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ABSTRACT

Although the lifelong addition of new neurons to the olfactory bulb and dentate gyms of
mammalian brains is by now an accepted fact, the function of adult-generated neurons
still largely remains a mystery. The ability of new neurons to form synapses with
preexisting neurons without disrupting circuit function is central to the hypothesized role
of adult neurogenesis as a substrate for learning and memory.

In this doctoral thesis, I present work done in collaboration with other scientists that
advance knowledge in our understanding of how the cell-intrinsic excitability of new
neurons governs their incorporation into mature circuits in the adult brain. Contrary to the
notion that adult neurogenesis represents continual addition of the same type of neurons
that are incorporated during brain development, we have obtained data that suggests
adult-born neurons have distinct characteristics and may perform a distinct function.
Results we have obtained in the olfactory bulb show that an increase in cell-intrinsic
activity increases survival of adult-born olfactory granule neurons and that precise
spiking of these neurons is not critical for integration. Our observations in the dentate
gyrus demonstrate that an increase in cell-intrinsic activity is sufficient to effect
alterations in synaptic connectivity with the surrounding circuit and that input
connectivity is regulated in an activity-dependent manner by Npas4 signaling.

Progress in the field of adult neurogenesis is beginning to shed light on the flexibility that
adult-born neurons offer to mature circuits and their potential contribution toward circuit
refinement and adaptation to changing environmental demands. I am pleased to present
this work as a small step towards reaching the ultimate goal of understanding the biology
of lifelong learning and memory.

Thesis Supervisor: Carlos Lois
Title: Professor of Neurobiology



Acknowledgements

I thank God for this amazing journey.
To my dear mentor, colleagues, beloved friends and family who have showered me with
support, laughter and love through both good and rough times, you have made this
possible. Thanks for being there for me-I am so blessed.



Regulation of Survival and Synaptic Connectivity in the
Adult Brain by Cell-Intrinsic Excitability

CONTENTS

Introduction: Watching Synaptogenesis in the Adult Brain.......................7

Chapter 1: Genetically Increased Cell-Intrinsic Excitability Enhances Neuronal
Integration into Adult Brain Circuits.....................................................41

Chapter 2: Activity-dependent Connectivity of New Neurons in the Adult Dentate
Gyrus is Regulated by Npas4..........................................................85

Chapter 3: Increasing Heterogeneity in the Organization of Synaptic Inputs of
Mature Olfactory Bulb Neurons Generated in Newborn Animals..................131

C onclusion.................................................................................151



6



Introduction

Watching Synaptogenesis in the Adult Brain

The manuscript enclosed in this Introduction has been published in pages 131 - 149 of
the 3 3 rd volume of the journal Annual Review of Neuroscience dated June 2010 and is
reproduced with permission from Annual Reviews.



Watching Synaptogenesis in the Adult Brain

Wolfgang Kelsch*, Shuyin Sim* and Carlos Lois

*These authors contributed equally to this work

ABSTRACT

Although the lifelong addition of new neurons to the olfactory bulb and dentate gyrus of

mammalian brains is by now an accepted fact, the function of adult-generated neurons

still largely remains a mystery. The ability of new neurons to form synapses with

preexisting neurons without disrupting circuit function is central to the hypothesized role

of adult neurogenesis as a substrate for learning and memory. With the development of

several new genetic labeling and imaging techniques, the study of synapse development

and integration of these new neurons into mature circuits both in vitro and in vivo is

rapidly advancing our insight into their structural plasticity. Investigators' observation of

synaptogenesis occurring in the adult brain is beginning to shed light on the flexibility

that adult neurogenesis offers to mature circuits and the potential contribution of the

transient plasticity that new neurons provide toward circuit refinement and adaptation to

changing environmental demands.



INTRODUCTION

Adult neurogenesis in mammals was first described in the early 1960s (Altman & Das 1965),

but it was not until much later that investigators broadly accepted that the addition of new

neurons occurs throughout life in both the olfactory bulb (OB) (Lois & Alvarez-Buylla 1993,

Luskin 1993) and the dentate gyrus (DG) (Bayer 1980, Bayer et al. 1982, Gage et al. 1995).

Although most neurons in the brain are added to immature circuits during assembly, neurons

generated in adulthood face an additional challenge as they integrate into mature, fully

functional circuits. Relatively little is known about the mechanisms that regulate the synaptic

development of adult-born neurons and their connectivity within mature circuits. This review

aims to present key aspects of the emerging understanding of synaptogenesis in adult-born

neurons, as well as how activity in the brain modulates this process.

Synapse formation during adult neurogenesis raises several intriguing questions.

Does synapse formation in adult-born neurons simply recapitulate the steps that occur during

embryonic and neonatal development, or is it regulated by specific mechanisms specialized

for integration into functioning circuits? How do new neurons make synapses with mature

circuits without disrupting existing connectivity? An understanding of synaptogenesis in the

adult brain will not only shed light on the putative function of adult neurogenesis in

information processing and storage, but also provide new insights to develop strategies for

successful neuronal replacement therapies to treat brain injury and neurodegenerative

conditions.

We begin this review by discussing some of the techniques currently being used to

study synaptogenesis in adult-born neurons. Next, we proceed to critically examine current

literature on how the various types of adult-born neurons develop synaptic connections with

their respective circuits and how this process is modulated by activity. We also discuss the



functional properties of new neurons and their potential contribution toward refining the

existing circuit. Finally, we conclude by reflecting on recent trends and discoveries in this

dynamic field and exploring future directions toward understanding the integration of new

neurons into adult circuits and the role of adult-born neurons in brain function.

TECHNIQUES FOR OBSERVING SYNAPTOGENESIS

Recent technical advances have accelerated the study of synapse formation in adult

neurogenesis. In particular, two genetic methods that facilitate the selective labeling of new

neurons with fluorescent proteins have been especially useful. First, oncoretroviral vectors

can be used to label new neurons genetically (Jessberger et al. 2007, Kelsch et al. 2007), as

they exclusively infect actively dividing cells, such as neuronal progenitors, but are unable to

infect postmitotic cells, such as neurons (Roe et al. 1993). Second, investigators have

developed several transgenic mouse lines that enable selective labeling of adult-born neurons.

In two of these transgenic lines, expression of a fluorescent protein, either green fluorescent

protein (GFP) or red fluorescent protein (dsRed), is driven by promoters that are active only

in immature neurons, namely doublecortin (Wang et al. 2007) and nestin (Mignone et al.

2004). This process results in specific labeling of immature neurons in both the OB and the

DG (Brown et al. 2003, Yamaguchi et al. 2000). In another line, the proopiomelanocortin

(POMC) promoter drives GFP expression, which, unexpectedly, labels new neurons in the

DG (Overstreet et al. 2004).

Genetic Labeling of Synapses of Adult-Born Neurons

Synapse formation has traditionally been studied in three main ways. First, in some cases,

synapses can be easily identified on the basis of their association with neuronal structural

specializations. For instance, many excitatory input synapses are located in dendritic spines,
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in which case spines may be used as a morphological

substitute for synapses. One limitation of this method is that a large proportion of

synapses, such as excitatory input synapses on cell somata and inhibitory synapses, are

simply not associated with spines (Price & Powell 1970, Woolf et al. 1991). In addition, it is

not possible to accurately quantify the density and measure the size of output synapses by

simple morphological analyses. Second, antibody labeling against synaptic markers is a

powerful method to label synapses in cultured neurons. However, this method is suboptimal

in brain sections because the large number of synapses present severely complicates the

attribution of synapses to individual new neurons. Emerging imaging techniques, however,

may be able to overcome some of these problems soon (Micheva & Smith 2007). Third,

synapses can be unambiguously identified by electron microscopy, but this technique is labor

intensive and has yet to be sufficiently developed for high-throughput analysis. Labeling

synapses with genetically encoded markers addresses some of the limitations of the above-

mentioned techniques and significantly simplifies the quantification of synaptic development

in new neurons (Kelsch et al. 2008, Livneh et al. 2009, Meyer & Smith 2006, Niell et al.

2004). The visualization of pre and postsynaptic terminals can be achieved via expression of

fluorescent proteins fused to proteins specifically located in synapses. For instance,

synaptophysin is a protein located in neurotransmitter vesicles that is selectively localized at

presynaptic terminals (Sudhof & Jahn 1991) and can be used to identify release sites on axon

terminals (Figures 1d, 2b). To identify postsynaptic terminals, PSD95, a scaffolding protein

restricted to clusters in the postsynaptic density of most glutamatergic synapses (Ebihara et

al. 2003, Gray et al. 2006, Niell et al. 2004, Sassoe-Pognetto et al. 2003, Sheng 2001,

Washbourne et al. 2002), can be used (Figures lc,d and 2c). When introducing these

genetically encoded markers, it is critical to ensure that only modest levels of overexpression

are achieved because excessive levels of these proteins may interfere with synaptic
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development or function (El-Husseini et al. 2000). Fortunately, retroviral vectors, which

deliver single copies of transgenes into their target cells, produce sufficiently low levels of

expression that leave synapse number and strength unperturbed (Kelsch et al. 2008). With

genetically encoded markers, one can, in principle, analyze the complete set of a neuron's

excitatory input synapses and output synapses, including those not associated with spines or

axon terminals, respectively. This method also allows for software-aided quantification of

synapses (Kelsch et al. 2008). Furthermore, viral vectors can be engineered such that in

addition to synaptic markers other genes of interest, such as those coding for ion channels,

growth factors, or cell adhesion molecules, can be introduced in the same vector to assess the

effects of various manipulations on synapse formation and dynamics.

The labeling methods mentioned above allow investigators to observe synapse

development in combination with a variety of imaging and recording techniques. Here we

briefly discuss the strengths and limitations of four major techniques currently used in the

field.

Two-photon laser scanning fluorescence microscopy in vivo

Two-photon microscope technology has taken off considerably in recent years and is still the

only technique that allows for synapse imaging in vivo. This technique is extremely useful

for observing real-time changes to experimental manipulations and allows investigators to

visualize synapse dynamics. Owing to detection limits, only neurons up to -800 pm below

the brain's surface can be imaged (Helmchen & Denk 2005), largely restricting this

technology to the study of adult-born periglomerular neurons (PGNs) in the glomerular layer

of the OB and distal dendrites of OBgranule neurons, which are located in the external

plexiform layer (Figure la) (Mizrahi 2007). By removing part of the neocortex and white



matter above the hippocampus, superficial dendrites of neurons in CA1 of the hippocampus

can be imaged with two-photon technology (Mizrahi et al. 2004). However, adult-born

granule cells in the DG cannot be imaged in the same manner without damaging a substantial

part of the hippocampus. There has been great interest in using two-photon microscopy

associated with endoscope lenses to image deep within the brain, but several technical

obstacles need to be solved before this method can be routinely used (Barretto et al. 2009).

Confocal laser scanning microscopy

Because deep structures of the brain, such as the DG where adult-born granule cells are

added, are beyond the depth limitation of two-photon microscopy in vivo, in vitro time-lapse

confocal imaging of brain slices is sometimes carried out to study the dynamics of synapse

formation (Galimberti et al. 2006, Toni et al. 2007). This technique is not widely used

because of concerns about the integrity of cultured adult brain slices over long time periods

with currently available culture techniques (Berdichevsky et al. 2009), as well as the

possibility of abnormal synapse rearrangement due to fluctuations in culture conditions

(Kirov et al. 2004). Confocal

imaging of fixed slices is much more commonly used to study synaptogenesis, especially

because this method of observation is technically straightforward and enables investigators to

analyze many neurons at one time. Time course experiments can be performed to observe

spine formation over days and months, but because only an instantaneous snapshot of the

synapses can be obtained in fixed slices, this technique cannot be used to analyze the short-

term dynamics of synapse formation in real time.

Electron microscopy

Electron microscopy is more technically challenging than confocal imaging but allows for
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simultaneous analysis of pre- and postsynaptic sites by visualizing synaptic vesicles and

postsynaptic sites, respectively. Electron microscopy can also be used for three-dimensional

high-resolution analysis of individual synapses on adult-born neurons and their synaptic

partners (Toni et al. 2007). Recent developments within the past few years hint at the

possibility of semiautomated sectioning and imaging of large neuropil volumes (Briggman&

Denk 2006), thus facilitating high-throughput ultrastructural analyses of synapses.

Electrophysiology

lectrophysiological recording provides a functional confirmation of structural observations in

studies of adult-born neurons. The frequency and amplitude of excitatory and inhibitory

synaptic inputs help scientists understand changes in connectivity of new neurons during

their maturation and the effects of diverse manipulations. Carleton et al. (2003) and van

Praag et al. (2002) have used electrophysiology to describe synaptic properties of new

neurons as they mature and integrate into their circuits. One of the most significant

contributions of electrophysiology to the study of adult neurogenesis is the demonstration

that new neurons display enhanced synaptic plasticity compared with fully mature neurons in

both the OB and the DG (Nissant et al. 2009, Schmidt-Hieber et al. 2004). Scharfman et al.

(2000) also used electrophysiological methods to study how different manipulations affect

neuronal integration into the adult brain, such as the effects of seizures on synaptic properties

of adult-born dentate granule neurons.

SYNAPTOGENESIS IN NEURONS ADDED TO THE ADULT MAMMALIAN

BRAIN

The three main types of neurons added to the adult brain are the granule cells (GCOB) and

PGNs in the OB and the granule cells in the DG (GCDG). GCOB constitute the largest
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population of adult-born neurons. They are GABAergic interneurons that connect to the

lateral dendrites of the OB's principal neurons (mitral and tufted cells; Figure la). PGNs are

GABAergic and/or dopaminergic interneurons that modulate incoming information from

olfactory sensory axons that connect to the apical dendrites of the olfactory bulb's principal

neurons (Figure la). Granule neurons in the DG are excitatory neurons that receive input

from the entorhinal cortex and project to the CA3 region of the hippocampal formation

(Figure 2a).

SYNAPTOGENESIS IN ADULT-BORN OLFACTORY BULB GRANULE NEURONS

Stages of Synaptic Development

Adult-born GCOB arise from neural progenitors in the subventricular zone (SVZ), which lines

the walls of the lateral ventricles (Lois & Alvarez-Buylla 1994). Neuroblasts travel long

distances via the rostral migratory stream (RMS) into the OB where they migrate radially into

the granule cell layer (Lois & Alvarez- Buylla 1994). Of the -30,000 new neurons produced

daily in an adult mouse, more than 97% differentiate into GCOB while the remaining develop

into PGNs (Lois & Alvarez-Buylla 1994, Winner et al. 2002). GCOB are axonless neurons

that have a basal and an apical dendrite (Figure ld). Their apical dendrite is composed of an

unbranched segment emerging from the soma followed by a branched segment and can be

divided into proximal and distal synaptic domains. The proximal synaptic domain is a region

on the unbranched dendrite segment with a high concentration of glutamatergic input

synapses. The distal domain consists of the branched dendritic segment and possesses spines

containing bidirectional dendro-dendritic synapses, where input and output synapses are

colocalized and functionally coupled. These bidirectional synapses receive glutamatergic

input synapses from the lateral dendrites of principal neurons and release GABA back onto



the same neurons (Figure 1b) (Mori 1987). Dendro-dendritic synapses are the only output of

GCOB and are responsible for local inhibition of principal neurons in the OB (Chen et al.

2000, Halabisky & Strowbridge 2003, Mori 1987). The basal dendrite, or basal domain, and

unbranched apical dendrite receive glutamatergic input from axon collaterals of the OB's

principal neurons and olfactory cortex (Balu et al. 2007, Davis & Macrides 1981, Luskin &

Price 1983, Mori et al. 1983). The developmental stages of adult-born GCOB have been

defined according to morphological criteria (Petreanu & Alvarez-Buylla 2002). Stage one

neurons are those in the process of migration in the RMS. At stage two, new GCOB reach the

granule cell layer and begin to extend their first neurites. At stage three, about ten days after

the birth of GCOB in the SVZ, the main dendritic arbor of new GCOB continues to grow and

cells start to receive inhibitory synaptic input (Carleton et al. 2003). At stage four, or about

two weeks after their birth, newGCoB start receiving excitatory synaptic input (Carleton et al.

2003). In adultborn GCOB, excitatory synapses appear first on the proximal segment of the

apical dendrite at this stage (Kelsch et al. 2008). At this time there are few spines and

synaptic sites on the distal branches of the apical dendrite (Petreanu & Alvarez-Buylla 2002).

Finally, at stage five, between three and four weeks after birth of GCOB, the distal branches of

their apical dendrites develop dense spines, achieving full spine density in these dendrites by

four weeks of development (Petreanu & Alvarez-Buylla 2002). During this final stage of

maturation, new GCOB acquire the ability to fire fast action potentials (Carleton et al. 2003)

and form most of the input and output synapses on their distal branches (Kelsch et al. 2008).

Although synaptic development is mostly complete by four weeks after the generation of

adult-born GCOB (Carleton et al. 2003, Kelsch et al. 2008, Mizrahi 2007, Petreanu&Alvarez-

Buylla 2002, Whitman & Greer 2007a), Mizrahi (2007) has observed rearrangement of

spines after this time, which suggests that GCOB may maintain some capacity for synaptic

modification even when they are mature.



Adult-born granule neurons first develop input synapses in their proximal dendritic

domain, which lacs output synapses, before developing most of their dendro-dendritic output

synapses and prior to acquiring the ability to fire action potentials (Kelsch et al. 2008), i.e.,

they "listen" before they can "speak." This sequential pattern of synaptic development of

adult-born GCOB sharply contrasts with the maturation of cells born during neonatal

development, which is when most GCOB are generated (Lemasson et al. 2005). First,

neonatal-born GCOB develop the ability to fire action potentials early in their development,

during stage three, around the same time they start receiving synaptic inputs (Carleton et al.

2003). Second, neurons added to the neonatal brain also develop input and output synapses

on the distal and proximal regions of apical dendrites simultaneously (Kelsch et al. 2008).

The different modes of synaptic development between adult and neonatal neurons could be

due to intrinsic properties of new GCOB already determined in their respective precursors.

Alternatively, local cues in the neonatal and adult OB environment may be responsible for

these differences. Heterochronic transplantation of postmitotic precursors could be helpful to

clarify which aspects of synaptic development are governed by cell-autonomous versus

external cues.

Synapse Connectivity Within Olfactory Circuits

The lateral dendrites of mitral and tufted cells, which form dendro-dendritic synapses with

GCOB, are located in the deep and superficial external plexiform layers, respectively (Figure

1a). Most GCOB ramify distal dendritic branches only in either location within the external

plexiform layer, not in both (Kelsch et al. 2007, Mori et al. 1983), and this phenomenon is

genetically predetermined in neuronal progenitors as demonstrated by fate-mapping and

transplantation studies (Kelsch et al. 2007, Merkle et al. 2007). The OB may have

"independent microcircuits" such that specific populations of GCOB target only one class of
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principal neurons (Mori 1987); GCOB with superficial or deep dendrites may exclusively

form synapses with tufted or mitral cells, respectively. However, the existence of these

independent microcircuits has yet to be proven functionally. The concept of microcircuit-

specific targeting of new neurons in the adult brain is consistent with the protomap model of

circuit assembly (Rakic et al. 2009) and raises the possibility of genetically engineering stem

cells to generate specific neuronal types to replace those lost to disease or injury.

Neuronal Addition and Turnover

The functional differences between deep and superficial GCOB also extend to neuronal

survival. Whereas neonatal-born GCOB often reside in the superficial granule cell layers,

adult-born neurons tend to localize within the deep layers (Imayoshi et al. 2008, Lemasson et

al. 2005). Although most superficial and neonatal-born GCOB survive for long periods

approaching the animal's lifetime, deep and adult-born GCOB tend to be short-lived

(Imayoshi et al. 2008, Lemasson et al. 2005). A recent study using a transgenic labeling

technique suggests that almost all

deep, adult-born neurons are turned over and thus continuously replaced (Imayoshi et al.

2008), which supports Bayer's (1980) original observations. Two long-term studies suggest

that cell death in adult-born GCOB is limited to the first month after neuron birth (Lemasson

et al. 2005, Winner et al. 2002), whereas another study suggests there is a further drop in cell

survival after the first two months (Petreanu & Alvarez-Buylla 2002). However, the latter

study has low temporal resolution after the two-month time point, and this result may also be

caused by the high variability

between samples. At least some of the adult-born GCOB that persist throughout life

maintain a synaptic density similar to the one they displayed a month after their birth (W.

Kelsch & C. Lois, unpublished observations). In summary, the question of neuronal addition
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or turnover of adult-born GCOB remains unresolved and warrants further clarification,

especially in light of the implications on the potential role of adult neurogenesis for long-term

memory storage.

Activity-Dependent Neuronal Survival

Only 50% of new GCOB generated in the adult successfully integrate into the bulb's circuits

and survive for extended time periods, and abundant evidence indicates that neuronal activity

is important in determining their survival. Synaptic maturation in GCOB occurs mostly in the

third and fourth week of development (Carleton et al. 2003, Kelsch et al. 2008, Whitman &

Greer 2007b). This period coincides with a time window during which the survival of GCOB

is most sensitive to sensory deprivation, when the proportion of surviving neurons is further

reduced by half in a deprived bulb (Petreanu & Alvarez-Buylla 2002, Yamaguchi et al. 2000,

Yamaguchi&Mori 2005). Silencing the circuit with pharmacologically enhanced inhibition

also reduces survival of adult-born neurons during this critical period (Yamaguchi & Mori

2005). Rochefort et al. (2002) reported that exposure to an odor-enriched environment

increases survival, particularly when the animal is rewarded for performing an odor

discrimination task (Alonso et al. 2006). However, the enhanced survival reported in these

works has not been observed in other studies (Magavi et al. 2005). Although the source of

this disparity is unclear, the enhanced survival reported may not be due solely to exposure to

enriched odors, but also to the fact that the behavioral demand of the task may raise animals'

attention levels (Alonso et al. 2006). These observations suggest that odor information

processing via nascent synapses plays a critical role in the stable integration of new neurons

in the adult olfactory system.

Activity-Dependent Synaptogenesis



Activity in the OB not only influences the survival of adult-born GCoB, but also regulates

their synaptic connectivity. When postnatal-born GCOB are subject to sensory deprivation

during the critical period, they display fewer synaptic spines (Saghatelyan et al. 2005).

Kelsch et al. (2009) recently confirmed this finding using genetically encoded markers for

excitatory synapses in adult-born GCOB. The loss of input and output synapses triggered by

sensory deprivation occurs only during early synaptic development and is not seen when

sensory deprivation is performed

after synaptic development is completed. This observation suggests that the critical period

during which the survival of new neurons is dependent on sensory input coincides with a

stage in which neurons have a high degree of plasticity, which facilitates the shaping of their

synaptic organization. Similarly, a recent study by Nissant et al. (2009) has demonstrated that

long-term potentiation can be induced in adult-born neurons during early stages of their

maturation, but not after this period. It will be interesting to examine whether this critical

period also applies to other forms of plasticity in adult-born neurons. The effects of olfactory

deprivation on synaptic development are complex: Adult-born GCOB that survive after

sensory deprivation display an increased density of proximal input synapses in the

unbranched apical dendrite (Kelsch et al. 2009). This observation suggests that neurons may

compensate for the absence of sensory input by receiving additional excitatory drive, which

elevates their activity level above the threshold required for survival. The relationship

between cell-intrinsic excitability and synapse formation is not well understood. Recent

experiments indicate that increasing the intrinsic excitability of adult-born GCOB by

expressing a voltage gated bacterial sodium channel does not affect synapse formation or

maintenance (Kelsch et al. 2009) and promotes stable integration of adult-born GCOB (Lin et

al. 2010). However, genetically increased excitability blocks sensory deprivation-triggered

synaptic changes. GCOB expressing this sodium channel that are born in a bulb deprived of
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sensory input develop a normal organization of glutamatergic input synapses, as measured by

the density of their PSD95:GFP-positive clusters (Kelsch et al. 2009). Similarly, dampening

the excitability of new GCOB by overexpressing the potassium channel Kir2.1 does not affect

the synapse numbers of the surviving neurons (Lin et al. 2010). Taken together with the

finding that increased inhibition in the circuit decreases the survival of adult-born GCs

(Yamaguchi & Mori 2005), these observations demonstrate that synaptogenesis in adult-born

GCOB is sensitive to changes in synaptic input and suggest that both survival selection and

synaptic development are driven by a minimum threshold excitation level, to which several

factors can contribute: first, local glutamatergic excitatory inputs from mitral or tufted cells,

whose activity is regulated primarily by sensory experience; second, centrifugal

glutamatergic inputs originating in other regions of the brain, such as the olfactory cortex,

which act on the olfactory bulb; third, centrifugal inputs of neuromodulators such as

acetylcholine, noradrenaline, or neuropeptides, which modulate neuronal activity on a longer

timescale. For instance, cholinergic stimulation, which causes sustained depolarizations in

GCOB (Pressler et al. 2007), enhances the survival of new neurons both in the dentate gyrus

and in the OB (Kaneko et al. 2006) and may be responsible for the reported enhanced

survival of adult-born neurons when olfactory tasks involved increased attention levels

(Alonso et al. 2006). Hence, phasic excitation provided by synaptic input from mitral and

tufted cells is only one of the many determinants of survival and integration of new GCs into

the bulb's circuits. We hope future studies will resolve the ambiguities surrounding the

regulation of neuronal survival by centrifugal and sensory-driven inputs. Meanwhile, the

transient synaptic plasticity displayed during synaptic development of new GCOB may be an

attractive model with which to study how neuronal connectivity during circuit assembly is

regulated by activity.



