the active site cysteine of sortase and

the carboxylate at the newly generated C-terminus of the substrate 1,6-8. In many

bacteria, this covalent intermediate can be resolved by nucleophilic attack from the

pentaglycine sidechain in a peptidoglycan precursor, resulting in the formation of an
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amide bond between the pentaglycine sidechain and the carboxylate at the cleavage site

in the substrate 9-10. In pilus construction, alternative nucleophiles such as lysine residues

3-4or diaminopimelic acid participate in the transpeptidation reaction

When appended near the C-terminus of proteins that are not natural sortase substrates, the

recognition sequence of Staphylococcus aureus sortase A (LPXTG) can be used to

effectuate a sortase-catalyzed transpeptidation reaction using a diverse array of artificial

glycine-based nucleophiles (Figure 4.1). The result is efficient installation of a diverse

set of moieties including lipids ", carbohydrates 12, peptide nucleic acids 13, biotin 14

fluorophores 14~15, polymers 16, solid supports 16-18 , or peptides 15'19 at the C-terminus of

the protein substrate. During the course of our studies to further expand sortase-based

protein engineering, we were struck by the frequency and relative ease with which

intramolecular transpeptidation reactions were occurring. Specifically, proteins equipped

with not only the LPXTG motif, but also N-terminal glycine residues yielded covalently

closed circular polypeptides (Figure 4.1). Similar reactivity using sortase has been

described in two previous cases; however, rigorous characterization of the circular

polypeptides was absent 16,20. The circular proteins in these reports were observed as

minor components of more complex reaction mixtures, and the cyclization reaction itself

was not optimized.

Here we describe our efforts toward applying sortase-catalyzed transpeptidation to the

synthesis of circular and oligomeric proteins. This method has general applicability, as

illustrated by successful intramolecular reactions with three structurally unrelated

126



Chapter 4: A straight path to circular proteins

proteins. In addition to circularization of individual protein units, the multiprotein

complex AAA-ATPase p97/VCP/CDC48, with six identical subunits containing the

LPXTG motif and an N-terminal glycine, was found to preferentially react in daisy chain

fashion to yield linear protein fusions. The reaction exploited here shows remarkable

similarities to the mechanisms proposed for circularization of cyclotides, small circular

2 1-23
proteins that have been isolated from plants

Results

Cre recombinase. We first noticed the presence of a circular protein product when

installing a C-terminal modification onto a nonfunctional mutant of Cre recombinase

containing a single N-terminal glycine residue and the requisite LPETG sequence near

the C-terminus. The LPETG motif was separated from the native protein by a flexible

amino acid linker (GGGGSGGGGS). Whereas installation of the label at the Cre C

terminus proceeded efficiently when a triglycine nucleophile containing

tetramethylrhodamine (GGG-TMR) was included, we observed a product that migrated

more rapidly on SDS-PAGE when nucleophile was omitted from the reaction mixture

(Figure 4.2a). Hydrolysis of the sortase acyl enzyme is known to proceed slowly in the

absence of glycine nucleophiles 19,24-25. However, when reaction mixtures were analyzed

by ESI-MS we consistently observed a protein species that differed from the mass

expected for hydrolysis by - -18 Da (Figure 4.2b). This mass was consistent with

intramolecular nucleophilic attack, suggesting that the single N-terminal glycine residue

was serving as the nucleophile in this transformation. Ultimately, MS/MS on tryptic

digests of this species showed unequivocally that it consisted of a covalently closed
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circular product of Cre, with the N-terminal glycine fused exactly at the LPETG cleavage

site in the expected position.

Recognizing that the LPETG motif is maintained in the cyclized Cre product, we

suspected that sortase should be capable of cleaving the circular protein at this site, thus

producing an equilibrium between circular and linear forms of Cre. To demonstrate this

point, Cre was first incubated with sortase in the presence or absence of triglycine

nucleophile (Figure 3A). A portion of the cyclized reaction mixture (Figure 4.3a, lane

1) was then treated with a large molar excess of triglycine nucleophile or left alone for a

further 24 h (Figure 4.3a, lanes 2-3). Remarkably, upon treatment with exogenous

nucleophile, the pre-cyclized material yielded a reaction mixture that was nearly identical

to the result obtained when nucleophile was included from the very beginning of the

experiment (compare lanes 3 and 4). This result provided further evidence that cyclized

Cre indeed contains the expected LPETG motif at the site of covalent closure. In

addition, it suggested that hydrolysis of the acyl enzyme intermediate does not effectively

compete during cyclization, because the hydrolyzed material should be unable to

participate in the transpeptidation reaction.

The circularization reaction observed for Cre proceeded with remarkable efficiency.

Conversion was estimated to be >90% by SDS-PAGE. By taking an existing crystal

structure 26 of the Cre protein and modeling in those residues not visible in the structure,

it was clear that the N- and C-termini were located in sufficiently close proximity to

permit closure without significant perturbation of the native structure (Figure 4.3b). We
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assume that these regions possess considerable flexibility because they are not resolved in

the crystal structure.

eGFP. Having verified the cyclization of Cre recombinase, we sought to explore the

generality of this technique. To this end we generated a derivative of eGFP containing

the LPETG sequence and five N-terminal glycine residues. This construct was of

particular interest because inspection of the X-ray crystal structure 27 revealed that the N-

and C-termini were positioned on the same end of the P-barrel, suggesting that this

substrate should be ideal for cyclization (Figure 4A). Furthermore, in one of the earliest

reports on the use of sortase for protein engineering a similar eGFP substrate was

described and reported to cyclize in the presence of sortase 16. In this instance,

cyclization only proceeded in modest yield, and the putative cyclized product was

produced as a mixture with higher molecular weight species assigned as oligomers of

eGFP formed by intermolecular transpeptidation. Thus, to explore potential

complications caused by intermolecular reactions, we studied the reaction of our eGFP

construct in the presence of sortase.

In our hands, we observed clean conversion to a lower molecular weight species (>90%

estimated conversion) with little to no evidence for oligomerization (Figure 4B). A

higher molecular polypeptide was observed at early time points, and may represent a

covalent eGFP dimer that is generated transiently over the course of the reaction. Higher

molecular species, however, were only observed in trace quantities in the final reaction

mixture. As in the case of Cre, evidence for circularization was provided by mass
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spectral characterization of the intact circular protein and MS/MS sequencing of tryptic

peptides (Supplementary Figure 4.1). As an additional control to demonstrate that the

N-terminal glycine residue was the only nucleophile participating in intramolecular

transpeptidation, we analyzed the behaviour of an eGFP derivative that lacked an N-

terminal glycine. In this case, ESI-MS revealed products consistent with hydrolysis of

the acyl enzyme intermediate, rather than intramolecular nucleophilic attack

(Supplementary Figure 4.1).

Circularization has been shown to confer unique properties onto proteins when compared

to the linear form 28-30. In the case of GFP circularized using intein-based methods, these

properties include a reduced rate of unfolding when exposed to denaturants, as well as an

enhanced rate of refolding following denaturation . We observed a similar phenomenon

for eGFP circularized using sortase (Figure 4.4c). Circular eGFP was first separated

from residual sortase A using Ni-NTA resin. This material retained fluorescence

suggesting that covalent ligation of the N- and C-termini had minimal impact on the

structure of this substrate. Circular and linear eGFP were then subjected to simple

thermal denaturation, followed by recovery at room temperature. As shown in Figure 4C,

circular eGFP regained fluorescence more rapidly than linear eGFP.

UCHL3. Even an internally positioned LPXTG motif was sufficient to effectuate a

circularization reaction. We installed a sortase recognition site in the crossover loop of

the ubiquitin C-terminal hydrolase UCHL3, and demonstrated that the continuity of the

polypeptide backbone can be disrupted with concomitant installation of a covalent

130



Chapter 4: A straight vath to circular proteins

modification that reports on the accuracy of cleavage and transpeptidation 31. This

reaction proceeds without complete loss of activity of UCHL3, indicating that even the

cleaved form of UCHL3 retains its structural integrity to a significant degree ". This

UCHL3 construct was prepared with an N-terminal glycine residue, and examination of

the crystal structure of UCHL3 32 clearly showed the close apposition of the N-terminus

and the crossover loop, suggesting that cyclization to yield a circular fragment containing

the N-terminal portion of UCHL3 should be readily observable (Figure 4.5a).

As expected, in the absence of added nucleophile, the N-terminal glycine serves as a

highly efficient nucleophile to yield a circular fragment that contains the N-terminal

portion of UCHL3 (Figure 4.5b). The identity of the circular polypeptide was confirmed

by MS/MS of the peptide containing the expected fusion of the N-terminal glycine

residue with the new C-terminus released from the crossover loop (see Supplemental

Figure 4.2). Cyclization was efficiently blocked if a high concentration of triglycine

(GGG) was included in the reaction, generating instead the N-terminal fragment of

UCHL3 transacylated onto the triglycine nucleophile (Figure 4.5b, lane 9 and

Supplemental Figure 4.3). Cyclization could also be reversed by adding an excess of

triglycine to reaction mixtures pre-incubated with sortase to allow cyclization. This

reopening reaction was observed by both SDS-PAGE and ESI-MS (Supplemental

Figure 4.3).

To test the functional properties of cyclic UCHL3, we incubated reaction mixtures with

an activity-based probe consisting of ubiquitin equipped with an electrophilic vinyl

131



Chapter 4: A straight path to circular proteins

methyl ester moiety at the C terminus (Supplemental Figure 4.4). Probes of this nature

are able to specifically alkylate active-site cysteine residues in ubiquitin specific

hydrolases such as UCHL3 31, 3334. Following circularization, the active-site cysteine

(C95) of UCHL3 is located in the circular N-terminal fragment, and indeed we observed

covalent labeling of this fragment with a corresponding shift in apparent molecular

weight consistent with the attachment of ubiquitin. This result suggests that despite

cleavage of the polypeptide backbone, the circular N-terminal fragment of UCHL3 and

the C-terminal portion released during transpeptidation remain associated and preserve

the affinity of UCHL3 for ubiquitin. This result is consistent with previous observations

from our laboratory demonstrating that covalent closure of the UCHL3 crossover loop is

dispensable for enzyme activity 31

p97. The above examples concern single chain proteins whose termini are sufficiently

close to allow covalent closure by means of the sortase-mediated transacylation reaction.

Similar proximity relationships between protein termini should also be present on

separate polypeptides that assemble into defined oligomeric structures. As an example,

we examined p97, a hexameric AAA-ATPase. We generated a derivative of p97 (G-

His6-p97-LPSTG-XX) containing an LPSTG motif near the C terminus, and a

hexahistidine tag capped by two serine residues and a single glycine at the N terminus.

The structure of a p97 trimer in the presence of ADP has been solved at 3.5 A resolution

35, with several residues from the N- and C-termini not visible (Figure 4.6a). When all

the residues present in our modified version of p97 were modeled onto the published

trimer of p97, it was evident that the N- and C-termini of adjacent p97 units were
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sufficiently close enough to permit covalent crosslinking (Figure 4.6b). G-His6-p97-

LPSTG-XX was expressed in E. coli and yielded the hexameric p97 ring, as assessed by

gel filtration. As expected, this derivative of p97 was an excellent substrate for

transpeptidation at its C terminus, allowing efficient installation of a label when

incubated in the presence of sortase and GGG-TMR (Supplemental Figure 4.5). In

contrast, a variant of p97 lacking the LPSTG sequence showed no labeling

(Supplemental Figure 4.5). When G-His6-p97-LPSTG-XX was treated with sortase A

in the absence of added nucleophile, we observed formation of a SDS-resistant ladder of

polypeptides, as would be expected for intermolecular crosslinking of p97 monomers

(Figure 4.6c). We were confident that these species arise from head-to-tail ligation of

p97 because introduction of excess diglycine (GG) after oligomerization caused collapse

of the higher molecular weight structures back to monomeric p97 (Figure 4.6c, lane 5).

This suggested that the higher order aggregates are held together by newly formed

LPSTG units formed from the C-terminal LPST residues of one p97 monomer and the N-

terminal glycine residue of a neighboring monomer. The banding pattern observed for

reopening was also nearly identical to that seen when diglycine was included from very

beginning of the experiment, a scenario where installation of diglycine at the C-terminus

of each p97 subunit is presumed to be the major reaction pathway (Figure 4.6c, lane 6).

We have also been able to identify peptides consistent with intermolecular crosslinking of

p97 subunits by MS/MS (Supplemental Figure 4.6).
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Discussion

Cyclic proteins are an interesting class of polypeptides that often display unique

properties due to covalent closure of the amide backbone 3637. While some cyclic protein

derivatives occur naturally, methods for generating cyclic proteins in the laboratory

provide a means for accessing cyclic versions of proteins that only occur in linear form.

Intramolecular sortase-catalyzed transpeptidation provides a straightforward method for

accessing these types of cyclic proteins. The transpeptidation reaction described here

bears a remarkable resemblance to the proposed biosynthesis of the largest class of

naturally occurring cyclic proteins, the cyclotides 2-3. In both cases, linear protein

precursors are cleaved by cysteine proteases to generate an acyl-enzyme intermediate that

is subsequently resolved by nucleophilic attack from the N-terminus of the linear proteins

to generate the cyclic product.

In this work we have explored transpeptidation reactions using four structurally diverse

protein substrates. Cyclization has been confirmed for three proteins, including an

example (UCHL3) utilizing an LPXTG sequence positioned in a flexible internal loop

rather than near the protein C-terminus. Cyclization and oligomerization via sortase-

mediated transpeptidation have been previously suggested to occur for an eGFP construct

modified in a manner similar to that used here 16, and for a by-product from a protein

purification system where the substrate circularized appears to be sortase A itself 2. In

both cases, the identity of the circular products was not rigorously confirmed. Our data

identify the circular or oligomeric products unambiguously by MS/MS for all substrates

studied. We also find that our eGFP derivative strongly favors cyclization over
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oligomerization, showing little evidence for the formation of higher order structures that

might be expected by the head-to-tail ligation of termini from separate eGFP monomers.

Subtle differences in the structure of the eGFP constructs cannot be overlooked as a

potential cause for the observed results. For example, our eGFP is extended at the N-

terminus by only five glycine residues while the construct studied by Parthasarathy et. al.

contains an additional seventeen residues, including three N-terminal glycines 16. Future

work will be required to thoroughly characterize how distance relationships between

protein termini favor intra- versus intermolecular transpeptidation.

With respect to protein cyclization, sortase-mediated circularization is efficient despite

the potential for competing reaction pathways. In the absence of added oligoglycine

nucleophile, these include hydrolysis of the acyl enzyme intermediate, reattachment of

the C-terminal protein fragment that is lost upon initial cleavage of the protein substrate

by sortase, or, as mentioned above, oligomerization of protein monomers in head-to-tail

fashion. Even when oligoglycine nucleophile is added with the intent of blocking the

cyclization pathway, millimolar concentrations are necessary to efficiently compete with

cyclization. One factor that certainly must contribute to this observed preference for

cyclization is the distance between protein termini. Inspection of the PDB database

shows that nearly one third of proteins with known structures have their termini in rather

close apposition (within 20 A) 37. The LPXTG sequence itself spans roughly 15 A in an

extended conformation, suggesting that circularization via sortase-catalyzed

transpeptidation might be amenable to a significant fraction of proteins using the LPXTG

sequence alone to bridge the gap between N- and C-termini. Larger distances could

135



Chapter 4: A straight path to circular proteins

simply be covered by inserting flexible amino acid spacers at either termini. We also

consider it likely that the circularized version of a protein will show more restricted

mobility in the segment that corresponds to the newly established LPXTG connection

between its termini. This fact alone may render the circular product a comparatively

worse substrate for sortase, and therefore assist in driving the transpeptidation reaction

toward cyclization. As evidence for this point we have observed previously that sortase

fails to cleave LPXTG motifs placed in structured loops of class I MHC molecules 14.

Sortase-catalyzed transpeptidation provides an attractive alternative to existing methods

for peptide and protein circularization. Chemical synthesis can provide access to circular

polypeptides of modest size, with circularization of linear precursors having been

achieved using native chemical ligation 38-40, subtiligase 41, or standard amide bond

forming reactions common to solid-phase peptide synthesis 40,42. For larger proteins

beyond the technical capabilities of solid-phase synthesis, cyclization is most often

accomplished using native chemical ligation, typically in conjunction with split-intein

expression constructs 28-30,43-4s. When compared to the split-intein approach, the modest

modification necessary to render proteins amenable to cyclization or oligomerization is

certainly an attractive feature of the sortase-catalyzed process. Proteins must simply

possess a sortase recognition sequence (LPXTG) either near the C terminus or in a

flexible loop and an N-terminal glycine residue to act as the nucleophile. These

modifications are not anticipated to have a significant impact on protein expression or

function. In contrast, protein circularization by split-intein methods requires more

extensive modifications of the expression construct, a necessity that may reduce protein
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expression or effect protein solubility. It should be noted, however, that the number of

extra amino acid residues at the site of N-to-C terminal ligation following excision of the

large intein domains can be less than the five residues (LPXTG) that remain after

circularization using sortase A.

The sortase-catalyzed approach also provides additional levels of control over the

ensuing transpeptidation reaction. This may be particularly useful for oligomeric species,

such as the p97 example described here. Specifically, our modified p97 protein (G-His6-

p97-LPSTG-XX) is produced in a form that is by itself unreactive. This allows protein

expression and the subsequent assembly and purification of the hexamer to be completed

first, without complications caused by premature covalent oligomerization. Crosslinking

is then induced by the addition of sortase after the individual subunits have been correctly

positioned in the hexameric ring. The extent of transpeptidation can be further controlled

by inclusion of synthetic oligoglycine nucleophiles, either during the transpeptidation

reaction or after transpeptidation is complete. The latter scenario even allows cyclization

to be completely reversed. Incubating circular protein products with sortase in the

presence of an oligoglycine nucleophile restores linearity to the protein product, because

in the course of the initial cyclization reaction, the LPXTG motif is restored. An

equilibrium between closed and open forms is thus established and can be driven toward

the linear state by adding a large excess of the oligoglycine nucleophile.

The implications of protein cyclization or oligomerization for protein engineering are

numerous. In the case of protein oligomerization, the ability to link protein subunits held
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in a defined geometry might be exploited to explore subtle changes in intersubunit

interactions upon substrate engagement or recruitment of binding partners. A more

detailed examination of the reaction kinetics would be required to determine, for

example, whether all subunits in the hexameric ring of p97 are equally good substrates, or

whether subunits that lie along the threefold axis preferentially crosslink to yield dimers.

Although in the crystal structure 35 all of the individual subunits appear identical, it

remains to be determined whether this equivalency applies in solution as well. For cyclic

proteins, there is compelling evidence that demonstrates improved stability of

circularized proteins when compared to their linear counterparts 28-30,37,46 This is true

for cyclic versions GFP , b-lactamase 29, and DHFR 3 generated using intein-based

methods. The extension of protein cyclization to proteins of therapeutic value in order to

improve the in vivo half-life has already been suggested 16,36 and remains an exciting

avenue for further research. Covalent closure of a protein through sortase-mediated

circularization may also facilitate structural analysis of proteins whose flexible termini

may interfere with crystallization.

Methods

Synthesis of Triglycine Tetramethyirhodamine Peptide. The structure of GGG-TMR and

a detailed synthetic protocol are provided in Supplemental Text and Supplementary

Figure 4.7.

Cloning and Protein Expression. Full amino acid sequences for all proteins used in this

study are given in Supplementary Figure 4.8.
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Recombinant sortase A (residues 26-206) containing an N-terminal hexahistidine tag was

8
produced in E. coli as previously described . Purified sortase A was stored in 10% (w/v)

glycerol, 50 mM Tris pH 8.0, 150 NaCi at -80 'C until further use.

G-Cre-LPETG-His 6 was cloned into the pTriEx- 1.1 Neo expression vector (Novagen)

using standard molecular biology techniques. The construct contains two point mutations

(M1 17V, E340Q) and a flexible spacer (GGGGSGGGGS) inserted before the LPETG

sortase recognition site. G-Cre-LPETG-His6 was expressed and purified using

procedures similar to those reported previously for HTNCre 4. G-Cre-LPETG-His6 was

first transformed into Tuner (DE3) pLacl cells (Novagen) and a starter culture was grown

in sterile LB media supplemented with 1% (w/v) glucose, chloramphenicol (34 4g/mL),

and ampicillin (100 pg/mL). This culture was used to inoculate a large scale culture of

sterile LB containing chloramphenicol (34 pg/mL) and ampicillin (100 pg/mL). G-Cre-

LPETG-His6 was expressed after a 3 h induction with IPTG (0.5 mM) at 37 'C. Cells

were resuspended in 10 mM Tris, 100 mM phosphate, 300 mM NaCl, and 20 mM

imidazole pH 8.0. The suspension was adjusted to 50 pg/mL DNAseI, 460 pg/mL

lysozyme, and 1 mM MgCl 2 and incubated at 4 0C for 1.5 h. The suspension was then

sonicated and centrifuged. The clarified lysate was then treated with Ni-NTA agarose

(Qiagen) for 1 h at 4 *C. The resin was washed with 12 column volumes of 10 mM Tris,

100 mM phosphate, 300 mM NaCl, and 20 mM imidazole pH 8.0 followed by 4 column

volumes of 10 mM Tris, 100 mM phosphate, 300 mM NaCl, and 30 mM imidazole pH

8.0. The protein was then eluted with 10 mM Tris, 100 mM phosphate, 300 mM NaCl,

and 300 mM imidazole pH 8.0. The purified protein was then dialyzed first against 20

139



Chapter 4: A straight path to circular proteins

mM Tris pH 7.5, 500 mM NaCi followed by 50% (w/v) glycerol, 20 mM Tris pH 7.5,

500 mM NaCl. G-Cre-LPETG-His 6 was then passed through a 0.22 pIM filter to remove

minor precipitation and stored at 4 'C.

G5-eGFP-LPETG-His 6 was prepared from a previously reported eGFP construct lacking

the five N-terminal glycine residues using a Quickchange* II Site-Directed Mutagenesis

Kit (Stratagene) and produced in E. coli using reported procedures ". Purified G5-eGFP-

LPETG-His6 was buffer exchanged into 20 mM Tris pH 8.0, 150 mM NaCl and stored at

4 0C.

UCHL3 with the sortase recognition sequence (LPETG) substituted for amino acids 159-

163 was cloned and produced in E. coli as described previously 31.

Human p9 7 (806 aa) was PCR amplified and cloned via the NdeI and HindIIl restriction

sites into a pET28a+ expression vector (Novagen) to yield the G-His6-97 construct. G-

His 6-p97-LPSTG-XX was generated by introducing two point mutations (G782L and

Q785T) and a stop codon at position 791 using Quickchange* mutagenesis (Stratagene).

Recombinant p97 was expressed at 30 'C in E. coli after induction for 3 h with 0.5 mM

IPTG. Cells were resuspended in buffer A (50 mM Tris pH 8.0, 300 mM NaCl, 5% (w/v)

glycerol, 20 mM imidazole and 7.1 mM P-ME), adjusted to 15 pg/mL lysozyme and 10

tg/mL DNAse I, and lysed by two passes through a French pressure cell at 1200 psi.

After centrifugation for 30 min at 40,000 x g the supernatant was bound to Ni-Sepharose

resin (GE Healthcare). After washing the resin with 20 column volumes of buffer A, p97
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was eluted with buffer A containing 250 mM imidazole. Hexameric rings of p97 were

further purified on a Superdex 200 HR 16/60 column (GE Healthcare) using 25 mM Tris

pH 8.0, 150 mM KCl, 2.5 mM MgCl 2, 5% (w/v) glycerol as the mobile phase. The

purified protein was snap frozen and stored at -80 'C.

Circularization and Intermolecular Transpeptidation. Transpeptidation reactions were

performed by combining the necessary proteins/reagents at the specified concentrations

in the presence of sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCi, 10 mM

CaCl2) and incubating at 37 *C for the times indicated. Diglycine (GG) and triglycine

(GGG) peptides were purchased from Sigma. Reactions were halted by the addition of

reducing Laemmli sample buffer and analyzed by SDS-PAGE. Gels were visualized by

staining with coomassie blue. Fluorescence was visualized on a Typhoon 9200 Imager

(GE Healthcare). Crude reactions were also diluted into either 0.1% formic acid or water

for ESI-MS analysis. ESI-MS was performed on a Micromass LCT mass spectrometer

(Micromass* MS Technologies, USA) and a Paradigm MG4 HPLC system equipped with

a HTC PAL autosampler (Michrom BioResources, USA) and a Waters Symmetry 5 gm

C8 column (2.1 x 50 mm, MeCN:H 20 (0.1% formic acid) gradient mobile phase, 150

pL/min).

Purification and Refolding of eGFP. G5-eGFP-LPETG-His 6 (50 pM) was circularized by

treatment with sortase A (50 gM) in sortase reaction buffer (50 mM Tris pH 7.5, 150 mM

NaCl, 10 mM CaCl2) for 24 h at 37 1C. The reaction was run on 750 jL scale. The

entire reaction was then diluted into 10 mL of 20 mM Tris, 500 mM NaCl, and 20 mM
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imidazole pH 8.0. This solution was then applied to a column consisting of 2 mL of Ni-

NTA agarose (Qiagen) pre-equilibrated with 20 mM Tris, 500 mM NaCl, and 20 mM

imidazole pH 8.0. The flow through was then concentrated and buffer exchanged in 20

mM Tris, 150 mM NaCl pH 8.0 using a NAPTM 5 SephadexTM column (GE Healthcare).

The concentrations of circular eGFP and linear G5-eGFP-LPETG-His6 were estimated by

UV-Vis spectroscopy using the absorbance of eGFP at 488 nm (extinction coefficient

55,900 M- cm ) 48. Circular and linear eGFP (40 pL of 18 pLM solutions) were placed in

1.5 mL microcentrifuge tubes and denatured by heating to 90 'C for 5 min. Samples

were then incubated at room temperature in the dark for the times indicated. Fluorescent

images were acquired using a UV gel documentation system (UVP Laboratory Products).

Reaction of Cyclic UCHL3 with Activity-Based Ubiquitin Probe. UCHL3 (30 pIM) was

incubated with sortase A (150 tM) in sortase reaction buffer (50 mM Tris pH 7.5, 150

mM NaCl, 10 mM CaCl2) in the presence or absence of 90 mM GGG peptide (Sigma) on

a 25 pL scale at 37 *C for 3 hours. Ten microliters was withdrawn and diluted with 10

pL of labeling buffer (100 mM Tris pH 7.5, 150 mM NaCl). Hemagglutinin-epitope

tagged ubiquitin vinyl methyl ester (HA-UbVME) (4 tg) was added as well as 1 mM

DTT and incubated at room temperature for 1 hour. Reactions were then separated on an

SDS-PAGE gel and visualized by coomassie staining or ca-HA immunoblot

(supplemental Fig. S4). HA-UbVME was prepared following published protocols 33.

MS/MS Sequencing of Proteolytic Fragments from Circular Proteins. Prior to MS/MS

analysis, circular eGFP and Cre were separated from sortase A by RP-HPLC using an
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Agilent 1100 Series HPLC system equipped with a Waters Delta Pak 5 jim, 100 A C 18

column (3.9 x 150 mm, MeCN:H 20 gradient mobile phase containing 0.1%

trifluoroacetic acid, 1 mL/min). Fractions containing the circular proteins were pooled

and subjected to trypsin digestion. Crude transpeptidation reactions containing circular

UCHL3 were separated by SDS-PAGE followed by coomassie staining. The band

corresponding to circular UCHL3 was excised and digested with Glu-C. Crude

transpeptidation reactions containing dimeric p97 were separated by SDS-PAGE

followed by coomassie staining. The transpeptidation reaction used for this purpose was

incubated for only 2 h and therefore contains less oligomerization than that seen after an

overnight incubation (see Supplementary Figure 4.6). The band corresponding to

dimeric p97 was excised and digested with chymotrypsin. For all protein susbstrates, the

peptides generated from proteolytic digestion were extracted and concentrated for

analysis by RP-HPLC and tandem mass spectrometry. RP-HPLC was carried out on a

Waters NanoAcquity HPLC system with a flow rate of 250 nL/min and mobile phases of

0.1% formic acid in water and 0.1% formic acid in acetonitrile. The gradient used was

isocratic 1% acetonitrile for 1 min followed by 2% acetonitrile per minute to 40%

acetonitrile. The analytical column was 0.075 pm x 10 cm with the tip pulled to 0.005

pim and self-packed with 3 pim Jupiter C18 (Phenomenex). The column was interfaced to

a Thermo LTQ linear ion trap mass spectrometer in a nanospray configuration and data

was collected in full scan mode followed by MS/MS analysis in a data dependant

manner. The mass spectral data was database searched using SEQUEST.
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Construction ofMolecular Models. Molecular models were generated from published

crystal structures (PDB IDs: lkbu, lgfl, lxd3, and 3cfl) 26-27, 32, 35. N- and C-terminal

residues were added using Coot 0.5 . Protein termini were repositioned using the Auto

Sculpting function in MacPyMOL (DeLano Scientific LLC). Residues visible in the

published crystal structures were not moved during positioning of the extended N and C

termini. All protein images in this manuscript were generated using MacPyMOL.
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Footnotes

The abbreviations used are: GGG-TMR, triglycine tetramethyirhodamine peptide; eGFP,

enhanced green fluorescent protein; UCHL3, ubiquitin C-terminal hydrolase L3; p-ME,

p-mercaptoethanol; GG, diglycine peptide; GGG, triglycine peptide; ESI-MS,

electrospray ionization mass spectrometry; RP-HPLC, reversed-phase high performance

liquid chromatography; HA-UbVME, hemagglutinin epitope-tagged ubiquitin vinyl

methyl ester; DTT, dithiothreitol; MS/MS, tandem mass spectrometry; ADP, adenosine

diphosphate; MHC, major histocompatibility complex; DHFR, dihydrofolate reductase.

Figure Legends

Figure 4.1. Scheme

Protein substrates equipped with a sortase A recognition sequence (LPXTG) can

participate in intermolecular transpeptidation with synthetic oligoglycine nucleophiles

(left) or intramolecular transpeptidation if an N-terminal glycine residue is present (right).

Figure 4.2. Cyclization of Cre recombinase.

(a) G-Cre-LPETG-His6 (50 piM) was incubated with sortase A (50 pM) in the presence or

absence of fluorescent GGG-TMR (10 mM) in sortase reaction buffer (50 mM Tris pH

7.5, 150 mM NaCl, 10 mM CaCl2) for 21.5 h at 37 0C. SDS-PAGE revealed the

expected C-terminal transpeptidation product when GGG-TMR was included, whereas
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omission of the triglycine nucleophile resulted in clean conversion to a unique protein

species with a lower apparent molecular weight. Cartoon representations to the right of

the gel indicate the topology of the protein species produced by transpeptidation. (b)

ESI-MS of linear G-Cre-LPETG-His 6 and circular Cre formed by intramolecular

transpeptidation. (c) MS/MS spectrum of a tryptic fragment of circular Cre showing the

ligation of the N-terminal residues (GEFAPK) to the C-terminal LPET motif. Expected

masses for y and b ions are listed above and below the peptide sequence. Ions that were

positively identified in the MS/MS spectrum are highlighted in blue or red. Only the

most prominent daughter ions have been labeled in the MS/MS spectrum.

Figure 4.3. Cyclization of Cre is reversible.

(a) G-Cre-LPETG-His6 (50 tM) was circularized by treatment with sortase A (50 tM)

in sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for 21.5 h

at 37 'C (lane 1). This reaction mixture was then treated with 10 mM GGG-TMR (lane

3) or simply incubated for an additional 24 h at 37 'C (lane 2). All reactions were

analyzed by SDS-PAGE with visualization by coomassie staining or in-gel fluorescence.

For comparison, a C-terminal labeling reaction performed using 10 mM GGG-TMR

without prior cyclization of the Cre substrate (lane 4) and a sample of linear G-Cre-

LPETG-His6 incubated without sortase A or nucleophile (lane 5) are included.

(b) Molecular model of Cre recombinase monomer (generated from PDB ID: 1kbu) 26

showing the proximity relationship between the N- and C-termini. The N-terminal

glycine residue is highlighted in red and the C-terminal LPET residues are shown in

green.
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Figure 4.4. Circularization of eGFP.

(a) Molecular model of eGFP (generated from PDB ID: lgfl) 27 showing the proximity

relationship between the N- and C-termini. The N-terminal glycine residue is highlighted

in red and the C-terminal LPET residues are shown in green.

(b) G5-eGFP-LPETG-His6 (50 p.M) was circularized by treatment with sortase A (50 tM)

in sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for 24 h at

37 'C. Cartoon representations to the right of the gel indicate the topology of the protein

species produced by transpeptidation.

(c) Circular eGFP (C) recovers fluorescence more rapidly than linear G5-eGFP-LPETG-

His6 (L) following thermal denaturation for 5 min at 90 'C. SDS-PAGE analysis

confirmed the purity and concentration of the circular eGFP (C) and linear G5-eGFP-

LPETG-His6 (L) samples used for refolding.

Figure 4.5. UCHL3 with an internally positioned LPETG motif is circularized by

sortase A.

(a) Molecular model of human UCHL3 (generated from PDB ID: lxd3) 32 showing the

active-site crossover loop bearing an LPETG substitution (LPET residues shown in

green, G residue shown in red). The N-terminal glycine residue that serves as the

nucleophile for intramolecular transpeptidation is highlighted in red.

(b) UCHL3 (30 tM) bearing an LPETG substitution in the active-site crossover loop was

incubated with sortase A (150 tM) in the absence or presence of GGG nucleophile (90

mM) in sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for
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the indicated times at 37 'C and analyzed by SDS-PAGE, followed by coomassie

staining. Cartoon representations to the right of the gel indicate the topology of the

protein species produced by transpeptidation.

Figure 4.6. The positions of the N- and C-termini in the p97 hexamer are suitable

for intermolecular crosslinking through sortase-catalyzed transpeptidation.

(a) Molecular model of p97 trimer (generated from PDB ID: 3cfl) 35 showing the relative

position of p97 monomers in the hexameric ring. The visible N- and C-termini from the

published p97 trimer structure are indicated in red and green, respectively.

(b) Molecular model of G-His 6-p97-LPSTG-XX showing the proximity relationship

between N- and C-termini in adjacent p97 monomers. N and C terminal residues not

visible in the published crystal structure have been modeled onto the existing structure.

N terminal glycine residues are shown in red and the C terminal LPST residues are

shown in green. For clarity, the C-terminal domains of the outer monomers are hidden,

as is the N-terminal domain of the central monomer.

(c) G-His6-p97-LPSTG-XX (1.5 mg/mL) was incubated with sortase A (30 pM) in

sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for the times

indicated at 37 'C. After 22 h, diglycine (GG) was added (100 mM final concentration),

resulting in disappearance of the covalent oligomers (lane 5). For comparison, a control

reaction containing 100 mM GG from the outset of the experiment is shown in lane 6.

150



Chapter 4: A straight path to circular proteins

Figure 4.1
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Figure 4.2
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Figure 4.3
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Figure 4.4
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Figure 4.5
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Figure 4.6
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Supplementary Figure Legends

Supplementary Figure 4.1. Characterization of cyclic eGFP.

(a) ESI-MS of linear G5-eGFP-LPETG-His6 and circular eGFP formed by intramolecular

transpeptidation.

(b) A variant of eGFP lacking N-terminal glycine residues yields a mixture of unreacted

starting material and hydrolysis when treated with sortase A. Conditions: eGFP-

LPETG-His6 (36 pM) and sortase A (50 gM) in (50 mM Tris pH 7.5, 150 mM NaCl, 10

mM CaCl2) for 23 hours at 37 'C. This preparation of eGFP-LPETG-His6 consisted of a

mixture in which a fraction of the protein had the N-terminal Met residue cleaved during

the course of protein expression to reveal an N-terminal Val residue.

(c) MS/MS spectrum of a tryptic fragment of circular eGFP showing ligation of the N-

terminal glycine residues (shown in red) to the C-terminal LPET residues (shown in

green). Expected masses for y and b ions are listed above and below the peptide

sequence. Ions that were positively identified in the MS/MS spectrum are highlighted in

blue or red. The full amino acid sequence of linear G5-eGFP-LPETG-His 6 is shown at

the top.

Supplementary Figure 4.2. Characterization of cyclic UCHL3 by MS/MS analysis

unambiguously confirms the structure of the intramolecular transpeptidation

product.

The circular UCHL3 fragment was resolved by SDS-PAGE and the band corresponding

to the putative circularization product was excised and digested with Glu-C. The

resulting peptides were analyzed by LC-MS/MS. A peptide representing the junction
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between the UCHL3 N-terminus and the LPETG motif was identified by LC-MS/MS

analysis. Expected masses for y and b ions are listed above and below the peptide

sequence. Ions that were positively identified in the MS/MS spectrum are highlighted in

blue or red. The full amino acid sequence of linear G-His6-UCHL3-LPETG-XX is

shown at the top.

Supplementary Figure 4.3. Intermolecular versus intramolecular transpeptidation

for UCHL3.

(a) UCHL3 cyclization is reversible. UCHL3 (30 pM) was circularized by the addition

of sortase A (150 pM) for 3 hours. Subsequently, GGG (90 mM) was added to each

reaction and incubated for the indicated times. Samples were analyzed by SDS-PAGE

(top) or ESI-MS (bottom).

(b) A large molar excess of GGG nucleophile is required to compete with the

intramolecular UCHL3 circularization. UCHL3 (30 gM) and sortase A (150 gM) were

incubated with the indicated concentrations of GGG nucleophile in sortase reaction

buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for 3 hours at 37 'C, and

analyzed by SDS-PAGE followed by coomassie staining.

Supplementary Figure 4.4. Circular UCHL3 is competent to react with a ubiquitin

suicide probe.

UCHL3 (30 pM) was first circularized (lane 5) by treatment with sortase A (150 jM) or

incubated with 90 mM GGG and sortase A (150 jM) to yield the linear transpeptidation

product (lane 7) for 3 hours at 37 'C. Samples were then withdrawn, diluted two-fold in
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labeling buffer (100 mM Tris, pH 8.0, 150 mM NaCI) and incubated with 4 pg of HA-

UbVME for an additional hour at 25 'C. Reactions were quenched with sample buffer,

analyzed by 12.5% SDS-PAGE, and either stained with coomassie (top) or transferred to

nitrocellulose for anti-HA immunoblot (bottom).

Supplementary Figure 4.5. C-terminal labeling of p97.

(a) G-His6-p97-LPSTG-XX (1.5 mg/mL) and G-His6-p97 (1.5 mg/mL) were incubated

with sortase A (50 jM) and GGG-TMR (1 mM) in sortase reaction buffer (50 mM Tris

pH 7.5, 150 mM NaCl, 10 mM CaCl2) for 2.5 h at 37 'C. SDS-PAGE revealed the

expected C-terminal transpeptidation product for G-His6-p97-LPSTG-XX only.

Supplementary Figure 4.6. Characterization of Dimeric p97

G-His6-p97-LPSTG-XX was incubated with sortase A in sortase reaction buffer (50 mM

Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for 2 hours at 37 'C. The extent of

oligomerization at this early time point was much less than that seen after overnight

incubation. The reaction mixture was then separated by SDS-PAGE. The band

corresponding to dimeric p97 was excised, digested with chymotrypsin, and the resulting

peptides analyzed by MS/MS. A peptide fragment showing the ligation of the N-terminal

glycine residue (shown in red) to the C-terminal LPST residues (shown in green) was

identified. Expected masses for y and b ions are listed above and below the peptide

sequence. Ions that were positively identified in the MS/MS spectrum are highlighted in

blue or red. Only the most prominent daughter ions have been labeled in the MS/MS
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spectrum. The full amino acid sequence of linear G-His6-p97-LPSTG-XX is shown at

the top.

Supplementary Figure 4.7. Synthesis of GGG-TMR.

Supplementary Figure 4.8. Protein sequences.
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Supplementary Figure 4.1
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Supporting Figure 31. Characterization of cyclic eGFP. (a) ESI-MS of linear Gs-eGFP-LPETG-His and circular eGFP formed by
intramolecular transpeptidation. (b) A variant of eGFP lacking N-terminal glycine residues yields a mixture of unreacted starting material and
hydrolysis when treated with sortase A. Conditions: eGFP-LPETG-Hiss (36 pM) and sortase A (50 pM) in (50 mM Tris pH 7.5, 150 mM NaCI,
10 mM CaCI2) for 23 hours at 37 'C. This preparation of eGFP-LPETG-Hiss consisted of a mixture in which a fraction of the protein had the
N-terminal Mt residue cleaved during the course of protein expression to reveal an N-terminal VWI residue. (e) MS/MS spectrum of a tryptic
fragment of circular eGFP showing ligation of the N-terminal glycine residues (shown in red) to the C-terminal LPET residues (shown In green).
Expected messes for y and b ions are listed above and below the peptide sequence. lons that were positively identified in the MS/MS spectrum
are highlighted in blue or red. The full amino acid sequence of linear G5 eGFP LPETG His is shown at the top.
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Supplementary Figure 4.2

G-HisG-UCHL3-LPETG-XX (amino acid sequence)

GSSHHHHHHSSGLEVLFQGPHMEGQRWLPLEANPEVTNQFLKQ
LGLHPNWQFVDVYGMDPELLSMVPRPVCAVLLLFPITEKYEVFRT
EEEEKIKSQGQDVTSSVYFMKQTISNACGTIGLIHAIANNKDKMHF
ESGSTLKKFLEESVSMSPEERARYLENYDAIRVTHETSAHEGQTE
LPETGEKVDLHFIALVHVDGHLYELDGRKPFPINHGETSDETLLED
AIEVCKKFMERDPDELRFNAIALSAA
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Supporting Figure S2. Ctiaracterization of cyclic UCHL3 by MSMS analysis
unambiguously confIrms t1e structure of the Intamolecular transeptidtion product The
circular UCHL3 fragment was resolved by SDS-PAGE and the band corresponding to the
putaltive circularization product was excised and digested with Glu-C. The resulting
peptides were analyzed by LC-MS/MS. A pepd. represenng the junctior between the
UCHL3 N-terminus and the LPETG motif was identfied by LC-MS/MS analysis. Expected
masses for y and b lons are listed above and below the peptide sequence. Ions that were
positively identilled in the MS/MS spectrum are highighted in blue or red. The ful amino
add sequence of linear G-His-UCHL3-LPETG-XX is shown at the top.
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Supplementary Figure 4.3
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Supporting Figure 83. Intemolecular versus mniramnolecular transpepbidabion tor UCHL3. (a)
UCHL3 cyrlinalion is reversible. UCH-L3 (30 pEM) was circulanzed by the addionu of sortase A
(150 pM)tor 3 hours. Susequently, GGG(90 rnM) was added to each reacdion and icub~ated
for the indicated times. Samples were analyzed by SOS-PAGE (top) or ESI-MS (bouom). (b)
A large molar excessof GGG nuceophile is requied tocompete with the intramolecular UCH-L3
circularnzalion. UCHL3 (30 iM) and soitase A (150 suM) were incubuated with the indicated
concentrations of GGG nucleophile in sortase reaction builer (50 mM Tri pH 7.5, 150 mM~
NaCI, 10 mM CaCt,2) for 3 hours at 37'C, and analyzed by SDS-PAGE followed by coomassie
stilning.
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Supplementary Figure 4.4
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Supporting Figure S4. Circular UCHL3 is competent to react with a ubiquitin suicide probe. UCHL3
(30 pM) was first circularized (lane 5) by treatment with sortase A (150 pM) or incubated with 90 mM
GGG and sortase A (150 pM) to yield the linear transpeptidation product (lane 7) for 3 hours at 37 *C.
Samples were then withdrawn, diluted two-fold in labeling bufer (100 mM Tris, pH 8.0, 150 mM NaCl)
and incubated with 4 pg of HA-UbVME for an additional hour at 25 *C. Reactions were quenched with
sample buffer, analyzed by 12.5% SDS-PAGE, and either stained with coomassie (top) or transferred to
nitrocellulose for anti-HA immunoblot (bottom).
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Supplementary Figure 4.5
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Supporting Figure S5. C-terminal labeling of p97. (a)
G-His6-p97-LPSTG-XX (1.5 mg/mL) and G-Hiss-p97 (1.5 mg/mL)
were incubated with sortase A (50 pM) and GGG-TMR (1 mM) in
sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM
CaC 2) for 2.5 h at 37 *C. SDS-PAGE revealed the expected
C-terminal transpeptidation product for G-His6-p97-LPSTG-XX only.
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Supplementary Figure 4.6

G-HisG-p97-LPSTG-XX (amino acid sequence)

GSSHHHHHHSSGLEVLFQGPHMASGADSKGDDLSTAILKOKNRPNRLIVDEAINEDNSVVSLSPKMELLFRGDTVLLKGKKRREAVCIVLS
DDTCSDEKIRMNRVVRNNLRVRLGDVISIQPCPDVKYGKRIHVLPIDDTVEGTGNLFEVYLKPYFLEAYRPIRKGDIFLVRGGMRAVEFKVVETDP
SPYCIVAPDTVIHCEGEPIKREDEEESLNEVGYDDIGGCRKOLAIKEMVELPLRHPALFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFL
INGPEIMSKLAGESESNLRKAFEEAEKNAPAIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKORAHVIVMAATNRPNSIDPALRRFGRFDRE
VDIGIPDATGRLEILQIHTKNMKLADDVDLEQVANETHGHVGADLAALCSEAALQAIRKKMDLIDLEDETIDAEVMNSLAVTMDDFRWALSQSNPS
ALRETVVEVPQVTWEDIGGLEDVKRELOELVOYPVEMPDKFLKFGMTPSKGVLFYGPPGCGKTLLAKAANECQANFISIKGPELLTMWFGESEA
NVREIFDKARQAPCVLFFDELDSIAKARGGNIGDGGGAADRVINILTIEMDGMSTKKNVFIIGATNRPDIIDPAILRPGRLDQLlYlPLPDEKSRVAL
KANLRKSPVAKDVDLEFLAKMTNGFSGADLTEICORACKLAIRESIESEIRRERERQTNPSAMEVEEDDPVPEIRRDHFEEAMRFARRSVSDNDIR
KYEMFAQTLQQSRGFGSFRFPSGNQGGALPSTGSGGG
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Supporting FIgure 36. G-HIs-p97-LPSTG-XX was Incubated with sortase A In sortase reaction buffer (50 mM Trs pH 7.5,150mM NaC, 10
mM CaC12 ) for 2 hours at 37 *C. The extent of oligomerization at this early time point was much less than that seen after overnight incubation.
The reaction mixture was then separated by SDS-PAGE. The band corresponding to dimeric p97 was excised, digested with chymotrypsin,
and the resulting peptides analyzed by MS/MS. A peptide fragment showing the ligation of the N-terminal glycine residue (shown In red) to the
C-terminal LPST residues (shown in green) was identified. Expected masses for y and b ions are listed above and below the peptide
sequence. Ions that were positively identified in the MS/MS spectrum are highlighted In blue or red. Only the most prominent daughter ions
have been labeled in the MS/MS spectrum. The full amino acid sequence of linear G-His-p97-LPSTG-XX is shown at the top.
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Supplementary Figure 4.7

Supporting Figure 87. Synthesis of GGG-TMR

NHMtt

Fmoc N N2 )

0 0

1. 94:5:1 CH2C 2 / TIPS / TFA
2. 5(6)-TAMRA-NHS, NMP, DIPEA

3. 80:20 NMP / pIperidIne
4. 95:3:2 TFA / TIP / H20

G0G-TMR

167



Chapter 4: A straight path to circular proteins

Supplementary Figure 4.8

Sortase A:
MRGSHHHHHHGSKPHIDNYLHDKDKDEKIEQYDKNVKEQASKDKKQQAKPQIP
KDKSKVAGYIEIPDADIKEPVYPGPATPEQLNRGVSFAEENASLDDQNISIAGHT
FIDRPNYQFTNLKAAKKGSMVYFKVGNETRKYKMTSIRDVKPTDVGVLDEQKG
KDKQLTLITCDDYNEKTGVWEKRKIFVATEVK

G-Cre-LPETG-His6:
GEFAPKKKRKVSNLLTVHQNLPALPVDATSDEVRKNLMDMFRDRQAFSEHTW
KMLLSVCRSWAAWCKLNNRKWFPAEPEDVRDYLLYLQARGLAVKTIQQHLGQ
LNMLHRRSGLPRPSDSNAVSLVVRRIRKENVDAGERAKQALAFERTDFDQVRS
LMENSDRCQDIRNLAFLGIAYNTLLRIAEIARIRVKDISRTDGGRMLIHIGRTKTLV
STAGVEKALSLGVTKLVERWISVSGVADDPNNYLFCRVRKNGVAAPSATSQLS
TRALEGIFEATHRLIYGAKDDSGQRYLAWSGHSARVGAARDMARAGVSIPEIM
QAGGWTNVNIVMNYIRNLDSETGAMVRLLQDGDTSGGGGSGGGGSASLPET
GLEHHHHHHHH

G5-eGFP-LPETG-His6:
GGGGGRMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK
FICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIF
FKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIM
ADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALS
KDPNEKRDHMVLLEFVTAAGITLGMDELYKLPETGRDPNSSSVDKLAAALEHH
HHHH

eGFP-LPETG-His6
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
PVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGN
YKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKN
GIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNE
KRDHMVLLEFVTAAGITLGMDELYKLPETGRDPNSSSVDKLAAALEHHHHHH

G-His6-UCHL3-LPETG-XX:
GSSHHHHHHSSGLEVLFQGPHMEGQRWLPLEANPEVTNQFLKQLGLHPNWQ
FVDVYGMDPELLSMVPRPVCAVLLLFPITEKYEVFRTEEEEKIKSQGQDVTSSV
YFMKQTISNACGTIGLIHAIANNKDKMHFESGSTLKKFLEESVSMSPEERARYLE
NYDAIRVTHETSAHEGQTELPETGEKVDLHFIALVHVDGHLYELDGRKPFPINH
GETSDETLLEDAIEVCKKFMERDPDELRFNAIALSAA

G-His6-p97:
GSSHHHHHHSSGLEVLFQGPHMASGADSKGDDLSTAILKQKNRPNRLIVDEAI
NEDNSVVSLSQPKMDELQLFRGDTVLLKGKKRREAVCIVLSDDTCSDEKIRMN
RVVRNNLRVRLGDVISIQPCPDVKYGKRIHVLPIDDTVEGITGNLFEVYLKPYFLE
AYRPIRKGDIFLVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKREDEEE
SLNEVGYDDIGGCRKQLAQIKEMVELPLRHPALFKAIGVKPPRGILLYGPPGTGK
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TLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEAEKNAPAIIFIDELDAI
APKREKTHGEVERRIVSQLLTLMDGLKQRAHVIVMAATNRPNSIDPALRRFGRF
DREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQVANETHGHVGADLAALCSE
AALQAIRKKMDLIDLEDETIDAEVMNSLAVTMDDFRWALSQSNPSALRETVVEV
PQVTWEDIGGLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLFYGPPGCGKT
LLAKAIANECQANFISIKGPELLTMWFGESEANVREIFDKARQAAPCVLFFDELD
SIAKARGGNIGDGGGAADRVINQILTEMDGMSTKKNVFIIGATNRPDIIDPAILRP
GRLDQLIYIPLPDEKSRVAILKANLRKSPVAKDVDLEFLAKMTNGFSGADLTEIC
QRACKLAIRESIESEIRRERERQTNPSAMEVEEDDPVPEIRRDHFEEAMRFARR
SVSDNDIRKYEMFAQTLQQSRGFGSFRFPSGNQGGAGPSQGSGGGTGGSVY
TEDNDDDLYG

G-His6-p97-LPSTG-XX:
GSSHHHHHHSSGLEVLFQGPHMASGADSKGDDLSTAILKQKNRPNRLIVDEAI
NEDNSVVSLSQPKMDELQLFRGDTVLLKGKKRREAVCIVLSDDTCSDEKIRMN
RVVRNNLRVRLGDVISIQPCPDVKYGKRIHVLPIDDTVEGITGNLFEVYLKPYFLE
AYRPIRKGDIFLVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKREDEEE
SLNEVGYDDIGGCRKQLAQIKEMVELPLRHPALFKAIGVKPPRGILLYGPPGTGK
TLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEAEKNAPAIIFIDELDAI
APKREKTHGEVERRIVSQLLTLMDGLKQRAHVIVMAATNRPNSIDPALRRFGRF
DREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQVANETHGHVGADLAALCSE
AALQAIRKKMDLIDLEDETIDAEVMNSLAVTMDDFRWALSQSNPSALRETVVEV
PQVTWEDIGGLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLFYGPPGCGKT
LLAKAIANECQANFISIKGPELLTMWFGESEANVREIFDKARQAAPCVLFFDELD
SIAKARGGNIGDGGGAADRVINQILTEMDGMSTKKNVFIIGATNRPDIIDPAILRP
GRLDQLIYIPLPDEKSRVAILKANLRKSPVAKDVDLEFLAKMTNGFSGADLTEIC
QRACKLAIRESIESEIRRERERQTNPSAMEVEEDDPVPEIRRDHFEEAMRFARR
SVSDNDIRKYEMFAQTLQQSRGFGSFRFPSGNQGGALPSTGSGGG
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Supplementary Text

Synthesis of Triglycine Tetramethyirhodamine Peptide. GGG-TMR was synthesized

using standard Fmoc solid-phase peptide synthesis (supplemental Fig. S7). Resin bound

intermediate SI was synthesized on Rink amide resin using reported methods ". Resin

S1 (72 mg, 0.036 mmol, 0.5 mmol/g resin loading) was then treated with 2 mL of 94:5:1

CH2Cl 2/TIPS/TFA (5x, ~5 min each) to remove the 4-methyltrityl (Mtt) protecting group.

The resin was then washed with 2.5 mL of CH 2Cl2 (3x each, 3-5 min each wash)

followed by 2.5 mL of NMP (3x each, 3-5 min each wash). The resin was then treated

with a solution of 5(6)-TAMRA-NHS (25 mg, 0.047 mmol, mixture of 5 and 6 isomers,

C 1171 Invitrogen) and DIPEA (25 pL, 0.14 mmol) in 1 mL of NMP. The reaction

mixture was incubated at RT for 19 h with gentle agitation. The resin was then washed

with 2.5 mL of NMP (3x each, 3-5 min each wash) followed by 2.5 mL of CH2Cl 2 (3x

each, 3-5 min each wash). The resin was then deprotected with 2.5 mL of 80:20

NMP/piperidine for 20 min at RT followed by washing with 2.5 mL of NMP (3x each, 3-

5 min each wash) and 2.5 mL of CH2Cl 2 (3x each, 3-5 min each wash). The peptide was

then cleaved from the resin with 2.5 mL of 95:3:2 TFA/TIPS/H20 (5x, 15-20 min each).

The combined cleavage solutions were concentrated and the crude peptide was

precipitated from cold diethyl ether. The individual isomers of GGG-TMR were finally

purified by RP-HPLC on a Waters Delta Pak 15 gm, 100 A C18 column (7.8 x 300 mm,

MeCN:H 20 gradient mobile phase containing 0.1% TFA, 3 mL/min). Two major peaks

of roughly equal abundance were collected and gave the expected mass for GGG-TMR

when analyzed by ESI-MS (LRMS, calculated for GGG-TMR [M+]= 729.3, found 729.4

for both isomers). The individual fractions were not assigned as either the 5 or 6 isomers.
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Both isomers of GGG-TMR were used interchangeably in sortase-catalyzed

transpeptidation reactions with no effect on protein labeling efficiency.
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Folding and stability are parameters that control protein
behavior. The possibility of conferring additional stability on
proteinshas implications for their use in vivo and for their struc-
tural analysis in the laboratory. Cyclic polypeptides ranging in
size from 14 to 78 amino acids occur naturally and often show
enhanced resistance toward denaturation and proteolysis when
compared with their linear counterparts. Native chemical liga-
tion and intein-based methods allow production of circular
derivatives oflarger proteins, resultinginimproved stability and
refolding properties. Here we show that circular proteins can be
made reversibly with excellent efficiency by means of a sortase-
catalyzed cyclization reaction, requiring only minimal modifi-
cation of the protein to be circularized.

Sortases are bacterial enzymes that predominantly catalyze
the attachment of surface proteins to the bacterial cell wall (1,
2). Other sortases polymerize pilin subunits for the construc-
tion of the covalently stabilized and covalently anchored pilus
of the Gram-positive bacterium (3-5). The reaction catalyzed
by sortase involves the recognition of short 5-residue sequence
motifs, which are cleaved by the enzyme with the concomitant
formation of an acyl enzyme intermediate between the active
site cysteine of sortase and the carboxylate at the newly gener-
ated Cterminus ofthe substrate (1, 6-8). In many bacteria, this
covalent intermediate can be resolved by nucleophilic attack
from the pentaglycine side chain in a peptidoglycan precursor,
resulting in the formation of an amide bond between the pen-
taglycine side chain and the carboxylate at the cleavage site in
the substrate (9, 10). In pilus construction, alternative nucleo-
philes such as lysine residues or diaminopimelic acid partici-
pate in the transpeptidation reaction (3, 4).

When appended near the C terminus of proteins that are not
natural sortase substrates, the recognition sequence of Staphy-
lococcus aueus sortase A (LPXTG) can be used to effectuate a
sortase-catalyzed transpeptidation reaction using a diverse
array of artificial glycine-based nucleophiles (Fig. 1). The result
is efficient installation of a diverse set of moieties, including
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lipids (11), carbohydrates (12), peptide nucleic acids (13), biotin
(14), fluorophores (14, 15), polymers (16), solid supports (16-
18), or peptides (15, 19) at the C terminus of the protein sub-
strate. During the course of our studies to further expand sor-
tase-based protein engineering, we were struck by the
frequency and relative ease with which intramolecular
transpeptidation reactions were occurring. Specifically, pro-
teins equipped with not only the LPXTG motif but also N-ter-
minal glycine residues yielded covalently closed circular
polypeptides (Fig. 1). Similar reactivity using sortase has been
described in two previous cases; however, rigorous character-
ization of the circular polypeptides was absent (16, 20). The
circular proteins in these reports were observed as minor com-
ponents of more complex reaction mixtures, and the cycliza-
tion reaction itself was not optimized.

