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Abstract

Contact analysis is an important branch of structural mechanics. The finite element
method has become a major solution approach because of the high nonlinearities in
contact problems. A large number of algorithms have been proposed and extensively
used to solve engineering problems, but some issues have not been addressed yet. The
first purpose of this research is to evaluate attempts to achieve accurate and practical
time integration schemes for contact problems. Towards this aim, this study proposes
an analytical form of the solutions using the time integration schemes that can be
used in the evaluation of different methods. Then, a simple velocity- and acceleration-
update process that is combined with the conventional time integration methods is
proposed to suppress (as much as possible) spuriously generated energy during the
contact events.
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Chapter 1

Introduction

1.1 Background

Contact and impact are common phenomena in many engineering fields when two

or more objects try to occupy the same position. Wear and lubrication in the metal

forming process, automobile crash tests and drilling in geological investigations are

typical examples. Material nonlinearity, geometric nonlinearity and transient effects

should be considered. In any analysis including contact events, it is evident that

proper boundary conditions should also be considered.

However, one may notice that the exact contact interface is not known prior to the

analysis in general. Since both tractions and displacements at the contact interface

are a priori unknowns, the boundary conditions cannot be treated as simple Dirichlet

or Neumann boundary conditions. Also, the motion of the objects in contact is not

smooth at their contact interface. In other words, velocity fields of objects at the

contact interface can jump [21] [20]. Thus, contact problems fall into one of the most

difficult categories of problems.

To consider transient effects in dynamic contact analysis, time integration is

needed. Time integration algorithms can be divided into two categories: implicit

approaches and explicit approaches. The explicit approach is relatively simple and

easy to implement. Explicit approaches are largely used to solve various engineer-

ing problems [14] [17]. However, explicit approaches are only conditionally stable and



often require a very small time step size to get reasonable results. In any analysis

of contact events, it is also often required to make non-physical assumptions for the

contact constraints. On the other hand, many implicit approaches are uncondition-

ally stable in linear problems [16]. Therefore, a large time step size can be used for

sufficient accuracy; this characteristic is a great advantage and has implications for

many applications.

On the other hand, time integration methods that are unconditionally stable for

linear dynamics often lose this stability in nonlinear cases [3]. The loss of stability can

be treated as a loss of energy consistency in the system. Many researchers have made

efforts to ensure the energy conservation of systems; their approaches can be classified

into three categories [15]. The first group of algorithms introduces numerical damping

to prevent response blow ups. These methods do not require additional computational

cost and dissipate spurious high-frequency response selectively (discussed in chapter

2). However, these methods show excessive numerical dissipation when using too large

a time step size. In the second category, methods enforce conservation of energy and

momentum by using Lagrange multipliers. These methods typically exactly enforce

energy-momentum conservation. However, since such methods require the solution

of additional equations for every node, they can be computationally very expensive

for large problems. In the third group, the algorithms enforce energy-momentum

conservation algorithmically. They show very good performance from an energy-

momentum conservation point of view. However, these methods solve equilibrium

equations not at the discrete time points of interest. Also, for contact problems, since

these methods enforce the velocity at contact surfaces rather than the constraint

of impenetrability, the impenetrability condition is violated in general [18] [19]. In

short, the algorithm for nonlinear problems such as contact problems are still to be

improved.

To obtain a better numerical method that is both accurate and efficient, it is

important to specify the desired characteristics of the numerical method. One can

find a great set of desired characteristics for numerical methods for general structural

problems in the work of the ref. [2]. The set of the desired characteristics of the



methods in [2] is also valid for methods of contact problems. In addition, we need to

consider the specific requirements for contact problems, such as contact constraints.

According to [1] [2], it is desirable to have a method that solves the dynamic

equilibrium equations at the discrete time points of interest. To solve equilibrium

equations accuratly, it is natural to address them at the time point where the equilib-

rium equations are valid. For contact problems, this characteristic also has additional

benefits. Specifically, we can exactly enforce a no-penetration condition using tradi-

tional approaches. When we solve an equation at the point of interest, it does not

require additional computational cost for such items as weighted stress. We refer to

[1] for the rest of the desired characteristics of accuracy, stability and efficiency for

general structural problems.

However, for contact problems, energy consistency during contact events requires

additional considerations. In approaches that solve dynamic equilibrium equations

at discrete time points of interest, contact forces, which occur one step "before" the

current time point, cause energy generation. This is because the energy change of the

system depends on the average of the contact forces at the current time point and at

the previous time point (discussed in chapter 4.2). This spuriously generated energy

can cause the method to fail in problems that include contact events even if the time

integration method is unconditionally stable in linear problems [18].