SYNAPTOGENESIS IN ADULT-BORN OLFACTORY BULB PERIGLOMERULAR

NEURONS

The second class of neurons generated throughout life in the OB is the PGN, which surrounds

glomeruli, where olfactory sensory axons connect to the apical dendrites of the OB's

principal neurons (Figure la). PGNs receive excitatory synaptic input both from olfactory

sensory axons as well as from the apical dendrites of principal neurons via dendro-dendritic

synapses. The outputs of PGNs occur both through dendrodendritic synapses and axonal

output synapses with principal neurons, although not all PGNs have axons (Pinching &

Powell 1971). PGNs are a highly diverse group of neurons and can be broadly divided into

two groups: those whose dendrites synapse on only one or two glomeruli and those that

synapse on many (Whitman & Greer 2007a). These neurons can be dopaminergic and/or

GABAergic, and different subsets of GABAergic neurons also express different calcium-

binding proteins such as calbindin and calretinin (Whitman & Greer 2007a). Different

subtypes of PGNs are generated in the OB during embryogenesis, neonatal development, and

adulthood (Batista-Brito et al. 2008, De Marchis et al. 2007). Much less is known about the

synaptic development of adult-born PGNs as compared with GCOB. Given the diversity of

adult-born PGNs, one would expect heterogeneity in their synaptic development and

organization as well. Indeed, the maturational sequence of spontaneous inputs is not

stereotypical for PGNs: Some neurons develop GABAergic inputs first, whereas others

develop glutamatergic inputs first (Grubb et al. 2008). Excitatory inputs to PGNs appear

early during their development, and their frequency continues to increase until six weeks

after their birth (Grubb et al. 2008). During the first six weeks after their birth, adult-born

PGNs develop a full dendritic arbor. In vivo two-photon imaging has shown that the spines of

adult-born PGNs become more stable as they mature (Livneh et al. 2009). During the
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maturation of PGNs, strong functional changes occur in the synapses between sensory

neurons and PGNs. These changes appear to be mostly restricted to the postsynaptic sites on

the PGNs, whereas the characteristically high release probability at olfactory sensory neuron

terminals (Murphy et al. 2004) is already present as soon as functional synapses are formed

(Grubb et al. 2008). The highly dynamic rearrangement of input synapses in PGNs may be

attributed to the continuous turnover of olfactory sensory axons (Zou et al. 2004), from which

they receive their primary input, or could simply be an intrinsic property of these neurons.

Activity-Dependent Neuronal Survival and Synaptogenesis

Because PGNs are the first relay station of olfactory sensory input, it is hardly surprising that,

akin to GCOB, adult-born PGNs also display activity-dependent survival. Investigators have

reported that sensory deprivation decreases (Mandairon et al. 2006), whereas olfactory

enrichment (Rochefort et al. 2002) and olfactory discrimination tasks (Alonso et al. 2006)

increase, adult-born PGN survival. Also, sensory enrichment accelerates the development of

their glutamatergic input synapses as visualized by genetic synaptic markers (Livneh et al.

2009). PGNs may be an attractive model with which to study the formation of synaptic

connections and how they are affected by activity in real time, since their superficial location

in the olfactory bulb makes them the only adult-born neurons amenable to in vivo two-photon

imaging with sufficient spatial resolution to visualize these changes (Livneh et al. 2009).

SYNAPTOGENESIS IN ADULT-BORN DENTATE GYRUS GRANULE NEURONS

Stages of Synaptic Development

The third type of adult-born neurons in mammals is the DG granule cell (GCDG), which arises

from progenitors in the subgranular zone just beneath the granular layer where mature

neurons eventually reside. About 9000 new granule cells are produced daily in the DG of
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young rats (Cameron & McKay 2001). These neurons receive their main excitatory input

from the entorhinal cortex and provide glutamatergic input primarily to the excitatory

pyramidal neurons and inhibitory interneurons in the CA3 region of the hippocampus

(Figure 2a). In this manner, the DG acts as the main entry point for entorhinal cortex input

into the hippocampus, relaying the information to CA3 for further processing before it is

returned to the entorhinal cortex via CAl. The distinct stages of neuronal maturation of adult-

born GCDG largely recapitulate those that occur during perinatal development, but at a slower

pace (Overstreet-Wadiche et al. 2006a, Zhao et al. 2006). This observation could be due to

the upregulation of DISC 1 protein in the adult DG, which slows the increase in spine density

of GCDG during their development (Duan et al. 2007). The new GCDG first receive

GABAergic input to their dendrites approximately one week after they are generated. This

innervation is initially depolarizing until two to four weeks, when it becomes hyperpolarizing

(Esposito et al. 2005), owing to the transient expression of the inward chloride transporter

NKCC1 in immature neurons, which results in an elevated intracellular chloride

concentration as compared with mature neurons (Ge et al. 2006). Expression of this

transporter is necessary for normal development because its ablation leads to severely

delayed neuronal maturation (Ge et al. 2006). In the second week after their birth, dendrites

of GCDG start to form spines and to receive glutamatergic input, and their GABAergic input

becomes predominantly perisomatic (Figure 2d) (Esposito et al. 2005, Ge et al. 2006).

Concurrently, axonal projections from new neurons reach the CA3 region and begin to form

contacts that continue to mature for months (Toni et al. 2008). By two months of age, adult-

born neurons have similar morphological and electrophysiological properties to those formed

during perinatal development (Ge et al. 2007; Laplagne et al. 2006, 2007).

Activity-Dependent Neuronal Survival



Akin to GCs in the OB, 50% of new GCDG born in the adult die by four weeks of age

(Kempermann et al. 1997a), and their survival is most sensitive to environmental influences

between the first and third weeks of development (Tashiro et al. 2006). Levels of

neurogenesis and subsequent survival of GCDG are strongly influenced by neuronal activity.

Increased levels of adult neurogenesis in the DG accompany changes in experiences through

exercise or enriched environments (Kempermann et al. 1997b, van Praag et al. 1999). New

neurons that are activated during learning are preferentially selected for incorporation into

active DG circuits (Kee et al. 2007). Conversely, new GCDG whose N-methyl-D-aspartate

(NMDA) receptor-mediated input is eliminated experience a drastic reduction in survival

rates (Tashiro et al. 2006). These observations illustrate that, as described in the OB, neuronal

activity plays a role in selecting new neurons that eventually survive and integrate into the

DG circuits.

Activity-Dependent Synaptogenesis and Pathology: Excitability-Induced Rewiring of

Adult-Born Neurons in the Dentate Gyrus

The functional maturation of adult-born GCDG is highly sensitive to changes in activity, and

the strongest perturbations of synapse formation in new GCDG are caused by seizures (Parent

et al. 1997). Experimentally induced seizures accelerate synaptic development of new

neurons such that new GCDG added to an epileptic brain start receiving GABAergic input to

their dendrites prior to two weeks after their birth, significantly earlier than in the

unperturbed DG (Overstreet-Wadiche et al. 2006b). In experimental seizure models, the DG

exhibits network changes that resemble those observed in human pathology of temporal lobe

epilepsy. This reorganization of connectivity may be attributed to anomalous integration of

new neurons, in addition to other changes in preexisting neurons. Differentiating neurons are

most susceptible to develop aberrant connectivity, and some morphological changes are seen
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only in new neurons generated within days of the onset of seizure, but not in neurons born a

week before (Jessberger et al. 2007). Seizure-induced synaptic alterations to GCM in animal

models include increased numbers of mushroom spines (spines with characteristically large

heads) and spiny, branched basal dendrites that extend into the polymorphic cell layer

(Jessberger et al. 2007). Seizures also perturb the migration of new GCoG. The cell bodies of

new GCm born during seizures aberrantly localize within the hilus and these neurons fire in

synchrony with CA3 pyramidal neurons, which suggest that they contribute to increased

excitability within the hippocampus (Scharfman et al. 2000). Seizures can also result in

mossy fiber sprouting, axonal projection by GCDG to the supragranular molecular layer. The

consequences of sprouting are controversial; electrophysiological studies have proposed that

this aberrant connectivity produces either recurrent excitatory circuits and subsequent

hippocampal hyperexcitability (Okazaki et al. 1995), or conversely, recurrent inhibition by

preferentially targeting inhibitory neurons in the molecular layer (Sloviter 1992). Preliminary

analyses of the addition of individual new neurons with genetically enhanced excitability into

the adult dentate gyrus in vivo suggest that these neurons experience increased perisomatic

inhibition as well as a reduction in the frequency of excitatory inputs and density of

glutamatergic input synapses (S. Sim, C.W. Lin, and C. Lois, unpublished observations).

Notably, these neurons display many of the seizure-induced alterations such as larger

dendritic spines and basal dendrites, but they lack mossy fiber sprouting. Investigators have

also observed synaptic rearrangements in these neurons' axon terminals. Normal GCm have

axonal specializations known as large mossy terminals, where they form complex synapses

with pyramidal neurons in theCA3region of the hippocampus. Neurons with genetically

enhanced excitability lose many of their large mossy terminals, suggesting a reduction in

inputs to excitatory CA3 neurons. These results support previous findings in hippocampal

cultures showing that these axonal connections are fairly dynamic, since synaptic
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rearrangements as well as changes in the size of large mossy terminals have been

documented in response to changes in spiking activity (Galimberti et al. 2006).

Synaptic Plasticity During a Critical Period

Similar to the situation described for GCOB, there is a critical period within which new

neurons in the adult DG display increased synaptic plasticity compared with mature neurons

as demonstrated by an enhanced propensity for long-term potentiation (Schmidt-Hieber et al.

2004). This enhanced synaptic plasticity lasts until the second month after new neurons are

generated and then decreases to levels comparable to those of the surrounding mature

neurons (Ge et al. 2007). Long-term potentiation during this critical period possesses several

defining characteristics: It is dependent on the presence of the NR2B subunit of the NMDA

receptor and can be induced in the presence of intact inhibition (Ge et al. 2007). Similarly, a

low-threshold calcium spike can boost fast sodium action potentials and contribute to long-

term potentiation during this critical period (Schmidt-Hieber et al. 2004). Investigating how

the flow of information through the hippocampus can shape the synaptic organization of new

neurons will help investigators elucidate the role of adult neurogenesis in learning and

memory.

PERSPECTIVES ON THE FUTURE

We conclude this review by raising several open questions that, we hope, may inspire future

research.

First, adult neurogenesis is a widespread phenomenon in most vertebrates. It is

interesting to note that mammals appear to be an exception among vertebrates: Their brains

are composed mostly of long-lived, nonrenewable neurons born during the embryonic
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development. Why has a phenomenon that is common in so many classes of animals become

less prevalent in mammals? Why is the human cerebellum or neocortex capable of

processing, acquiring, and storing information for decades using a single set of neurons,

whereas the dentate gyrus and olfactory bulb require the continuous addition of neurons into

their circuits throughout life to perform their functions? Second, in contrast with circuit

assembly during embryonic development, which involves integration of new neurons in a

mostly constant environment in utero, adult-born neurons integrate into mature, functioning

circuits. This observation poses additional challenges because adult brain activity is

constantly modulated by the ever-changing conditions of the outside world. Furthermore,

because adult-generated neurons integrate into the brains of behaving animals, these neurons

must form new synapses with minimal disruption to existing connectivity so that behavior is

unperturbed. Do specialized mechanisms exist for synaptic integration in adult-born neurons,

which differ from those used during embryonic brain development? Third, synaptic plasticity

of adult-born neurons is likely restricted to a specific time window early during their

maturation. This phenomenon supports the idea that new neurons provide the mature circuit

with a transient form of heightened plasticity, acting as a substrate for circuit refinement and

adaptation. After this critical window, the neurons mature, become stably integrated into the

brain, and partially lose their activity-dependent plasticity. The addition of cells endowed

with such an initial short-lived flexibility and longterm stability enables information

processing in the brain to be both versatile and reliable while faced with changing behavioral

demands. The transient plasticity of new cells generated during adult neurogenesis may

explain the requirement for additional new neurons to facilitate lifelong plasticity and

reshaping of memory circuits. Which molecular mechanisms are responsible for this transient

plasticity? Most mammalian brain regions, such as the thalamus, striatum, and neocortex do

not receive any new neurons after birth. Do neurons in these brain areas maintain their
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plasticity for longer periods of time compared with adult-born neurons added into the OB and

DG?

Investigating these unanswered questions will shed some light on the mystery of why

mammalian brain circuits are composed of two classes of neurons: those that live as long as

the individual harboring them and those that are continuously added throughout life.

LITERATURE CITED

Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM. 2006.
Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory
bulb. J. Neurosci. 26:10508-13
Altman J, Das GD. 1965. Autoradiographic and histological evidence of postnatal
hippocampal neurogenesis in rats. J. Comp. Neurol. 124:319-35
Balu R, Pressler RT, Strowbridge BW. 2007. Multiple modes of synaptic excitation of
olfactory bulb granule cells. J. Neurosci. 27:5621-32
Barretto RP, Messerschmidt B, Schnitzer MJ. 2009. In vivo fluorescence imaging with high-
resolution microlenses. Nat. Methods 6:511-12
Batista-Brito R, Close J, Machold R, Fishell G. 2008. The distinct temporal origins of
olfactory bulb interneuron subtypes. J. Neurosci. 28:3966-75
Bayer SA. 1980. Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat
amygdala. J. Comp. Neurol. 194:845-75
Bayer SA, Yackel JW, Puri PS. 1982. Neurons in the rat dentate gyrus granular layer
substantially increase during juvenile and adult life. Science 216:890-92
Berdichevsky Y, Sabolek H, Levine JB, Staley KJ, Yarmush ML. 2009. Microfluidics and
multielectrode array-compatible organotypic slice culture method. J. Neurosci. Methods
178:59-64
Briggman KL, Denk W. 2006. Towards neural circuit reconstruction with volume electron
microscopy techniques. Curr. Opin. Neurobiol. 16:562-70
Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. 2003.
Transient expression of doublecortin during adult neurogenesis. J. Comp. Neurol. 467:1-10
Cameron HA, McKay RD. 2001. Adult neurogenesis produces a large pool of new granule
cells in the dentate gyrus. J. Comp. Neurol. 435:406-17
Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM. 2003. Becoming a new
neuron in the adult olfactory bulb. Nat. Neurosci. 6:507-18 Chen WR, Xiong W, Shepherd
GM. 2000. Analysis of relations betweenNMDAreceptors and GABA release at olfactory
bulb reciprocal synapses. Neuron 25:625-33
Davis BJ, Macrides F. 1981. The organization of centrifugal projections from the anterior
olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory
bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203:475-93 De Marchis S,
Bovetti S, Carletti B, Hsieh YC, Garzotto D, et al. 2007. Generation of distinct types of
periglomerular olfactory bulb interneurons during development and in adult mice:
implication for intrinsic properties of the subventricular zone progenitor population. J.
Neurosci. 27:657-64
Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, et al. 2007. Disrupted-In-Schizophrenia 1



regulates integration of newly generated neurons in the adult brain. Cell 130:1146-58
Ebihara T, Kawabata I, Usui S, Sobue K, Okabe S. 2003. Synchronized formation and
remodeling of postsynaptic densities: long-term visualization of hippocampal neurons
expressing postsynaptic density proteins tagged with green fluorescent protein. J. Neurosci.
23:2170-81
El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. 2000. PSD-95
involvement in maturation
of excitatory synapses. Science 290:1364-68
Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, et al. 2005. Neuronal
differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci.
25:10074-86
Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, et al. 1995. Survival and
differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl.
Acad. Sci. USA 92:11879-83
Galimberti I, Gogolla N, Alberi S, Santos AF, Muller D, Caroni P. 2006. Long-term
rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by
experience. Neuron 50:749-63
Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H. 2006. GABA regulates synaptic
integration of newly generated neurons in the adult brain. Nature 439:589-93
Ge S, Yang CH, Hsu KS, Ming GL, Song H. 2007. A critical period for enhanced synaptic
plasticity in newly generated neurons of the adult brain. Neuron 54:559-66
Gray NW, Weimer RM, Bureau I, Svoboda K. 2006. Rapid redistribution of synaptic PSD-95
in the neocortex in vivo. PLoSBiol. 4:e370
Grubb MS, Nissant A, Murray K, Lledo PM. 2008. Functional maturation of the first synapse
in olfaction: development and adult neurogenesis. J. Neurosci. 28:2919-32
Halabisky B, Strowbridge BW. 2003. Gamma-frequency excitatory input to granule cells
facilitates dendrodendritic inhibition in the rat olfactory Bulb. J. Neurophysiol. 90:644-54
Helmchen F, Denk W. 2005. Deep tissue two-photon microscopy. Nat. Methods 2:932-40
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, et al. 2008. Roles of continuous
neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci.
11:1153-61
Jessberger S, Zhao C, Toni N, Clemenson GD Jr, Li Y, Gage FH. 2007. Seizure-associated,
aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J.
Neurosci. 27:9400-7
Kaneko N, Okano H, Sawamoto K. 2006. Role of the cholinergic system in regulating
survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes
Cells 11:1145-59
Kee N, Teixeira CM, Wang AH, Frankland PW. 2007. Preferential incorporation of adult-
generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci.
10:355-62
Kelsch W, Lin CW, Mosley CP, Lois C. 2009. A critical period for activity-dependent
synaptic development during olfactory bulb adult neurogenesis. J. Neurosci. 29:11852-58
Kelsch W, Lin CW, Lois C. 2008. Sequential development of synapses in dendritic domains
during adult neurogenesis. Proc. Natl. Acad. Sci. USA 105:16803-8
Kelsch W, Mosley CP, Lin CW, Lois C. 2007. Distinct mammalian precursors are committed
to generate neurons with defined dendritic projection patterns. PLoS Biol. 5:e300
Kempermann G, Kuhn HG, Gage FH. 1997a. Genetic influence on neurogenesis in the
dentate gyrus of adult mice. Proc. Natl. Acad. Sc. USA 94:10409-14
Kempermann G, Kuhn HG, Gage FH. 1997b. More hippocampal neurons in adult mice living



in an enriched environment. Nature 386:493-95
Kirov SA, Petrak LJ, Fiala JC, Harris KM. 2004. Dendritic spines disappear with chilling but
proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127:69-80
Laplagne DA, Esposito MS, Piatti VC, Morgenstern NA, Zhao C, et al. 2006. Functional
convergence of neurons generated in the developing and adult hippocampus. PLoS Bio.
4:e409
Laplagne DA, Kamienkowski JE, Esposito MS, Piatti VC, Zhao C, et al. 2007. Similar
GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis.
Eur. J. Neurosci. 25:2973-81
Lemasson M, Saghatelyan A, Olivo-Marin JC, Lledo PM. 2005. Neonatal and adult
neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory
bulb. J. Neurosci. 25:6816-25
Lin CW, Sim S, Ainsworth A, Okada M, Kelsch W, Lois C. 2010. Genetically increased cell-
intrinsic excitability enhances neuronal integration into adult brain circuits. Neuron 65:32-39
Livneh Y, Feinstein N, Klein M, Mizrahi A. 2009. Sensory input enhances synaptogenesis of
adult-born neurons. J. Neurosci. 29:86-97
Lois C, Alvarez-Buylla A. 1993. Proliferating subventricular zone cells in the adult
mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA
90:2074-77
Lois C, Alvarez-Buylla A. 1994. Long-distance neuronal migration in the adult mammalian
brain. Science 264:1145-48
Luskin MB. 1993. Restricted proliferation and migration of postnatally generated neurons
derived from the forebrain subventricular zone. Neuron 1:173-89
Luskin MB, Price JL. 1983. The topographic organization of associational fibers of the
olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp.
Neurol. 216:264-91
Magavi SS, Mitchell BD, Szentirmai 0, Carter BS, Macklis JD. 2005. Adult-born and
preexisting olfactory granule neurons undergo distinct experience-dependent modifications of
their olfactory responses in vivo. J. Neurosci. 25:10729-39
Mandairon N, Sacquet J, Jourdan F, Didier A. 2006. Long-term fate and distribution of
newborn cells in the adult mouse olfactory bulb: influences of olfactory deprivation.
Neuroscience 141:443-51
Merkle FT, Mirzadeh Z, Alvarez-Buylla A. 2007. Mosaic organization of neural stem cells in
the adult brain. Science 317:381-84
Meyer MP, Smith SJ. 2006. Evidence from in vivo imaging that synaptogenesis guides the
growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26:3604-14
Micheva KD, Smith SJ. 2007. Array tomography: a new tool for imaging the molecular
architecture and ultrastructure of neural circuits. Neuron 55:25-36
Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G. 2004. Neural stem and
progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469:311-24
Mizrahi A. 2007. Dendritic development and plasticity of adult-born neurons in the mouse
olfactory bulb. Nat. Neurosci. 10:444-52
Mizrahi A, Crowley JC, Shtoyerman E, Katz LC. 2004. High-resolution in vivo imaging of
hippocampal dendrites and spines. J. Neurosci. 24:3147-51
Mori K. 1987. Membrane and synaptic properties of identified neurons in the olfactory bulb.
Prog. Neurobiol. 29:275-320
Mori K, Kishi K, Ojima H. 1983. Distribution of dendrites of mitral, displaced mitral, tufted,
and granule cells in the rabbit olfactory bulb. J. Comp. Neurol. 219:339-55
Murphy GJ, Glickfeld LL, Balsen Z, Isaacson JS. 2004. Sensory neuron signaling to the



brain: properties of transmitter release from olfactory nerve terminals. J. Neurosci. 24:3023-
30
Niell CM, Meyer MP, Smith SJ. 2004. In vivo imaging of synapse formation on a growing
dendritic arbor. Nat. Neurosci. 7:254-60
Nissant A, Bardy C, Katagiri H, Murray K, Lledo PM. 2009. Adult neurogenesis promotes
synaptic plasticity
in the olfactory bulb. Nat. Neurosci. 12:728-30
Okazaki MM, Evenson DA, Nadler JV. 1995. Hippocampal mossy fiber sprouting and
synapse formation after status epilepticus in rats: visualization after retrograde transport of
biocytin. J. Comp. Neurol. 352:515-34
Overstreet LS, Hentges ST, Bumaschny VF, de Souza FS, Smart JL, et al. 2004. A transgenic
marker for newly born granule cells in dentate gyrus. J. Neurosci. 24:3251-59
Overstreet-Wadiche LS, Bensen AL, Westbrook GL. 2006a. Delayed development of adult-
generated granule cells in dentate gyrus. J. Neurosci. 26:2326-34
Overstreet-Wadiche LS, Bromberg DA, Bensen AL, Westbrook GL. 2006b. Seizures
accelerate functional integration of adult-generated granule cells. J. Neurosci. 26:4095-103
Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. 1997.
Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant
network reorganization in the adult rat hippocampus. J. Neurosci. 17:3727-38
Petreanu L, Alvarez-Buylla A. 2002. Maturation and death of adult-born olfactory bulb
granule neurons: role of olfaction. J. Neurosci. 22:6106-13
Pinching AJ, Powell TP. 1971. The neuropil of the periglomerular region of the olfactory
bulb. J. Cell Sci. 9:379-409
Pressler RT, Inoue T, Strowbridge BW. 2007. Muscarinic receptor activation modulates
granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J.
Neurosci. 27:10969-81
Price JL, Powell TP. 1970. The synaptology of the granule cells of the olfactory bulb. J. Cell
Sci. 7:125-55
Rakic P, Ayoub AE, Breunig JJ, Dominguez MH. 2009. Decision by division: making
cortical maps. Trends Neurosci. 32:291-301
Rochefort C, Gheusi G, Vincent JD, Lledo PM. 2002. Enriched odor exposure increases the
number of newborn neurons in the adult olfactory bulb and improves odor memory. J.
Neurosci. 22:2679-89
Roe T, Reynolds TC, Yu G, Brown PO. 1993. Integration of murine leukemia virus DNA
depends on mitosis. EMBO J. 12:2099-108
Saghatelyan A, Roux P, Migliore M, Rochefort C, Desmaisons D, et al. 2005. Activity-
dependent adjustments of the inhibitory network in the olfactory bulb following early
postnatal deprivation. Neuron 46:103-16
Sassoe-Pognetto M, Utvik JK, Camoletto P, Watanabe M, Stephenson FA, et al. 2003.
Organization of postsynaptic density proteins and glutamate receptors in axodendritic and
dendrodendritic synapses of the rat olfactory bulb. J. Comp. Neurol. 463:237-48
Scharfman HE, Goodman JH, Sollas AL. 2000. Granule-like neurons at the hilar/CA3 border
after status epilepticus and their synchrony with area CA3 pyramidal cells: functional
implications of seizure-induced neurogenesis. J. Neurosci. 20:6144-58
Schmidt-Hieber C, Jonas P, Bischofberger J. 2004. Enhanced synaptic plasticity in newly
generated granule cells of the adult hippocampus. Nature 429:184-87
Sheng M. 2001. Molecular organization of the postsynaptic specialization. Proc. Natl. Acad.
Sci. USA 98:7058- 61
Sloviter RS. 1992. Possible functional consequences of synaptic reorganization in the dentate



gyrus of kainite treated rats. Neurosci. Lett. 137:91-96
Sudhof TC, JahnR. 1991. Proteins of synaptic vesicles involved in exocytosis and membrane
recycling. Neuron
6:665-77
Tashiro A, SandlerVM, ToniN, Zhao C, Gage FH. 2006. NMDA-receptor-mediated, cell-
specific integration of new neurons in adult dentate gyrus. Nature 442:929-33
Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, et al. 2008. Neurons born in the adult
dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11:901-7
Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, et al. 2007. Synapse formation on
neurons born in the adult hippocampus. Nat. Neurosci. 10:727-34
van Praag H, Kempermann G, Gage FH. 1999. Running increases cell proliferation and
neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2:266-70
van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. 2002. Functional
neurogenesis in the adult hippocampus. Nature 415:1030-34
Wang X, Qiu R, Tsark W, Lu Q. 2007. Rapid promoter analysis in developing mouse brain
and genetic labeling of young neurons by doublecortin-DsRed-express. J. Neurosci. Res.
85:3567-73
Washbourne P, Bennett JE, McAllister AK. 2002. Rapid recruitment of NMDA receptor
transport packets to nascent synapses. Nat. Neurosci. 5:751-59
Whitman MC, Greer CA. 2007a. Adult-generated neurons exhibit diverse developmental
fates. Dev. Neurobiol. 67:1079-93
Whitman MC, Greer CA. 2007b. Synaptic integration of adult-generated olfactory bulb
granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local
circuits. J. Neurosci. 27:9951-61
Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. 2002. Long-term survival and
cell death of newly generated neurons in the adult rat olfactory bulb. Eur. J. Neurosci.
16:1681-89 Woolf TB, Shepherd GM, Greer CA. 1991. Serial reconstructions of granule cell
spines in the mammalian olfactory bulb. Synapse 7:181-92
Yamaguchi M, Mori K. 2005. Critical period for sensory experience-dependent survival of
newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA
102:9697-702
Yamaguchi M, Saito H, Suzuki M, Mori K. 2000. Visualization of neurogenesis in the central
nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11:1991-96
Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. 2006. Distinct morphological stages
of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26:3-11
Zou DJ, Feinstein P, Rivers AL, Mathews GA, Kim A, et al. 2004. Postnatal refinement of
peripheral olfactory projections. Science 304:1976-79



34



FIGURES

Olfactory sensory axons

Glomerular
layer

E x ern al

Mitral cell
layer

Granule cell
layer

PSD95:GFP GFP Dendritic domain PSD95:GFP

PSD95:GFP
Bassoon

10 pm



Figure 1. Adult-born olfactory bulb granule cells and their synaptic wiring with the

surrounding circuit.