Here we describe our efforts toward applying sortase-cata-
lyzed transpeptidation to the synthesis of circular and oligo-
meric proteins. This method has general applicability, as illus-
trated by successful intramolecular reactions with three
structurally unrelated proteins. In addition to circularization of
individual protein units, the multiprotein complex AAA-
ATPase p97/VCP/CDC48, with six identical subunits contain-
ing the LPXTG motif and an N-terminal glycine, was found to
preferentially react in daisy chain fashion to yield linear protein
fusions. The reaction exploited here shows remarkable similar-
ities to the mechanisms proposed for circularization of cycloti-
des, small circular proteins that have been isolated from plants
(21-23).

EXPERIMENTAL PROCEDURES
Synthesis of Triglycine Tetramethylrhodamine Peptide-

The structure of GGG-TMR5 and a detailed synthetic proto-
col are provided in the supplemental material and supple-
mental Fig. S7.

Cloning and Protein Expression-Full amino acid sequences
for all proteins used in this study are given in supplemental
Fig. S8.

Recombinant sortase A (residues 26-206) containing an
N-terminal hexahistidine tag was produced in Escherichia coli
as described previously (8). Purified sortase A was stored in 10%
glycerol, 50 mm Tris, pH 8.0, 150 NaCl at -80 'C until fur-
ther use.

'The abbreviations used are: GGG-TMR, triglycine tetramethylrhodamine
peptide; eGFP, enhanced green fluorescent protein; UCHL3, ubliqultin
C-terminal hydrolase L3;GGGtriglycine peptlde;ESI-MSelectrospray lon-
Ization mass spectrometry; RP-HPLC, reversed-phase high performance
liquid chromatography; MS/MS, tandem mass spectrometry; PDB, Protein
Data Bank; NI-NTA, nickel-nltrilotriacetic acid.
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G-Cre-LPETG-His was cloned into the pTriEx-1.1 Neo
expression vector (Novagen) using standard molecular biology
techniques. The construct contains two point mutations
(M117V and E340Q) and a flexible spacer (GGGGSGGGGS)
inserted before the LPETG sortase recognition site. G-Cre-
LPETG-His% was expressed and purified using procedures sim-
Ilar to those reported previously for HTNCre (24). G-Cre-
LPETG-Hiswasfrst transformed into Tuner(DE3)pLacIcells
(Novagen), and a starter culture was grown in sterile LB media
supplemented with 1% (w/v) glucose, chloramphenicol (34
pg/ml), and ampicillin (100 pg/ml). This culture was used to
inoculate a large scale culture of sterile LB containing chloram-
phenicol (34 pg/ml) and ampicillin (100 pg/ml). G-Cre-
LPETG-Hisawas expressed after a 3-h inductionwithisopropyl
1-thio-18-D-galactopyranoside (0.5 mt) at 37'C. Cells were
resuspended in 10 mm Tris, 100 mm phosphate, 300 mu NaC,
and 20 m imidazole, pH 8.0. The suspension was adjusted to
50 pg/ml DNase L 460 pg/ml lysozyme, and 1 mm MgC 2 and
incubated at 4'C for 1.5 h. The suspension was then sonicated
and centrifuged. The clarified lysate was then treated with Ni-
NTA-agarose (Qiagen) for 1 h at 4'C. The resin was washed
with 12columnvolumesof10 mm Tris,100 mm phosphate, 300
mm NaCl, and 20 mu imidazole, pH 8.0, followed by 4 column
volumes of 10 mu Tris, 100 mm phosphate, 300 muA NaCL, and
30 mu imidazole, pH 8.0. The protein was then eluted with 10
mm Tris, 100 mm phosphate, 300 mm NaCl, and 300 mm imid-
azole, pH 8.0. The purified protein was than dialyzed first
against 20 mu Tris, pH 7.5, 500 nu NaCl followed by 50%
glycerol,20muTris, pH 7.5, 500uNaCL. G-Cre-LPETG-His 6
wasthen passed through a 0.22-sm filter to remove minor pre-
cipitation and stored at 4'C.

Gs-eGFP-LPETG-His 6 was prepared from a previously
reported eGFP construct lacking the five N-terminal glycine
residues using a QuickChangeo Isite-directed mutagenesis kit
(Stratagene) and produced inE acli using reported procedures
(11). Purified Gs-eGFP-LPETG-Hiswasbuffar exchanged into
20 mm Tris, pH 8.0, 150 mm NaCl and stored at 4'C. UCHL3
with the sortase recognition sequence (LPETG) substituted for
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amino acids 159-163 was cloned and produced in E coli as
described previously (25).

Human p9 7 (806 amino acids) was PCR-amplified and
cloned via the NdeI and HindIII restriction sites into a
pET28a+ expression vector (Novagen) to yield the G. Hisr p9 7

construct. G-His 6-p97-LPSTG-XX was generated by introduc-
ing two point mutations (G782L and Q785T) and astop codon
at position 791 using QuickChange* mutagenesis(Stratagene).
Recombinant p97 was expressed at 30*C in E col after induc-
tion for 3 h with 0.5 mm isopropyl 1-thio-p-D-galactopyrano-
side. Cells were resuspended in buffer A (50 mm Tris, pH 8.0,
300 mt NaCL, 5% glycerol, 20 mm imidazole, and 7.1 mm
#-mercaptoethanol), adjusted to 15 pg/ml lysozyme and 10
pg/ml DNase L and lysed by two passes through a French pres-
sure cell at 1200 p.s.i. After centrifugation for 30 min at
40,000 x g, the supernatant was bound to nickel-Sepharose
resin (GE Healthcare). After washing the resin with 20 column
volumes of buffer A, p97 was eluted with buffer A containing
250 mm imidazole. Hexameric rings of p97 were further puri-
fied on a Superdex 200 HR 16/60column(GE Healthcare)using
25 mm Tris, pH 8.0, 150 mu KCl,2.5 mm MgCl2 , 5% glycerol as
the mobile phase. The purified pmtein was snap-frmaen and
stored at -80'C.

Circuladatwion and Intermsoecular Transpeptidation-
Transpeptidation reactions were performed by combining the
necessary proteins/reagents at the specified concentrations in
the presence of sortase reaction buffer (50 mm Tris, pH 7.5, 150
mm NaCL, 10 mu CaC12) and incubating at 37 'C for the times
indicated. Diglycine and triglycine (GGG) peptides were pur-
chased from Sigma. Reactions were halted by the addition of
reducing Laemmli sample buffer and analyzed by SDS-PAGE.
Gels were visualized by stainingwith Coomassle Blue. Fluores-
cence was visualized on a Typhoon 9200 Imager (GE Health-
care). Crude reactions were also diluted into either 0.1% formic
acid or water for ESI-MS analysis. ESI-MS was performed on a
Micromass LCT mass spectrometer (Micromass* MS Tech-
nologies) anda ParadigmMG4 HPLCsystemequipped with an
HTC PAL autosampler (Michrom BioResources) and a Waters
symmetry 5-sam CS column (2.1 X 50 mm. MeCN:H2O (0.1%
formic acid) gradient mobile phase, 150 pl/min).

PAmfation ad Rfoldag ofeGFP-G-eGFP-LPETG-His6
(50 pu)wascircularized bytreatment with sortase A (50 pm)in
sortase reaction buffer (50 mm Tris, pH 7.5, 150 mm NaCl, 10
m CaC.) for 24 h at 37 'C. The reaction was run on a 750-pl
scale. The entire reaction was then diluted into 10 ml of 20 mu
Tris, 500 mm NaCl, and 20m imidaiole, pH 8.0. This solution
was then applied to a column consisting of 2 ml of Ni-NTA-
agarose (Qiagen) pre-equilibrated with 20 mm Tris, 500 mm
NaCl,and 20mm imidazole,pH 8.0. The flow-through wasthen
concentrated and buffer exchanged in 20 nt Tris, 150 mM
NaCL, pH 8.0, using a NAPIm 5 Sephadexi" column (GE
Healthcare). The concentrations of circular eGFP and linear
Gs-eGFP-LPETG-HIs4 were estimated by UV-visible spectros-
copy using the absorbance of eGFP at 488 nm (extinction coef-
ficient 55,900 ma1 cm 1 ) (26). Circular and linear cGFP (40 4
of 18 pua solutions) was placed in 1.5-mi microcentrifuge tubes
and denatured by heating to 90 *Cfor 5min. Sampleswere then
incubated at room temperature in the dark for the times indi-
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cated. Fluorescent images were acquired using a UV gel docu-
mentation system (UTVP Laboratory Products).

Reaction of Cyclic UCHL3 with Activity-based Ubiquitin
Pmbe-UCHL3 (30 sm)was incubated with sortase A (150 sM)
in sortase reaction buffer (50 mm Tris, pH 7.5, 150 mM NaCL, 10
mM CaCl2 ) in the presence or absence of 90 mm GGG peptide
(Sigma) on a 25-s1 scale at 37 C for 3 h. Ten microliters was
withdrawn and diluted with 10 sl of labeling buffer (100 mm
Tris, pH 7.5, 150 mm NaCl). Hernagglutinin epitope-tagged
ubiquitin vinyl methyl ester (4 sg) was added as well as 1 mm
dithiothreitol and incubated at room temperature for 1 h. Reac-
tions were then separated on an SDS-polyacrylamide gel and
visualized by Coomassie staining or c-HA immunoblot (sup-
plemental Fig. S4). Hemagglutinin epitope-tagged ubiquitin
vinyl methyl ester was prepared following published protocols
(27).

MS/MS Sequencing of Proteolytic Fragments from Circular
Proteins-Priorto MS/MS analysis, circular eGFP and Cre were
separated from sortase A by RP-HPLC using an Agilent 1100
Series HPLC system equipped with a Waters Delta Pak 5 sm,
100A C18 column (3.9 X 150 mmMeCN:H 20 gradient mobile
phase containing 0.1% trifluoroacetic acid, 1 ml/min). Fractions
containing the circular proteins were pooled and subjected to
trypsin digestion. Crude transpeptidation reactions containing
circular UCHL3 were separated by SDS-PAGE followed by
Coomassie staining. The band corresponding to circular
UCHL3 was excised and digested with Glu-C. Crude transpep-
tidation reactions containing dimeric p97 were separated by
SDS-PAGE followed by Coomassie staining. The transpeptida-
tion reaction used for this purpose was incubated for only 2 h
and therefore contains less oligomerization than that seen after
an overnight incubation (see supplemental Fig. S6). The band
corresponding to dimeric p97 was excised and digested with
chymotrypsin. For all protein substrates, the peptides gener-
ated from proteolytic digestion were extracted and concen-
trated for analysis by RP-HPLC and tandem mass spectrome-
try. RP-HPLC was carried out onaWaters NanoAcquity HPLC
systemwith aflow rate of 250 nl/minand mobile phases of 0.1%
formic acid in water and 0.1% formic acid in acetonitrile. The
gradient used was isocratic 1% acetonitrile for 1 min followed
by 2% acetonitrile per min to 40% acetonitrile. The analytical
column was 0.075 sm X 10 cm with the tip pulled to 0.005 s.m
and self-packed with 3 sm Jupiter C18 (Phenomenex). The
column was interfaced to a Thermo LTQ linear ion trap mass
spectrometer in a nanospray configuration, and data were col-
lected in full scan mode followed by MSIMS analysis in a data-
dependent manner. The mass spectral data were data base
searched using SEQUEST.

Constmction of Molecular Models-Molecular models were
generated from published crystal structures (PDB codes kbu,
lgfl, 1xd3, and 3cf1) (28-31). N- and C-terminal residues were
added using Coot 0.5 (32). Protein termini were repositioned
using the Auto Sculpting function in MacPyMOL (DeLano Sci-
entific LLC). Residues visible in the published crystal structures
were not moved during positioning of the extended N and C
termini. All protein images in this study were generated using
MacPyMOL.
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RESULTS
CreRecombinase-We first noticed the presence of a circular

protein product when installing a C-terminal modification
onto a nonfunctional mutant of Cre recombinase containing a
single N-terminal glycine residue and the requisite LPETG
sequence near the Cterminus. The LPETG motif was separated
from the native protein by a flexible amino acid linker
(GGGGSGGGGS). Whereas installation of the label at the Cre
C terminus proceeded efficiently when a triglycine nucleophile
containing tetramethylrhodamine (GGG-TMR) was included,
we observed a product that migrated more rapidly on SDS-
PAGE when nucleophile was omitted from the reaction mix-
ture (Fig. 2A). Hydrolysisof the sortase acyl enzyme is known to
proceed slowly in the absence of glycine nucleophiles (19, 33,
34). However, when reaction mixtures were analyzed by ESI-
MS, we consistently observed a protein species that differed
from the mass expected for hydrolysis by approximately -18
Da (Fig. 2B). This mass was consistent with intramolecular
nucleophilic attack, suggesting that the single N-terminal glycine
residuewasservingas the nucleophile inthistransformation. Ulti-
mately, MS/MS ontryptic digests of this species showedunequiv-
ocally that it consisted of a covalently closed circular product of
Cre, with the N-terminal glycine fused exactlyatthe LPETG cleav-
age site in the expected position (Fig. 2C).

Recognizing that the LPETG motif is maintained in the
cyclized Cre product, we suspected that sortase should be capa-
ble of cleaving the circular protein at this site, thus producing
an equilibrium between circular and linear forms of Cre. To
demonstrate this point, Cre was first incubated with sortase in
the presence or absence of triglycine nucleophile (Fig. 3A). A
portion of the cyclized reaction mixture (Fig. 3A, lane 1) was
then treated with a large molar excess of triglycine nucleophile
or left alone for a further 24 h (Fig. 3A, lanes 2 and 3). Remark-
ably, upon treatment with exogenous nucleophile, the pre-cy-
clized material yielded a reaction mixture that was nearly iden-
tical to the result obtained when nucleophile was included from
the very beginning of the experiment (Fig. 3A, compare lanes 3
and 4). This result provided further evidence that cyclized Cre
indeed contains the expected LPETG motif at the site of cova-
lent closure. In addition, it suggested that hydrolysis of the acyl
enzyme intermediate does not effectively compete duringcyci-
zation, because the hydrolyzed material should be unable to
participate in the transpeptidation reaction.

The circularization reaction observed for Cre proceeded
with remarkable efficiency. Conversion was estimated to be
>90% by SDS-PAGE. By taking an existing crystal structure
(29) of the Cre protein and modeling in those residues not vis-
ible in the structure, it was clear that the N and C termini were
located in sufficiently close proximityto permit closure without
significant perturbation of the native structure (Fig. 3B). We
assume that these regions possess considerable flexibility
because they are not resolved in the crystal structure.

eGFP-Having verified the cyclization of Cre recombinase,
we sought to explore the generality of this technique. To this
end we generated a derivative of eGFP containing the LPETG
sequence and five N-terminal glycine residues. This construct
was of particular interest because inspection ofthe x-ray crystal
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structure (31) revealed that the N and C termini were posi-
tioned on the same end of the -barrel, suggesting that this
substrate should be ideal for cyelisation (Fig. 4A).Furthermore,
in one of the earliest reports on the use of sortase for protein
engineering, a similar eGFP substrate wa described and
reported to cyclize in the presence of sortase (16). In this
instance, cyclization only proceeded in modest yield, and the
putative cyclized product was produced as a mixture with
highermolecularweight specie assigned asoligome ofeGFP
firmned by intermolecular transpeptidation. Thus, to explore
potential complications caused byintermolecular reactions,we
studied the reaction of our eGFP construct in the presence of
sortase.

Inour hands, weobserved cleanconversionto a lower molec-
ular weight species (>90% estimated conversion) with little to
no evidence for oligomerization (Fig. 48). A higher molecular
weight polypeptide was observed at early time points and may

JUNE 5,2009 VOLUME 284-NUMBER 23

represent a covalent eGFP dimer that is generated transiently
over the course of the reaction. Higher molecular species, how-
ever,were only observed in trace quantities inthe final reaction
mixture. As in the case of Cre, evidence for circularization was
provided by mass spectral characterization of the intact circular
protein and MS/MS sequencing of tryptic peptides (supple-
mental Fig. Si). As an additional control to demonstrate that
the N-terminal glycine residue was the onlynucleophile partic-
ipating in intramolecular transpeptidation, we analyzed the
behavior of an eGFP derivative that lacked an N-terminal gly-
cine. In this case, ESI-MS revealed products consistent with
hydrolysis of the acyl enzyme intermediate, rather than
intramolecular nucleophilic attack (supplemental Fig. Si).

Circularization has been shown to confer unique properties
onto proteins when compared with the linear form (35-37). In
the case of GFP circularized using intern-based methods, these
properties include a reduced rate of unfolding when exposed to
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FIGURE 3. CiaIklamECw rWsess .A G-Cre-LPETG-HI, (5o sm) was
drcularizedby treatment with sortase A (50phm)ln sor tasereaction buffer (50
mm Tris, p4 7.5, 150 mmNaCI, 10 mnCaCl) for 21.5 h at37"C (lane 1). ThIs
reaction mixture was then treated wIth 10 mm GGG-TMR (lane 3) or simply
incubated for an additional 24 h at 3 7C (lane 2) All reactions were analyzed
by SDS-PAGEwlth visualization by Coomassiestaining or In-gel fluorescence.
For comparison, a C-terminal labelingreaction performed using 10 mmGGG-
TMR without prior cycilzatlon of the Cre substrate (Ane 4) and a sample of
linear G-Qe-LPETG-His Incubated without sortase A or nucleophile (lane 5)
are Included. 4 molecular model of Cre recombinase monomer (generated
from PDB code lkbu) (29)showIng the proxdmty relationship between theN
and C ternIN, The N-terminal glydne residue Is highlighted In re4 and the
C-terminal LPET residues are shown in green.

denaturants, as well as an enhanced rate of refolding following
denaturation (35). We observed a similar phenomenon for
eGFP circularized using sortase (Fig. 4C). Circular eGFP was
first separated from residual sortase A using Ni-NTA resin.
This material retained fluorescence suggesting that covalent
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FIGURE4 Cala hs*ufGUP. A molecular rnodd of eGFP (generated
from PDB code i gfl) (31) showing the proximity relatonshIp between the N
and C termini. The N-terminal glydne residue is highIlghted In red and the
C-terminal LPET residues are shown In green. 8, G-eGFP-LPETG-His (50 pA)
wascircularized by treatrnentwith sortase A (5OpM) Insortasereactionbuffer
(50 mm Trls, pH 7.5, 150 mmNaCl, 10 mm CaC2) for 24 h at 37*C. Schernalic
representations to the right of the gel Indicate the topology of the protein
species produced by transpeptidation. C drolar eGFP (C) recovers fluores-
cence more rapidly than linear G-eGFP-LPETG-HIs (L) following thermal
denaturation for 5 min at 90*C. SDS-PAGE analysis conirmed the purity and
concentration ofthecircular eGFP (C) and linear G.-eGFP-LPETG-Hsi, (L)sam-
pies used for refolding.

ligation of the N and C termini had minimal impact on the
structure of this substrate. Circular and linear eGFP were then
subjected to simple thermal denaturation, followed by recovery
at room temperature. As shown in Fig. 4C, circular eGFP
regained fluorescence more rapidly than linear eGFP.

CH13-Even an internally positioned LPXTG motif was
sufficient to effectuate a circularization reaction. We installed a
sortase recognition site in the crossover loop of the ubiquitin
C-terminal hydrolase UCHL3, and we demonstrated that the
continuity of the polypeptide backbone can be disrupted with
concomitantinstallation of acovalentmodificationthatreports
on the accuracy of cleavage and transpeptidatlon (25). This
reaction proceeds without complete loss of activity ofUCHL3,
indicating that even the cleaved form of UCHL3 retains its
structural integrity to a significant degree (25). This UCHL3
construct was prepared withan N-terminalglycineresidue, and
examination of the crystal structure of UCHL3 (30) clearly
showed the close apposition of the N terminus and the cross-
over loop, suggesting that cyclization to yield a circular frag-
ment containing the N-terminal portion of UCHL3 should be
readily observable (Fig. SA).

As expected, in the absence of added nucleophile,the N-ter-
minal glycine serves as a highly efficient nucleophile to yield a
circular fragment that contains the N-terminal portion of
UCHL3 (Fig. 5B). The identity of the circular polypeptide was
confirmed by MS/MS of the peptide containing the expected
fusion of the N-terminal glycine residue with the new C termi-
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by SOrMaW A. A molecular model of hunan UCHL3 (generated rorn PDB
code lxd3) (30) showing the active site crossover loop bearing an LPETG
substitution(LPET residues shown in green and Glyresidueshown in red). The
N-terminal glycine residue that serves as the nudeophile for intramolecular
transppdation is highlighted in red. 8, UCHL3 (30 pA) bearing an LPETG
substitution in the active site crossover loop was incubated with sortase A
(150 pa) in the absence or presence of GGG nudeophile (90 rmA) in sortase
reaction buffer (50 mm TrI, pH 7.5,150 mm NaC, 10 ma" Ca(22) for the Indi-
cated timesat37Cand analyzedby SDSPAGEfollowed byCoomassestain-
ing. Schemakcrepresentationstotherightofthegel Indicate thetopologyof
the protein species produced by transpeptidaonm

nus released from the crossoverloop (see supplementalFig. S2).
Cyclization was efficiently blocked if a high concentration of
triglycine (GGG) was included in the reaction, generating
instead theN-terminal fragment of UCHL3 transacylated onto
the triglycine nucleophile (Fig. 58, lane 9 and supplemental
Fig. SS). Cyclization could also be reversed by adding an excess
of triglycine to reaction mixtures preincubated with sortase to
allow cyclization. This reopening reaction was observed by
both SDS-PAGE and ESI-MS (supplemental Fig. S3).

To test the functional properties of cyclic UCHL3, we incu-
bated reaction mixtureswithanactivity-based probe consisting
of ubiquitin equipped with an electrophilic vinyl methyl ester
moiety at the C terminus (supplemental Fig. S). Probes of this
nature are able to specifically alkylate active site cysteine resi-
dues in ubiquitin-specific hydrolases such as UCHL3 (25, 27,
38). Following circularization, the active site cysteine (Cys-95)
of UCHL3 is located in the circular N-terminal fragment. and
indeed we observed covalent labeling of this fragment with a
corresponding shift in apparent molecular weight consistent
with the attachment of ubiquitin. This result suggests that
despite cleavage of the polypeptide backbone, the circular
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N-terminal fragment of UCHL3 and the C-terminal portion
released during transpeptidation remain associated and pre-
serve the affinity ofUCHL3 for ubiquitin. This resultis consist-
ent with previous observations from our laboratory demon-
strating that covalent closure of the UCHL3 crossover loop is
dispensable for enzyme activity(25).

p97-The above examples concern single chain proteins
whose termini are sufficiently close to allow covalent closureby
means of the sortase-mediated transacylation reaction. Similar
proximityrelationships between protein termini should alsobe
present on separate polypeptides that assemble into defined
oligomeric structures. As an example, we examined p97, a hex-
americ AAA-ATPase. We generated a derivative of p97
(G-His6-p97-LPSTG-XX) containing an LPSTG motif near the
C terminus, and a hexahistidine tag capped by two serine resi-
dues and a single glycine at the N terminus. The structure of a
p97 trimer in the presence of ADP has been solved at 3.5 A
resolution (28), with several residues from the N and C termini
not visible (Fig. 6A). When all the residues present in our mod-
ified version of p97 were modeled onto the published trimer of
p97, it was evident that the N and C termini of adjacent p97
units were sufficiently close to permit covalent cross-linking
(Fig. 68). G-His6 -p97-LPSTG-XX was expressed in E. coli and
yielded the hexameric p97 ring, as assessed by gel filtration. As
expected, this derivative of p97 was an excellent substrate for
transpeptidation at its C terminus, allowing efficient installa-
tion of a label when incubated in the presence of sortase and
GGG-TMR (supplemental Fig. S6).In contrast. avariantof p97
lacking theLPSTG sequence showed no labeling (supplemental
Fig. S5). When G-His6 -p97-LPSTG-XX was treated with sor-
tase A in the absence of added nucleophile, we observed forma-
tion of an SDS-resistant ladder of polypeptides. as would be
expected for intermolecular cross-linking of p97 monomers
(Fig. 6C).Wewereconfidentthat these species arise fromhead-
to-tail ligation of p97 because introduction of excess diglycine
peptide after oligomerization caused collapse of the higher
molecular weight structures back to monomeric p97 (Fig. 6C,
lmeS). This suggested thatthehigher order aggregates are held
together by newly formed LPSTG units formed from the C-ter-
minal LPST residues of one p97 monomer and the N-terminal
glycine residue of a neighboring monomer. The banding pat-
tern observed for reopening was also nearly identical to that
seen when diglycine was included from the very beginning of
the experiment, a scenario where installation ofdiglycine at the
C terminus of each p97 subunit is presumed to be the major
reaction pathway (Fig. 6C, lane 6). We have also been able to
identify peptides consistent with intermolecular cross-linking
of p97 subunits by MS/MS (supplementalFig. S6).

DISJSSION
Cyclic proteins are an interesting class of polypeptides that

often display unique properties because of covalent closure of
the amide backbone (39, 40). Although some cyclic protein
derivatives occur naturally, methods for generating cyclic pro-
teins in the laboratory provide a means for accessing cyclic ver-
sions of proteins that only occur in linear form. Intramolecular
sortase-catalyzed transpeptidation provides a straightforward
method for accessing these types of cyclic proteins. The
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transpeptidation reaction described here bears a remarkable
resemblance to the proposed biosynthesis of the largest class of
naturally occurring cyclic proteins, the cyclotides (21-23). In
both cames, linear protein precursors are cleaved by cysteine
proteses to generate an acyl-enzyme intermediate that is sub-
sequently resolved by nucleophilic attack from the N terminus
of the linear proteins to generate the cyclic product.

In this work we have explored transpeptidation reactions
using four structurally diverse protein substrates. Cyclization
has been confirmed for three proteins, including an example
(UCHL3) utilizing an LPXTG sequence positioned in a flexible
internal loop rather than near the C terminus of the protein.
Cyclization and oligomerization via sortase-mediated trans-
peptidation have been previously suggested to occur for an

g eGFP construct modified in a manner similar to that used here
(16), and for a by-product from a protein purification system
where the substrate circularized appears to be sortase A itself
(20). In both cases, the identity of the circular products was not
rigorously confirmed. Our data identify the circular or oligo-
meric products unambiguously by MS/MS for all substrates
studied. We also find that our eGFP derivativ strongly favors
cyc-atonoveroligomerlzation, showing littleevidenceforthe
formation of higher order structures that mightbe expected by
the head-to-taA ligation of termnini from separate eGFP mono-
meirs. Subtle difeences in the structure of the eGFP constructs
cannot be overlooked as a potential cause for the observed
results. For example, oureGFP is extended attheN terminus by
only five glycine residues, whereas the construct studied by

H4s"-7-PSTG-XX Parthasarathy et al (16) contains an additional 17 residues,
N-tenA inc uing3N-terminaglycne.Futureworkliberquiredto
Uap I wta GG (h)
Uap2awf GO (h) ftroughl characterize the effect of distance relationships

between protein termini on favoring intra- vdus intemolec-
ular transpeptidation.

With respect to protein cyclization, sortase-mediated circu-
olig larization is efficient despite the potential for competing c-

tion pathways. In the absence of added oligoglycne ucleo-
phile these include hydrolysis of the acyl enzyme intermediate,
reattacdmient of the C-terminal protein fragment that is lost
upon initial whlvage of the protein substrate by sortase, or, as

-p97 "OWO mentioned above, oligomerization of protein monomers in
head-to-tail fashion. Even when oligoglycine nucleophile is
added with the intent ofbeoking the cycuztlon pathway, nl-
limolar concentrations are necessary to efficiently compete

aromaasie with cyclizaton. One factor that certainly must contribute to
this observed preferenceforcyclizationisthe distance between
fprotei termini. Inspection of the database of PDB shows that

tode3ct)(28) nearly one-third of proteins with known structures have their
ixamerIc ring. The termini in rather close apposition (within 20 A) (40). The
ctureareindicated
mIs.p97-LpTG-)o( LrXTG sequence itself spans roughly 15.A in an extended con-
ml In adjacent p97 formaion suggesting that circularization via sortase-catalyzed

Parthaedcrystaly -ta.(6 otisa diinl1 eius

N-termna grystia transpeptiation might be amn l to a significant fraction of
dues are shown i proteins using the LPXTG sequence alone to bridge the gap
vomers arehddr, between N and C termini. Larger distances could simply be
lIs6-p97-LPSTG-XX
ae reaction buffer covered by inserting flexible amino acid spacers at either ter-
Indicatedat37C. ini. We also consider It kel that thecircularized version ofa
atlor)Wresurlngtn protein will show more restricted mobility in the segment that

rntarison, a control
tset of the a corresponds to the newly established LPXG connection

between its termini. This fact ione may render the circular
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product a comparatively worse substrate for sortase and there-
fore assist in driving the transpeptidation reaction toward cycli-
zation. As evidence for this point, we have observed previously
that sortase fails to cleave LPXTG motifs placed in structured
loops of class I major histocompatibility complex molecules
(14).

Sortase-catalyzed transpeptidation provides an attractive
alternative to existing methods for peptide and protein circu-
larization. Chemical synthesis can provide access to circular
polypeptides of modest size, with circularization of linear pre-
cursors having been achieved using native chemical ligation
(41-43), subtiligase (44), or standard amide bond-forming
reactions commonto solid-phase peptide synthesis (43,45). For
larger proteins beyond the technical capabilities of solid-phase
synthesis, cyclization is most often accomplished using native
chemical ligation, typically in conjunction with split-intein
expression constructs (35-37, 46-48). When compared with
the split-intein approach,the modest modification necessaryto
render proteins amenable to cyclization or oligomerization is
certainly an attractive feature of the sortase-catalyzed process.
Proteins must simply possess a sortase recognition sequence
(L.PXT G) either near the C terminus or in a flexible loop and an
N-terminal glycine residue to act as the nucleophile. These
modifications are not anticipated to have a significant impact
on protein expression or function. In contrast, protein circular-
ization by split-intein methods requires more extensive modi-
fications of the expression construct, a necessity that may
reduce protein expression or affect protein solubility. It should
be noted, however, that the number of extra amino acid resi-
dues at the site of N- to- C-terminal ligation following excision
of the large intein domains can be less than the five residues
(LPXTG) that remain after circularization using sortase A,

The sortase-catalyzed approach also provides additional lev-
els of control over the ensuing transpeptidation reaction. This
may be particularly useful for oligomeric species, such as the
p97 example described here. Specifically, our modified p97 pro-
tein (G-His 6-p97-LPSTG-XX) is produced in a form that is by
itself unreactive. This allows proLein expression and the sub-
sequent assemblyand purification of the hexamer to be com-
pleted first, without complications caused by premature
covalent oligomerization. Cross-linking is then induced by
the addition of sortase after the individual subunits have
been correctly positioned in the hexameric ring. The extent
of transpeptidation can be further controlled by inclusion
of synthetic oligoglycine nucleophiles, either during the
transpeptidation reaction or after transpeptidation is com-
plete. The latter scenario even allows cyclization to be com-
pletely reversed. Incubating circular protein products with
sortase in the presence of an oligoglycine nucleophile
restores linearity to the protein product, because in the
course of the initial cyclization reaction, the LPXTG motif is
restored. An equilibrium between closed and open forms is
thus established and can be driven toward the linear state by
adding a large excess of the oligoglycine nucleophile.

The implications of protein cyclization or oligomerization
for protein engineering are numerous. In the case of protein
oligomerization, the ability to link protein subunits held in a
defined geometry might be exploited to explore subtle changes

JUNE 5,2009 VOLUME 284-NUMBER 23

in intersubunit interactions upon substrate engagement or
recruitment of binding partners. A more detailed examination
of the reaction kinetics would be required to determine, for
example, whether all subunits in the hexameric ring of p97 are
equally good substrates or whether subunits that lie along the
3-fold axis preferentially cross-link to yield dimers. Although in
the crystal structure (28) all of the individual subunits appear
identical, it remains to be determined whether this equivalency
applies in solution as well. For cyclic proteins, there is compel-
ling evidence that demonstrates improved stability of circular-
ized proteins when compared with their linear counterparts
(35-37, 40, 49). This is true for cyclic versions GFP (35), $-lac-
tamase (36), and dihydrofolate reductase (37) generated using
intein-based methods. The extension of protein cyclization to
proteins of therapeutic value to improve the in vivo half-life has
alreadybeen suggested (16,39) and remains an exciting avenue
for further research. Covalent closure of a protein through sor-
tase-mediated circularization may also facilitate structural
analysis of proteins whose flexible termini may interfere with
crystallization.

Ackntowledgments- We thank Carla Gunaraes and Mathias Paw-
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Supplemental Information

Synthesis of Triglycine Tetramethylrhodamine Peptide. GGG-TMR was synthesized using
standard Fmoc solid-phase peptide synthesis (supplemental Hg. S7). Resin bound intermediate
S1 was synthesized on Rink amide resin using reported methods (1). Resin S1 (72 mg, 0.036
mmol, 0.5 mmol/g resin loading) was then treated with 2 mL of 94:5:1 CH2Cl2/TIPS/TFA (5x, -5
min each) to remove the 4-methyltrityl (Mtt) protecting group. The resin was then washed with
2.5 mL of CH2Cl 2 (3x each, 3-5 min each wash) followed by 2.5 mL of NMP (3x each, 3-5 min
each wash). The resin was then treated with a solution of 5(6)-TAMRA-NHS (25 mg, 0.047
mmol, mixture of 5 and 6 isomers, C1171 Invitrogen) and DIPEA (25 pLL, 0.14 nmmol) in 1 mL of
NMP. The reaction mixture was incubated at RT for 19 h with gentle agitation. The resin was
then washed with 2.5 mL of NMP (3x each, 3-5 min each wash) followed by 2.5 mL of CH2C12
(3x each, 3-5 min each wash). The resin was then deprotected with 2.5 mL of 80:20
NMP/piperidine for 20 min at RT followed by washing with 2.5 mL of NMP (3x each, 3-5 min
each wash) and 2.5 mL of CH2Cl2 (3x each, 3-5 min each wash). The peptide was then cleaved
from the resin with 2.5 mL of 95:3:2 TFA/TIPS/H 20 (5x, 15-20 min each). The combined
cleavage solutions were concentrated and the crude peptide was precipitated from cold diethyl
ether. The individual isomers of GGG-TMR were finally purified by RP-HPLC on a Waters
Delta Pak 15 pm, 100 A C18 column (7.8 x 300 mm, MeCN:H 20 gradient mobile phase
containing 0.1% TFA, 3 mL/min). Two major peaks of roughly equal abundance were collected
and gave the expected mass for GGG-TMR when analyzed by ESI-MS (LRMS, calculated for

GGG-TMR [lW] = 7293, found 729.4 for both isomers). The individual fractions were not
assigned as either the 5 or 6 isomers. Both isomers of GGG-TMR were used interchangeably in
sortase-catalyzed transpeptidation reactions with no effect on protein labeling efficiency.
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Supplemental Figure Legends

Supplemental Figure S1. Characterization of cyclic eGFP. (a) ESI-MS of linear Gs-eGFP-
LPETG-His and circular eGFP formed by intramolecular transpeptidation. (b) A variant of
eGFP lacking N-terminal glycine residues yields a mixture of unreacted starting material and
hydrolysis when treated with sortase A. Conditions: eGFP-LPETG-His6 (36 pM) and sortase A
(50 pM) in (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaC 2) for 23 hours at 37 "C. This
preparation of eGFP-LPETG-His6 consisted of a mixture in which a fraction of the protein had
the N-terminal Met residue cleaved during the course of protein expression to reveal an N-
terminal Val residue. (c) MS/MS spectrum of a tryptic fragment of circular eGFP showing
ligation of the N-terminal glycine residues (shown in red) to the C-terminal LPET residues
(shown in green). Expected masses for y and b ions are listed above and below the peptide
sequence. Ions that were positively identified in the MS/MS spectrum are highlighted in blue or
red. The full amino acid sequence of linear G5-eGFP-LPETG-His 6 is shown at the top.

Supplemental Figure S2. Characterization of cyclic UCHL.3 by MS/MS analysis unambiguously
confirms the structure of the intramolecular transpeptidation product. The circular UCHD
fragment was resolved by SDS-PAGE and the band corresponding to the putative circularization
product was excised and digested with Glu-C. The resulting peptides were analyzed by LC-
MS/MS. A peptide representing the junction between the UCHD,3 N-terminus and the LPETG
motif was identified by LC-MS/MS analysis. Expected masses for y and b ions are listed above g
and below the peptide sequence. Ions that were positively identified in the MS/MS spectrum are
highlighted in blue or red. The full amino acid sequence of linear G-Hi 6-UCHI3-LPETG-XX is
shown at the top.

Supplemental Figure S3. Intermolecular versus intramolecular transpeptidation for UCHL3. (a)
UCHL3 cyclization is reversible. UCHL3 (30 pM) was circularized by the addition of sortase A
(150 pM) for 3 hours. Subsequently, GGG (90 mM) was added to each reaction and incubated
for the indicated times. Samples were analyzed by SDS-PAGE (top) or ESI-MS (bottom). (b) A
large molar excess of CTGG nucleophile is required to compete with the intramolecular UCHL3
circularization. UCHL3 (30 pM) and sortase A (150 pM) were incubated with the indicated
concentrations of GGG nucleophile in sortase reaction buffer (50 mM Tris pH 7.5, 150 mM
NaCl, 10 mM CaC 2) for 3 hours at 37 *C, and analyzed by SDS-PAGE followed by coomassie
staining.

Supplemental Figure S4. Circular UCHL3 is competent to react with a ubiquitin suicide probe.
UCHL3 (30 pM) was first circularized (lane 5) by treatment with sortase A (150 pM) or
incubated with 90 mM GGG and sortase A (150 pM) to yield the linear transpeptidation product
(lane 7) for 3 hours at 37 *C. Samples were then withdrawn, diluted two-fold in labeling buffer
(100 mM Tris, pH 8.0, 150 mM NaCl) and incubated with 4 pg of HA-UbVME for an additional
hour at 25 *C. Reactions were quenched with sample buffer, analyzed by 12.5% SDS-PAGE, and
either stained with coomassie (top) or transferred to nitrocellulose for anti-HA immunoblot
(bottom).

Supplemental Figure S5. C-terminal labeling of p97. (a) G-His-p97-LPSTG-XX (1.5 mg/mL)
and G-His-p97 (1.5 mg/mL) were incubated with sortase A (50 pM) and GGG-TMR (1 mM) in
sortase reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2 ) for 2.5 h at 37 "C.
SDS-PAGE revealed the expected C-terminal transpeptidation product for G-HisE6-p97-LPSTG-
XX only.
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Supplemental Figure S6. G-His 6-p97-LPSTG-XX was incubated with sortase A in sortase
reaction buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) for 2 hours at 37 *C. The
extent of oligomerization at this early time point was much less than that seen after overnight
incubation. The reaction mixture was then separated by SDS-PAGE. The band corresponding to
dimeric p97 was excised, digested with chymotrypsin, and the resulting peptides analyzed by
MS/MS. A peptide fragment showing the ligation of the N-terminal glycine residue (shown in
red) to the C-terminal LPST residues (shown in green) was identified. Expected masses for y and
b ions are listed above and below the peptide sequence. Ions that were positively identified in the
MS/MS spectrum are highlighted in blue or red. Only the most prominent daughter ions have
been labeled in the MS/MS spectrum. The full amino acid sequence of linear G-His6-p97-
LPSTG-XX is shown at the top.

Supplemental Figure S7. Synthesis of GGG-TMR.

Supplemental Figure S8. Protein sequences.
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Supplemental Figure S1
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Chapter 4: A straight path to circular proteins

Supplemental Figure S2

G-Hise-UCHL3-LPETGXX (amino acid sequence)

GSSHHHHHHSSGLEVLFQGPHMEGORWLPLEANPEVrNOFLKO
LGLHPNWQFVDVYGMDPELLSMVPRPVCALLLFPITEKYEVFRT
EEEEKKSQGODVSSWFMKOTISNACGTIGLHAANNKDKAHF
ESGSTLKKFLEESVSMSPEERARYLENYDAIRVTHETSAHEGOTE
LPETGEKVDLHFIALVHVDGHLYELDGRKPFPINHGETSDETLLED
AIEVCKKFMEROPOELRFNAIALSAA

y ions :

(m/l)1546 1489 1402 1315 1178 1040 9W 766 9? 452 406 318 261 148

TGSjS SH HH H H H SS-GL E
102 159 246 333 470 607 744 881 1018 1155 1243 1330 1387 1500 (n/1)

510 694 750 bom/2)
b1ions

100- 750

250--

0
200 400 600 80 1000 1200

185

M



Chapter 4: A straight path to circular proteins

Supplemental Figure S3
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Supplemental Figure S4
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Supplemental Figure S6

G-Hia6-p97-LPSTG-XX (amino acid sequence)
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Supplemental Figure S7
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Supplemental Figure S8

Sortase A:

MRGSHHHHHHGSKPHIDNYLHDKDKDEKIEQYDKWKEQASKDKKQQAKPQIPKDKS
KVAGYIEIPDADIKEPVYPGPATPEQLNRGVSFAEENASLDDQNISIAGHTFIDRPNYQFT
NLKAAKKGSMVYFKVGNETRKYKMTSIRDVKPTDVGVLDEQKGKDKQLTLITCDDYNE
KTGVWEKRKIFVATEVK

G-Cre-LPETG-HiS6:

GEFAPKKKRKVSNLLTVHQNLPALPVDATSDEVRKNLMDMFRDRQAFSEHTWKMLLS
VCRSWAAWCKLNNRKWFPAEPEDVRDYLLYLQARGLAVKTIQQHLGQLNMLHRRSGL
PRPSDSNAVSLVVRRJRKENVDAGERAKQALAFERTDFDQVRSLMENSDRCQDIRNLA
FLGIAYNTLLRIAEIARIRVKDISRTDGGRMLIHIGRTKTLVSTAGVEKALSLGVTKLVERW
ISVSGVADDPNNYLFCRVRKNGVAAPSATSQLSTRALEGIFEATHRUYGAKDDSGQRY
LAWSGHSARVGAARDMARAGVSIPEIMQAGGWNVNIVMNYIRNLDSETGAMVRLLQ
DGDTSGGGGSGGGGSASLPETGLEHHHHHHHH

G5-eGFP-LPETG-Hiss: 1

GGGGGRMVSKGEELFTGWPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTG
KLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQER11FFKDDGNYKTR
AEVKFEGDTLVNMjELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRH 2

NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVULEFVTMA C)

0

eGFP-LPETG-Hiss

MVSKGEELFTGWPILVELGDVNGHKFSVSGEGEGDAYGKLTLKFICTTGKLPVPWP
TLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEG
DTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSV
QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMD
ELYKLPETGRDPNSSSVDKLAAALEHHHHHH

G-His8-UCHL3-LPETG-XX:

GSSHHHHHHSSGLEVLFQGPHMEGQRWLPLEANPEVTNQFLKQLGLHPNWQFVDVY
GMDPELLSMVPRPVCAVLLLFPITEKYEVFRTEEEEKIKSQGQDVTSSVYFMKQTISNA
CGTIGLIHAIANNKDKMHFESGSTLKKFLEESVSMSPEERARYLENYDAIRVTHETSAHE
GQTELPETGEKVDLHFIALVHVDGHLYELDGRKPFPI NHGETSDETLLEDAIEVCKKFME
RDPDELRFNAIALSAA
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G-Hise-p97:

GSSHHHHHHSSG LEVLFQGPHMASGADSKGDDLSTAI LKQKNRPNRUVDEAI NE DNS
VVSLSQPKMDELQLFRGDWVLLKGKKRREAVCIVLSDDTCSDEKIRMNRVVRNNLRVR
LGDVISIQPCPDVKYGKRIHVLPIDDTVEGITGNLFEVYLKPYFLEAYRPIRKGDIFLVRGG
MRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKREDEEESLNEVGYDDIGGCRKQLAQIK
EMVELPLRHPALFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFUNGPEIMSKL
AGESESNLRKAFEEAEKNAPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQRA
HVIVMAATNRPNSIDPALRRFGRFDREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQV
ANETHGHVGADLAALCSEAALQAIRKKMDLIDLEDE11DAEVMNSLAVTMDDFRWALSQ
SNPSALRETVVEVPQVTWEDIGGLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLF
YGPPGCGKTLLAKAIANECQANFISIKGPELLTMWFGESEANVREIFDKARQMAPCVLFF
DELDSIAKARGGNIGDGGGMADRVINQILTEMDGMSTKKNVFIIGATNRPDIIDPAILRPG
RLDQLIYIPLPDEKSRVAILKANLRKSPVAKDVDLEFLAKMTNGFSGADLTEICQRACKLA
IRESIESEIRRERERQTNPSAMEVEEDDPVPEIRRDHFEEAMRFARRSVSDNDIRKYEM
FAQTLQQSRGFGSFRFPSGNQGGAGPSQGSGGGTGGVYTEDNDDDLYG

3

G-His6-p97-LPSTG-XX:

GSS HHHHHHSSG LEVLFQGPHMASGADSKGDDLSTAI LKQKNRPNRUVDEAI NE DNS
WVSLSQPKMDELQLFRGDTVLLKGKKRREAVCIVLSDDTCSDEKIRMNRVVRNNLRVR o
LGDVISIQPCPDVKYGKRI HVLPIDDTVEGITGNLFEVYLKPYFLEAYRPI RKGDI FLVRGG
MRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKREDEEESLNEVGYDDIGGCRKQLAQIK
EMVELPLRHPALFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKL 1
AGESESNLRKAFEEAEKNAPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQRA -

0HVIVMAATNRPNSIDPALRRFGRFDREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQV0
ANETHGHVGADLAALCSEAALQAIRKKMDLIDLEDET1DAEVMNSLAVTMDDFRWALSQ
SNPSALRE1VVEVPQVTWEDIGGLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLF 0
YGPPGCGKThLAKAIANECQANFISIKGPELLTMWFGESEANVREIFDKARQMAPCVLFF
DELDSIAKARGGNIGDGGGAADRVINQILTEMDGMSTKKNVF1IGATNRPDIIDPAILRPG
RLDQUYIPLPDEKSRVAILKANLRKSPVAKDVDLEFLAKMTNGFSGADLTEICQRACKLA
IRESIESEIRRERERQTNPSAMEVEEDDPVPEIRRDHFEEAMRFARRSVSDNDIRKYEM
FAQTLQQSRGFGSFRFPSGNQGGALPSTGSGGG
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Substrate filtering by the active-site crossover loop in UCHL3 revealed by
sortagging and gain-of-function mutations

(from: M. W. Popp, K. Artavanis-Tsakonas, H. L. Ploegh, JBiol Chem 2009, 284, 3593)

Abstract

Determining how deubiquitinating enzymes discriminate between ubiquitin-conjugated

substrates is critical to understand their function. Through application of a novel protein

cleavage and tagging technique, sortagging, we show that human UCHL3 and the

Plasmodiumfalciparum homologue, members of the ubiquitin c-terminal hydrolase

family, use a unique active site crossover loop to restrict access of bulky ubiquitin

adducts to the active site. Although it provides connectivity for critical active site

residues in UCHL3, physical integrity of the crossover loop is dispensable for catalysis.

By enlarging the active site crossover loop, we have constructed gain-of-function mutants

that can accept substrates that the parent enzyme cannot, including ubiquitin chains of

various linkages.

Introduction

Covalent posttranslational modification of proteins with the 76 amino-acid ubiquitin

(Ub)' molecule controls many cellular processes, including protein turnover, trafficking,

1 The abbreviations used are: Ub, ubiquitin; Ubl, ubiquitin-like molecule; UCH, ubiquitin C-terminal

hydrolase; DUB, deubiquitinating enzyme; JAMM, JAB 1/MPN/Mov34 metalloenzyme; OTU, ovarian
tumor domain; USP, ubiquitin specific protease; MJD, Machado-Joseph disease protein domain; Fmoc, N-
(9Fluorenylmethoxycarbonyl); Ub-AMC, Ub c-terminal 7-amido-4-methylcoumarin; HA-UbVME,
Hemagglutinin epitope tagged ubiquitin vinylmethyl ester; HRP, horseradish peroxidase; LC-ESI-MS,
liquid chromatography- electrospray ionization-mass spectrometry; PAGE, polyacrylamide gel

electrophoresis; PVDF, polyvinylidene fluoride; PBS, phosphate buffered saline; Ni-NTA, nickel-
nitrilotriacetic acid; M48, murine cytomegalovirus M48; PfUCHL3, Plasmodiumfalciparum UCHL3;
DTT, dithiothreitol; SrtA, sortase A; Iso-T, Isopeptidase-T (USP5); HECT, homologous to E6-Associated
Protein (E6AP) C-terminus; Mcl-1, myeloid cell leukemia-I protein; Bcl-2, B-cell leukemia/lymphoma 2
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and transcriptional regulation 1. Ubiquitin conjugation to the a-amine of lysine residues

in target proteins is controlled by a series of enzymes: ubiquitin activiating enzyme (El),

ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Ubiquitin may also be

condensed to other ubiquitin molecules, predominantly via internal lysines at positions 48

(K48) or 63 (K63) to form ubiquitin chains. The ubiquitin protein is generated as a head-

to-tail fusion from the Ubb and Ubc loci and as a linear fusion to the ribosomal protein,

CEP52. Like other regulatory modifications, ubiquitination is reversible. Removal of

ubiquitin is the purview of deubiquitinating enzymes (DUBs), comprised of five groups:

JAMM motif proteases, ovarian tumor proteases (OTUs), Ubiquitin specific protease

(USPs), Machado-Joseph disease protein domain proteases (MJDs), and Ubiquitin C-

terminal hydrolases (UCHs) 2-3. Substrate recognition by these proteases is not well

understood and it is highly likely that domains outside of the minimal catalytic unit

regulate it. Save for members of the UCH class, no other DUBs have been crystallized in

their full-length form. The UCH enzymes are proteins of modest size, capable of

hydrolyzing ubiquitin adducts with small leaving groups, and contribute to homeostasis

of ubiquitin levels in the cell. It is widely held that many members of this class of

ubiquitin-specific hydrolases are unlikely to be involved in editing of ubiquitin-modified

proteins, but rather recycle ubiquitin that has been consumed by reactions with small

molecules 3. Accordingly, large N-terminal ubiquitin fusion proteins are generally poor

substrates for UCH proteases in vitro 4. Since detailed structural data is available for

several members of the UCH class of DUBs in their full-length form, we chose to study

protein; E. coli, Escherichia coli; ISG 15, Interferon stimulated gene 15; CEP52, 52 amino acid 60S
ribosomal protein (L40)
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substrate recognition by these enzymes.

The structures of the yeast UCHL3 homologue YUH-1 5, as well as those of the

mammalian UCHL 1 6 and UCHL3 enzymes are known, for UCHL3 both in its free 7 and

substrate-occupied form 8. UCHL3 is an unusual enzyme from a topological perspective:

it possesses a highly knotted structure, possibly an evolutionary solution to survival in the

proteolytic environment of the ubiquitin-proteasome system 9. A distinguishing feature

of the enzyme's architecture is the presence of an active site crossover loop that embraces

the C-terminal segment of the ubiquitin suicide substrate with which the enzyme was co-

crystallized 8. In the absence of substrate, the crossover loop is flexible and not visible in

the X-ray structure. The role of this loop, and the relevance of its movements in the

course of catalysis is unclear, but it has been proposed that this loop aids in the proper

positioning of the substrate -a ubiquitin adduct- in the enzyme's active site. In contrast to

UCHL3, analysis of the UCHL1 crystal structure (51% sequence identity to UCHL3)

reveals occlusion of the active site by a crossover loop that is ordered also in the absence

of ubiquitin 6, but perhaps this is because of crystal packing interactions. The comparison

of the UCHL1 and UCHL3 enzymes thus leaves the role of the crossover loop in

catalysis or positioning of the substrate unresolved.

We engineered a cleavage site in the crossover loop of UCHL3, to explore its

contribution to both structure and function. We chose to install a sortase recognition site,

because it allows a site-specific cleavage and trans-acylation reaction with concomitant

installation of a functionality (biotin, fluorophores) at the site of sortase cleavage 1. By
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applying the sortagging technique, we can simultaneously interrupt the connectivity of a

protein's peptide backbone and install a tag to track only the cleaved species. Thus, both

native and cleaved sortase substrates can be tracked simultaneously in the same reaction

mixture. The properties of sortagged UCHL3 inspired us to introduce yet other alterations

in the crossover loop, resulting in gain-of-function mutants of UCHL3.

Results

Engineering a sortase cleavage site into UCHL3- The presence of the unusual active site

crossover loop in UCHL3 suggests that it may play a role in substrate selection by

making sequence-specific contacts to the substrate: either to the ubiquitin (Ub) or

ubiqiutin-like (Ubl) moiety or to the attached leaving group. Alternatively, the crossover

loop may play a role in stabilization of the catalytic center of the enzyme. The catalytic

cysteine (C95) and oxyanion-hole stabilizing glutamine (Q89) are separated from the

general base histidine (H 169) and aspartic acid (D184) residues by the crossover loop,

with H169 lying only three residues from the C-terminal end of the loop. The crossover

loop not only traverses the active site of the enzyme, but also provides connectivity for

the two halves of the catalytic center (Figure 5.1a, Figure 5.4a). The loop thus bridges

key residues, bringing them into proximity for catalysis and possibly imparting stability

to the active site. Alternatively, the active site crossover loop has been suggested to act

7as a substrate filter, limiting the size of the ubiquitin C-terminal leaving group , a

possibility that has been suggested but never experimentally addressed. To examine

these possibilities, we engineered an LPETG sortase cleavage site into the crossover loop

of both human UCHL3 and the Plasmodiumfalciparum homolog, PfUHCL3. We
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included PfUCHL3 in our analysis because the two enzymes are structurally similar2 , yet

possess completely unrelated sequences in their crossover loop. As will be described

below, results obtained for UCHL3 and PfJCHL3 are largely similar and thus allow

generalization of our conclusions.

We inserted the LPETG cleavage site at three separate positions in the human UCHL3

(UCHL3) crossover loop and at two positions in the Plasmodiumfalciparum UCHL3

(PfUCHL3) crossover loop (Supplementary Table 5.1, Figure 5.1a), and expressed the

mutant enzymes in E. coli. When exposed to Sortase A (SrtA) and the biotinylated oligo-

glycine nucleophile 1, we observed successful transacylation for all mutant enzymes,

albeit at different efficiencies (Figure 5.1b). The loop in both human and plasmodium

UCHL3 therefore adopts a flexible conformation in solution. The extent of cleavage of

the UCHL3 Loop 2 variant by SrtA can be modulated from 10% to nearly 90% by

incubation with increasing amounts of SrtA and increasing time (Supplementary Figure

5.1). Ubiquitin hydrolase activity was largely unchanged, as assessed by hydrolysis of

the ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) substrate (Figure 5.1c). In

addition, the LPETG substituted human UCHL3 Loop 2 mutant formed a covalent adduct

with a hemagglutinin (HA)-tagged ubiquitin vinylmethyl ester suicide substrate (HA-

UbVME), designed to react with the active site cysteine in DUBs, with similar efficiency

2 Artavanis-Tsakonas, K., Weihofen, W. A., Gaudet, R., and Ploegh, H. L. (manuscript in preparation)
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as did wild-type UCHL3 (Figure 5.1d). We chose to use the human UCHL3 Loop 2 and

PfTCHL3 Loop 2 mutants for further analysis because these mutants retained near wild-

type Ub-AMC hydrolysis activity and were most efficiently cleaved by sortase. We

conducted subsequent sortagging experiments at low sortase concentrations that yield

incomplete conversion to the transpeptidation product in order to track the properties of

both cleaved and uncleaved UCHL3 species under identical conditions.

Crossover loop connectivity is dispensable for ubiquitin docking- The crossover loop in

liganded UCHL3 likely assumes an ordered conformation in solution 8. When purified

UCHL3-HA-UbVME adduct is exposed to SrtA, no transpeptidation is observed (Figure

5.2a), consistent with previous observations that the LPETG motif must be placed in a

flexible, unstructured region 1. In addition, titration of ubiquitin into the sortase

cleavage reaction successfully inhibits transpeptidation (Figure 5.2b). Therefore, in

solution, the liganded form of UCHL3 possesses a rigid crossover loop refractory to

attack by sortase. The highly knotted structure of UCHL3 suggests that it is possible to

nick the crossover loop without complete unfolding of the polypeptide. We find only a

slight increase in Stokes' radius upon cleavage of the crossover loop (Figure 5.3),

suggesting that the nicked preparation does not undergo gross alterations in folding state.

Nonetheless, the slightly larger hydrodynamic radius of the transpeptidation product is

likely due to a more relaxed conformation caused by opening of the flexible crossover

loop and installation of the 771 Da biotinylated probe (Figure 5.3b). We further

examined whether connectivity of the active site is essential for maintenance of UCHL3

structure byfirst cleaving the active site loop with small amounts of sortase and then
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delivering an HA-UbVME suicide substrate. Incomplete cleavage by sortase allows the

properties of both the cleaved and uncleaved UCHL3 species to be examined

simultaneously in one and the same reaction mixture. Indeed, a fraction of the cleaved

UCHL3 successfully reacts with HA-UbVME, as shown by the appearance of a species

that is both biotinylated and anti HA-reactive (Figure 5.4b). Since the HA-UbVME

adduct is refractory to cleavage by sortase, sortase-mediated transpeptidation must have

preceded HA-UbVME addition. Because of the electrophilicity of the vinyl methylester

group, we predicted that HA-UbVME adduct formation would require only the cysteine

nucleophile and not the general base histidine residue. We find that mutation of His 169

to alanine results in HA-UbVME reaction levels comparable to wild-type UCHL3

(Figure 5.4b, bottom), but eliminates Ub-AMC hydrolysis (Figure 5.1c). Reaction of

the catalytic cysteine with HA-UbVME requires proper folding of the enzyme to allow

ubiquitin recognition, as evidenced by highly specific alkylation of DUB enzymes in

whole cell lysate experiments ". Moreover, DUB protein preparations typically contain a

small fraction of unfolded protein that does not react with electrophilic ubiquitin

derivatives 12 (Figure 5.1d), despite the presence of a cysteine residue. Thus HA-

UbVME reactivity reflects competency to bind ubiquitin and to position the catalytic

cysteine in proximity of the electrophilic trap, and not ubiquitin hydrolase activity per se.