The Energy Momentum method, which uses the mid-point rule and solves dynamic

equations at the midpoint of discrete time points of interest, succeeds in a unique way

in making the energy change depend on only the contact force at the current time

step [22]. Since there is no effect of the contact force at the previous time step,

this method naturally succeeds at eliminating the spuriously generated energy and

achieves the energy consistency of the system. Although it has some disadvantages,

it is possible that this aspect will be a critical one that will make methods in the

category of Energy Momentum powerful.



1.2 Motivations

For practical usage for contact problems, we would like to have a method that

1) solves the equilibrium equation 'at' the discrete time points of interest,

2) meets the energy conservation in general problems, which include contact events

3) meets the no penetration condition exactly,

4) does not introduce additional variables, like additional Lagrange multipliers, to

conventional methods.

When a method solves an equilibrium equation at the discrete time points of

interest with consideration of the contact constraints, it is possible to meet the no

penetration condition exactly using conventional approaches.

However, to meet the energy consistency condition, a method should be able to

handle the energy generation from the contact forces, which is an inevitable phenom-

ena when we solve the equilibrium equations at the discrete time points of interest. At

the same time, from a viewpoint of practical engineering, we do not want to introduce

any additional variables or additional iterations to handle this spuriously generated

energy. In this study, we will investigate and evaluate existing time integration meth-

ods in order to improve them to be used in contact problems satisfying the conditions

above.

1.3 Outline of the thesis

This thesis is organized as follows. In chapter 2, a widely used time integration

method for general engineering problems, the Bathe method, is reviewed. The stabil-

ity and the accuracy characteristics of the method are discussed. chapter 3 introduces

an analytical form to measure the accuracy of time integration methods in terms of

amplitude decay and period elongation. By using the proposed analytical form, the

accuracy characteristics of time integration schemes with respect to the initial con-

ditions of the contact events is investigated. In chapter 4, we study the effect of

contact forces on the total energy change in the solutions using implicit time integra-



tion methods. Based on the contact force analysis, a simple velocity and acceleration

update process is proposed and numerical examples are presented.





Chapter 2

Bathe method

The method is a combination of the trapezoidal rule and the three point backward

Euler method. Although the basic difference formulas were of course applied earlier,

see for example [8] and for example Bank et. al. for first-order systems in electrical

engineering [9], we call the method the Bathe method, because KJ Bathe applied

the method first to second-order structural dynamics and discovered the powerful

properties in such time integration solutions [3][2]. In the following sections, we

study the stability and the accuracy characteristics of the method.

2.1 Direct integration approximation and load op-

erators

Using the same time step size At, the results of direct integration methods are equiv-

alent to the results of the mode superposition method which changes the basis of

equilibrium equations to modal displacements and solves n decoupled equilibrium

equations. Therefore, to analyze the methods, we only need to analyze one equilib-

rium equation presented in the modal displacement basis. Then, based on the direct

integration approximation and the load operators of the equilibrium equation pre-

sented in the modal displacement basis, we can see the stability characteristics of the

method by obtaining the spectral radii [1].



In the first sub-step, the trapezoidal rule is used and we consider the equilibrium

state at time t + At/2

t+At/2j+ 2 Lot+At/2z + w2t+At/2x = t+At/ 2 r

4tz + t+At/2

t+At/2x = tz + 4/At
t ~ a t 2 , 2 e x + 9 + 4 9

(2.1)

(2.2)

(2.3)

Substituting t+At/2z and t+At/2x into (2.1), we can solve for t+At/2z and then use (2.2)

and (2.3) to calculate t+At/2z and t+zt/2x. Then, we can establish

t+At/2 1
t+At/2i

t+At/ 2x tx
+ Lit+At/2r (2.4)

-8o 'At - w 2 A t 2

4 At

At 2

-32(w - 8w 2 At

16 - w2 At 2

8,At +2 At 2Ew

1
L1= -

-16w 2

-4 2At

16+8 w At

16

4zAt

At 2

a = 16+8gw A t+w 2 , t 2 (2.7)

In the following second sub-step, the three-point Euler backward formula is used and

the equilibrium state at time t + At is expressed as

where

__1A 1 = -
0Z (2.5)

(2.6)



t+Atz + 2(t+Atz + W2t+AtX = t+Atr (2.8)

tz
t+At*

t =
4 t+At/2x 3t+Atx

+~ _ _

At

t 4t

At At
3 t+At ±

+ t (2.10)