(a) Synaptic organization in the olfactory bulb. In the glomeruli of the olfactory bulb,

olfactory sensory axons synapse on the apical dendrites of principal neurons, the mitral

and tufted cells, as well as on periglomerular neurons (PGNs), which line these

glomeruli. PGNs also form additional synaptic connections with the apical dendrites of

principal neurons, whereas the lateral dendrites of principal neurons form synapses with

granule cells (GCoB). Two independent microcircuits may exist in the olfactory bulb,

with GCOB with either deep or superficial dendritic branching

connecting exclusively to mitral or tufted cells, respectively. (b) Synaptic connectivity of

olfactory bulb granule neurons. GCOB form dendro-dendritic synapses with lateral

dendrites of principal neurons in the bulb. These atypical synapses consist of a

glutamatergic input synapse from the principal neuron onto the GCOB and a GABAergic

output synapse onto the same lateral dendrite of the principal neuron, both located in a

single spine. In addition, GCOB receive glutamatergic inputs onto their basal and proximal

apical dendrites from centrifugal cortical axons and possibly also from axon collaterals of

principal neurons. GCOB are also contacted by GABAergic input synapses from local

interneurons in the olfactory bulb as well as cholinergic and monoaminergic inputs. (c)

Genetic labeling of synapses. Left: Progenitors of GCOB were infected in the

subventricular zone (SVZ) with retroviral vectors carrying genetic constructs encoding

PSD95:GFP, a marker for postsynaptic glutamatergic sites, to generate PSD95:GFP-

expressing GCOB. PSD95:GFP-positive clusters can be detected by direct visualization of

GFP (shown as green puncta). The dendritic morphology of the GCOB was revealed by



amplifying the low levels of PSD95:GFP in the cytoplasm (that could not be detected by

intrinsic fluorescence) by immunostaining against GFP with a red fluorescent secondary

antibody. The merged images of PSD95:GFP positive clusters ( green) and dendritic

morphology (red ) allow investigators to attribute clusters to specific dendritic domains

of individual GCOB (scale bar, 5 pm). Right: Confocal three-dimensional image showing

a PSD95:GFP positive cluster in a new GCOB that is contacted by the presynaptic marker,

bassoon (scale bar, 1 pm). (d) Synaptic distribution in the dendritic domains of granule

cells. GCOB have a basal dendrite and an apical dendrite, which consist of proximal and

distal synaptic domains. The proximal domain is a specialized sector of the unbranched

apical dendrite that emerges directly from the soma of GCOB, which contains a high

density of glutamatergic input

synapses. The branched dendritic segment of the apical dendrite is known as the distal

domain. Examples of genetic labeling of synapses in the dendritic domains of granule

cells are given for postsynaptic glutamatergic synapses, PSD95:GFP, and for the

presynaptic genetic marker, Synaptophysin:GFP (Syp:GFP).
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Figure 2. Adult-born granule cells in the dentate gyrus and their synaptic wiring

with the hippocampal and other circuits.

(a) Synaptic organization of dentate granule cells. Adult-born granule cells in the dentate

gyrus (GCDG) receive excitatory glutamatergic input onto their apical dendrites from

projection neurons in the entorhinal cortex and mossy cells in the hippocampus, as well

as inhibitory GABAergic input from local interneurons. GCDG project axons solely to the

CA3 region of the hippocampus. At the CA3 region, these axons constitute two forms of

specialized contact sites: large mossy terminals and en passant boutons. Large mossy

terminals are compartmentalized release sites: The central portion of these terminals

forms complex interdigitating synapses with proximal dendrites of CA3 pyramidal cells

while the emanating filopodia of the terminals synapse on GABAergic interneurons in

CA3. En passant boutons are smaller synaptic swellings along the axon collaterals that

exclusively contact CA3 interneurons. (b) Genetic labeling of output synapses along axon

collaterals of dentate granule cells. The release sites from GCDG onto CA3 neurons, at

large mossy terminals (arrowheads) and en passant boutons on the axons of adult-born

GCDG, can be visualized by a genetic presynaptic marker, synaptophysin:GFP (Syp:GFP,

yellow). (c) Genetic labeling of input synapses in the apical dendrites of granule cells.

Adult-born GCDG develop glutamatergic input sites as visualized by PSD95:GFP (yellow)

in their apical dendrite during their differentiation. Note the absence of PSD95:GFP-

positive sites on the soma. (d) Identification of inhibitory innervation on the soma of

adult-born dentate granule cells. Parvalbumin-positive inhibitory terminals (red)

contacting the soma of an adult-born GCDG (arrowhead) can be visualized by

immunohistochemistry against parvalbumin. Left: Confocal image of a GFP-positive



GCDG labeled by retroviral infection of progenitors in the subgranular zone of the dentate

gyrus. Right: Magnified z-stack cross-section of image on left.
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ABSTRACT

New neurons are added to the adult brain throughout life, but only half ultimately

integrate into existing circuits. Sensory experience is an important regulator of the

selection of new neurons but it remains unknown whether experience provides specific

patterns of synaptic input, or simply a minimum level of overall membrane

depolarization critical for integration. To investigate this issue, we genetically modified

intrinsic electrical properties of adult-generated neurons in the mammalian olfactory

bulb. First, we observed that suppressing levels of cell-intrinsic neuronal activity via

expression of ESKir2.1 potassium channels decreases, whereas enhancing activity via

expression of NaChBac sodium channels increases survival of new neurons. Neither of

these modulations affects synaptic formation. Furthermore, even when neurons are

induced to fire dramatically altered patterns of action potentials, increased levels of cell-

intrinsic activity completely blocks cell death triggered by NMDA receptor deletion.

These findings demonstrate that overall levels of cell-intrinsic activity govern survival of

new neurons and precise firing patterns are not essential for neuronal integration into

existing brain circuits.

Author Contributions: Chia-Wei Lin and Shuyin Sim designed the experiments, designed and
generated retroviral vectors, performed intracranial injections, collected and analyzed cell
survival data. Alice Ainsworth and Wolfgang Kelsch assisted with data analysis. Chia-Wei Lin
and Masayoshi Okada performed electrophysiological recordings. Chia-Wei Lin, Shuyin Sim and
Carlos Lois wrote the manuscript.



INTRODUCTION

A striking feature of nervous system development is that many more neurons are produced

than are ultimately retained in the mature nervous system (Buss et al., 2006). Neuronal

addition persists throughout life in the dentate gyrus of the hippocampus and the olfactory

bulb (OB), where there continues to be overproduction and subsequent selection of neurons

(Petreanu and Alvarez-Buylla, 2002; Winner et al., 2002; Yamaguchi and Mori, 2005).

Unlike during embryonic development, neurons born postnatally are added to functionally

mature circuits where their integration is believed to be regulated by sensory input or the

behavioral state of the animal (Kee et al., 2007; Petreanu and Alvarez-Buylla, 2002).

It is postulated that the addition of new neurons into the adult brain may be a

mechanism for lifelong learning and behavioral adaptation (Aimone et al., 2006; Lledo et al.,

2006). Since only half of adult-generated neurons ultimately survive and integrate, it has

been hypothesized that only new neurons that form relevant connections are incorporated to

achieve fine-tuning of existing neuronal circuits (Aimone et al., 2006; Alonso et al., 2006;

Kee et al., 2007; Lledo et al., 2006; Mouret et al., 2008; Wilbrecht et al., 2002). From

experiments involving sensory deprivation in the OB and ablation of the NMDA receptor in

the dentate gyrus, it is clear that synaptic input is a key regulator of the integration of adult-

born neurons (Alonso et al., 2006; Kee et al., 2007; Mouret et al., 2008; Tashiro et al., 2006a;

Wilbrecht et al., 2002). This idea is further supported by studies showing a preferential

incorporation of adult-generated neurons into active circuits in the dentate gyrus (Kee et al.,

2007). In addition, we have recently demonstrated that olfactory deprivation perturbs

synaptic development of new neurons in the adult OB and that genetically increasing the

intrinsic excitability of individual neurons blocks the changes in synaptic density triggered by

sensory deprivation (Kelsch et al., 2009). These observations suggest an interaction between



sensory input and intrinsic neuronal activity in synapse formation, and possibly neuronal

survival. However, it is still unclear whether the contribution of synaptic input is mainly to

provide a precise pattern of neuronal activity to the new neurons, or merely a minimum level

of membrane depolarization necessary for their selection and integration.

The elucidation of the mechanisms regulating the integration of new neurons has

important implications both for understanding how neural circuits are constructed, as well as

for successful implementation of stem cell-based replacement therapies for brain repair and

neurodegenerative diseases. To evaluate the effect of suppressing or elevating electrical

activity on the integration of young neurons into the OB, we used retroviral vectors to

introduce ion channels into neuronal progenitors in the brains of adult rodents. In the current

study, we found that overall levels of activity within a new neuron determined its integration

into the circuit irrespective of firing patterns. Moreover, increasing intrinsic activity was

sufficient to partially overcome cell death induced by sensory deprivation, and completely

rescued neurons deficient in the NMDA receptor. Our observations reveal a rule of neuronal

integration that is reliant on overall levels of membrane depolarization rather than on a

specific pattern of firing.

RESULTS

Expression of the potassium channel ESKir2.1 dampens electrical activity in adult-

generated neurons

The vast majority of new neurons in the OB of adult mammals are granule cells (GCs),

inhibitory neurons whose progenitors reside in the subventricular zone (SVZ) (Lois and

Alvarez-Buylla, 1994). Neuroblasts generated in the SVZ move along the rostral migratory



stream toward the core of the OB and subsequently migrate radially into the granule cell

layers. We genetically labeled adult born GCs by injecting retroviral vectors into the SVZ of

adult rats. Since retroviral vectors only infect dividing cells, the progenitor cells within the

SVZ are labeled but not mature neurons. We later monitored the subsequent integration of

new GCs into the OB. The first arriving neuroblasts appeared in the adult rat OB as early as

at 5 dpi. By 21 dpi, migrating neuroblasts still in the RMS contributed to 7.4% of the cells in

the OB. By 28 dpi, the late arriving neuroblasts contributed to less than 2 percent of total

infected cells inside the OB. The low infectivity rate of the retroviruses in vivo results in the

modification of a very small proportion of GCs (less than 0.01% of all GCs), which appear

randomly distributed throughout the bulb, thus negligibly perturbing the rest of the circuit

(Kelsch et al., 2008; Kelsch et al., 2007).

To accurately assess neuronal integration, we injected approximate 1:1 titers of

mixtures of a virus encoding the channel under study (tagged by GFP) and a virus encoding

mCherry, so that mCherry-expressing neurons could be used as age-matched controls. We

divided the number of GFP* and doubly infected (GFP* and mCherry*) neurons by the

number of mCherry*-only neurons to derive a survival ratio and used the raw 7 dpi ratio to

normalize subsequent time points. Thus, the 7 dpi ratios are 1 and ratios at other time points

are relative to the 7 dpi ratio.

To dampen the excitability of adult-born GCs, we expressed a non-inwardly

rectifying variant of the Kir2.1 potassium channel, Kir2.1 E224S (Yang et al., 1995),

henceforth referred to as ESKir2.1. Expression of ESKir2.1 resulted in a leak current that

reduced the cell's input resistance by ~ 2 fold and set a more negative resting membrane

potential, thereby reducing the probability of neuronal spiking by increasing the requirement

for synaptic input to achieve firing threshold (Figure 1A-D). Expression of ESKir2.1



hyperpolarized the neuroblasts in the core of the OB as early as at 7 dpi (Figure S lA-H) and

did not affect the initial stages of development of new GCs, as ESKir2. 1+ GCs successfully

migrated into the OB and survived as well as control neurons up till 14 dpi (Figures lE and

S2C,D). This observation argues against the possibility that expression of this ion channel

results in non-specific toxic effects in the new neurons.

Dampening electrical activity inhibits integration of adult-generated neurons into the

OB

By 28 dpi, however, the number of ESKir2.1 neurons integrated into the OB was reduced by

57±8% (***; p<0.002; n = 4 bulbs; Figure lE and S2E). Interestingly, this timing coincides

with a critical period for integration of newly generated GCs in the postnatal OB, between 14

and 28 dpi, during which their survival is most sensitive to olfactory deprivation (Yamaguchi

and Mori, 2005). These results demonstrate an important role of neuronal activity in

regulating the integration of adult-generated neurons in a cell-autonomous manner.

Interestingly, spine density and the frequency of spontaneous excitatory postsynaptic current

(sEPSC) were indistinguishable between control and ESKir2.1* neurons, suggesting that

suppression of cell-intrinsic neuronal activity has minimal effects on synaptic development

(Figure SI-L). However, the amplitude of sEPSC was higher for ESKir2.1 than controls

neurons at 28 dpi (Figure SLJ). This increase in sEPSC amplitude may reflect the synaptic

scaling previously described in activity-deprived neurons (Turrigiano and Nelson, 2004).

Expression of the voltage-gated sodium channel NaChBac elevates electrical activity in

adult-generated neurons



Recent studies propose that adult neurogenesis serves to facilitate experience-dependent

modification of neural circuits for adaptation to environmental changes (Aimone et al., 2006;

Wilbrecht et al., 2002). This hypothesis suggests that the timing of synaptic inputs relative to

activity in the rest of the circuit, and their source and strength would all be predicted to

participate in regulating the integration of new neurons. Alternatively, integration of new

neurons may simply be determined by summing overall levels of activity in a neuron during a

specific critical period, regardless of its source or timing, and neurons that meet a minimum

threshold are retained. To investigate these possibilities, we increased neuronal activity in

individual new GCs in the OB in a manner that reduces their dependency on synaptic input

for firing, and evaluated the consequences of this manipulation on neuronal integration into

the OB.

To disrupt normal firing patterns and increase the occurrence of neuronal firing, such

that neuronal spiking would occur with synaptic inputs that are insufficient to evoke action

potentials in control neurons, we used the bacterial voltage-gated sodium channel NaChBac.

Two key properties of NaChBac allow for this: First, its activation threshold is

approximately 15 mV more negative than that of native sodium channels in granule neurons

(Kelsch et al., 2007); Second, it inactivates on the order of hundreds of milliseconds,

compared to less than 1 ms in mammalian sodium channels (Bean, 2007; Ren et al., 2001).

We have previously observed that NaChBac expression in GCs triggers depolarizations

approximately 600 ms long (Kelsch et al., 2009). Such long depolarizations are not

uncommon in neurons in the mammalian brain. For instance, cholinergic stimulation has

been shown to trigger long depolarizations in several neuronal types (Fraser and MacVicar,

1996). Here we examined whether this phenomenon also occurs in newly generated GCs.

Application of carbachol, a muscarinic agonist mimicking cholinergic input, induced long



after-depolarization-potentials (ADPs) in adult-born GCs (Figure 2A). These long

depolarizations robustly occurred in adult-born GCs during the early (18 dpi) but not late (28

dpi) phases of their integration into the OB (Figure 2A,B). The ADP triggered by carbachol

was completely blocked by pre-applying atropine, a muscarinic receptor antagonist (Figures

2A and S2F-H). These findings suggest that physiological stimuli, such as cholinergic

innervation, can trigger long membrane depolarizations in adult-born GCs, similar to those

induced by NaChBac expression.

We delivered NaChBac to GC precursors in the SVZ using the strategy described for

ESKir2. 1. To assess the ability of NaChBac to enhance the intrinsic excitability of new GCs,

we performed whole cell patch clamp recordings between 14 to 16 dpi, at the beginning of

their critical period for survival. At this stage, newly generated GCs expressing NaChBac-

EGFP (NaChBac*) have a slow inward current that activates at 41±1.8 mV, which causes

neurons to fire spontaneous action potentials significantly more frequently than control

neurons and with long plateau potentials lasting on average 608±68 ms (Figure 2D-F). In

addition, we have observed that the electrophysiological effects of NaChBac expression on

GCs persist throughout the duration of the critical period (Kelsch et al., 2009). Thus,

NaChBac expression is sufficient to increase overall levels of neuronal activity in newly

generated GCs.

Increased intrinsic electrical activity enhances the integration of adult-generated

neurons into the OB

We assessed the effect of increasing electrical excitability via NaChBac expression on the

integration of adult-born GCs into the OB, and found that up till 14 dpi, NaChBac* neurons

migrated and integrated into the OB at similar levels to control neurons (Figure 2G and
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Figure S2A, B). However, beginning at 21 dpi, NaChBac' neurons integrated into the OB at

significantly higher rates than control neurons (21 dpi: 22±6%; **P < 0.002; n = 4 bulbs; 28

dpi: 31±4%; ***p<0.0001; n = 10 bulbs; Figure 2G). This increase in survival persisted for

as long as 2 months after infection (56 dpi; 25±3%; **p< 0.0001; n = 6 bulbs).

Electrophysiological measurements of sEPSCs in NaChBac* neurons indicate that they

received similar levels of excitatory synaptic input as compared to control neurons,

demonstrating that the enhanced survival of NaChBac* neurons was accompanied by

functional integration into the circuit (Figure 3A,B). Furthermore, NaChBac* neurons were

morphologically similar to control neurons, with no changes in the pattern of dendritic

arborization or in the linear density of synaptic spines (Figure 3C-G). This observation is

consistent with our previous finding that NaChBac does not affect the density of clusters

labeled with the synaptic marker PSD95-GFP in OB GCs (Kelsch et al., 2009). These

observations illustrate that NaChBac* neurons are functional, and suggest that strong

perturbations of cell-intrinsic neuronal activity via either NaChBac or ESKir2.1 expression

have minimal effects on the synaptic development of these neurons.

Our findings suggest that increasing the overall intrinsic level of activity in an adult-

born neuron is sufficient to confer a significant survival advantage to that cell, but do not

allow us to specify whether adult-generated neurons normally have a requirement for patterns

of synaptic input specifically driven by sensory experience in order to integrate into the bulb.

Multiple studies have demonstrated that sensory input is crucial for the integration of new

neurons into the OB (Alonso et al., 2006; Petreanu and Alvarez-Buylla, 2002), but it remains

unclear whether sensory input simply provides a minimum, necessary level of synaptic drive

onto new GCs to support survival, or if sensory-driven patterns of synaptic input contain

information relevant to the selection of the new GC for integration.



NaChBac rescues adult-generated neurons from death in a sensory-deprived OB

To further explore these questions, we tested whether a NaChBac-mediated increase in

neuronal activity can substitute for physiological sensory experience in mediating the

integration of adult-born neurons into the OB. We co-injected a mixture of retroviruses

bilaterally into the SVZ of animals in which we had unilaterally occluded one nostril, a

procedure that eliminates sensory input to the ipsilateral bulb. Previous works have

demonstrated that 50% of new neurons in the adult ultimately integrate into the normal OBs,

whereas nostril occlusion further reduces this proportion to 25% (Winner et al., 2002;

Yamaguchi and Mori, 2005). The survival ratio of NaChBac* neurons compared to control

cells in the non-occluded bulb was approximately 1.33, similar to that described above

(Figure 2G,H); in contrast, in the occluded bulb this ratio was increased to approximately

1.76 (Figure 2H). Since olfactory deprivation results in approximately 50% decrease in the

survival of new GCs, a complete rescue of sensory-dependent GC death by NaChBac in an

occluded bulb would result in a survival ratio of 2; thus, a ratio of 1.76 indicates that

NaChBac expression provides more than a 75% rescue of GC death resulting from sensory

deprivation. This result demonstrates that increased neuronal excitability conferred by

NaChBac expression is sufficient to partially substitute for the contribution of sensory-

dependent synaptic input in regulating GC integration. This observation parallels our

previous data showing that NaChBac expression blocks changes in synaptic density induced

by sensory deprivation (Kelsch et al., 2009). Furthermore, this observation suggests that

experience-driven synaptic input is not the only mechanism driving the selection of adult-

born neurons for integration as corroborated by the finding that 25% of new neurons still



survive in sensory deprived bulbs (Petreanu and Alvarez-Buylla, 2002; Yamaguchi and Mori,

2005).

NMDA receptor activity is essential for integration of adult-generated neurons in the

OB

Because NaChBac promotes neuronal integration independent of experience-driven synaptic

input, it is probable that the mechanism regulating activity-dependent survival is directly

tracking the levels of membrane depolarization. The membrane potential of a neuron is

constantly modulated by neurotransmitters acting on synaptic receptors, and in the central

nervous system, AMPA- and NMDA-receptors (NMDARs) are the major receptors

mediating membrane depolarization. Previous studies have suggested that NMDAR activity

regulates the survival of adult-born neurons in the dentate gyrus (Tashiro et al., 2006a). The

requirement of NMDAR signaling for neuronal survival may depend on the detection of

coincident pre- and post-synaptic activity, such as in spike-timing dependent plasticity (Dan

and Poo, 2006), or alternatively, the requirement of NMDAR function for new neuron

survival may simply reflect the contribution of NMDAR activity to overall levels of neuronal

depolarization in new GCs.

To investigate the contribution of NMDAR to new neuron integration, we first sought

to confirm the requirement for NMDAR function in the survival of new GCs in the OB. We

genetically ablated the essential NR1 subunit to eliminate all NMDAR-mediated input in

individual new GCs by sparsely infecting progenitor cells in the SVZ of NR1 floxed

conditional mice (NR1'") with retroviral vectors encoding the Cre recombinase enzyme

(Kohara et al., 2007; Tashiro et al., 2006b). Cre-mediated ablation of NR1 successfully

eliminated NMDAR expression since application of NMDA failed to induce any currents in
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Cre* neurons in NRJmn mice (Figure 4A-C). By 28 dpi, virtually all NMDAR-deficient

neurons were eliminated (Figure 4D,E). In comparison, no change in the survival of EGFP-

CRE* neurons was observed in NR1*/* littermates (Figure 4D). This result demonstrates that

the NMDAR, whose ablation decreases the survival of new dentate gyrus neurons by only

50% (Tashiro et al., 2006a), is absolutely required for the integration of adult-born GCs in the

OB.

NaChBac expression rescues NMDAR-deficient adult-generated neurons from death

We next determined whether increasing activity in new GCs via NaChBac expression could

substitute for NMDAR function in supporting neuronal integration into the OB. NaChBac

and Cre recombinase were simultaneously delivered into NR1Jf mice, and GC integration

was assessed. We found that increasing the excitability of newly generated NMDAR-

deficient GCs via NaChBac expression completely rescued their death (Figure 4D,E). The

dendritic morphology of NaChBac* NMDAR-deficient neurons appeared similar to that of

control neurons and received AMPAR-mediated synaptic input (Figure S3), indicating that

they functionally integrated into the bulb's circuit. These results demonstrate that the

requirement for NMDARs in the integration of new GCs most likely reflects the contribution

of NMDARs to the overall levels of neuronal activity in the neuron. Furthermore, our data

support a model in which activity-dependent integration depends on overall levels of

membrane depolarization, irrespective of how this depolarization is achieved.