Taken together, we conclude that connectivity of the active site crossover loop is not

essential for maintenance of UCHL3 structure, as assessed by the ability of the cleaved

preparation to interact with ubiquitin.
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The crossover loop restricts substrate size- We reasoned that if the role of the active site

crossover loop is to restrict the size of the ubiquitin C-terminal leaving group, then

ablation of the connectivity should result in relaxed leaving group specificity. Indeed,

UCHL3 with a nicked active site crossover loop hydrolyzes K63-linked ubiquitin chains

to monomeric ubiquitin, while the uncleaved preparation and sortase itself fail to do so

(Figure 5.5a). Incubation of UCHL3 with increasing concentrations of SrtA results in

greater oligo-ubiquitin hydrolysis, indicating that it is the cleaved UCHL3 species that

mediates liberation of mono-ubiquitin. This is consistent with the HA-UbVME labeling

experiments and indicates that a portion of the cleaved UCHL3 species not only retains

proper structure, but also ubiquitin hydrolase activity. The modest ubiquitin hydrolysis

activity of the cleaved UCHL3 likely indicates that a fraction of the cleaved material is

inactive upon transpeptidation, perhaps because the structure is subtly destabilized.

Nevertheless, the gain-of-function associated with the cleaved UCHL3 preparation

indicates that at least some fraction is competent to attack polyubiquitin chains.

Expansion of the active site crossover loop results in gain-of-function mutants- Based on

these results, we reasoned that insertion of additional amino acids in the active site

crossover loop to extend it would stabilize the enzyme, while still allowing the observed

relaxed substrate specificity. Accordingly, we inserted 5 and 10 glycines in the active

site crossover loop on the background of the Loop 2 LPETG mutation. Hydrolysis of

Ub-AMC was affected only mildly for both mutants (Figure 5.1c). We then tested the

ability of these mutants to hydrolyze ubiquitin chains of different linkages in the

complete absence of sortase (Figure 5.5b). Both of the UCHL3 variants with 5 or 10
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added glycines in the crossover loop readily disassemble K63- and K48- linked ubiquitin

chains, whereas the uncleaved UCHL3 does not. None of the mutants are able to

hydrolyze a linear hexahistidine-tagged head-to-tail diubiquitin fusion, whereas

Isopeptidase-T (USP5) efficiently does so. The PfUCHL3 Loop 2 mutant was also

subjected to loop expansion and incubated with the various ubiquitin polymers. The

PfLJCHL3 loop-expanded mutants hydrolyze K48-, and to a lesser extent K63- linked

ubiquitin, but not linear ubiquitin polymers (Figure 5.5c). We assessed the rates of

catalysis of our engineered mutant forms of UCHL3 and PfJCHL3 and compared these

to USP8 13 and the A20 N-terminal domain 14-15 (Figure 5.6). Quantitation of K48-

linked diubiquitin hydrolysis yields rates intermediate between those of USP8 and the

A20 N-terminal domain (Table 5.1). Thus, by expanding the length of the crossover

loop, we have successfully created gain-of-function versions of UCHL3 and PflCHL3

that can hydrolyze bulky substrates which the parent molecules are unable to attack.

We tested whether the loop-expanded versions of UCHL3 can hydrolyze the proximal

ubiquitin from a ubiquitinated substrate, Mcl-I (myeloid cell leukemia-I protein). The

HECT (Homologous to E6-Associated protein (E6AP) C-terminus) domain E3-ligase,

ARF-BP 1/Mule, targets the antiapoptotic Bcl-2 (B-cell leukemia/lymphoma 2 protein)

family member Ml- 1 for ubiquitination at several internal lysines in vitro 16. When such

ubiquitinated Mel-1 preparations 2 are exposed to the UCHL3 mutant with the 10 glycine

expansion, the mono-ubiquitinated form of Mel-I is hydrolyzed (Figure 5.7a). In

contrast to wild-type UCHL3, substrates enjoy unfettered access to the active site of the

M4 8USP isopeptidase. The M4 8USP domain, which has activity against K63- and K48-
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linked ubiquitin chains similar to that of the loop-expanded UCHL3 enzymes 17, also

efficiently hydrolyzes the mono-ubiquitinated Mel-I substrate. To ensure that the

observed multi-(mono)ubiquitinated forms of Mel- 1 indeed represent a single ubiquitin

condensed onto several Ml- 1 lysines and not a ubiquitin chain added to a single lysine,

we performed the Mcl- 1 ubiquitination reaction with a ubiquitin variant incapable of

polyubiquitin chain formation because it lacks lysine residues. Although the Mcl-I

ubiquitination pattern of the 13 available lysines in Mcl- 1 is different with this ubiquitin

variant, the UCHL3 mutant with 10 added glycines again hydrolyzes all proximal

ubiquitin moieties, as assessed by a dramatic increase in the amount of Mcl- 1 backbone

released after digestion (Figure 5.7b).

Discussion

We took advantage of the known crystal structures for liganded and unliganded UCHL3

and applied the sortagging technique to a mammalian and apicomplexan representative of

UCHL3. We chose to compare PfUCHL3 with its mammalian homolog because their

sequences are no more than 35.9% identical, with almost no similarity in the crossover

loop 18. Thus, the sequence-specific contributions of the crossover loop to catalysis can

be parsed out of its structural contributions by comparison of both the host and pathogen

enzymes. We have meanwhile solved the PfUCHL3 structure and found the overall fold

to be virtually identical to its human counterpart3 . Only the unliganded form of UCHL3

is a substrate for transpeptidation- UCHL3 was not cleaved when modified with HA-

UbVME prior to exposure to sortase. Combined, our results suggest that the crossover

loop of UCHL3 is indeed a flexible structure, despite the ordered loop visible in the
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crystal structure of its relative, UCHL1. Since there is no obvious sequence similarity

between the crossover loops of UCHL3 and PfLCHL3, the presence, but not the exact

sequence of the crossover loop is essential to substrate selection. This conclusion is

supported also by the lack of effect of the introduction of an LPETG tag at different

positions in the crossover loop. The loop alone determines the size of the leaving group

that can be liberated from ubiquitin by UCHL3. Integrity of the loop is not required for

catalysis by UCHL3 - the enzyme can function with its backbone cleaved very close to

the active site. The stability of the enzyme is likely enhanced by the complex and

knotted topology of the polypeptide backbone. There are many examples of proteins that

are cleaved in unstructured loops; such cleavage is often required to generate an active

enzyme from its inactive precursor, to expose the fusogenic properties of viral fusion

proteins 19, or to render active the bacterial toxins of the AB type such as cholera toxin

and K coli heat labile enterotoxin 2 . The cleavage of unstructured loops does not, as a

rule, perturb secondary or tertiary structure for those proteins where the two forms can be

examined independently. However, the processed proteins but not their precursors are

often poised to undergo major structural rearrangements upon engagement of the

appropriate counterstructures.

We have obtained gain-of-function mutants of UCHL3 by enlarging the active site

crossover loop. These mutants successfully disassemble both K48 and K63 c-amine

linked ubiquitin polymers, while wild-type UCHL3, which has a crossover loop diameter

of -12-15 Angstroms, cannot. When known structures for K48- and K63- linked

ubiquitin dimers are modeled in the solved UCHL3-UbVME structure (Supplementary
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Figure 2), the proximal ubiquitin sterically clashes with UCHL3. To explain the

observed hydrolysis of these substrates, the hinge region that contains the scissile Gly-

Lys bond must be sufficiently flexible in solution to allow displacement of the proximal

ubiqutin by UCHL3, consistent with previous observations 21. Because K63 lies near the

amino terminus of ubiquitin, a-linked dimers are hypothesized to have an open

conformation similar to that of K63 linked diubiquitin 2. However, none of the UCHL3

or PfJCHL3 mutants can hydrolyze an a-amine linked dimer. This does not result from

a difference between the a and , linkage itself, since UCHL3 can hydryolze a ubiquitin

fusion to the ribosomal protein CEP52, in a-linkage 4. Instead, the scissile bond in the

ubiquitin head-to tail fusion is likely inaccessible to the UCHL3 active site cysteine.

When the head-to tail ubiquitin dimer is modeled by ISG15, which has two tandem a-

linked Ubl domains, and fitted into the UCHL3-UbVME structure, the region where the

scissile bond would be lies far outside of the active site groove (Supplementary Figure

2). Although the structural details of ISG1 5 likely differ from those of a ubiquitin head-

to-tail fusion, we favor a model where the lack of cleavage by UCHL3 is due to

differences in the conformation of K48-, K63- and a-amine linked ubiquitin dimers in

solution.

The promiscuity of the loop-expanded UCHL3 variants provides a rationale for the

properties of UCHL3. In the absence of other protein domains that target the enzyme to

particular ubiquitinated proteins or ubiquitin chains of specific linkages 23, UCHL3 limits

access to its active site to only those substrates that can pass through the narrow bore of
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the crossover loop. Thus it is unlikely that wild-type UCHL3 directly targets larger,

24
folded proteins for deubiquitination

In summary, we have reported a novel method for exploring the contribution of flexible

loops to protein structure and function. By applying the sortagging technique to the

active site crossover loop in UCHL3 as well as mutagenesis, we can examine the

contributions of the loop to both the structure and function of the enzyme. We have

expanded the range of substrates that UCHL3 can hydrolyze and provide strong support

for the notion that the unusual active-site crossover loop functions as a substrate filter,

limiting the types of substrates that the enzyme can hydrolyze. Such modified versions

of UCHL3 may be useful as general ubiquitin releasing enzymes for the study and

identification of ubiquitin adducts.

Methods

Reagents- Probe 1 was synthesized by standard N-(9-Fluorenylmethoxycarbonyl) (Fmoc)

based solid phase peptide chemistry as described 1. Triglycine was purchased from

Sigma. Antibodies were purchased from the following vendors: anti-Hemagglutinin

(HA) tag (antibody 3F10-HRP; Horseradish Peroxidase), Roche; streptavidin-HRP,

Amersham Biosciences; anti-FLAG tag M2 (Sigma); anti-ubiquitin (rabbit, Sigma); anti-

Mcl-1 (Sigma); goat anti-rabbit-HRP (Southern Biotech). FLAG peptide was purchased

from Sigma. Ub C-terminal 7-amido-4-methylcoumarin (Ub-AMC), ubiquitin lacking

all lysines, K63-linked diubiquitin, K48-linked diubiquitin, UBEl, USP8, and A20 N-

terminal domain were purchased from Boston Biochem. Purified ubiquitin was
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purchased from Sigma. Hemagglutinin epitope tagged ubiquitin vinylmethyl ester (HA-

UbVME) was generated as described previously 25

Mass Spectrometry- Liquid chromatography- electrospray ionization-mass spectrometry

(LC-ESI-MS) was performed on a Micromass LCT mass spectrometer (Micromass MS

Technologies, USA) and a Paradigm MG4 HPLC system equipped with a HTC PAL

autosampler (Michrom BioResources, USA) and a Waters Symmetry 5 pM C8 column

(2.1 x 50 mm, MeCN:H20 (0.1% formic acid) gradient mobile phase, 150 pil/min).

Cloning andprotein expression- Sortase A was expressed and purified as described 26

Murine cytomegalovirus M48 deubiquitinating enzyme domain (M4 8USP) was cloned and

purified as described previously 17. The C-terminal residues of the E3 ligase, ARF-BP1

(amino acids 4012-4374), UCHL3 and PfUCHL3 were cloned into pET28a+ (Novagen)

with an N-terminal hexahistidine tag. The N-terminal residues of Ml- 1 (myeloid cell

leukemia-I protein, amino acids 1-327) were cloned as an N-terminal FLAG peptide

fusion into the vector pET16b (Novagen) carrying an N-terminal Hisio tag. The final

Mel-I construct consists of an N-terminal Hisio tag followed by a FLAG tag and Mel-i1

327- UCHL3 point mutations and LPETG substitutions were generated by site-directed

mutagenesis using a QuickChange kit (Stratagene). Loop expanded versions of UCHL3

and PfUCHL3 were generated by inserting 5 or 10 glycine residues immediately after the

LPETG sequence. Hexahistidine tagged linear diubiquitin was also cloned into

pET28a+. Proteins were expressed in BL-21 E. coli or Rosetta (FLAG-Ml-1)

DE3(PLysS) cells (Novagen), resuspended in lysis buffer (50 mM Tris, 150 mM NaCl,
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10 mM imidazole, 10% glycerol, pH 7.2) and lysed by French press. Proteins were

purified from clarified lysates with nickel-nitrilotriacetic acid agarose (Ni-NTA; Qiagen)

and eluted in lysis buffer supplemented with 500 mM imidazole. Eluted fractions were

dialyzed extensively to remove imidazole. Protein concentrations were determined by

the Bradford method (Biorad).

Immunoblotting- Proteins were separated by Tris/Glycine SDS-PAGE or Tris/Tricine

PAGE (Ub chain digestion experiments) and transferred to nitrocellulose membranes or

Polyvinylidene fluoride (PVDF, ubiquitin chain digestion experiments). Membranes

were blocked with 5% nonfat dried milk in phosphate buffered saline supplemented with

Tween 20 (PBS, 0.1% Tween 20, pH 7.4) overnight at 4 0C or for 1 h at room

temperature. Membranes were washed with PBST and incubated with the indicated

antibodies for 1 h. Streptavidin-HRP and anti-HA (3F10-HRP) blots were then washed

and developed with Western Lighting Chemiluminescence Reagent Plus (Perkin Elmer).

All other blots were washed, incubated with a goat anti-rabbit-HRP conjugate, and

developed.

Sortase cleavage and gel-filtration of sortagging reactions- Sortagging of UCHL3 (10

ptM) was performed by incubating with the indicated concentrations of sortase A (Srt A)

in Srt buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 10 mM CaCl2), and 5 mM probe 1 in a

25 pl volume. Reactions were incubated at 37 C for 2 h and halted with sample buffer.

For gel filtration, a 1 ml reaction (5 tM sortase) was purified by size exclusion
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chromatography on S75 Sephadex resin using 20 mM Tris, 50 mM NaCl, pH 8.0 buffer

as eluent. Fractions were collected and analyzed by SDS-PAGE.

Kinetic measurements- Ub-AMC assays were performed in assay buffer (50 mM

Tris/HCl, 150 mM NaCl, 2 mM EDTA, 2 mM DTT, 1 mg/ml BSA [pH 7.5]) at 25 C.

Enzyme concentrations were determined by Bradford assay (Biorad). UCHL3 mediated

Ub-AMC hydrolysis was performed in a total volume of 30 ptl with 10 pM UCHL3

mutants and 62.5 nM Ub-AMC in a 384-well NUNC black plate. PfUCHL3 assays were

performed with 25 pM enzyme and 125 nM UbAMC. Data was collected with a

Spectramax M2 plate reader (Molecular Devices) with a 368 nm/467 nm filter pair and a

455 nm cutoff. Velocities were determined by fitting the initial linear data points to a

least-squares regression line.

HA-UbVME labeling and adduct purification- Sortase cleavage reactions (5 ptM sortase)

of the indicated UCHL3 mutants were performed for 2 h at 37 0C and 5 ptl was diluted

with 7 pl of labeling buffer (20 mM Tris pH 8.0, 150 mM NaCl). DTT (1 mM final

concentration) and 1.5 ptg of HA-UbVME was added and reactions were incubated at 37

C for 1 h. Reactions were halted with sample buffer and loaded onto 12.5% SDS-PAGE

for analysis. For HA-UbVME adduct purficiation, a large-scale reaction (1 ml) was

prepared, omitting sortase and purified by ion-exchange chromatography as described 8
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Ubiquitin polymer digestion- K63- linked diubiquitin cleavage by sortagged UCHL3

Loop 2 enzyme was performed by incubating 7 pg of UCHL3 Loop 2 with either 2.25 tg

or 22.5 pg of SrtA and 5 mM Probe 1 in Srt buffer for 2 h at 37 0C. K63- linked

diubiquitin (0.5 ptg) was then added as well as 1 mM DTT and incubated for 1 h at 37 C.

Reactions were halted with Tris/Tricine sample buffer and subjected to 12.5 %

Tris/Tricine PAGE followed by anti-ubiquitin immunoblot. Digestion of ubiquitin chains

by UCHL3 loop extension mutants was performed in Srt buffer with 180 ng of each

enzyme, 1 mM DTT and 1 pg of the indicated ubiquitin chain in a total volume of 7 tl.

Reactions were halted with Tris/Tricine sample buffer and loaded onto a 12.5%

Tris/Tricine gel for anti-ubiquitin immunoblot analysis. For kinetic measurements, 500

nM of enzyme was incubated with 10 pM of either K63- or K48- linked diubiquitin in

buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM EDTA, 2 mM DTT). At the indicated

times, samples were withdrawn, quenched with Tris/Tricine loading buffer and subjected

to 10% Tris/Tricine PAGE. Gels were stained with colloidal coomassie and bands for

K48 diubiquitin hydrolysis were quantiated with ImageJ. Velocities were determined by

fitting the initial linear data points to a least-squares regression line. Higher order K63-

linked ubiquitin conjugates visible in colloidal blue stained gels precluded quantiation of

K63 diubiquitin hydrolysis.

Mcl-i ubiquitination and digestion- FLAG-Ml-I (1 pg) was incubated with 100 ng

human UBE1 (E1), 1 pg UbcH7 (E2), 10 tg Arf/BP1 (E3) and 100 pg Ub with an ATP
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regenerating system 16 for 90 min at room temperature3 . Reactions were quenched with

NET buffer (50 mM Tris-HCl [pH 7.4], 0.5% NP-40, 150 mM NaCl, 5 mM EDTA) and

incubated overnight at 4 *C with anti-FLAG M2 antibody. Immune complexes were

recovered with Protein G beads (Sigma), washed extensively with NET buffer, and eluted

by incubating with FLAG peptide (250 tg/ml in Srt Buffer) at 25 C with shaking for 30

min. Eluates were collected, pooled, divided, and incubated with 1 mM DTT and

UCHL3 or PfUCHL3 mutant enzymes (800 ng) for 2 h at 37 0C. Samples were analyzed

by SDS-PAGE (10%), transferred to nitrocellulose, and anti-Mcl-1 immunoblot was

performed.

3 Love, K. R., Sastry, R. K., Spooner, E., and Ploegh, H.L. (manuscript in preparation)
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Figure Legends

Figure 5.1. Characterization of UCHL3 and PfUCHL3 sortase substrates

(a) Crystal structure of UCHL3 in complex with UbVME (pdb: 1 xd3). UbVME is in yellow

with the crossover loop (blue) spanning the two halves of UCHL3 (green and orange). The

position of the Loop 2 substitution is indicated by an arrow.

(b) LPETG substitution in the crossover loop renders UCHL3 and PfUCHL3 susceptible to

sortase-mediated transpeptidation. Wild-type and LPETG substituted UCHL3 and PfUTCHL3

mutants (10 pM) were exposed to sortase (5 pM top blot; 150 pM bottom blot) and biotinylated

oligoglycine probe 1 (5 mM) and analyzed by streptavidin-HRP immunoblot to detect the -20

kD transpeptidation product.
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(c) LEPTG-substituted UCHL3 and PfLJCHL3 mutants catalyze Ub-AMC hydrolysis. Ub-AMC

hydrolysis by wild-type and mutant UCHL3 (10 pM) was measured using sub-saturating

concentrations of Ub-AMC (62.5 nM). Data is plotted as the ratio of velocity to the enzyme

concentration, with n>3 (top). Enzymes with an H169A mutation are indicated by an (H), and

enzymes with 5 or 10 glycines added to the crossover loop directly after the LPETG sequence

are indicated by +5G and +10G. Ub-AMC hydolysis (125 nM) was also measured for wild-type

and mutant PfUCHL3 enzymes (25 pM). Data is plotted as the ratio of the velocity to the enzyme

concentration, with n=3 (bottom).

(d) An LPETG substituted UCHL3 mutant is labeled by a ubiquitin suicide substrate. HA-

UbVME was titrated into a fixed amount (5 pg) of wild-type UCHL3 or the human UCHL3

Loop 2 mutant enzyme. Reactions were analyzed by 12.5% SDS-PAGE and stained with

coomassie to visualize total protein.

Figure 5.2. Ubiquitin binding alters susceptibility to sortase-mediated transpeptidation.

(a) The UCHL3-HA-UbVME adduct is refractory to sortase-mediated transpeptidation. Free

UCHL3 Loop 2 enzyme (10 pM) and the purified HA-UbVME adduct (10 pM) were exposed to

SrtA (5pM) and biotinylated probe 1 (5 mM) for the indicated times. Reactions were analyzed

by 12.5% SDS-PAGE and either stained with coomassie (top) or transferred to nitrocellulose for

streptavidin-HRP immunoblot (bottom).

(b) Ubiquitin binding competes with sortase-mediated transpeptidation. UCHL3 Loop 2

enzyme was incubated with SrtA (5pM) and probe 1 (5 mM) for the indicated amounts of time in

the absence or presence of various concentrations of purified ubiquitin. The transpeptidation

product was detected by streptavidin-HRP immunoblot.
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Figure 5.3. Cleaved and intact UCHL3 migrate with similar Stokes' radius by gel filtration

chromatography.

(a) Similar gel filtration chromatography elution profiles of uncleaved UCHL3 Loop 2 alone (10

pM); blue line and UCHL3 Loop 2 (10 pM) incubated with SrtA (5 pM ) and probe 1 (5 mM);

red line. Under these conditions, the majority of the UCHL3 population is uncleaved. Reactions

were subjected to size exclusion chromatography on a Superdex S-75 column and the UV

absorbance at 280 nm was recorded.

(b) Intact UCHL3 Loop 2 protein, cleaved UCHL3 Loop 2 protein, and Sortase A co-migrate by

size exclusion chromatography. Fractions corresponding to the major peak (60 ml - 72 ml) in

the sortase cleavage reaction (red line in Fig. 3a) where the majority of the UCHL3 population is

uncleaved were collected and analyzed by 12.5 % SDS-PAGE followed by coomassie stain (top)

to detect total protein or streptavidin-HRP immunoblot (bottom) to detect the transpeptidation

product.

Figure 5.4. Crossover loop integrity is not necessary for maintenance of UCHL3 active site

structure.

(a) Schematic showing the UCHL3 secondary structure elements with beta sheets represented as

arrows and alpha helices as cylinders. The position of the crossover loop (blue) is shown relative

to the catalytic residues (circled letters). Upon sortase-mediated transpeptidation, probe 1 is

affixed to the half shown in green, interrupting the connectivity to the half shown in orange.

Note that the half of the enzyme that receives probe 1 contains the catalytic cysteine residue that

reacts with HA-UbVME.
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(b) Cleaved UCHL3 preparations react with a ubiquitin suicide substrate. Wild-type UCHL3,

UCHL3 Loop 2, and UCHL3 Loop2 H169A mutant enzymes (10 pM) were exposed to SrtA (5

pM) and probe 1 (5 mM) for 2 h at 37 *C and subsequently incubated with HA-UbVME (1.5 pg)

for 1 h at 37 0C. Reactions were analyzed by 12.5 % SDS-PAGE followed by streptavidin-HRP

immunoblot and anti-HA immunoblot. The identities of the bands detected are shown (right).

Figure 5.5. The active site crossover loop restricts ubiquitin leaving group size.

(a) Cleavage of the crossover loop renders UCHL3 competent to disassemble ubiquitin

polymers. UCHL3 Loop 2 protein (7 pLg) was exposed to either 2.25 pg or 22.5 pg of SrtA and

probe 1 (5 mM) for 2 h. Reactions were subsequently incubated with K63- linked diubiquitin

chains (0.5 ptg) at 37 0C for 1 h. Ubiquitin cleavage was assessed by 12.5% Tris/Tricine SDS-

PAGE followed by anti-ubiquitin immunoblot. *Ubn denotes higher order K63-linked ubiquitin

in the diubiquitin preparation.

(b) Crossover loop expansion allows UCHL3-mediated hydrolysis of K63- and K48- linked

ubiquitin but not a hexahistidine-tagged head-to-tail diubiquitin fusion. 180 ng of each enzyme

(2= UCHL3 Loop 2, 5 = 5 glycine insertion, 10 = 10 glycine insertion, Iso-T = isopeptidase-T)

was incubated with 1 pg of the indicated ubiquitin polymer for 2 h at 37 "C. Reactions were

separated by 12.5% Tris/Tricine SDS-PAGE followed by anti-ubiquitin immunoblot.. *Ubn

denotes higher order K63 -linked ubiquitin in the diubiquitin preparation.

(c) Loop expanded versions of PfJCHL3 hydrolyze K48- linked diubiquitin, inefficiently cleave

K63- linked polyubiquitin, and are inactive against a hexahistidine-tagged head-to-tail

diubiquitin fusion. 180 ng of each enzyme (2 = PfUCHL3 Loop 2, 5 = 5 glycine insertion, 10 =
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1 Oglycine insertion, Iso-T = isopeptidase-T) was incubated with 1 ptg of the indicated ubiquitin

polymer for 2 h at 37 C. Reactions were analyzed as in Fig. 5b

Figure 5.6. Isopeptide linked diubiquitin hydrolysis by engineered UCHL3 and PfUCHL3

mutants.

Enzymes (500 nM) were incubated with either K48- linked diubiquitin (10 pM, left) or K63-

linked diubiquitin (10 pM, right), stopped at the indicated times points by addition of

Tris/Tricine sample buffer, subjected to 10% Tris/Tricine SDS-PAGE electrophoresis, and

stained by colloidal blue. K48- linked diubiquitin hydrolysis was quantified and rates were

determined (Table 1). Because of visible higher order ubiquitin polymers, K63- linked ubiquitin

hydrolysis is displayed, but not quantitated.

Figure 5.7. Crossover loop expansion allows hydrolysis of ubiquitinated Mcl-1.

(a) Loop expanded UCHL3 hydrolyzes ubiquitin-FLAG-Mcl-1 conjugates. FLAG-tagged Mcl-

1 (1 pg) was ubiquitinated by incubation with UBE1, UBCH7, ArfBP-1/Mule, and ubiquitin (see

experimental procedures). Ml-I was then immunoprecipitated with anti-FLAG antibody and

either boiled in sample buffer (input) or eluted with FLAG peptide (FLAG peptide eluate).

FLAG peptide eluates were pooled, divided equally, and incubated with 800 ng of the indicated

enzymes for 2 h at 37 *C. Reactions were separated by 10% SDS-PAGE and analyzed by anti-

Mel-1 immunoblot.

(b) Loop expanded UCHL3 hydrolyzes the proximal ubiquitin from Mcl-1. FLAG-tagged Mel-

1 was prepared as in Fig. 7a, using ubiquitin with all lysines substituted with arginine. Mel-1
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conjugates were digested and analyzed as in Fig. 7a.
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Figure 5.1
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Figure 5.2
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Figure 5.3
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Figure 5.4
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Figure 5.5
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Figure 5.6
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Figure 5.7
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Table 1. K48- diubiquitin hydrolysis rates of engineered UCHL3 and PfJCHL3 enzymes
compared to USP8 and the A20 N-terminal domain.

Enzyme V[E] Rate relative to USP8 Rate relative to A20 NTD
(min~')a (%) (%)

UCHL3+5G 0.281 27.89 195.15
UCHL3+10G 0.410 40.61 284.19
PfUCHL3+5G 0.311 30.80 215.53

PfUCHL3+1OG 0.374 37.05 259.22
USP8 1.009 100 700

A20 NTD 0.144 14.27 100
a To determine velocities, K48-diubiquitin cleavage reactions were separated by SDS-PAGE
(Fig. 6), stained with colloidal coomassie, and the ratio of mono-ubiquitin to total ubiquitin was
quantitated. The rate of mono-ubiquitin release versus time was determined by fitting the initial
linear data points to a least squares regression line. NTD, N-terminal domain.
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Supplementary Figure Legends:

Supplementary Figure 5.1. UCHL3 Loop 2 mutant enzyme can be cleaved nearly

quantitatively by sortase A to yield the expected transpeptidation product.

(a) UCHL3 Loop 2 transpeptidation. Sortase A (150 pM) and UCHL3 Loop 2 enzyme

(50 pM) were mixed in the presence of triglycine nucleophile (90 mM) and incubated for

the indicated amounts of time at 37 0C. Reactions were analyzed by 12.5% SDS-PAGE

and stained with coomassie to visualize total protein.

(b) Reconstructed ESI-MS spectra for UCHL3 Loop 2 transpeptidation reaction.

Reactions from (a) were quenched with 0.1% formic acid and used for liquid

chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis.

UCHL3 Loop 2 incubated at 37 C for 8 h (top) and UCHL3 Loop 2 enzyme (50 pM)

mixed with sortase A (150 pM) and 90 mM triglycine nucleophile (bottom). By ESI-MS,

the transpeptidation product is the exclusive species of UCHL3 Loop 2 protein seen in

the transpeptidation reaction after 8 hours.

Supplementary Figure 5.2. Head-to-tail linked diubiquitin is likely inaccessible to

the UCHL3 active site.

Structures for K48-linked diubiquitin (a), K63-linked diubiquitin (b), or ISGI 5 (c) in red

were superimposed on the known UCHL3-UbVME (gray) structure by aligning the distal

ubiquitin moiety with UbVME. A close up view of the active site (right) is shown, with

the catalytic cysteine in blue.
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Supplementary Table 5.1. Table showing the positions of LPETG substitutions in
UCHL3 and PfUCHL3.
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Supplementary Figure 5.1.
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Supplementary Figure 5.2.
a

K48 (pdb: izo6)

b
K63 (pdb: 2jf 5)

ISG15 (pdb: 1z2m)
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Supplementary Table 5.1. Table
UCHL3 and PfU[CHL3.

showing the positions of LPETG substitutions in

Protein
UCHL3 Loop 1
UCHL3 Loop 2
UCHL3 Loop 3

UCHL3 Loop 2 +5G
UCHL3 Loop 2 +10G

PfUCHL3 Loop 1
PfUCHL3 Loop 2

PfUCHL3 Loop 2 +5G
PfUCHL3 Loop 2 +1OG

Residue
Numbers
156-160
159-163
162-166
159-163
159-163
151-155
155-159
155-159
155-159

WT Sequence
HEGQTEAPSID
QTEAPSIDEKV
APSIDEKVDLH
QTEAPSIDEKV
QTEAPSIDEKV
FCGQVENRDDI
VENRDDILDVD
VENRDDILDVD
VENRDDILDVD

Replaced Sequence
HEGLPETGSID
QTELPETGEKV
APSLPETGDLH
QTELPETGGGGGGEKV
QTELPETGGGGGGGGGGGEKV
FCGLPETGDDI
VENLPETGDVD
VENLPETGGGGGGDVD
VENLPETGGGGGGGGGGGDVD
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Determining how deubiquitinating enzymes discriminate
between ubiquitin-conjugated substrates is critical to under-
stand their function. Through application of a novel protein
cleavage and tagging technique, sortagging, we show that
human UCHL3 and the Plasmodiumfalciparum homologue,
members of the ubiquitin C-terminal hydrolase family, use a
unique active site crossover loop to restrict access of bulky
ubiquitin adducts to the active site. Although it provides con-
nectivity for critical active site residues in UCHL3, physical
integrity of the crossover loop is dispensable for catalysis. By
enlarging the active site crossover loop, we have constructed
gain-of-function mutants that can accept substrates that the
parent enzyme cannot, including ubiquitin chains of various
linkages.

Covalent post-translational modification of proteins with the
76-amino acid ubiquitin (Ub)2 molecule controls many cellular
processes, including protein turnover, trafficking, and tran-
scriptional regulation (1). Ubiquitin conjugationto the e-amine
of lysine residues in target proteins is controlled by a series of
enzymes: ubiquitin-activating enzyme (El), ubiquitin-conju-
gating enzymes (E2), and ubiquitin ligases (E3). Ubiquitin may
also be condensed to other ubiquitin molecules, predominantly
via internal lysines at positions 48 (K48) or 63 (K63) to form
ubiquitin chains. The ubiquitin protein is generated as a head-
to-tail fusion from the Ubb and Ubc loci and as a linear fusionto
the ribosomal protein, CEP52. Like other regulatory modifica-
tions, ubiquitination is reversible. Removal of ubiquitin is the
purview of deubiquitinatingenzymes (DUBs), comprised offive
groups: JAMM motif proteases, ovarian tumor proteases
(OTUs), ubiquitin-specific protease (USPs), Machado-Joseph
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supplemental Figs. S1 and 52 and Table S1.
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ultin-speciflc protease; Ub-AMC, Ub C-terminal 7-amido-4-methylcouma-
rin; HA-UbVME, hemagglutinin epitope-tagged ubiquitln vinylmethyl
ester; HRP, horseradish peroxidase; LC-ESI-MS, liquid chromatography-
electrospray ionization-mass spectrometry; PBS, phosphate-buffered
saline; M48, murine cytomegalovirus M48; PfUCHL3, P. falciparum UCHL3;
DTT, dithlothreitol; SrtA, sortase A; Iso-T, Isopeptidase-T (USP5); Mcl-1,
myeloid cell leukemia-1 protein.
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disease protein domain proteases (MJDs), and ubiquitin C-ter-
minal hydrolases (UCHs) (2, 3). Substrate recognition by these
proteases is not well understood and it is highly likely that
domains outside of the minimal catalytic unit regulate it. Save
for members of the UCH class, no other DUBs have been crys-
tallized in their full-length form. The UCH enzymes are pro-
teins of modest size, capable of hydrolyzing ubiquitin adducts
with small leaving groups, and contribute to homeostasis of
ubiquitin levels inthe cell. It is widely held that many members
of this class of ubiquitin-specific hydrolases are unlikely to be
involved in editing of ubiquitin-modified proteins, but rather
recycle ubiquitin that has been consumed by reactions with
small molecules (3). Accordingly, large N-terminal ubiquitin
fusion proteins are generally poor substrates for UCH proteases
in vitro (4). Because detailed structural data are available for
several members of the UCH class of DUBs in their full-length
form, we chose to study substrate recognition by these
enzymes.

The structures of the yeast UCHL3 homologue YUH-1 (5), as
well as those of the mammalian UCHL1 (6) and UCHL3
enzymes are known, for UCHL3 both in its free (7) and sub-
strate-occupied form (8). UCHL3 is an unusual enzyme from a
topological perspective: it possesses a highly knotted structure,
possibly an evolutionary solution to survival in the proteolytic
environment of the ubiquitin-proteasome system (9). A distin-
guishing feature of the enzyme's architecture is the presence of
an active site crossover loop that embraces the C-terminal seg-
ment of the ubiquitin suicide substrate with which the enzyme
was co-crystallized (8). In the absence of substrate, the cross-
over loop is flexible and not visible in the x-ray structure. The
role of this loop, and the relevance of its movements in the
course of catalysis is unclear, but it has been proposed that this
loop aids in the proper positioning of the substrate, a ubiquitin
adduct, in the enzyme active site. In contrast to UCHL3, anal-
ysis of the UCHLL crystal structure (51% sequence identity to
UCHL3) reveals occlusion of the active site by a crossover loop
that is ordered also in the absence of ubiquitin (6), but perhaps
this is because of crystal packing interactions. The comparison
of the UCHL1 and UCHL3 enzymes thus leaves the role of the
crossover loop in catalysis or positioning of the substrate
unresolved.

We engineered a cleavage site in the crossover loop of
UCHL3, to explore its contribution to both structure and func-
tion. We chose to install a sortase recognition site, because it
allows a site-specific cleavage and trans-acylation reaction with
concomitant installation of a functionality (biotin, fluoro-
phores) at the site of sortase cleavage (10). By applying the
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sortagging technique, we can simultaneously interrupt the con-
nectivity of a protein peptide backbone and install a tag to track
only the cleaved species. Thus, both native and cleaved sortase
substrates can be tracked simultaneously in the same reaction
mixture. The properties of sortagged UCHL3 inspired us to
introduce yet other alterations in the crossover loop, resulting
in gain-of-function mutants of UCHL3.

EXPERIMENTAL PROCEDURES
Reagents-Probe 1 was synthesized by standard N-(9-fluore-

nylmethoxycarbonyl) (Fmoc)-based solid phase peptide chem-
istry as described (10). Triglycine was purchased from Sigma.
Antibodies were purchased from the following vendors: anti-
hemagglutinin (HA) tag (antibody 3F10-HRP; horseradish per-
oxidase), Roche Applied Science; streptavidin-HRP, Amer-
sham Biosciences; anti-FLAG tag M2 (Sigma); anti-ubiquitin
(rabbit, Sigma); anti-McI-I (Sigma); goat anti-rabbit-HRP
(Southern Biotech). FLAG peptide was purchased from Sigma.
Ub C-terminal 7-amido-4-methylcoumarin (Ub-AMC), ubiq-
ultin lacking all lysines, K63-linked diubiquitin, K48-linked diu-
biquitin, UBE1, USP8, and A20 N-terminal domain were pur-
chased from Boston Biochem. Purified ubiquitin was purchased
from Sigma. Hemagglutinin epitope-tagged ubiquitin vinylm-
ethyl ester (HA-UbVME) was generated as described previ-
ously (11).

Mass Spectrometry-Liquid chromatography- electrospray
ionization-mass spectrometry (LC-ESI-MS) was performed on
a Micromass LCT mass spectrometer (Micromass MS Tech-
nologies) and a Paradigm MG4 HPLC system equipped with a
HTC PAL autosampler (Michrom BioResources) and a Waters
Symmetry 5 pM CO column (2.1 X 50 mm, MeCN:H 20 (0.1%
formic acid) gradient mobile phase, 150 pl/min).

Cloning and Protein Exprssion-Sortase A was expressed
and purified as described (12). Murine cytomegalovirus M48
deubiquitinating enzyme domain (M4 8U) was cloned and
purified as described previously (13). The C-terminal residues
of the E3 ligase, ARF-BP1 (amino acids 4012-4374), UCHL3,
and PfJCHL3 were cloned into pET28a + (Novagen) with an
N-terminal hexahistidine tag. The N-terminal residues of
Mcl-1 (myeloid cell leukemia-i protein, amino acids 1-327)
were cloned as an N-terminal FLAG peptide fusion into the
vector pET16b (Novagen) carrying an N-terminal His,, tag.
The final Mcl-I construct consists of an N-terminal His,, tag
followed by a FLAG tag and Mcl-1 1 , 27 . UCHL3 point muta-
tions and LPETG substitutions were generated by site-directed
mutagenesis using a QuikChange kit (Stratagene). Loop
expanded versions of UCHL3 and PfUCHL3 were generated by
inserting 5 or 10 glycine residues immediately after the LPETG
sequence. Hexahistidine-tagged linear diubiquitin was also
cloned into pET28a+. Proteins were expressed in BL-21 E coli
or Rosetta (FLAG-Mci-1) DE3(PLysS) cells (Novagen), resus-
pended in lysis buffer (50 mm Tris, 150 mm NaCl, 10 mm imid-
azole, 10% glycerol, pH 7.2) and lysed by French press. Proteins
were purified from clarified lysates with nickel-nitrilotriacetic
acid agarose (Ni-NTA, Qiagen) and eluted in lysis buffer sup-
plemented with 500 mm imidazole. Eluted fractions were dia-
lyzed extensively to remove imidazole. Protein concentrations
were determined by the Bradford method (Bio-Rad).
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Immunoblotting-Proteins were separated by Tris/Glycine
SDS-PAGE or Tris/Tricine PAGE (Ub chain digestion experi-
ments) and transferred to nitrocellulose membranes or polyvi-
nylidene fluoride (ubiquitin chain digestion experiments).
Membranes were blocked with 5% nonfat dried milk in phos-
phate-buffered saline supplemented with Tween 20 (PBS, 0.1%
Tween 20, pH 7.4) overnight at 4'C or for 1 h at room temper-
ature. Membranes were washed with PBST and incubated with
the indicated antibodies for 1 h. Streptavidin-HRP and anti-HA
(3F10-HRP) blots were then washed and developed with West-
ern Lighting Chemiluminescence Reagent Plus (PerkinElmer
Life Sciences). All other blots were washed, incubated with a
goat anti-rabbit-HRP conjugate, and developed.

Sortase Cleavqge and Gel Fdtmtion of Someaging Reactions-
Sortagging of UCHL3 (10 pm) was performed by incubating
with the indicated concentrations of sortase A (Srt A) in Srt
buffer (50 mm Tris, pH 7.5, 150 mm NaCl, 10 mm CaCl2), and 5
mm probe 1 in a 25-sl volume. Reactions were incubated at
37 *C for 2 h and halted with sample buffer. For gel filtration, a
1-ml reaction (5 sW sortase) was purified by size exclusion
chromatography on S75 Sephadex resin using 20 mm Tris, 50
mM NaCl, pH 8.0 buffer as eluent. Fractions were collected and
analyzed by SDS-PAGE.

Kinetic Measurements-Ub-AMC assays were performed in
assaybuffer(50mMTris/HCl, 150m NaCl, 2 mMEDTA, 2mM
DTT, 1 mg/mlbovine serum albumin, pH 7.5) at 25 *C. Enzyme
concentrations were determined by Bradford assay (Bio-Rad).
UCHL3 mediated Ub-AMC hydrolysiswas performed in a total
volume of 30 p1 with 10 pm UCHL3 mutants and 62.5 nm Ub-
AMC in a 384-well NUNC black plate. PfUCHL3 assays were
performed with 25 pM enzyme and 125 nM UbAMC. Data were
collected with a Spectramax M2 plate reader (Molecular
Devices) with a 368 nm/467 nm filter pair and a 455-nm cutoff.
Velocities were determined by fitting the initial linear data
points to a least-squares regression line.

HA-UbVME Labeling and Adduct Purification-Sortase
cleavage reactions (5 sm sortase) of the indicated UCHL3
mutants were performed for 2 h at 37' C and 5 p.1 was diluted
with 7 1 of labeling buffer (20 mM Tris pH 8.0, 150 mm NaCI).
DTT (1 mm final concentration) and 1.5 pJg of HA-UbVME was
added, and reactions were incubated at 37 'C for 1 h. Reactions
were halted with sample buffer and loaded onto 12.5% SDS-
PAGE for analysis. For HA-TbVME adduct purification, a
large-scale reaction (1 ml) was prepared, omitting sortase, and
purified by ion-exchange chromatography as described (8).

Ubiquitin Polymer Digestion-K63-linked diubiquitin cleav-
age by sortagged UCHL3 Loop 2 enzyme was performed by
incubating 7 p1gof UCHL3 Loop 2 with either 2.25 pg or 22.5 Pg
of SrtA and 5 mm Probe 1 in Srt buffer for 2 h at 37 'C. K63-
linked diubiquitin (0.5 sg) was then added as well as 1 mm DTT
and incubated for 1 h at 37 'C. Reactions were halted with Tris/
Tricine sample buffer and subjected to 12.5% Tris/Tricine
PAGE followed by anti-ubiquitin immunoblot. Digestion of
ubiquitin chains by UCHL3 loop extension mutants was per-
formed in Srt buffer with 180 ng of each enzyme, 1 mm DTT,
and 1 pg of the indicated ubiquitin chain in a total volume of 7
pl1. Reactions were halted with Tris/Tricine sample buffer and
loaded onto a 12.5% Tris/Triclne gel for anti-ubiquitin immu-
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substituted UCHL3 and PfU1CHL3 mutants (10 p) were exposed to sortase (5 pA, top blot; 150 pA, bottom blot) and biotinylated ollgoglyclne probe 1
(5 mm) and analyzed by streptavidin-HRP Imnmunoblot to detect the -20 kDa transpeptidatlon product c, LEPTG-substituted UCHL3 and PfUCHL3
mutants catalyze Ub- Chydrolysis. Ub-AMChydrolysis bywild-type and mutant UCHL3 (10 pm)was measured using subsaturating concentrations of
Ub-AMC(62.5 n). Data areplotted as the ratio ofvelocity to theenzyme concentratlonwith n a: 3 (top) Enzyrneswith an H 169Amutation aeindicated
byan (H), and enzymes with 5 or 10 glycines added to the crossover loop directly after the LPETG sequence are Indicated by + 5G and + 10G. Ub-AMC
hydrolysis (125 nm) was also measured for wild-type and mutant PKUCH L3 enzymes (25 pm). Data are plotted as the ratio of the velocity to the enzyme
concentration, with n = 3 (bottom). dan LPETG substituted UCHL3 mutant islabded by aubiquitin suicide substrate. HA-UbVMEwastitrated Into a fixed
amount (5 pg) of wild-type UC4L3 or the human UCHL3 Loop 2 mutant enzyme. Reactions were analyzed by 12.5% SDS-PAGE and stained with
Coomassie Blue to visualize total protein.

noblot analysis. For kinetic measurements, 500 nM of enzyme
was incubated with10 Amof either K63-orK48- linked diubiq-
altin in buffer (50 mm Tris, pH 7.5, 150mm NaCl,2m ED)TA,
2 mm DTT). At the indicated times, samples were withdrwn,
quenched with Tris/Tricine loading buffer and subjected t
10% Tris/Trcine PAGE. Gels were stained with colloidal Coo-
massie and bands for K48 diubiquitin hydrolysis were quanti-

FEBRUARY 6, 2009-VOLUME 284-NUMBER 6 q

tated with ImageJ. Velocities were determined by fitting the
initial linear data points to a least squares regression line.
Higher orderK63-linked ubiquitin conjugates visible in Colloi-
dalBlue-stained gels precluded quantitation ofK63 diubiquitin
hydrolysis.

Md-1 Ubiquitination and Digestian-FLAG-Mcl-1 (14
was incubated with 100ng of humanUBE1 (E1), 1 pg of UbcH7
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UOILS Loop 2

1StA - + +

The (h) 2 1 2

7me --

LOap 2 HA-UbVMdE Adduat

- + +

2 1 2

- Sotsm- A
- UCHL3 Loop 2

010-

1o -

pH 7.4, 0.5% Nonidet P-40, 150 mm
NaCl, 5 mm EDTA) and incubated
overnight at 4*C with anti-FLAG
M2 antibody. Immune complexes
were recovered with protein G
beads (Sigma), washed extensively
with NET buffer, and eluted by
incubating with FLAG peptide
(250 pg/ml in Srt Buffer) at 25 *C
with shaking for 30 min. Eluates
were collected, pooled, divided,
and incubated with 1 mm DTT and
UCHL3 or PfUCHL3 mutant
enzymes (800 ng) for 2 h at 37 *C.
Samples were analyzed by SDS-
PAGE (10%), transferred to nitro-
cellulose, and anti-McI-1 immu-
noblot was performed.

Oeo00MeAl

es-RPi

b 0 pM 15 pM 10pM 1.5 mM
11me(mi) 0 30 40 1= 0 30 0 10 030 00 10 0 30 N 120

20W0

FIGURE 2. Ubiqvint binding alte sesceptlbity to sortese-mediaed tuspe
UbVME adduct Is refractory tosartase-mediatedtranspastidation. Free UCHL3 Loop
purified HA-UbVME adduct (10 pm) were exposed to SitA (5 pai) and blotinylated
indicated times. Reactions were analyzed by 12.5% SDS-PAGE and either stained witi
transferred to nitrocelluloee for streptavidin-HRIP immunoblot (bottom). b, ubiqutir
sortase-mediated transpeptidation. UCHL3 Loop 2 enzymewas Incubated with SrtA
for the indicated amounts of time In the absence or presence of various concentrati
The transpeptidation product was detected by streptavidIn-HRP Immunoblot.

(E2), 10 pg of Arf/BP1 (E3), and 100 pg of Ub with an ATP- the
regenerating system (14) for 90 min at room temperature.3 has
Reactions were quenched with NET buffer (50 mm Tris-HCl, exa

3K R. Love, R. K Satry, E. Spooner, and H. L Ploegh, manuscript in
preparation.

clea
and
inc
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RESULTS
Engineering a Sortase Cleavage

Site into UCHL3-The presence of
the unusual active site crossover
loop In UCHL3 suggests that it may
play a role in substrate selection by
making sequence-specific contacts
to the substrateU either to the ubiq-

o utin (Ub) or ubiqiutin-like (Ub)
2upapliauIn moiety or to the attached leaving
pra group. Alternatively, the crossover

loop may play a role in stabilization
of the catalytic center of the
enzyme. The catalytic cysteine
(Cys-95) and oxyaon-hole stabi-
lizing glutamine (Gln-89) are sepa-
rated from the general base histi-
dine (gis-169) and aspartic acd
(Asp-184) residues by the crossover
loop, with Iis-169 lying only three
residues from the C-terminal end
of the loop. The crossover loop not

LUt Lap 2 only traverses the active site of the
enzyme, but also provides connec-
tivity for the two halves of the cat-

tIdXbe.. Henzyme3-HA- alytic center (Figs. is and 4a). The
reyme(lojv)a(dthe loop thus bridges key residues,

Probe 1 (S ) f e bringing them into proximity for
rCooa r gate oue (top) or

ining cot.ees i catalysis and possibly imparting
5 i) and probe 1(S A) stability to the active site. Alterna-

osof Pwlfed ub n tively, the active site crossover

loop has been suggested to act as a
substrate filter, limiting the size of

ubiquitin C-terminal leaving group (7), a possibility that
been suggested but never experimentally addressed. To

mine these possibilities, we engineered an LPETG sortase
vage site into the crossover loop of both human UCHL3
the Plasmoiiufalciparum homolog, PIIJHCL3. We

lded PfUCHL3 in our analysis because the two enzymes

1@9 W VOLUME 284- NUMBER 6- FEBRUARY 6, 2009

236

WPM -
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Substrate Filtering in UCHL3

are structurally similar, yet possess completely unrelated
sequences in their crossover loop. As will be described
below, results obtained for UCH-L3 and PfUCHL3 are largely
similar and thus allow generalization of our conclusions.

We inserted the LPETG cleavage site at three separate posi-
tions in the human UCHL3 (UCHL3) crossover loop and at two
positions in the P.fakearn UCHL3 (PfLJCHL3) crossover
loop (supplemental Table S1 and Fig. 1a), and expressed the
mutant enzymes inFscheridia coli. When exposed to SrtA and
the biotinylated oligo-glycine nucleophile 1, we observed suc-
cessful transacylation for all mutant enzymes, albeit at different
efficiencies (Fig. 1b). The loop in both human and plasmodium
UCHL3 therefore adopts a flexible conformation in solution.
TheextentofeleavageoftheUCHL3 Loop 2variantby SrtA can
be modulated from 10% to nearly 90% by incubation with
increasing amounts of SrtA and increasing time (supplemental
Fig. Si). Ubiquitin hydrolase activitywas largely unchanged, as
assessed by hydrolysis of the ubiquitin-7-amino-4-methylcou-
marin (Ub-AMC substrate (Fig. ic). In addition, the LPETG
substituted human UCHL3 Loop 2 mutant formed a covalent
adduct with a hemagglutinin (HA)-tagged ubiquitin vinylm-
ethyl ester suicide substrate (HA-bVME), designed to react
with the active site cysteine in DUBs, with similar efficiency as
did wild-type UCHL (Fig. 1d). We chose to use the human
UCHL3 Loop 2 and PfLJCHL3 Loop 2 mutants for further anal-
ysis because these mutants retained near wild-type Ub-AMC
hydrolysis activity and were most efficiently cleaved by sor-
tase. We conducted subsequent sortagging experiments at
low sortase concentrations that yield incomplete conversion
to the transpeptidation product to track the properties of
both cleaved and uncleaved UCHL3 species under identical
conditions.

Crossover Loop Connectiiy Is Dispensable for Ubiquitin
Docking-The crossover loop in liganded UCHL3 likely
assumes an ordered conformation in solution (8). When puri-
fied UCHL3-HA-UVME adduct is exposed to SrtA, no
transpeptidation is observed (Fig. 2a), consistent with previous
observations that the LPETG motif must be placed in a flexible,
unstructured region (10).In addition, titration of ubiquitin into
thesortasecleavagereaction successfullyinhibits transpeptida-
tion (Fig. 2b). Therefore, in solution, the liganded form of
UCHL3 possesses a rigid crossover loop refractory to attack by
sortase. The highlyknotted structure ofUCHL3 suggests that it
is possible to nick the crossover loop without complete unfold-
ing of the polypeptide. We find only a slight increase in Stokes'
radius upon cleavage of the crossover loop (Fig. 3), suggesting
that the nicked preparation does not undergo gross alterations
in folding state. Nonetheless, the slightly larger hydrodynamic
radius of the transpeptidation product is likely due to a more
relaxed conformation caused by opening of the flexible cross-
overloop and installation ofthe 771-Dabiotinyated probe ig.
3b). We further examined whether connectivity of the active
site is essential for maintenance of UCHL3 structure by first
cleaving the active site loop with small amounts of sortase and
then delivering an HA-UbVME suicide substrate. Incomplete

4 K. Artavanis-Tsakonas, W. A Welhofen, R. Gaudet, and H. L Ploegh, ranu-
script In preparation.
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FIGURE 3. CI ni intacd UGR3 m sWO $1h1 b1 ' yals
sy gal @tialledwchgega phy. a, sirnilar gel fitration chromatography

efuton profies ofundeaved UCHL3 Loop 2 alone (10 pa blue line and
UCH L3 Loop2(10 pa)incubated with Sr tA (Spua) and probe 1(5 mM); redline.
Under these conditions, the majority of the UCHL3 population is undeaved.
Reactions were subjected to size exdusion chromatography on a Superdex
5-75 colum,and theUV absorbanceat 280nrnwas recorded. b,lntact UCH L3
Loop 2 pr oteln, cleaved UCH L3 Loop 2 protein, and sor tase A co-rnigrate by
size exclusion chromatography. Fractions corresponding to the rnajor peak
(60-72mr) In thesortasedeavagereaction~redlineln a)wherethemajorityof
the UCHL13 poprulation Is uncleaved were collected and analyzed by 12.5%
SDS-PAGE followedbyCoomassleBluestanng (top)to detect total protein or
streptavidin-lRP rnrnunobiot (bottorn) to detect the transpeptidation
product.

cleavage by sortase allows the properties of both the cleaved
and uncleaved UCHL3 species to be examined simultaneously
in one and the same reaction mixture. Indeed, a fraction of the
cleaved UCH{L3 successfully reacts withH-A-UbVME, as shown
by the appearance of a species that is both biotinylated and anti
HA-reactive (Fig. 4b). Because the HA-UbVME adduct is
refractory to cleavage by sortase, sortase-mediated transpepti-
dation must have preceded HA-UbVME addition. Because of
theelectrophilicityofthevinylmethylester group,we predicted
thatHA-UbVME adduct formnation would require onlythecys-
teinenucleophileandnotthegeneralbasehistidineresidue.We
find that rmutation of His-169 to alanine results in HA-UbVME
reaction levels comparable to wild-type UCHL3 (Fig. 4b, bot-
torn),but eliminates Ub-AMC hydrolysis (Fig.14).1Reaction of
the catalytic cysteine with HA-UbVME requires proper folding
of the enzyme to allow ubiquitin recognition, as evidenced by
highly specific alkcylation of DUB enzymes in whole cell lysate
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a

b

7&kD -
5Wko -

37kM -
25k -

2OkD _

15ko -

75kD -

25ko -
20kD -

15kD -

WT Loop 2

- - + + - - ++

- + - + - + - +

Loop 2 H169A

- - + +

- + - +

a-MA

FIGURE 4. OMer Imp IaUf ty 11not nmessary for mahominac of U
a, schematic showing the UCH L3 secondary structure elements with 0 shee
a helIces as cylinders. The position of the crossover loop (blue) is shown rela
(cirded letters). Upon sortase-mediated transpeptidation, probe 1 is affixed
interrupting the connectivity to the half shown in orange. Note that the hal
probe I contains the catalytic cysteine residue thatreacts with H A-UbVME. b,
react with a ubiquitin suicide substrate. Wld-type UCHL3, UCHL3 Loop
mutant enzymes (10 pa)were exposed to SrtA (5 p) and probe 1 (5 mm) for
incubatedwith H A-UbVME (1.5 pg) for 1 h at 37 *C. Reactions were analyzed
by streptavidin-HRP immiunoblot and anti-HA immunoblot. The identities
shown (right).

experiments (15). Moreover, DUB protein preparations typi-
cally contain a small fraction of unfolded protein that does not
react with electrophilic ubiquitin derivatives (16) (Fig. 1d),
despite the presence of a cysteine residue. Thus HA-UbVME
reactivityrelects competency to bind ubiquitin and to position
the catalytic cysteine in proximityofthe electrophilic trap, and
not ubiquitin hydrolase activityperse. Taken together, we con-
clude that connectivity of the active site crossover loop is not

3598 JOURNAL OF8SOLOGICAL CHEMISTRY

S"
HA-UbVME

CH3 active sit btsme.
ts represented as arrows and
tive to the catalytic residues

essential for maintenance of
UCHL3 structure, as assessed by the
ability of the cleaved preparation to
interact with ubiquitin.

17e Crosor Loop Restricts Sub-
strate Size-We reasoned that if the
role of the active site crossover loop
is to restrict the size of the ubiquitin
C-terminal leaving group, then
ablation of the connectivity should
result in relaxed leaving group spec-
ificity. Indeed, UCHL3 with a
nicked active site crossover loop
hydrolyzes K63-linked ubiquitin
chains to monomeric ubiquitin,
while the unceaved preparation
and sortase itself fail to do so (Fig.
5a). Incubation of UCIL3 with
increasing concentrations of SrtA
results in greater oligo-ubiquitin
hydrolysis, indicating that it is the
cleaved UCHL3 species that medi-
ates liberation of mono-ubiquitin.
This is consistent with the HA-Ub-
VME labeling experiments and
indicates that a portion of the
cleaved UCHL3 species not only
retains proper structure, but also
ubiquitin hydrolase activity. The
modest ubiquitin hydrolysis activity
of the cleaved UCHL3 likely Indi-
cates that a fraction of the cleaved
material is inactive upon trans-
peptidation, perhaps because the
structure is subtly destabilized.
Nevertheless, the gain-of-function
associated with the cleaved UCHL3
preparation indicates that at least
some fraction is competent to
attack polyubiquitin chains.