DISCUSSION

An activity threshold for integration of new adult-born neurons into the OB circuit



To elucidate whether synaptic input regulates survival by providing new neurons with a

precise pattern of neuronal activity, or merely a minimal level of membrane depolarization,

we used NaChBac, a bacterial voltage-gated sodium channel, to perturb the spiking pattern of

new neurons while simultaneously elevating their activity levels. Our results indicate that the

integration of new neurons into the OB circuit predominantly depends on their overall levels

of membrane depolarization, regardless of the pattern of action potentials generated.

Interestingly, tonic cholinergic stimulation, which causes sustained depolarizations in adult-

born OB neurons during their early integration (Figures 2A-C and S2), has recently been

shown to enhance the survival of new neurons both in the OB and dentate gyrus (Kaneko et

al., 2006). Conversely, the removal of cholinergic input into the OB compromises the

survival of new neurons (Cooper-Kuhn et al., 2004). Given our findings about

depolarization-enhanced integration, the long depolarizations induced by cholinergic

stimulation may directly contribute to the improved survival of new neurons observed in

previous studies (Kaneko et al., 2006). Interestingly, the long depolarizations induced by

cholinergic stimulation occur robustly in young GCs during the critical period of survival at

18 dpi but not after maturation at 28 dpi; indicating a possible role of prolonged cholinergic-

induced depolarization specifically in driving survival of new OB granule neurons. General

behavioral states, such as running, stress, attentiveness and depression affect neuronal

integration of new neurons into adult brains (Gould et al., 1997; Malberg et al., 2000; Mouret

et al., 2008; van Praag et al., 1999). Our results suggest that neuromodulators such as

acetylcholine may mediate these effects by acting as significant regulators of the level of

depolarization of new neurons.

The notion that general membrane depolarization is a determinant of neuronal

integration is further supported by our observation that although NMDAR expression is



essential for new neuron integration, NaChBac-mediated depolarization is sufficient to fully

rescue NMDAR-deficient neurons from death. Hence, the requirement of NMDAR in new

neuron survival may be due to the extended depolarization caused by its slow gating kinetics.

Interestingly, recent evidence also indicates that the contribution of NMDAR for synaptic

vesicle release in GCs is not directly through the calcium entry through its pore but indirectly

through the influx of calcium through voltage-gated calcium channels, which open as a result

of the long depolarization induced by NMDAR activity (Isaacson, 2001; Schoppa et al.,

1998). Together, our data support a model in which activity-dependent integration depends

on overall levels of membrane depolarization, determined, for instance, by monitoring

calcium influx through L-type voltage-gated calcium channels (Dolmetsch et al., 2001),

rather than specifically on neuronal activity mediated by postsynaptic glutamate receptors.

It is not yet known how activity levels could be monitored in order to determine if a

particular cell achieves the minimum threshold of neuronal activity required to survive and

successfully integrate into the adult brain. New adult-born neurons could act as integrators

that measure and summate levels of activity over a critical period, lasting perhaps on the time

scale of days, to compute this life or death decision (McCormick, 2001). This critical period

spans a time period sometime between 14 to 28 days after the birth of the neuron, when

sensory deprivation or ESKir2. 1-mediated suppression of activity has the strongest effect on

survival (Yamaguchi and Mori, 2005). Alternatively, instantaneous levels of activity may be

continuously evaluated such that neurons that never meet the minimum threshold of activity

during the critical period are eliminated.



Determinants of dendritic morphology of GCs in the OB

When we introduced ESKir2.1 into GCs in the OB, we observed that although the electrical

properties of these neurons were altered significantly, their dendritic structures remained

unchanged. This is unexpected because overexpression of Kir2.1 in neurons has been

previously shown to alter the morphology of axons, in transfected retinal neurons in zebrafish

(Hua and Smith, 2004), as well as dendrites, in transfected rat hippocampal neurons in vitro

(Burrone et al., 2002). Two non-mutually exclusive explanations could account for our

findings. First, in previous experiments, Kir2.1 channels were expressed in excitatory

neurons (Burrone et al., 2002; Hua and Smith, 2004), whereas here we specifically target

inhibitory interneurons. The plasticity responses of excitatory and inhibitory neurons differ in

many respects (Bi and Poo, 1998), and it is plausible that electrical silencing by Kir2.1

channels affects the morphology of excitatory, but not inhibitory neurons. Next, gene

delivery methods used in previous work induce much higher levels of Kir2.1 expression than

what we report here with oncoretroviral delivery. For instance, calcium-phosphate

transfection of Kir2.1 into cultured hippocampal neurons lowers the neurons' input resistance

from 166+/-11 to 63+/-25 MK, which corresponds to a 10,000 pS increase of Kir2.1

conductance (Burrone et al., 2002). In contrast, our oncoretroviral vector delivery of ESkir2.1

results in expression levels that only introduces 600 pS of resting leak conductance and

lowers the input resistance of GCs from 1147+/-59 to 655+/-76 M9, even though neuronal

firing is largely eliminated. Thus, it is possible that the changes in neuronal morphology

previously reported were not solely due to reduction of neuronal excitability by Kir2.1

activity, but to additional effects resulting from very high levels of expression.

Reduction of sensory input by olfactory deprivation has been shown to modify

synaptic structure of GCs (Saghatelyan et al., 2005). We have recently confirmed this



observation using genetic labeling of postsynaptic glutamatergic densities with the PSD95-

GFP marker (Kelsch et al., 2009). In addition, we observed that whereas NaChBac did not

affect the density of PSD95-GFP synapses in normal conditions, it blocked the synaptic

changes triggered by olfactory deprivation (Kelsch et al., 2009). These observations suggest

an interaction between sensory input and intrinsic membrane excitability to achieve a

minimal level of neuronal activity necessary for the normal development of synapses in GCs.

Our current results indicate that this principle also extends to neuronal survival, since there

seems to be a minimum threshold of neuronal activity required for the integration of young

GCs into the OB. This threshold level of activity can similarly be provided by a combination

of synaptic input and intrinsic membrane excitability. Our experiments indicate that the

elevation of intrinsic excitability via NaChBac expression is sufficient to counteract the

reduction of sensory input. Reaching this minimal level of activity both rescues young GCs

from death and allows them to acquire normal synaptic organization in an odor-deprived OB.

Determinants of overall activity level in new neurons

What drives overall activity levels, and hence survival of new adult-born neurons during the

critical period? One feature of the critical period is that it coincides with the onset of synapse

formation in GCs, and this has led previous studies to primarily focus on the role of phasic

synaptic input, as regulated by sensory experience, in new neuron survival. In addition,

during this critical period the intrinsic conductance (e.g. A-type potassium channels, voltage-

gated sodium channels) of new neurons undergo major changes as the neurons mature. Our

findings show that in addition to synaptic input, membrane conductance, as determined by

the repertoire of ion channels expressed by new neurons, may play a pivotal role in regulating

integration and survival. Variability in membrane conductance between neurons of the same
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type has been shown to be significant (Marder and Goaillard, 2006), and fluctuations in the

intrinsic excitability of young neurons could result in differing levels of synaptic input

required for their survival. In addition, the intrinsic excitability of OB neurons is strongly

modulated by centrifugal innervation originating from other parts of the brain. In particular,

cholinergic stimulation induces long-lasting depolarizations in GCs, which facilitate

persisting firing modes (Figure S2 and Pressler et al., 2007). These phenomena could account

for the observation that cells rendered hyperexcitable by NaChBac expression are able to

survive with reduced levels of synaptic input resulting from olfactory deprivation or

NMDAR ablation. In this manner, the overall level of activity, as determined by the

combination of synaptic inputs received and intrinsic membrane properties, drives integration

of new neurons into a circuit.
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Figure 1. Decreased intrinsic neuronal activity via ESKir2.1 expression

compromises the survival and integration of adult-generated neurons

(A) Current-voltage relationship in control (mCherry*) and ESKir2.l* neurons. Neurons

were clamped at -70 mV and stepwise voltage was applied from -140 to 0 mV.

(B) ESKir2. l neurons displayed larger steady-state leak currents than control neurons.



(C) The amount of current sufficient to trigger action potentials in control neurons (left)

was below the threshold necessary to elicit action potentials in new neurons expressing

ESKir2.1 (right).

(D) Relative to control neurons at 16-18 dpi, ESKir2.1 expression hyperpolarized

neurons by 14±2.4 mV (left, ***p < 0.000003; n = 13 neurons), decreased their input

resistance by 492 100.3 MA (center, ***p < 0.0002; n = 11 neurons), and increased the

minimal amount of current required to reach spiking threshold by 0.427±0.13 nA (right,

**p < 0.004; n = 10 neurons).

(E) Normalized survival ratios (Number of EGFP* cells, including double-labeled cells,

divided by the number of singly labeled mCherry* cells, normalized to the 7 dpi value) of

ESKir2.1/hrGFP* and EGFP* neurons. By 28 dpi, ESKir2.1* neurons survived

significantly less well than control neurons (red line; -56t12%; n = 4 bulbs each group;

**p < 0.002) while EGFP did not have an effect (black line; p < 0.636; n = 4 bulbs).

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

See also Figure Si.
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(A) Carbachol induced a long-lasting after-depolarization-potential (ADP) in 18 dpi GCs.

Additionally, carbachol increased spike numbers upon suprathreshold stimulation.

(B) Carbachol enhanced membrane excitability of 28 dpi GCs by increasing spike

numbers upon suprathreshold stimulation, but did not induce the long ADP observed at

18 dpi.

(C) (Upper panel) The after-depolarization-potential (ADP) induced by carbachol was

much longer in 18 dpi than in 28 dpi neurons. (Lower panel) The amplitude of ADP

induced by carbachol was significantly larger in 18 dpi than in 28 dpi neurons.

(D) (Upper left and center) At 18 dpi, new control neurons (mCherry*) recorded in

voltage-clamp mode displayed > 2 nA of voltage-sensitive sodium inward current at -10

mV, but none at -40 mV (red trace). In contrast, NaChBac* neurons (red trace, lower left

and center) had a 762±119 pA slow inward current opening at -43±2.1 mV (n = 6

neurons) and >2 nA of inward current at -20 mV. In current-clamp mode (right), a 200

ms pulse of positive 150 pA current injection generated repetitive action potentials in

control neurons (upper right) whereas repetitive action potentials with sustained

depolarization (608±68 ms, n = 6 neurons) were induced in NaChBac* neurons (red trace,

lower right).

(E) In current-clamp mode, control neurons (top trace) did not fire action potentials,

while NaChBac expression resulted in spontaneous, repetitive firing at resting membrane

potential (middle trace). A closer look at the NaChBac trace (bottom left) shows that

NaChBac* neurons received functional synaptic inputs as indicated by frequent

spontaneous synaptic events. These neurons fired action potentials mediated by



endogenous sodium channels riding atop NaChBac-mediated depolarization (bottom

right).

(F) All passive electrical properties in NaChBac* neurons remained similar to control

neurons except for a significantly higher rate of spontaneous firing (NaChBac,

0.0240.007 Hz; Control, 0.004±0.004 Hz; *p <0.01; Mann-Whitney test; n = 6 neurons in

each group).

(G) Cell survival ratios of neurons with increased intrinsic excitability. NaChBac*

neurons survived significantly better than control neurons at 21 dpi (red line; 22±6%; n =

4 bulbs; **p < 0.001) and 28 dpi (31±4%; n = 10 bulbs; ***p < 0.0001). The non-

conducting mutant NaChBac E191K (black line) did not alter survival.

(H) NaChBac increased the relative survival of adult-generated neurons by a significantly

larger factor in the sensory-deprived compared to the non-deprived OB (42±14%; *p

<0.05; n = 4 deprived bulbs, n = 4 control bulbs; paired sample t-test).

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

See also Figure S2.
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Figure 3. NaChBac* neurons receive normal synaptic input and display identical

morphological characteristics as wild-type neurons

(A) Spontaneous excitatory postsynaptic current (sEPSC) was recorded in NaChBac* or

mCherry* neurons at 16 and 28 dpi.



(B) NaChBac* neurons had similar sEPSC frequency and amplitude to control neurons in

both the early (16-18 dpi) and late phase (28-30 dpi) of the critical period for survival.

(C) 3-dimensional Neurolucida reconstructions of representative granule neurons. Scale

bar represents 100 [tm.

(D) Confocal images showing representative dendrite sections. Scale bar represents 20

[Lm.

(E-G) NaChBac* neurons in the OB did not display altered apical length (p < 0.78; n =

20-25 neurons per group) (C), dendritic branching (p <0.39; n = 14-16 neurons per

group) (D) or apical spine density (p < 0.33; n = 8-10 neurons per group) (E).

Two-tailed t-test used for statistical analysis. Error bars represent SEM.
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Figure 4. Increased intrinsic neuronal activity protects NMDAR-deficient neurons

from death.

(A) Application of 100 RM NMDA activated NMDAR-mediated currents measured at

+70 mV in a single control neuron (mCherry*) at 18 dpi (inset). The voltage ramp



protocol, from -110 to +70 mV, performed before (black arrow) and during NMDA

application (red arrow) showed characteristics of outward-rectifying NMDA currents (red

trace) evoked by 1 mM Mg2+ present in bath solution.

(B) Expression of the NaChBac-Cre construct completely eliminated NMDAR-mediated

currents as examined by application of 100 ptM NMDA (inset). The I-V curve remained

unchanged before (black trace) and after (red trace) NMDA application.

(C) 100 [M NMDA application elicited 220±29 pA NMDAR-mediated current in 18 dpi

control neurons but none in neurons expressing the NaChBac-Cre construct (n = 4

neurons in each group).

(D) Survival rates of control (EGFP/Cre in WT), NRI'1- (EGFP/Cre in NR1'/'),

NaChBac* (NaChBac/Cre in WT) and NR1'- NaChBac* neurons (NaChBac/Cre in

NR1"/) in the OB. As expected, NaChBac* neurons survived significantly better than

control at 28 dpi in wild-type OBs (red circles; 34.64±12.17%; *p <0.05; n = 5 bulbs).

NMDAR-deficient neurons were completely eliminated by 28 dpi (blue triangles; -

96.3±0.1%; ***p <0.0001; n = 3 bulbs) but survived as well as control neurons when

they expressed NaChBac (black squares; p <0.1290; n = 5 bulbs).

(E) Neurolucida trace images showing representative distributions of EGFP* and

mCherry* cells within representative OB sections at 28dpi.

Two-tailed t-test used for statistical analysis. Error bars represent SEM. See also Figure

S3.
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Figure S1. Electrophysiological properties and spine density of ESKir2.1 neurons

(A and B) Leak currents in 7 dpi neuroblasts measured by sweeping the membrane

voltage from -90 to -20 mV at a rate of 35 mV/s. Control neuroblasts (A) had

significantly lower levels of linear leak currents than ESKir2. 1+ neuroblasts (B).

(C and D) Representative traces showing membrane potential changes in response to

current injection in control (C) and ESKir2.1* neuroblasts (D). ESKir2.1* neuroblasts

were hyperpolarized and required larger current injection to depolarize to levels of

membrane potential similar to those of control neuroblasts.

(E-G) At 7 dpi, neither control nor ESKir2. I+ neuroblasts had voltage-gated sodium

currents. ESKir2.l* neuroblasts were more hyperpolarized (F) and had lower input

resistances (G) than control neuroblasts.

(H) ESKir2.1* neuroblasts required 70 pA more of current injection than control

neuroblasts to reach a membrane potential of -40 mV at 7 dpi.

(I) Spontaneous excitatory postsynaptic current (sEPSC) in ESKir2.1* or mCherry*

neurons at 18 and 26 dpi.

(J) In the early phases of maturation (17-19 dpi) the frequency and amplitude of sEPSCs

were similar for control and ESKir2.1 neurons (n = 7-9 neurons in each group). In the

late phase of maturation (26-28 dpi) the frequency of sEPSCs was similar for control and

ESKir2.l* neurons, but the amplitude of sEPSCS was significantly increased in

ESKir2.1* neurons. (26-28 dpi; n = 8-9 neurons in each group; *p=0.0056).



(K) Confocal images of representative apical dendrites of ESKir2. I+ and control neurons

at 28 dpi. Scale bar represents 20 [tm.

(L) The density of spines in the apical dendrites was similar for control and ESKir2. I+

neurons (n = 21-22 neurons in each group).

Two-tailed t-test used for statistical analysis. Error bars indicate SEM.
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Figure S2. Expression of either ESKir2.1 or NaChBac does not alter the distribution

of migrating neuroblasts within the rostral migratory stream (RMS), and the

muscarinic agonist carbachol induces long depolarizations in adult-born GCs

(A) Confocal images showing the distribution of migrating NaChBac* and mCherry*

neuroblasts in the RMS within the OB at 7 dpi. "A" and "P" indicate the anterior and

posterior sections of the bulb, respectively. Scale bar represents 100 sm.



(B) EGFP+/mCherry+ cell ratios in the posterior, middle, and anterior portions of the

RMS remain unchanged by expression of NaChBac at 7 dpi (n = 6-12 bulb sections in

each group). "A", "M" and "P" indicate the anterior, middle and posterior regions of the

bulb, respectively. The regions are defined as three equal parts that divide the entire

population of migrating neuroblasts in horizontal OB sections at 7 dpi when >99% of

neuroblasts are located within the RMS (inset diagram).

(C) Expression of ESKir2.1 did not change the migration pattern of neuroblasts at 7 dpi

(n = 14 bulb sections).

(D) Images showing the distribution of ESKir2.l and mCherry* cells within the OB at

14 dpi. Scale bar represents 250 [tm.

(E) Images showing the distribution of ESKir2. I+ and mCherry* cells in the OB at 28 dpi.

Scale bar represents 100 [im.

(F) Carbachol induced a long-lasting after-depolarization-potential (ADP) in 18 dpi GCs

and increased spike numbers upon suprathreshold stimulation.

(G) Application of 10 mM atropine, a muscarinic receptor antagonist, prevented the

depolarizing action of carbachol in 18 dpi cells.

(H) All cells studied at 18 dpi had ADPs triggered by carbachol, which was blocked by

atropine. In contrast, carbachol exposure only induced ADPs in 50% of the cells at 28

dpi.

Two-tailed t-test used for statistical analysis. Error bars indicate SEM.
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Figure S3. NMDAR-deficient neurons rescued by up-regulating intrinsic electrical

activity develop a similar morphology to control neurons and receive AMPAR-

mediated synaptic input.

(A) Confocal images of representative apical dendrites at 28 dpi, of NR -'~ neurons that

express NaChBac and of control neurons. Scale bar represents 20 pm.

(B) Representative electrophysiological recording trace showing that NR I'~ neurons

expressing NaChBac receive AMPAR-mediated synaptic input.
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Supplemental experimental procedures

Retroviral constructs

The cDNA for NaChBac was obtained from David Clapham (HHMI, Children's Hospital,

Harvard Medical School, Boston). NaChBac E191K and Kir2.1 E224S (ESKir2.1) were

generated by PCR based on previously published sequences (Taglialatela et al., 1995; Yang

et al., 1995; Yue et al., 2002). Retroviral vectors were derived from a Moloney leukemia

virus with an internal promoter derived from the Rous sarcoma virus (Molar) (Kelsch et al.,

2007). Retroviral particles were produced and stored as previously described (Lois et al.,

2002). The viral titers were approximately 106 infectious units/[1. Viral constructs were

generated as follows. NaChBac-EGFP: the stop codon of NaChBac was eliminated by PCR

and fused in frame to the cDNA of EGFP (Kelsch et al., 2009). NaChBac-Cre: the stop codon

of the NaChBac-EGFP fusion was eliminated by PCR, and linked by a foot-and-mouth

disease (FMDV) virus 2A sequence to the cDNA of Cre. ESKir2.1-hrGFP: the cDNA of

ESKir2.1 was cloned downstream from the encephalomyelocarditis (EMC) virus internal

ribosomal entry site (IRES), and the IRES-ESKir2.1 cassette was subcloned downstream

from the humanized recombinant GFP (hrGFP) cDNA. PalmEGFP-NaChBac: the

palmitoylation sequence from the GAP43 gene was first added to the N-terminus of EGFP.

The stop codon of the palmitoylated version of EGFP was eliminated by PCR and linked by a

FMDV 2A picornavirus sequence to the cDNA of NaChBac. PalmEGFP-IRESKir2. 1: the

IRES ESKir2.1 cassette was subcloned downstream from palmitoylated EGFP.



Retroviral injection into animals

8-week old female Sprague-Dawley rats (Charles River and Taconic) and 'floxed' NMDA-

receptor subunit 1 mice (Tsien et al., 1996) were stereotaxically injected with 1

tl/hemisphere and 0.5 sl/hemisphere of retroviral vectors respectively, after anesthesia with

ketamine/xylazine solution. The stereotaxic coordinates were 1.2 mm anterior from bregma,

1.6 mm lateral from the midline, and 3.1 mm ventral from the brain surface in rats (Kelsch et

al., 2009), and 1.0 mm anterior, 1.0 mm lateral and 2.3 mm ventral in mice.

Histology

Rats were over-anesthetized with isofluorane (Baxter), while mice were given an overdose of

avertin, before they were perfused intracardially, first with phosphate buffer saline (PBS) and

then with 3% paraformaldehyde (PFA). The bulbs were incubated with 3% PFA overnight,

and cut horizontally with a Leica vibratome into 45 tm sections. For immunocytochemistry,

the sections were first blocked with blocking solution containing bovine serum albumin (3

mg/ ml PBS), and 0.25% Triton X-100 in PBS, and incubated overnight with a polyclonal

rabbit anti-GFP antibody (Chemicon; AB3080) diluted 1:3000 in blocking solution. Sections

were washed 4 times in PBS, for 15 min each time, before a 2-hour incubation at room

temperature with Alexa Fluor@ 488 or 555 goat anti-rabbit secondary antibody (Molecular

Probes, catalog Al 1008) diluted 1:700 in blocking solution. The sections were washed 4

times in PBS, for 15 min each time, before mounting on slides with mounting medium (Gel

MountTM; Sigma).



Survival ratio analysis

Two viruses were mixed at an approximate 1:1 ratio for survival analysis. One of the viruses

carried the construct encoding mCherry, while the other carried one of a range of constructs:

hrGFP linked to ESKir2.1 by an EMC IRES, EGFP alone, NaChBac or NaChBac E191K

fused to EGFP (NaChBac-EGFP or NaChBacE191K-EGFP), and Cre Recombinase linked

with the 2A linker to EGFP, NaChBac-EGFP or NaChBacE191K-EGFP (NaChBac-Cre or

NaChBacE191K-Cre). Fluorescently labeled cells were quantified with the aid of the

Neurolucida software (MicroBright Field Inc.). The survival ratio is defined as the total

number of EGFP-positive cells (including double-labeled cells) divided by of the number of

singly labeled mCherry-expressing cells. The ratio of EGFP* to mCherry* neurons at 7 days

post infection (dpi) was used to normalize all data at subsequent time points for comparison,

hence ratios at all subsequent time points were relative to the 7 dpi ratio. Three to 7 entire

sections per olfactory bulb were analyzed to collect at least 400 counted cells in each bulb.

The mean survival ratio from each bulb was treated as a single sample.

Morphological analysis

Viruses carrying constructs for palmitoylated EGFP connected by a FMDV 2A linker to

either NaChBac or NaChBacE191K were injected separately into each SVZ in a single

animal. Coronal sections 350 im-thick were made of each olfactory bulb. The labeled

neurons were imaged with a two-photon microscope (Sutter Instruments) with a 60X

objective lens. Serial reconstruction and dendrite analysis was performed with the

Neurolucida software by a blinded second experimenter. Confocal image stacks were taken

with an Olympus Fluoview laser confocal microscope (Olympus) with a 60X objective lens,

a zoom of 1.5 and at z-intervals of 0.5 tm.



Nostril occlusion

The outer edges of one nostril were cauterized with a high temperature cautery tip (Bovie

Aaron Change-A-Tipi") and pinched with forceps to seal together. 500 pl of tissue adhesive

(Vetbond TM , 3M) was dispensed onto the outer surface of the cauterized nostril as an

additional seal. The effectiveness of nostril occlusion was examined 10 days after the surgery

after recuperation of the cauterization wound.

Electrophysiological recordings

Animals were given an overdose of ketamine/xylazine then perfused intracardially with ice-

cold slicing solution containing (in mM): 212 sucrose, 3 KCl, 1.25 NaH2PO 4, 26 NaHCO 3, 7

MgC 2, 10 glucose (308 mOsm, and pH 7.3). Bulbs were incubated in ice-cold cutting

solution and cut horizontally into 350 tm slices with a Leica microtome at a speed of 0.08

mm/s. Slices were incubated for 30 min at 35*C, for recovery, in carbogenated recording

solution containing (in mM): 125 NaCl, 2.5 KCI, 1.25 NaH2PO 4, 26 NaHCO 3, 1 MgCl 2 , 2

CaCl2, 20 glucose (312 mOsm, and pH 7.3). Fluorescent-guided whole-cell patch clamp

recordings were performed with a MultiClamp 700B amplifier (Axon Instruments). The

pipette solution contained (in mM): 2 NaCI, 4 KCl, 130 K-gluconate, 10 HEPES, 0.2 EGTA,

4 Mg-ATP, 0.3 Tris-GTP, 14 Tris-phosphocreatine (pH 7.3). Successful patching onto the

target cell was confirmed by identifying a fragment of fluorescent membrane trapped inside

the pipette tip during or after the recording. Pipette resistance ranged from 5 to 8 M , and

the pipette access resistance was always less than 16 MQ after series resistance

compensation. The junction potential was not corrected throughout the study. For

spontaneous EPSC (sEPSC) recording, the neuron was held at -77 mV and synaptic events

were collected at 25'C. sEPSC contributed to the majority of spontaneous events because
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-98% of events could be blocked by 100 ptM D, L-AP-5 and 20 [tM NBQX (Sigma) at the

end of the recording. Inhibitory blockers such as bicuculline were not included during sEPSC

recording because they triggered frequent EPSC bursting input in granule neurons, which

precluded further analysis. NMDAR-mediated current was recorded with pipette solution

containing (in mM): 125 Cs-Methanesulfonate, 4 CsCl, 0.2 Cs-EGTA, 2 NaCl, 10 HEPES, 4

Mg-ATP, 0.3 Na-GTP, 10 Tris-phosphocreatine, 5 QX-314, and examined by applying 100

[tM NMDA in recording bath solution containing (in tM): 1 TTX, 10 NBQX, 5 Glycine, 20

BMI. It was necessary to record as late as 18 dpi since all control granule cells received

NMDAR-mediated current by then. NMDAR elimination by Cre recombinase in NR1"

mice was verified by patch clamp recordings only on neurons expressing both Cre

recombinase and NaChBac-EGFP since the number of neurons expressing both Cre

recombinase and EGFP was dramatically reduced by 18 dpi and too few surviving neurons

remained for recording.

Analysis of electrophysiological data

Data was acquired and analyzed with pClamp9 software (Axon Instruments), and sEPSCs

were analyzed with Mini Analysis Program (Synaptosoft Inc.). Only morphologically mature

granule neurons with at least 800 pA of TTX-sensitive sodium current measured at -20 mV,

and resting membrane potential more negative than -55 mV, were included in the 14 dpi and

28 dpi analyses.



Statistical analysis

The Mann-Whitney test was used for comparing the frequency of spontaneous firing in

NaChBac* and control neurons at resting membrane potential to determine statistical

significance (Figure 2C). To analyze survival rates in sensory-deprived versus control bulbs,

the paired Student's t-test was used since these were paired bulbs of the same animal (Figure

2E). All other data was analyzed with the two-sample two-tailed Student's t-test in OriginPro

8 (Origin Lab Corporation). Data was reported as mean ± SEM.
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ABSTRACT

Electrical activity regulates the manner in which neurons form connections to each other.

However, it remains unclear whether increased single-cell activity is sufficient to induce

changes in synaptic connectivity of that neuron or if a global increase in activity of the

circuit is necessary. To address this question, we genetically increased neuronal

excitability of individual adult-born neurons in vivo in the dentate gyrus via expression of

a voltage-gated bacterial sodium channel. We observed that an increase in excitability of

new neurons in an otherwise unperturbed circuit leads to changes in both their input and

axonal synapses. Furthermore, the activity-dependent transcription factor Npas4 is

necessary for the changes in these neurons' input synapses, but is not involved in changes

to their axonal synapses. Our results reveal that an increase in cell-intrinsic activity is

sufficient to alter a neuron's synaptic connectivity with the hippocampal circuit, and that

Npas4 is required for activity-dependent changes in input synapses.

Author Contributions: Shuyin Sim designed the experiments, designed and generated retroviral
vectors, performed intracranial injections, collected and analyzed the data. Chia-Wei Lin
performed electrophysiological recordings. Shuyin Sim, Yingxi Lin and Carlos Lois wrote the
manuscript.



INTRODUCTION

The manner in which adult-born neurons are incorporated into the DG is likely to be

important in shaping new memory traces during adult life. It is thought that the addition of

new neurons to the adult dentate gyrus (DG) of the hippocampus serves as a substrate for

experience-dependent learning and memory throughout life (Aimone et al., 2006). The

ablation of new neurons in the DG results in deficits in hippocampal-dependent processes

such as spatial memory (Imayoshi et al., 2008). These neurons are generated in significant

numbers - new granule cells (GCs) generated in a month constitute about 6% of the total

number of cells in the DG in adult rodents (Cameron and McKay, 2001). Furthermore, new

neurons display enhanced synaptic plasticity (Schmidt-Hieber et al., 2004), and are

functionally integrated into the existing circuitry (Jessberger and Kempermann, 2003).

It is known that integration of neurons into circuits is affected by activity. Not only is

the production and subsequent survival of GCs in the DG sensitive to activity (Kee et al.,

2007; Kempermann et al., 1997; Tashiro et al., 2006; van Praag et al., 1999), but their wiring

in the DG circuit is also activity-dependent. In vitro, the size of large mossy terminals

(LMTs) on the axons of DG GCs is affected by changes in spiking activity (Galimberti et al.,

2006), while in vivo, experimentally induced seizures profoundly alter the connections made

by adult-born GCs to the DG circuit (Parent et al., 1997). After seizures, there are several

changes in the synapses, including increased number of large spines and the persistence of

basal dendrites (Jessberger et al., 2007).

Understanding the factors underlying activity-dependent connectivity in adult-born

neurons is important not only to understand the basis of lifelong learning and the pathologic

basis of epilepsy, but also to develop neuronal replacement therapies for neurodegenerative

diseases. In a seizure, or in learning paradigms used to stimulate activity in the DG, general



levels of activity in the brain are increased, so it is unclear if the observed changes in

connectivity result directly from the increased activity of an individual new neuron, indirectly

via elevated activity of other neurons in the circuit in which the new neurons are embedded,

or a combination of both. To investigate how the level of neuronal activity of a single

developing neuron affects its integration into an unperturbed circuit, we genetically increased

excitability in individual GCs by introducing the voltage-gated sodium channel NaChBac via

oncoretroviruses into neuronal progenitors in the DG. We then examined the genetic basis for

these alterations by deleting genes in individual neurons via retroviral delivery of Cre

Recombinase into new neurons in conditional knockout mice. Our experiments reveal that

elevation of neuronal excitability of individual new neurons is sufficient to induce some of

the changes in synaptic connectivity that have been observed in seizures, such as aberrant

localization of synapses within the DG and enlarged spines. Cell-autonomous increased

neuronal activity leads to both input and output connectivity alterations that increase

inhibition on the hyperexcitable neuron and dampen its excitatory influence on its

downstream targets. The transcription factor Npas4 is required for the activity-induced

changes in synaptic inputs to these neurons, but not for changes to output synapses in their

axons. These observations indicate that cell-autonomous increases in excitability can effect

profound changes in neuronal connectivity and that separate genetic programs regulate

activity-dependent changes in input and output synapses.

RESULTS

Expression of NaChBac in adult-born DG granule cells elevates neuronal excitability

Changes in brain activity, such as those triggered by seizures or behavior, affect the

connectivity of new neurons born in the adult DG (Kron et al., 2010). These changes in



connectivity could be due to the increased activity of the new neurons, or of the circuit in

which the neurons are embedded, or a combination of both. To isolate the contribution of

elevated activity in new neurons, we increased the activity of individual new neurons cell

autonomously with the ion channel NaChBac. NaChBac is a bacterial voltage-gated sodium

channel that has both a more negative activation threshold than native sodium channels in

GCs (approximately l5mV more negative) and a longer time to inactivation (hundreds of

milliseconds compared to less than 1 ms in mammalian sodium channels) (Bean, 2007; Ren

et al., 2001). Because of its unique electrical properties, NaChBac was previously used to

induce hyperexcitability in Drosophila pacemaker neurons (Nitabach et al., 2006). More

recently, we took advantage of NaChBac-induced depolarization to demonstrate that precise

firing patterns are not essential for integration of adult-born granule neurons into the

olfactory bulb (Kelsch et al., 2009; Lin et al., 2010).

To investigate whether cell-autonomous increases in excitability are sufficient to alter

neuronal connectivity in adult-born DG granule neurons, we used oncoretroviruses to

introduce NaChBac into individual GCs in adult mice. Because this class of retroviruses

cannot transport their genetic material across the intact nuclear envelopes of non-dividing

cells (Lewis and Emerman, 1994), they selectively infect dividing cells in the hilus region of

the DG, labeling and effectively birthdating new GCs. We used a titer of oncoretrovirus that

sparsely labeled GCs in the DG, thus keeping the vast majority of the circuit unaltered. We

performed patch clamp electrophysiological recordings of labeled GCs at 17 days post

infection (dpi) and found that a level of current injection (15pA) that does not induce spiking

in control GCs triggers action potentials and prolonged depolarization in NaChBac-positive

GCs of the same developmental stage (Figure IA, red trace). These results confirm that



expression of NaChBac in new DG GCs increases their excitability in a cell-autonomous

manner.

NaChBac-induced excitability results in additional GABAergic input to the cell body

In many circuits, surrounding neurons react to individual neurons' activity in order to keep

circuit activity within a range that prevents disruption of function (Jakubs et al., 2006;

Turrigiano and Nelson, 2004). DG GCs only start receiving glutamatergic input late in

development, around 21 days post-birth, but receive GABAergic input much earlier. These

cells first receive extrasynaptic input by ambient GABA starting 3 days after they are

generated, followed by GABA-mediated synaptic inputs as early as 7 days after their birth

(Ge et al., 2006). For this reason, we hypothesized that when hyperexcitable adult-born GCs

are introduced into the DG circuit, one of the earliest responses of the surrounding circuit

would be to alter the GABAergic input targeted to NaChBac' neurons. To test this

hypothesis, we performed immunostaining against the vesicular GABA transporter (VGAT),

which is present in the vast majority of the presynaptic terminals of inhibitory interneurons

(Chaudhry et al., 1998). We quantified VGAT+ puncta on cell bodies, as this measurement

was more reliable than counting the number of contacts on dendrites.

At 9 dpi there was no significant difference in the density of VGAT contacts with the

soma of either control or NaChBac* neurons. However by 13 dpi there were significantly

more VGAT* contacts on the soma of NaChBac* neurons compared to neurons expressing

NaChBac E191K, a nonconducting variant of NaChBac (Yue et al., 2002), and this effect

persisted till at least 28 dpi (Figure IB). Parvalbumin* cells are a subset of inhibitory

interneurons that preferentially synapse onto the cell bodies of DG granule neurons (Freund



and Buzsaki, 1996) while GAD65 is an isoform of glutamic acid decarboxylase (GAD), an

enzyme present in a large proportion of inhibitory interneurons (Erlander and Tobin, 1991).

We confirmed the trend of increased GABAergic contact in NaChBac* neurons using

parvalbumin and GAD65 immunolabeling (Figures 1C and SlA). To verify if our

observations regarding perisomatic GABAergic contact corresponded to a functional increase

in inhibitory input, we performed electrophysiological recordings to measure spontaneous

inhibitory postsynaptic potentials (sIPSCs) of individual neurons. We co-injected a mixture

of retroviruses, one carrying the construct for NaChBac fused to GFP and the other carrying

the construct for mCherry, into the DG and recorded from control neurons (mCherry-only)

and NaChBac* neurons in the same DG at 17 dpi. mCherry was used to label control neurons

since these cells would appear red and could be easily distinguished from the GFP-expressing

NaChBac* neurons. Indeed, there was an increase in both the frequency and amplitude of

sIPSCs received by NaChBac* GCs relative to control GCs (Figure ID). These results

indicate that individual adult-born DG GCs with elevated neuronal excitability receive more

GABAergic inputs than age-matched wild-type GCs.

GABAergic innervation to adult-born GCs is initially depolarizing due to high levels

of expression of the K*/Cl-/Na* co-transporter NKCC1 relative to the K'/Cl~ co-transporter

KCC2 (Clayton et al., 1998; Plotkin et al., 1997). The subsequent upregulation of KCC2 as

cells mature lowers the intracellular concentration of Cl~ and eventually makes the GABA

reversal potential more negative than the resting membrane potential, rendering GABAergic

innervation hyperpolarizing (Rivera et al., 1999; Wang et al., 2002). This switch from

depolarizing to hyperpolarizing GABAergic inputs occurs after 14 dpi in adult-born GCs (Ge

et al., 2006). The increase in inhibitory input to NaChBac* GCs occurs by 13 dpi (Figure IB).

At 13 dpi, we also observed an increase in the number of KCC2-positive NaChBac* GCs



compared to controls (Figure SIB). The increase in the percentage of KCC2* cells induced

by NaChBac expression suggests a premature reduction in Cl concentration, which would in

turn result in an earlier switch to inhibition by GABA. This accelerated maturation could

enable the increase in GABAergic input to dampen the hyperexcitable neurons earlier in

development. PSA-NCAM (polysialylated neural cell adhesion molecule), a marker for

immature neurons (Seki and Arai, 1993), is also downregulated earlier in NaChBac* GCs

compared to control neurons (Figure lE).

Our results indicate that NaChBac activity impacts the early integration of DG GCs

into the circuit. From an early developmental stage, hyperexcitable GCs start receiving more

GABAergic input from surrounding interneurons. In addition, cell-autonomous

hyperexcitability speeds up development of newly born GCs, suggesting that the accelerated

maturation seen after seizures is at least partly due to increased intrinsic activity of individual

new neurons (Overstreet-Wadiche et al., 2006).

Increased excitability leads to changes in excitatory glutamatergic input

Having discovered that NaChBac-induced hyperexcitability induces marked changes in

neuronal development and an increase in inhibitory inputs early on, we proceeded to study

how NaChBac affects the next phase of development of these GCs, when they start to form

excitatory input synapses. DG GCs normally begin receiving excitatory inputs, via spines

along their apical dendrites, from around 21 days post-birth, and the apical dendrites acquire

mature morphology by around 28 days. In order to examine the changes in excitatory input

received by a neuron rendered hyperexcitable by NaChBac, we infected neural progenitors in

the DG with a bicistronic retroviral vector that expresses both palmitoylated EGFP (PalmG)



and NaChBac. PalimG is localized into the membranes of infected neurons, allowing us to

visualize the full fine morphology of the neurons, including dendritic spines.

Using the bicistronic palmG: NaChBac construct, it was immediately apparent that

NaChBac* GCs exhibited some connectivity changes that were similar to those observed in

immature neurons after seizure manipulations. DG GCs migrate a small distance, about 5-10

pm, from the hilar border in the DG where neural progenitors reside, to the granule layer of

the GC where they settle and integrate into the DG circuit. Seizures induce the ectopic

migration of GCs either to the outer third of the granule cell layer or the hilar region

(Jessberger et al., 2009; Parent et al., 1997). The vast majority of NaChBac* neurons had cell

bodies correctly localized within the granule layer of the DG. We observed no NaChBac*

neurons in the outer third of the granule cell layer, but found occasional neurons in the hilar

region (Figure S2A), while no wildtype neurons were ever found there. The morphology of

these ectopic neurons was similar to their counterparts in the granule cell layer. They were

polarized, and had dendrites extending in the opposite direction of their axon. The neurons

were entirely in the hilus and their dendrites were also located solely in the hilus instead of

the molecular layer. Due to the location of their dendrites, the connectivity of these neurons

is likely to be perturbed. As mentioned above, NaChBac activity induces premature

downregulation of PSA-NCAM, which has been implicated in neuronal migration either

through its role in decreasing cell-cell adhesion (Johnson et al., 2005) or in sensing growth

factor gradients (Muller et al., 2000). It is possible that the downregulation of PSA-NCAM is

responsible for the ectopic location of some of these NaChBac* neurons. In addition to cells

found in the hilus, we also observed that cell bodies of NaChBac-positive GCs reside closer

to the hilar border than wildtype controls at 28 dpi (Figure S2B). This observation suggests



accelerated halting of the GCs within the granule cell layer that could have resulted from the

premature downregulation of PSA-NCAM by NaChBac (Figure 1E).

Mature GCs in the DG display apical dendrites that branch into the molecular layer of

the DG. During their development, newly generated GCs in the adult DG transiently display

basal dendrites extending into the hilus, which disappear by 4 or 5 days after the neuron's

birth (Shapiro and Ribak, 2006). The presence of spiny basal dendrites emanating from the

cell bodies of fully mature GCs and extending into the hilus is one of the hallmarks of

seizure-related changes in the DG (Jessberger et al., 2007; Shapiro and Ribak, 2006). About

20% of NaChBac' neurons displayed these aberrant basal dendrites while control neurons

expressing the E191K non-conducting channel never did (Figure S2C and D). The

persistence of basal dendrites beyond that time suggests that hyperexcitable neurons receive

additional synaptic inputs to their cell bodies and this input is likely to be excitatory (Ribak et

al., 2000; Thind et al., 2008).

Increase in neuronal activity via seizures also affects the formation of apical dendrites

and their synapses. When we examined the morphology of NaChBac* GCs in the granule

layers, we observed that they had shorter apical dendrites on average (Figure 2A). In

addition, the density of protrusions on apical dendrites of NaChBac' neurons was half of the

spine density of control neurons expressing the pore-dead NaChBac E191K channel at 28 dpi

(Figure 2B). There was an increase in spine density from 28 to 42 dpi for control neurons

(Figure 2B far right panel) but no further change for NaChBac' neurons. The average spine

size at 28 dpi of NaChBac* neurons was twice of that of NaChBac E191* neurons (Figure

2C, far right panel). Interestingly, the increase in spine size of NaChBac+ neurons resembles

the increased proportion of mushroom spines observed in GCs after seizure (Jessberger et al.,

2007).



To investigate whether the large protrusions on NaChBac* neurons' apical dendrites

were indeed synaptic spines, we infected new DG GCs with GFP constructs fused to PSD95,

a scaffolding protein selectively localized to the postsynaptic density of glutamatergic input

synapses (Kelsch et al., 2008). Control neurons were infected with a virus expressing only

the PSD95-GFP fusion while hyperexcitable neurons were infected with PSD95-

GFP:NaChBac, a bicistronic construct encoding both GFP-tagged PSD95 and NaChBac. We

performed immunocytochemistry against the diffuse, unclustered GFP that filled the

cytoplasm with a red secondary antibody to visualize the dendritic morphology, while

PSD95-positive clusters were identified by the direct green fluorescence from GFP. All

protrusions present on the dendrites of labeled neurons expressed GFP:PSD-95 (Figure 2C,

left panels), confirming that the larger protrusions in NaChBac* cells are postsynaptic sites.

Furthermore, larger protrusions exhibited larger GFP:PSD-95* clusters, suggesting that any

observed change in spine size could possibly indicate larger postsynaptic densities and, in

effect, larger synapses.

The morphological alterations we report here suggest that NaChBac* neurons

experience an overall decrease in the number of excitatory inputs to NaChBac* neurons.

However, although fewer in number, each individual spine in NaChBac* neurons was larger

on average than those of control neurons. To examine how these morphological changes

translated into functional differences, we measured the spontaneous EPSCs (sEPSCs) of

individual NaChBac* neurons by electrophysiological recording and found that overall

frequency of sEPSCs is significantly reduced in NaChBac* neurons (Figure 2D bottom panel,

left), whereas the average amplitude of sEPSCs was increased (Figure 2D bottom panel,

middle). These results are consistent with NaChBac* neurons having fewer but larger

synapses. Since the frequency and amplitude of sEPSCs in NaChBac* neurons changed in



opposing directions, in order to find out what the resultant current was, we calculated the

overall excitatory current received by the neurons by multiplying average frequency by

average area under each spike, for each neuron. The overall excitatory current received by

NaChBac* neurons was not significantly different from that received by controls (Figure 2D,

bottom panel, right).

Elevated excitability leads to changes in excitatory outputs at CA3

To quantify the changes in outputs of NaChBac-expressing DG granule cells, we examined

the morphology of presynaptic terminals on their axons in the CA3 region, where their main

output is.

The axons of DG granule cells synapse on multiple targets on CA3, both on

excitatory pyramidal cells and inhibitory interneurons. The axon collaterals of dentate GCs

form specialized presynaptic sites called large mossy fiber terminals (LMT). LMTs measure

between 3 to 8 pm in their greatest dimension, and form complex interdigitating connections

with CA3 pyramidal cells. DG axons also have two other types of smaller output synapses

that contact inhibitory neurons at CA3 called en passant boutons and filopodial terminals

(Acsady et al., 1998). En passant boutons are varicosities 0.5 to 2 pm in diameter distributed

along the axons of GCs, and filopodial terminals are thin protrusions emanating from the

LMT. We focused on the effects of hyperexcitability on LMTs because due to their

characteristic morphology, these presynaptic sites can be unambiguously identified by

membrane-bound GFP labeling. Expression of NaChBac decreased the overall density of

presynaptic terminals present on the axons of adult-born dentate granule cells at CA3 (Figure

3B), which suggests that the hyperexcitable neurons downregulated their overall output to



CA3. We observed that the overall density of LMTs in the axons of NaChBac* neurons was

significantly decreased in comparison with control neurons (Figure 3A and C). The

proportion of total presynaptic sites that are LMTs is also significantly reduced in NaChBac*

neurons (Figure 3D). These observations indicate that the output from hyperexcitable

NaChBac' DG GCs onto CA3 is significantly decreased.

In order to confirm we were quantifying actual presynaptic sites in our

measurements, we injected adult mice with retroviral vectors expressing Synaptophysin-GFP,

a protein selectively localized to presynaptic neurotransmitter vesicles (Wiedenmann and

Franke, 1985). Neurons were infected with a bicistronic virus encoding both Synaptophysin-

GFP and NaChBac to visualize the presynaptic sites on axons of hyperexcitable cells. Cells

in a separate DG infected with a virus encoding Synaptophysin-GFP were used as controls.

Using a red fluorescent secondary antibody against the diffuse, unclustered GFP that filled

the cytoplasm, we were able to visualize the full morphology of the axons at CA3, as well as

determine the location of synaptophysin-positive presynaptic sites, which showed up as green

GFP-positive clusters. All structures resembling presynaptic terminals as labeled by

PalmGFP were positive for GFP:synaptophysin both in wildtype neurons and those

expressing NaChBac (Figure 3E). This confirms that the structures we quantified

corresponded to presynaptic terminals on the axons of these adult-born GCs.

Our observations of output connectivity at CA3 indicate that an increase in intrinsic

excitability in adult-born GCs leads to a decrease in excitatory output at CA3. This change

could help ensure that the addition of some hyperexcitable neurons does not result in

increased excitation in the hippocampal circuits.



Activity-induced changes in input connectivity are dependent on cell-autonomous

Npas4 signaling

Two of our observations in NaChBac* neurons led us to hypothesize that the early increase of

GABAergic synapses triggered by hyperexcitability could be related to the later changes in

synaptic connectivity observed in dendrites and axons. First, one of the earliest changes

observed in the development of NaChBac* neurons was the increase in perisomatic

GABAergic inputs before 13 dpi (Figure IB). The overall current of sIPSCs received by

NaChBac* neurons was 10 times that of controls at 17dpi (Figure ID bottom panel, right). An

alteration of this magnitude so early in neuronal development could have a significant impact

on subsequent integration. Second, the premature upregulation of KCC2 (Figure SIB)

suggests that the action of GABA could be hyperpolarizing earlier in the maturation of

NaChBac* neurons. Rendering GABA hyperpolarizing on immature neurons by altering

chloride concentration is known to affect the dendritic development of adult-born GCs in the

DG (Ge et al., 2006).

BDNF (brain-derived neurotrophic factor) was a likely candidate underlying the

increase of inhibition in NaChBac* neurons, because it is regulated by activity (Ballarin et al.,

1991) and known to directly regulate the formation of GABAergic inputs (Huang et al., 1999;

Marty et al., 2000; Rutherford et al., 1997; Seil and Drake-Baumann, 2000) as well as

dendritic growth (Xu et al., 2000).

In order to study the effects of expressing NaChBac in the absence of BDNF, we

expressed Cre Recombinase, NaChBac and a fluorescent protein in individual neurons in the

DG of BDNF conditional knockout mice. The expression level of a tricistronic vector

containing the 3 abovementioned genes was too low for visualization of the labeled neurons.



In order to achieve stronger expression of fluorescent proteins, we injected a mixture of

viruses into the DG of BDNF conditional knockout mice. The first virus carried a bicistronic

construct expressing GFP and Cre Recombinase, and the 2"d virus carried an invertible

cassette with a bicistronic construct encoding both palmitoylated mCherry and NaChBac.

The invertible cassette is in the reverse 3' to 5' orientation with respect to the retroviral

promoter except in the presence of Cre Recombinase when it flips to the correct 5' to 3'

orientation and expresses both mCherry and NaChBac. In this manner, the presence of Cre

leads to the expression of mCherry and NaChBac, and simultaneously, to the deletion of the

BDNF locus in individual GCs in the BDNF conditional knockout mice. The palmitolyated

mCherry protein localizes to the membranes of such neurons, enabling the identification of

fine structural features such as synaptic spines. In this experiment we used the same dual

virus strategy in both wildtype mice and conditional knockout mice and compared results

between them.

Surprisingly, the morphological alterations as well as changes in the frequency and

amplitude of sIPSCs triggered by NaChBac were identical in neurons expressing or lacking

BDNF. This observation suggests that BDNF does not contribute to any of the changes in

connectivity triggered by NaChBac activity. Accordingly, we shifted our attention to another

candidate gene, Npas4, a transcription factor involved in the activity-dependent regulation of

inhibitory synapses in hippocampal neurons (Lin et al., 2008). We hypothesized that the

increased inhibition observed in hyperexcitable new DG GCs could be due to the expression

of Npas4. To study the involvement of Npas4 in connectivity changes triggered by

hyperexcitability, we used the same strategy described for BDNF, but with Npas4 conditional

knockout mice.