Empamion ofthe Actiew Site Cras-
over Loop Resdils in Gain-of-func-

to the half shown in green, tic MuantS-Based on these
f of the enzyme that receives
deaved UCH L3 pr epar ations
2, and UCHL3 Loop2 H169A Of additional amino acids in the
2 h at 37 *C and subsequently activ site crossover loop to extend
by 12.5% SDS-PAGE followed

of the bands detected are it would stabilize the enzym while
still allowing the observed relaxed
substrate specificity. Accordingly,
fe inserted and 1 glycines in the

active site crossover loop On the background of the Loop 2
LPETG mtation. Hydrolysis of areAMC was afcted only
mildly for both mutants (Fig. 1u. we then tested the bilty of
these mutants to hydrolyze abiquitin chains of different link-
ages in the complete absece of sortase (Fig. b). Both of the
UCHL3 variants with e or 10 added glydnes in the crossover
loopread disae deK63- andK4 linked ubquitin chains,
whereas the uncleaved UCHL3 does not. None of the mutants
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FIGURE 5. The active site crossover loop restricts ubiquitin leaving
group size, a. cleavage of the crossover ioop renders UCHL3 competent
to disassemble ubiquitin polymers. UCHL3 Loop 2 protein 17 g) was
exposed to either 2.25 or 22.5 psg of SrtA and probe 1 (5 mM) for 2 h.
Reactions were subsequently incubated with K(63-linked diubiquitin
chains (0.5 pg) at 37 *C for 1 h. Ubiquitin cleavage was assessed by 12.5%
Tris/Tricine SDS-PAGE followed by anti-ubiquitin immunoblot. ', Ub,
denotes higher order K(63-iked ubiquitin In the diubiquitin preparation.
b, crossover loop expansion allows UCHL3-medlated hydrolysis of K63-
and K(48-linked ubiquitin but not a hexahistidine-tagged head-to-tail diu-
biquitin fusion. 180 ng of each enzyme (2. UCHL3 Loop 2; 5, 5 glycine
insertion; 10, 10 giycine insertion; lso-T, isopeptldase-T) was incubated
with 1 Mg of the indicated ubiquitin polymer for 2 h at 37 "C. Reactions
were separated by 1 2.5%Tris/Tricine SDS-PAGt followed by anti-ubiquitin
immunoblot. *,Ub, denotes higher order 1(63-linked ubiquitin in the diubig-
ulin preparation. c, loop expanded versions of PfUCHL3 hydrolyze 1(48-linked
diubiquiin, Inefficiently cleave 1(63-linked polyubiquitln,andare inactlve against
a hexahlstldlne-tagged head-to-tail diubiquitin fusion.180~ng of each enzyme(2,
PfUJCHL3 Loop 2;5,.5 glyclne Insertion; 10, 10 glycdne insertion; iso-T, isopept-
dase-T) was Incubated with 1 Mg of the Indicated ubiquitin polymer for 2 h at
37"C. Reactions were analyzed as in b.

are able to hydrolyze a linear hexahistidine-tagged head-to-tail
diubiquaitin fusion, whereas isopeptidase-T (USP5) efficiently
does so. The PtUCHL3 loop 2 mutant was also subjected to
loop expansion and incubated with the various ubiquitin poly-
mers. The PfUCHL3 loop-expanded mutants hydrolyze K48-,
and to a lesser extenst K63-linked ubiquitin, but not linear usbiq-

FEBRUARY 6, 2009-V\/L UME 284 -NUMBVWl 6

Substrate Filtering in UCHL3

uitin polymers (Fig. 5c). We assessed the rates of catalysis of our
engineered mutant forms of UCHL3 and PfUCH1.3 and com-
pared these to USP8 (17) and the A20 N-terminal domain (18,
19) (Fig. 6). Quantitation of K48-linked diubiquitin hydrolysis
yields rates intermediate between those of USP8 and the A20
N-terminal domain (Table 1). Thus, by expanding the length of
the crossover loop, we have successfully created gain-of-func-
tion versions of UCHL3 and PfUCHL3 that can hydrolyze bulky
substrates that the parent molecules are unable to attack.

We tested whether the loop-expanded versions of UCHL3
can hydrolyze the proximal ubiquitin from a ubiquitinated sub-
strate, Mcl-1 (myeloid cell leukemia-1 protein). The HECT
(homologous to E6-associated protein (E6AP) C terminus)
domain E3-ligase, ARF-BPi/Mule, targets the antiapoptotic
Bcl-2 (B-cell leukemia/lymphoma 2 protein) family member
Mcl- 1 for ubiquitination at several internal lysines in vitro (14).
When such ubiquitinated Mcl-1 preparations3 are exposed to
the UCHL3 mutant with the 10 glycine expansion, the mono-
ubiquitinated form of Mcl-I is hydrolyzed (Fig. 7a). In contrast
to wild-type UCHL3, substrates enjoy unfettered access to the
active site of the M485 5" isopeptidase. The M48"" domain,
which has activity against K63- and K48- linked ubiquitin
chains similar to that of the loop-expanded UCHI.3 enzymes
(13), also efficiently hydrolyzes the mono-ubiquitinated Mcl-I
substrate. To ensure that the observed multi-(mono)ubiquiti-
nated forms of Mcl-I indeed represent a single ubiquitin con-
densed onto several Mcl-i lysines and not a ubiquitin chain
added to a single lysine, we performed the Mcl-I ubiquitination
reaction with a ubiquitin variant incapable of polyubiquitin
chain formation because it lacks lysine residues. Although the
McI-i ubiquitination pattern of the 13 available lysines in Mcl-1
is different with this ubiquitin variant, the UCHL3 mutant with
10 added glycines again hydrolyzes all proximal ubiquitin moi-
eties, as assessed by a dramatic increase in the amount of McI-i
backbone released after digestion (Fig. 7b).

DISCUSSION
We took advantage of the known crystal structures for ligan-

ded and unliganded UCHL3 and applied the sortagging tech-
nique to a mammalian and apicomplexan representative of
UCHIL3. We chose to compare PfUCHL3 with its mammalian
homolog because their sequences are no more than 35.9% iden-
tical, with almost no similarity in the crossover loop (20). Thus,
the sequence-specific contributions of the crossover loop to
catalysis can be parsed out of its structural contributions by
comparison of both the host and pathogen enzymes. We have
meanwhile solved the PtUCl 11.3structure and found the overall
fold to be virtually identical to its human counterpart.' Only the
unliganded form of UCI 1L3 is a substrate for transpeptidation;
UCHL.3 was not cleaved when modified with H4A-UbVME prior
to exposure to sortase. Combined, our results suggest that the
crossover loop of UCI 11.3 is indeed a flexible structure, despite
the ordered loop visible in the crystal structure of its relative,
UCILL. Because there is no obvious sequence similarity
between the crossover loops of UC113 and PfUCI113, the
presence, but not the exact sequence of the crossover loop is
essential to substrate selection. This conclusion is supported
also by the lack of effect of the introduction of an LPETG tag at
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FIGURE 6. Isopeptide-linked diubiquitin hydrolysis by engineered UCHL3 and PfUCHL3 mutants. Enzymes (500 nm) were incubated with either K48-
linked diubiquitin (10 ym, left) or K63-linked diubiquitin (10 s, right), stopped at the indicated times points by addition of Tris/Tricine sample buffer, subjected
to 10% Tris/Tricine SDS-PAGE electrophoresis, and stained by Colloidal Blue. K48-linked diubiquitin hydrolysis was quantified, and rates were determined
(Table 1). Because of visible higher order ubiquitin polymers, K63-linked ubiquitin hydrolysis is displayed, but not quantitated.

TABLE 1
K48-diubiquitin hydrolysis rates of engineered UCHL3 and PfUCHL3
enzymes compared to USP8 and the A20 N-terminal domain
TIo determine velocilesi, K48-diuhiqui n cleavage rea tionswere separatied by S)'
PIA (Fig. 6L. Stained with colloidil LooIm&ssi BIu, and the ratw of monoubig-
itain 1to total oihiquitmn was quantitated.' The rate d mono11hiqlutm releast emou
time was dermind by litting the flitial linear data points to a least squares regres-
sion line

Enzm I L I Rate relative Rate relative
to USPlI to A20 NTD"

UCIIIi - ' +6 0.281 27. 195

UC1.3 + 10G 0.410 40.61 284.9
PfUCHI1.3 56 0.311 AMu 215.s3
PIU i+I - IKi (1.374 37.05 259.22
USP8 1()9 10) 70
A20 NTI) 0.1414 1427 10

NT I), N-termmal domain

different positions in the crossover loop. The loop alone deter-
mines the size of the leaving group that can be liberated from
ubiquitin by UCHIL3. Integrity of the loop is not required for
catalysis by UCHL3-the enzyme can function with its back-
bone cleaved very close to the active site. The stability of the

3600 OuHA o' BOh0(. K (HafR

enzyme is likely enhanced by the complex and knotted topology
of the polypeptide backbone. There are many examples of pro-
teins that are cleaved in unstructured loops; such cleavage is
often required to generate an active enzyme from its inactive
precursor, to expose the fusogenic properties of viral fusion
proteins (21), or to render active the bacterial toxins of the AB
type such as cholera toxin and E coli heat labile enterotoxin
(22). The cleavage of unstructured loops does not, as a rule,
perturb secondary or tertiary structure for those proteins where
the two forms can be examined independently. However, the
processed proteins but not their precursors are often poised to
undergo major structural rearrangements upon engagement of
the appropriate counterstructures.

We have obtained gain-of-function mutants of UCHL3
through enlargement of the active site crossover loop. These
mutants successfully disassemble both K48 and K63 e-amine
linked ubiquitin polymers, while wild-type UCH L3, which has a
crossover loop diameter of - 12-15 A, cannot. When known
structures for K48- and K63-linked ubiquitin dimers are mod-
eled in the solved UCHL3-UbVME structure (supplemental
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a-linkage (4). Instead, the scissile
input FLAG Peplid. Elute bond in the ubiquitin head-to tail

fusion is likely inaccessible to the
- + + + + + + Ub UCHL3 active site cysteine. When

-- - - Loo 2 80 100 M48 USP Enzyme added t the head-to tail ubiquitin dimer is
eluaft modeled by ISG15, which has two

tandem a-linked UbI domains, and
fitted into the UCHL3-UbVME
structure, the region where the scis-
sile bond would be lies far outside of
the active site groove (supplemental

FLAG-McI-1-Ub, Fig. S2). Although the structural
details of ISG15 likely differ from

FLAG--1U those of a ubiquitin head-to-tail
fusion, we favor a model where the

FLAG-Maicl-1 lack of cleavage by UCHL3 is due to
differences in the conformation of
K48-, K63-, and a-amine-linked
ubiquitin dimers in solution.

The promiscuity of the loop-ex-

Input FLAG Pepide Elaft panded UCHL3 variants provides a
rationale for the properties of

- + + + + + + Ub, No K UCHL3. In the absence of other

-Lo 2 50 100 M48 USP addd protein domains that target the
skaftenzyme to particular ubiquitinated

proteins or ubiquitin chains of spe-
cific linkages (25), UCHL3 limits
access to its active site to only those
substrates that can pass through the
narrow bore of the crossover loop.
Thus it is unlikely that wild-type

FLAG-Mci-1-Ub, UCHL3 directly targets larger,
folded proteins for deubiquitination

P At-M i-1-Ub (26).

a

1 50kWD-
1 00kD--

75kD-.

]37kDa

b

100kD-

is=-

75lD -

50D -

37kD --

FIGURE 7. Crossover loop epaunsion allows hydrolysis of ubiquitnated Md-1. a, loop expanded UCHL3
hydrolyzes ubiquitin-FLAG-Md-I conjugates. FLAG-tagged Mcl-1 (1 g) was ubiquitinated by incubation with
USE1, UBCH7, ArBP-1/Mule, and ubiquitin (see "Experimental Procedures"). Md-1 was then innunoprecipl-
tated with anti-FLAG antibody and either boled In sample buffer (input) or eluted with FLAG peptIde (FLAG
peptide eluate). FLAG peptide eluates were pooled, divided equally, and incubated with 800 ng of the indi-
cated enzymes for 2 h at 37*C Reactions were separated by 10% SDS-PAGE and analyzed by anti-Md-1
Immunoblot. b, loop expanded UCHL3 hydrolyzes the proximal ubiquitin from Mc-1. FLAG-tagged Mdi was
prepared asin a, using ubiquitinwith ail lysines substituted with arginine. Mcl-1 conjugatesweredigested and
analyzed as in a.

Fig. S2), the proximal ubiquitin sterically clashes with UCHL3.
To explain the observed hydrolysis of these substrates, the
hinge region that contains the scissile Gly-Lys bond must be
sufficiently flexible in solution to allow displacement of the
proximal ubiqutin by UCHL3, consistent with previous obser-
vations (23). Because K63 lies near the N terminus of ubiquitin,
a-linked dimers are hypothesized to have an open conforma-
tion similar to that of K63-linked diubiquitin (24). However,
none of the UCHL3 or PfUCHL3 mutants can hydrolyze an
a-amine-linked dimer. This does not result from a difference
between the a and e linkage itself, because UCHL3 can hydro-
lyze a ubiquitin fusion to the ribosomal protein CEP52, in

FEBRUARY 6, 2009-VOLUME 284- NUMBER 6

In summary, we have reported a
novel method for exploring the con-
tribution of flexible loops to protein
structure and function. By applying
the sortagging technique to the
active site crossover loop in UCHL3
as well as mutagenesis, we can
examine the contributions of the
loop to both the structure and func-
tion of the enzyme. We have
expanded the range of substrates
that UCHL3 can hydrolyze and

provide strong support for the notion that the unusual active
site crossover loop functions as a substrate filter, limiting the
types of substrates that the enzyme can hydrolyze. Such
modified versions of UCHL3 may be useful as general ubiq-
uitin releasing enzymes for the study and identification of
ubiquitin adducts.
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Chapter 5: Substrate filtering by the active-site crossover loop in UCHL3 revealed by
sortagging and gain-of-function mutations

Substrate Filtering in UCHL3
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Sortase-catalyzed transformations that improve the properties of cytokines
(from: Popp, M. W., Dougan, S. K., Chuang, T. Y., Spooner, E., and Ploegh, H. L. (2011)

ProcNatlAcadSci USA 108, 3169-3174)

Abstract

Recombinant protein therapeutics often suffer from short circulating half-life and poor

stability, necessitating multiple injections and resulting in limited shelf-life. Conjugation

to polyethylene glycol chains (PEG) extends the circulatory half-life of many proteins,

but the methods for attachment often lack specificity, resulting in loss of biological

activity. Using four-helix bundle cytokines as an example, we present a general platform

that uses sortase-mediated transpeptidation to facilitate site-specific attachment of PEG to

extend cytokine half-life with full retention of biological activity. Covalently joining the

N- and C- termini of proteins to obtain circular polypeptides, again executed using

sortase, increases thermal stability. We combined both PEGylation and circularization by

exploiting two distinct sortase enzymes and the use of a molecular suture that allows both

site-specific PEGylation and covalent closure. The method developed is general, uses a

set of easily accessible reagents, and should be applicable to a wide variety of proteins,

provided that their termini are not involved in receptor binding or function.

Introduction

Many clinically relevant cytokines share a four-helix bundle structure, typified by IFNa2,

GCSF3, EPO, IL-2, IL-4, IL-7, IL-9 and IL-15. Co-crystal structures of cytokines with

receptor fragments and biochemical studies that map residues critical for interaction of a

cytokine with its receptor show that the receptor contacts the sides of the helical bundles
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This mode of interaction positions the N and C termini of the cytokine away from the

receptor.

Polyethylene glycol chains attached to therapeutically important proteins increase

circulatory half-life, reduce clearance by kidney filtration, reduce proteolysis, and reduce

the generation of neutralizing antibodies 2-4. The attachment of PEG commonly employs

standard chemistries that target reactive amino acid side chains (e.g. cysteine, lysine).

This strategy often generates a heterogeneous mixture in which multiple amino acids in

the target are modified with a PEG chain, necessitating cumbersome separations and

characterization 5. Such PEGylated molecules often show decreased biological activity,

likely due to attachment of a PEG chain to a residue important for interaction with the

receptor 6-this problem may be overcome by site-specific PEGylation. Although

engineering of a carefully placed unpaired cysteine residue allows site-specific

PEGylation 7-8, this method must be tailored to the specific protein target.

Sortase A from Staphylcoccus aureus (SrtAstaph) is a thiol-containing transpeptidase that

recognizes an LPXTG motif in multiple structurally unrelated substrates 9. SrtAstaph

cleaves the peptide bond between the threonine and glycine residues with concomitant

formation of a thioacyl enzyme intermediate that involves the catalytic cysteine and the

substrate threonine. This acyl-enzyme is resolved by nucleophilic attack by the N

terminus of an oligoglycine peptide, resulting in formation of an amide bond between the

substrate protein and the incoming nucleophile 10. Sortase A tolerates C-terminal

extensions of the oligoglycine nucleophile, allowing diverse functionalized nucleophiles
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to be installed site-specifically onto proteins equipped with an LPXTG motif 11-2. The

related Streptococcus pyogenes sortase accepts di-alanine based nucleophiles, which the

S. aureus enzyme does not. This sortase (SrtAstrep) cleaves the LPXTA motif between

theronine and alanine and allows installation of modified alanine-based nucleophiles.

SrtAstrep also recognizes and cleaves LPXTG motifs, albeit with reduced efficiency,

however the LPXTA motif is refractory to cleavage by SrtAStaph 13-14

Here we present a general strategy for site-specific modification of therapeutic

recombinant proteins at their termini, an approach that is particularly well suited to the

four-helix bundle cytokines, where the termini are distant from the receptor interaction

site. We show improvements in thermal stability by covalently joining the N and C

termini of these proteins ". We present a general method for combining both site-

specific PEGylation and improved thermal stability in a single molecule by using a

molecular suture produced in two successive rounds of sortase catalyzed transpeptidation

(Fig. 6.1).

Results

Modification of IFNa2. We first applied the sortase reaction to human interferon alpha

(IFNa2), a four helix bundle cytokine where chemical PEGylation results in multiple

positional isomers and a ~90% decrease in biological potency 16. We expressed in E. coli

two versions of IFNa2, both with an LPETG sortase motif immediately followed by a

hexahistidine tag for ease of purification. At the amino terminus, one of the two proteins

possesses a diglycine motif for cyclization. This material can either be cyclized or

246



Chapter 6: Sortase-catalyzed transformations that improve the properties of cytokines

PEGylated at the C-terminus (Figure 6.2a). IFNc2 with an N-terminal diglycine motif

and a C-terminal LPETG was successfully cyclized by incubation with SrtAstaph and

purified to homogeneity by ion-exchange chromatography. The mass of the circularized

product in a crude sortase reaction differs from a linear hydrolysis product by -1 8Da,

consistent with an intramolecular transpeptidation reaction (Figure 6.2b). We identified

the unique junction peptide that arises from intramolecular cyclization by MS/MS

analysis of tryptic digests (Figure 6.2c). Site-specific PEGylation of the IFNC2 variant

that lacks the N-terminal diglycine motif (and thus unable to undergo intramolecular

cyclization) was achieved by incubation with sortase and a GGGK peptide to which a 10

kDa PEG moiety is affixed via the lysine c-amine (Probe 1, Figure 6.2a, Supplementary

Figure 6.1a). We confirmed equipotent biological activity of all four interferon alpha

variants in a Daudi cell proliferation inhibition assay when compared to a commercially

available, non-PEGylated preparation (Figure 6.2d, Supplementary Table 1). Addition

of a protein-sized PEG module to the C-terminus of IFNa2 does not appreciably perturb

receptor binding and biological potency. We hypothesized that the circular IFNa2 would

be more resistant to thermal denaturation, because the termini are clamped shut and thus

should not "fray" 15'17 We measured thermal denaturation with a Thermofluor assay,

using the commercially available Sypro Orange dye' 8 . Indeed, the circular form of

IFNc2 had a significantly elevated Tm compared to the other three variants, all of which

exhibited nearly identical Tm's (Figure 6.2e, Supplementary Table 6.1, Supplementary

Figure 6.2a). Finally, we injected mice with either the linear IFNax2 variant used to

construct the PEGylated form, or the IFNc2 variant bearing a 1 OkDa PEG chain (Probe

1) at its C-terminus and measured the serum levels over time by ELISA. The PEGylated
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form decayed with slower kinetics than its non-PEGylated counterpart (Figure 6.2f,

Supplementary Table 6.1).

Modification of a single protein preparation by multiple nucleophiles. The sortase

platform offers the ability to install nearly any non-genetically encoded entity onto the C-

terminus of a single preparation of recombinant protein. We demonstrate this by

synthesizing a nucleophile that bears a 20kDa PEG moiety (Probe 2, Figure 6.1a), as

well as the previously described 1 OkDa PEG probe (Probe 1), and appended them to the

identical preparation of IFNa2 (Figure 6.3a). Both conjugates were tested for biological

activity (Figure 6.3b) and are highly potent (Supplementary Table 6.2).

Superior properties endowed upon sortase substrates are applicable to multiple

proteins. Sortase allows the installation of the same non-natural group onto different

proteins, unrelated in sequence or amino acid composition. Accordingly, we applied the

sortase reaction to a different four-helix bundle cytokine, GCSF-3, with similar results.

We first made the linear precursor GCSF variants and then cyclized or PEGylated them

with probe 1 using sortase (Figure 6.4a). All variants possess equal or superior in vitro

bioactivity relative to a commercial non-PEGylated preparation, as assessed by a standard

NFS-60 cell proliferation assay 19 (Figure 6.4b, Supplementary Table 6.3). Like cyclic

IFNa2, cyclic GCSF-3 shows increased thermostability (Figure 6.4c, Supplementary

Figure 6.2b, Supplementary Table 6.3) and PEGylated GCSF-3 has a significantly

extended circulatory half-life relative to its non-PEGylated precursor (Figure 6.4d,

Supplementary Table 6.3) upon injection into mice. PEGylated GCSF-3 also led to a
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more robust and prolonged proliferation of granulocytes in injected mice than its non-

PEGylated analog (Figure 6.4e).

Modification of glycoproteins. Many important therapeutics are glycosylated proteins

that traverse the secretory pathway and are produced in mammalian cell culture. Are

such proteins equally amenable to engineering using a sortase-mediated transpeptidation

reaction? We chose human erythropoietin (EPO) because -40% of its mass is composed

of bulky, charged N-linked glycans, and cyclization provides a stringent test of the

sortase method, as it requires (minimal) modifications at both termini. We replaced the

endogenous EPO signal sequence with the murine H-2Kb signal sequence, followed by

two glycine residues. This signal peptide is cleaved in mammalian cells with

concomitant exposure of an N-terminal glycine residue. We added the requisite sortase

motif followed by a hexahistitdine tag at the C-terminus of EPO for ease of purification.

HEK-293T cell lines stably transduced with this construct yielded preparations that were

<50% pure after a single round of Ni-NTA IMAC of conditioned medium. Material from

such preparations can be cyclized successfully upon incubation with sortase (Figure

6.5a). Again, we identified the unique junction peptide that arises from covalent ligation

of the N and C termini by MS/MS analysis of of cyclized EPO, shorn of all glycans by

incubation with PNGaseF, and digested with trypsin (Figure 6.5b). Both the linear

preparations as well as the sortase reaction containing cyclic EPO were tested in a cell

proliferation assay with Ba/F3 cells that stably express the erythropoietin receptor 20 and

these compared favorably with commercial EPO preparations. Most importantly, the

cyclic form is as potent as its linear counterpart (Figure 6.5c, Supplementary Table
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6.4), indicating that modification of the EPO termini does not affect its biological

activity.

Two-step transacylation allows combination of enhanced properties. Having shown

for multiple examples that sortase-mediated site-specific modification of the C-terminus

with PEG increases circulatory half-life with nearly no loss of biological activity, and that

covalent closure of the N and C termini yield proteins stabilized against thermal

denaturation, we executed a scheme that combines these desirable properties (Figure

6.1). In the first step, we exploit a previously described sortase from Streptococcus

pyogenes 13-14 that accepts alanine-based nucleophiles to affix a peptide containing a non-

natural amino-oxy containing amino acid, followed by the SrtAStaph cleavage site. We

use SrtAStaph to effectuate covalent closure, as the LPETAA site left by SrtAstrep is

resistant to attack by SrtAStaph , to yield a circular protein with the amino-oxy group at the

place of suture. Next, the amino-oxy group is used in a bio-orthognal oxime ligation

reaction 21-23 with commercially available methoxy-capped PEG-propionaldehyde

(Supplementary Figure 6.1b). We recombinantly expressed IFNa2 bearing two

glycines at the N-terminus, and at the C-terminus the SrtAstrep cleavage site, followed by

a hexahistidine tag. The purified protein was subjected to the two-step transacylation

procedure to yield circular IFNc2 bearing the amino-oxy group. After ion-exchange

chromatography, this material was PEGylated and purified by cation exchange

chromatography (Figure 6.6a). Without optimization, the final yield of circular

PEGylated protein was ~10%, because of the multiple separate chromatography and

protein concentration steps involved in production and PEGylation. The mass of the
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material before oxime ligation was consistent with its cyclization (Supplementary

Figure 6.3a). Digestion with AspN and MS/MS analysis revealed the unique peptide that

arises as a consequence of backbone cyclization consisting of the molecular suture probe

stitched between the C- and N-termini of IFNca (Supplementary Figure 6.6b). All three

variants yielded virtually indistinguishable IC50 values in an inhibition of cell

proliferation assay (Figure 6.6c, Supplementary Table 6.5) and the circular versions

were stabilized against thermal denaturation (Figure 6.6d, Supplementary Table 6.5,

Supplementary Figure 6.2c). The circular versions remained biologically potent after

boiling when given the opportunity to refold, whereas we were unable to extract an ICso

value for the boiled linear preparation over the concentration range assayed (Figure 6.6e,

Supplementary Table 6.6). We injected the linear and the circular, PEGylated forms of

IFNc2 into the tail vein of mice and measured half life by ELISA. The circular,

PEGylated species was cleared significantly more slowly than the linear form (Figure

6.6f, Supplementary Table 6.5).

Discussion

The sortase transpeptidation reaction allows facile site-specific PEGylation of multiple

distinct proteins. In all cases tested, the site-specific C-terminal PEGylation proceeds

efficiently (Supplementary Figure 6.3b) and yields adducts of known stoichiometry that

are biologically equipotent to the non-PEGylated versions, but retain the increase in

circulatory half life associated with PEG modification. This we attribute to the fact that

all enzymatic transformations are performed on native proteins, procedures that should

not affect overall conformation or exposure of functionally important sidechains.
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Because our approach to PEGylation is site-specific, all preparations are also

homogenous and easily purified 5. Although we limit our examples to four-helix bundle

cytokines, this platform should be readily extended to structurally distinct therapeutic

proteins, with the singular requirement that the C-terminus is not involved in receptor

binding. A sortase-based approach requires the genetic fusion of a very small (5 amino

acid) tag to the protein of interest and all transformations occur under native conditions.

The additional amino acids that result from fusion to the sortase recognition motif are

close to the site of PEG attachment. Immunogenicity of this site is very likely reduced by

3the PEG moiety shielding this area . We and others have labeled proteins with an

exposed N-terminal glycine using sortase 14,24 This approach should therefore be readily

extended to site-specific PEGylation at the N-terminus as well.

Cyclization of the backbone of protein-based therapeutics also proceeds efficiently

(Supplementary Figure 6.3b) and yields preparations that are more resistant to thermal

denaturation. Cyclic proteins are also resistant to exoproteolytic attack 25-26, a feature that

may enhance utility of any therapeutic proteins exposed to exoproteases, for example

upon receptor mediated internalization. In addition, cyclization of proteins and peptides

has been shown to improve potency, stability and oral bioavailability 21-30.

Finally, we have inserted a non-template encoded entity in what is topologically internal

to a circular protein, a feat that cannot be accomplished genetically by intein-based

methods or by any other currently known means. More generally, this dual

transacylation scheme can be used to insert non-natural groups between fully native
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proteins expressed separately, or between protein domains. We suspect that this

approach will find application in the protein engineering field and so further extend the

utility of sortases as tools.

Methods

Sortase Reactions. Sortase reactions with SrtAStaph were performed as described

previously". For either cyclization or PEGylation, reactions containing 50 pIM substrate,

50 LM SrtAStaph and 1 mM probe (for PEGylation) were incubated overnight at 25'C

without agitation. Reactions were purified by cation exchange chromatography on a

Mono-S (GE Healthcare). For IFNa2 reactions, continuous gradient chromatography

was performed with 20mM MES pH 5.0 and 20mM MES, IM NaCL pH5.0, as eluent.

For GCSF reactions, continuous gradient chromatography was performed with 20mM

sodium acetate pH 4.5 and 20mM sodium acetate, IM NaCl pH 4.5, as eluent. Peaks

containing the desired product were pooled, concentrated with Vivaspin 500 centrifugal

concentrators (Sigma) and protein concentration was determined by Bradford Assay

(Bio-Rad). For EPO cyclization, 300 pl of Ni-NTA elutate (0.101 mg/mL total protein)

was incubated with 100 p.M SrtA and sortase buffer in 400 pl total volume at 250C for 16

hours. For two-step transacylation reactions, 150 p.M substrate was incubated with 50

p.M SrtAstrep and 2 mM probe in 100 mM Tris, 150 mM NaCL pH 8.0 for 4 hours at 37"C.

SrtAstrep activity was halted by incubation with 500 p.M E-64 on ice for 1 hour. Crude

reaction mixtures were then supplemented with 10 mM imidazole and subjected to Ni-

NTA chromatography (Qiagen) to remove prematurely cyclized material. Protein was

eluted with 50 mM Tris, 150 mM NaCl, 500 mM imidazole and buffer exchanged into
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SrtAStaph buffer (50mM Tris, 150mM NaCl, 10 mM CaCl2) with a PD 10 desalting column

(GE Healthcare). For cyclization, this material was incubated overnight with 50 pM

SrtAstaph and purified by cation exchange as described for other IFNax2a reactions.

Concentrated, purified circular IFNa2 bearing the AOAA group was then diluted with 1

volume of 50mM sodium acetate pH 4.5, 150 mM NaCl containing 2 mM methoxy-

capped PEG-propionaldehyde (NANOCS) and 100 mM aniline (JT Baker) and incubated

at 30'C for 3 hours without agitation. This reaction mixture was again purified by cation

exchange chromatography, concentrated, and protein concentration was determined by

Bradford assay.

Thermal Denaturation Assays. Thermal shift assays were performed in a Roche 480

lightcycler and fluorescence was measured with Ex 533nm, Em=610nm. For GCSF-3, 1

tg of each variant was mixed with 1 pl of 1 00x Sypro orange in 25 pil total volume of

50mM acetate pH 4.0, 150mM NaCl. n=4 for all samples with buffer as a blank control

and lysozyme as a positive control. For IFNa2, 1 ptg of each variant was mixed with 1

pl of 100x Sypro orange (Invitrogen) in 25 pl total volume of 50mM MES ph 5.0,

150mM NaCl. n=4 for all samples with buffer as a blank control and lysozyme as a

positive control. Samples were heated from ambient temperature to 95'C at 0.01 0C/s

with 6 acquisitions/C. The included Roche software was used to calculate the negative

first derivative of the temperature change as a function of time and the minima were used

as the Tm. Because of the impurities in the cyclic EPO preperations, Tm was not

determined.
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Cell Based Bioactivity Assays. Daudi cell proliferation inhibition assays to measure the

activity of IFNax2 conjugates were performed as described8 and compared to commercial

IFNa2 (PBL Interferon Source) with low passage Daudi cells (ATCC), cultured in

RPMI/10%IFS/50 units/ml penicillin, 50 pg/ml streptomycin sulfate. Cell proliferation

was measured by MTT assay according to manufacturer's directions (ATCC). For the

denaturation assay, samples diluted to 1 pg/ml in RPMI/10% IFS were boiled for 4 min,

allowed to cool at room temperature for 16 hours, and assayed for Daudi cell

proliferation inhibition. NFS-60 cell proliferation assays to measure G-CSF conjugate

activity were performed as follows. NFS-60 cells (a kind gift from Dr. James Ihle, St.

Jude Children's Research Hospital, Tennessee) were cultured in RPMI /10%IFS/50

units/ml penicillin, 50 gg/ml streptomycin sulfate supplemented with murine IL-3

(20U/mL, R&D Systems). Cells were washed extensively in complete RPMI medium

lacking IL-3 and resuspended at 1x10 5 cells/ml in complete RPMI lacking IL-3. Titrated

GCSF conjugates (50 pLl) in complete RPMI were aliquoted into a flat bottom 96 well

plate and 50 pl of cells (0.5x1 04 cells/well) were added to each well. Cells were cultured

for 3 days and an MTT assay (ATCC) was performed according to manufacturer's

directions. Each plate contained a titration of commercial GCSF3 (Peprotech) and

readings were blanked against wells containing only NFS-60 cells. The activity of each

conjugate was measured a minimum of n=3 times. BaF3 cells stably expressing the EPO

receptor (BaF3 EPO-R cells, a kind gift from Dr. Harvey Lodish, Whitehead Institute)

were used to measure EPO activity. BaF3 EPO-R cells were cultured as described for

NFS-60 cells and assays were performed essentially as described for G-CSF, except EPO

circularization reactions incubated with or without sortase for 16 hours at 37C were
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used. The total protein concentration of the EPO input material (measured by the

Bradford method) was used and was not adjusted for impurities. Commercial

preparations of EPO (eBioscience) were used as standards and readings were blanked

against BaF3 EPO-R cells cultured with no cytokines. Activities were measured a

minimum of n=3 times.

Circulatory Half-life Assays. For circulatory half-life assays, mice were injected in the

tail vein with each protein (10 pg per mouse for IFNc2 conjugates, 5 pg per mouse for

G-CSF conjugates) and subjected to retro-orbital eye bleed at the indicated time points.

Blood was harvested, centrifuged at 5000 rpm in a tabletop centrifuge, and serum was

collected and snap-frozen. Elisa assays to measure the quantity of cytokine in serum

samples were performed according to the manufacturer's directions (IFNa from PBL

Interferon Source, G-CSF from Invitrogen). Each conjugate was injected into n=3 mice.

Data was fit to a two phase exponential decay in GraphPad Prism.

Granulocyte Proliferation Assay. Peripheral blood was collected retroorbitally into

EDTA collection tubes. Red blood cells were lysed in hypotonic lysis buffer and the

remaining peripheral blood mononuclear cells were stained with anti-Gr- 1-PE (BD

Pharmingen), anti-CD l b-FITC (BD Pharmingen) and 7-AAD (ViaProbe, BD

Pharmingen). Cells were analyzed using a FACS Caliber flow cytometer (BD).
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Figure Legends

Figure 6.1. The sortase reaction scheme.

Cyclization of substrates equipped with a C-terminal LPXTG sortase recognition element

as well as an N-terminal glycine by SrtAStaph (left). Substrates lacking the N-terminal

glycine and incubated in the presence of exogenous oligo-glycine functionalized PEG are

site-specifically PEGylated (right). Circular, PEGylated proteins can be constructed by

incubating substrates bearing an N-terminal glycine and a C-terminal SrtAstrep cleavage

site (LPXTA) with an alanine-based nucleophile carrying an aminooxy group and the

SrtAStaph cleavage site (Middle). This transpeptidation product is cyclized upon

incubation with SrtAStaph. Finally, PEG is attached by aniline-catalyzed oxime ligation

with methoxy-capped PEG propionaldehyde. The oxime bond formed is shown (inset).

Figure 6.2. Synthesis and characterization of human IFNa2 conjugates.

(a) GG-IFNc-LPETGGHis6 was used to obtain backbone-cyclized IFNa2, and IFNa-

LEPTGGHis6 was used to make IFNc-PEG(1OkDa), bearing a C-terminal PEG chain.

Purified proteins were resolved by 12.5% SDS-PAGE and stained with Coomassie.

(b) ESI-MS characterization of IFNa species in crude sortase reactions either before

(linear GG-IFNax-LPETGGHis 6 ) or after (cylic IFNa2) overnight incubation at 250 C.

(c) MS/MS identification of a tryptic peptide comprising the IFNc2 C-terminus,

followed by the SrtAStaph cleavage site, joined to the N-terminal glycines in the IFNa2

precursor.

(d) In vitro bioactivity of IFNc conjugates in a Daudi cell proliferation inhibition assay.

Dose-response curves for Daudi cell proliferation inhibition were measured by (3-(4,5-
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Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) bromide (MTT) assay, in triplicate, with

the standard deviation displayed.

(e) Resistance of backbone-cyclized IFNa to thermal denaturation. Change in Tm for

circular and PEGylated IFNa conjugates, relative to their precursor proteins, were

measured by thermal shift assay, with n=4.

(f) Change in serum IFNa levels following tail vein injection of site-specifically

PEGylated IFNca as well as its precursor protein. 10 ptg of each protein was injected and,

at the indicated time points, blood was withdrawn and cytokine concentration in serum

was determined by ELISA assay. Data are means ± standard deviation for three mice in

each group.

Figure 6.3. Sortase installs multiple probes onto a single preparation of protein.

(a) The same preparation of IFNa-LEPTGGHis6 was PEGylated by sortase reaction with

either a 1OkDa or a 20kDa PEG nucleophile. Purified proteins were resolved by 12.5%

SDS-PAGE and stained with Coomassie.

(b) In vitro bioactivity of 10 kDa and 20 kDa PEGylated IFNac conjugates in a Daudi

cell proliferation inhibition assay. Dose-response curves for Daudi cell proliferation

inhibition were measured by MTT assay, in triplicate, with the standard deviation

displayed.
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Fig. 6.4. Synthesis and characterization of human GCSF-3 conjugates.

(a) GG-GCSF-LPETGGHis6 was used to make backbone cyclized GCSF-3, and GCSF-

LEPTGGHis 6 was used to make GCSF-PEG(lOkDa), bearing a C-terminal PEG chain.

Purified proteins were resolved by 12.5% SDS-PAGE and stained with Coomassie.

(b) In vitro bioactivity of GCSF-3 conjugates in an NFS-60 cell proliferation assay.

Dose-response curves for NFS-60 cell proliferation were measured by MTT assay, in

triplicate, with the standard deviation displayed.

(c) Resistance of backbone cyclized GCSF-3 to thermal denaturation. Change in Tm for

circular and PEGylated GCSF-3 conjugates, relative to their precursor proteins, were

measured by thermal shift assay (n=4).

(d) Change in serum GCSF levels following tail vein injection of site-specifically

PEGylated GCSF-3, as well as its precursor. 5 pg of each protein was injected and, at the

indicated time points, blood was withdrawn and cytokine concentration in serum was

determined by ELISA assay. Data are means from three mice in each group, with the

standard deviation displayed.

(e) GCSF, PEGylated via sortase, is highly potent in vivo. C57BL/6 mice (n=4 per

group) were injected intravenously with linear GCSF, GCSF-PEG(1O kD), or saline

control (PBS). Peripheral blood was collected at the indicated times and stained with

antibodies to Gr-1 and CD1 lb. Newly generated granulocytes were defined as Gr-1

intermediate CD1 1b+ cells 31
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Fig. 6.5. Synthesis and characterization of cyclic human erythropoietin.

(a) GG-EPO-LPETGGHis6 bearing the H-2Kb signal sequence was expressed in HEK-

293T cells. Conditioned media was subjected to Ni-NTA IMAC purification. Eluted

material was supplemented with 100 LM SrtAStaph and incubated at 25'C. Aliquots were

removed at the indicated time points, subjected to 12.5% SDS-PAGE and protein was

visualized by silver staining.

(b) MS/MS identification of a peptide generated by tryptic digestion containing the C-

terminus of EPO, followed by the SrtAStaph cleavage site and joined to the N-terminus

of EPO.

(c) In vitro bioactivity of linear and cylic EPO conjugates in BaF3-EPOR cell

proliferation assay. Eluted material from Ni-NTA IMAC purification was incubated in

the presence or absence of sortase for 16 h at 25*C and these crude reactions were

measured for in vitro EPO bioactivity. Dose response curves for BaF3-EPOR cell

proliferation were measured by MTT assay, in triplicate, with the standard deviation

displayed. Concentrations were not adjusted for impurities in the EPO preperations.

Fig. 6.6. Synthesis and characterization of cyclic, PEGylated IFNa2.

(a) GG-IFNa-LPETAAHis 6 was used to make backbone-cyclized IFNa2 with the

aminooxy moiety stitched between the site of closure. This material was then used to

generate cyclic, PEGylated IFNa2 by aniline catalyzed oxime ligation. Purified proteins

were resolved by 12.5% SDS-PAGE and stained with Coomassie.

(b) MS/MS identification of a peptide generated by AspN digestion containing the C-

terminus of IFNa, followed by the alanine-based probe joined to the N-terminus of IFNca

263



Chapter 6: Sortase-catalyzed transformations that improve the properties of cytokines

by SrtAStaph. Note that the aminooxy group was likely lost during MS/MS analysis and

ESI-MS reconstructions of unfragmented protein revealed a mass consistent with

installation of the aminooxy group (Supplementary Figure 6.3).

(c) In vitro bioactivity of linear and cyclic IFNa conjugates in a Daudi cell proliferation

inhibition assay. Dose-response curves for Daudi cell proliferation inhibition were

measured by MTT assay, in triplicate, with the standard deviation displayed.

(d) Resistance of circular-AOAA and circular-PEGylated IFNC to thermal denaturation.

Change in Tm's for circular-AOAA and circular-PEGylated IFNc conjugates, relative to

their precursor protein, were measured by thermal shift assay (n=4).

(e) Circular cytokines remain biologically active after boiling. The indicated variants

were diluted to lmg/ml in RPMI/10% serum, boiled for 4 minutes, allowed to cool at

room temperature for 16 hours, and assayed for inhibition of Daudi cell proliferation.

(f) Change in serum IFNc levels following tail vein injection of circular, site-specifically

PEGylated IFNax as well as its linear precursor protein. 1 Opg of each protein was

injected and, at the indicated time points, blood was withdrawn and cytokine

concentration in serum was determined by ELISA assay. Data are means from three

mice in each group, with the standard deviation displayed.
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Figure 6.2
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Figure 6.3
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Figure 6.4
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Figure 6.5
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Supplementary Figure Legends

Supplementary Figure 6.1. Probes used and analine catalyzed oxime ligation

scheme.

(a) Chemical structures of oligoglycine-functionalized PEG probes (top) and SrtAstrep-

compatible aminooxy probe (bottom).

(b) Aniline-catalyzed oxime ligation between an aminooxy group, installed by sortase

reaction, and methoxy-capped PEG propionaldehyde.

Supplementary Figure 6.2. Thermal denaturation of IFNa2 conjugates, GCSF-3

conjugates, and IFNa2 conjugates generated by two-step transacylation.

(a) Thermal unfolding of IFNa conjugates was monitored by Sypro Orange binding.

The negative first derivative of fluorescence change is displayed versus time-the

minimum of this plot is the Tm.

(b) Thermal unfolding of GCSF-3 conjugates was monitored by Sypro Orange binding.

The negative first derivative of fluorescence change is displayed versus time-the

minimum of this plot is the Tm.

(c) Thermal unfolding of circular-AOAA and circular PEGylated IFNca conjugates, as

well as the starting material, was monitored by Sypro Orange binding. The negative first

derivative of fluorescence change is displayed versus time-the minimum of this plot is the

Tm.

Supplementary Figure 6.3. Characterization of cyclic IFNa2 displaying the

aminooxy group and efficiency of single-step transacylation.
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(a) ESI-MS reconstruction of cyclic IFNa2 displaying the aminooxy group.

Unprocessed ESI-MS spectrum (inset).

(b) Representative ion exchange chromatography chromatograms of crude sortase

reactions for PEGylation of IFNa (left) and GCSF cyclization (right) showing efficient

conversion from the input material to the indicated transpeptidation product.
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Supplementary Figures

Supplementary Figure 6.1
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Supplementary Figure 6.2
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Supplementary Figure 6.3
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Supplementary Table 6.1

Table SI. Properties of sortase-modified IFNa2a.

C (pg/mil) Tm (*C) Half-Life (h)
Standard
GGaLPETGGHis
Circular
aLPETGGHiss
PEG(1OkDa)

15.5±1.1
10 ±1.1
4.9 ± 1.2

7.1 ±1.1

21.7 ± 1.1

n.d.
59.6 ± 0

63.2 ±0.2

59.6 ± 0.9
59.2 ± 1.0

n.d.
n.d.
n.d.

a= 0.27, 0=1.46
a= 0.32, P=5.98

Supplementary Table 6.2

Table S2. IFNa2a modified by sortase with different length PEG chains is highly potent.

IC50 (pg/mi)
Standard

aLPETGGHis6

PEG(1 OkDA)

PEG(20kDa)

33.5 ± 1.2

35.5 ± 1.1
65.34 ± 1.2

88.63 ± 1.2

Supplementary Table 6.3

Table S3. Properties of sortase-modified GCSF-3.

EC4o (pg/mi) Tm (*C) Half-Life (mi)
Standard
GG-GCSF-LPETGGHise
Circular
GCSF-LPETGGHis6

PEG(1OkDa)

3.9
1.9

1.6

2.5
3.5

n.d.
59.6±0
63.2 ± 0

59.6 ± 0.2

59.2 ± 0

n.d.
n.d.
n.d.

a= 0.30, 0=2.21

a= 0.27, P=10.59
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Supplementary Table 6.4

Table S5. Properties of IFNa2a subjected to two-step transacylation.

IC50 (pg/m) Tm (*C) Half-Life (h)
Standard
GGaLPETAAHise

Circular-AOAA

Circular-PEG(1 OkDa)

17.4± 1.2

12.5± 1.2

7.5 ± 1.2

13.2 * 1.2

n.d.
57.2 t 0.9
59.8 ± 0.3
60.3 ± 0.3

n.d.
a= 0.20, 0=3.53

n.d.
a= 0.15, p=31.07

Supplementary Table 6.5

Table S5. Properties of IFNa2a subjected to two-step transacylation.

IC50 (pg/m) Tm *C) Half-Life (h)
Standard
GGaLPETAAHise

Circular-AOAA
Circular-PEG(1 OkDa)

17.4 ±1.2

12.5 ±1.2

7.5 i 1.2

13.2± 1.2

n.d.

57.2 ± 0.9
59.8 ± 0.3
60.3 ± 0.3

n.d.
a= 0.20, P=3.53

n.d.
a.= 0.15, p=31.07
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Supplementary Table 6.6

TableS6. Properties of IFNa2a subjected to two-step transacylation.

ICO (pg/mi
Standard
GGaLPETAAHis6

GGaLPETAAHis6 boil
Circular-AOAA
Circular-AOAA boil
Circular PEG (1OkDa)
Circular PEG (1 OkDa) boil

7.3 ± 1.1

11.0 1.2

7.4 ± 1.1

28.8 ± 1.3

14.5 ± 1.1
112.6 ± 1.3

Supplementary Text

Supplementary Methods

Animals. C57BL/6 mice were purchased from Jackson Labs and used at 6-8 weeks of

age. All studies were approved by the MIT Committee on Animal Care.

Plasmids and Protein Expression. Human IFNa2a lacking the leader sequence and

fused at the C-terminus to the sequence GGLPETGGHHHHHH was cloned into the

pET28a+ vector (Novagen). This same protein was cloned with two glycines at the N-

terminus. Human G-CSF3 versions were cloned similarly. For IFNa2a with the SrtAstep

cleavage site, a Quick Change kit (Stratagene) was used to mutate the LPETGG motif to

LPETAA. Human erythropoietin was cloned into pLHCX (Clontech), fused at the C-
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terminus to GGLPETGGHHHHHH. The leader sequence was replaced with the H-2Kb

signal peptide followed by two glycines.

SrtAStaph and SrtAstrep were expressed and purified as described previously 0' 13. IFNOi2a

variants as well as GCSF-3 variants were expressed in Rosetta-gami(DE3)pLysS cells

(Novagen) with 500 ptM IPTG (Sigma), grown in 2YT medium for 16 hrs at 250C. E.coli

pellets were lysed by sonication in lysis buffer: 50mM Tris, 150 mM NaCl, 10 mM

imidazole, 50 tg/ml DNAseI (Roche), pH 7.2 and clarified by centrifugation. Soluble

protein was purified by Ni-NTA IMAC chromatography (Qiagen) in lysis buffer lacking

DNAse and eluted with lysis buffer supplemented with 500 mM imidazole. Eluates were

diluted with either 150mM MES, 150mM NaCl, pH 5.0 (IFNax2a variants) or 150mM

sodium acetate/150mM NaCl, pH4.0 (G-CSF3 variants). Proteins were further purified

by size exclusion chromatography on a Superdex 75 column (GE) using either 20mM

MES, 150mM NaCl, pH 5.0 (IFNc2a) or 20 mM sodium acetate, 150 mM NaCl, pH 4.0

(G-CSF3) as eluent. Protein concentration was determined by the Bradford method.

Erythropoietin variants were expressed in HEK-293T cells. Retrovirus was produced as

described previously 32 and used to infect HEK-293T cells. Stably transduced cells were

cultured in DME/1 0%IFS/ 50 units/ml penicillin, 50 tg/ml streptomycin sulfate, and

0.125 pg/ml amphotericin B (Fungizone) supplemented with 0.125 mg/ml Hygromycin

B (Roche). For protein purification, cells were cultured to -80% confluency in complete

medium. Medium was harvested and supplemented with 1/10 volume of a lOX buffer

containing 500 mM Tris, pH 8.0, 1500 mM NaCL, 100 mM Imidizole and 500 mL of this
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conditioned media was incubated for 2 hours at 25 0C with lmL of Ni-NTA (Qiagen).

Material was loaded into disposable plastic columns (Biorad) and washed using 50mM

Tris, 150 mM NaCl, 10 mM imidazole, pH 7.2. Protein was eluted with wash buffer

supplemented with 500 mM imidazole and used without further desalting/purification.

Nucleophile Preperation. The Gly 3K peptide scaffold was constructed by standard

Fluorenylmethoxycarbonyl (Fmoc) solid phase peptide chemistry on rink amide resin.

Fmoc protected peptide was liberated from the resin by treatment with 95%

TFA/3%TIPS/2%H 20, precipitated with cold ether and lyophilized. Methoxy-capped 10

kDa PEG succinimidyl ester (1 equivalent, Nanocs) or 20 kDa PEG succinimidyl ester

was mixed with peptide (2equivalents), 1 equivalent N-hydroxysuccinimide (NHS, Acros

Organics) and 1 equivalent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC,

Pierce) in N-Methylpyrrolidone (NMP, Fluka) for 24 hours at room temperature,

followed by precipitation in cold ether. The resulting solid was resuspended in 20%

piperidine/NMP for 30 minutes, followed by re-precipitation in cold ether. This material

was resuspended in H20 and dialyzed extensively against H20 to remove free peptide

and afford Gly 3K-PEG(lOkDa) and Gly 3K-PEG(2OkDa) nucleophiles compatible with

SrtAstaph labeling.

The AAKLPETGGHHHHHH peptide scaffold was synthesized on Rink Amide resin by

the MIT Biopolymers Facility using lysine(MTT) in position 3. Fmoc protected peptide

was MTT-deprotected on-resin after swelling in dichloromethane (DCM, JT Baker) and

treatment with 95% DCM/3%TIPS/2%TFA. Deprotected resin-bound peptide was

incubated with 5 equivalents Bis-Boc-Aminooxyacetic acid (AOAA, Novagen), 5
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equivalents N,N'-diisopropylcarbodiimide (American Bioanalytical), 5 equivalents NHS,

and 5 equivalents anhydrous N-Hydroxybenzotriazole (HoBt, American Bioanalytical) in

Dimethylformamide (Sigma) overnight with agitation. Resin was washed extensively

with DMF and NMP and then treated with 20% piperidine/NMP for 30 minutes to

remove the N-terminal Fmoc group. Next, resin was washed extensively in DCM then

the peptide was liberated with 95% TFA/3%TIPS/2%H20 for 3 hours, precipitated in ice-

cold ether and lyophilized to afford H-AAK(AOAA)LPETGGHHHHHH-NH 2 peptide.

Peptide was characterized by LC-MS: [M+2H] 2+=869.9, obs=869.2, [M+3H]3*=580.3,

obs=580.1 and used without further purification.

Mass Spectrometry. LC/MS analysis was performed using a Micromass LCT mass

spectrometer and an Agilent 1100 Series HPLC system equipped with a Waters

Symmetry 3.5 pM C18 column (2.1 x 50 mm, MeCN:ddH20 gradient mobile phase

containing 0.1% formic acid, 150 gL/min).

For MS/MS analysis, proteins were resolved on 12.5% SDS PAGE gels, stained with

coomassie, and the relevant bands were excised, destained, and subjected to trypsinolysis

(circular IFNa2a, circular EPO) or AspN (circular IFNa2a-AOAA). Recovered peptides

were analyzed by reversed-phase liquid chromatography electrospray ionization mass

spectrometry using a Waters nanoACQUITY-UPLC coupled to a Thermo LTQ linear

ion-trap mass spectrometer. MS/MS spectra were searched against a custom database

with circularly permuted sequences for each protein using SEQUEST. SEQUEST results
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were analyzed with Bioworks Browser 3.3 and filtered with the following criteria:

different peptides,

minimum cross correlation coefficients (1, 2, 3 charge states) of 1.50, 2.00, 2.50, number

different peptides of 2 per protein and Sp - preliminary score of 300.
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Maximilian W. Pop, Stephanie K. Dougen', Tau-Ying Chuang", Eric Spooner", and Midde L Ploegh

Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and bDepartment of Biology, Massachusett
Technology, 77 Massachusetts Avenue, Cambridge, MA 02142

OW Edited by Donald F. Steiner, University of Chicago, Chicago, L and approved January 3, 2011 (received for review November 9, 2010)

s Institute of

Recombinant protein therapeutics often suffer from short drculat-
ing half-ife and poor stablity necessitating multiple injectiors
and resulting in limited shelf-life. Conjugation to polyethylene gly-
col dhains (PEG) adends the circulntoy half-ife of many proteins,
but the methods for attachment often lick spedfidty, resulting
in loss of biological activity. Using fourielbc bunde cytokines as
an ecample, we present a general platform that uses sortase-
medated transpeptidation to facilitate site-specfic attahment
of PEG to enttend cytolne half-life with full retention of biological
activity. Coalently joining the N andC temini of proteinsto obtain
dircular polypeaptids, again exected using sortase, inreases ther-
mal stability We combined both PEGylation and drwuarization
by exploiting two distinct sortase enaymes and the use of a mole-
cular sutur, that allows both site-specific PEGylation and covalent
dosure. The method developed is general, uses a set of easily
accessible reagents, and should be applicable to a wide variety
of proteins, provided thit theirtermini are not irwolved in receptor
binding or function.

M any clinically relevant cytokines share a four-helix bundle
structure, typified by [FNa2 Granulocyte colony-stimulat-

ing factor 3 (GCSP-3), Brythropoietin (EPO), IL-2, IL4, IL-7,
IL-9, and IL-15. Cocrystal structures of cytolines with
receptor fragments and biochemical studies that map residues
critical for interaction of a cytokine with its receptor show that
the receptar contacts the sides of the helical bundles (1). This
mode of interaction positions the Nand Ctermini of the cytokine
away from the receptor.

Polyethylene glycol chains attached to therapeutically impor-
tant proteins increase circulatory half-life, reduce clearance by
kidney filtration, reduce proteolysis, and reduce the generation
of neutralizing antibodies (2-4). The attachment of PEG com-
monly employs standard chemistries that target reactive amino
add side chains (e.g., cysteine and lysine). This strategy often gen-
erates a heterogeneous mixture in which multiple amino acids in
the target are modified with a PEG chain, necessitating cumber-
some separations and characterization (5). Such PEGylated
molecules often show decreased biological activity, likely due to
attachment of aPEG chain to aresidue important for interaction
with the receptor (6)-this problem may be overcome by site-
specific PEGylation. Although engineering of a carefully placed
unpaired cysteine residue allows site-specific PEGylation (7, 8),
this method must be tailored to the specific protein target.

Sortase A from Staphycoccus aureus (SrtAs) is a thiol-
containing transpeptidase that recognizes an LPXTG motif in
multiple structurally unrelated substrates (9). Srt cleaves
the peptide bond between thethreonine and glycine residues with
concomitant formation af a thioacyl enzyme intermediate that
involves the catalytic cysteine and the substrate threonine. This
acyl-enayme is resolved by nucleophilic attack by the N terminus
of an oligoglycine peptide, resulting in formation of an anide
bond between the substrate protein and the incoming nucleophile
(10). Sortase A tolerates C-terminal extensions of the oligogly-
cine nucleophile, allowing diverse functionalized nucleophiles
to be installed site specifically onto proteins equipped with an
LPXTG motif (11, 12). The related Svpaococcur pyogener

www.pnasiorg/cgidoVl/O.I73pna.10156s3106

1% law

Pig. 1. The sortase reaction scheme. Cyclization of substrates equipped
with a C-terminal LPXTG sortase recognition element as well as an N-terminal
glycine by SrtAft (eft). Substrates lacking the N-terminal gtycine and
incubated in the presence of exogenous oligo-glydne functionaized PEG
are site-specifically PEGyfated (right) Circular, PEGytated proteins can be
constructed by incubating substrates bearing an N-terminal glycine and a
C-terminal Srn cleavage site O.PXTA) with an alanine-based nudeophite
carrying an amino oxy group and the SrtA%,M deavage site (Center). This
transpeptidation product is cyclized upon incubation with SrtA%,. Finally,
PEG is attached by aniline-catatlyzed oxime lgation with methoxy-capped
PEG propionaldehyde. The oxime bond formed is shown Onset).

sortase accepts di-alanine based nucleophiles, which the S. aueus
enzyme does not. This sortase (SrtA,) cleaves the LPXTA mo-
tif between theronine and alanine and allows installation of mod-
ified alanine-based nucleophiles. SrtAtp also recognizes and
cleaves LPXTG motifs, albeit with reduced eficiency, however
the LPXTA motif is refractory to cleavage by SrstA, (13, 14).

Here we present a general strategy for site-specific modifica-
tion of therapeutic recombinant proteins at their termini, an
approach that is particularly well suited to the four-helix bundle
cytokines, where the termini are distant from the receptor inter-
action site. We show improvements in thermal stability by cova-
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I

thus unable to undergo intramolecular cyclieation) was achieved
by incubation with sortase and a GGGK peptide to which a
10 kDa PEG moiety was affed via the lysine e-amine (Probe 1,
FIg. 2.4 and Pig. S1A). We confirmed equipotent biological activ-
ity of all four interferon alpha variants in a Dandi cell prolifera-
tion inhibition assay when compared to acommercially available,
non-PEGylated preparation (Fig. 21) and lable SI). Addition of
a protein-sized PEG module to the C terminus of WN2 does
not appreciably perturb receptor binding and biological potency.
We hypothesized that the cireular IFNa2 would be more resistant
to thermal denaturation, bemuse the termini are clamped shut
and thus should not "fray" (15, 17). We measured thermal dena-
turation with a Thermofluor assay, using the commercially
available Sypro Orange dye (18). Indeed, the circular form of
IFNM 2 had a significantly elevated melting temperature (T.)
compared to the other three variants, all of which exhibited
nearly identical T.'s (Fig. 2E, 'able S1, and Fig. S24). Finally,
we injected mice with either thelinear FNa2variantused tocon-
strctthePEGylated form, orthe FNu2variant bearing al10kDa
PEG chain (Probe 1) at its C terminus and measured the serum
levels over time by USA. The PEGylated form decayed with
slower kinetics than its non-PECylated counterpart (Fig. 2F
and lable 1).

Moditation of a Single Pretaia Pnkpsatiea byMatiste Nucasphiles.
The sortase platform offers the ability to install nearly any

/01/ -aas
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F1i. 2. Synthesis and characterization of human
IFNe2 conjugates. (A) GG-FNa-LPETGGHis was used
to obtain backbone-cydized IFN2, and FNa-
LEPTGGis was used to make IFN&-PEG (10 k~a),
bearing a C-terminal PEG chain. Purified proteins
were rwived by 12.5% SDS-PAGE and stained with
Coomniie. (i) ESw-MS characterization of IFN
species in crudesertase reactions either before (Inear
GG-FN=4.PETGGHis6) or after (cylic IFN*e overnight
incubtion at 25'C. (Q MOiMS identification of a
tryptic paptide comprking the FN&2 C terminus,
follwed by the SrtAsna deavage site, joined to
the N-terminal glycines in the IFNe2 precursor. (0) in
vitro bioectoity of iek conjugates in a Daudi cell
proliferation inhibition assay Dose-response curves
for Daudi cell proliferation inhibition were measured
by [5-44,5-Dimothylthizoi-2y)-25-diphenyltetrazo-
lium bromide MAT) ass, in triplicate, with the
standard deviation displayed. (1) Resistance of back-
bone-cyctzed FNo to thermal denaturation. Change
in To for circular and PEGylated IFNW conjugates,
relativetotheir precursor proteins, were measured by
thermal shift asmy with n 4. (f) Change in serum
IFNa leveb following tail vein injection of site-
specificanly PEGyited iFNe as well as its precursor
protein. 10 sg of each protein was injected and, at
the indicated time points, blood was withdrawn
and cytokine concentration in serum was determined
by ELEA assay. Data are maans* standard deviation
for three mice in each group6

3170 1 www.pnas.orcgi/doV1D.1073/pnas101856310B

lently joining the N and C termini of these proteins (15). We
present a general method for combining both ste-specific
PEGylation and improved thermal stability in a single molecule
by using amolecular suture produced in two succesive rounds of
sortase-catalyzed transpoptdation (Fig. 1).

Modifiestie. of WLa. We first applied the sortase reaction to
human interferon alpha (IFNa2), a bur-helix bundle cytokine
where chemicalPEylitienresults in multiple pouitional isomers
and a -90% decrease in biological potency (16). We espressed
in Echerichia co two versions of IFNU2 both with an LPETG
sortasemotifinmediately lowed by a hexaistidine tag for ease
of pudfication. At the amin terminus, one of the two proteins
possesses a diglycine motif for cycliaation. This material can
either be cydlised or PEGylated at the C terminus (Fig. 24).
IPNcl2 with an N-terminal diglycine motif and a C-teminal
LPETG was successfully cyclized by incubation with SrtAs
and purified to homogeneity by ion-exchange chromatgraphy.
The mass of the circularized product in a crude sortase reaction
differs from a linear hydrolysis product by -18 Da, consistent
with an intramoleenlar transpeptidation reaction (Fig. 2M. We
identified the unique junction peptide that arises frm intra-
molecular cyclimation by tandem mass spectrometry (MS/MS)
analysis of tryptic digests (Fig. 2C). Site-specific PEGylation of
the IFNa2 variant that lacks the N-terminal diglycine motif (and
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nongenetically encoded entity onto the C terminus of a single
preparation of recombinant protein. We demonstrate this ability
by synthesizing a nucleophile that bears a 20 kDa PEG moiety
(Probe 2 and fig. SIA), as well as the previously described
10 kDa PEG probe (Probe 1), and appended them to the iden-
tical preparation of IPNa2 (Fig. 3A). Both conjugates were tested
for biological activity (Fig 3B) and are highly potent (hble S2).

Superior Properties swdoied apaseSrts. Substrat Jre Applible
to Witiple Pr&eWi. Sortase allows the installation of the same
nonnatural group onto different proteins, unrelated in sequence
or amino acid composition. Accordingly, we applied the sortase
reaction to a different four-helix bundle cytokine, GCSF-3, with
similar results. We first made the linear precursor GCSF variants
and then cydlised or PEGylated them with probe I using sortase
(Fig. 4A). All variants possess equal or superior in vitro bioactiv-
ity relative to a commercial non-PEGylated preparation, as
aseed by a standard cell proliferation assay with the NFS-60
murine myeoblastic cell line (19) (Fig. 48 and klabe SS). Like
cyclic IFNa2, ecltic GCSF-3 shows increased thermostability
(Fig. 4C, Fig. 82, and Ible S3) and PEGylated GCSF-3 has
a significantly extended circulatory half-life relative to its non-
PEGylated precursor (Fig. 4D and Ie S3) upon injection into
mice. PEGylated GCSF-3 also led to a more robust and pro-
longed proliferation of granulocytes in injected mice than its
non-PEGylated analog (Fig. 4E).

Modification of ilycoproteim. Many important therapeutics are
glycosylated proteins that traverse the secretory pathway and are
produced in mammalian cell culture. Are such proteins equally
amenable to engineering using a sortase-mediated transpeptida-
tion reaction? We chose human erythropoietin (EPO) because
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Fig. , Sortose installs multite probes onto a single preparation of protein.
(A)he me prepaion, of Iat-L2PTGGHise was PEGybted by sortas. r-
action with either a 10 kWe or a 20 kDe PEG nuceophile. Purified proteins
were resolved by 12.5% SDS-PAGE and stained with Coomeassi. (8) In vitro
bioactivity of 10 kDa and 20 kD. PEGylated IFs conjugates in a Daudi call
preliferation inhibition assay. Dose-response curves for Daudi cell protfera-
tion inhibition were measured by MTTessey, in triplcate, with the standard
deviation displayed.
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-40% of its mass is composed of bulky, charged N-linked glycans,
and cyclimation provides a stringent test of the sortase method, as
it requires (minimal) modifications at both termini We replaced
the endogenous EPO signal sequence with the murine H-2Kb
signal sequence, followed by two glycine residues This signal
peptide is cleaved in mammalian cells with concomitant esposure
of an N-terminal glycine residue. We added the requisite sortase
motif followed by a henhistitdine tag at the C terminus of EPO
for ease of purification. Human embryonic kidney (HEK)-293T
cell lines stably transduced with this construct yielded prepara-
tions that were <50% pure after a single round of Nickel-nitilo-
triacetic acid imnobiliised metal affinity chromatography (NI-
NTA [MAC) of conditioned medium. Matedal from such pre-
parations can be cyclized successfully upon incubation with
sortase (Fig. 54). Again, we identified the unique junction pep-
tide that arises from covalent ligation of the N and C termini by
MSMS analysis of cyclized EPO, shon of all glycans by incuba-
tion with peptide: N-glycosidase F (PNGaseF), and digested
with trypsin (Fig. SB). Both the linear preparations as well as
the sortase reaction containing cyclic EPO were tested in a cell
proliferation assay with Ba/F3 cells that stably express the ery-
thropoetin receptor (20) and these compared favorably with
commercial EPOpreparation. Mostimportantly, the cydieforn
is as potent as its linear counterpart (fig. SC and ble 84),
indicating that modification of the EPO termini does not affect
its biological activity.

Two-Step lmcmtylation Aliews Combinatioa of EnhanNed Properties.
Having shown for multiple exsamples that sortase-mediated
site-specific modification of the C terminus with PEG increases
circulatory half-life with nearly no loss of biological activity,
and that covalent closure of the N and C termini yield proteins
stabilized against thermal denaturation, we executed a scheme
thatcombinesthese desirable properties (fig. 1). In the first step,
we exploit a previously described sortase from Sawpsococcuaspyo-
genc (13, 14) that accepts slanine-based nucleophiles to affix a
peptide containing a nonnatural amino oxy containing amino
acid, followed by the SrtAswh cleavage site. We use SrtA5vg to
effectuate covalent closure, as the LPETAAsite leftbySrtA is
resistant to attack by SrtAstw, to yield a circular protein with the
amino oxy group at the place of suture. Next, the amino ay group
is used in a bioorthognal cxime ligation reaction (21-23) with
commercially available methoxy-capped PEG-propionaldehyde
(i "1B). We recombinanty expressed IPNa2 bearing two
glycines at the N terminus, and at the C terminus the SrtA.
cleavage site, followed by a hexahistidine tag. The purified
protein was subjected to the two-step transacylation procedure to
yield circular [PNa2 bearing the amino oxy group. After ion
exchange chromatography, this material was PEGylated and pur-
ified by cation exchange chromatography (Fig. 6A). Without
optimization, the final yield of circular PEGylated protein was
-10%, because ofthe multiple separate chromatography and pro-
tein concentration steps involved in production and PEGylation.
The man of the material before oxime ligation was consistent
with its cycliaation (Fig. SSA). Digestion with AspN and MS/
MS analysis revealed the unique peptide that arises as a conse-
quence of backbone cyclizationconsisting of the molecular suture
probe stitched between the C and N termini of INMa (Fig. 6B).
All three variants yielded virtuallyindistinguishable ICA values in
an inhibition of cell proliferation assay(Fig. 6Cand tble SS) and
the circular versions were stabilized against thermal denaturation
(Fig. 6, bble 85, and fig. S2C). The circular versions remained
biologically potent after boiling when given the opportunity to
refold, whereas we were unable to extract an IC50 value for the
boiled linear preparation over the concentration range assayed
(Fig. 6E and Table S6). We injected the linear and the circular,
PEGylated forms of IFNa2 into the tail vein of mice and mea-
sured half life by ELISA. The circular, PEGylated species was
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cleared significantlymore slowlythanthelinearform (Fig. 6Fand
'I"e 85).

The sortase transpeptidase reaction allows facile site-specific
PEGylation of multiple distinct proteins. In all cases tested, the
site-specific C-termina1PEGyation proceeds effiently (f SU)
and yields adducts of known stoichiometry that are biologically
equipotent to the non-PEGylated versions, but retain the in-
crease In circulatory ha ife associated with PEG modification.
We attribute these properties to the fact that all enzymatic trans-
formations are performed on native proteins, procedures that
should not affect overall conformation or esposure of function-
ally important side chains. Because our approach to PEGylation
is site specific, all preparations are also honmogenous and easily
purIfied (5). Although we limit our examples to four-helix bundle
cytokines, this platfonn should be readily extended to structurally
distinct therapeutic proteins, with the singular requirement that
the C terminus is not involved in receptor binding A sortase-
based approach requires the genetic fusion of a very small (five
amino acid) tag to the protein of interest and all transformations
occur under native conditions. The additional amino acids that
result from fusion to the sortase recognition motif are close to
the site of PEG attachment Immunogenicity of this site is very
likely reduced by the PEG moiety shielding this area (3). We and
others have labeled proteins with an exposed N-termtinal glycine
using sortase (14, 24). This approach should therefore be readily
extended to site-specific PEGylation at the N terminus as well.
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Fig. 4. Synthesis and characterization of human
GCSF-3 conjugates. (4)GG-GCSF-LPETGGHiswas used
to make badcbone cydized GCSF-3, and GCSF-

* W 1 ~ LEPFrGGis was used to make GCSF-PEG (10 kDa)-m G OEG~icW) bearing a C-terminal PEG chain. Purified proteins
were resolved by 12.5% SOS-PAGE and stained with
Coomassia. (8) In vitro bioactivity of GCSF-3 conju-
gates in an NFS- call prolferation assay. Dose-
response curves for NFS-60 cell proliferation were
measured by MTT assay, in tripicate, with the stan-
dard deviation displayed. (C) Resistance of backbone
cydized GCSff to thermal denaturation. Change in
T* for drculr and PEGylated GCSF-3 conjugates, re-
lative to their precursor proteins, were measured by
thermalishift assay(n 4). () Change in serum GCSF
Isevels following tel vein Injection of site-specificaly
PEGylated GCSF-3, a wales its precursor.5 p&g of each
proteinWasinjetted and, attheindicated time points,
blood was wi:hdrawn and cytokine concentration in
serumwasdatermined byEUSAessay. Detar means
from three mice in each grousy with the standard
deviation displayed. (6) GC4 PEGyleted via sortesa
is highly potent in vivo. CS7RLi6 mice ( 4 per
group) were injected inkavenously with inear GCSF,
GCSF-PEG (10 kO or salne control (PNS). Peripheral
blood was collectadat the indicatedtimesandstained
with antibodies to Gr-1 and C0Ib. N, eawly generated
granulocytes were defined as Gr-1 intermediate
CD11b+ cells (31).

Cyclization of the backbone of protein-based therapeutics
also proceeds efficiently (ftg. S32) and yields preparations that
are more resistant to thermal denaturation. Cyclic proteins are
also resistant to exoproteolytic attack (25, 26), a feature that
may enhance utility of any therapeutic proteins exposed to exo-
proteases, for eample upon receptor mediated intemalizatin.
In addition, cycliation of proteins and peptides has been shown
to improve potency, stability, and oral bioavailability (27-30).

Finally, we have inserted a nontemplate encoded entity in
what is topologically internal to a circular protein, a feat that
cannot be accomplished genetically by intein-based methods or
by any other currently known means. More generally, this dual
transacylation scheme can be used to insert nonnatural groups
between fully native proteins eapresed separately, or between
protein domains. We suspect tha this approach will find applica-
tion in the protein engineering field and so further extend the
utility of sortases as tools.

Epiental Procedres
Sortmae anctias Sortase reactions with SrtA were perform-
ed as described previously (11). For either cyclization or PEGyla-
tion, reactions containing 50 pM substrate, 50 pM SrLtA,, and
I mM probe (for PEGylation) were incubated overnight at 25*C
without agitation. Reactions were puritied by cation exchange
chromatography on a Mono-S (GE Healthcare). For IFNa2
reactions, continuous gradient chromatography was performed
with 20 mM 2-(N-morpholino) ethane sulfonic acid (MES) pH
5.0 and 20 mM MES, 1 M NaCl pH5.0, as eluent. For GCSFre-
actions, continuous gradient chromatography was performed
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(A) GG-EO-LPETGGHis bearing the H-21Kb signal sequence was expressed
in NEK-293T calls. Conditioned media was sublected to Ni-NTA IMAC purifi-
cation. Eluted material was supplemented with 100 pM SrtAh, and Incu-
bated at 25"C. Aliquots were mmoved at the indicated time points.
subjected to 12.% SDS-PAGE and protein was visualized by silver staining.
(0) MSIMS Identification of a peptide generated by tryptk digestion contain-
ing the C terminus of EPO, followed by the SrtAStaph cleavage site and
joined to the N terminus of EPO. (C) in vitro bloactivity of linear and cylic
EPO conjugates in a cell proliferation assay using BaF3 cells stably expressing
the erythropoietin receptor (Ba13-EPOR). Eluted material from NI-NTA IMAC
purification was incubated in the presence or absence of sortase for 16 h at
25'C and these crude reactions were measured for in vitro EPO bloactivity.
Dose responsecurves for BF3-EPOR call proliferation were measured by MTT
assay, in triplicate, with the standard deviation displayed. Concentrations
were not adjusted for impurities in the EPO preparations.

with 20 mM sodium acetate pH 4.5 and 20 mM sodium acetate,
1 M NaCI pH 4.5, as eluent Peaks containing the desired product
were pooled, concentrated with Vivaspin 500 centrifugal concen-
trators (Sigma) and protein concentration was determined by
Bradford Assay (BioRad). For EPO cyclization, 300 pL of
Ni-NTA elutate (0.101 mg/mL total protein) was incubated with
100 pM SrtA and sortase buffer in 400 pL total volume at 25'C
for 16 h. For two-step transacylation reactions, 150 iM substrate
was incubated with 50 pM SrtAn. and 2 mM probe in 100 mM
'll, 150 mM NaCl pH &0 for 4 h at 37'C. SrA m activity
was hated by incubation with 500 pM of the protease inhibitor
E-64 on ice for 1 h. Crude reaction mixtures were then supple-
mented with 10 mM imidazole and subjected to Ni-NTA chroma-
tography (Qiagen) to remove prematurely cyclized material.
Protein was eluted with 50 mM Tris, 150 mM NaCl, 500 mM
imidasole, and buffer exchanged into SrtA 5 p, buffer (50 mM
Tris, 150 mM NaCl, and 10 mM CaCi2) with a PD10 desalting
column (GE Healthcare). For cyclization, this material was
incubated overnight with 50 pM SttA&,k and purified by cation
exchange as described for other IFNe2a reactions Concentrated,
purifiedcircular IFNa2bearingtheAminoosyaceticacid(AOAA)
group was then diluted with 1 volume of 50 mM sodium acetate
pH 4.5, 150 mM NaCl containing 2 mM methoxy-capped PEG-
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Fig.6. Synthesis and characterization of cyclic, PEGylated IFRe2. (A) GG-
IFNa-LPETAAMIss was used to make backbone-cyclind ~F1e2 with the amino
oxy moiety stitched between the site of closure. This material was then used
to generate cydic. PEGylated IFN2 by aniline catalyzed oxime ligation. Pur-
ified proteins were resolved by 12.5% SDS-PAGE and stained with Coomassle.
(a) MSMS identification of a peptide generated by AspN digestion contain-
ing the C terminus of IFNa, followed by the alanine-based probe joined to the
N terminus of IFNa by SrAso Note that the amino oxy group was likely lost
during MSMS analysis and E51-MS reconstructions of unfragmented protein
revealed a mass consistent with instalation of the amino oxy group (Fig. S3).
(C) In vitro biloactivity of linear and cyclic IFNa conjugates in a Daudi cell pro-
liferation inhibition assay. Dose-response curves for Daudi cell proliferation
inhibition were measured by MTT assay in triplicate, with the standard de-
viation displayed. (0) Resistance of circular-AOAA and circuier-PEGylated
IFNa to thermal denaturation. Change in T.'s for crculer-AOAA and drcular-
PEGylated IFNa conjugates, relative to their precursor protein, were mea-
sured by thermal shift away (n = 4). (E) Circular cytokines remain biologically
active after boiling. The indicated variants were diluted to 1 mg/mL in
RPMI/10% serum, boiled for 4 min, allowed to cool at room temperature
for 16 h, and assayed for inhibition of Daudi cell proliferation. (F) Change
in serum P1ff levels following tail vein injection of circular, site-specifically
PEGylated lFNa as well as its linear precursor protein. 10 pg of each protein
was injected and, at the indicated time points, blood was withdrawn and
cytoline concentration in serum was determined by EUSA assay. Data are
means from three mice in each group, with the standard deviation displayed.

propionaldehyde, and 100 mM aniline (IT Baker) and incubated
at 30*C for 3 h without agitation. This reaction mixture was
again purified by cation exchange chromatography, concentrated,
and protein concentration was determined by Bradford assay.

Thasil Dastaraties Assays. Thermal shift assays were performed
in a Roche 480 lightcycler and fluorescence was measured with
Excitation = 533 nm, Emission = 610 nm. For GCSF-3, 1 pig of
each variant was mixed with 1 iL of 100x Sypro orange in 25 iL
total volume of 50 mM acetate pH 4.0, 150 mM NaCL n = 4 for
all. samples with buffer as a blank control and lysozyme as a
positive control. For IFNa2, I pg of each variant was mixed with
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1 pL of 10ox Sypro orange (Invitrogen) in 25 pL total volume
of 50 mM NBS ph 5.0, 150 mM NaCL. n = 4 for all samples
with buffer as a blank control and lysoayme as a positive control.
Samples were heated from ambient temperature to 95*C at
0.01 *C/s with 6 acluisitions/aC. The included Roche software
was used to calculate the negative first derivative of the tempera-
ture change as a function of tie and the minm awereused as the
T.. Because of the impurities in the cyclicEPOpreperations, Tm
was not determined.

Col-load lioctivity Assays. Daudi cell proliferation iniition
assays to measure the activity of IFNa2 conjugates were per-
formed as described (8) and compared to commercial IFNa2
(PBL Interferon Source) with low passage Dandi cells (ATCC),
cultured in RPMI medium 1640/10%Heat inactivated fetal
calf serum (IPS)/50 units/mL penicillin, 50 pg/ML streptomy-
cinsulfate. Cel proliferation was measured by Mrassay accord-
ing to manufacturer's directions (ATCC). For the denaturation
assay, samples diluted to 1 pg/mL in RPMI medium 1640/10%
IFS were boiled for 4 min, allowed to cool at room temperature

for 16 h, and assayed for Daudi cell proliferation inhibition.
NFS-60 cell proliferation assays to measure G-CSF conjugate
activity were performed as follows. NFS-60 cells (akind gift from
James Ile, St. Jude Children's Research Hospital) were cultured
in RPMI medium 1640/10%IfS/50 units/mL penicillin, 50 pg/
ML streptomycin sulfate supplemented with murine IL-3
(20 U/ml, R&D Systems). Cells were washed extensively in
complete RPM! medium 1640 medium lacking IL-3 and resus-
pended at 1 x 10 cells/mL in complete RPMI mednm 1640
lacking IL-3. Titrated GCSF conjugates (50 pL) in complete
RPMI medium 1640 were aliquoted into a flat bottom 96 well
plate and 50 pL of cells (0.5 x 104 cells/well) were added to each
well. Ces were cultured for 3 d and an MTT assay (ATCC) was
performed according to manufacturer's directions. Each plate
contained a titration of commercial GCSF3 (Peprotech) and
readings were blanked against wells containing only NFS-60
cells. The activity of each conjugate was measured a minimum
of n = 3 times. BaF3 cells stably expressing the EPO receptor
(BaFS EPO-R cells, a kind gift from Harvey Lodish, Whitehead

1. WangX, LupardusP, Laporte 54 Garda KC(209)Structuralbiologyof shared cytoine
receptors. Ann Rrev kaunol 21:29-60.

2 Leader U, laca Qi, Golan DE "M) Rotein therapeutia: a summary and pharmaco-
logical dasillkatien. Not Rev Dtsu Obcov 7:21-39.

. Itershfleld M%, it al. (1991) Me of site-directed rnutagensis to enhance the epitope-
shielding effect of covalent niedification of proteins with polyethylene glycol. roc
Ned Acad Sd USA 8:7115-7189.

4. Jevsevar , KunsteljM, Porekar VG (201) PEGylation of therapeutic proteins. loterh-
namlogy Journaf 5: 11-120.

a Veronese FM (2001) Peptide and protein PEGylatlon: a review of problers and
solutions. omaterflab 22:405-417.

a Grace M), at al. (2M5) Site of PEGlation and polyethylene glycol molecule size
attenuate interferan-alpha antiviral and antiprollferative activities through the
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7. Ooherty DM, at al. (200 Site-pecfic PEGylation of engineered cysteine analogues
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15. Ants JK it al (2009) A straight path to circular proteins. J oFl Chem
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Institute) were used to measure EPO activity. BaM3 EPO-R cells
were cultured as described for NFS-60 cels and assays were
performed essentially as described for G-CS, except EPO circu-
lariation reactions incubated with or without sortase for 16 h
at 37*C were used. The total protein concentration of the EPO
input material (measured by the Bradford method) was used and
was not adjusted for impurities. Commercial preparations of
BPO (eBioscience) were used as standards and readings were
blanked against BaP3 EPO-R cells cultured with no cytokines.
Activities were measured a minimum of n = 3 times.

Ciralatory a41.if Assas. For circulatory half-life assays, mice
were injected in the tail vein with each protein (10 pg per mouse
for IFNd, conjugates, 5 pg per mouse for G-CSF conjugates)
and subjected to retroorbital eye bleed at the indicated time
points. Blood was harvested, centrifuged at 1,957:g in a tabletop
centrifuge, and serum was collected and snap-frozen. Elisa assays
to measure the quantity of cytokine in serum samples were
performed according to the manufacturer's directions (IFN
from PBL Interferon Source, G-CSF from Invitrogen). Each
conjugate was injected into n = 3 mice. Data was fit to a two
phase eponential decay in GraphPad Prism.

Grauesyte prolifeiration A ay. Peripheral blood was collected
retroorbitally into EDTA collection tubes. Red blood cells were
lysed in hypotonic lysis buffer and the remaining peripheral
blood mononuclear cells were stained with anti-myeloid differen-
tiation antigen-1 (Gr-1) antibody labeled with phycoerythrin
(PE) (BD Pharmingen), anti-Cluster of differentiation 11b
protein antibody labeled with FITC (anti-CDllb-FITC) (BD
Pharmingen), and 7-Aminoactinomycin D (7-AAD) (VaProbe,
BD Pharmingen). Cells were analyzed using a FACS Caliber flow
cytometer (BM
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A system for monitoring influenza glycoproteins in living infected cells
(Unpublished, Popp M.W., Karssemeijer R., and Ploegh H.L.)

Abstract

Influenza glycoproteins control steps during both the entry and the egress of virions and

represent the major targets of the humoral immune system. Systems for monitoring the

events that contribute to budding of virions from infected cells are lacking. Here we

describe a system for monitoring both the hemagglutinin and neuramindase proteins in

living, infected cells during egress of progeny virions.

Introduction

Influenza virus is an enveloped, segmented, negative stranded RNA virus encoding 11

proteins, two of which are prominently displayed on the surface of the virion. Flu viruses

use the hemagglutinin and neuraminidase glycoproteins for interaction with the host cell

1-2membrane -2. Hemagglutinin, a type I transmembrane protein, is synthesized as a single

polypeptide, HAo, and is cleaved in a 19 amino acid loop by host proteases bearing

trypsin-like activity. The HAo polypeptide is assembled into non-covalent trimers during

biosynthesis, which are then incorporated into nascent virions. Hemagglutinin binds to

sialoglycoconjugates on the surface of target cells and the products of the host cell

cleavage event, HA1 and HA2, remain disulfide bonded to each other. Following

internalization of the virion, hemagglutinin undergoes a dramatic pH dependent

conformational change to fully expose HA 2, leading to fusion between the host and viral

membrane and viral genome release3 .
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In contrast, neuraminidase, a type II membrane protein, is involved in cleavage of sialic

acid residues during the release of progeny virions from infected cells. It is assembled

into disulfide bonded dimers, which are incorporated into virions as non-covalent

tetramers2

Entry of viruses is amenable to experimental analysis through the use of chemically or

genetically modified virions. Lipophilic dyes, for example, have been used to study the

early steps of infection by influenza-7 . However, the dearth of labeling methods that can

be applied directly to the major viral glycoproteins while preserving their activity has

made it impossible to visualize their behavior in living cells and consequently the

budding of influenza has not been observed. Live cell imaging studies of other viruses

such as vaccinia have used GFP fusions4'8-10, however the hemagglutinin cytoplasmic tail

is particularly intolerant of extensions 1 1 12 . Fusion of GFP to the N-terminus of

neuraminidase, a type II membrane protein is likely will impede co-translational insertion

into the endoplasmic reticulum.

Due to these limitations, flu budding has been studied mainly by electron microcopy,

yielding static pictures of a dynamic process1, 13-14. Biochemical assays measuring viral

titers and the amount of radiolabeled flu proteins secreted into culture medium"' 14 have

also been used, but by their very nature do not provide resolution at the single particle

level. Thus visualization of flu virus budding in real time is an important goal that has

been beyond reach due to a lack of tools with which to address the question.

Visualization of the budding process demands a method for discriminating viral proteins
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from the many host cell proteins inserted into the very membrane from which viral

budding occurs.

We have developed a site-specific protein labeling method that exploits the

transpeptidase activity of sortase enzymes to incorporate non-genetically encoded entities

into proteins15 . The sortase enzyme recognizes a five amino acid tag (LPXTG in the case

of Staphylococcus aureus sortase A), cleaving the recognition sequence between the

threonine and glycine with a key cystine residue and forming an acyl enzyme

intermediate. This intermediate is resolved by nucleophilic attack by the N-terminus of a

modified oligo-glycine peptide, added exogenously into the labeling mix.

A major advance in influenza biology was the generation of infectious flu particles solely

from plasmid DNA 16-18. These reverse genetics systems have allowed the creation of

influenza strains with defined genetic lesions in them, which was not previously possible

by reassortment and selection schemes. Using this methodology, we have generated

recombinant flu particles that replicate with identical bulk kinetics to their parental strain

but contain the requisite LPETG S. aureus SrtA cleavage site engineered into either

neuraminidase or hemagglutinin. Infection of cells with these recombinant virions leads

to production of the flu glycoproteins in functional, taggable forms that can be modified

on the surface of the infected cells and are incorporated into mature virions (Figure 7.1).

Results

We have employed the 12 plasmid reverse genetics system described by Palese et al16 to

create strains of the A/WSN/33 neurotropic virus that carries sortase cleavage sites on
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either the C-terminus of neuraminidase or in the hemagglutinin (HA) protein.

We generated recombinant virions bearing the LPETG cleavage site followed by a

hemagglutinin (HA) epitope tag (the A/WSN/33 strain lacks this particular epitope) at the

C-terminus of neuraminidase (Figure 7.5). This strain (hereafter refered to as NA-Srt) is

propagated efficiently in cell culture. Virions pelleted directly from tissue culture

supernatant are excellent substrates for SrtA-mediated labeling of neuraminidase (Figure

7.2)-sortase compatible probes bearing a biotin (Figure 7.2a), tetramethylrhodamine

(Figure 7.2a) and AlexaFluor647 (Figure 7.2b) moieties can all be incorporated, with

concomitant loss in the HA epitope downstream from the cleavage site (Figure 7.2a).

We confirmed that the addition of the sortase cleavage site to the C-terminus of

neuraminidase does not affect bulk replication of the modified virus by a multistep

replication assay. The modified NA-Srt virus replicates with nearly identical bulk

kinetics as the parental WSN strain (Figure 7.3a). Plaque morphology of the NA-Srt

virus is also similar to wild-type (Figure 7.3b). The biosynthesis of neuramindase is

also unaffected by the tag-virions pelleted from tissue culture supernatant and further

purified through a sucrose gradient show only quantitatively disulfide bonded dimers of

neuraminidase are incorporated into virus (Figure 7.3c).

Infected Madin-Darby Canine Kidney (MDCK) cell surfaces can also be labeled

selectively, as demonstrated by incorporation of a biotin probe into surface-displayed

neuraminidase (Figure 7.4). These data establish that the modified virus is infectious,

and that neuraminidase can be labeled on the surface of both virions and infected cells.
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To identify a position in HA amendable to sortase cleavage, we generated three different

constructs (Figure 7.5), two with the sortase cleavage site, LPETGG, either substituted or

inserted upstream of the HA1-HA 2 trypsin cleavage site and also a version where the

more conservative LPSTG substitution was made. We failed to generate recombinant

virus with the LPSTG substitution, but succeeded in rescuing virions from the two

LPETGG tagged strains. Hemagglutinin incorporated into virions can be labeled by

sortase when virions are pelleted directly from supernatant derived from the mixture of

cells used to rescue virus (Figure 7.6), however when this supernatant was used to re-

infect MDCK cells, only cells infected with the recombinant virus bearing HA with the

LPETGG insertion (hereafter termed HA-Srt virus) showed cell-surface labeling of

hemagglutinin using sortase and a biotinylated probe (Figure 7.7). We characterized the

replication of the HA-Srt virus by a multi-step replication assay using hemagglutiniation

of chicken erythrocytes as a proxy for viral load in the supernatant. Like NA-Srt, the

HA-Srt virus replicated with nearly identical kinetics to the parental WSN strain (Figure

7.8).

To confirm that the influenza proteins produced by cells infected with either the NA-Srt

or HA-Srt viruses are glycosylated, we subjected the surfaces of infected cells to sortase-

labeling with a biotinylated probe, a procedure that will label only the surface displayed

protein poised for incorporation into virions. Digestion of cell lysates with with either

Endoglycosidase H or PNGaseF revealed that surface exposed biotinylated HA-Srt

protein was largely EndoH resistant, indicating successful traversal of the secretory

pathway and maturation of N-linked oligosaccharides (Figure 7.9). The surface
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displayed neuraminidase produced during infection is partially EndoH sensitive,

however, an observation consistent with literature reports (Figure 7.9).

We further characterized the NA-Srt virus by infecting mice with a sub-lethal dose of the

recombinant and wild-type parental strains. Both influenza strains caused weight loss in

mice, followed by recovery (Figure 7.10), indicating that the NA-Srt strain maintains the

ability to infect living animals despite addition of the sortase recognition element to

neuraminidase.

MDCK cell surfaces infected with either the NA-Srt of HA-Srt viruses can be labeled

(Figure 7.4 and Figure 7.7). Neither the sortase enzyme nor the peptide probes used are

cell permeable, thus confining labeling to the cell surface pool of protein. For the NA-Srt

strain, this subset of protein is with slightly delayed kinetics relative to biosynthesis of

the protein after infection (Figure 7.4, compare top and middle panels) and labeling is

absolutely selective; no endogenous proteins are labeled. Given these observations, we

examined whether labeled neuraminidase in infected cells could be observed by

microscopy (Figure 7.1). Unpolarized MDCK cells seeded on glass coverslips were

infected with NA-Srt virus, labeled with sortase and and a glycine based probe bearing an

AlexaFluor647 dye, and imaged by confocal microscopy. A series of images in the Z

plane shows the expected cell surface disposition of the neuraminidase (Figure 7.11) as

evidenced by the rim-like staining of cells. At the top of the Z-series, we observe

punctate staining (Figure 7.11, right most panels), a pattern that we infer to be nascent

influenza budding sites.
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Discussion

We have devised a method for observing the behavior of influenza glycoproteins in cells

infected with a fully functional virus. Our method leverages the sortase labeling

technology'19 as well as influenza viruses engineered to carry short sortase recognition

sequences in their glycoproteins. These (minimally) engineered viruses show identical

behavior to the parental strain with respect to infectivity, replication kinetics, and protein

biosynthesis and thus observation of the sortase labeled glycoproteins reflects the

behavior of their wild-type counterparts. By combining SrtA-labeling methodology with

live-cell imaging, we will monitor the kinetics of influenza budding and release in future

studies. We anticipate that this system will yield a robust method to visualize the kinetics

of particle formation and, in combination with perturbations of host cells, will reveal host

proteins that contribute to the process of influenza virion biogenesis.

Methods

Protein production and peptide probe synthesis. Sortase was produced as describedis

Peptide probes were produced as described15 (also see Appendix A).

Generation of recombinant viruses. Mutant viruses were generated by reverse genetics

using plasmids described 16. The hemagglutinin and neuraminidase plasmids were

modified by standard molecular biology techniques to carry the sortase cleavage site. All

viruses, including the wild-type WSN virus used were rescued as described16 .
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Viral Assays. Viral titer was assessed by plaque assay on MDCK cells as described".

For multi-step replication assays, MDBK cells were infected at an MOI of 0.001 and

incubated for the indicated times in viral growth medium (VGM, DME with 0.3% BSA)

supplemented with 0.5 tg/ml TPCK-treated trypsin (NA-Srt) or 1 p.g/ml TPCK treated

trypsin (HA-Srt). For NA-Srt multi-step replication, 100 pl of media was plaqued at the

indicated time points on MDCK cells grown with 0.5 tg/ml TPCK-trypsin. For HA-Srt,

hemagglutination using chicken erythrocytes (Lampire labs) was done at the indicated

time points, as described 6 .

Viral Particle Purification. Viral particles from tissue culture supernatant were

concentrated by pelleting through a 20% sucrose cushion (Sigma) at 25000 rpm in an

SW-28 rotor for 120 minutes. Where indicated, virus was further purified through a

continuous 15%-60% sucrose gradient, centrifuged at 30,200 rpm in an SW-40.1 rotor for

3 hours.

Sortase labeling of virions. For biotin and TAMRA labeling, virions were pelleted from

tissue culture supernatant without a sucrose cushion. The pellet was resuspended in 1X

sortase buffer' 5 and labeled with 150 pM sortase A/ 5 mM probe for 1 hours at 370C. For

Alexa647 probe labeling, sucrose gradient purified virions were mixed with 200 pLM

sortase A and 500 iM probe at 37'C for 2 hours.

Sortase labeling of live cell surfaces for immunoblot. MDCK cells were plated in a 24

well dish at 70% confluency the night before the experiment. Cells were infected at an
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MOI of 1 and 0,1,2,3,4,5,6 or 7 hours post infection, cells were incubated with 100mM

sortase A and 100mM GsK-biotin probe in VGM for 30 minutes at 370C. Cells were

washed extensively in PBS, collected, and lysed in 1% SDS with protease inhibitor

cocktail (Roche). A BCA assay was performed (Pierce) and 20 ptg of lysate was loaded

for western blotting.

Mouse infections. Mice (n=4 in each group) were inoculated intranasally with 40000

pfu of the indicated virus and body weight was monitored at the indicated intervals.

Cell surface labeling and glycosidase digestion. MDCK cells were infected at an MOI

of 0.4 overnight and labeled for 1 hour at 37"C with 100 mM sortase and 500 mM biotin

probe. Cells were then lysed in glycoprotein denaturing buffer (New England Biolabs)

and total protein in lysates were quantiatated by BCA assay (Pierce). Five micrograms of

cell lysate was digested with either PNGase F or EndoH according to manufacturer's

directions (New England Biolabs), resolved by 12.5% SDS-PAGE, transferred to

nitrocellulose, and used for western blotting with the indicated antibodies.

Imaging. MDCK cells were seeded onto 18 mm circular glass coverslips (VWR

International) and infected with NA-Srt at an MOI of 0.5. At 7.5 hours post-infection,

coverslips were inverted and placed onto a drop of labeling mix (200 ptM SrtA and 100

ptM Alexa647 probe in VGM) for 10 minutes at 370C. Coverslips were then washed 5

times in PBS, and fixed by inversion onto a drop of 4 % paraformaldehyde in PBS for 10

minutes at room temperature on parafilm. Coverslips were mounted with Fluoromount G
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(Southern Biotech) and analyzed using a Nikon spinning disk confocal microscope with

Metamorph software.
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Figure Legends

Figure 7.1. Scheme for studying influenza glycoprotein behavior in live infected

cells

Observation by live microscopy of influenza infected cells demands a method for the

site-specific installation of probes onto flu proteins at the exclusion of host-cell proteins

(gray squares). We have generated recombinant influenza viruses that encode, in their

genome, versions of neuraminidase (NA, round ciricles) or hemagglutinin (HA,

diamonds) that can be labeled with sortase A (see text for details). Live, infected cells

are labeled by inclusion of sortase A and a oligo-glycine based probe in the culture

medium.

Figure 7.2. Recombinant NA-Srt virions are substrates for sortase A

(a) NA-Srt virus bearing a sortase cleavage site appeneded to the C-terminus of

neuramindase, followed by an HA epitope, was pelleted from tissue culture supernatant

and incubated with 150 tM sortase A and 5 mM of the indicated probe at 37'C for 1

hour, with agitation. Streptavidin-HRP immunoblot (top panel) shows incorporation of a

G5K(Biotin) probe with concomitant loss of the HA epitope (middle blot). A glycine

based tetramethylrhodamine probe can also be incorporated (bottom panel, fluorescence

gel).

(b) Highly purified NA-Srt virus is labeled with a glycine based AlexaFluor 647 probe.

NA-Srt virions were purified through a 20% sucrose cushion and further banded on a

continuous 15-60% sucrose gradient before labeling with sortase (200 pM) and an

AlexaFluor 647 probe (500 pM) for 2 hours at 370C. The labeling reaction was
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fractionated by 12.5% SDS-PAGE and scanned by a Typhoon Imager.

Figure 7.3. NA-Srt Virus is not attenuated in vitro

(a) Multi-step replication assay. NA-Srt virus and wild-type WSN virus were used to

infect MDBK monolayers at an MOI=0.001 and viral supernatant was plaqued on MDCK

cells at the indicated times.

(b) Plaque morphology of WSN and NA-Srt viruses.

(c) NA-Srt protein incorporated into virions is quantitatively forms disulfide bonded

dimers. NA-Srt virus was purified over a sucrose gradient and loaded on a 12.5% SDS-

PAGE gel in the presence or absence of reducing agent (2-mercaptoethanol). Anti-HA

epitope immunoblot displays the presence of the NA-Srt protein.

Figure 7.4. Cell surface labeling of NA-Srt infected MDCK cells.

Neuraminidase on infected MDCK cell surfaces is selectively labeled by SrtA. MDCK

cells were infected at MOI= 0.5 and at the indicated times post infection, were incubated

for 30 min with 200 ptM SrtA and 500 ptM biotinylated nucleophile. Cells were

collected, subjected to 12.5% SDS-PAGE, and immunoblots with streptavidin-HRP (top),

anti-HA (middle), and anti-p97 (bottom, loading control) were performed.

Figure 7.5. Protein Sequences

Protein segments for hemagglutinin and neuraminidase are displayed along with the

sequences of the mutant viruses. Sortase cleavage sites are in red, the endogenous trypsin

cleavage site on hemagglutinin is in blue and the HA epitope appended to the C-terminus
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of the NA-Srt protein is in green.

Figure 7.6. Rescue and labeling of sortase-compatible hemagglutinin mutant

viruses.

Viruses with the indicated mutations were rescued as described (refs). Supernatant (10

mL) from the cell mixture used to rescue virus was ultracentrifuged and the pellets were

incubated with sortase A (200 ptM) and Biotin probe (1 mM) for 5 hours at 37'C.

Reactions were then denatured and digested with PNGaseF for 1 hour at 370C to display

the denuded, labeled, HA polypeptides and distinguish it from possible NA-Srt virus

contamination.

Figure 7.7. Cell surface labeling of HA-Srt infected MDCK cells.

Hemagglutiin on infected MDCK cell surfaces is selectively labeled by SrtA. MDCK

cells were infected at an MOI = 1 for NA-Srt virus and with supernatant from the cells

used to rescue the inidiated hemagglutinin mutant viruses. At the indicated times post

infection, cells were incubated for 30 min with 200 piM SrtA and 500 piM biotinylated

nucleophile. Cells were collected, subjected to 12.5% SDS-PAGE, and immunoblots

with streptavidin-HRP (top), or a mixture of anti-HA, and anti-p97 (loading control)

antibodies (bottom) were performed.

Figure 7.8. HA-Srt virus is not attenuated in-vitro.

Multi-step replication assay. HA-Srt virus and wild-type WSN virus were used to infect

MDBK monolayers at an MOI=0.001 and viral supernatant was subjected to
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hemagglutinination assay with chicken red blood cells at the indicated times.

Figure 7.9. Hemagglutinin and neuraminidase from HA-Srt and NA-Srt viruses are

glycosylated.

MDCK cells were infected at an MOI of 0.4 overnight and labeled for 1 hour at 370C

with 100 mM sortase and 500 mM biotin probe. Cells were then lysed in glycoprotein

denaturing buffer (New England Biolabs) and total protein in lysates were quantiatated

by BCA assay (Pierce). Five micrograms of cell lysate was digested with either PNGase

F or EndoH according to manufacturer's directions (New England Biolabs), resolved by

12.5% SDS-PAGE, transferred to nitrocellulose, and used for western blotting with the

indicated antibodies

Figure 7.10. NA-Srt virus is not attenuated in-vivo.

Mice (n=4 in each group) were inoculated with 40000 pfu of the indicated virus and body

weight was monitored at the indicated intervals.

Figure 7.11. Microscopic observation of labeled neuraminidase on infected cell

surfaces.

MDCK cells were seeded onto coverslips and infected with NA-Srt at an MOI of 0.5. At

7.5 hours post-infection, coverslips were inverted and placed onto a drop of labeling mix

(200 pM SrtA and 100 pM Alexa647 probe in VGM) with (top two rows) or without

sortase (bottom row) for 10 minutes at 370C. Coverslips were then washed 5 times in

PBS, and fixed by inversion onto a drop of 4 % paraformaldehyde in PBS for 10 minutes
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at room temperature on parafilm. Coverslips were mounted with Fluoromount and

analyzed using a Nikon spinning disk confocal microscope with Metamorph software. Z-

stacks are displayed. The no sortase control panels are overexposed to highlight

background.
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Figure 7.2
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Figure 7.3
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Fig. 7.4
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Fig. 7.5
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Figure 7.7
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Fig. 7.8
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Figure 7.10
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Chapter 8: Future Directions
(Adapted from: Popp M.W., Ploegh H.L. Making and Breaking Peptide Bonds: Protein

engineering using sortase, Angewandte Chemie, Accepted)

New Technology

Orthogonal Sortases

The diversity of the microbial world includes multiple sortase-type enzymes, with several

distinct cleavage site preferences and nucleophile specificities. 1 The pilin-building sortases, for

example, accept the g-amine of a lysine within the YPKN sequence as nucleophile, whereas

sortase A from S. aureus will accept the N-terminus of glycine extensions. Sortase B (SrtB)

from S. aureus cleaves the NPQTN sequence,2 3 while SrtB from Bacillus anthracis cleaves the

NPKTG sequence4 and accepts meso-diaminopimelic acid as a nucleophile.5 7 Although the use

of distinct sortases for protein labeling is in its infancy, there is clearly great untapped potential

in these other sortases if the recognition requirements and reaction conditions can be more

clearly specified. With the advent of many directed protein evolution techniques, it may be

possible to improve on what nature has provided. In its usual biological context, the

housekeeping sortase anchors to the cell wall a set of substrates that are structurally distinct:8 the

one feature required for attack by sortase seems to be the LPXTG pentapeptide. This, coupled

with the fact that substrate recognition is primarily a function of the 36-p7 loop,9~11 implies that

it should be possible to evolve versions of sortase that will attack fully orthogonal peptide

sequence motifs. Given the diversity of sortases that recognize different anchor structures, 5-6 it

should be possible to evolve enzymes that will accept nucleophiles other than those that occur

naturally. By combining sortases of distinct specificity, one can envision orthogonal labeling of

different proteins in a one-pot reaction, or -its biological equivalent- inserted into the same

cellular environment. The kinetics of the sortase reaction are lackluster at best, most likely
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owing to the active site equilibrium which favors the inactive, non-ionized cysteine residue.

Although this problem is easily overcome by adding large quantities of sortase to the reaction

(and thus adding a larger total amount of catalytically competent enzyme), it would still be

beneficial to improve the overall kinetics of transpeptidation by S. aureus SrtA using directed

evolution.

The pilus-building sortases which polymerize subunits by creating iso-peptide bonds remain to

be exploited. These enzymes may be of particular interest, since they evolved to establish

covalent protein-protein linkages post-translationally, and perhaps this trait could be harnessed to

perform similar protein-protein ligations in vitro, exploiting exposed lysine residues internal to

the protein of interest as the incoming nucleophile. Given that isopeptide bond formation is

featured in many biological processes, for example in the ubiquitin system, the ability to make

homogeneous, site-specific isopeptide linkages would be tremendously useful.

Intracellular Labeling

An intriguing question is how to overcome the limitations that prevent intracellular labeling by

sortase. It is possible to express sortase inside of both living bacterial and eukaryotic cells - the

enzyme folds properly and is active (Popp, Strijbis, unpublished observations). The S. pyogenes

enzyme, lacking the requirement for divalent cations, is active in compartments devoid of

calcium, such as the cytosol. Similarly, substrates that bear an exposed LPXTG motif are easily

expressed, and depending on the protein, retain their normal localization and/or function. When

the nucleophile for transpeptidation is genetically encoded as part of the substrate protein, as in

the case of circularization or protein-protein ligation reactions, transpeptidation proceeds readily
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(Strijbis, Popp, unpublished observations), and yields circular proteins intracellularly in yeast,

mammalian cells, and prokaryotes. The limiting step for simple C-terminal labeling is thus

delivery of an exogenous nucleophile to the cell interior in quantities that permit biochemical

analysis of the transpeptidation product. These limitations might be overcome by attaching one

of the many protein transduction sequences derived from the human immunodeficiency virus

trans-activator of transcription protein (HIV TAT) or other sources to the labeled nucleophile of

interest, although this possibility remains to be reduced to practice and fails to address the fate of

any unincorporated cytoplasmically delivered nucleophile. Alternatively, it might be possible to

transiently mask the alpha-amine group and other groups that preclude delivery to the cytosol

through installation of chemical entities that can be removed by esterases, photochemically, or in

the reducing environment of the cytoplasm, making probe delivery irreversible.

Applications

Polarized cell protein transport

With the tools developed in this thesis, experiments to address many unanswered questions in

glycoprotein trafficking and quality control become immediately accessible. Transport of

transmembrane glycoproteins within the cellular membranes of polarized cells-the normal

context for many host and microbial proteins involved in pathogenesis-is currently studied by

crude biochemical assays. For most proteins, it is thought that they are sorted and inserted into

their destination membrane during biosynthesis, while other types of proteins are inserted into

both membranes and localized to their final destination via transcytosis12 . The issue of protein

sorting and localization is particularly salient for studying influenza infection, where budding

usually occurs at the apical domain of polarized epithelial cells. However, to assess this
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phenomenon requires meticulous biochemical assays-usually a biosynthetic pulse-chase labeling

of polarized cells combined with vectoral delivery of non-specific chemical biotinylation

reagents to uniformly label all surface proteins on a given surface. Transcyotsis is indirectly

inferred by the transient accumulation of a protein on a given surface, followed by a steady

decline in the face of constant accumulation on the opposite surface. By labeling suitably tagged

glycoproteins in polarized cells, it is possible to directly study the behavior of the labeled

protein. One need only deliver the sortase labeling mix to the desired surface in order to

visualize the fate of such proteins in real time.

Defining protein complexes

Epitope tagged versions of proteins in combination with immunopreciptiation and mass-

spectrometry have been used with great success to identify the members of multiprotein

complexes. However, this method is limited by the inclusion of detergent, which almost

certainly disrupts weak or transient protein-protein interactions. To overcome this significant

technical hurdle, sortase can be used to deliver photo-activatable crosslinker probes (see

Chapter 2) to cell surfaces, semi-intact cells (Popp, unpublished data) or to microsomal

preparations containing LPETG tagged bait proteins, in the absence of detergent. In this way, it

should be possible to both identify proximity relationships between known interactors as well as

identify new proteins in the same complex (Figure 8.1). Proximity relationships between known

interactors can also be defined by co-expressing a protein C-terminally fused to the sortase

cleavage site with a candidate protein containing a free glycine residue at the N-terminus.

Delivery of sortase will covalently crosslink these proteins, provided that they are in close

enough proximity to one another (see p97 experiments, Chapter 4).
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Transient cell-cell interactions

There is a dearth of tools that report on cell-cell interactions. Currently available split-GFP

reporters only detect long-lasting interactions 13 and a very recently developed method for

enzymatic biotinylation still relies upon streptavidin linked detection". We envision a tool for

reporting on transient cell-cell interactions, where one cell bearing a sortase substrate comes into

close proximity to another cell bearing a membrane anchored version of either SrtAstrep or

SrtAsaph. This would allow for acyl-enzyme formation between the sortase and substrate on

opposite cells and when incubated with a functionalized probe (either based on an AA

nucleophile or a GG nucleophile for SrtAstrep and SrtAstaph, respectively) will ultimate result in

labeling of the cell bearing the sortase substrate. In this way an indelible mark for a possibly

transient cell-cell interaction is imparted on the cell bearing the sortase substrate, given that the

interaction is long-lived enough for the transacylation reaction to occur (Figure 8.2).

In its natural context, sortases are embedded in the bacterial membrane through a transmembrane

anchor at the N-terminus. We can thus express sortase at the mammalian cell surface by fusing

the catalytic domain of sortase to a mammalian type II membrane protein bearing a signal-anchor

sequence for ER insertion. This results in insertion into the plasma membrane and exposure of

the sortase catalytic domain to the extracellular space (Popp, unpublished data).

Bioconjugate Libraries

A key advantage of the sortase labeling method is the relative ease with which the nucleophilic

probes are synthesized. Most probes are simple C-terminal appendages of glycine, made on

solid phase, with the reporter either incorporated while the peptide is on resin or in solution by

standard chemical coupling techniques. The published record shows that a diverse array of such
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probes will all likely react as nucleophiles with a given target in the same manner. This makes it

possible to create libraries of bioconjugates without the need to re-optimize ligation conditions

for each conjugate individually. Cell- and tissue-specific proteinaceous delivery vehicles for

small interfering RNA (siRNA) libraries and antibody-drug library conjugates are all within the

realm of possibility. An added benefit of the sortase method is the tight control over the

stoichiometry of labeling-this should greatly facilitate quantitative studies of the effects of such

bioconjugate libraries.

Non-natural Protein Topologies

In addition to the strict control over stoichiometry of ligation products, sortase allows control

over the orientation between ligation partners, and this could be useful in creating protein-protein

conjugates. By switching the location of the N-terminal glycines on one unit for the sortase

motif on the other partner protein, the orientation of the subunits can be reversed. By using

cleverly designed probes bearing handles for bioorthogonal reactions (for example azide-alkyne,

azide-strained cyclooctyne, or aldehyde-amino-oxy groups), it should be possible to construct

protein pairs that are covalently linked in non-natural topologies (N-N or C-C). Alternatively,

two-step transacylation procedures using the semi-orthogonal SrtAsaph and SrtAstrep enzymes

along with the appropriate peptide probes in N-N or C-C linkage can be employed. The sortase

method thus provides access to protein linkages not found in nature and one area where this can

be applied is in making engineered ligands for studying cell signaling. It would be possible to

create chimeric, folded protein ligands that constrain binding and heterodimerization of their

cognate receptors. It is clear that the ease of use and flexibility of the sortase labeling method

will provide exciting new avenues of research.
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Figure Legends

Figure 8.1. Photocrosslinking of membrane proteins

Protein complexes can be defined by using sortase to site-specifically affix a probe bearing a

photcrosslinker moiety onto a protein of interest in the rigorous absence of detergent (either in

semi-intact cells or on the cell surface). Following crosslinking and immunoprecipitiation, the

covalent adduct can be identified by mass spectrometry.

Figure 8.2. A system for reporting on transient cell-cell interactions

To identify a cell-cell interactions, sortase is expressed as a fusion protein on the surface of one

cell, while the interacting cell expresses a protein bearing an LPXTG motif. Addition of

exogenous nucleophile will leave an indelible mark on the cell bearing the LPXTG motif and

thus report on transient interactions.
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Figures

Figure 8.1.

Cell Surface or semi-intact cell membranes
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Figure 8.2
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Making and Breaking Peptide Bonds: Protein
Engineering Using Sortase
Maximilian Wei-Lin Popp and Hidde L. Ploegh*

protein engineering - protein modifications -
site specificity -sortase - transpeptidation

Sortases are a class of bacterial enzymes that possess transpeptidase
activity. It is their ability to site-specifically break a peptide bond and
then reform a new bond with an incoming nucleophile that makes
sortase an attractive tool for protein engineering. This technique has
been adopted for a range of application from chemistry-based to cell
biology and technology. In this Minireview we provide a brief over-
view of the biology of sortase enzymes and current applications in
protein engineering. We identify areas that lend themselves to further
innovation and that suggest new applications.

i. Biolgcl Function and Sicheinstry of SottuSe A

Many Gram-positive bacteria display virulence factors on
their cell wall for successful colonization and pathogenesis!"
Anchoring of proteins to the bacterial cell wall is the purview
of sortase enzymes," a class of thiol-containing transpepti-
dases. These enzymes recognize substrate proteins bearing a
"sorting motif" (LPXTG in the case of Staphylococcus
aureus) and harbor a catalytic cysteine residue that is used
to cleave the peptide bond between the threonine and glycine
residues within this pentapeptide.'"I Other sortases from
different bacterial species use the same or similar recognition
sequences.i*"i A database of sortases and their substrates can
be found on the internet.'"I 'This peptide-cleaving reaction
initially yields a thioacyl intermediate?"' in a fashion
analogous to the mechanism used by cysteine proteases.
Whereas cysteine proteases use water to resolve this inter-
mediate and generate a hydrolysis product, sortase will accept
the N terminus of an oligoglycine nucleophile, thereby
resulting in the creation of a new peptide bond (Figure 1).
In the course of the normal sorting reaction, the pentaglycine
crosabridge in the lipid I cell wall precursor carries out the
nucleophilic attack on the acyl-enzyme,"I The cell-wall
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precursor with its covalently attached protein is then incor-
porated into the growing peptidoglycan layer.

In addition to anchoring virulence factors to the cell wall.
sortases build the pilus structure that many bacteria use for
attachment to host cells and to form biofilms.1"-''l The details
of this process differ between bacterial species1 -"

2'1 but, in
general terms, it involves a sortase that polymerizes pilin
subunits bearing both a sorting signal and a nucleophilic e-
amine of a lysine residue in an internally located motif."I This
protein-protein ligation reaction results in polymerization of
the pilin subunits, but does not mediate anchoring of the
growing polymer to the cell wall. This is the job of the
housekeeping sortase, which accepts the lipid I precursor
nucleophile."'I

Sortases represent a bona fide drug target because of their
central role in virulenceY'"" Recombinant sortase lacking its
transmembrane domain is readily produced in high
yield.16" "I For a detailed protocol for sortase production,
see Ref. [34]. his has facilitated extensive structurall"I and
biochemicallW' 1 studies of the enzyme. The structure of
sortase A from I aureus consists of an eight-stranded P-barrel
fold structure, termed the sortase fold, with a hydrophobic
cleft formed by the P7 and 08 strands. This cleft is surrounded
by the P3-64, [2-03, [6-7. and [7-pg loops (Figure 2). This
cleft houses the catalytic cysteine residue (Cysl84) and
accommodates substrate binding. An additional structural
feature of the S aureus enzyme is a calcium binding site
formed by the P3/04 loop. The calcium ion binds to this site
through coordination to a residue in the [6/[7 loop. This
binding slows its motion, thereby allowing the substrate to
bind and increasing the activity eightfoldPI The biochemical
details of the active site include a key histidine residue (H120)
that can form a thiolate-imidizolium ion pair with the
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C-Terminal Labeling

EM 

N-Terminal Labeling

Substrate

LPXTO-XX-CO014

Acy-Enzyme

G-XX-'OOH

"2~N- G-w

NH2

uaxM'o,

Nucleophile

Transacylation
4 -PXrG, Prdct

Hooca

Fgure . Site-specific C- and N-terminal labeling scheme using sortase A. C-Terminal labeling (left) and N-terminal labeling (right) proceed
through a substrate-recognition step (top), followed by generation of a thioacyl intermediate (middle) and resolution of the acylated enzyme by an
exogenously added nucleophile (bottom). See text for details.

catalytic cysteine residue.143 It is the deprotonated form of the
cysteine residue that is competent for catalysis. However, at a
physiological pH value, the ionized forms of these key amino
acids are in equilibrium with the neutral forms, and only a

small percentage (ca. 0.06%) of the total enzyme is catalyti-
cally competent at any given time. 4

"l The cysteine residue
attacks the amide bond between the threonine and glycine
residues in the sorting motif. The protonated imidizolium ion
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Figre a. Structure of sortase A from Staphylococcus aucrus deduced by
NMR spectroscopy (pdb code: l11JA).