As described above, expression of NaChBac in wildtype adult mice results in an

increase in VGAT* perisomatic inhibitory terminals on new DG GCs (Figure IB). In

contrast, the deletion of Npas4 in individual hyperexcitable new GCs blocked the increase in

VGAT terminals triggered by NaChBac both at 17 and 28 dpi (Figure 4A). Knocking out

Npas4 alone in DG GCs, using a virus carrying a GFP-Cre Recombinase construct, has no

effect on the number of VGAT* puncta at 17 dpi and leads to a very small increase at 28 dpi

(Figure 4A). Furthermore, Npas4 signaling within individual adult-born neurons in the DG is

necessary to trigger the changes in dendritic morphology induced by NaChBac* neurons

(Figures 4B, D and E). Deletion of Npas4 in new GCs blocked the changes caused by

NaChBac expression in dendritic length, spine density and size. Dendritic length and spine

density in NaChBac*Npas4~ neurons are indistinguishable from those of control neurons

expressing the pore-dead version of NaChBac (Figures 4B, D and S3A).

Interestingly, Npas4 was not required for activity-dependent changes in the output

synapses, because NaChBac* Npas4~ neurons still exhibited a dramatic reduction in density

of large mossy terminals at CA3 (Figure 4C). Knocking out Npas4 alone has no effect on

either dendritic or axonal synapses (Figures 4B-4E). These results demonstrate that Npas4

signaling specifically regulates activity-dependent formation of inputs to DG GCs.

DISCUSSION

Increase in electrical activity of a single new neuron is sufficient to induce changes in

connectivity

Global manipulations of brain activity via seizures or learning paradigms have demonstrated

the influence of neuronal activity on the integration and connectivity of adult-born neurons in
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the DG (Kee et al., 2007; Kron et al., 2010). However, it is unclear whether these

connectivity changes resulted directly from cell-autonomous increased firing of new neurons,

indirectly through the elevated activity in the surrounding circuit, or from a combination of

both. Here, we genetically modulate the electrical activity in individual adult-born DG GCs

and show that an increase in cell-intrinsic activity of new neurons is sufficient to cause

dramatic changes in their connectivity. NaChBac activity-induced connectivity changes in

the adult DG appear to be homeostatic, since NaChBac induces an increase in inhibitory

inputs and decrease in excitatory outputs. Furthermore, at 13 dpi, when NaChBac* neurons

display a significantly higher number of perisomatic VGAT* puncta, more NaChBac*

neurons express KCC2 than control neurons (Figure SIB). This observation is consistent

with previous reports indicating that the timing of KCC2 expression is activity dependent

(Ganguly et al., 2001). Because the upregulation of KCC2 relative to NKCC1 is correlated

with the switch between GABAergic inputs being depolarizing to hyperpolarizing (Rivera et

al., 1999; Wang et al., 2002), this suggests that the GABAergic input to NaChBac* neurons

becomes inhibitory earlier in their development than in control cells, which could serve to

dampen the heightened excitability of these neurons.

The results of a previous study seemed to suggest that global activity alterations are

necessary in vitro to effect changes in GABAergic terminals because suppression of single-

cell activity in dissociated hippocampal cultures using the potassium channel Kir2.1 did not

alter GABAergic inputs (Hartman et al., 2006). Our results show that in new DG neurons in

vivo, elevating single-cell activity is sufficient to induce changes in GABAergic input

(Figure 1B-D). It is not possible to directly compare the results from these 2 experiments as

they were produced in different conditions and systems, namely adult-generated DG neurons

in vivo versus embryonic hippocampal cultures. However, when we silenced adult-generated
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DG neurons in vivo via retroviral expression of the Kir2.1 channel we did not observe any

changes in either dendritic or axonal morphology (data not shown). These observations

suggest that the regulation of synaptic input to a single adult-born DG GC may be modulated

by increases, but not decreases in intrinsic activity.

In our study, we observed that sEPSCs received by NaChBac* neurons were of a

lower frequency of but increased amplitude than those received by control neurons, and this

was consistent with the decreased spine density but increased spine size on their dendrites

(Figure 2B and C). The overall excitatory current received was not significantly different

compared to controls (Figure 2D, bottom panel, right). In contrast the overall GABAergic

current received by NaChBac' neurons was approximately 10 times that of control neurons

(Figure ID, bottom panel, right). This finding suggests that modulating inhibition may be the

primary method by which the activity of an adult-born neuron in the DG is regulated.

An activity-dependent genetic program involving immediate early gene Npas4 governs

neuronal connectivity of adult-born neurons to the mature DG circuit

Our results reveal an intermediate step between neuronal activity and changes in synaptic

connectivity, which involves a transcription factor whose expression is activity-dependent.

The connectivity changes triggered by an increase in cell-intrinsic excitability neurons are

dependent on the immediate early gene Npas4. The role of Npas4 in these connectivity

changes is activity-dependent: deletion of Npas4 does not affect the formation of synapses in

control cells which have baseline excitability, but it blocks synaptic alterations triggered by

hyperexcitability. Although Npas4 has been shown to regulate the formation of inhibitory

inputs to CAI pyramidal cells in vitro (Lin et al, 2008), our results in DG GCs suggests that
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knocking out Npas4 alone in individual neurons does not decrease the number of inhibitory

VGAT* contacts on its soma (Figure 4A). Npas4 is expressed at extremely low levels at

baseline in DG GCs, but is upregulated with activity, for instance, during kainic acid-induced

seizures (Figure S3B). For this reason, it is not surprising that the requirement of Npas4 in

inducing an increase in inhibitory contacts is specifically activity-dependent.

Our data also suggests that eliminating cell-intrinsic BDNF in a NaChBac* GC has

no effect on altering the neuronal connectivity of these neurons. This result may be surprising

since BDNF is activity-regulated (Ballarin et al., 1991) and is involved in regulating spine

formation and size (McAllister et al., 1997; Xu et al., 2000). In addition, BDNF is a major

downstream effector of Npas4 and is responsible for formation of inhibitory inputs to CA1

pyramidal neurons (Lin et al., 2008). However, the role of BDNF in dendritic growth varies

depending on cell type and synapse location (McAllister et al., 1997). Also, BDNF plays a

developmental role in CAl via Npas4 even at baseline activity levels (Lin et al., 2008), while

in the DG Npas4 only plays a significant role in development of synaptic inputs when

neuronal activity is raised above baseline levels (Figure 4). This finding indicates that the

mechanisms regulating neuronal connectivity may be specific for different neuronal types.

Finally, Npas4 is involved in activity-dependent changes to input connectivity to

adult-born DG GCs, but not to their output connectivity in CA3 (Figure 4C). This

observation suggests that there are independent programs governing input and output

synapses, and this finding could have important implications for the structural alterations

triggered by epilepsy.

103



ACKNOWLEDGEMENTS

We thank Alberto Stolfi and Drew Friedman for help with the engineering of the viral
constructs, David Clapham for providing us with the NaChBac cDNA, Karl Deisseroth for
providing the doublefloxed inverse orf vector, Rudolph Jaenisch and Yingxi Lin for
providing the conditional BDNF and Npas4 knockout mice respectively. This work was
supported by an NIDCD RO1 grant to C.L., an M.I.T. Singleton and Chyn Duog Shiah
Memorial fellowships to C.W.L.

REFERENCES

Acsady, L., Kamondi, A., Sik, A., Freund, T., and Buzsaki, G. (1998). GABAergic cells are
the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18, 3386-
3403.
Aimone, J.B., Wiles, J., and Gage, F.H. (2006). Potential role for adult neurogenesis in the
encoding of time in new memories. Nat Neurosci 9, 723-727.
Ballarin, M., Ernfors, P., Lindefors, N., and Persson, H. (1991). Hippocampal damage and
kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain.
Exp Neurol 114, 35-43.
Bean, B.P. (2007). The action potential in mammalian central neurons. Nat Rev Neurosci 8,
451-465.
Cameron, H.A., and McKay, R.D. (2001). Adult neurogenesis produces a large pool of new
granule cells in the dentate gyrus. J Comp Neurol 435, 406-417.
Chaudhry, F.A., Reimer, R.J., Bellocchio, E.E., Danbolt, N.C., Osen, K.K., Edwards, R.H.,
and Storm-Mathisen, J. (1998). The vesicular GABA transporter, VGAT, localizes to
synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18, 9733-
9750.
Clayton, G.H., Owens, G.C., Wolff, J.S., and Smith, R.L. (1998). Ontogeny of cation-Cl-
cotransporter expression in rat neocortex. Brain Res Dev Brain Res 109, 281-292.
Erlander, M.G., and Tobin, A.J. (1991). The structural and functional heterogeneity of
glutamic acid decarboxylase: a review. Neurochem Res 16, 215-226.
Freund, T.F., and Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus 6,
347-470.
Galimberti, I., Gogolla, N., Alberi, S., Santos, A.F., Muller, D., and Caroni, P. (2006). Long-
term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated
by experience. Neuron 50, 749-763.
Ganguly, K., Schinder, A.F., Wong, S.T., and Poo, M. (2001). GABA itself promotes the
developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell
105, 521-532.
Ge, S., Goh, E.L., Sailor, K.A., Kitabatake, Y., Ming, G.L., and Song, H. (2006). GABA
regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589-
593.
Hartman, K.N., Pal, S.K., Burrone, J., and Murthy, V.N. (2006). Activity-dependent
regulation of inhibitory synaptic transmission in hippocampal neurons. Nat Neurosci 9, 642-
649.

104



Huang, Z.J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M.F., Maffei, L.,
and Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period
of plasticity in mouse visual cortex. Cell 98, 739-755.
Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., Mori,
K., Ikeda, T., Itohara, S., and Kageyama, R. (2008). Roles of continuous neurogenesis in the
structural and functional integrity of the adult forebrain. Nat Neurosci 11, 1153-1161.
Jakubs, K., Nanobashvili, A., Bonde, S., Ekdahl, C.T., Kokaia, Z., Kokaia, M., and Lindvall,
0. (2006). Environment matters: synaptic properties of neurons born in the epileptic adult
brain develop to reduce excitability. Neuron 52, 1047-1059.
Jessberger, S., Clark, R.E., Broadbent, N.J., Clemenson, G.D., Jr., Consiglio, A., Lie, D.C.,
Squire, L.R., and Gage, F.H. (2009). Dentate gyrus-specific knockdown of adult
neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16,
147-154.
Jessberger, S., and Kempermann, G. (2003). Adult-born hippocampal neurons mature into
activity-dependent responsiveness. Eur J Neurosci 18, 2707-2712.
Jessberger, S., Zhao, C., Toni, N., Clemenson, G.D., Jr., Li, Y., and Gage, F.H. (2007).
Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated
cell labeling. J Neurosci 27, 9400-9407.
Johnson, C.P., Fujimoto, I., Rutishauser, U., and Leckband, D.E. (2005). Direct evidence that
neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion
and abrogates adhesion. J Biol Chem 280, 137-145.
Kee, N., Teixeira, C.M., Wang, A.H., and Frankland, P.W. (2007). Preferential incorporation
of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat
Neurosci 10, 355-362.
Kelsch, W., Lin, C.W., and Lois, C. (2008). Sequential development of synapses in dendritic
domains during adult neurogenesis. Proc Natl Acad Sci U S A 105, 16803-16808.
Kelsch, W., Lin, C.W., Mosley, C.P., and Lois, C. (2009). A critical period for activity-
dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29,
11852-11858.
Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippocampal neurons in adult
mice living in an enriched environment. Nature 386, 493-495.
Kron, M.M., Zhang, H., and Parent, J.M. The developmental stage of dentate granule cells
dictates their contribution to seizure-induced plasticity. J Neurosci 30, 2051-2059.
Kron, M.M., Zhang, H., and Parent, J.M. (2010). The developmental stage of dentate granule
cells dictates their contribution to seizure-induced plasticity. J Neurosci 30, 2051-2059.
Lewis, P.F., and Emerman, M. (1994). Passage through mitosis is required for
oncoretroviruses but not for the human immunodeficiency virus. J Virol 68, 510-516.
Lin, C.W., Sim, S., Ainsworth, A., Okada, M., Kelsch, W., and Lois, C. Genetically
increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits.
Neuron 65, 32-39.
Lin, C.W., Sim, S., Ainsworth, A., Okada, M., Kelsch, W., and Lois, C. (2010). Genetically
increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits.
Neuron 65, 32-39.
Lin, Y., Bloodgood, B.L., Hauser, J.L., Lapan, A.D., Koon, A.C., Kim, T.K., Hu, L.S.,
Malik, A.N., and Greenberg, M.E. (2008). Activity-dependent regulation of inhibitory
synapse development by Npas4. Nature 455, 1198-1204.
Marty, S., Wehrle, R., and Sotelo, C. (2000). Neuronal activity and brain-derived
neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of
postnatal hippocampus. J Neurosci 20, 8087-8095.

105



McAllister, A.K., Katz, L.C., and Lo, D.C. (1997). Opposing roles for endogenous BDNF
and NT-3 in regulating cortical dendritic growth. Neuron 18, 767-778.
Muller, D., Djebbara-Hannas, Z., Jourdain, P., Vutskits, L., Durbec, P., Rougon, G., and
Kiss, J.Z. (2000). Brain-derived neurotrophic factor restores long-term potentiation in
polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci U S
A 97, 4315-4320.
Nitabach, M.N., Wu, Y., Sheeba, V., Lemon, W.C., Strumbos, J., Zelensky, P.K., White,
B.H., and Holmes, T.C. (2006). Electrical hyperexcitation of lateral ventral pacemaker
neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and
induces multiple behavioral periods. J Neurosci 26, 479-489.
Overstreet-Wadiche, L.S., Bromberg, D.A., Bensen, A.L., and Westbrook, G.L. (2006).
Seizures accelerate functional integration of adult-generated granule cells. J Neurosci 26,
4095-4103.
Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., and Lowenstein,
D.H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to
aberrant network reorganization in the adult rat hippocampus. J Neurosci 17, 3727-3738.
Plotkin, M.D., Snyder, E.Y., Hebert, S.C., and Delpire, E. (1997). Expression of the Na-K-
2C1 cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism
underlying GABA's excitatory role in immature brain. J Neurobiol 33, 781-795.
Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., and Clapham, D.E. (2001). A prokaryotic
voltage-gated sodium channel. Science 294, 2372-2375.
Ribak, C.E., Tran, P.H., Spigelman, I., Okazaki, M.M., and Nadler, J.V. (2000). Status
epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent
excitatory circuitry. J Comp Neurol 428, 240-253.
Rivera, C., Voipio, J., Payne, J.A., Ruusuvuori, E., Lahtinen, H., Lamsa, K., Pirvola, U.,
Saarma, M., and Kaila, K. (1999). The K+/Cl- co-transporter KCC2 renders GABA
hyperpolarizing during neuronal maturation. Nature 397, 251-255.
Rutherford, L.C., DeWan, A., Lauer, H.M., and Turrigiano, G.G. (1997). Brain-derived
neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical
cultures. J Neurosci 17, 4527-4535.
Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plasticity in
newly generated granule cells of the adult hippocampus. Nature 429, 184-187.
Seil, F.J., and Drake-Baumann, R. (2000). TrkB receptor ligands promote activity-dependent
inhibitory synaptogenesis. J Neurosci 20, 5367-5373.
Seki, T., and Arai, Y. (1993). Highly polysialylated neural cell adhesion molecule (NCAM-
H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J
Neurosci 13, 2351-2358.
Shapiro, L.A., and Ribak, C.E. (2006). Newly born dentate granule neurons after pilocarpine-
induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res 69, 53-66.
Tashiro, A., Sandler, V.M., Toni, N., Zhao, C., and Gage, F.H. (2006). NMDA-receptor-
mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442, 929-
933.
Thind, K.K., Ribak, C.E., and Buckmaster, P.S. (2008). Synaptic input to dentate granule cell
basal dendrites in a rat model of temporal lobe epilepsy. J Comp Neurol 509, 190-202.
Turrigiano, G.G., and Nelson, S.B. (2004). Homeostatic plasticity in the developing nervous
system. Nat Rev Neurosci 5, 97-107.
van Praag, H., Kempermann, G., and Gage, F.H. (1999). Running increases cell proliferation
and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2, 266-270.

106



Wang, C., Shimizu-Okabe, C., Watanabe, K., Okabe, A., Matsuzaki, H., Ogawa, T., Mori,
N., Fukuda, A., and Sato, K. (2002). Developmental changes in KCC1, KCC2, and NKCC1
mRNA expressions in the rat brain. Brain Res Dev Brain Res 139, 59-66.
Wiedenmann, B., and Franke, W.W. (1985). Identification and localization of synaptophysin,
an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell
41, 1017-1028.
Xu, B., Zang, K., Ruff, N.L., Zhang, Y.A., McConnell, S.K., Stryker, M.P., and Reichardt,
L.F. (2000). Cortical degeneration in the absence of neurotrophin signaling: dendritic
retraction and neuronal loss after removal of the receptor TrkB. Neuron 26, 233-245.
Yue, L., Navarro, B., Ren, D., Ramos, A., and Clapham, D.E. (2002). The cation selectivity
filter of the bacterial sodium channel, NaChBac. J Gen Physiol 120, 845-853.

107



108



Figure 1
A Control (mCherry) NaChBac

20mV L
1OOms

& Control (GFP)
* NaChBac

C GFP

8- ns *

6-

2

9 13 17 28

dpi
Parv

e Control (NaChBac E191 K)
* NaChBac

100 *
801
601
401
20

16 21
dpi

E Control (mCherry) NaChBac

sIPSCs 100pA
Is

2.5 1 4-

2.080- 3-
1.5 ~ 602-
1.0 - 40 I

! 0.5 E 20 o
L0.03 0 OL 0

109

an



Figure 2
A Control (E191K)

10op

Control (E191K)

NaChBac

NaChBac

Distance between soma and
furthest dendrite tip/Rm

Control (GFP) NaChBac

Apical Spine Density
3 Control (NaChBac E191K)

M NaChBac

Control (GFP) NaChR.

qP 4P 4

spines/[tm

Dendritic Spine Cross Sectional Area
:3 Control (NaChBac E191K)

- M NaChBac

28 dpi

42 dpi

40ms

Control (mCherry)

1S

S~s -40ms

~15

1.0-li

0.5

4& *

30-

20-

10.

0

NaChBac

FT
0.0 4 v ,

0.03-1

0.02-
0.01

0.00,

110

sEP



Figure 3
Control E191K

50pm
GFP

NaChBac5Upm 20pm
Synaptophysin Merge

M Control (NaChBac E191K)
M NaChBac

28 dpi 42 dpi

D r Control (NaChBac E191K)
0 NaChBac

0.010.
0.00&
0.006
0.004,
0.002.-
0.0001,,.T"

28 dpi 42 dpi

E % Presynaptic terminals that
are LMT at 28 dpi

gat W~

40-

2 0

Control NaChBac
(NaChBac E191K)

111

C

0-
*

50pm



Figure 4

17 dpi . "" ns 28dpi

a*0ns 1 *

8- 8

6 -

~ 2

C , ll" C

Control (E191 K) NaChBac+

C 28dpi total LMT density
ns

**

0.010- - I
0.00&8

p 0.006
2 0.004

0.002-

0.000 ,- jA N

D ns
* ns

NaChBac+Npas4-
** ** ns

112

Npas4-



FIGURE LEGENDS

Figure 1. Expression of NaChBac in adult-born DG granule cells elevates neuronal

excitability and results in additional perisomatic GABAergic inputs

(A) Intrinsic membrane excitability of control (mCherry*) and NaChBac* neurons at 17

dpi. Neurons were injected with stepwise 5pA current to induce membrane potential

change. 15pA of current did not induce any action potentials in control neurons (left

panel) but triggered action potentials and long depolarization's in NaChBac* neurons

(right; red trace). 25pA of current induced a single action potential in control neurons but

induced repetitive action potentials in NaChBac* neurons (blue trace).

(B) NaChBac* neurons displayed increased numbers of perisomatic VGAT* inhibitory

terminals at from 13 dpi onwards (9 dpi GFP: 5.341 t 0.269 VGAT* puncta/soma, n = 94

neurons from 5 DGs, NaChBac: 6.57 0.733 VGAT* puncta/soma, n = 72 neurons from

5 DGs, p = 0.176; 13 dpi GFP: 4.794 ± 0.322 VGAT* puncta/soma, n = 100 neurons from

8 DGs, NaChBac: 6.648 ± 0.217 VGAT* puncta/soma, n = 109 neurons from 8 DGs,

***p = 0.0005; 17 dpi GFP: 5.6098 ± 0.342 VGAT* puncta/soma, n = 56 neurons from 4

DGs, NaChBac: 7.96 ± 0.339 VGAT* puncta/soma, n = 115 neurons from 4 DGs, **p =

0.0045; 28 dpi GFP: 5.65 ± 0.325 VGAT* puncta/soma, n = 121 neurons from 6 DGs,

NaChBac: 7.76 ± 0.258 VGAT* puncta/soma, n = 115 neurons from 6 DGs, ***p =

0.0005).

(C) Confocal z-stack images of parvalbumin staining of control and NaChBac* neurons.
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(D) In voltage-clamp mode, control neurons (top panel, left trace) experienced few

spontaneous inhibitory synaptic events while NaChBac* neurons (top panel, right trace)

had frequent spikes of inhibitory inputs that were of higher amplitudes. Both frequency

(bottom panel, left) and amplitude (bottom panel, middle) of spontaneous IPSCs received

by NaChBac* neurons are higher than those received by control neurons (mCherry

control frequency: 0.248 k 0.054 Hz, n = 7 neurons, NaChBac frequency: 1.571 ± 0.381

Hz, n = 9 neurons, **p = 0.009; mCherry control amplitude: 26.42 t 2.68 pA, n = 7

neurons, NaChBac amplitude: 69.28 ± 8.9 pA, n = 9 neurons, **p = 0.001). Overall

current received by NaChBac* neurons is about 10 times that received by control neurons

(mCherry control: 0.281 ± 0.071 pA, n = 7 neurons; NaChBac: 2.9 ± 0.63, n = 8 neurons;

bottom panel, right).

(E) Significantly fewer NaChBac* neurons expressed PSA-NCAM at both 16 and 21

days post infection (dpi) compared to controls (16 dpi E191K control: 83.5% ± 1.35%, n

= 2 DGs, NaChBac: 33.57% ± 10.5%, n = 3 DGs, *p = 0.0347; 28 dpi E191K control:

32.67% ± 3.6%, n = 3 DGs, NaChBac: 11.81% ± 5.9%, n = 3 DGs, *p < 0.05)

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

See also Figure S1.

Figure 2. Elevated neuronal excitability in DG granule neurons leads to changes in

excitatory glutamatergic inputs

(A) Low magnification confocal images showing decreased dendritic length of

NaChBac* neurons compared to control neurons (pore-dead NaChBac E191K; left
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panels). The distance between the furthest dendrite tip to the base of the apical dendrite is

significantly lower in NaChBac* neurons than controls at 28 dpi (far right panel; GFP

control: 238.6 ± 3.23 [tm, n = 71 neurons, NaChBac: 200.8 ± 4.35 [tm, n = 56 neurons,

***p <0.0001).

(B) High magnification confocal images showing the decreased spine density and

increased spine size in NaChBac* neurons (left panels). NaChBac* neurons have

significantly fewer spines per length of dendrite than control (NaChBac E191K) neurons

(far right panel; 28 dpi E191K control: 1.1 ± 0.05 spines/stm n = 21 images, NaChBac:

0.478 ± 0.044 spines/pm, n = 40 images, ***p < 0.0001; 42 dpi E191K control: 1.29 ±

0.052 spines/pm, n = 17 images, NaChBac: 0.316 - 0.024 spines/tm, n = 9 images, ***p

< 0.0001; 28 versus 42 dpi E191K *p = 0.0 14).

(C) All dendritic protrusions on both control and NaChBac* neurons cluster PSD95-

GFP, suggesting they represent functional excitatory input synapses. Larger spines also

exhibit correspondingly larger PDS95-GFP+ puncta (left panels). NaChBac* neurons have

significantly larger spines than control neurons at both 28 and 42 dpi (far right panel; 28

dpi E191K control: 0.636 ± 0.073 stm 2 n = 52 images from 4 DGs, NaChBac: 1.298 ±

0.15 tm2, n = 24 images from 4 DGs, ***p < 0.0001; 42 dpi E191K control: 0.513 t

0.042 tm2, n = 75 images from 5 DGs, NaChBac: 2.618 ± 0.18 sm2, n = 35 images from

8 DGs, ***p <0.0001; 28 versus 42 dpi NaChBac ***p < 0.0001).

(D) Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded in control

(mCherry*) neurons and NaChBac* neurons at 28 dpi (top panel). At 28 dpi the frequency

of sEPSCs was significantly lower for NaChBac+ neurons than control (mCherry Control:
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0.876 t 0.158 Hz, n = 6 neurons, NaChBac: 0.408 t 0.098, n = 5 neurons, *p = 0.041;

bottom panel, left) while the average amplitude was higher (mCherry Control: 5.653 ±

0.387 pA, n = 6 neurons, NaChBac: 25.46 ± 7.4 pA, n = 5 neurons, *p = 0.016; bottom

panel, middle). The overall excitatory current received by NaChBac was not significantly

different from controls (mCherry Control: 0.0266 ± 0.0059 pA, n = 6 neurons, NaChBac:

0.0224 ± 0.0043, n = 4 neurons, *p = 0.62; bottom panel, right).