1 
The active-site cysteine residue

(Cys184) is in red and the active-site histidine residue (HisI120) is in
blue. The $7 and pt strands that form the floor of the active site are
labeled and the 116-7 loop involved in substrate recognitioni"' is in
purple. Residues that coordinate calcium are shown as sticks.m

acts as a general acid for the departing aNH, group from the
glycine residue, and gives rise to an acylated form of sortase.
An incoming glycine nucleophile is then deprotonated,
attacks the thioester, and re-establishes an amide bond. If
instead water attacks the acyl-enzyme intermediate, the
reaction yields the dead-end hydrolysis product.ll

2. Engineering af Bacterial Surfaces

The sortase-mediated system of anchoring proteins to the
cell wall of Gram-positive bacteria was first exploited to
decorate these microbes with heterologous proteins. Such
experiments require the creation of a genetic fusion of the
heterologous protein to the sorting motif. The heterologous
protein is then expressed and directed to the surface though
the normal cell-wall sorting pathway. In this manner, the
enzyme alkaline phosphatase has been anchored to the cell
wall of Staphylococcus aureus.ll the E7 protein of Human
papilloma virus 16 (HPV16) has been displayed on Strepto-
coccus gordonii, a commensal microbe in the oral cavity 4

l
and a-amalyase has been affixed to the peptidoglycan of
Bacillus subtiis, helped by coexpression of the sortase gene
from Listeria monocytogenes0

" The peptidoglycan cell wall
can even be decorated with non-natural entities (fluorescein,
biotin, azide) by incubating dividing S aureus cultures with
chemical probes appended to the N terminus of an LPXTG
peptide.?" The incorporation of what are in essence N-
terminal labeling probes (see Section 4) occurs through use of
the endogenous sortase enzyme and anchors the exogenously
provided probes onto available pentaglycine side chains of
the cell wall.

3. C-Terminal Labeling

The ability of sortase to recognize the sorting motif when
transplanted onto recombinantly expressed proteins allows
the site-specific incorporation of moieties and functional
groups that cannot be encoded genetically (Figure 1). This
method requires only that the LPXTG motif be solvent-
exposed and usually results in high yields of the desired
transpeptidation product. Indeed, many substrate proteins
have now been labeled with probes bearing a wide range of
functionalities, including biotin, fluorophores, cross-linkers.
and multifunctional probes (Tables 1 and 2).Y'4 The labeling
of recombinant proteins by sortase A requires no sophisti-
cated synthetic chemistry; most of the probes are readily
accessible by standard peptide synthesis, using off-the shelf
reagents. The production and folding of recombinant sub-
strate proteins is not usually compromised by the presence of
the small LPXTG tag. Since all transformations are carried
out using sortase under physiological buffer conditions (pH,
ionic strength. ionic requirements) on substrates whose
proper folding and activity status can be ascertained prior
to starting the reaction, loss of biological activity is rarely, if
ever, observed for the final product. The ability to engage in a
sortase-catalyzed transacylation appears to be determined
solely by the accessibility and flexibility of the sorting motif.
Intein-based protein engineering methods usually require
that substrates first fold while fused to a protein-sized intein
domain, which at times causes solubility issues.111

The utility of the sortase labeling method stems from the
fact that the enzyme tolerates substrates unrelated in
structure and sequence immediately upstream from the
cleavage site. This property is not unexpected, given the role
of sortase in anchoring a broad range of protein substrates to
the cell wall. The substrate need not even be proteinaceous-
peptide nucleic acids (PNAs) linked to the sortase cleavage
site can be ligated to a glycine-linked cell-penetrating peptide
(model amphipathic peptide. MAP) to yield active antisense
PNA-peptide conjugates.ul Likewise. the identity of the
substituents C terminal to the glycine nucleophile do not
seem to matter at all: D-amino acid containing peptides,
folate, branched protein transduction domainsl'"3

l and large
polyethylene glycol chainsll have all been attached using
sortase. The cleavage site need not even be near the
C terminus of the substrate protein. A sufficiently large
solvent-exposed loop will suffice. This property has been
exploited to investigate the contribution of a key loop in the
deubiquitinating enzyme, ubiquitin C-terminal hydrolase 3
(UCHL3), to substrate binding and catalysis?"I Since the
cleavage site can be placed in a loop, it is possible to interrupt
the connectivity of the protein backbone, while simultane-
ously installing a reporter moiety (biotin or fluorophore) to
monitor the behavior of the cleaved enzyme in the presence
of uncleaved, wild-type enzyme. This trait is likely to apply to
many proteins whose conformation includes an exposed,
flexible loop.

The C-terminal labeling technique is particularly useful
for the study of type II membrane proteins embedded in the
living mammalian cell membrane. Tyrpe II membrane proteins
have C termini that are exposed to extracellular space and

4 wwwangswandte.Org
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Table : Examples of synthetic nucleophiles used in site-specific sortase A transpeptidation reactions.

Probel" Labeling site Property endowed

H-GsK(biotin) L-OH
H-GsK(ANP)K(biotin)L-OH
H-GCK(phenylazide)K(biotin)C-OH
H-GK(FlTC)-NH,
H-G3K(K(TAMRA))-NH

2
H-G3YC(biotin)-NH 2
H-G3YC(Alexa 488)-NH 2
H-AA-Ahx-K(K(TAMRA))-NH 2
H-GK(C12-C24)-NH 2
H-GjK(1-ad)-N H2
H -G3WK (cholesterol) -N H 2
D-Tat (1st residue is G)
H-G2Y-PTDS-NH2
(H2NRRQRRTSKLMKRAhx)2KYK(CG-NH

2)-N H2
H-G3K(folate)-N H2
H2N-PEG
H-GK(PEG)-OH
H-Gy-MAP-NH2
aminoglycoside antibiotics (various)

0 and enantomerH-G,12-N_ 0 P- -- P 0- 0
20 0 R

6Me
21 GPI mimics based on 19 with trisaccharide cores
22 biotin-PEG-YCLPETCC-NH 2
23 Alexa647-LPETCC-NH2
24 Alexa488-LPETGG-NH 2
25 biotin-LPRT-OMe
26 FITC-Ahx-LPRT-OMe
27 FAM-LPETG-NH2
28 biotin-GGLPETG-NH 2
29 N-ALPETG-NH 2

[a] 1-Ad =1-adamantyl, Ahx = aminohexanoic acid. FAM =
carboxytetramethylrhodamine.

C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal (S. pyogenes)
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal
C terminal

C terminal

C terminal
N terminal
N terminal
N terminal
N terminal
N terminal
N terminal
N terminal
N terminal

carboxyfluorescein, FITC

biophysical handle
biophysical handle/photocleavage
biophysical handle/photo-crosslinker
fluorescence
fluorescence
biophysical handle
fluorescence
fluorescence
lipidation
hydrophobicity
lipidation
cell penetration
cell penetration
cell penetration
folic acid
inert polymer
inert polymer
cell penetration
antibiotic

Reference(s)

[32.55]
[32]
[32]
[32]
[32, 71]
[33]
[33]
[56]
[64]
[64]
[64]

[53]
[53]
[53
[53]
[54]
[54]
[52]
[60]

GPI mimic

GPI mimic [62,63]

biophysical handle [57]
fluorescence [57
fluorescence [58]
biophysical handle [56]
fluorescence [56]
fluorescence [50
biophysical handle [50]
handle for bioorthognal chemical reactions [50]

fluorescein isothiocyanate, PEG = polyethylene glycol, TAMRA

thus are excellent candidates for sortase-mediated labeling.
Proteins with this type 11 topology have been particularly
refractory to genetic fusion with fluorescent proteins. Place-
ment of a fluorescent protein at the N terminus usually
impedes cotranslational insertion of the type II membrane
protein into the endoplasmic reticulum (ER), while C-
terminal tagging with green fluorescent protein (GFP) places
this bulky substituent close to the site of interaction with
ligands of the type I membrane protein in question. The
CD40 ligand protein (CD40L), influenza neuraminidasep"
and osteoclast differentiation factor (ODF)1 1 have all been
labeled in live cells in this way.

4. N-Terminal Labeling

Protein labeling at the N terminus can be accomplished
simply by moving the placement of the sortase recognition
element from the protein to the short peptide probe and by
inclusion of a suitable number of glycine residues at the
N terminus of the target protein (Figure 1)- Both methyl ester
mimetics of the sortase motif'l as well as the complete
LPXTG sortase recognition motif can be used as scaffolds for
such probes.'"I Conceptually, this labeling technique is

analogous to the C-terminal labeling, except the acyl-enzyme
intermediate is generated between sortase and the peptide
probe, and the protein to be labeled bears several glycine
residues at the N terminus, the aNH 2 group of which serves as
the nucleophile. This strategy was used to install fluorescent
probes at the N terminus of membrane proteins in living
mammalian cells after a clever initial unmasking step by
sortase itself to expose the nucleophilic glycine.lI This system
was later used to install reporter fluorphores on the N termi-
nus of the G-protein-coupled platelet-activating factor re-
ceptor (PAFR). This allowed the direct observation of the
trafficking of the cell-surface-exposed pool after labeling.
PFAR receptors with key mutations were then shown to
traffic aberrantly."I For both the C-terminal and N-terminal
labeling of cell-surface proteins, the sortase technique allows
access only to the cell-surface pool of the protein of interest.
This is an advantage when the behavior of only the surface-
exposed fraction of a particular protein is of interest. If ligand
binding is restricted to the cell surface, then this is also usually
the relevant fraction. Genetic fusions to fluorescent proteins,
by their very nature report on the protein of interest from the
moment of its genesis inside the cell and onwards. Although
this trait comes with its own advantages, it may complicate the
distinction between proteins in the course of their biosynthe-
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Tabe 2: Examples of proteins labeled by sortase A transpeptidation.

Substrate Solution/cell surface Labeling site Label(s),' Reference(s)

H-2K
5  

solution C terminal 1,2,3,4,5 [321
CD154 cell surface C terminal 1,5 [32]
neuramnidase cell surface C terminal 1 [32]
ODF cell surface C terminal 6,7 [33]
Cre solution C terminal 5 [71)
UCHL3 solution C terminal (loop) 1 [55)
p97 solution C terminal 5 [71]
eGFP solution C terminal 9,10,11 [64
GFP solution C terminal 13,14,15 [53]
PNA solution C terminal 18 [52]
eGFP solution C terminal 16,17 [54)
Mrp solution C terminal 19 [60]
YALPETGK solution C terminal 19 [60
(His),YALPETCKS solution C terminal 20 [61)
CD52 peptides solution C terminal 21 [62]
CD24 solution C terminal 21 [62
MUCI solution C terminal 21 [63]
LPETGr-ECFP-TM cell surface N terminal 22,23 [57
LPETC5-PAFR cell surface N terminal 24 [58)
Gr/Cs-LTXB solution N terminal 25,26 [56]
G-eGFP solution N terminal 26 [56
G-UCHL3 solution N terminal 26 [56
S. aureus surface peptidoglycan cell surface N terminal 27,28,29 [50
eGFP solution N and C terminal 26 and8 [56
UCHL3 solution N and C terminal 26 and 8 [56]

[a] The numbers denote the probe identities from Table 1.

sis and the behavior of the mature, biologically relevant pool
of protein. The sortase-based strategies should thus be viewed
as a useful adjunct to the GFP-based methods, but with the
added benefit of increased chemical flexibility.

5. Labeling at N and C Termini

It is possible to combine N-terminal and C-terminal
labeling strategies by using sortases with distinct substrate
specificity. The Streptococcus pyogenes enzymel"' (SrtAs,,,)
recognizes and cleaves the LPXTA motif and accepts alanine-
based nucleophiles. It also cleaves the SrtA 5s, (Sortase A
from Staphylococcus aureus) LPXTG motif, albeit with
reduced efficiency. In contrast, the SrtAs,.o enzyme does
not cleave the LPXTA motif. and thus the two enzymes are
orthogonal with respect to the LPXTA sequence. This
property was exploited to label both termini of GFP and
UCHL3 with different fluorophores. A masking strategy was
used in which the N-terminal glycine residues needed for
SrtAsps labeling were exposed after proteolytic cleavage by
thrombin. This step avoids protein oligomerization, likely to
occur during the C-terminal labeling step with SrtAs

6. Post-Translational Modifcation Mimics

Sortase methods allow the production of homogeneous
recombinant protein preparations that are modified with
nongenetically templated post-translational modifications.
Glycoproteins. normally elaborated by a complex set of

enzymatic events in the secretory pathway, can thus be
constructed. LPXTG-tagged proteins and peptides can be
modified with 6-aminohexose-based sugar nucleophiles. in-
cluding aminoglycoside antibiotics and their analogues.["

1

Glycosylphosphatidylinositol (GPI) anchors, normally at-
tached at the C terminus of proteins, can be phenocopied by
ligation of LPXTG peptides to synthetic glycine nucleophiles.
which in turn are linked to the phosphoethanolamine moiety
on a GP[ derivative.l'" Various peptides (CD52 fragment.
Mucin 1 peptides) and small proteins (CD24) have been
attached to GPI mimics with trisaccharide cores.1csI Lipida-
tion of proteins is yet another important post-translational
modification that has been poorly studied because of the lack
of tools available to obtain homogeneous preparations of
lipoproteins. Sortase has been used to fill this void.l'

1 A
glycine-based scaffold was modified with a panel of linear
alkyl chains (C12-C2 ) as well as with cholesterol or adaman-
tane. and then used to modify a suitably LPETG-tagged
version of eGFR These eGFP lipoproteins associated with the
plasma membranes of living cells in a chain-length-dependent
fashion (the optimum being a Cn chain), from where they
gained access to the endosomal compartment.

7. Piecemeal Assembly of Proteins, Protein
Domains, and Peptides

Folded proteins with an exposed glycine residue at the
N terminus may serve as nucleophiles for sortase labeling.
Substrate proteins bearing the LPXTG motif can be fused to
the incoming nucleophile protein, thereby creating large

6 www.angewandte.org
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transpeptidation products. By using independently folded
proteins as substrates, it is possible to avoid many of the
solubility issues that plague the expression of large genetically
encoded fusions. This property was exploited to facilitate
structural analysis by NMR spectroscopy. which typically
requires highly concentrated protein preparations. thus mak-
ing poor solubility a major obstacle. Sortase was used to
attach an unlabeled, and hence NMR-invisible, solubility-
enhancing tag based on the BI immunoglobulin binding
domain (G,-GB1) onto the C terminus of the Vav SRC
homology 3 domain (SH3), a domain that is nearly insoluble
by itself at pH 7.1"1 The structure of the attached "C/'5N-
labeled Vav SH3 domain was then resolved by NMR
spectroscopy. without confounding signals from the solubil-
ity-enhancing tag. Segmental labeling of the MecA protein of
Bacillus subtilis using sortase for NMR spectroscopic study
has also been reported.' A versatile panel of immunodetec-
tion reagents has been created using sortase. Protein-protein
ligations were carried out between an Fc binding module
(ZZ domain) and several detection enzymes (alkaline phos-
phatase, luciferase. glucose oxidase) using sortase. 

1
,7 Mucin

glycopeptides that contain both N- and O-linked glycans were
synthesized with the help of sortase. Separate peptides
bearing either 0- or N-linked glycans were constructed by a
combination of chemical synthesis and elaboration of the
glycan structure by enzymatic synthesis. These glycopeptides
were then stitched together using sortase to yield a stereo-
chemcially homogeneous preparation.I' "I Sortase has been
applied to the construction of G-protein-coupled receptor
(GPCR) mimics through a combined recombinant. enzymat-
ic, and chemical synthesis (CRECS) strategy.""I GPCRs are
proteins with seven transmembrane regions (7-pass trans-
membrane proteins) that use three extracellular loops as well
as the extracellular N-terminal segment to bind their ligands.
To mimic this arrangement. three loops were made syntheti-
cally, cyclized by native chemical ligation, and appended to a
triglycine-linked peptide scaffold. Then, the N terminus of
GPCR. fused to the sortase cleavage site, was recombinantly
expressed in E. coli and attached to the scaffold through
sortase-mediated ligation. These elegantly engineered soluble
mimics should allow the systematic characterization of the
contributions of each region to ligand binding, and represent a
true marriage between what can be accomplished through
chemical synthesis and molecular biology.

A unique variant of the protein-protein ligation occurs
when the LPXTG motif and N-terminal glycine residues are
both present in the same construct. If both units are
sufficiently close in space in the folded protein, the N termi-
nus can form a peptide bond with the sortase recognition
element, thereby resulting in a stable, circular transpeptida-
tion product.1?"'I Circular proteins have useful biochemical
properties. They are resistant to aggregation, require more
energy for denaturation. and, since they lack exposed termini,
are resistant in their native form to exoprotease attack. 7

cerne

& Anchoring to Solid Surfaces

Covalent immobilization of proteins onto solid supports
has been accomplished by sortase. A major advantage of the
method is that the specificity of the enzyme enables proteins
to be immobilized uniformly and in a defined orientation on
the solid surface for subsequent exposure to the analyte of
interest. Stringent wash conditions can be employed because
of the stable amide bond that links the protein to the surface.
as was done by covalently attaching GFP to glycine-derivat-
ized polystyrene beads.1'

1 
The attachment of adhesion

proteins from Gram-positive bacteria to fluorescent glycine-
derivatized polystyrene beads was done in a similar man-
ner.177 1 

The anchoring of GFP and Tus proteins to glycidyl
methacrylate beads derivatized with oligoglycine. as well as to
glycine-modified agarose resin (Affi-Gel) and glycine modi-
fied aminosilane coated glass slides. has been achieved.171 The
directional anchoring of proteins onto triglycine-modified
caroboxymethylated dextran-based Biacore sensor chips for
use in sutface plastton tesonance has also been accom-
plished.

1
'I Recombinant fibronectin-binding protein (rFba-

LPETG) from group A streptococcus (GAS) was anchored in
this manner, which then allowed the measurement of binding
of human factor H to the immobilized protein. With an aim to
develop the reagents needed for chemoenzymatic synthesis of
glycoconjugates. immobilized P-1,4-galactosyltransferase
(rhGalT) and Helicobacter pylori a-l.3-fucosyltransferase
(rHFucT) were covalently attached to alkylamine-sepharose
beads. These enzymes are both active and reusable when
directionally anchored to the solid phase."

9. Protein Expression and Purification

Genetic fusions between sortase and a protein of interest
have been constructed for the purposes of protein purifica-
tion. A linear fusion between hexahistidine-tagged sortase.
the LPETG tag, and the protein of interest is first purified by
nickel nitrilotriacetic acid immobilized metal affinity chro-
matography (Ni-NTA IMAC) and then cleaved off of the
resin by addition of Ca> and triglycine to yield highly pure
protein with one additional glycine residuei811 

(Figure 3). This
method was adapted for protein production in a wheat germ
cell-free translation system. with the goal of creating a general
purification method that can be used in automated, high-
throughput protein production. In this version. a biotin
acceptor peptide (a 15 amino acid peptide that is the target
of F. coli biotin ligase) replaces the hexahistidine tag. and the
proteins are purified with strepavidin resin in the presence of
calcium chelators to prevent premature cleavage.1"21 Both
methods yield the target protein with one extra glycine
residue at the N terminus. a configuration that is poised for N-
terminal labeling by sortase if desired (Figure 3).

Sortase A from S aureus is an extremely soluble enzyme
that can be produced in high yield (>40 mg L' of culture).
This property has been exploited to enhance the solubility of
proteins of interest by fusion to a version of sortase lacking
the catalytic cysteine."03
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Figure3. Protein purification using sortase A. Recombinant expressed
proteins are produced as fusion proteins containing either a hesahisti-
dine tag (top)l'I or a biotin acceptor peptide (bottom)m" followed by
the catalytic core of sortase, the LPXTG tag, and the protein of
interest. Addition of Ca

2
* ions and oligoglycine to the immobilized

fusion protein stimulates sortase activity. The protein of interest is
released as a purified preparation with one additional N-terminal
glycine.

io. Outlook

The diverse microbial world includes multiple sortase-
type enzymes, with several distinct cleavage site preferences
and nucleophile specificitiesE"l The pilin-building sortases,
for example, accept the e-amino group of a lysine residue
within the YPKN sequence as a nucleophile. whereas
sortase A from & aureus will accept the N terminus of glycine
extensions. Sortase B (SrtB) from S. aureus cleaves the
NPQTN sequencel-l while SrtB from Bacillus anthracis
cleaves the NPKTG sequencel01 and accepts meso-diamino-
pimelic acid as a nucleophile."-*i Although the use of distinct
sortases for protein labeling is in its infancy, there is clearly
great untapped potential in these other sortases if the
recognition requirements and reaction conditions can be
more clearly specified. With the advent of many directed
protein evolution techniques. it may be possible to improve
on what nature has provided. In its usual biological context,
the housekeeping sortase anchors to the cell wall a set of
substrates that are structurally distinct:1''1 the one feature
required for attack by sortase seems to be the LPXTG
pentapeptide. This, coupled with the fact that substrate
recognition is primarily a function of the 6-07 loop, V
implies that it should be possible to evolve versions of sortase
that will attack fully orthogonal peptide sequence motifs.
Given the diversity of sortases that recognize different anchor
structures,"8," it should be possible to evolve enzymes that
will accept nucleophiles other than those that occur naturally.
By combining sortases of distinct specificity, one can envision
orthogonal labeling of different proteins in a one-pot
reaction-or its biological equivalent-inserted into the same
cellular environment. The kinetics of the sortase reaction are
lackluster at best, most likely owing to the active-site
equilibrium which favors the inactive, non-ionized cysteine
residue. Although this problem is easily overcome by adding
large quantities of sortase to the reaction (and thus adding a
larger total amount of catalytically competent enzyme), it
would still be beneficial to improve the overall kinetics of
transpeptidation by S aureus SrtA by using directed evolu-
tion.

The pilus-building sortases which polymerize subunits by
creating isopeptide bonds remain to be exploited. These
enzymes may be of particular interest, since they evolved to

establish covalent protein-protein linkages post-translation-
ally, and perhaps this trait could be harnessed to perform
similar protein-protein ligations in vitro, by exploiting ex-
posed lysine residues internal to the protein of interest as the
incoming nucleophile. Given that isopeptide bond formation
is featured in many biological processes, for example in the
ubiquitin system, the ability to make homogeneous, site-
specific isopeptide linkages would be tremendously useful.

An intriguing question is how to overcome the limitations
that prevent intracellular labeling by sortase. It is possible to
express sortase inside of both living bacterial and eukaryotic
cells-the enzyme folds properly and is active.1"I The
S pyogenes enzyme, which lacks the requirement for divalent
cations, is active in compartments devoid of calcium, such as
the cytosol. Similarly, substrates that bear an exposed LPXTG
motif are easily expressed, and depending on the protein.
retain their normal localization and/or function. When the
nucleophile for transpeptidation is genetically encoded as
part of the substrate protein, as in the case of circularization
or protein-protein ligation reactions, transpeptidation pro-
ceeds readilyI"l and yields circular proteins intracellularly in
yeast. mammalian cells, and prokaryotes. The limiting step for
simple C-terminal labeling is thus delivery of an exogeneous
nucleophile to the cell interior in quantities that permit
biochemical analysis of the transpeptidation product. These
limitations might be overcome by attaching one of the many
protein transduction sequences derived from the human
immunodeficiency virus transactivator of transcription pro-
tein (HIV TAT) or other sources to the labeled nucleophile of
interest, although this possibility remains to be achieved in
practice and fails to address the fate of any unincorporated
cytoplasmically delivered nucleophile. Alternatively, it might
be possible to transiently mask the ct-amine group and other
groups that preclude delivery to the cytosol through installa-
tion of chemical entities that can be removed by esterases,
photochemically, or in the reducing environment of the
cytoplasm, thus making probe delivery irreversible.

A key advantage of the sortase labeling method is the
relative ease with which the nucleophilic probes are synthe-
sized. Most probes are simple C-terminal appendages of
glycine, made on a solid phase, with the reporter either
incorporated while the peptide is on the resin or in solution by
standard chemical coupling techniques. The literature shows
that a diverse array of such proe will all likely react as
nucleophiles with a given target in the same manner. This
makes it possible to create libraries of bioconjugates without
the need to reoptimize ligation conditions for each conjugate
individually. Cell- and tissue-specific proteinaceous delivery
vehicles for small interfering RNA (siRNA) libraries and
antibody-drug library conjugates are all within the realm of
possibility. An added benefit of the sortase method is the tight
control over the stoichiometry of labeling: this should greatly
facilitate quantitative studies of the effects of such bioconju-
gate libraries.

In addition to the strict control over the stoichiometry of
ligation produc sortase allows control over the orientation
between ligation partners, and this could be useful in creating
protein-protein conjugates. The orientation of the subunits
can be reversed by switching the location of the N-terminal
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glycine residues on one unit for the sortase motif on the other
partner protein. By using cleverly designed probes bearing
handles for bioorthogonal reactions (for example, reactions
between an azide and an alkyne, an azide and a strained
cyclooctyne, or an aldehyde and an aminooxy compound), it
should be possible to construct protein pairs that are
covalently linked in non-natural topologies (N-N or C-C).
Alternatively, two-step transacylation procedures using the
semiorthogonal SrtAs,,ph and SrtAs,,p enzymes along with the
appropriate peptide probes in N-N or C-C linkages can be
employed. The sortase method thus provides access to protein
linkages not found in nature, and one area where this can he
applied is in making engineered ligands for studying cell
signaling. It would be possible to create chimeric. folded
protein ligands that constrain binding and heterodimerization
of their cognate receptors. It is clear that the ease of use and
flexibility of the sortase labeling method will provide exciting
new avenues of research.
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Bilden und Brechen von Peptidbindungen:
Protein-Engineering mithilfe von Sortase
Maximilian Wei-Lin Popp und Hidde L. Ploegh*

Protein-Engineering - Proteinmodifikationen -
Sortasen . Ortsspezifitat - Transpeptidierung

Sortasen gehoren zu einer Kasse bakterieller Enzyme, die Trans-
peptidaseaktivitat aufweisen. Die Fahigkeit, Peptidbindungen orts-
spezifisch zu brechen und neue Bindungen mit einem angreifenden
Nukleophil zu bilden, macht Sortase zu einem hervorragenden
Hilfsmittelfur das Protein-Engineering. Diese Methode wurdefur eine
Reihe von Anwendungen angepasst, die von der Chemie uber die
Zellbiologie bis hin zu technischen Gebieten reichen. Wir wollen hier
einen kurzen Oberblick uber die Biologie der Sortaseenzyme und ihre
Anwendungen im Protein-Engineering geben, auf Gebiete far zu-
kanftige Innovationen hinweisen und neue Anwendungen vorschla-
gen.

i. Biologische Funktion und Biochemie von
SortO A (SrA)

Viele Gram-positive Bakterien haben Virulenzfaktoren in
ihrer Zellwand, die eine erfolgreiche Kolonisierung und Pa-
thogenese ermoglichen.11

' Sortaseenzyme sind eine Klasse
von Transpeptidasen, die 'Iiolgruppen enthalten, und haben
die Fhhigkeit, Proteine in der bakteriellen Zellwand zu ver-
ankern.

1
'
1 

Diese Enzyme erkennen Substratproteine, die ein
,,Sortierungsmotiv" (LPXTG im Fall von Staphylococcus
aureus) enthalten, und tragen einen katalytischen Cysteinrest,
um die Peptidbindung zwischen Threonin und Glycin in die-
sem Pentapeptid zu spaltent"I Andere Sortasen verschie-
dener Bakterienspezies nutzen die gleiche oder eine Ahnliche
Erkennungssequenz.1 -

01 
Datensammlungen ffr Sortase und

ihre Substrate sind im Internet zu finden01 "12 
Die von der

Sortase katalysierte Reaktion ftlhrt zuerst zu einer Thioacyl-
zwischenstufe,I"' 4 

analog dem Mechanismus von Cystein-
proteasen. Wo Cysteinproteasen jedoch Wasser zur Hydro-
lyse der Zwischenstufe nutzen, akzeptiert Sortase den N-
Terminus eines Oligoglycinnukleophis zur Bildung einer
neuen Peptidbindung (Abbildung 1). Bei der nattirlichen

(*] M. W.-L. Popp, Prof. Dr. H1. L Ploegh
Whitehead Institute for Biomedical Research
9 Cambridge Center, Cambridge, MA 02142 (USA)
und
Department of Biology, Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA 02142 (USA)
E-Mail: ploegh@wi.mit.edu

Sortierungsreaktion bindet die Pentaglycinbrilcke in der Li-
pid-II-Zellwandvorstufe das Acylenzym als Nukleophil.1 51

Die Zeliwandvorstufe mit ihrem kovalent gebundenen Pro-
tein wird anschlielend in die wachsende Peptidoglycan-
schicht eingebaut.

Zusiatzlich zur Verankerung von Virulenzfaktoren in der
Zellwand bauen Sortasen auch die Pilusstruktur auf, die von
vielen Bakterien genutzt wird, um sich an der Wirtzelle zu
verankern und einen Biofilm zu bilden.'

9 
Die Details die-

ses Prozesses unterscheiden sich zwar fur verschiedene Bak-
terienarten,12

- aber im Allgemeinen verkntpfen Sortasen
Pilinmonomere, die sowohl ein Sortierungssignal als auch
eine nukleophile Lysin-E-Aminogruppe in einem internen
Erkennungsmotiv enthalten.tJ Diese Protein-Protein-Ver-
knpfung fifhrt zu einer Polymerisation der Pilinmonomere,
vermittelt jedoch nicht die Verankerung an der Zellwand. Die
Verankerung wird vielmehr von der ,,Housekeeping"-Sortase
ausgeftihrt, die das Lipid-Il-Vorstufennukleophil auf-
nimmt.'

261

Wegen ihrer zentralen Bedeutung fur die Virulenz gelten
Sortasen als vielversprechendes Angriffsziel fur Wirkstof-
fe.127

-3
1 

Rekombinante Sortase, der die Transmembrando-
mine fehlt, kann cinfach und in hoher Ausbeute hergesteilt
werdcn.ltml Einc detaillierte Vorschrift for die Sortaschcr-
stellung, beschrieben in Lit. [34], hat ausflhrliche struktu-
rellel-34 

und biochemische Untersuchungent3'4'
1 

des Enzyms
ermtglicht. Die Struktur der Sortase A von S aureus besteht
aus einer achtstrangigen p-Barrel-Faltstruktur (genannt Sor-
tasefaltstruktur) mit einer hydrophoben Spalte, die von den
07- und $8-Strangen gebildet wird. Diese Spalte ist von

hWILEY
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C-terminale Markierung N-terminale Markierung

N~a Substat

4WLPTG-XX-CO4

S -X OH -X sa

GPXX-VOOH -X)OIOOH *

NH2N- CI-

X7TG.,41

400TGi,

HOOC

Nukleophil

Transacyllerungs-
kL prodktt

Abbuhang -. Ortsspezifische C-und N-terminale Markierung unter Verwendung von Sortase A. C-terminale (links) und N-terminale Markierung
(rechts) erfolgen durch einen Substraterkennungsschritt (oben), gefolgt von der Bildung eines Thioacylintermediats (Mitte) und der Auflasung
des acylierten Enzyms durch ein exogen zugefbhrtes Nukleophil (unten). Siehe Text fUr Details.

p3-p4-, p2-03-. 06-7- und 07-f8-Strungen umgeben (Abbil-
dung 2). Die Falte enthilt den katalytischen Cysteinrest
(Cysl84) und die Substratbindestelle. Ein zusitzliches
Strukturmerkmal des Enzyms von S aureus ist eine Binde-

stelle ffr Calcium, die von der p3/p4-Schleife gebildet wird.
Das Calciumion, das an dieser Stelle bindet, wird von einem
Rest in der p6/7-Schleife koordiniert. Dadurch vermindert
sich die Bewegungsfreiheit der p6/P7-Schleife, was dem

Angew. Chem". =1n123. 2-12 C 0 Wiley-VCH Verlag CmbH & Co. KGaA, Weinheim WWW.lng ldte.de 1
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AbWdung . NMR-spektroskopisch ermittelte Struktur der Sortase A
von Staphylococcus aurems (PDB-Code: 1 JA).!" Der aktive Cysteinrest
(Cys184) ist rot und der aktive Histidinrest (His120) blau dargestellt.
Die 07- und f1-Stringe, die die Untmite des aktiven Zentrums bil-
den, sind angegeben, und der 36-07Strang, der an der Substraterken-
nung beteiligt istr"I ist violett markiert. Calcium koordinierende Reste
sind als Stabmodelle dargestellt"

Substrat die Bindung ermoglicht. Die Aktivitat wird so um
einen Faktor 8 erhdht.' 1 

Zu den biochemischen Merkmalen
des aktiven Zentrums zihlt ein wichtiger Histidinrest (H120),
der ein Thiolat-Imidiazolium-Ionenpaar mit dem katalyti-
schen Cysteinrest bildet

43t 
FUr die Katalyse muss die de-

protonierte Form des Cysteinrestes vorliegen. Bei einem
physiologischen pH-Wert befindet sich diese jedoch im
Gleichgewicht mit der neutralen Form, weshalb immer nur
ein kleiner Teil (ca. 0.6%) des gesamten Enzyms zu einer
gegebenen Zeit wirksam sin kann.1" Der Cysteinrest greift
die Peptidbindung zwischen dem Threonin- und Glycinrest
im Sortierungsmotiv an. Das protonierte Imidazoliumion
wirkt in allgemeiner Weise als SAure for die freigesetzte
Glycin-a-NH2-Gruppe und fUhrt zur Bildung einer acylierten
Form der Sortase. Das ankommende Glycinnukleophil wird
dann deprotoniert, greift den Thioester an und bildet erneut
eine Peptidbindung. Wenn stattdessen Wasser die Acylen-
zymzwischenstufe angreift, fihrt diese Reaktion irreversibel
zu einem Hydrolyseprodukt.' 1

2. Enginering bakterieller Oberfldchen

Das Sortasesystem zur Verankerung von Proteinen in der
Zellwand Gram-positiver Bakterien wurde zuerst dazu ver-
wendet, Mikroben mit heterologen Proteinen zu versehen.
Solche Experimente erfordern eine genetische Fusion des
heterologen Proteins mit dem Sortierungsmotiv. Das hetero-
loge Protein wird dann expriniert und fiber den normalen
Zellwandsortierungsweg auf die Oberfliche gebrachL Auf
diese Weise gelang die Fixierung alkalischer Phosphatase in
der Zellwand von Staphylococcus aureus41

1 
des E7-Proteins

von humanem Papillomvirus 16 (HPV16) auf Streptococcus
gordonii. einer kommensalen Mikrobe in der Mundhohle"I
sowie der a-Amylase an das Peptidoglycan von Bacillus

Subtilis, letzteres mithilfe eincr Koexpression des Sortasegens
von Listeria monocytogenes] Die Peptidoglycanzellwand
kann durch Inkubation von sich teilenden S. aureus mit che-
mischen Sonden, die am N-Terminus des LPXTG-Peptids
angehangt sind. sogar mit nichtbiologischen Bausteinen wie
Fluorescein. Biotin oder Aziden markiert werden." Beim
Einbau von N-terminalen Markierungssonden (siehe Ab-
schnitt 4) wird das endogene Sortaseenzym verwendet. das
die exogen zugefthrten Sonden an den Pentaglycinseiten-
ketten der Zellwand verankert.

3. C-terminale Markierung

Die Fthigkeit der Sortase zur Erkennung des Sortie-
rungsmotivs bei dessen Einbringen in rekombinant expri-
mierte Proteine ermoglicht die ortsspezifische Einfikhrung
von Teilen oder funktionellen Gruppen, die genetisch nicht
kodiert werden kannen (Abbildung 1). Diese Methode er-
fordert lediglich. dass das LPXTO-Motiv det Losungsiittel
ausgesetzt ist und liefert gewbhnlich hohe Ausbeuten des
gewlnschten Transpeptidierungsprodukts. Mittlerweile wur-
den viele Proteinsubstrate mit Sonden markiert, die ein
breites Spektrum an Funktionalitfiten abdecken. beispiels-
weise Biotin, Fluorophore, Vernetzungsagentien und multi-
funktionelle Sonden (Tabellen I und 2)P' Das Markieren
rekombinanter Proteine mit Sortase A erfordert keine
hochentwickelte Synthesechemie; die meisten Sonden sind
durch gewdhnliche Peptidsynthesen und mit leicht erhaltli-
chen Reagentien zugAnglich. In der Regel werden die Pro-
duktion und Faltung der rekombinanten Substratproteine
nicht durch die Gegenwart der kleinen LPXTG-Markierung
beeintrlchtigt. Da alle Transformationen durch die Verwen-
dung von Sortase unter physiologischen Pufferbedingungen
(pH-Wert, [onenstirke und -bedingungen) an Substraten
durchgefahrt werden. deren richtige Faltung und Aktivitt
vor der Reaktion verifiziert werden ktnnen. wird fast nie cin
Verlust an biologischer Aktivitsit beim Endprodukt beob-
achtet. Die Fhigkeit, eine Sortase-katalysierte Transacylie-
rung einzugehen. scheint allein durch die ZugAnglichkeit und
Flexibilittlt des Sortierungsmotivs bestimmt zu werden. Auf
Inteinen beruhende Methoden des Protein-Engineerings er-
fordern fiblicherweise, dass sich Substrate zuerst falten.
wahrend sie noch mit einer InteindomAne fusioniert sind, die
die Gr6Be eines Proteins hat, was zu Lbslichkeitsproblemen
fulhren kann." I

Der Nutzen der Sortasemarkierungsmethode beruht auf
der Tatsache. dass das Enzym Substrate toleriert, die in ihrer
Struktur und Sequenz vor der Spaltstelle sehr unterschiedlich
sin konnen. Diese Eigenschaft ist nicht unerwartet, wenn
man bedenkt, dass Sortase fthig ist, eine groe Bandbreite an
Proteinsubstraten an der Zellwand zu verankern. Das Sub-
strat muss nicht einmal ein Protein sein - Peptidnukleinsuu-
ren (PNAs), die mit dem Sortaseerkennungsmotiv verbunden
sind, kannen an einem Peptid, das ein Glycin triigt und zell-
gingig ist (amphipathisches Modellpeptid, MAP), angebracht
werden, was zu aktiven, zelipenetrierenden Antisense-PNA-
Peptid-Konjugaten flhrt'

1 
Auch scheint die Identitst der

Substituenten in C-terminaler Position zum Glycinnukleophil

4 www.sngswande.d
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Tabelle 1: Beispiele fIr synthetische Nukleophile zur ortsspezifischen Sortase-A-Transpeptidierung.

Nr. Sonde Markierungsort hinzugefigte Eigenschaft Lit.

1 H-GsK(Biotin)L-OH C-terminal biophysikalischer Griff [32,55]
2 H-GsK(ANP)K(Biotin) L-OH C-terminal biophysikalischer Griff/Photospaltung [32]
3 H-G5K(Phenylazid) K(Biotin)G-OH C-terminal biophysikalischer Griff/Photovernetzer [32]
4 H-CK(FITC)-NH2 C-terminal Fluoreszenz [32]
5 H-G3K(K(TAMRA))-NH2  C-terminal Fluoreszenz [32,71]
6 H-G3YC(Biotin)-NH2 C-terminal biophysikalischer Griff [33]
7 H-GYC(Alexa488)-NH 2  C-terminal Fluoreszenz [33]
8 H-AA-Ahx-K(K(TAMRA))-NH 2  C-terminal (S. pyogenes) Fluoreszenz [56]
9 H-GK(C12-C24)-NH 2  C-terminal Lipidierung [64]

10 H-G,K(1-Ad)-NH,'l C-terminal Hydrophobie [64]

11 H-G3WK(Cholesterol)-NH 2  C-terminal Lipidierung [64]

12 D-Tat (1. Rest ist G) C-terminal Zellpenetration [53]
13 H-G2Y-PTD5-NH2  C-terminal Zellpenetration [53]
14 (HNRRQRRTSKLMKRAhx)2KYK(GG-NH2)-NH 2  C-terminal Zellpenetration [53]
15 H-G3K(Folat)-NH2  C-terminal FolsAure [53]
16 H2N-PEG C-terminal inertes Polymer [54]

17 H-G,K(PEG)-OH C-terminal inertes Polymer [54]

18 H-G,-MAP-NH 2  C-terminal Zellpenetration [52]
19 Aminoglycosid-Antibiotika (verschiedene) C-terminal Antibiotika i60)

0 und Enantiomer
O-P-0---\ o

20 o o C-terminal GPI-Mimetikum [61]

oue

21 GPI-Mimetika auf Basis von 19 mit Trisaccharidkernen C-terminal GPI-Mimetikum [62,63]
22 Biotin-PEG-YGLPETGG-NH2 N-terminal biophysikalischer Griff [57}

23 Alexa647-LPETCG-NH2 N-terminal Fluoreszenz [57}

24 Alexa488-LPETCG-NH 2  N-terminal Fluoreszenz [58]
25 Biotin-LPRT-OMe N-terminal biophysikalischer Griff [56]

26 FITC-Ahx-LPRT-OMe N-terminal Fluoreszenz [56

27 FAM-LPETG-NH, N-terminal Fluoreszenz [50]

28 Biotin-GGLPETG-NH2 N-terminal biophysikalischer Griff [50]
29 N,-ALPETG-NH2 N-terminal bioorthognale Reaktionen [50]

[a]l-Ad=1-Adamantyl, Ahx=AminohexansAure, FAM=Carboxyfluorescein, FITC=Fluoresceinisothiocyanat, PEG=Polyethylenglycol, TAMRA=

Carboxytetramethylrhodamin

ohne Bedeutung zu sein: D-Aminosaure enthaltende Peptide,
Folate, verzweigte Proteintransduktionsdomanent

53 1 und lan-
ge Polyethylenglycolkettent'l wurden alle mithilfe von Sor-
tase angehangt. Die Spaltstelle muss auch nicht nahe dem C-
Terminus des Substratproteins sein. Eine ausreichend groBe
Schleife, die dem L6sungsmittel zuganglich ist, genugt. Diese
Eigenschaft wurde genutzt, um den Beitrag einer entschei-
denden Schleife im desubiquitinierenden Enzym Ubiquitin
C-Terminal Hydrolase 3 (UCHL3) zur Substratbindung und
Katalyse zu studieren.l'l Da die Bruchstelle in eine Schleife
eingebaut werden kann, ist es moglich, das Proteinrickgrat zu
durchtrennen, wahrend gleichzeitig ein Reporter eingebaut
wird (Biotin oder Fluorophor), urn das Verhalten des unter-
brochenen Enzyms in Gegenwart von intaktem Wildtypen-
zym zu untersuchen. Diese Eigenschaft trifft wahrscheinlich
auf viele Proteine zu, die in einer Konformation mit flexiblen,
exponierten Schleifen vorliegen.

Die C-terminale Markierung ist besonders nitzlich, urn
Typ-II-Transmembranproteine in der lebenden Zellmembran
von Saugetierzellen zu studieren. Der C-Terminus von
Membranproteinen des Typs II ist dem extrazellularen Raum
zugewandt und eignet sich deshalb besonders fur Sortase-
vermittelte Markierung. Proteine mit dieser Typ-II-Topologie
sind besonders unganstig fur eine genetische Fusion mit
fluoreszierenden Proteinen wie dem grun fluoreszierenden

Protein (GFP). Das Anbringen eines fluoreszierenden Pro-
teins am N-Terminus verhindert gew6hnlich die kotransla-
tionale Insertion von Membranproteinen des Typs II in das
endoplasmatische Retikulum (ER), wahrend die Markierung
des C-Terminus mit GFP diesen sperrigen Substituenten nahe
an die Stelle bringt, an der das untersuchte Typ-II-Trans-
membranprotein mit seinem Liganden wechselwirkt. Der
CD40-Ligand (CD40 L), die Influenza-Neuraminidase" und
der Osteoclast Differentiation Factor (ODF)I"I wurden alle
auf diese Weise auf lebenden Zellen markiert.

4. N-terminale Markierung

Eine Proteinmarkierung des N-Terminus gelingt ganz
einfach durch Verlagerung des Sortaseerkennungelements
vom Protein zur kurzen Peptidsonde und durch Einfuhrung
einer geeigneten Zahl von Glycinen am N-Terminus des
Zielproteins (Abbildung 1). Sowohl Methylestermimetika
des Sortasemotivsl'l als auch das komplette LPXTG-Sor-
taseerkennungsmotiv k6nnen als Gerust fur solche Sonden
genutzt werden.-' Diese Markierungsmethode ahnelt dem
Verfahren zur Markierung des C-Terminus, auBer dass das
Acylenzym-Intermediat zwischen der Sortase und der Pep-
tidsonde gebildet wird und dass das markierte Protein meh-

@ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.de
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Tbelk 2: Beispiele f~r Proteine, die durch Sortase-A-Transpeptidierung markiert wurden.

Substrat in Ldsung/ Markierungsort Sonde(n)l' Lit.
an der Zelloberfliche

H-2K' Losung C-terminal 1,2,3,4,5 [32]
CD154 Zelloberfische C-terminal 1,5 [32]
Neuraminidase Zelloberflache C-terminal 1 [32]
ODF Zelloberfluche C-terminal 6,7 [33]
Cre Losung C-terminal 5 [71]
UCHL3 Losung C-terminal (Schleife) 1 [55]
p97 Losung C-terminal 5 [71]
eGFP Ldsung C-terminal 9,10,11 [64]
GFP Losung C-terminal 13,14,15 [53]
PNA Ldsung C-terminal 18 [52]
eGFP Ldsung C-terminal 16,17 [54]
Mrp Losung C-terminal 19 [60]
YALPETGK Ldsung C-terminal 19 [60]
(His)6YALPETGKS Lsung C-terminal 20 [61]
CD52-Peptide Lsung C-terminal 21 [62]
CD24 Losung C-terminal 21 [62]
MUCi Ldsung C-terminal 21 [63]
LPETG-ECFP-TM Zelloberfische N-terminal 22,23 [57]
LPETG,-PAFR Zelloberfluche N-terminal 24 [58]
G-/G,-CTXB L6sung N-terminal 25,26 [56]
G3-eGFP Losung N-terminal 26 [56]
G-UCHL3 Losung N-terminal 26 [56]
S.-aureus-Oberflichen-Peptidoglycan Zelloberflache N-terminal 27,28,29 [50]
eGFP Losung N- und C-terminal 26 und 8 [56]
UCHL3 Losung N- und C-terminal 26 und 8 [56]

[a] Sondennummer gemt3 Tabelle 1.

rere Glycinreste am N-Terminus enthalt, dessen a-NH2-
Gruppe als Nukleophil fungieren kann. Mit dieser Strategie
wurde eine Fluoreszenzsonde am N-Terminus eines Mem-
branproteins in lebenden Saugetierzellen eingefuhrt, nach-
dem zuvor das Glycinnukleophil in geschickter Weise eben-
falls mit Sortase freigesetzt worden war1"I Dieses System
wurde spiter dazu verwendet, Reporterfluorophore am N-
Terminus des G-Protein-gekoppelten Platelet-Activating
Factor Receptor (PAFR) einzubauen. Dies ermoglichte eine
direkte Beobachtung des Traffickings der Rezeptoren, die
sich warend der Markierung auf der Zelloberflache befan-
den. So wurde gezeigt, dass PFAR-Rezeptoren mit be-
stimmten Mutationen fehlerhaft in der Zelle wandern?

1 I Die
Sortasemethode zur Markierung des C- und N-Terminus von
Zelloberflachenproteinen gibt lediglich Zugriff auf den Pool
eines zu untersuchenden Proteins, der sich an der Zellober-
flAche befindet. Dies ist ein Vorteil, wenn nur das Verhalten
desjenigen Bruchteils einer Proteinmenge von Interesse ist,
der der Oberflache ausgesetzt ist. Dies ist gewthnlich auch
der relevante Teil, wenn die Bindung an Liganden auf die
Zelloberflache beschrankt ist. Proteine, die genetisch mit ei-
nem fluoreszierenden Protein fusioniert sind, sind ab dem
Moment ihrer Entstehung detektierbar. Diese Eigenschaft
hat zwar durchaus ihre Vorteile, kann allerdings die Unter-
scheidung zwischen dem Verhalten gerade synthetisierter
Proteine und dem reifer, biologisch relevanter Proteine er-
schweren. Daher sollten die Strategien auf Sortasebasis eher
als hilfreiche Erganzung zu den auf GFP-Methoden be-
trachtet werden, mit dem zusatzlichen Vorteil groBerer che-
mischer Flexibilitat.

5. Markierung an N- und C-Terminus

Durch die Verwendung von Sortasen mit verschiedenen
Substratspezifitaten ist es m6glich, die N- und C-terminalen
Markierungsstrategien zu kombinieren. SrtAst,,, von Strep-
tococcus pyogenesl" erkennt und spaltet das LPXTA-Motiv
und akzeptiert Nukleophile, die auf Alanin beruhen. Es
spaltet auch - wenngleich mit geringerer Effizienz - das
SrtAstp,-LPXTG-Motiv (SrtAstph: Sortase A von Staphylo-
coccus aureus). Im Unterschied dazu spaltet das SrtAStaph-
Enzym das LPXTA-Motiv nicht, wodurch diese beiden En-
zyme orthogonal hinsichtlich dieses Motivs sind. Diese Ei-
genschaft wurde genutzt, urn die beiden Termini von GFP und
UCHL3 mit unterschiedlichen Fluorophoren zu markieren.
Hierfur wurde eine Maskierungsstrategie angewendet, in der
die zur SrtAsap,-Markierung notwendigen N-terminalen
Glycine durch proteolytische Spaltung mit Thrombin freige-
setzt wurden. Durch diesen Schritt wurde eine Proteinoligo-
merisierung vermieden, die wahrscheinlich wahrend des C-
terminalen Markierungsprozesses mit SrtAstrp stattfinden
wurde '

56

6. Imitation posttranslationaler Modifikationen

Die Sortasemethode erm6glicht die Herstellung homo-
gener rekombinanter Proteine mit posttranslationalen Mo-
difikationen, die nicht genetisch kodiert sind. Auf ditese Weise
konnen Glycoproteine hergestellt werden, die normalerweise
durch eine Reihe komplizierter enzymatischer Prozesse im

6 www.angewandte.de
K %These are not the final page numbi

) 2011 Wiley-VCH Verlag CmbH & Co. KGaA, Weinheim Angew. Chem. n , 123, 2-12

338



Chapter 8: Future Directions

Angewandte
Protein-Engineering mit Sortasen Chemie

sekretorischen Weg biosynthetisiert werden. LPXTG-mar-
kierte Proteinc und Pcptide konnen mit Nuklcophilcn mo-
difiziert werden, die auf 6-Aminohexose beruhen, darunter
Aminoglycosid-abgeleitete Antibiotika und ihre Analoga.M
Glycosylphosphatidylinosit(GPI)-Anker, die normalerweise
am C-Terminus des Proteins angebracht sind, k6nnen durch
Bindung von LPXTG-Peptiden an synthetische Glycinnu-
kleophile, die ihrerseits an die Phosphoethanolamineinheit
eines GPI-Derivats gebunden sind, imitiert werden.

611 Eine
Reihe von Peptiden (CD52-Fragment, Mucin-l-Peptide) und
kleinen Proteinen (CD24) wurde so an GPI-Mimetika mit
Trisaccharidkemen angehangt.

16
2,

63 
Lipidmodifikationen von

Proteinen sind weitere wichtige posttranslationale Verande-
rungen, die wenig studiert sind, da es an Methoden mangelt,
um homogene Praparationen von Lipoproteinen zu erhalten.
Zur Lisung dieses Problems wurde Sortase verwendetJI Ein
Gerust auf Glycinbasis wurde mit einer Auswahl an linearen
Alkylketten (C 2-C), Cholesterin sowie Adamantan modi-
fiziert und anschliellend dazu verwendet, geeignete Versio-
nen von enhanced GFP (eGFP) zu modifizieren, die mit
LPETG markiert waren. Diese eGFP-Lipoproteine assozi-
ierten abhangig von der Kettenlange mit den Plasmamem-
branen lebender Zellen (wobei eine C2-Kette das beste Re-
sultat lieferte), von wo aus sie Zugang zun endosomalen
Kompartiment fanden.

7. Schrittweiser Aufbau von Proteinen,
Proteindomdnen und Peptiden

Gefaltete Proteine mit einem exponierten Glycinrest am
N-Terminus k6nnen als Nukleophile fur eine Markierung mit
Sortase verwendet werden. Substratproteine mit LPXTG-
Motiv k6nnen mit dem ankommenden Nukleophilprotein
fusioniert werden, was zu groBen Transpeptidierungspro-
dukten fuhrt. Durch Verwendung unabhangig gefalteter
Proteine als Substrate ist es m6glich, viele der L6slichkeits-
probleme zu vermeiden, die die Expression genetisch ko-
dierter Fusionen erschweren. Diese Eigenschaft wurde ge-
nutzt, um die Strukturanalyse mit NMR-Spektroskopie zu
erleichtern, bei der geringe L6slichkeit ein Hauptproblem ist,
da hier gewohnlich hohe Proteinkonzentrationen notwendig
sind. Mithilfe von Sortase wurde eine unmarkierte und daher
fUr die NMR-Spektroskopie unsichtbare, l6slichkeitserho-
hende Domane auf Basis der B1-Immunglobulin-Bindungs-
domsne (G-GB1) an den C-Terminus der Vav-SRC-Homo-
logie-3-Domane (SH3; eine Domane, die urn pH 7 nahezu
unl6slich ist) angebracht."'J Die Struktur der 

13
C/

15N-mar-
kierten, angehefteten Vav-SH3-Domane wurde im Anschluss
NMR-spektroskopisch ohne Stbrsignale vonseiten der las-
lichkeitserhbhenden Gruppe aufgeklart. Auch fiber die teil-
weise Markierung des MecA-Proteins von Bacillus subtilis
durch Verwendung von Sortase in einer NMR-spektroskopi-
schen Studie wurde berichtet?I Mit Sortase wurden auch
zahlreiche Immundetektionsreagentien erzeugt. Weiterhin
gelangen Protein-Protein-Ligationen zwischen dem Fe-Bin-
dungsmodul (ZZ-Domane) und mehreren Detektionsenzy-
men (alkalische Phosphatase, Luciferase, Glucoseoxidase)
mit Sortase

67 AuBerdem wurden Mucin-Glycopeptide syn-

thetisiert, die N- und O-gebundene Glycane enthalten. Durch
cine Kombination von chemischcr Synthcsc mit Glycan-
strukturaufklarung durch enzymatische Synthese wurden
unterschiedliche Peptide aufgebaut, die N- und O-gebundene
Glycane enhalten. Diese Glycopeptide wurden anschlieBend
durch Sortase zu einem stereochemisch homogenen Praparat
verbunden.',"

1 
Sortase wurde in einer kombinierten Strate-

gie aus rekombinanter, enzymatischer und chemischer Syn-
these (CRECS) dazu verwendet, Mimetika von G-Protein-
gekoppelten Rezeptoren (GPCR) herzustellen?" Die
GPCRs sind Proteine mit sieben Transmembrandomanen, die
ihre Liganden fiber drei extrazellulare Schleifen und das ex-
trazellulare N-terminale Segment binden. Zur Nachahmung
dieser Anordnung wurden drei Schleifen synthetisiert, die
durch native chemische Ligation cyclisiert und an ein Pep-
tidgerust mit einem Triglycinmotiv angehangt wurden. Im
Anschluss wurde der N-Terminus des GPCR, der die Sor-
tasespaltsequenz trug, in E. coli exprimiert und durch eine
Sortase-vermittelte Ligation an das Gerust angehangt. Diese
elegant entworfenen, 16slichen Mimetika sollten eine syste-
matische Charakterisierung der Beitrage jeder Region zur
Ligandenbindung ermoglichen und demonstrieren die M6g-
lichkeiten einer Kombination von chemischer Synthese mit
Molekularbiologie.

Eine einzigartige Variante der Protein-Protein-Ligation
findet statt, wenn das LPXTG-Motiv und N-terminale Gly-
cine im selben Konstrukt vorhanden sind. Wenn die beiden
Einheiten im gefalteten Protein einander nahe genug kom-
men, kann ein zirkulares Transpeptidierungsprodukt gebildet
werden, indem der N-Terminus mit dem Sortaseerken-
nungselement eine stabile Bindung eingeht.

1
4'
71

] Zirkulare
Proteine haben nutzliche biochemische Eigenschaften: Sie
sind widerstandsfahig gegen Aggregation, benotigen mehr
Energie fur die Denaturierung und sind, da sie keinen expo-
nierten Terminus haben, in ihrem natuirlichen Zustand vor
einem Exoproteasenangriff geschItzt.

72 -76]

& Verankerung an festen Oberfiachen

Auch eine kovalente Immobilisierung an festen Oberfia-
chen wurde durch Sortase erreicht. Ein Hauptvorteil dieser
Methode ist, dass dank des Spezifitat des Sortaseenzyms
Proteine einheitlich und mit definierter Orientierung fUr die
nachfolgende Analyse an festen Oberflachen verankert wer-
den k6nnen. Wegen der starken Amidbindung zwischen
Oberflache und Protein k6nnen auch harsche Waschbedin-
gungen angewendet werden, z.B. fur die kovalente Bindung
von GFP an Glycin-derivatisierte Polystyrolkugelchen

1 4
) Auf

ahnliche Weise wurden Adhasionsproteine von Gram-posi-
tiven Bakterien an fluoreszierende, Glycin-derivatisierte Po-
lystyrolkugelchen gebunden.?'] Ebenfalls gelang eine Veran-
kerung von GFP und 'Ts-Proteinen an Glycidylmethacry-
latkiigelchen, die mit Oligoglycin derivatisiert waren, sowie
an Glycin-modifizierter Agarose (Affigel) und an Glycin-
modifizertem Aminosilan auf Glasplattchen.?