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

See also Figure S2.

Figure 3. Elevated neuronal excitability in DG granule neurons leads to changes in

excitatory output targets at CA3

(A) Confocal maximal projection images showing large mossy terminals (LMTs;

arrowheads) and en passant boutons on the axons of NaChBac+ and control neurons.

(B) Axons of NaChBac* neurons showed an overall decrease in the total number of

presynaptic sites compared to controls at both 28 and 42 dpi (28 dpi E191K control:

0.0087 ± 0.0011 sites/tm n = 11 images, NaChBac: 0.0059 ± 0.00068 sites/tm, n = 11

images, *p < 0.05; 42 dpi E191K control: 0.01 ± 0.00075 sites/tm, n = 10 images,

NaChBac: 0.0056 t 0.00059 sites/tm, n = 12 images, ***p = 0.0001).

(C) NaChBac+ neurons had significantly fewer LMTs on their axons compared to

controls at both 28 and 42 dpi (28 dpi E191K control: 0.0079 ± 0.0011 LMT/[tm n = 11

images, NaChBac: 0.0031 ± 0.00043 LMT/tm, n = 11 images, **p = 0.0013; 42 dpi
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E191K control: 0.0074 ± 0.00068 LMT/[tm, n = 10 images, NaChBac: 0.0007 ± 0.00029

LMT/im, n = 12 images, ***p < 0.0001; 28 versus 42 dpi NaChBac ***p = 0.0001).

(D) The percentage of presynaptic sites that were LMTs at 28 dpi was much lower in

NaChBac* neurons than neurons expressing the pore-dead channel (E191K control:

88.24% ± 1.95%, n = 17 images, NaChBac: 40.66% 7.05%, n = 19 images, *p < 0.03).

(E) Structures resembling presynaptic terminals on the axons of both control and

NaChBact neurons accumulated synaptophysin-GFP, suggesting the change in density of

the different structures correlates with a change in presynaptic sites.

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

Figure 4. Excitability-induced changes in input connectivity are dependent on cell-

autonomous Npas4 signaling

(A) Deletion of Npas4 blocked the increase in VGAT* perisomatic contacts observed in

NaChBac* neurons at both 17 and 28 dpi. (17 dpi, GFP control: 5.61 ± 0.34 VGAT*

puncta/soma, n = 56 neurons from 4 DGs, NaChBac*: 7.96 ± 0.34 VGAT* puncta/soma,

n = 115 neurons from 4 DGs, NaChBac'Npas4-: 6.64 + 0.32 VGAT* puncta/soma, n = 84

neurons from 5 DGs; GFP control versus NaChBac* **p < 0.005; NaChBac* versus

NaChBac'Npas4~ *p = 0.03; 28 dpi, GFP control: 5.65 h 0.33 VGAT* puncta/soma n =

121 neurons from 6 DGs, NaChBac*: 7.8 k 0.26 VGAT* puncta/soma n = 115 neurons

from 6 DGs, NaChBac'Npas4~: 5.33 ± 0.64 VGAT* puncta/soma n = 70 neurons from 5

DGs; GFP control versus NaChBac* ***p = 0.0005; NaChBac* versus NaChBac'Npas4-

*p = 0.017). Absence of Npas4 alone did not decrease the number of contacts and caused
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a slight increase at 28 dpi (17 dpi, Npas4-: 5.84 ± 0.37 VGAT* puncta/soma, n = 85

neurons from 4 DGs; E191K control versus Npas4- p = 0.67; 28 dpi, Npas4-: 6.61 ± 0.26

VGAT* puncta/soma, n = 130 neurons from 5 DGs; E191K control versus Npas4- *p <

0.05).

(B) High magnification confocal maximal projection images showing that eliminating

Npas4 signaling from NaChBac* neurons effectively restored spine density and size to

resemble that of controls.

(C) Deletion of Npas4 from NaChBac* neurons had no change on the decrease in LMT

density observed (NaChBac*: 0.002 ± 0.00046 LMT/tm, n = 11 images;

NaChBac'Npas4~: 0.0037 ± 0.00086 LMT/tm, n = 18 images, p = 0.1; E191K control

versus NaChBac+ ***p = 0.0003; E191K control versus NaChBac'Npas4- **p = 0.006;

NaChBac'Npas4- versus Npas4- **p = 0.008)

(D) Absence of Npas4 signaling prevented decrease in spine density resulting from

NaChBac activity; there was no significant difference between the spine density on

control neurons and that of NaChBac* neurons lacking Npas4 (E191K control: 1.05 ±

0.001 spines/m, n = 21 images from 4 DGs; NaChBac'Npas4-: 1.03 ± 0.075 spines/pm,

n = 47 images from 4 DGs, p = 0.83; E191K control versus NaChBac* **p = 0.007;

NaChBac+ versus NaChBac'Npas4- *p = 0.0235). Deletion of Npas4 alone did not

increase spine density (Npas4-: 1.19 ± 0.063 spines/pm, n = 51 images from 5 DGs;

E191K control versus Npas4- p = 0.158).

(E) Deletion of Npas4 from NaChBac* neurons decreased dendritic spine size to almost

as low as control levels. (E191K control: 0.6 ± 0.009 pm 2, n = 24 images from 3 DGs;
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NaChBac'Npas4~: 0.69 t 0.0 18 [rm2, n = 37 images from 4 DGs, *p = 0.01). Deletion of

Npas4 alone did not decrease spine size, but led to a very small increase (Npas4-: 0.71 ±

0.027 pm2, n = 50 images from 5 DGs; E191K control versus Npas4~ *p = 0.02;

NaChBac+Npas4- versus Npas4- p = 0.69).

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

See also Figure S3.
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SUPPLEMENTAL FIGURES
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Figure S1. NaChBac activity alters the development of DG GCs

(A) Consistent with the increase in VGAT* perisomatic contacts, NaChBac* GCs have

more parvalbumin- and GAD65-positive contacts on their cell bodies.

(B) A larger proportion of neurons expressing NaChBac are KCC2-positive compared to

control neurons at both 9 and 13 dpi, suggesting KCC2 is upregulated earlier in

development in NaChBac* GCs. *p = 0.023.

Two-tailed t-test used for statistical analysis. Error bars represent SEM.
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Figure S2. Increased electrical activity via NaChBac results in ectopic localization of

DG GCs, reduced migration and persistence of basal dendrites

(A) NaChBac* GCs were occasionally found in the hilar region of the DG where control

neurons are never found.

(B) NaChBac* GCs have cell bodies that are located lower within the granule cell layer

of the DG compared to control neurons expressing the pore-dead NaChBac E191K. ***p

= 0.0004.
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(C) Basal dendrites on NaChBac* GCs displayed PSD95-positive spines.

(D) Some NaChBac* GCs displayed basal dendrites compared to none of age-matched

control neurons. *p <0.0001.

Two-tailed t-test used for statistical analysis. Error bars represent SEM.
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Figure S3. Npas4 regulates activity-dependent input synaptic morphology

(A) Absence of Npas4 signaling blocks the decrease in dendritic length observed in

NaChBac* GCs. *p = 0.0203, **p = 0.0041, *** p = 0.0009.
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(B) Npas4 expression is extremely sparse among GCs in the DG under control

conditions, but is upregulated upon neuronal activation, such as with application of kainic

acid.

Two-tailed t-test used for statistical analysis. Error bars represent SEM.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Retroviral vectors

Cloning of the different constructs was performed using standard molecular techniques.

The cDNA for NaChBac was obtained from David Clapham (HHMI, Children's

Hospital, Harvard Medical School, Boston). NaChBac E191K was generated by PCR

based on previously published sequences (Taglialatela et al., 1995; Yang et al., 1995;

Yue et al., 2002). Retroviral vectors were derived from a Moloney leukemia virus with an

internal promoter derived from the Rous sarcoma virus (Molar) (Kelsch et al., 2007).

Retroviral particles were produced and stored as previously described (Lois et al., 2002).

The viral titers were approximately 107 infectious units/[1. Viral constructs were

generated as follows. NaChBac-EGFP: the stop codon of NaChBac was eliminated by

PCR and fused in frame to the cDNA of EGFP. NaChBac-Cre: the stop codon of the

NaChBac-EGFP fusion was eliminated by PCR, and linked by a foot-and-mouth disease

(FMDV) virus 2A sequence to the cDNA of Cre Recombinase. PalmEGFP-NaChBac: the

palmitoylation sequence from the GAP43 gene was first added to the N-terminus of

EGFP. The stop codon of the palmitoylated version of EGFP was eliminated by PCR and

linked by a FMDV 2A picornavirus sequence to the cDNA of NaChBac. Synaptophysin-

GFP: the stop codon of Synaptophysin was eliminated by PCR and fused in frame to the
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cDNA of EGFP. Synaptophysin GFP-NaChBac: the stop codon of the Synaptophysin-

GFP fusion was removed by PCR and linked by a 2A sequence to the cDNA of

NaChBac. PSD95-GFP: the stop codon of PSD95 was eliminated by PCR and fused in

frame to the cDNA of EGFP. PSD95GFP-NachBac: the stop codon of the PDS95-GFP

fusion was removed by PCR and linked by a 2A sequence to the cDNA of NaChBac.

Invertible PalmMCherry: The doublefloxed inverse open reading frame vector was

obtained from Karl Deisseroth. The ChR2-EYFP cDNA was excised from the vector and

replaced with the cDNA of Palmitoylated mCherry, which was made by adding the

palmitoylation sequence from the GAP43 gene to the N-terminus of the mCherry cDNA.

Retroviral labeling in vivo

9 to 12-week old female BL6 mice (Charles River), 'floxed' NMDA-receptor subunit 1

mice (Tsien et al., 1996), 'floxed' BDNF mice (REF), 'floxed' Npas4 mice (REF), p75

knockout mice (REF) and their respective wildtype littermates, were stereotaxically

injected at 2 sites per dentate gyrus with 0.5 1d/site of retroviral vectors, after anesthesia

with avertin solution. The stereotaxic coordinates were 2.0 mm posterior from bregma,

1.5 mm lateral from the midline, and 1.95 mm ventral from the brain surface, and 2.7 mm

posterior from bregma, 1.9 mm lateral from the midline, and 2.05 mm ventral from the

brain surface.

Histology

Mice were administered an overdose of avertin, before they were perfused intracardially,

first with phosphate buffer saline (PBS) and then with 3% paraformaldehyde (PFA). The

brains were incubated with 3% PFA overnight, and cut with a Leica vibratome into 40
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[m frontal sections. For immunocytochemistry, the sections were first blocked with

blocking solution containing bovine serum albumin (3 mg/ ml PBS), and 0.25% Triton

X-100 in PBS, and incubated overnight in the relevant primary antibody diluted in

blocking solution: polyclonal rabbit anti-GFP antibody (Chemicon; AB3080; 1:2000),

rabbit anti-RFP antibody (Lifespan; LS-C60076; 1:200), mouse anti-VGAT antibody

(SYSY; Cat. No. 131 002; 1:500), mouse anti-parvalbumin (Sigma; P3088; 1:500), rabbit

anti-Npas4 (gift from Yingxi Lin; 1:10,000). Sections were washed 4 times in PBS, for

10 min each time, before a 2-hour incubation at room temperature with Alexa Fluor@

488 or 555 goat anti-rabbit or anti-mouse secondary antibody (Molecular Probes) diluted

1:700 in blocking solution. The sections were washed 4 times in PBS, for 10 min each

time, before being mounted on slides with mounting medium (VectashieldTM; Vector

Labs).

Survival ratio analysis

2 viruses were mixed at an approximate 1:1 ratio for survival analysis. One of the viruses

carried the construct encoding mCherry, while the other carried either NaChBac or

NaChBac E191K fused to EGFP (NaChBac-EGFP or NaChBacE191K-EGFP).

Fluorescently labeled cells were quantified with the aid of the Neurolucida software

(MicroBright Field Inc.). The survival ratio is defined as the total number of EGFP-

positive cells (including double-labeled cells) divided by of the number of singly labeled

mCherry-expressing cells. The ratio of EGFP+ to mCherry+ neurons at 7 days post

infection (dpi) was used to normalize all data at subsequent time points for comparison,

hence ratios at all subsequent time points were relative to the 7 dpi ratio. Ten to 20 entire

sections per dentate gyrus were analyzed to collect at least 100 counted cells in each
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dentate gyrus. The mean survival ratio from each dentate gyrus was treated as a single

sample.

Electrophysiology

For electrophysiology, viruses in which NaChBac is directly fused to GFP were used,

because they produce strong fluorescent signals in the soma, which is useful for targeting

neurons for fluorescence-guided whole cell recordings. A virus containing the mCherry

construct is co-injected into the same DG, and mcherry-only expressing neurons are used

as controls for recording. Animals were given an overdose of ketamine/xylazine then

perfused intracardially with ice-cold slicing solution containing (in mM): 212 sucrose, 3

KCI, 1.25 NaH2PO4, 26 NaHCO3, 7 MgCl2, 10 glucose (308 mOsm, and pH 7.3). Brain

slices were incubated in ice-cold cutting solution and cut into 350 [Lm frontal slices with a

Leica microtome at a speed of 0.08 mm/s. Slices were incubated for 30 min at 35*C, for

recovery, in carbogenated recording solution containing (in mM): 125 NaCl, 2.5 KCl,

1.25 NaH2PO4, 26 NaHCO3, 1 MgCl2, 2 CaCl2, 20 glucose (312 mOsm, and pH 7.3).

Fluorescent-guided whole-cell patch clamp recordings were performed with a

MultiClamp 700B amplifier (Axon Instruments). The pipette solution contained (in mM):

2 NaCl, 4 KCl, 130 K-gluconate, 10 HEPES, 0.2 EGTA, 4 Mg-ATP, 0.3 Tris-GTP, 14

Tris-phosphocreatine (pH 7.3). Successful patching onto the target cell was confirmed by

identifying a fragment of fluorescent membrane trapped inside the pipette tip during or

after the recording. Pipette resistance ranged from 5 to 8 MQ, and the pipette access

resistance was always less than 16 MA after series resistance compensation. The junction

potential was not corrected throughout the study. For spontaneous EPSC (sEPSC)

recording, the neurons were held at -77 mV and synaptic events were collected at 25*C.
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sEPSC contributed to the majority of spontaneous events because -98% of events could

be blocked by 100 [tM D, L-AP-5 and 20 ptM NBQX (Sigma) at the end of the recording.

Inhibitory blockers such as bicuculline were not included during sEPSC recording

because they triggered frequent EPSC bursting input in granule neurons, which precluded

further analysis. To record sIPSCS intracellular 130 K-gluconate was replaced with 130

CsCl and included 20 pM NBQX and 50 gM AP-5 in the recording bath in order to

increase the driving force for chloride efflux, enabling us to record spontaneous

GABAergic input at -77mV.

Analysis of electrophysiological data

Data was acquired and analyzed with pClamp9 software (Axon Instruments), and 2 min

traces of sIPSCs and sEPSCs were analyzed with Mini Analysis Program (Synaptosoft

Inc.). Overall current was calculated by multiplying the average charge area per spike of

each individual neuron by frequency of spikes of the same neuron.

Morphological and perisomatic inhibitory terminal puncta analysis

Confocal image stacks of 40 pm-thick dentate gyrus sections were taken with an

Olympus Fluoview laser confocal microscope (Olympus) with a 60X objective lens, a

zoom of 1.5 and at z-intervals of 0.25 [tm. 10-30 neurons were analyzed in each DG for

dendritic length, density, spine size and perisomatic inhibitory analysis, and data from 4-

7 DGs were collected for each experimental condition. Data was analyzed with the aid of

the Neurolucida software (MicroBright Field Inc.) and the MetaMorph@ software

(Molecular Devices).
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Statistical analysis

The Mann-Whitney test from OriginPro 8 (Origin Lab Corporation) was used for

comparing the frequency of spontaneous firing in NaChBac* and control neurons at

resting membrane potential to determine statistical significance. All other data was

analyzed with the two-sample two-tailed Student's t-test in Prism 5 (GraphPad Software,

Inc). Data was reported as mean ± SEM.

Supplemental References

Kelsch, W., Mosley, C.P., Lin, C.W., and Lois, C. (2007). Distinct mammalian
precursors are committed to generate neurons with defined dendritic projection patterns.
PLoS Biol 5, e300.
Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D. (2002). Germline
transmission and tissue-specific expression of transgenes delivered by lentiviral vectors.
Science 295, 868-872.
Taglialatela, M., Ficker, E., Wible, B.A., and Brown, A.M. (1995). C-terminus
determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRKl.
EMBO J 14, 5532-5541.
Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippocampal
CAl NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-
1338.
Yang, J., Jan, Y.N., and Jan, L.Y. (1995). Control of rectification and permeation by
residues in two distinct domains in an inward rectifier K+ channel. Neuron 14, 1047-
1054.
Yue, L., Navarro, B., Ren, D., Ramos, A., and Clapham, D.E. (2002). The cation
selectivity filter of the bacterial sodium channel, NaChBac. J Gen Physiol 120, 845-853.

129



130



Chapter 3

Increasing heterogeneity in the organization of synaptic inputs of
mature olfactory bulb neurons generated in newborn animals
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Increasing heterogeneity in the organization of synaptic inputs of
mature olfactory bulb neurons generated in newborn animals

Wolfgang Kelsch, Shuyin Sim, and Carlos Lois

ABSTRACT

New neurons are added into the mammalian brain throughout life. Continual neuronal

addition may provide the circuit with a particular neuronal type that possesses similar

characteristics regardless of when cells are generated during an animal's life.

Alternatively, new neurons generated at different stages of an animal's life could have

specialized properties and process information differently. To begin distinguish these two

possibilities, we compared the densities of glutamatergic synapses of olfactory bulb

granule cells (GC) generated in newborn and adult rats over extended periods of time.

We observed that whereas adult-born GCs maintained stable cell-to-cell variability of

synaptic densities soon after they integrated into the circuit, cell-to-cell variability of

synaptic densities of neonatal-born GCs increased months after their integration. We then

investigated whether mature neonatal- and adult-born GCs differed in activity-dependent

reorganization of their synapses by inducing sensory deprivation after new GCs had

completed their differentiation. This late sensory deprivation induced qualitatively

different and overall more pronounced changes in the synaptic densities of neonatal-born

GCs than in adult-born GCs. These observations suggest that synapses of mature

neonatal-born GCs retain a high degree of malleability in response to changes in neuronal

activity.

Author Contributions: Wolfgang Kelsch and Shuyin Sim designed the experiments, designed and
generated retroviral vectors, performed intracranial injections, collected and analyzed cell
survival data. Wolfgang Kelsch, Shuyin Sim and Carlos Lois wrote the manuscript.
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INTRODUCTION

It is generally believed that adult neurogenesis provides a continuous influx of

immature neurons that are highly plastic only while they are integrating into brain circuits,

and subsequently lose most of this plasticity necessary for storage of novel information.

Adult neurogenesis could thus represent a continual addition of immature neurons with

essentially the same set of properties as neurons generated in the developing brain. An

alternative hypothesis is that adult-born neurons may have special properties that allow these

new neurons to behave differently and perform different functions from neonatal-born

neurons.

The vast majority of new neurons added to the olfactory bulb (OB) throughout

postnatal life are granule cells (GCs) that are generated in the subventricular zone (SVZ) and

migrate to the GC layer where they differentiate and form synapses (Altman, 1962; Lois and

Alvarez-Buylla, 1993; Luskin, 1993). GCs are axon-less interneurons that receive different

types of glutamatergic inputs onto synapses in distinct dendritic domains. Deprivation of

sensory input during neuronal differentiation ("early deprivation") induces changes to the

synaptic densities in all dendritic domains of adult-born GCs (Kelsch et al., 2009). In

contrast, deprivation starting after these neurons have differentiated ("late deprivation") only

evokes limited synaptic reorganization. These observations suggest a critical period for

activity-dependent remodeling of synapses in adult-generated GCs in line with a similar

temporal window for inducibility of synaptic long-term potentiation in adult-born GCs

(Nissant et al., 2009).

We previously observed that neonatal- and adult-born GCs differ in the sequence in

which their synapses form while neurons mature and integrate into the circuits of the OB

(Kelsch et al., 2008). However, it is not known whether mature neonatal- and adult-born GCs
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also differ in how they maintain their synaptic organization over extended periods of time

post-maturation. Here we analyze the organization of synaptic inputs to neonatal-born GCs

throughout the animal's life and in response to sensory deprivation after the new neurons

completed their maturation and observed that mature neonatal-born GCs retain a high degree

of malleability in response to changes in neuronal activity.

MATERIALS AND METHODS

Generation of retroviral vectors and retroviral labeling in vivo. Recombinant retroviral

vectors under the control of the Rous Sarcoma virus promoter for PSD-95:GFP (PSDG) and

Synaptophysin:GFP (SypG) (Mpsdg and Msypg) were prepared and stored as described

(Kelsch et al., 2008). All animal procedures were approved by the local Animal Welfare

Committee and NIH guidelines. Retroviruses were injectedAt stereotaxic coordinates:

(anterior; lateral; ventral; mm in reference to Bregma) +1.2; ± 1.6; -3.1 for adult rats (>P56)

and +0.9; 2.1; -2.1 for neonatal rats (P5). Animals were kept in a 12 h daylight cycle and

under the same housing conditions. Experiments for neonatal- and adult-born GCs were

performed at the same time and under similar conditions (same housing room, same type of

ventilation cage, and two animals per cage after weaning).

Analysis of synaptic markers. Tissue processing and analysis of SypG* and PSDG* clusters

was performed as previously described (Kelsch et al., 2009). For long-term survival, each

analyzed data point (e.g. basal domain, 17 days post infection (d.p.i.)) contained normally

distributed PSDG* cluster densities from 42 cells (3 GCs were analyzed from each animal),

expect for 1-year-old adult-born GCs of which we only found a total of 19 complete

preserved PSDG* cells in 8 of 11 injected animals. We observed more superficial adult-born
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GCs at 1 -year than at one month after they had been generated (data not shown), however

due to the originally intended low labeling density for reconstructions, we did not statistically

quantify this shift towards more superficial GCs amongst these long-term surviving cells. As

GCs with deep and superficial dendritic targeting in the external plexiform layer had

comparable mean and s.d. of synaptic densities in their dendritic domains at the respective

time points (data not shown), data were pooled. Statistical differences in the standard

deviation (s.d.) were determined using a Bartlett's test and for pair wise comparisons a F-test

for differences in variances (Prism Gaph). For sensory deprivation experiments, unilateral

surgical naris occlusion was performed on the day of intracerebral injection of viruses Mpsdg

and Msyp into the subventricular zone (postnatal day 5). Only animals that showed a strong

reduction in immunofluorescences of c-fos (Oncogene antibody) expression in the granule

cell layer and reduction of tyrosine hydroxylase (Chemicon antibody) expression in the

glomerular layer in the deprived bulb were included in further analysis.

RESULTS

Protracted changes in the synaptic organization of neonatal-born GCs

We compared synaptic densities of neonatal- or adult-born GCs at 1, 2, and 12

months after they were generated in the SVZ to investigate potential long-term changes in

synaptic organization (Fig. 1A). Synaptic organization is defined here as the density of

glutamatergic input synapses in various dendritic domains. We used oncoretroviral vectors to

genetically label synapses in new GCs, because retroviral labeling allows reliable birth-dating

of new neurons (Sanes, 1989). To measure the density of glutamatergic input synapses, we

delivered PSDG, a genetic marker consisting of a fusion protein between PSD-95 and GFP.
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PSD-95 is a protein localized to the postsynaptic density of glutamatergic input synapses

(Sheng, 2001). PSDG delivered into new neurons with retroviral vectors (Mpsdg) can be

used to genetically label these synapses (Niell et al., 2004; Gray et al., 2006; Kelsch et al.,

2008; Livneh et al., 2009; Sturgill et al., 2009), and expression of PSDG at modest levels

produced by retroviral expression does not alter synaptic properties as measured by

electrophysiological methods (Kelsch et al., 2008). PSDG* clusters were contacted by the

presynaptic protein Bassoon both in immature (Kelsch et al., 2008) and 1-year old GCs (data

not shown), and PSDG was clustered at asymmetric synapses on an ultra-structural level

(Livenh et al., 2009).

We examined the densities of glutamatergic synapses in different dendritic domains

of GCs. The apical dendrite can be divided into an unbranched segment emerging from the

soma (the proximal 15% of this unbranched segment is referred to as the proximal domain

(Kelsch et al., 2008)) followed by a branched segment (distal domain). The proximal domain

and basal dendrite (basal domain) receive axo-dendritic glutamatergic input from axon

collaterals of the OB's projection neurons and from axons originating in the olfactory

cortices (Mori, 1987). Synapses present in the distal domain of the apical dendrite are

bidirectional dendro-dendritic synapses where input and output synapses are co-localized and

functionally coupled. These synapses receive glutamatergic input synapses from the lateral

dendrites of the OB's projection neurons and release GABA back onto these same projection

neurons (Mori, 1987).