5 Ein weiteres
Beispiel ist die orientierte Verankerung von Proteinen an
Triglycin-modifizierten, carboxymethylierten Dextran-Bia-
core-Sensorchips fur die Oberflaichenplasmonenresonanz-
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spektroskopie.1"' Rekombinantes Fibronectin-Bindungspro-
tein (rFba-LPETG) von A-Streptokokken (Group A Strep-
tococcus. GAS) wurde auf diese Art verankert, was die
Messung der Bindung des humanen Faktors H an immobili-
siertes Protein ermoglichte. For die Entwicklung von Rea-
gentien zur chemoenzymatischen Synthese von Glycokonju-
gaten wurden immobilisierte f-1,4-Galactosyltransferasc
(rhGarT) und ct-1.3-Fucosyltransferase (rHFucT) aus He-
licobacter pylori kovalent an Alkylamin-Sepharosekogelchen
befestigt. Diese Enzyme sind aktiv und wiederverwendbar,
wenn sie mit definierter Ausrichtung an der festen Oberfliche
verankert sind.1'i

g. Preteinexprusion und -aufWinigung

Genetische Fusionen von Sortase mit anderen Proteinen
wurden zum Zwecke der Proteinaufreinigung durchgeftlhrt.
Ein hochreines Protein mit einem zuslitzlichen GlycinrestlI
wurde erhalten, indem Hexahistidin-markierte Sortase, ge-
folgt von LPETG, mit dem zu untersuchenden Protein linear
fusioniert wurde. durch Metallchelat-Affinitatschromatogra-
phie an einer Nickelnitrilotriacetatmatrix (Ni-NTA-IMAC)
aufgereinigt wurde und zum Schluss durch Versetzen mit Ca '
und Triglycin von der festen Phase abgespalten wurde (Ab-
bildung 3). Mit dem Ziel einer allgemeinen Reinigungsme-

COOH

W HP liieic OOH

AbbfuSng3. Proteinaufreinigung mit Sortase A. Rekombinant expri-
mierte Proteine werden als Fusionsproteine hergestellt. die entweder
eine Hexahistidinmarkierung' (His6. oben) oder ein Biotinakzeptor-
peptid' (AP, unten) enthalten, gefolgt vom katalytischen Zentrum der
Sortase, der LPXTC-Markierung und dem zu untersuchenden Protein.
Versetzen des immobilisierten Fusionsproteins mit Ca'.onen und Oli
goglycin stimuliert die Sortaseaktivitst. Das zu untersuchende Protein
wird als gereinigtes Produkt mit einem zusstzlichen N-terminalen Gly-
cinrest freigesetzt.

thode fUr die groBtechnische Proteinherstellung wurde diese
Methode an ein zellfreies Weizenkeim-Translationssystem
angepasst. Bei dieser Version wird die Hexahistidinmarkie-
rung durch ein Biotinakzeptorpeptid ersetzt (ein 15 Amino-
siuren langes Peptid. das von der E.-coli-Biotinligase erkannt
wird), und die Proteine werden mit immobilisiertem Strep-
tavidin in Gegenwart von Calciumchelatoren gereinigt. um
eine vorzeitige Abspaltung zu vermeiden1Iu Beide Methoden
ftlhren zu einem Zielprotein mit einem zusfitzlichen Glycin-
rest am N-Terminus, cine Konfiguration, die fir die N-ter-
minale Markierung durch Sortase sehr geeignet ist (Abbil-
dung 3).

Sortase A von S aureus ist cin schr gut losliches Enzym.
das in hoher Ausbeute (>440 mg L- Kultur) hergestellt wer-
den kann. Diese Eigenschaft wurde genutzt, um die L4slich-
keit von Proteinen durch Fusion mit einer Sortaseversion
ohne katalytischen Cysteinrest zu erhohen?'1

to. Ausbid

In der mikrobiologischen Welt gibt es eine Vielfalt von
Sortasen mit unterschiedlichen Prifferenzen (fir Spaltsequenz
und Nukleophil.t"I Zum Beispiel akzeptieren die Pilin auf-
bauenden Sortasen die e-Aminogruppe eines Lysins in der
YPKN-Sequenz als Nukleophil, die Sortase A von S Aureus
dagegen den N-Terminus von Glycinanhilngen. Sortase B
(SrtB) von & aureus spaltet die NPQTN-SequenzIowI wih-
rend SrtB von Bacillus anthracis die NPKTG-Sequenz spal-
tett"I und neso-Diaminopimelinsgure als Nukleophil akzep-
tiert.

1
"I Noch befindet sich der Einsatz von Sortasen fir die

Proteinmarkierung in seinen Anfaingen, allerdings sind die
Perspcktiven vielversprechend, wenn die erforderlichen Re-
aktionsbedingungen und die Bedingungen for die Substrat-
erkennung erst einmal besser geklirt sind. Mit dem Auf-
kommen zahlreicher Techniken zur gesteuerten Proteinevo-
lution wird sich vielleicht verbessern lassen, was uns die Natur
zur Verffugung gestellt hat. In ihrem gewohnlichen biologi-
schen Zusammenhang verankert die Housekeeping-Sortase
strukturell sehr unterschiedliche Substrate in der Zellwand."
Die einzige Anforderung fir den Sortaseangriff scheint das
Vorhandensein des LPXTG-Pentapeptids zu sein. Dieser
Befund - zusammen mit der Tatsache. dass die Substrat-
erkennung primfir eine Funktion der f6-07-Sehleife ist9

2 
" -

last vermuten. dass sich moglicherweise Versionen von Sor-
tase entwickeln lassen. die Peptidsequenzmotive komplett
orthogonal angreifen knnen. Wenn man die Vielfalt an
Sortasen in Betracht zieht, die verschiedene Ankerstrukturen
erkennen kosnen,"I sollte die Entwicklung von Enzymen
maglich scin. die nichtnatrlichc Nukleophile akzeptieren.
Vorstellbar ist auch cine orthogonale Markierung verschie-
dener Proteine in einem Reaktionsansatz oder ihrer biologi-
schen Aquivalente in derselben Zcllumgebung durch Kom-
bination von Sortasen unterschiedlicher Spezifitit. Die Ge-
schwindigkcit der Sortasereaktion mit SrtA von S aureus ist
bestenfalls miiBig, wahrscheinlich weil das Gleichgewicht des
aktiven Zentrums auf der Seite des nichtaktiven, nichtioni-
sierten Cysteinrestes liegt. Zwar kann dieses Problem leicht
durch Verwendung groBer Mengen an Sortase (und dadurch
einer groferen Gesamtmenge des katalyseffibigen Enzyms)
Oberwunden werden, jedoch ware es von Vorteil. die Ge-
samtkinetik durch gesteuerte Proteinevolution zu verbessern.

Die Verwendung der Pilus bildenden Sortasen. die Iso-
peptidbindungen durch Polymerisation von Untereinheiten
aufbauen, solite noch eingehender erforscht werden. Diese
Enzyme k6nnten von besonderem Interesse sein, da sic sich
entwickelt haben, um posttranslational kovalente Protein-
Protein-Bindungen zu bilden. Diese Eigenschaft k6nnte dazu
genutzt werden, um in vitro ahnaliche Protein-Protein-Liga-
tionen durchzuffihren und interne, exponierte Lysinreste als
ankommende Nukleophile zu nutzen. Da Isopeptidbindun-
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gen in vielen biologischen Prozessen vorkommen, z.B. im
Ubiquitinsystem, warc dic Moglichkcit zur Bildung homo-
gener ortsspezifischer Isopeptidbindungen schr nutzlich.

Ein interessante Frage ist, wie man die Hindernisse fur die
intrazellulare Markierung durch Sortase uberwinden konnte.
Es ist moglich, die Sortase innerhalb lebender bakterieller
und eukaryotischer Zellen zu exprimieren - das Enzym faltet
sich richtig und ist aktiv.J"I Das S-pyogenes-Enzym, das keine
zweiwertigen Kationen benotigt, ist in Calcium-freien Kom-
partimenten aktiv, z. B. im Cytosol. Ahnlich dazu konnen
Substrate, die ein exponiertes LPXTG-Motiv aufweisen,
leicht exprimiert werden und - abhangig vom Protein - die
Lokalisierung und/oder Funktion ihrer unmodifizierten Va-
riante beibehalten. Wenn das Nukleophil fur die Tanspepti-
dierung genetisch als Teil eines Substratproteins kodiert ist,
wie im Fall von Zirkularisierungsreaktionen oder Protein-
Protein-Ligationsreaktionen, verlauft die Transpeptidierung
leicht

11 
und fuhrt in Hefezellen, Saugetierzellen und Proka-

ryoten intrazellular zu zirkularisierten Proteinen. Der ge-
schwindigkeitsbestimmende Schritt fur die einfache Markie-
rung von C-Termini ist deshalb die Verfuigbarkeit eines exo-
genen Nukleophils im Zellinneren in Mengen, die hoch genug
sind, um das Transpeptidierungsprodukt biochemisch analy-
sieren zu k6nnen. Diese Begrenzung k6nnte dadurch fiber-
wunden werden, dass man eine der vielen Proteintransduk-
tionssequenzen des HIV-TAT-Proteins (TAT: Trans-Activa-
tor of Transcription) oder sonstiger Quellen am markierten
Nukleophil befestigt. Diese Moglichkeit vemachiassigt je-
doch den weiteren Verbleib nichtinkorporierter cytoplasmi-
scher Nukleophile und wurde bisher nicht in die Praxis urn-
gesetzt. Andererseits ware es vielleicht moglich, die Sonden
irreversibel zuzufihren, indem man die a-Aminogruppe und
andere Gruppen, die die Translokation ins Cytosol verhin-
dern, mithilfe von chemischen Gruppen temporar maskiert,
indem man chemische Gruppierungen einfulhrt, die sich durch
Esterasen, photochemisch oder im reduzierenden Milieu des
Cytoplasmas wieder abspalten lassen.

Ein wesentlicher Vorteil der Markierung mit Sortase ist,
dass die nukleophilen Sonden relativ leicht synthetisiert
werden kbnnen. Die meisten Sonden sind einfache, C-termi-
nale Glycinanhange, die durch chemische Routinekupplun-
gen an einer festen Phase oder in Losung hergestellt werden.
Literaturdaten zeigen, dass viele derartige Sonden wahr-
scheinlich in gleicher Weise als Nukleophile mit einer gege-
benen Zielstruktur reagieren. Dies macht es moglich, eine
ganze Reihe von Biokonjugaten herzustellen, ohne die Not-
wendigkeit einer Neuoptimierung jedes einzelnen Konjugats.
Transportproteine, mit denen sich Bibliotheken von small
interfering RNA (siRNA) und Antik6rper-Medikament-
Konjugaten zell- und gewebespezifisch verabreichen lassen,
konnten in Reichweite sein. Ein zusatzlicher Vorteil der
Sortasemethode liegt in der genauen Steuerbarkeit der Stb-
chiometrie des Markierungsprozesses, was quantitative Ar-
beiten zu solchen Biokonjugatbibliotheken sehr viel einfa-
cher machen sollte.

AuBerdem ermoglicht es Sortase auch, die Orientierung
von Ligationspartnern zu steuern, was bei der Herstellung
von Protein-Protein-Konjugaten nutzlich sein k6nnte. Durch
Austausch der N-terminalen Glycine einer Einheit gegen das

Sortasemotiv des Partnerproteins kann die Orientierung der
Untercinheiten umgckchrt werden. Durch klug entworfcnc
Sonden, die ,,Griffe" fur bioorthogonale Reaktionen enthal-
ten (z.B. die Reaktion eines Azids mit einem Alkin, eines
Azids mit einem gespannten Cyclooctin oder eines Aldehyds
mit einer Aminooxygruppe), sollte es moglich sein, Proteine
aufzubauen, die kovalent in nichtnaturlicher Topologie (N-N-
oder C-C-Verknipfung) verbunden sind. Alternativ konnte
man zweistufige Transacylierungsprozesse mit den semi-or-
thogonalen SrtAspr- und SrtAs,,,-Enzymen sowie passenden
Peptidsonden fur N-N- oder C-C-Bindungen nutzen. Die
Sortasemethode er6ffnet damit den Zugang zu Proteinbin-
dungen, die nicht in der Natur vorkommen. Ein Gebiet, das
von dieser Moglichkeit profitieren kann, ist die Konstruktion
spezieller Liganden zum Studium der Signaltransduktion in
Zellen. Es ware moglich, chimare, gefaltete Proteinliganden
zu entwerfen, die die Bindung und Heterodimerisierung ihrer
zugehorigen Rezeptoren einschrinken. Die leichte An-
wendbarkeit und die Flexibilitat der Sortasemarkierungsme-
thode werden mit groBer Sicherheit noch weitere hochinter-
essante neue Forschungsbereiche erschlieBen.

Eingegangen am 30. Dezember 2010
Online veroffentlicht am II. E EEi
Obersetzt von Dr. Gerhard Popp und Paul-Albert K6nig

[1] L A. Marraffini, A. C. Dedent, 0. Schneewind, MicrobioL Mol
BioL Rev. 2006, 70, 192.

[2] S. K. Mazmanian, G. Liu, H. Ton-That, 0. Schneewind, Science
1999, 285, 760.

[3] S. K. Mazmanian, H. Ton-That, 0. Schneewind, Mol. Microbiol.
2001, 40, 1049.

[4] S. D. Zink, D. L. Burns, Infect. Immun. 2005, 73, 5222.
[5] H. Ton-That, 0. Schneewind, J. BioL Chem. 1999, 274, 24316.
[6] H. Ton-That, G. Liu, S. K. Mazmanian, K. F Faull, 0. Schnee-

wind, Proc. NatL Acad. Sci. USA 1999, 96, 12424.
[7] R. G. Kruger, B. Otvos, B. A. Frankel, M. Bentley, P. Dostal,

D. G. McCafferty, Biochemistry 2004, 43,1541.
[8] S. Dramsi, P. Trieu-Cuot, H. Bierne, Res. Microbiol. 2005, 156,

289.
[9] M. G. Pucciarelli, E. Calvo, C. Sabet, H. Bierne, P. Cossart, F.

Garcia-del Portillo, Proteomics 2005, 5, 4808.
[10] D. Comfort, R. T. Clubb, Infect. Immun. 2004, 72, 2710.
[11] a) Internet-Adresse: http://bamics3.cmbi.kun.nl/cgi-bin/jos/

sortase-substrates/index.py; b) J. Boekhorst, M. W. de Been, M.
Kleerebezem, R. J. Siezen, J. BacterioL 2005, 187, 4928.

[12] M. J. Pallen, A. C. Lam, M. Antonio, K. Dunbar, Trends
Microbiol. 2001, 9, 97.

[13] H. Ton-That, S. K. Mazmanian, K. F. Faull, 0. Schneewind, J.
Biol. Chem. 2000,275, 9876.

[14] A. Aulabaugh, W. Ding, B. Kapoor, K. Tabei, L. Alksne, R.
Dushin, T. Zatz, G. Ellestad, X. Huang, Anal. Biochem. 2007,
360, 14.

[15] A. M. Perry, H. Ton-That, S. K. Mazmanian, 0. Schneewind, J.
Biol. Chem. 2002, 277, 16241.

[16] H. Ton-That, 0. Schneewind, Trends Microbiol. 2004, 12, 228.
[17] J. R. Scott, D. Zahner, Mol. Microbiol. 2006, 62, 320.
[18] A. Mandlik, A. Swierczynski, A. Das, H. Ton-That, Trends

Microbiol. 2008, 16, 33.
[19] T. Proft, E. N. Baker, Cell. MoL. Life Sci. 2009, 66, 613.
[20] H. Ton-That, 0. Schneewind, MoL. MicrobioL 2003, 50, 1429.

[21] H. Ton-That, L. A. Marraffini, 0. Schneewind, MoL MicrobioL
2004,53, 251.

Angew. Chem. 2on, 123, 2-12 @ 2ou1 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.de 9

se are not the final page numbers!

341



Chapter 8: Future Directions

H. L. Ploegh und M. W-L. Popp

[22] C. Manzano, C. Contreras-Martel, L. El Mortaji, T. Izore, D.
Fenel, T. Vernet, G. Schoehn, A. M. Di Guilmi, A. Dessen,
Structure 2008, 16, 1838.

[23] F. Neiers. C. Madhurantakam, S. Falker, C. Manzano, A. Dessen,
S. Normark, B. Henriques-Normark, A. Achour, J. Mol. Biol.
2009, 393, 704.

[24] C. Manzano, T. Izore, V. Job, A. M. Di Guilmi, A. Dessen,
Biochemistry 2009, 48, 10549.

[25] J. M. Budzik, L. A. Marraffini, P. Souda, J. P. Whitelegge, K. F.
Faull, 0. Schneewind, Proc. Nat. Acad. Sci. USA 2008, 105,
10215.

[26] A. Mandlik, A. Das, H. Ton-That, Proc. Nat!. Acad. Sci. USA
2008, 105, 14147.

[27] S. K. Mazmanian, G. Liu, E. R. Jensen, E. Lenoy, 0. Schnee-
wind, Proc. Nat. Acad. Sci. USA 2000, 97, 5510.

[28] G. K. Paterson, T. J. Mitchell, Trends Microbiol. 2004, 12, 89.
[29] A. W. Maresso, 0. Schneewind, PharmacoL Rev. 2008, 60, 128.
[30] N. Suree, M. E. Jung, R. T. Clubb, Mini-Rev. Med. Chem. 2007, 7,

991.
[31] G. K. Paterson, T. J. Mitchell, Microbes Infect. 2006, 8, 145.
[32] M. W Popp, J. M. Antos, G. M. Grotenbreg, E. Spooner, H. L.

Ploegh, Nat. Chem. BioL 2007, 3, 707.
[33] T. Tanaka, T. Yamamoto, S. Tsukiji, T. Nagamune, ChemBio-

Chem 2008, 9, 802.
[34] M. W. Popp, J. M. Antos, H. L. Ploegh, Cur. Protoc. Protein Sci.

2009, Kap. 15, Abschnitt 153.
[35] U. Ilangovan, J. Iwahara, H. Ton-That, 0. Schneewind, R. T.

Clubb, I. Biomol. NMR 2001, 19, 379.
[36] U. liangovan, H. Ton-That, J. Iwahara, 0. Schneewind, R. T.

Clubb, Proc. Nat. Acad. Sci. USA 2001, 98, 6056.
[37] Y. Zong, T. W Bice, H. Ton-That, 0. Schneewind, S. V. Nara-

yana, J. Biol. Chem. 2004,279, 31383.
[38] N. Suree, C. K. Liew, V. A. Villareal, W. Thieu, E. A. Fadeev, J. J.

Clemens, M. E. Jung, R. T. Clubb, J. Biol. Chem. 2009, 284,
24465.

[39] R. G. Kruger, P. Dostal, D. G. McCafferty, Anal. Biochem. 2004,
326, 42.

[40] L. A. Marraffini, H. Ton-That, Y. Zong, S. V. Narayana, 0.
Schneewind, J. Biol. Chem. 2004,279, 37763.

[41] B. A. Frankel, Y. Tong, M. L. Bentley, M. C. Fitzgerald, D. G.
McCafferty, Biochemistry 2007, 46, 7269.

[42] M. T. Naik, N. Suree, U. Ilangovan, C. K. Liew, W Thieu, D. 0.
Campbell, J. J. Clemens, M. E. Jung, R. T. Clubb, J. Biol. Chem.
2006, 281, 1817.

[43] H. Ton-That, S. K. Mazmanian, L. Alksne, 0. Schneewind, J.
Biol. Chem. 2002,277, 7447.

[44] K. M. Connolly, B. T. Smith, R. Pilpa, U. Ilangovan, M. E. Jung,
R. T. Clubb, J. BioL Chem. 2003, 278, 34061.

[45] B. A. Frankel, R. G. Kruger, D. E. Robinson, N. L. Kelleher,
D. G. McCafferty, Biochemistry 2005, 44, 11188.

[46] X. Huang, A. Aulabaugh, W. Ding, B. Kapoor, L. Alksne, K.
Tabei, G. Ellestad, Biochemistry 2003, 42, 11307.

[47] 0. Schneewind, P. Model, V. A. Fischetti, Cell 1992, 70, 267.
[48] G. Pozzi, M. Contori, M. R. Oggioni, R. Manganelli, M. Tom-

masino, F. Cavalieri, V. A. Fischetti, Infect. Immun. 1992, 60,
1902.

[49] H. D. Nguyen, W. Schumann, J Biotechnol. 2006, 122, 473.
[50] J. W. Nelson, A. G. Chamessian, P. J. McEnaney, R. P Murelli,

B. t. Kazmiercak, D. A. Spiegel, ACS Chem. Biol. 2010,5, 1147.
[51] M. Vila-Perell6, T. W. Muir, Cell 2010, 143, 191.
[52] S. Pritz, Y. Wolf, 0. Kraetke, J. Klose, M. Bienert, M. Beyer-

mann, J. Org. Chem. 2007, 72, 3909.
[53] H. Mao, S. A. Hart, A. Schink, B. A. Pollok, J. Am. Chem. Soc.

2004, 126, 2670.
[54] R. Parthasarathy, S. Subramanian, E. T. Bodcr, Bioconjugate

Chem. 2007, 18, 469.

[55] M. W. Popp, K. Artavanis-Tsakonas, H. L. Ploegh, J. Biol Chem.
2009, 284, 3593.

[56] J. M. Antos, G. L. Chew, C. P. Guimaraes, N. C. Yoder, G. M.
Grotenbreg, M. W. Popp, H. L. Ploegh, J. Am. Chem. Soc. 2009,
131, 10800.

[57] T. Yamamoto, T Nagamune, Chem. Commun. 2009, 1022.
[58] N. Hirota, D. Yasuda, T. Hashidate, T. Yamamoto, S. Yamaguchi,

T. Nagamune, T Nagase, T Shimizu, M. Nakamura, J. Biol
Chem. 2010,285, 5931.

[59] P. R. Race, M. L. Bentley, J. A. Melvin, A. Crow, R. K. Hughes,
W. D. Smith, R. B. Sessions, M. A. Kehoc, D. G. McCafferty,
M. J. Banfield, J. Biol. Chem. 2009, 284, 6924.

[60] S. Samantaray, U. Marathe, S. Dasgupta, V. K. Nandicoori, R. P.
Roy, J. Am. Chem. Soc. 2008, 130, 2132.

[61] X. Guo, Q. Wang, B. M. Swarts, Z. Guo, J. Am. Chem. Soc. 2009,
131, 9878.

[62] Z. Wu, X. Guo, Q. Wang, B. M. Swarts, Z. Guo, I. Am. Cher.
Soc. 2010, 132, 1567.

[63] Z. Wu, X. Guo, Z. Guo, Chem. Commun. 2010, 46, 5773.
[64] J. M. Antos, G. M. Miller, G. M. Grotenbreg, H. L. Ploegh, J.

Am Chem. Soc. 2008, 130, 16338.
[65] Y. Kobashigawa, H. Kumeta, K. Ogura, F. Inagaki, J. BiomoL.

NMR 2009,43, 145.
[66] M. A. Refaei, A. Combs, D. J. Kojetin, J. Cavanagh, C. Caperelli,

M. Rance, J. Sapitro, P. Tsang, J. BiomoL NMR 2011, 49, 3.
[67] T. Sakamoto, S. Sawamoto, T. Tanaka, H. Fukuda, A. Kondo,

Bioconjugate Chem. 2010,21, 2227.
[68] T. Matsushita, S. Nishimura, Methods Enzymol. 2010, 478, 485.
[69] T. Matsushita, R. Sadamoto, N. Ohyabu, H. Nakata, M. Fumoto,

N. Fujitani, Y. Takegawa, T. Sakamoto, M. Kurogochi, H. Hinou,
H. Shimizu, T. Ito, K. Naruchi, H. Togame, H. Takemoto, H.
Kondo, S. Nishimura, Biochemistry 2009, 48, 11117.

[70] S. Pritz, 0. Kraetke, A. Klose, J. Klose, S. Rothemund, K.
Fechner, M. Bienert, M. Beyermann, Angew. Chem. 2008, 120,
3698; Angew. Chem. Int. Ed. 2008, 47, 3642.

[71] J. M. Antos, M. W. Popp, R. Ernst, G. L. Chew, E. Spooner, H. L.
Ploegh, J. Biol. Chem. 2009, 284, 16028.

[72] R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J. Rosengren,
S. T. Nevin, F. A. Meunier, D. J. Adams, D. J. Craik, Proc. Nat.
Acad. Sci. USA 2005, 102, 13767.

[73] R. J. Clark, J. Jensen, S. T. Nevin, B. P Callaghan, D. J. Adams,
D. J. Craik, Angew. Chem. 2010, 122, 6695; Angew. Chem. Int.
Ed. 2010, 49, 6545.

[74] M. Trabi, D. J. Craik, Trends Biochem. Sci. 2002, 27, 132.
[75] D. J. Craik, Science 2006,311, 1563.
[76] A. S. Andersen, E. Palmqvist, S. Bang, A. C. Shaw, F. Hubalek,

U. Ribel, T. Hoeg-Jensen, J. Pept. Sci. 2010, 16, 473.
[77] S. Wu, T. Proft, Biotechnol. Lett. 2010, 32, 1713.
[78] L. Chan, H. F. Cross, J. K. She, G. Cavalli, H. F. Martins, C.

Neylon, PLoS One 2007,2, e1164.
[79] F. Clow, J. D. Fraser, T. Proft, Biotechnol. Lett. 2008, 30, 1603.
[80] T. Ito, R. Sadamoto, K. Naruchi, H. Togame, H. Takemoto, H.

Kondo, S. Nishimura, Biochemistry 2010, 49, 2604.
[81] H. Mao, Protein Expression Purif 2004, 37, 253.
[82] S. Matsunaga, K. Matsuoka, K. Shimizu, Y. Endo, T. Sawasaki,

BMC BiotechnoL. 2010, 10, 42.
[83] J. Caswell, P. Snoddy, D. McMeel, R. J. Buick, C. J. Scott, Protein

Expression Purif 2010, 70, 143.
[84] T. C. Barnett, A. R. Patel, J. R. Scott, J. Bacteriol. 2004, 186,

5865.
[85] L. A. Marraffini, 0. Schneewind, J. BioL Chem. 2005,280, 16263.
[86] S. K. Mazmanian, H. Ton-That, K. Su, 0. Schneewind, Proc.

Nat. Acad. Sci. USA 2002, 99, 2293.
[87] A. W. Maresso, T. J. Chapa, 0. Schneewind, J. BacterioL 2006,

188, 8145.
[88] A. H. Gaspar, L. A. Marraffini, E. M. Glass, K. L. Debord, H.

Ton-That, 0. Schneewind, J. Bacteriol. 2005, 187, 4646.

10 www.angewandte.de
FFThese are not the final page numbE

C 2011 Wiley-VCH Verlag CmbH & Co. KGaA, Weinheim Angew. Chem. an, 123, 2-1a

342

Kurzauftdtze



Chapter 8: Future Directions

Protein-Engineering mit Sortasen

[89] J. M. Budzik, S. Y. Oh, 0. Schneewind, J. Biol. Chem. 2008,283,
36676.

[90] E. M. Weiner, S. Robson, M. Marohn, R. T. Clubb, J. Biol. Chem.
2010, 285, 23433.

[91] R. Janulczyk, M. Rasmussen, Infect. Immun. 2001, 69, 4019.
[92] C. K. Liew, B. T. Smith, R. Pilpa, N. Suree, U. Ilangovan, K. M.

Connolly, M. E. Jung, R. T. Clubb, FEBS Lett. 2004, 571, 221.

Angew. Chem. 2011, 123, 2-12

[93] M. L. Bentley, H. Gaweska, J. M. Kielec, D. G. McCafferty, J.
Biol. Chem. 2007,282, 6571.

[94] M. L. Bentley, E. C. Lamb, D. G. McCafferty, J. BioL. Chem.
2008, 283, 14762.

[951 K. Strijbis, M. W. Popp, unveroffentlichte Ergebnisse.

@ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.de 11

These are not the final page numbers!

343

Chemie



Chater 8: Future Directions

H. L Ploegh und M. W.-L Popp

Kurzaufsdtze
iProtein- Engineering

M. W.-L Popp,
H. L. Ploegh* f-ll

Bilden und Brechen von
Peptid bindungen: Protein-Engineering
mithilfe von Sortase

11 www.angewandte.d
IKThese are not the final page numbi

NH, N~g

LktPX I -XX-COOH -LPXTG -1

Peptide bun mit Serte: Die enzyma-
tische Bildung von Peptidbindungen mit
der Transpeptidase Sortase A (SrtA) ist
ein praktisches und mildes Verfahren, urn
Proteine so zu manipulieren, dass sie
Modifikationen enthalten, die nicht ge-
netisch kodiert sind. Dies erm6glicht

C zo1 Wiley-VCH erIag GmbH & Co. KGaA, Weinheim

nfintrlfChe Einheften.
Obefcherenerkeung.
Klick-Chernme usw

zahlreiche Anwendungen, von der ho-
mogenen Herstellung imitierter post-
translationaler Modifikationen fiber das
Zusammenbauen von ProteindomInen
bis zur Verankerung von Proteinen an
festen OberflAchen.

Angew. Chem. amn, 723 2-12

344

MMMIN



Appendix A: Sortagging reveals a functionally important association between dectin-]
and galectin-3 in macrophages

Appendix A: Sortagging reveals a functionally
important association between dectin-1 and galectin-

3 in macrophages

345



Appendix A. Sortagging reveals a functionally important association between dectin-1
and galectin-3 in macrophages

Appendix A: Sortagging reveals a functionally important association between
dectin-1 and galectin-3 in macrophages

(Unpublished, from: Alexandre Esteban, Maximilian W. Popp, Karin Strijbis, Hidde L.
Ploegh, and Gerald R. Fink; Sortagging reveals a functionally important association

between dectin- 1 and galectin-3 in macrophages, submitted)

Abstract

Dectin-1, the major Pf-glucan receptor in leukocytes, triggers an effective immune

response upon fungal recognition. Although dectin- 1 plays a crucial role in the fight

against fungal infections, most aspects of its signaling in vivo still remain obscure. Here

we show that murine dectin- 1 can be labeled on live cells through sortase-mediated

transpeptidation, a procedure that places a small peptide tag on the protein. Tagged

dectin- 1 containing a sortase A recognition domain transits to the membrane and is

functional. Installation of probes by sortagging permitted highly specific visualization of

functional dectin- 1 on the cell surface and internalized upon presentation of a ligand.

Sortagging made it possible to uncover a novel interaction between dectin- 1 and galectin-

3 in macrophages that increases in response to a fungal challenge. This association may

be key in the modulation of the proinflammatory response toward pathogenic fungi. Our

findings further strengthen the concept that pattern recognition receptors often engage

multiple binding partners to generate the desired functional outcome.

Introduction

Dectin- 1, the primary receptor on leucocytes for phagocytosis of many diverse fungi',

recognizes diverse fungal species including Candida spp., Pneumocystis spp.,

Saccharomyces spp., Coccidioides spp., Aspergillus spp1 . This C type lectin, a
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transmembrane protein, is the major receptor on macrophages for f 1, 3-glucan, a

polymer of glucose present in the fungal cell wall that stimulates phagocytosis and

production of inflammatory cytokines 1,3. Dectin-l is N-glycosylated, a posttranslation

modification that contributes to its surface expression and function 4 . The protein contains

a single extracellular carbohydrate-recognition domain (CRD) and an immunoreceptor

tyrosine activation (ITAM)-like motif in its cytoplasmic tail that is involved in cellular

.5activation

Dectin- 1 is expressed primarily in cells of the innate immune system---monocytes,

macrophages, dendritic cells (DC) and neutrophils. The cellular responses observed

upon activation of dectin- 1 include phagocytosis and an oxidative burst as well as the

production of eicosanoids, inflammatory cytokines and chemokines" 6. Although dectin- 1

has been implicated primarily in the control of fungal infections2 , other key

immunological functions may rely on it as well. Dectin-1 on dendritic cells (DC) appears

to engage T lymphocytes through recognition of an unidentified endogenous ligand that

binds at a site distinct from the P-glucan binding site 7-8. Dectin-1 also participates in

immunity against mycobacteria and may play a role in mycobacterial phagocytosis9 -1 .

Dectin- 1 may further contribute to the development of autoimmune diseases as a result of

12
its ability to internalize and present endogenous antigens

Although the specificity of dectin-1 for the fungal polysaccharide p-glucan has been

firmly established by in vitro experiments1 , 13-16, most aspects of dectin-1 signaling in

vivo remain obscure. Dectin-1- mediated responses may require the collaboration with
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Toll-like receptors (TLR)17- 9, tetraspanins20-22 and the DC-SIGN receptor6 . The

association of dectin- 1 with potential partners as well as the mechanism by which the

initial recognition of glucan is signaled has been hindered by technical difficulties

common to membrane proteins that must traffic to the surface of the cell to perform their

function. The usual method to label and visualize dectin- 1 on the surface of live cells

involves the use of fluorophore-conjugated antibodies that bind to epitopes present on

6,21,23-24dectin- 1 or tags added to the protein, 2,-2. Such fusions of membrane proteins with

GFP or epitope tags can render the protein inactive, unable to transit through the

secretory pathway to the surface, or require the use of antibodies that may affect cellular

activation or antigen trafficking behavior upon binding to the molecule in question.

Sortagging is a new procedure that finesses these obstacles and allows the assessment of

membrane protein partners and their localization. Bacterial sortases can install a variety

of small probes on proteins in solution and on the surface of living cells. Staphylococcus

aureus sortase A recognizes a set of diverse substrates via an LPTXG motif, cleaving the

peptide between threonine and glycine and allows efficient and selective labeling with

affinity probes or fluorophores2 5 . The installation of this small tag provides the

opportunity to specifically label a membrane protein such as dectin- 1 on the surface of

living cells without affecting its cellular location, activity, or interaction with other

proteins.

We show here that the application of sortase-mediated transpeptidation indeed allows the

installation of a variety of probes on suitably tagged dectin- 1 without affecting its
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location, or activity. This site-specific labeling allowed us to monitor the behavior of

functional dectin- 1 on the surface of living cells in the presence and absence of a fungal

challenge. Using macrophages that express labeled dectin- 1 on their cell surface we

uncovered an association with galectin-3. Galectin-3 is a PRR that has been reported to

recognize carbohydrates uniquely present in the cell wall of Candida albicans, triggering

a pathogen specific response. The dectin-1/galectin-3 association modulates the

induction of TNF-a; however, a reduction in galectin-3 lowers TNF-ax induction when

cells are challenged with C. albicans but not S. cerevisiae. These data suggest that the

dectin-1/galectin3 interaction can provide novel insights into the mechanism by which

the innate immune system discriminates non-pathogenic from pathogenic fungi. These

findings serve as a further illustration of the concept that pattern recognition receptors

may modulate their functional properties through association with accessory molecules.

Results

Tagged dectin-J expressed on mammalian cells is functional and can be labeled

through sortagging

We first determined whether murine dectin-1 equipped with a LPXTG motif near its C-

terminus was properly transported to the cell membrane and retained its function. We

engineered the sequence encoding the LPETG motif followed by an HA epitope tag at the

C- terminus, the extracellular domain of dectin-1. This construct, dectin-1-LPETG-

3xHA, was cloned into a retrovirus expression vector and used to obtain stable dectin-1

transductants in HEK 293T and RAW 264.7 cells. Both cell lines expressed readily

detectable levels of HA-tagged dectin-1 on the cell surface. After sorting by FACS, we
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obtained a population where >90% of cells expressed tagged dectin-1 (Figure A.1a).

The function of dectin-1 was assessed in stably transduced HEK 293T and RAW 264.7

cells by incubating them with particles of zymosan. Both HEK 293T and RAW 264.7

transfectants but not the empty vector controls showed zymosan-binding, as shown by

fluorescence microscopy (Figure A.1b) and cytofluorometry (Figure A.1c). Although

the tags installed on dectin-1 were located at its carbohydrate recognition domain (CRD),

the binding of zymosan suggests that the presence of the tag does not interfere with

dectin- l's function.

To determine whether sortase A could act on tagged dectin- 1 in intact cells, we incubated

stably transduced HEK 293T and RAW 264.7 cells in serum-containing medium and

exposed them to sortase A together with a biotinylated probe. The intact cells were then

lysed, the lysates separated by SDS-PAGE and biotinylated products revealed on blots

with streptavidin-horse radish peroxidase (HRP). Indeed, dectin-1 was labeled

selectively, because there were no other biotinylated polypeptides that originated either

from cell surface or cytosolic proteins. When these lysates were subjected to

immunoblotting to detect HA-tagged materials not cleaved by sortase, HA-tagged dectin-

1 was present in all samples, both before and after incubation with sortase A and the

biotinylated probe (Figure A.1d). Even if all dectin-1 were surface exposed, the sortase

reaction may not proceed quantitatively, accounting for the presence of HA-positive

dectin-1. In addition, any cell-internal dectin-1 would be inaccessible to sortase and so

retain its HA tag. Cells that were first lysed, sortagged and only then subjected to
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streptavidin-HRP immunoblotting also showed the presence of labeled dectin-1. (Figure

A.ld). We conclude that a fraction of dectin-1 is accessible at the cell surface and

amenable to sortase-mediated installation of a biotinylated probe, and that this labeling is

highly selective: no biotinylated materials are detected on empty vector controls, and the

only biotinylated species detectable in stably transduced cells has the molecular

characteristics of dectin- 1.

Sortase-mediated labeling of dectin-1 occurs on the cell surface

Tagged dectin-1 analyzed by immunoblotting presents itself as a doublet (Figure A.ld).

Murine dectin-1 is glycosylated 4 and phosphorylated, modifications that could yield

multiple electrophoretically distinct species. We sortagged dectin- 1 in lysates from stably

tranduced HEK 293T cells with a biotinylated probe and subjected the samples to

digestion with the glycosidases PNGase F or EndoH as well as with Calf Intestinal

Alkaline Phosphatase (CIP). PNGase F hydrolyzes all types of N-glycan chains,

whereas EndoH is specific for high mannose-type N-linked glycans. The presence of high

mannose-type N-linked glycans is usually diagnostic of localization to the ER and/or cis

Golgi. After PNGase F treatment, a single biotinylated polypeptide remained; samples

treated with either EndoH or CIP still presented as two distinct polypeptides (Figure

A.2), which must therefore be the result of differential carbohydrate modifications. The

exclusive presence of EndoH resistant, biotinylated dectin- 1 when intact cells were

labeled, indicates that sortase A installed the biotinylated probe only on dectin-1 located

on the cell surface.
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Sortase-labeled dectin-1 is functional

To investigate whether sortagged dectin- 1 is functional on live cells, we installed an

Alexa Fluor647 probe on dectin- 1 and determined whether the tagged protein retained its

ability to bind zymosan. The specificity of sortagging was evaluated by labeling a

mixture of stably transduced dectin-1 HEK 293T cells and control HEK 293T cells

transfected with a plasmid encoding GFP. Treatment of the cells with sortase A installed

the fluorophore only on the surface of cells that did not express GFP; none of the GFP+

cells was labeled. Furthermore, only those cells that displayed the Alexa647 fluorophore

bound zymosan. We conclude that surface-disposed sortagged dectin- 1 retains its

function (Figure A.3).

Internalization of dectin-1 upon zymosan presentation

Since sortase A installs a label specifically on surface-disposed dectin- 1 but not on cell-

internal dectin- 1, we could follow the location of sortagged dectin- 1 after exposure of

stably transduced cells to zymosan. We first installed an Alexa Fluor488 probe on

surface-disposed dectin-1 in HEK 293T cells and then exposed the cells to zymosan for

30 minutes. After the 30 minute incubation with zymosan, an Alexa Fluor647 probe was

installed on the surface to mark any newly surface exposed dectin- 1 that appeared after

the first round of sortagging. Cells were then fixed and examined by fluorescence

microscopy. The fluorophore installed first showed the presence of dectin- 1, either

bound to zymosan particles on the surface or internalized. However, dectin- 1 sortagged in

a second round of labeling with the Alexa Fluor647 was found only on the cell surface

(Figure A.4a).
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These data establish that, upon contact with zymosan, dectin-1 is internalized. As

expected, regardless of zymosan-induced internalization, dectin-1 continues to emerge at

the cell surface via the biosynthetic pathway. To follow dectin-1 internalization in time,

a biotinylated probe was installed on dectin-1 in intact HEK 293T cells. The tagged cells

were then incubated with cycloheximide to arrest protein synthesis, and the culture was

divided in two samples. One sample received zymosan, the other served as a control and

both were sampled at different time points. Two different fractions of dectin- 1 were

assayed: dectin- 1 located on the cell surface as inferred from the presence of the biotin

label, and dectin-1 inside the cell visualized by means of the HA tag. In the presence of

zymosan, the rate of internalization and degradation of biotinylated dectin- 1 on the cell

surface increases dramatically after lh of incubation (Figure A.4b). The half-life of

biotinylated dectin- 1 on the cell surface, estimated to be between 8h and 12h in the

absence of zymosan, decreases to no more than 2h in the presence of zymosan. The rate

of degradation of intracellular HA-tagged dectin-1 was higher than that of biotinylated

dectin- 1, always showing a rapid decrease after 1 h of incubation, regardless of the

presence of zymosan (Figure A.4b). This observation suggests that a significant fraction

of newly synthesized dectin-1 fails to mature and is degraded instead.

Sortagging identifies an interaction between dectin-1 and galectin-3

We next explored the possibility of uncovering novel associations between dectin-1 and

other potential interactors by using the sortagging technique to install an affinity handle.

RAW 264.7 transfectants were incubated with sortase A and a biotinylated probe to label
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the fraction of tagged dectin- 1 located on the cell surface. The cells were lysed and the

lysates were then incubated with streptavidin-coated beads. Bound proteins were

removed from beads and separated by SDS gel electrophoresis (Figure A.5). These

proteins were extracted from the gel and subjected to analysis by mass spectrometry. We

focused our attention on a protein of about 28 kDa identified as galectin-3 by mass

spectrometry. The protein was detected on those samples from transfectants expressing

tagged dectin-1. No trace of this protein was observed in any lane corresponding to

control cells expressing similarly tagged CD74, an unrelated type II membrane protein.

Co-immunoprecipitation confirms the interaction between dectin-1 and galectin-3

We further analyzed the interaction between dectin-1 and galectin-3 in RAW 264.7

macrophages by co-immunoprecipitation. Cell lysates from stably transduced RAW

264.7 cells were incubated with a polyclonal antibody against galectin-3 and analyzed

after immunoprecipitation. Western blot analysis using anti-HA antibodies revealed HA-

tagged dectin- 1, confirming the interaction between galectin-3 and dectin- 1 (Figure

A.6a). We also assayed the effect of zymosan presentation upon this association. Intact

stably transduced RAW 264.7 cells were incubated with zymosan particles for 30 min,

lysed and then treated with the anti-galectin-3 antibody. As expected, the HA-

immunoblotting analysis of the immunoprecipitates showed higher amounts of dectin- 1

compared to samples without zymosan presentation. We detected similar results when we

lysed stably transduced RAW 264.7 cells and subsequently incubated the lysates with

zymosan particles for 30 min, confirming that this response also occurs in the extract.

The immunoprecipitates from control cells expressing only HA-tagged CD74 did not
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show any HA-tagged protein when analyzed by immunoblotting with anti-HA antibodies

(Figure A.6a), confirming the specificity of the dectin-1-galectin-3 association.

This specificity of the interaction between dectin-1 and galectin-3 was also confirmed in

HEK293T cells stably expressing dectin-1, that had been transfected with a plasmid

encoding 3xFLAG-tagged galectin-3. We labeled surface-exposed dectin-1 in intact cells

with a biotinylated probe to differentiate the surface disposed dectin-1 from the

intracellular HA-tagged fraction. Cells were lysed and a fraction of the lysate was then

incubated with streptavidin beads to retrieve biotinylated dectin-1. Bound proteins were

removed from beads, separated by SDS gel electrophoresis and analyzed by

immunoblotting. When we incubated the blot with an anti- FLAG antibody, we could

detect a polypeptide with the expected size for FLAG-tagged galectin-3. We also

incubated a part of the cell lysates with an anti-FLAG antibody and analyzed the

immunoprecipitates by streptavidin or HA-immunoblotting. Tagged dectin-1 was

detected in all cases, confirming the interaction of galectin-3 with the fraction of dectin- 1

located on the surface as well as the fraction inside the cell. Neither biotinylated nor HA-

tagged CD74 from control cells interacted with galectin-3 (Figure A.6b).

Galectin-3 modulates the induction of TNF-a in association with dectin-1

To study the biological consequences of the dectin- 1 -galectin-3 interaction, we

performed siRNA-based knockdowns that could lead to changes on the response of RAW

264.7 macrophages after fungal presentation. We analyzed how the reduced expression of

galectin-3 could affect the proinflammatory response of macrophages after fungal
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presentation. The comparison of S. cerevisiae with C. albicans requires that both be in

the yeast form. However C. albicans produces filaments under the conditions of this

assay. For this reason we inactivated the fungi with UV (both C. albicans and S.

cerevisiae) because UV-irradiated Candida cells do not present as filaments and remain

in the yeast form. We first incubated galectin-3-competent RAW 264.7 cells with UV-

treated S. cerevisiae or C. albicans at a ratio of 1:5 and measured TNF- a mRNA

expression after 4h. There was no significant increase in the level of induction of TNF-a

expression, compared to cells without fungal presentation. These cells have very low

expression levels of dectin- 1 (Figue A.7a), so we next studied the response in cells that

stably express dectin-1. In these cells we observed a significant increase in TNF-a

mRNA levels after fungal presentation (p<0.05). This observation confirms the key role

of dectin- 1 in the induction of TNF-a when confronted with either S. cerevisiae or C.

albicans. We then studied the response in RAW 264.7 cells where the level of galectin-3

was reduced by an RNA hairpin directed against galectin-3 mRNA. This hairpin

successfully reduced galectin-3 mRNA (Figure A.7a). Cells with and without the hairpin

had similar levels of TNF-a when they were incubated with S. cerevisiae. However,

when cells were incubated with C. albicans there is a nearly fourfold decrease (p<0.05)

compared to galectin-3-competent cells (Figure A.7b). These data show that galectin-3

in concert with dectin- 1 differentially modulates the response to these two fungi.

Significantly, the intensity of the response is much greater for the pathogen than the non-

pathogen.
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Discussion

In this report we show that dectin-l suitably modified for sortagging is active in live

macrophages; it transits through the secretory pathway and is inserted into the plasma

membrane, where it recognizes its normal ligand, p-glucan and initiates the signal for an

inflammatory response when challenged with fungi. Cells expressing tagged dectin-1

were able to recognize and bind zymosan, a particulate extract from S. cerevisiae cell

walls that consist of protein-carbohydrate complexes with high amounts of p-glucan. This

binding was observed in stably transduced HEK 293T cells, a cell line that does not show

phagocytic activity unless dectin-1 is expressed 26. This ability of tagged dectin-1 to

confer binding and internalization of zymosan in otherwise non-phagocytic cells is

similar to that reported NIH-3T3 fibroblasts transfected with dectin- I4 ,23 ,27, and

suggests that the tagged protein retains this function as well.

Sortagging revealed that a fraction of dectin- 1 exposed at the cell surface is accessible to

sortase-mediated labeling in a very specific fashion. This finding agrees with previous

studies where the efficiency and specificity of the method were tested in complex protein

mixtures, including mixtures of soluble proteins, and on live cells2. Immunoblotting of

surface-exposed dectin-1 identified two distinct polypeptides, the consequence of

differential glycosylation. Dectin- 1 requires N-linked glycosylation, since its suppression

affects cell surface expression of dectin-1 and is essential for the recognition of fungal p-

glucan4 .

Site-specific installation of fluorophores on dectin- 1 by means of sortagging permitted
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visualization of the receptor on live cells without compromising its ability to recognize p-

glucan. This fluorophore-labeled dectin- 1 binds zymosan on the cell surface and is

subsequently localized intracellularly. This internalization could be monitored in time by

installing a biotinylated probe on surface-exposed dectin-1. Upon recognition of p-

glucan, the levels of biotinylated dectin- 1 from the cell surface decrease dramatically

after 1 h of incubation. By contrast in the absence of zymosan, dectin- 1 was more stable

on the cell surface. The fraction of dectin- 1 inside the cell does not behave differently

with or without zymosan and appeared to be degraded at comparable rates. The

degradation rate of intracellular dectin- 1 was always higher than the surface-disposed

fraction. This observation suggests that a fraction of newly synthesized, cell-internal

dectin- 1 fails to mature and is degraded. This retention may be similar to that reported

for other glycoproteins such as the KIR3DL1 NK cell receptor, where only a minor

fraction escapes the ER2 8, while the surface-exposed fraction is fully functional. The

internalization of dectin- 1 upon its interaction with ligand may attenuate pathways

involved in induction of the innate immune response . Once dectin-1 is internalized, the

route of intracellular processing may well depend on the nature of the ligand. For

example, dectin-1 is directed to lysosomes during uptake of zymosan, but recycled to the

membrane during uptake of the soluble ligand laminarin.

Installation of a biotinylated probe on surface-exposed dectin- 1 and subsequent pull-

down with streptavidin beads revealed a previously undiscovered association between

dectin-1 and galectin-3 in RAW 264.7 macrophages. Mass spectrometry of proteins

recovered by affinity adsorption and separated by electrophoresis identified galectin-3 as
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a potential interacting protein. The association between dectin- 1 and galectin-3 was

confirmed by co-immunoprecipitation in RAW 264.7 cells and also in HEK 293T

transfectants expressing both proteins. This association occurred on the cell surface as

well as inside the cell.

The association between dectin- 1 and galectin-3 connects two of the key signature

molecules on the surface of fungi, p-glucan and oligomannans. Dectin-1 recognizes f-

glucan, a carbohydrate that accounts for a major fraction of the cell wall of most fungi

and it is covalently linked to an outer layer of mannoproteins' 15-16. Galectin-3 has been

described as a PRR that recognizes specific Pj-1, 2 oligomannans from the cell wall of

certain fungi30-31. Previous work confirmed that galectin-3 was able to bind to four

Candida species expressing different combinations of P-1, 2-oligomannans, but did not

bind S. cerevisiae, which lacks this specific oligosaccharide in its cell wall. Moreover

galectin-3 binding to C. albicans was directly fungicidal in a complement-independent

fashion 31. There are specialized PRRs such as TLRs, DC-SIGN or the mannose receptor

(MR) that also recognize mannose exposed at the cell wall 32; however, only galectin-3

has been reported to discriminate between pathogenic and non-pathogenic fungi that lack

specific P -linked mannosides33

Consistent with the role of association between these molecules in fungal recognition, we

found that galectin-3 modulates the inflammatory response of macrophages in

cooperation with dectin-1. In accordance with previous reports 17, the increase in the

levels of dectin-1 expression in RAW 264.7 macrophages presented with fungi leads to
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an increase of TNF-c expression. However, reduction of galectin-3 expression in these

cells results in a differential change in the inflammatory response depending upon which

fungal cell is presented to the macrophages. Cells with reduced galectin-3 still induce

TNF-c upon a challenge with S. cerevisiae but they fail to generate the same TNF-c

induction after incubation with C. albicans. This result suggests that the dectin-

1/galectin3 association plays an important role in the recognition of C. albicans that is

distinct from that of S. cerevisiae.

Our finding of differential recognition of S. cerevisiae and C. albicans is supported by

previous work on galectin-3 knock-out mice. Galectin-3 associates with TLR2 at the cell

membrane. Jouault et.al.33 reported co-precipitation of galectin-3 and TLR2 in THP- 1

cells treated with PMA. TLR2 recognizes phospholipomannan and activates

inflammatory genes that trigger cytokine production3-3. The association with galectin-3

appears to modulate this TLR2-driven inflammatory response. Macrophages from

galectin-3 knock-out mice resulted in lower levels of TNF-a in response to C. albicans

as compared with cells from wild type mice whereas there was no significant difference

in TNF-a induction between wild type and mutant when cells were incubated with S.

cerevisiae 33. Galectin-3 seems to display a similar role in association with TLR2, so, it is

likely that the association of galectin-3 with different cell surface receptors is a

mechanism that would allow the cell to adjust the appropriate inflammatory response

toward a specific fungal challenge, primarily after sensing C. albicans. These findings

taken together with our results suggest that the association between galectin-3 and dectin-

1 is key to modulating the proinflammatory response that distinguishes between
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pathogenic and non-pathogenic fungi.

Methods

Reagents

Zymosan and protease inhibitor cocktail were from Sigma-Aldrich. The anti-HA

(hemaglutinin) antibody conjugated with R-Phycoerythrin (R-PE) and the IgG isotype

control antibody were from Columbia Biosciences. The anti-HA antibody conjugated

with peroxidase was from Roche Applied Science. The streptavidin conjugated with

horse radish peroxidase (HRP) was from GE Healthcare. The polyclonal antibody against

galectin-3 was from Santa Cruz Biotechnology. Anti-FLAG antibody conjugated with

HRP and anti-FLAG-coated magnetic beads were from Sigma-Aldrich. The monoclonal

antibody to detect p-actin was from Abcam. Immunoprecipitation Kit-Dynabeads Protein

G and Dynabeads Streptavidin C1 were purchased from Invitrogen. EndoH, PNGase F

and Calf Intestinal Alkaline Phosphatase were from New England BioLabs.

Cyclohexamide was from EMD Biosciences. Alexa Fluor 488/555/647 carboxylic acid,

succinimidyl esters were from Invitrogen Molecular Probes. Transient transfections were

done with FuGENE 6 Transfection Reagent from Roche Applied Science. For all

experiments quantitation of protein content was performed using BCA protein assay kit

from Thermo Fisher Scientific.

Synthesis of GGGK-A647, GGGK-A488 and biotinylated probes

The GGGK peptide was manually synthesized by standard Fmoc-based solid phase

peptide synthesis protocols on Rink Amide Resin (Novabiochem). The Fmoc-protected
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peptide was cleaved from the resin by treatment with 2.5 ml of 95:3:2 TFA-TIPS/H 20

(5X, 15 min each), which also removed the 4-methyltrityl (Mtt) protecting group on the

lysine residue. The combined cleavage solutions were concentrated, dissolved in

methanol, and precipitated with cold diethyl ether.

Coupling of the Fmoc-protected peptide to the amine reactive Alexa Fluor dyes was

accomplished in solution. One equivalent of Fmoc-GGGK peptide was mixed with 0.5

equivalents of either Alexa Fluor 647 carboxylic acid, succinimidyl ester or Alexa Fluor

488 carboxylic acid, succinimidyl ester, and 4 equivalents of DIPEA (Sigma-Aldrich) in

anhydrous DMSO and incubated at room temperature for 6 h. Under these conditions,

Fmoc deprotection also occurred.

The Alexa488 peptide was purified by reversed-phase HPLC on a Waters Delta Pak 15

mm, 100 A C18 column (7.8 x 300 mm, MeCN:H20 gradient mobile phase containing

0.1% TFA, 3 ml/min) and the Alexa647 peptide was purified on a Waters 5PE column (8

x 250 mm, MeCN:H20 gradient mobile phase with 0.1% TFA, 3ml/min). Two peaks

were collected for the Alexa488 peptide, presumably representing different isomers.

Fractions were lyophilized and dissolved in water.

Peptide identity was confirmed for the Alexa488 peptide by MALDI-TOF MS (matrix

sinapinic acid), [M+] = 831.16, obs = 832.862; both HPLC peaks contained this mass.

We were unable to observe the Alexa647 peptide by MALDI-TOF, so we inferred the

molecular weight and activity as a nucleophile by setting up a test transpeptidation
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reaction with sortase A, and an LPETG tagged GFP substrate as described (Antos et al.,

2008), and observing the mass change in the transpeptidation product by ESI-MS on a

Micromass LCT mass spectrometer (Micromass@ MS Technologies) and a Paradigm

MG4 HPLC system equipped with a HTC PAL autosampler (Michrom BioResources)

and a Waters Symmetry 5 mm C8 column (2.1x 50 mm, MeCN:H20 (0.1% formic acid)

gradient mobile phase, 150 ml/min). The predicted molecular weight for the Alexa647

peptide is 1155.06, obs=I155.0.

The biotinylated probe was synthesized as previously described (Popp et al., 2007),

except the peptide scaffold consisted of GGGK.

Stable Cell lines and siRNA

The coding region for murine dectin-1 was cloned into the retroviral vector pLHCX

(Clontech Laboratories) and tagged at the C-terminus with additional coding region for

the following residues: GGGGSGGGGSLPETG. This tag includes a flexible linker and

the recognition site for sortase A. A 3xHA epitope tag was also added C-terminal to the

sortase recognition site. Retrovirus was prepared by transfecting HEK 293T cells with

plasmids encoding VSV-G and Gag-Pol as well as the dectin-1 pLHCX construct.

Medium was collected 24 and 48 hours post-infection, filtered through a 0.45 im

membrane, and added to RAW264.7 and HEK 293T cells (American Type Culture

Collection, ATCC TIB-71 and ATCC CRL-1573) with 8 tg/ml polybrene. Cells were

spun at 1 000xg for 90 min. Media was changed and cells were allowed to recover for 24

h before re-infection and selection to obtain Hygromycin-resistant populations. Cells
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were sorted on a FACS ARIA cell sorter (BD Biosciences) to typically >90% purity on

post-sort analysis. A subset of RAW 264.7 and HEK 293T cells were transduced with

empty retroviral plasmid. The Hygromycin-resistant population obtained was used as a

control for further experiments. Cells were cultured under Hygromycin B selection (250

pig/ml in RAW 264.7 cells and 125 ptg/ml in HEK 293T cells) in complete DMEM/10%

FBS supplemented with penicillin 100 units/ml, and streptomycin 100 mg/ml.

To elaborate galectin-3 knockdowns, the retroviral vector pKLO. 1 was used for that

purpose. We used three different short hairpin RNAs (shRNA) with the sequences: 5'-

AGAGTCATTGTGTGTAACACG-3'; 5'-AACCATCGGATGAAGAACCTC-3' and 5'-

AGCTGCCTGTCTTTATATGCC-3'. RAW 264.7 cells with stable dectin-1 expression

were infected with the shRNAs as previously described and puromycin-resistant clones

were selected. RAW 264.7 cells and dectin- 1 -stably-tranfected RAW 264.7 cells were

transduced with shRNA directed against GFP mRNA

(5'GCCACAACATCGAGGACGGCA-3') and used as a control for further experiments.

Cells were cultured under puromycin selection (8 ptg/ml).

Cell Sortagging

Cells were cultured in complete DMEM/10% FBS and incubated in a 6-well plate in a

5% CO 2 humidified incubator at 370C. The cells were harvested by scraping in ice-cold

PBS. After centrifugation, the cell pellet was resuspended in complete DMEM media.

Tagged dectin-1 was labeled by incubating the cells with sortase A (200 pM) and the

probe to be installed: Biotinylated probe (500 iM), Alexa488 probe (10 rM) or
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Alexa647 probe (10 pM). The cells were incubated at 370C for 30 min. As a control, a

subset of cells was incubated with each probe but without sortase enzyme.

For the cell lysate sortagging, cells were lysed with the addition of PBS (Phosphate

Buffered Saline) supplemented with 1% Nonidet P-40 (NP-40) and protease inhibitor

cocktail to the pellet. The lysate (10 rig) was incubated with sortase A (200 pM) and the

biotinylated probe (500 pM) in sortase buffer (50mM Tris pH 7.5, 150mM NaCl, 10mM

CaCl2) at 37"C for 30 min. The whole reaction was analyzed by western blot. A fraction

of the lysate was incubated with no enzyme and used as a control.

Glycosidase and phosphatase treatment

Cultured cells were sortagged with a biotinylated probe and centrifuged. The cells pellet

was lysed with PBS supplemented with 1% NP-40 and protease inhibitor cocktail. The

removal of carbohydrate residues was performed incubating samples from cell lysates (10

ptg) with 1,500 units of Endoglycosidase H (EndoH) or N-Glycosidase F (PNGase F) as

described by the manufacturer. The cell lysates were incubated in glycoprotein

denaturing buffer at 1 00C for 10 min. Then, 1 Ox G5 Reaction Buffer was added for the

EndoH digestion, and 1 Ox G7 Reaction Buffer and 10% NP-40 were added for the

PNGase F treatment. The alkaline phosphatase digestion was carried out as previously

described (Qi et al, 2006). Thirty units of Calf Intestinal Alkaline Phosphatase (CIP) were

used to digest 10 ig from cell lysates at 370C for lh. HEK 293T cells transfected with

CD74 were used as a positive control. The CD74 protein contained two mutated leucines

(L7A, L17A) that prevent recycling of the invariant chain and allows stable, detectable
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levels of the protein on the cell surface.

Protein degradation assay

Protein degradation assay was performed as described previously (Fu et al., 2007). HEK

283T cells were cultured on 12-well plates and sortagged with a biotinylated probe.

Cyclohexamide (50pg/ml) was added to medium right after sortagging, and the cells were

harvested at different time points (0, 15min, 30min, 1h, 2h, 4h, 8h, and 12h). A fraction

of the cell lysate was digested with EndoH for 2h. All cell lysates in SDS sample buffer

(raw lysate and EndoH-treated fraction) were boiled and then analyzed by western

blotting using streptavidin, or anti-HA antibody or anti-3-actin antibody. All samples

were incubated under two different conditions, with and without zymosan. Ten particles

of zymosan/cell were added to the culture and incubated for 30 min at 370C. The

quantification of the levels of protein from the immunoblots was performed with ImageJ

software (NIH).

Streptavidin beads affinity precipitation and co-immunoprecipitation

RAW 264.7 macrophages expressing either tagged dectin-1 or tagged CD74 (with two

mutated leucines-L7A, Li 7A) were sortagged with a biotinylated probe. Transfectants

were then divided in two fractions: one sample received zymosan, (10 particles/cell) for

30 min at 370C, the other one did not. Cells were lysed with 0.5% NP-40 and a protease

inhibitor mix, and precleared with magnetic beads (without streptavidin) for 1h at 4*C

and then incubated with magnetic streptavidin Dynabeads overnight at 4*C. Beads were

washed three times in PBS with 0.5% NP-40, and bound protein was eluted with SDS-
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PAGE sample buffer. The samples were then separated by SDS-PAGE. The gels were

immunoblotted with streptavidin or the appropriate antibody or stained with silver stain,

and bands cut for analysis by mass spectrometry.

For the co-immunoprecipitation assay RAW 264.7 or HEK 293T transfectants were lysed

and the lysates precleared with IgG and Dynabeads/protein G for 1 h at 4*C. Anti-

Galectin-3 antibody (5tg) was immobilized on 50mL Dynabeads/protein G and

incubated with 500tg of cell extract supernatant overnight at 4*C. The

immunoprecipitates were washed three times in PBS with 0.5% NP-40 and eluted in 30pjl

of gel sample buffer containing SDS. For anti-FLAG immunoprecipitation, HEK 293T

cells stably expressing tagged dectin- 1 were cultured overnight on a 6-well plate and

transfected with a vector encoding 3xFLAG-tagged galectin-3. Cell lysates were

precleared with Dynabeads (without streptavidin or antibody attached) and incubated

overnight at 4*C with anti-FLAG-coated magnetic beads. For immunoblotting, the

appropriate antibodies or streptavidin were used.

Ligand binding assays

HEK 293T cells were plated onto a poly-lysine coated chambered coverglass at a density

of 3 x 105 cells/well (0.7 cm2), and allowed to attach overnight. Zymosan was labeled

with Alexa Fluor488, Alexa Fluor555 or Alexa Fluor647 carboxylic acid, succinimidyl

ester following manufacturer instructions. Cells were incubated with labeled zymosan (10

particles/cell) 30 min at 37'C and then washed thoroughly with PBS to remove unbound
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particles. For binding assays on sortagged cells, cells were sortagged on the chambered

coverglass in DMEM/1 0% FBS media, and then washed thoroughly with PBS. Labeled

cells were incubated with zymosan in DMEM/10% FBS media 30 min at 370C and then

washed with PBS. If a second fluorophore was installed through sortagging, at that stage

cells were labeled again on the coverglass with a different fluorophore and then washed

with PBS. For the binding assay on a mixed population of HEK 293T cells, cells were

cultured overnight on a 6-well plate and transfected with 2pig of pCAG-GFP vector

(Matsuda and Cepko, 2004). Cells were incubated with the transfection reagent overnight

at 37'C. After the incubation, 3 x 103 GFP-transfected cells and 3 x 103 stably dectin-

transfected cells were transferred to each of the wells of a poly-lysine coated chambered

coverglass. The ligand binding assay was performed as described.

RNA extraction and RT-qPCR

Total RNA was extracted from cells using Rneasy (Qiagen). To measure the relative

mRNA levels of the different genes, quantitative RT-PCR (qPCR) was done using SYBR

Green (Applied Biosystems) and a 7500 real-time PCR system (Applied Biosystems),

following the manufacturing protocol. Each sample was tested in triplicate. GAPDH was

used as the invariant control. The following primer sets were used to detect dectin- 1,

galectin-3 and mTNF-c. Dectin- 1: 5'-ACCACAAGCCCACAGAATCATC-3' (forward),

5'-CATGGTCCAATTAGGAAGGCAA-3' (reverse); galectin-3: 5'-

TATCCTGCTGCTGGCCCTTAT-3' (forward), 5'-CACTGTGCCCATGATTGTGATC-

3' (reverse); mTNF-a: 5'-ATGGCCTCCCTCTCATCAGTTC-3' (forward), 5'-

TTGGTGGTTTGCTACGACGTG-3' (reverse). For determination of TNF-alpha mRNA
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levels, cells were incubated with UV-inactivated S. cerevisiae or C. albicans at a 1:5 ratio

or without fungi for 4 h at 37*C. The UV inactivation of yeast was performed as

previously described (Wheeler et al., 2006). The equivalent of 2.5 x 107 cells resuspended

in 1ml of PBS were exposed to four doses of 100,000 pijoules/cm 2in a CL-100 UV-

crosslinker (UVP, LLC). The experiment was repeated three times in different days.

Western blotting

When live sortagged cells were analyzed, cells were centrifuged and the pellet was lysed

with PBS supplemented with 1% SDS or 0.5-1% NP-40 and protease inhibitor cocktail.

For western blotting, a fixed amount of total protein was mixed with sample buffer

(50mM Tris, pH 7.5, 2% SDS, 10% glycerol, 2.5% 2-mercaptoethanol, 0.02%

Bromophenol Blue), and resolved by Tris-glycine SDS-PAGE. After transferring to

PVDF membrane, proteins were analyzed by immunoblotting. HRP-conjugated

antibodies or streptavidin were used at a 1:10,000 dilution.

Fluorescence Microscopy

Cells were sortagged and/or incubated with Alexa Fluor647-labeled or Alexa Fluor555-

labeled zymosan and fixed with 3% paraformaldehyde. Samples were visualized on

chambered coverglass with an inverted Nikon TE2000-s microscope (Nikon) equipped

with Spot RT Camera (Diagnostic Instruments). The imaging camera was set to capture

8-bit images that were subsequently processed with Photoshop (Adobe Systems).

Samples were examined with a 40x/0.75 M/N2 dry objective lens at room temperature.
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Flow cytometry (FACS)

Cells were fixed with 3% paraformaldehyde. Fluorescence was quantified on a FACS

calibur cytometer (BD Biosciences). Cells were gated by forward and side scatter based

on wild-type cell size and shape, and mean fluorescence intensity of 10,000 labeled cells

was calculated using Cellquest software (BD Biosciences).

Statistical analysis

Data from RT-qPCR were adquired from three independent experiments performed on

multiple days. Statistical significance was determined with two-tailed Student's T-test.

Values of p< 0.05 were considered significant.
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Figure Legends

Figure A.1. Tagged dectin-1 is expressed on the cell surface of mammalian cells, is

functional and can be labeled through sortagging.

(a) HEK 293T and RAW 264.7 cells were transduced with a retroviral expression vector

containing murine tagged dectin- 1 (with LPETG motif and 3xHA tag at the C-terminus).

Cells were then sorted by FACS to obtain homogeneous populations of cells expressing

readily detectable levels of the tagged protein. Tagged dectin- 1 was detected with anti-

HA antibodies conjugated with R-PE (anti-HA). A sample of cells was incubated with

IgG isotype control antibody (isotype).

(b,c) Tagged dectin-l containing the LPETG motif at the C-terminus is still functional.

Stably transduced HEK 293T and RAW 264.7 cells (Dectin +) were incubated on

chambered coverglass with Alexa Fluor647 (red) or Alexa Fluor488 (green)-labeled

particles of zymosan (10 particles/cell) for 30 min. Tagged dectin-1 recognized p-glucan

and bound zymosan particles as shown by fluorescence microscopy (B) and

cytofluorometry (C). Transfectants with an empty retrovirus plasmid (Dectin -) were used

as a control.

(d) Sortase A can recognize tagged dectin- 1 in intact mammalian cells and install a

biotinylated probe. HEK 293T and RAW 264.7 transductants were incubated with sortase

A together with a biotinylated probe. Cell lysates from the sortagged cells were analyzed

by immunoblotting on SDS-PAGE. The only detectable biotinylated species has the

molecular characteristics of dectin-1 (Biotin). HA immunoblotting showed persistence of

HA-tagged dectin- 1 (HA tag) in all samples both before and after incubation with sortase
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A and the biotinylated probe. 1: intact cells were lysed after sortagging; 2: cells were first

lysed and lysates were subsequently sortagged.

Figure A.2. Sortagging of dectin-1 occurs on the surface of intact cells.

Stably transduced HEK 293T cells (293dectin) were sortagged with a biotinylated probe,

lysed and treated with PNGase F, EndoH or CIP. Streptavidin-HRP immunobloting

reveals deglycosylated dectin-1 when treated with PNGase F, showing that the

biotinylated probe was installed specifically on tagged dectin- 1 on the cell surface

(Biotin). Anti-HA blotting shows deglycosylation of dectin- 1 when treated with either

PNGase F or EndoH (HA tag). HEK 293T cells transfected with tagged CD74 were used

as a positive control (293CD74).

Figure A.3. A fluorophore-tagged dectin-1 retains function.

A mixed population of stably transduced HEK 293T cells expressing tagged dectin-1 and

control HEK 293T cells transfected with GFP were incubated with sortase A and the

Alexa Fluor647 (red) probe. Afterwards, the population was incubated with Alexa

Fluor555 (orange)-labeled particles of zymosan (10 particles/cell) for 30 min. Red-

labeled sortagged dectin-1 recognized p-glucan and bound Alexa Fluor55 5-labeled

zymosan particles (arrowheads). Control GFP+ cells without sortase treatment and

incubated with the fluorophore showed no red fluorescence.
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Figure A.4. Dectin-1 can be visualized by sortagging either on the cell surface or

internalized upon zymosan binding and zymosan increases the degradation rate of

dectin-1 located on the cell surface.

(a) HEK 293T cells were incubated with sortase A and the Alexa Fluor488 (green) probe,

then incubated with Alexa Fluor555-labeled (orange) zymosan (10 particles/cell) for 30

min. After zymosan presentation, cells were incubated with sortase A and the Alexa

Fluor647 (red) probe. Fluorophore-labeled dectin-1 appears bound to Alexa Fluor555-

labeled (orange) zymosan particles (arrowheads, Alexa488/555 overlay). Alexa

Fluor647-labeled (red) dectin-1 appears only on the cell surface. Alexa Fluor488-labeled

(green) dectin- 1 both appears on the cell surface or internalized (arrowheads)

(Alexa488/647 overlay).

(b) A biotinylated probe was installed on stably transfected HEK 293T cells through

sortagging. The cells were then incubated in the presence of cyclohexamide (50tg/mL) to

inhibit protein synthesis. Cells were divided in two groups, one with and the other

without zymosan. Samples were collected at different time points and levels of

biotinylated dectin- 1 on the cell surface and HA-tagged dectin- 1 inside the cell were

analyzed by immunoblotting. In the absence of zymosan, the levels of biotinylated

dectin- 1 from the cell surface decrease gradually after 12h of incubation to near 50% of

the initial levels (ZYM-). However, upon addition of zymosan, the levels of biotinylated

dectin- 1 decrease rapidly after 1 h of incubation due to internalization and degradation of

the dectin-1/zymosan complex (ZYM+). The degradation rate of the intracellular HA-

tagged dectin- 1 in cytoplasm, Golgi or ER (HA tag, EndoH) did not change regardless of

the presence of zymosan. Biotin: biotinylated dectin-1; HA: HA-tagged dectin-1; EndoH:
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EndoH-treated HA-tagged dectin- 1; dect-: control cells with no tagged-dectin- 1

expression.

Figure A.5. Sortagging reveals an interaction between dectin-1 and galectin-3.

Dectin-1 from RAW 264.7 stably transduced cells was labeled with a biotinylated probe.

A fraction of these cells was incubated with zymosan particles (10 particles/cell) for 30

min at 37*C. Cell lysates were precleared and incubated with magnetic streptavidin

Dynabeads overnight at 4*C. Beads were washed three times in PBS with 0.5% NP-40,

and bound protein was eluted with SDS-PAGE sample buffer. The samples were then

separated by SDS-PAGE.

(a) The gel was incubated with silver stain, and the bands extracted for analysis by mass

spectrometry (MS). The site where dectin- 1 (d), galectin-3 (g) and the control CD74 (c)

were localized in the gel after MS analysis is indicated.

(b) Western analysis with HRP-conjugated streptavidin reveals biotinylated dectin-1 on

sortagged cells before and after precipitation with streptavidin beads (Biotin). RAW

264.7 cells expressing tagged CD74 were used as a control. dect-: cells with no

expression of tagged dectin-1 or tagged CD74; dt: cells expressing tagged dectin-1; ct:

control cells expressing tagged CD74; zym: zymosan.

Figure A.6. Co-immunoprecipitation of dectin-1 with galectin-3.

(a) RAW 264.7 stably transduced cells were split in three different groups. One group

was lysed with 0.5% NP-40 (1). A second group was incubated with zymosan (10

particles/cell) for 30min at 37'C and then lysed (2). A third group was lysed and then
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incubated with zymosan for 30 min at 37*C (3). Cell extracts (500pjg) were precleared

and incubated with anti-galectin-3 antibody (5 tg) overnight at 4*C. Beads were washed

three times in PBS with 0.5% NP-40, and boiled with SDS-PAGE sample buffer to elute

bound proteins. The samples were then separated by SDS-PAGE and analyzed by

immunoblotting. On the left are immunoblots of just the lysate showing that under our

conditions both dectin- 1 and the control CD74 are detected. On the right is an

immunoblot of precipitates from lysates to which anti-galectin-3 antibody was added.

HA-tagged dectin- 1 is detected after immunoprecipitation with the anti-galectin-3

antibody and the levels increase after zymosan presentation (HA tag). Constant levels of

galectin-3 are observed in all samples regardless whether the cells were incubated with

zymosan or not (galectin-3). Tagged-CD74-expressing cells were used as a control.

(b) HEK 293T cells stably expressing tagged dectin-1 were transfected with a plasmid

encoding 3xFLAG-tagged galectin-3. Transfectants were sortagged to label surface-

exposed dectin-1 with a biotinylated probe and lysed with 0.5% NP-40. The immunoblot

of the cell lysates shows detectable levels of dectin- 1, galectin-3 and the control CD74

(Cell Lysates). A fraction of the cell extracts (500pig) was precleared and incubated with

magnetic streptavidin Dynabeads overnight at 4*C. Samples were washed with 0.5%

NP-40 and eluted with SDS-PAGE sample buffer. The eluted proteins were then

separated by SDS-PAGE. The analysis by immunoblotting shows FLAG-tagged

galectin-3 (Streptavidin pull-down). Another fraction of the cell extracts (500pg) was

incubated with anti-FLAG-coated magnetic beads. Biotinylated and HA-tagged dectin-l

were detected by immunoblotting (anti-FLAG IP). HEK293T cells co-transfected with
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tagged CD74 and tagged galectin-3 were used as a control. dt: cells expressing tagged

dectin-1; ct: control cells expressing tagged CD74.

Figure A.7. Dectin-1 and galectin-3 modulate the TNF-a induction in RAW 264.7

macrophages.

(a) Galectin-3 knockdown in dectin-1-transduced RAW 264.7 cells by siRNA

transduction. Levels of mRNA from RAW 264.7 cells (RAW), dectin-l-transfected

RAW 264.7 cells (RAWdect) and dectin-1-transfected cells with galectin-3 siRNA

(RAWdect(shRNAGal3)) were determined by RT-qPCR. Results were normalized to

GAPDH and expressed as fold induction.

(b) TNF-a induction is affected by changes in the expression of dectin- 1 and galectin-3.

Cells were incubated for 4h with UV-irradiated S. cerevisiae (SC) or C. albicans (CA) at

a ratio 1:5. TNF-a mRNA levels were determined by RT-qPCR and normalized to

GAPDH. Cells with dectin- 1 expression show a significant increase of TNF-ca mRNA

levels after fungal presentation compared to cells without fungal presentation. The

reduction of the levels of galectin-3 on siRNA knockdowns significatively reduced the

TNF-o response in cells incubated with C. albicans. (*p<0.05). Mean values (± SD) from

three independent experiments are shown (error bars).
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Figure A.3
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Figure A.7
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Appendix B: Protocol for Site-specific Protein Labeling via Sortase-mediated
Transpeptidation

(From: M. W. Popp, J. M. Antos, H. L. Ploegh, Curr. Protoc. Protein Sci. 2009, Chapter
15,Unit 15 3)

Introduction

Creation of functional protein bioconjugates demands methods for attaching a diverse

array of probes to target proteins with high specificity, under mild conditions. The

sortase A transpeptidase enzyme from Staphylococcus aureus catalyzes the cleavage of a

short 5 amino acid recognition sequence (LPXTG) with the concomitant formation of an

amide linkage between an oligoglycine peptide and the target protein (Figure B.1a). By

functionalizing the oligoglycine peptide, it is possible to incorporate reporters into target

proteins in site-specific fashion. This reaction is applicable to proteins in solution and on

the living cell surface. The method requires only incubation of the target protein, which

has been engineered to contain a sortase recognition site either at the C terminus or

within solvent accessible loops, with purified sortase enzyme and a suitably

functionalized oligoglycine peptide.

Expression and Purification of Sortase A

Two soluble versions of the sortase A enzyme have been created for use in the

transpeptidation reaction. Since sortase itself is membrane embedded, the

transmembrane domain has been truncated and replaced with a hexahistidine tag to aid in

purification. One version, described by the Schneewind lab 1, contains an N-terminal

deletion of 25 amino acids, replaced with a hexahistidine tag (cloned into pQE30,

Qiagen). A second version contains an N-terminal deletion of 59 amino acids, replaced
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by a hexahistidine tag that is separated from the body of the protein by a thrombin

cleavage site (cloned into pET28a+, Novagen). These two versions have essentially

identical activities 2, but different mobilities in SDS-PAGE gels, a useful attribute if the

substrate protein migrates at a similar molecular weight as sortase. The mobility of the

A59 version can be increased further by thrombin cleavage of the hexahistidine tag and

linking amino acids. The following standard protein expression and purification protocol

routinely yields very large quantities of sortase A (>40 mg/L of culture).

Materials

Luria Bertani (LB) media

Ampicillin (1000x stock = 100 mg/ml) for pQE30 derived construct

Kanamycin (1000x stock = 30 mg/ml) for pET28a(+) derived construct

Isopropyl Pf-d-thiogalactopyranoside (1 M stock)

Phosphate buffered saline (PBS)

DNAseI (10 mg/ml stock)

Lysis Buffer: 50 mM Tris, pH 7.5, 150 mM NaCl, 10 mM imidazole, 10% glycerol

Elution Buffer: 50 mM Tris, pH 7.5, 150 mM NaCl, 500 mM imidazole, 10% glycerol

Ni-NTA agarose slurry (Qiagen)

1. Transform sortase expression plasmid into E. coli BL-21 (DE3) and plate on selective

media.
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2. Pick a single colony and inoculate 100 ml of LB containing the appropriate antibiotic.

Grow overnight as a starter culture.

3. Add 10 ml of the overnight culture into 1 L of LB with antibiotics. Monitor the OD6 0 0

until ~0.7. Induce by adding IPTG to a final concentration of 1 mM and shake at 37 0C

for 3 hours.

4. Harvest the bacterial pellet by centrifugation at 6000 x g for 20 minutes. Decant LB

and resuspend in PBS. Repeat centrifugation to wash bacteria and decant PBS.

Resuspend pellet in 20 ml of ice-cold lysis buffer with 20 pLg/ml DNaseI.

Do not add protease inhibitors to lysis buffer, as these may interfere with sortase activity.

5. Lyse bacteria by passing though a pre-chilled French press cell twice at 1250 psi.

Clarify the lysate by centrifugation at 12000 x g for 30 min.

6. Pack 2-3 ml of Ni-NTA slurry into a column and wash with 10 column volumes of

lysis buffer. Apply the clarified supernatant to the column. Wash column with 50

column volumes of lysis buffer.

7. Elute sortase with 2 column volumes of elution buffer.

Optional: Dialyze twice against 4 L of lysis buffer without imidazole to remove excess

imidazole.
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8. Optional: Concentrate the protein further in a centrifugal concentrator with a low

molecular weight cut-off. The sortase constructs described are soluble and have been

concentrated to >10 mg/ml without signs of aggregation.

Design of Protein Substrates for Sortase-mediated Transpeptdiation

Substrates bearing the sortase recognition site (LPXTG) are readily made by standard

molecular biology cloning protocols. We typically introduce glutamic acid in the X

position of the recognition site as this residue is commonly found in natural substrates of

sortase A 3. High levels of transacylation have been achieved by placing the requisite

sortase cleavage site both at the C terminus of the substrate 4 and in flexible loops 5. For

targets cleaved in flexible loops, the peptide backbone of the resulting product is

interrupted and the probe is attached to the C terminus of the N-terminal cleavage product.

For proteins labeled at the C terminus, we routinely add a short, flexible linker composed

of Gly 4Ser repeats between the body of the protein and the sortase cleavage site, although

this is optional (Figure B.1b). Whether this linker should be included must be

determined empirically, and we usually make several versions of the target protein, both

omitting and varying the length of the linker region. It is important that the glycine in the

minimal LPETG tag is not placed at the very C terminus; it must be in peptide linkage

with at least one further C-terminal amino acid. We and others have also observed better

labeling by adding an extra glycine to the C terminus of the cleavage site to yield

LPETGG 6-7. We routinely add a short epitope C-terminal to the LPETGG motif. This

epitope is lost upon transpeptidation, providing a convenient means of monitoring the
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efficiency of labeling by immunoblot and/or coomassie stained gel. Thus the minimal

construct contains only an LPETGG fused to the C terminus of the substrate. When

labeling proteins on the cell surface, it is necessary that the C terminus of the target be

exposed to the extracellular culture medium; therefore, membrane proteins must be in the

type II orientation, with an intracellular N terminus and an extracellular C terminus.

Design of Peptide Probes Compatible with Transpeptidation

Nucleophiles compatible with sortase-mediated transpeptidation have the single structural

requirement of a stretch of glycine residues with a free amino terminus (Figure B.2a).

Successful transpeptidation can be achieved with nucleophiles containing anywhere from

1-5 glycines, however maximum reaction rates are obtained when two or more glycines

are present 8-9. The versatility of the sortase-mediated labeling method lies in the

remarkable tolerance of the enzyme for substituents C-terminal to the oligoglycine unit.

Synthetic nucleophiles containing 1-5 glycine residues have been decorated with a range

of substituents, including fluorophores 4, photoaffinity probes 4, fatty acids 10, peptide

nucleic acids 6, polymers 1, solid supports 8,11-12, or other polypeptides 7'9'13 allowing the

site-specific ligation of these moieties to peptide and protein substrates. An example of a

fluorescent triglycine nucleophile prepared by our laboratory is depicted in Figure B.2b.

The synthesis of oligoglycine probes is readily accomplished using standard solid phase

synthesis methods. It should be noted that a variety of non-natural amino acid building

blocks containing fluorophores or affinity labels are available from commercial sources

and are easily integrated into manual or automated peptide syntheses. Oligoglycine
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probes usually exhibit excellent stability, and can be stored for several months as

concentrated stock solutions (100 mM - 500 mM in DMSO or water at 4 *C) with no loss

of activity.

Labeling Protocols

Labeling Purified Proteins

This protocol describes the labeling of proteins that have been purified prior to the

transpeptidation reaction. This is useful for target proteins that can be produced in E coli

or in tissue culture supernatants and purified by immobilized metal affinity

chromatography (see Design of Protein Substrates for Sortase-mediated

Transpeptidation section). Progress of the reaction is monitored in accordance with the

oligoglycine probe to be installed; for probes with a biotin moiety, immunoblotting

suffices, while for probes containing a fluorophore, in-gel fluorescence scanning can be

used. Sortase, as well as input material, can be removed in a single step from the crude

reaction mixture to yield the purified transpeptidation product.

Materials

Sortase buffer (lOx): 500 mM Tris, pH 7.5, 1.5 M NaCl, 100 mM CaCl2

Oligoglycine probe: 100 mM - 500 mM stock solution in DMSO or H20

Purified target protein (Protein must not be dissolved in phosphate buffer)

Purified sortase A stock solution
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1. Mix ingredients in a microcentrifuge tube such that the final concentrations are as

follows: 10 ptM - 50 pM purified target protein, 150 pM sortase A, and 1 mM

oligoglycine probe. Incubate the reaction at 37 0C for 1 hour followed by analysis using

SDS-PAGE and immunoblot/coomassie stain.

The reaction conditions described above provide a suitable starting point for optimizing

the labeling protocol. Slightly different reaction rates are observed for each purified

target protein and consequently the reaction parameters may require optimization to

achieve high levels ofprotein labeling. Longer reaction times are usually all that is

necessary to drive the transpeptidation reaction to completion. Additional sortase may

also be added to improve reaction rates. Often, the concentrations of sortase and

oligoglycine probe may be reduced without sacrificing labeling efficiency. Reactions can

also be incubated at room temperature if desired

2. If desired, His 6-tagged sortase and unreacted target protein (bearing a His6 tag C-

terminal to the sortase cleavage site) can be removed by passing crude reaction mixtures

over a Ni-NTA column in the presence of imidazole (10-30 mM) and NaCl (500 mM) to

prevent nonspecific binding of proteins lacking the His6 affinity tag. The column flow-

through will contain the desired transpeptidation product.

Labeling Cell-surface Proteins in Living Cells

In this protocol, type II membrane proteins with their C-terminus exposed to extracellular

space are fused to the requisite sortase recognition motif and expressed in living cells.
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These proteins can be labeled by introduction of sortase and the oligoglycine probe into

the tissue culture media. After washing, labeled cells can be imaged directly.

Materials

Plasmid encoding target protein

Transfection reagent

Culture medium (the presence of 10% serum does not inhibit the reaction)

Oligoglycine probe: 100 mM - 500 mM stock solution in DMSO or H20

Purified sortase A stock solution

PBS++ (Phosphate-buffered saline with 1 mM CaCl 2 and 1 mM MgCl 2 )

1. Transfect target cells with plasmid encoding engineered target protein according to

manufacturer's directions.

For microscopy, cells may be cultured and transfected on plastic dishes and subsequently

detached and replated onto glass coverslips for labeling and analysis. Alternatively,

cells can be cultured and transfected directly on chambered coverslips (Lab-Tek II

Chambered Coverglass, Nunc).

2. Incubate cells with 200 pM sortase A and 100 ptM oligoglycine probe diluted in

normal culture media at 37 0C in a humidified incubator for 10-30 minutes.

As in the case of labeling purified proteins in solution, the above conditions provide an

appropriate starting point for further optimization. Sortase A concentration and reaction

times should be varied to achieve maximum labeling efficiency.
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3. Wash cells extensively with PBS++.

This step removes both sortase and excess probe. Extensive washing is necessary to

remove unbound probe and decrease the background signal. PBS supplemented with

MgCl2 and CaCl2 helps cells maintain adherence to the coverslip during washing.

4. Add either phenol-red free media or PBS to cells and observe by microscopy.

Or

Lyse cells and load on SDS-PAGE for immunoblot or in-gel fluorescence scanning.

Background Information

Site-specific incorporation of reporter molecules into proteins is a significant challenge.

Common chemical labeling techniques targeting cysteine or lysine residues using

maleimides or N-hydroxysuccinimidyl esters, respectively, generally lack the specificity

needed for single-site labeling within a given protein, and cannot be used to label a target

protein in complex mixtures such as cell lysates or living cells. Genetic fusions, while

suited for single-site labeling, are mostly limited to bulky fluorescent protein tags as

reporters, although other modules with enzymatic activity have been used. Thus, we and

others have developed chemoenzymatic labeling techniques that exploit the exquisite
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specificity of enzymes to target chemical reporters to a single site within a protein

bearing multiple chemically reactive side-chains.

Several alternative chemoenzymatic labeling strategies have been described and key

features of each have been reviewed 14-. Chemoenzymatic methods and small molecule

binding peptide sequences that allow site-specific incorporation of labels have been

developed, including transglutaminase-catalyzed reactions 16, acyl carrier-protein-based

labeling 17, 06 -alkylguanine DNA alkyltransferase fusions 18, dihydrofolate reductase

fusions 19, biotin ligase 20, FlAsH 2, and Texas-red binding peptide 2. However, several

of these methods require the installation of a protein-sized module to afford selective

labeling, or necessitate the insertion of recognition sequences that vary in size from 6 to

38 residues, with varying degrees of labeling selectivity. The nature of the labeling

method also dictates the types of reporter molecules that can be installed, some of which

require synthetic capabilities beyond the reach of most laboratories involved in

biochemical or cell-biological studies. Although the sortase-mediated transpeptidation

method as described is only applicable to labeling of proteins at the C terminus and

solvent accessible loops, the major advantage is its simplicity. The method requires little

more than sortase production and purification from E. coli and oligoglycine nucleophile

synthesis. Construction of peptide nucleophiles by solid-phase peptide synthesis is

straightforward.

Sortase A from S. aureus has already found numerous applications in the semi-synthesis

of protein and peptide conjugates 23. These include installation of fluorophores 4,
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photoaffinity cross-linking agents 4, peptide nucleic acids with unique cell-penetrating

6 24
properties 6, and carbohydrates . Cell surface labeling provides a new tool for studying

the trafficking and behavior of a particular protein in live cells by microscopy.

The biochemical details of the transpeptidation reaction catalyzed by sortase have been

studied 2. Sortase makes hydrophobic contacts between residues in its $6/p7 loop and

the LPXTG motif on target proteins 26-27. This positions a key cysteine residue (Cys- 184)

to attack the threonine-glycine amide bond in the LPXTG motif, generating a thioacyl

intermediate and releasing all material C-terminal to the threonine (Fig. 1). The acyl-

enzyme intermediate is then resolved by nucleophilic attack by the N-terminus of an

oligoglycine probe that has been functionalized. The overall reaction mechanism is

conceptually similar to cleavage by a cysteine protease, but instead of water attacking the

acyl-enzyme intermediate to yield a hydrolysis product, sortase accepts the N-terminus of

oligoglycine to yield a transpeptidation product.

Critical Parameters

It is critical that the LPETG cleavage site is accessible to sortase. Where possible, it is

helpful to view the crystal structure of the target protein; examination of the C terminus

or target loop(s) will reveal whether they are likely to be solvent accessible. Where

sortase may not be able to access the cleavage site due to steric interference, it may be

helpful to extend the C terminus with a flexible linker or to enlarge the target loop (see

substrate design section).
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The activity of sortase requires calcium in the reaction buffers. For labeling of purified

proteins, 10 mM calcium chloride is included, and for labeling of cell surface proteins,

the calcium present in normal culture medium suffices for activity.

Troubleshooting

Low labeling efficiency of a target protein can usually be overcome simply by adjusting

the reaction conditions outlined in the standard protocol. Longer incubation times,

combined with varying the enzyme to target protein ratio can be helpful.

Mixing of the sortase reaction buffer with proteins in phosphate buffers should be

avoided, since calcium phosphate will precipitate and inhibit labeling.

When reaction products are analyzed by SDS-PAGE, it is often helpful to remove

unbound probe from the gel to lower background. For fluorescent probes, this is

especially helpful before fluorescent in-gel scanning and is readily accomplished by

washing several times in coomassie destain solution (30% ethanol, 10% acetic acid), and

then incubating in PBS to restore neutral pH. To further limit background staining, it is

helpful to titrate the amount of oligoglycine peptide to determine the minimum probe

concentration that is required to achieve efficient labeling.

For cell surface labeling of proteins, repeated washing is essential to remove excess probe

and achieve adequate signal to noise ratios for microscopy.
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Anticipated Results

After optimization of the basic protocol, it is often possible to achieve complete

conversion of purified proteins to the transpeptidation product, yielding a homogeneously

labeled target protein, as assessed by SDS-PAGE. For cell-surface labeling, signal is

usually detected within 10 minutes of incubation and increases with longer reaction times.

Several cell lines have been tested; target proteins in HEK293T, MDCK, CHO, and HeLa

cells have all been labeled using sortase-mediated transpeptidation 4

Time Considerations

Production and purification of the sortase A enzyme can usually be accomplished in 2

days. Probe synthesis times vary, but generally can be accomplished within a week.

With the reaction components in hand, the labeling reaction is rapid; 10 minutes suffices

for detection of cell surface proteins and a few hours for complete conversion of certain

purified proteins. Labeling conditions vary with the target protein, however, and must be

optimized to the particular application.
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Figure Legends

Figure B.1. Site-specific labeling of target proteins by sortase-mediated

transpeptidation

(a) Sortase-mediated transpeptidation mechanism. Sortase A recognizes substrates with

an LPXTG motif, cleaving the peptide bond between the threonine and glycine (top) and

resulting in a thioacyl intermediate (middle). A modified oligoglycine nucleophile then

attacks the thioacyl intermediate to yield the transpeptidation product with the probe in

amide linkage to the target protein (bottom).

(b) Substrate design. Substrate proteins typically have the sortase cleavage site

(LPETGG) separated from the body of the protein by an optional Gly 4Ser linker of

variable length. Placement of an epitiope tag (His6, HA-tag, BirA acceptor peptide) C-

terminal to the LPETGG motif allows a convenient means of purification and assessing

the reaction progress, as this tag is lost upon transpeptidation.

Figure B.2. Peptide probes compatible with sortase-mediated transpeptidation.

(a) General structure of oligoglycine based nucleophiles used in sortase-mediated

transpeptidation.

(b) Example of a fluorescent probe, consisting of an oligoglycine peptide unit followed

by a lysine to which fluorescein is appended.
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ABSTRACT

Creation of functional protein bioconjugates demands methods for attaching a diverse
array of probes to target proteins with high specificity, under mild conditions. The
sortase A transpeptidase enzyme from Staphylococcus aureus catalyzes the cleavage
of a short 5-aa recognition sequence (LPXTG) with the concomitant formation of an
amide linkage between an oligoglycine peptide and the target protein. By functionalizing
the oligoglycine peptide, it is possible to incorporate reporters into target proteins in a
site-specific fashion. This reaction is applicable to proteins in solution and on the living
cell surface. The method described in this unit only requires incubation of the target
protein, which has been engineered to contain a sortase recognition site either at the C
terminus or within solvent-accessible loops, with a purified sortase enzyme and a suitably
functionalized oligoglycine peptide. Curr Protoc. Protein Sci. 56:15.3.1-15.3.9. C 2009
by John Wiley & Sons, Inc.

Keywords: sortase * transpeptidation * site-specific labeling * chemoenzymatic labeling

INTRODUCTION

Creation of functional protein bioconjugates demands methods for attaching a diverse
array of probes to target proteins with high specificity, under mild conditions. The sortase
A transpeptidase enzyme from Staphylococcus aureus catalyzes the cleavage of a short
5-aa recognition sequence (LPXTG) with the concomitant formation of an amide linkage
between an oligoglycine peptide and the target protein (Fig. 15.3.1A). By functionalizing
the oligoglycine peptide, it is possible to incorporate reporters into target proteins in
a site-specific fashion. This reaction is applicable to proteins in solution and on the
living cell surface. The method only requires incubation of the target protein, which has
been engineered to contain a sortase recognition site either at the C terminus or within
solvent-accessible loops, with a purified sortase enzyme and a suitably functionalized
oligoglycine peptide.

STRATEGIC PLANNING

Design of Protein Substrates for Sortase-Mediated Transpeptidation
Substrates bearing the sortase recognition site (LPXTG) are readily made using standard
molecular biology cloning protocols. It is convenient to introduce glutamic acid in the X
position of the recognition site, as this residue is commonly found in natural substrates of
sortase A (Boekhorst et al., 2005). High levels of transacylation have been achieved by
placing the requisite sortase cleavage site both at the C terminus of the substrate (Popp
et al., 2007) and in flexible loops (Popp et al., 2008). For targets cleaved in flexible loops,
the peptide backbone of the resulting product is interrupted and the probe is attached
to the C terminus of the N-terminal cleavage product For proteins labeled at the C
terminus, the authors routinely add a short, flexible linker composed of Gly4Ser repeats
between the body of the protein and the sortase cleavage site, although this is optional
(Fig. 15.3.1B). Whether this linker should be included must be determined empirically,

Current Protocos in Protein Science 15.3.1-15.3.9, April 2009
Published online Apil 2009 in Wiley Interscience (www.interscience.wiley.com).
DOI: 10.1002/0471140864.ps1503s56
Copyight ( 2009 John Wiley & Sons, Inc.
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Figure 15.21 Site-specific labeling of target proteins by sortase-mediated transpeptidation.
(A) Sortase-mediated transpeptidation mechanism. Sortase A recognizes substrates with an
LPXTG motif, cleaving the peptide bond between the threonine and glycine (top) and resulting
in a thiloacyl intermediate (middle). A modified oligoglycine nucleophile then attacks the thioacyl
Intermediate to yield the transpeptidation product with the probe in amide linkage to the target
protein (bottom). (8) Substrate design. Substrate proteins typically have the sortase cleavage site
(LPETGG) separated from the body of the protein by an optional Gly4Ser linker of variable length.
Placement of an epitlope tag (His, HA-tag, BirA acceptor peptide) C-terminal to the LPETGG
motif allows a convenient mews of purification and assessing the reaction progress, as this tag
is lost upon transpeptidation.

and it is recommended to make several versions of the target protein, both omitting and
varying the length of the linker region. It is important that the glycine in the minimal
LPETG tag is not placed at the very C terminus; it must be in peptide linkage with at least
one further C-terminal amino acid. Better labeling is achieved by adding an extra glycine
to the C tenninus of the cleavage site to yield LPETGG (Pritz et al., 2007; Tanaka et al.,
2008). The authors also routinely add a short epitope C-terminal to the LPETGG motif.
This epitope is lost upon transpeptidation, providing a convenient means of monitoring
the efficiency of labeling by immunoblotting and/or a Coomassie stained gel. Thus, the
minimal construct contains only an LPE'GG fused to the C terminus of the substrate.
When labeling proteins on the cell surface, it is necessary that the Cterminus of the target
be exposed to the extracellular culture medium; therefore, membrane proteins must be in
the type II orientation, with an intracellular N terminus and an extracellular C terminus.

Design of Peptide Probes Compatible with Transpeptidation
Nucleophiles compatible with sortase-mediated transpeptidation have the single struc-
tural requirement of a stretch of glycine residues with a free amino terminus
(Fig. 15.3.2A). Successful transpeptidation can be achieved with nucleophiles containing
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Figure 15.3.2 Peptide probes compatible with sortase-mediated transpeptidation. (A) General
structure of oligoglycine based nucleophiles used in sortase-mediated transpeptidation. (B) Ex-
ample of a fluorescent probe, consisting of an oligoglycine peptide unit followed by a lysine to
which fluorescein is appended.

anywhere from one to five glycines; however, maximum reaction rates are obtained when
two or more glycines are present (Mao et al., 2004; Chan et al., 2007). The versatility
of the sortase-mediated labeling method lies in the remarkable tolerance of the enzyme
for the substituent C-terminal to the oligoglycine unit Synthetic nucleophiles containing
one to five glycine residues have been decorated with a range of substituents, includ-
ing fluorophores (Popp et al., 2007; Tanaka et al., 2008), photoaffinity probes (Popp
et al., 2007), fatty acids (Antos et al., 2008), peptide nucleic acids (Pritz et al., 2007),
polymers (Parthasarathy et al., 2007), solid supports (Chan et al., 2007; Parthasarathy
et al., 2007; Clow et al., 2008), or other polypeptides (Mao et al., 2004; Pritz et al.,
2008; Tanaka et al., 2008) allowing the site-specific ligation of these moieties to peptide
and protein substrates. An example of a fluorescent triglycine nucleophile is depicted in
Figure 15.3.2B.

The synthesis of oligoglycine probes is readily accomplished using standard solid-phase
synthesis methods (see Chapter 18). It should be noted that a variety of non-natural
amino acid building blocks containing fluorophores or affinity labels are available from
commercial sources (Novabiochem, AnaSpec, Advanced Chemtech) and are easily inte-
grated into manual or automated peptide syntheses. Oligoglycine probes usually exhibit
excellent stability and can be stored for several months as concentrated stock solutions
(100 mM to 500 mM in DMSO or water at 4C) with no loss of activity.

SITE-SPECIFIC PROTEIN LABELING VIA SORTASE-MEDIATED
TRANSPEPTIDATION

This protocol describes the labeling of proteins that have been purified prior to the
transpeptidation reaction. This is useful for target proteins that can be produced in E. coli
or in tissue culture supernatants and purified by immobilized metal affinity chromatog-
raphy (see Strategic Planning). Progress of the reaction is monitored in accordance with
the oligoglycine probe to be installed; immunoblotting can be used for probes with a
biotin moiety, while in-gel fluorescence scanning is convenient for probes containing a
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fluorophore. Sortase, as well as input material, can be removed from the crude reaction
mixture in a single step to yield the purified transpeptidation product.

Materials

Purified target protein (protein must not be dissolved in phosphate buffer)
Purified sortase A stock solution (see Support Protocol)
100 mM to 500 mM oligoglycine probe stock solution in DMSO or H20
Ni-NTA column, optional
10 to 30 mM imidazole, optional
500 mM NaCl, optional
lOx sortase buffer: 500 mM Tris-Cl, pH 7.5 (APPENDIX2E), 1.5 M NaCi, 100 mM

CaCl2

1.5-ml microcentrifuge tubes
370C water bath

Additional reagents and equipment for SDS-PAGE (UNT 10.1), immunoblot
(UNITS10.7 & 10.10), and Coomassie stain (UNrr10.5)

1. Mix the following in a 1.5-ml microcentrifuge tube such that the final concentrations
are as follows:

10 p.M to 50 pM purified target protein
150 pM sortase A
1 mM oligoglycine probe
1 x sortase buffer.

Incubate the reaction 1 hr at 37*C followed by analysis using SDS-PAGE (uNrr1o.1)

and immunoblotting (uNirrs 10.7 & 10.10) or Coomassie staining (UNrrlo.5).

The reaction conditions described above provide a suitable starting point for optimizing
the labeling protocol. Slightly different reaction rates are observedfor each purified target
protein and consequently the reaction parameters may require optimization to achieve
high levels of protein labeling. Longer reaction times are usually all that is necessary to
drive the transpeptidation reaction to completion. Additional sortase may also be added
to improve reaction rates. Often, the concentrations of sortase and oligoglycine probe
may be reduced without sacrificing labeling efficiency. Reactions can also be incubated

for a longer period of time (1 to 2 hr) at room temperature if desired.

2. (Optional) Remove His6-tagged sortase and unreacted target protein (bearing a His6
tag C-terminal to the sortase cleavage site) by passing crude reaction mixtures over
a Ni-NTA column in the presence of imidazole (10 to 30 mM) and NaCl (500 mM)
to prevent nonspecific binding of proteins lacking the His6 affinity tag.

The column flow-through will contain the desired transpeptidation product.

ALTERNATE LABELING CELL-SURFACE PROTEINS IN LIVING CELLS VIA
PROTOCOL SORTASE-MEDIATED TRANSPEPTIDATION

In this protocol, type II membrane proteins with their C-terminus exposed to extracellular
space are fused to the requisite sortase recognition motif and expressed in living cells.
These proteins can be labeled by introduction of sortase and the oligoglycine probe into
the tissue culture medium. After washing, labeled cells can be imaged directly.

Materials

Target cells

Labeling via Plasmid encoding target protein
Sortase-mediated Transfection reagent (Lipofectamine, Invitrogen; Trans iT, Minus; Fugene 6,
Transpeptidation Roche)
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Purified sortase A stock solution (see Support Protocol)
100 mM to 500 mM oligoglycine probe stock solution in DMSO or H20
Culture medium (presence of 10% serum does not inhibit the sortase reaction)
Phosphate-buffered saline with 1 mM CaCl2 and 1 mM MgCl2 (PBS++)

Plastic culture dishes or chambered coverslips (Lab-Tek II Chambered Coverglass,
Nunc)

370 C humidified incubator

Additional reagents and equipment for SDS-PAGE (uNrr io.1) and immunoblot
(uNrrs10.7 & 10.10)

1. Transfect target cells with plasmid encoding engineered target protein according to
transfection reagent manufacturer's directions.

For microscopy, cells may be cultured and transfected on plastic dishes and subsequently
detached and replated onto glass coverslips for labeling and analysis. Alternatively, cells
can be cultured and transfected directly on chambered coverslips (Lab-Tek II Chambered
Coverglass, Nunc).

2. Incubate cells with 200 p.M sortase A and 100 pM oligoglycine probe diluted in
normal culture medium 10 to 30 min in a 37'C humidified incubator.

As in the case of labeling purified proteins in solution (see Basic Protocol), the above
conditions provide an appropriate starting point for further optimization. Sortase A
concentration and reaction times should be varied to achieve maximum labeling efficiency.

3. Wash cells at least three times with 1 ml of PBS++.

This step removes both sortase and excess probe. Extensive washing is necessary to
remove unbound probe and decrease the background signal. PBS supplemented with
MgCl 2 and CaC2 helps cells maintain adherence to the coverslip during washing.

4. Add either phenol-red free medium or PBS to cells and observe by microscopy.
Alternatively, lysecells and load on SDS-PAGE (uNPi10.1) for immunoblot (UNrS10.7
&0.to) or in-gel fluorescence scanning.

EXPRESSION AND PURIFICATION OF SORTASE A SUPPORT

Two soluble versions of the sortase A enzyme have been created for use in the transpepti- PROTOCOL

dation reaction. Since sortase itself is membrane embedded, the transmembrane domain
has been truncated and replaced with a hexahistidine tag to aid in purification. One version
(Ton-That et al., 1999) contains an N-terminal deletion of 25 amino acids, replaced with a
hexahistidine tag (cloned into pQE30, Qiagen). A second version contains an N-terminal
deletion of 59 amino acids, replaced by a hexahistidine tag that is separated from the
body of the protein by a thrombin cleavage site (cloned into pET28a+, Novagen). These
two versions have essentially identical activities (Ilangovan et al., 2001), but different
mobilities in SDS-PAGE gels, a useful attribute if the substrate protein migrates at a
similar molecular weight as sortase. The mobility of the A59 version can be increased
further by thrombin cleavage of the hexahistidine tag and linking amino acids. The fol-
lowing standard protein expression and purification protocol routinely yields very large
quantities of sortase A (>40 mg/liter of culture).

Materials

Sortase expression plasmid: pQE30 (Qiagen) or pET28a+ (Novagen)
E coli BL-21(DE3)
Luria Bertani (LB) medium with and without appropriate antibiotic:

Ampicillin (1000 x stock = 100 mg/ml) for pQE30-derived construct Chemical
Kanamycin (1000x stock = 30 mg/ml) for pET28a(+)-derived construct Moifiation of

1 M isopropyl P-D-thiogalactopyranoside (IPTG) Proteins

15.3.5
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Phosphate buffered saline (PBS; APPavDm 2E)

Lysis buffer: 50 mM Tris-Cl, pH 7.5 (APPuvm2E), 150 mM NaCl, 10 mM
imidazole, 10% glycerol

10 mg/ml DNaseI; APPDL 2E

Ni-NTA agarose slurry (Qiagen)
Elution buffer: 50 mM Tris-Cl, pH 7.5 (APPENDI 2E), 150 mM NaCl, 500 mM

imidazole, 10% glycerol

Culture plates and tubes
370C incubator with shaking
Spectrophotometer
French press, pre-chilled
1.5 x 12-cm column (Biorad)
Centrifugal spin concentrator with low-molecular-weight (<10 kD) cutoff optional

(Millipore)

1. Transform sortase expression plasmid into E. coli BL-21(DE3) and plate on selective
medium.

2. Pick a single colony and inoculate 100 ml of LB containing the appropriate antibiotic.
Grow overnight as a starter culture.

3. Add 10 ml of the overnight culture into 1 liter of LB with antibiotics. Monitor the
OD600 until -0.7. Induce by adding IPTG to a final concentration of 1 mM and
shake 3 hr at 37 0C.

4. Harvest the bacterial pellet by centrifuging 20 min at 6000 x g, 40C. Decant LB and
resuspend in 50 ml PBS. Repeat centrifugation to wash bacteria and decant PBS.
Resuspend pellet in 20 ml of ice-cold lysis buffer with 20 4g/ml DNase I.

Do not add protease inhibitors to lysis buffer as these may interfere with sortase activity.

5. Lyse bacteria by passing though a pre-chilled French press cell two times at 1250 psi.
Clarify the lysate by centrifuging 30 min at 12,000 x g, 40 C.

6. Pack 2 to 3 ml of Ni-NTA agarose slurry into a column and wash with 10 column
volumes of lysis buffer. Apply the clarified supernatant to the column. Wash column
with 50 column volumes of lysis buffer.

7. Elute sortase with 2 column volumes of elution buffer.

(Optional) Dialyze two times against 4 liters of lysis buffer without imidazole to remove
excess imidazole.

8. (Optional) Concentrate the protein further in a centrifugal concentrator with a
low-molecular-weight cutoff (<10 kDa).

The sortase constructs described are soluble and have been concentrated to >10 mg/nd
without signs of aggregation.

COMMENTARY

Background Information get protein in complex mixtures such as cell
Site-specific incorporation of reporter lysates or living cells. Genetic fusions, while

molecules into proteins is a significant chal- suited for single-site labeling, are mostly
lenge. Common chemical labeling techniques limited to bulky fluorescent protein tags as
targeting cysteine or lysine residues using reporters, although other modules with cozy-
maleimides or N-hydroxysuccinimidyl esters, matic activity have been used. Thus, chemoen-
respectively, generally lack the specificity zymatic labeling techniques have been de-

tabeingiad needed for single-site labeling within a given veloped to exploit the exquisite specificity

Transpeptidation protein, and cannot be used to label a tar- of enzymes to target chemical reporters to a
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single site within a protein bearing multiple
chemically reactive side-chains.

Several alternative chemoenzymatic la-
beling strategies have been described and
key features of each have been reviewed
(Chen and Ting, 2005; Foley and Burkart,
2007). Chemoenzymatic methods and small
molecule-binding peptide sequences that al-
low site-specific incorporation of labels have
been developed, including transglutaminase-
catalyzed reactions (Lin and Ting, 2006), acyl
carrier-protein-based labeling (George et al.,
2004), 06-alkylguanine DNA alkyltransferase
fusions (Keppler et al., 2003), dihydrofolate
reductase fusions (Miller et al., 2004), biotin
ligase (Chen et al., 2005), FlAsH (Griffin et al.,
1998), and Texas-red binding peptide (Marks
et al., 2004). However, several of these meth-
ods require the installation of a protein-sized
module to afford selective labeling, or necessi-
tate the insertion of recognition sequences that
vary in size from 6 to 38 residues, with vary-
ing degrees of labeling selectivity. The nature
of the labeling method also dictates the types
of reporter molecules that can be installed,
some of which require synthetic capabilities
beyond the reach of most laboratories involved
in biochemical or cell-biological studies. Al-
though the sortase-mediated transpeptidation
method as described in this unit is only appli-
cable to labeling of proteins at the C terminus
and solvent-accessible loops, the major advan-
tage is its simplicity. The method requires little
more than sortase production and purification
from E. coli and oligoglycine nucleophile syn-
thesis. Construction of peptide nucleophiles
by solid-phase peptide synthesis is straight-
forward.

Sortase A from S. aureus has already
found numerous applications in the semi-
synthesis of protein and peptide conjugates
(Pritz et al., 2008). These include installa-
tion of fluorophores (Popp et al., 2007; Tanaka
et al., 2008), photoaffinity cross-linking agents
(Popp et al., 2007), peptide nucleic acids with
unique cell-penetrating properties (Pritz et al.,
2007), and carbohydrates (Samantaray et al.,
2008). Cell surface labeling provides a new
tool for studying the trafficking and behav-
ior of a particular protein in live cells by mi-
croscopy.

The biochemical details of the transpepti-
dation reaction catalyzed by sortase have been
studied (Marraffini et al., 2006). Sortase makes
hydrophobic contacts between residues in its
06/07 loop and the LPXTG motif on target
proteins (Bentley et al., 2007, 2008). This po-

sitions a key cysteine residue (Cys-184) to at-
tack the threonine-glycine amide bond in the
LPXTG motif, generating a thioacyl interme-
diate and releasing all material C-terminal to
the threonine (Fig. 15.3.1). The acyl-enzyme
intermediate is then resolved by nucleophilic
attack by the N-terminus of an oligoglycine
probe that has been functionalized. The over-
all reaction mechanism is conceptually similar
to cleavage by a cysteine protease, but instead
of water attacking the acyl-enzyme intermedi-
ate to yield a hydrolysis product, sortase ac-
cepts the N-terminus of oligoglycine to yield
a transpeptidation product.

Critical Parameters
It is critical that the LPETG cleavage site

is accessible to sortase. Where possible, it is
helpful to view the crystal structure of the tar-
get protein; examination of the C terminus
or target loop(s) will reveal whether they are
likely to be solvent accessible. In cases where
sortase may not be able to access the cleavage
site due to steric interference, it may be helpful
to extend the C terminus with a flexible linker
or to enlarge the target loop (see Strategic
Planning).

The activity of sortase requires calcium in
the reaction buffers. For labeling of purified
proteins, 10 mM calcium chloride is included,
and for labeling of cell surface proteins, the
calcium present in normal culture medium
suffices for activity.

Troubleshooting
Low labeling efficiency of a target protein

can usually be overcome simply by adjusting
the reaction conditions outlined in the Basic
Protocol. Longer incubation times, combined
with varying the ratio of enzyme to target pro-
tein can be helpful.

Mixing of the sortase reaction buffer
with proteins in phosphate buffers should be
avoided since calcium phosphate will precipi-
tate and inhibit labeling.

When reaction products are analyzed by
SDS-PAGE, it is often helpful to remove un-
bound probe from the gel to reduce back-
ground. For fluorescent probes, this is es-
pecially helpful before fluorescent in-gel
scanning and is readily accomplished by wash-
ing several times in Coomassie destain solu-
tion (30% ethanol, 10% acetic acid), and then
incubating in PBS to restore neutral pH. To
further limit background staining, it is helpful
to titrate the amount of oligoglycine peptide to
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determine the minimum probe concentration
required to achieve efficient labeling.

For cell surface labeling of proteins, re-
peated washing is essential to remove excess
probe and achieve adequate signal-to-noise
ratios for microscopy.

Anticipated Results
After optimization of the Basic Protocol, it

is often possible to achieve complete conver-
sion of purified proteins to the transpeptidation
product, yielding a homogeneously labeled
target protein, as assessed by SDS-PAGE. For
cell-surface labeling, signal is usually detected
within 10 min of incubation and increases
with longer reaction times. Several cell lines
have been tested; target proteins in HEK293T,
MDCK, CHO, and HeLa cells have all beenla-
beled using sortase-mediated transpeptidation
(Popp et al., 2007; Tanaka et al., 2008).

Time Considerations
Production and purification of the sortase A

enzyme can usually be accomplished in 2 days.
Probe synthesis times vary, but generally can
be accomplished within 1 week. With the re-
action components in hand, the labeling reac-
tion is rapid; 10 min suffices for detection of
cell surface proteins and a few hours for com-
plete conversion of certain purified proteins.
Labeling conditions vary with the target pro-
tein, however, and must be optimized to the
particular application.
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