We compared the densities of input synapses in neonatal- or adult- born GCs 1, 2,

and 12 months after they had been generated in the SVZ (Fig. 1A). We observed that the

variability (s.d.) of densities of PSDG* synapses in the different dendritic domains of adult-

born GCs did not change between 1, 2 and 12 months after they were generated (Fig. 1B;
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Table 1). Similarly in neonatal-born GCs, the variability (s.d.) of densities of PSDG*

synapses did not change in the distal domain over time (Fig. IB; Table 1). Interestingly, the

variability (s.d.) of densities of PSDG* synapses in neonatal-born GCs increased between the

early time points (1 and 2 months old GCs) and 1 year after their birth increased in the

proximal and basal domain (Fig. IB; Table 1). The increase in variability (s.d.) of however

was only significant for the 1-year time point as 1 and 2 months-old GCs displayed similar

variability (s.d.).

To investigate changes in densities of output synapses over time, we labeled them

using SypG, a fusion protein between Synaptophysin and GFP (Fig. 2A). Synaptophysin is a

protein localized to presynaptic neurotransmitter vesicles (Sudhof and Jahn, 1991) and SypG

expressed with retroviral vectors (Msypg) can be used to genetically label output synapses

(Meyer and Smith, 2006; Kelsch et al., 2008, 2009). Output synapses of GCs are located in

their distal dendritic domain, and they are part of dendro-dendritic synapses (Hinds, 1970).

We observed that variability (s.d.) of densities of SypG* clusters were stable between 1

month and 1 year for both neonatal- and adult-born GCs (n.s., Bartlett's test; Fig. 2B),

consistent with stability of densities of PSDG* synapses in the distal domain.

As we compared 1- to 2-month- and 1-year-old GCs in different animals, we

validated whether variability of densities of PSDG* clusters is biased for same maturation

stage (e.g. 1-month-old neonatal-born GCs) by variability in our experimental conditions

over time. We therefore labeled new GCs at P5 in separate groups of animals in parallel to

the 1-year-observation-period of animals shown Fig. 1 and examined neonatal-born GCs 1

month after they had been generated. Their mean density and variability (s.d.) of PSDG*

synapses did not significantly differ (data not shown). In addition, systematically splitting the

data sets of Fig. 1 did not reveal any difference in the mean density and variability (s.d.) of
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PSDG* synapses for the same maturation stage (data not shown). Finally, we tested whether

neonatal-born GCs would increase cell-to-cell variability shortly after the animal reached

adulthood (:P56) that would then suggest that postnatal maturation of the brain environment

would largely account for the increase in heterogeneity. We therefore examined the

variability (s.d.) of densities of PSDG* synapses of neonatal-born GCs 4 months after they

had been generated (basal- 0.324±0.116, proximal- 0.458±0.176, distal domain 0.352±0.109

PSDG* cluster/pm, n=14 GCs). These values tended to increase in variability (s.d.), but did

not yet differ significantly from 1- and 2-month-old GCs in Fig. 1 (Bartlett's test), suggesting

a slow increase over time.

We followed up on this finding by analyzing whether the increased variability in the

synaptic density in the basal dendrite of neonatal-born GCs after maturation was

accompanied by changes in its arbour length. We did not observe any significant differences

in the length of the dendritic arbor length of the basal domain or its variability between

samples of neonatal GCs that were either 1-month- or 1-year old (median [inter quartile

range]: 77.5 [48.3-123.8] pm and 70.7 [50.3-105.2] pm, n=70 GCs respectively, Mann-

Whitney test: p=0.48, Bartlett's test: p=0.5 1). We also found that the increase in variability of

synaptic density in the proximal and basal domains occurred to the same degree in neonatal-

generated GCs regardless of whether they had dendrites branching in the deep or superficial

layers of the OB (data not shown).

In summary, the cell-to-cell variability in synaptic densities does not significantly

increase in adult-born GCs after they acquire their final synaptic density within a month after

being generated. In contrast, synaptic densities in the basal and proximal domains of

neonatal-born GCs become increasingly variable between cells even up to 1-year after their

birth.
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Sensory deprivation continues to change the synaptic organization of mature neonatal-

born GCs

Neonatal- and adult-born GCs differ in the patterns in which they develop synapses in

their dendritic domains during maturation (Kelsch et al., 2008), and in the dynamics of

synaptic organization in their dendritic domains after maturation. Do neonatal- and adult-

born GCs also differ in the manner in which their synapses are affected by manipulations of

sensory input? GCs are part of a sensory relay circuit, and we recently observed that

immature adult-born GCs change the synaptic densities of all dendritic domains when

sensory input is blocked during neuronal integration into the bulb ("early deprivation")

(Kelsch et al., 2009). We thus examined how the synaptic organization of immature neonatal-

born GCs changes when deprived of sensory input.

We induced early sensory deprivation by performing unilateral naris occlusion at P5

when viral vectors were delivered to label new GCs in the SVZ (Fig. 3A), and subsequently

examined the synaptic organization of new neonatal-born GCs using the PSDG and SypG

markers (Mpsdg and Msypg, respectively). After sensory deprivation, significantly fewer

PSDG* input synapses were present in the distal and basal dendritic domains (Fig. 3A). In

addition, the density of SypG* output synapses in the distal dendritic domain also decreased

significantly for deprived neonatal-born GCs (at 28 d.p.i.: mean density s.d.: control:

0.365±0.067 and deprived: 0.243±0.077, n=14 GCs, p<0.0001, t-test). These findings are

similar to the effects caused by sensory deprivation in immature adult-born GCs. However,

whereas early olfactory deprivation increased PSDG* proximal synapses in adult-born GCs,

it did not trigger any changes in the proximal domain of neonatal-born neurons (Fig. 3C).
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After synaptic development, 3 weeks of sensory deprivation only evokes changes in

densities of glutamatergic synapses in the proximal, but not in the basal and distal domain

(Kelsch et al., 2009). As neonatal-born GCs displayed an increase in heterogeneity that

occurred slowly over several months (Fig. 1), we first examined whether a longer period of

'late deprivation' might evoke changes in the basal and distal domain of adult-born GCs. We

observed that 'late deprivation' of adult-born GCs for 7 to 9 weeks did not cause any change

in the synaptic densities in the distal (deprived: 0.322±0.074 and non-deprived: 0.316±0.125

PSDG* clusters/pm, p=0.87, both n=14) and basal domains (deprived: 0.349±0.146 and non-

deprived: 0.320±0.092 PSDG t clusters/pm, p=0.52, both n=14). In addition, synaptic

densities of adult-born GCs remained increased in the proximal domain after 9 weeks of

sensory deprivation (deprived: 0.746±0.230 and non-deprived: 0.561±0.138 PSDG*

clusters/pm, p=O.01, both n=14).

In contrast to adult-born GCs, the synaptic densities of neonatal-born GCs become

progressively more heterogeneous over extended periods of time. This suggests that neonatal-

born GCs may be able to reorganize their synaptic inputs for longer periods of time than

adult-born GCs. Thus, we investigated whether neonatal-born GCs, like adult-born GCs, had

a restricted period within which extensive changes in their synaptic organization occurred, or

whether mature neonatal-born GCs retained the ability to change their synaptic organization

in response to sensory deprivation.

We labelled GCs in the SVZ of newborn animals (P5) and started unilateral naris

occlusion only when animals reached adulthood. 'Late deprivation' of neonatal-born GCs

started at P75 resulted in a significant loss of basal and distal synapses after 7 weeks of

sensory deprivation (Fig. 3B). In addition, a transient decrease in the density proximal

synapses was observed after 3 weeks of deprivation, but this density returned to control
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levels after 7 weeks of deprivation (Fig. 3B). Thus, late sensory deprivation affected synaptic

densities in all dendritic domains of neonatal-born GCs.

These results indicate that mature neonatal-born GCs retain a higher degree of

malleability in terms of reorganizing their synaptic densities in response to changes in

sensory activity than mature adult-born GCs (Fig. 3C), which is consistent with increasing

heterogeneity of synaptic densities of mature neonatal-, but not adult-born GCs.

DISCUSSION

It is generally believed that adult neurogenesis provides a continuous influx of

immature neurons that become less plastic as they mature such that the circuit requires

subsequent waves of immature neurons to provide plasticity to store novel information.

According to this hypothesis, adult neurogenesis represents the continuous addition of

immature neurons with the same properties, regardless of whether they are generated in the

developing or adult brain. We observed that whereas adult-born GCs maintained stable

synaptic densities soon after integrating into the circuit in line with this hypothesis, whereas

the density of synaptic inputs in neonatal-born GCs keeps changing for many subsequent

months. In addition, mature neonatal-, but not adult-born GCs remained malleable to

reorganize their synaptic densities in all dendritic domains in response to manipulation of

sensory input. Thus, suggesting neonatal- and adult-born GCs not only differ in their initial

pattern of synaptic development, but also thereafter when they function as mature neurons in

the OB. Future study may further explore the dynamics of long-term changes in the same

neurons over time to also examine subtle differences in addition to changes in cell-to-cell

variability.
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Sources of synaptic heterogeneity

Synaptic densities in the dendritic domains of neonatal-born GCs become

increasingly heterogeneous throughout the life of the animal long after these neurons mature.

Heterogeneity in the synaptic organization of neonatal-born GCs can be attributed to several

factors that shape the formation, stabilization or loss of synapses. These factors include cell-

intrinsic factors such as a high intrinsic level of cell-to-cell variability (Raser and O'Shea,

2005), as well as extrinsic factors such as variability in the number of pre-synaptic axons in

the immediate proximity of individual synapses (Stepanyants and Chklovskii, 2005).

Neonatal-born GCs retain the ability to change their synaptic densities in their basal and

proximal dendritic domains over long periods of time in response to changes in activity (Fig

3C). Perhaps as a result of this long-lasting synaptic plasticity, their synaptic densities display

increasing variability between individual neurons over time. In contrast, adult-born GCs

acquire their final density of synapses within 1 month after their birth, and display no change

in cell-to-cell variability in the density of their synapses once they mature (Fig 4B). Thus,

once they mature, adult-born GCs appear to acquire one 'flavor' that under normal

circumstances does not change over prolonged periods of time. This suggests that these

neurons may become hardwired soon after their differentiation to perform a defined

computational task over the neuron's lifetime. In contrast, mature neonatal-born GCs seem to

change their 'flavors' over time, suggesting a more dynamic wiring that may reflect changes

in their computational demands during their lifespan.
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Neonatal- and adult-born GCs may perform different functions in the olfactory bulb

Different forms of plasticity of mature adult-born GCs in comparison with neonatal-born

GCs are underscored by widespread changes in the synaptic organization of neonatal-born

GCs in contrast to the restricted remodeling of adult-born GCs caused by late sensory

deprivation. When late sensory deprivation, which is induced post-differentiation, was

performed, widespread changes in synaptic wiring of neonatal-born GCs were observed only

after a long period of deprivation, in contrast to the rapid changes seen during early sensory

deprivation. This is reminiscent of the slow increase in heterogeneity of synaptic densities in

these neurons under non-deprived conditions. Interestingly, although we observed a decrease

in synaptic density in the distal domain of neonatal-born GCs triggered by late sensory

deprivation, in non-deprived animals there was little change in the variability or mean density

of these distal synapses over time. It is possible that the distal synapses of neonatal-born GCs

only change their density if the activity of the OB circuit is perturbed in an extreme manner,

such as by sensory deprivation. Alternatively, it is possible that the changes that occur in

dendro-dendritic synapses under non-deprived conditions, in contrast to the changes seen in

axo-dendritic synapses, are too subtle to be detected using our methods.

Axonal projections from higher olfactory areas to GCs ('axo-dendritic inputs') are

thought to provide context-related information like reward or aversion that shapes early odor

processing in the OB (Kiselycznyk et al., 2006; Su et al., 2009). Activation of axo-dendritic

inputs depolarizes and globally excites GCs. Global excitation of GCs facilitates inhibition of

tufted and mitral cells (Chen et al., 2000; Halabisky and Strowbridge, 2003) and thereby axo-

dendritic inputs may shape odor processing (Laurent, 1999). The increasing heterogeneity in

the axo-dendritic synaptic densities of neonatal-born GCs and their ability to sustain

deprivation-induced plasticity suggest that they can adapt their synaptic wiring to changing
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demands over the animals' lifespan. In particular, reorganizing their axo-dendritic inputs may

change the context-related information that activates neonatal-born GCs during odor

processing at different stages of the animal's life.

In contrast to neonatal-born GC, adult-born GCs may use activity-dependent

mechanisms within a restricted window of time to allow sensory information to shape

synaptic wiring during their differentiation. After their integration into the circuit, it appears

that adult-generated GCs' stereotypical synaptic organization remains mostly unperturbed for

the rest of their existence. Such a 'snapshot' model of synaptic wiring would fit with recent

observations that adult-born GCs may be involved in forming long-lasting memories

acquired at one point in the life of the animal (Mak and Weiss, 2010). Interestingly, whereas

few neonatal-born GCs die after they mature throughout life of the animal, adult-born GCs

show a continuous turnover throughout life, potentially also explaining the low numbers of 1-

year-old adult-Born GCs that we found (Fig. 1). Such differences in turnover would match

that 'snapshots' taking adult-born GCs are discarded after some time (Petreanu et al., 2002;

Lemasson et al., 2005, Mouret et al., 2009) whereas neonatal-born GCs adapt their wiring

over time and stay in the circuit. In summary, the different degrees of plasticity between

neonatal- and adult-born GCs suggest a role of neonatal-born GCs as life-long learners and of

adult-born GCs as 'capture-and replay' modules in the OB circuit.
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FIGURES
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Figure 1 Neonatal-born GCs show an increasing variability
synapses in axo-dendritic input domains over time.
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A, Adult- and neonatal-born GCs were examined 1-month and 1-year post infection (p.i.).
To attribute PSDG* clusters (green) to a particular GC, dendritic morphology was
visualized by immunofluorescence with red secondary antibodies against the diffuse
PSDG present in the cytosol that was otherwise undetectable (Kelsch et al., 2008). The 3
main dendritic domains were analyzed separately (from top): distal, proximal and basal
domain (scale bar=10 gm).

B, Scatter plots of PSDG* clusters in each dendritic domain (clusters/im), of adult- and
neonatal-born GCs 1-, 2-, and 12-months p.i. (42 GCs each expect for 12-months old
adult born GCs (n=19). The 3 dendritic domains are, from top, the distal, proximal, and
basal domains. Mean values ± s.d. are plotted in red and s.d. values are indicated above
each time point. Significant increases in the s.d. over time were determined with
Bartlett's test (p-values are indicated ifp<0.05). Changes in the mean cluster density are
indicated by arrows (for statistical analysis see Table 1). 28 GCs from 12 months p.i. and
14 GCs of 9 months p.i. were pooled for the late time point of neonatal-born GCs.
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Table I

A. Adult-born GCs:

PSDG* synapses densities

Bartlett's test

equal
~ domain variances? p-value

distal yes p=0.764
proximal I yes p=0.301
basal yes p=.38

*= In a total of 8 injected animals only 19
complete labeled Gcs were found and analyzed.

B2. Neonate-born GCs:

PSDG* synapses densities:

|| Bartlett's test

- domain equal
variances? p-value

F-test for different variances

1 m.p.i. 1 m.p.i. 2 m.p.i.
VS. VS. vs.

2 m.p.i. 12 m.p.i. 12 m.p.i.

distal yes p=0.764 1 p=0.516 p=0.410 p=0.142
proximal no p<0.0001 p=0.090 p<0.0001 p<O.0001
basal no p<0.0001 I p=0.112 p=0.0024 p<0.0001
*= The pooled 12 months p.i. sample also contains the 9 months p.l. sample.
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Figure 2 Density of output synapses does not change after maturation of adult- or
neonatal-generated GCs.

A, Synaptophysin:GFP* (SypG) clusters were examined in the distal domain of adult- and
neonatal-born GCs 1-month and 1-year p.i. (scale bar=10 gm).

B, Scatter plot of densities of SypG* clusters (clusters/pm) of adult- and neonatal-born
GCs 1- and 12-months p.i.. Their variances did not significantly increase (F-test) for
adult- and neonatal-born GCs (p=O.15 and p=O.84).
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Figure 3
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Figure 3 Glutamatergic input synapse density
sensory deprivation occurring both during and

of neonatal-born GCs is affected by
after their integration in the circuit.

A, Early sensory deprivation: Progenitor cells were infected with retroviruses in the SVZ
at P5 on the same day as unilateral naris occlusion was performed. Genetically labeled
GCs were examined at different lengths of time after occlusion. Scatter plot and mean
density of PSDG* clusters (clusters/pm) of neonatal-born GCs in sensory deprived and
contralateral control olfactory bulbs (red and black circles, respectively). Statistical
significance is only indicated if p<0.05 (t-test).

B, Late sensory deprivation: Progenitor cells were infected with retroviruses in the SVZ
at P5 and unilateral naris occlusion started at P75. Genetically labeled GCs were
examined at different lengths of time after occlusion. Scatter plot and mean density of
PSDG* clusters (clusters/pm) of neonatal-born GCs in sensory deprived and contralateral
control olfactory bulbs (blue and black circles, respectively). Statistical significance is
only indicated if p<0.05 (t-test).

C, Top row: Adult-born GCs acquire their final density of synapses within 1 month after
being generated, and the cell-to-cell variability in their synaptic densities does not
increase thereafter. Even months after neonatal-born GCs had been generated, they have
not completely acquired a final density of synapses and the values of their synaptic
densities in their basal and proximal domains become highly variable from cell-to-cell.
Middle row: Early sensory deprivation reduced synaptic densities in the distal and basal
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domain of both neonatal- and adult-born GCs. However, early sensory deprivation
increased the synaptic density in the proximal domain of adult-born GCs but had no
effect in neonatal-born GCs. Bottom row: In adult-born GCs, when sensory deprivation
started after the completion of synaptic development, the only detectable changes were
increases in the density of glutamatergic input synapses in the proximal domain. In
contrast, in neonatal-born GCs, sensory deprivation that started only after their
integration into the circuit decreased the density of glutamatergic synapses in their basal
and distal domains and transiently in their proximal domain.
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Conclusion
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The study of survival and integration of new neurons into mature, active circuits is of interest

in the pursuit of neuronal replacement therapies for neurodegenerative diseases, as well as to

understand how we might repair an injured brain. Because adult-born neurons are believed to

contribute to lifelong learning, an understanding of these phenomena also elucidates how

new memories are formed in adulthood while existing memories are kept intact. This thesis

presents several novel findings regarding the regulation of synaptic integration of new

neurons in the adult olfactory bulb (OB) and hippocampus that furthers the current body of

knowledge in the field and presents new directions for future research. Among other

implications, our findings indicate that, first, adult neurogenesis may involve the addition of

neurons that possess distinct characteristics and perform a complementary function to

neurons born during the early development of the brain. Second, survival selection of adult-

born neurons is not regulated by specific patterns of spiking activity but by levels of

membrane depolarization. Third, alteration of a single neuron's excitability is sufficient to

effect changes in synaptic connectivity, which are driven by genetic programs triggered by

the activation of immediate early genes.

ACTIVITY-DEPENDENT REGULATION OF SYNAPTIC CONNECTIVITY OF

NEW NEURONS IN THE ADULT BRAIN

In contrast to the notion that adult neurogenesis is merely a continuous addition of the same

types of neurons generated during development of the brain, we show in Chapter 3 that

neonatal-born neurons display more plasticity in altering their synaptic densities than adult-

born neurons. Together with the observation that neonatal-born neurons have a longer
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lifespan than adult-born neurons and are less likely to be turned over, these findings support a

model of adult-born neurons providing a substrate by which instantaneous new memories are

formed. These memory traces become stabilized and intractable after the window of

plasticity has closed. Neurons born during the neonatal period, however, may serve to

provide flexibility in the circuit to allow for rearrangements of connectivity in response to

changing environments and other challenges during the course of an animal's life.

In Chapter 1, our results demonstrate that a certain threshold of membrane

depolarization is necessary for survival of adult-born granule neurons in the OB, while

precise patterns of neuronal spiking are not essential. In particular, during a critical period

during neuronal maturation, the survival of these neurons is sensitive to cholinergic

innervation originating from other parts of the brain, which could result from changes in

behavioral states such as learning, exercise, or mood changes. This could provide an

explanation for how the abovementioned states can affect survival of adult-born neurons

(Alonso et al., 2006; Rochefort et al., 2002; van Praag et al., 1999).

Finally, we see in Chapter 2 that although the dentate gyrus (DG) circuit possesses

the ability to modulate various aspects of synaptic inputs and outputs of new neurons in

response to single-cell activity changes, GABAergic innervation seems to be the primary way

in which the excitability of new neurons is regulated. Activity-dependent synaptic changes

are effected through a genetic program triggered by immediate early gene Npas4. This

activity-dependent genetic program bridges an increase in single-cell activity with the

transcriptional activity necessary to bring about changes at synapses, and has no apparent role

at baseline conditions in the DG.
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Additional data also supports the idea that there is a window of plasticity for synaptic

alterations in response to changes in intrinsic activity. When we induce expression NaChBac

later in neuronal development of adult-born neurons in the DG, using a Cre-ER system

activated by tamoxifen, we see a decrease in the magnitude of synaptic changes compared to

when expression is induced earlier (data not shown). This finding corresponds to the

observation that as these neurons mature, they display decreasing synaptic plasticity in

response to seizure activity (Kron et al., 2010). In addition, not only is there a window of

plasticity in the developmental timeframe of each neuron, the brain environment also appears

to be less conducive to synaptic plasticity as it ages. When we expressed NaChBac in new

neurons born into the brains of middle-aged mice (more than 1 yr old), the decrease in spine

density observed was similar to neurons in young adult mice, but the increase in spine size

was very much smaller, suggesting that in the aged brains, either the DG environment or the

stem cell niche environment has altered the capacity of the new neurons or the surrounding

circuit to make morphological changes in response to the neuron's elevated intrinsic

excitability.

DIFFERENCES IN REGULATION OF SYNAPTOGENESIS OF NEW NEURONS IN

THE OLFACTORY BULB AND DENTATE GYRUS

Our results demonstrate some differences in the way alteration of intrinsic activity of new

neurons affects their integration into the active circuits of the OB and DG. There are

fundamental differences present in these two systems, and differences in how new

connections are formed may simply reflect differences in the function of the OB and DG in

the overall performance of the adult brain. These findings have strong implications on how
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scientists should view the function and behavior of adult-born neurons in different parts of

the brain.

While granule neurons in the DG are bipolar and possess apical dendrites extending

in one direction and a basal axon extending in the opposite direction towards CA3 of the

hippocampus, granule cells of the OB are axonless and possess bidirectional dendro-dendritic

synapses through which they innervate other tufted and mitral OB neurons. DG granule

neurons are excitatory, and exclusively release glutamate onto their target neurons both

within the DG and at CA3. OB neurons are inhibitory interneurons that release GABA onto

neurons within the OB only. DG neurons migrate a very small distance to their final position

(less than 10 microns), while OB neurons spend a long portion of their maturation (almost a

week) traveling through the rostral migratory stream to reach the OB from the walls of the

lateral ventricle where they are born (Lois et al., 1996). This distance can be as far as 1mm in

rodent brains.

Incorporation of new neurons with intrinsic excitability altered with either expression

of NaChBac or ESKir2.1 into the OB has dramatic results on their survival, but this survival

effect is not observed in the DG. This is surprising especially because the survival of DG

granule neurons has been found to be sensitive to single-cell input activity, as demonstrated

by the observation that survival decreases by half when the NMDA receptor is deleted

(Tashiro et al., 2006). One possibility is that survival of adult-born neurons in the DG is not

as sensitive to the extent to which we modulate levels of intrinsic excitability as the granule

cells in the OB. Alternatively, our experimental methodology could simply be inadequate to

detect the difference. Due to the necessity of sparse infection of neurons in the DG and the

low numbers of new neurons, we infect about 200 neurons per DG, which does not provide
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sufficient resolution to detect small survival differences. In contrast, we label on the order of

several thousand neurons in the adult OB.

NaChBac expression also leads to morphological alterations in DG neurons, many of

which recapitulate changes seen in neurons post-seizure, that are not observed in OB

neurons. In fact, none of the manipulations of intrinsic excitability affect morphology of OB

granule cells, which suggests that for those neurons, changes in extrinsic input is necessary to

effect synaptic changes such as those observed in sensory deprivation (Kelsch et al., 2009).

The plasticity responses of excitatory and inhibitory neurons differ in many respects (Bi and

Poo, 1998), and this could explain the difference in activity-dependent synaptic changes

between DG and OB granule neurons.

FUTURE DIRECTIONS

Several possibilities for future studies emerge from these results. One interesting study would

be to examine how reversible changes in synaptic connectivity are if normal excitability

levels are restored both within and outside the period of synaptic plasticity. This finding

would impact treatments for seizures, as it would determine if neuronal damage is reversible.

The observation that increasing inhibitory GABAergic input is the main response to a new

neuron with elevated excitability could be followed up by an experiment using RNAi to

knockdown components of the GABA receptor in single NaChBac-expressing neurons to

study the responses of the neuron and its surrounding circuit if its excitability cannot be

dampened through the action of GABA receptors. It would also be interesting to examine

real-time changes in the synapses of adult-born as well as neonatal-born neurons while

neuronal activity is altered in a temporally-controlled fashion either within a single neuron
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e.g. using channelrhodopsin/ halorhodopsin, or circuit wide e,g. via seizures, or stimulation

and deprivation paradigms.
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