Substituting t+Atz and t+Atz into (2.7) and using the solution from the first step, we

can solve for t+Atz and then use (2.8) and (2.9) to calculate t+Atz and t+At. It leads

to

[ t+At/2 1A
t+At/2,[t+At/2 xJ

-24kw - 4w 2 At

12

4At

0 6(w+w 2 At

1
As -

z + L2 tatr

tzx

-12w 2

-4 w 2ZA t

12+8(wAt

3W 2

w 2 A t

0 -At

1

-3-2(wAt

9

3 A t

A t 2

# = 9 + 6 ( wA t + w 2 .A t2

(2.9)

[t+zat..t+Atz

t±At

where

1
A2 -

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



After substituting (2.4) into (2.11), the direct integration approximation and the load

operator for one time step are obtained

t J
= A 2 A1

= (A2A 1 +A 3)

+ Lit+At/ 2r

[ t

xJ

+ A3

+ A 2 Lit+At/ 2r + L2 + t+Atr

Therefore,

t+Atrb

t+At J
t 1

=LA *z+ Lat+At/ 2r + Lbt+Atr (2.18)

where

A=A 2A1,+A 3

1

-4w dt (24 +7w dt)

-4 dt (-12 +w 2 dt 2 )

4 dt 2 (7+2(w dt)

w (-288k + 14 w 2 dt 2 - 144w dt + 5w 3 dt 3 +48 2w dt)

144- 47 W2 dt 2 - 8c w 3 dt3 - 24(w dt

dt (144 - 5w2 dt2 + 80w dt + 16( 2W2 dt 2)

w2 (24gw dt + 19 w2 dt 2 _ 144)

w2 dt (-96 - 24 ( w dt + w 2 dt 2 )

-19 w2 dt 2 + 144 + 168 w dt + 48( 2W2 dt 2 - 2(w 3 dt3

t+Atz

t+At X

+ L2 + t+At r

t+At J

(2.16)

(2.17)

(2.19)



-4w dt (24 + 7w dt)

1
La = A 2 L1 = -4 dt (-12 + w 2 dt 2 ) (2.20)

4 dt2 (7 + 2 w dt)

9

1
Lb L2 =- 3 dt (2.21)

dt2

In the direct integration for nonlinear analysis, the Bathe method is about twice as

expensive as the trapezoidal rule.

2.1.1 Stability and Accuracy

The Bathe method is in linear analysis unconditionally stable and second-order ac-

curate because so are the trapezoidal rule and the three-point backward difference

method [3] [24]. Also, in references [2][23], the method remains stable when the trape-

zoidal rule is not effective. This is because the Bathe method uses the three-point

backward Euler method in the second sub step which introduces a small amount of

numerical damping.

The spectral radii is obtained from the direct integration operator in equation

(2.18). Fig.2-1 shows that the Bathe method has numerical damping, in particular

when At/T is larger than 1 where numerical integration methods cannot get any

accuracy.

By using the approach in reference [5], the period elongation and the amplitude

decay are obtained. For evaluation, responses of simple spring mass systems without

physical damping or external forces as function of At/T are investigated where At is

the time step size and T is the natural frequency of the system. The initial condition

for the mass is a unit displacement and zero velocity. Figures 2-3 and 2-4 show that

the period elongation and the amplitude decay of the trapezoidal rule and the Bathe

method.
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Chapter 3

Accuracy characteristics of time

integration schemes in contact

problems

Many direct integration methods have been developed and investigated. Amplitude

decay and period elongation have been widely used as parameters to describe the

stability and accuracy characteristics of these direct integration methods. However,

there is no strict procedure that can be used to decide which method to use. A

simple and efficient procedure is presented here that can help to understand the

characteristics of a method for contact problems.

The accuracy of a method in relation to contact problems can be measured in

many different ways. The L1 norm, which is the most widely used parameter for

accuracy, simply represents the differences between the values of the results at each

time step. Therefore, it cannot include important information that can represent

accuracy in many contact problems, such as the distortion of the shape of response

and the degree of the shift of the response. Therefore, we use the difference of the

first contact time as a parameter that measures accuracy, which significantly affects

the total response of the system.

The response of a single degree of freedom problem from direct integration meth-

ods can be represented as a single trigonometric function by using its amplitude decay



and period elongation. Therefore, the contributions of the amplitude decay and pe-

riod elongation on accuracy have been investigated by using this single function. The

analytical form presented here can also be effective in current research efforts of de-

veloping better integration methods. For example, to develop a certain integration

method, which has the desired accuracy and stability characteristics from the com-

bination of two different methods, the accuracy characteristics of each method from

this procedure can be helpful.

3.1 Analytical form of accuracy of a time integra-

tion method

To get a sense of the integration accuracy, the response of a single degree of freedom

problem with no damping and no loading is often evaluated. The analytical solution

of this typical problem with initial conditions xO = AO, i = 0 , = w2 Ao is

Aosin( +) (3.1)
TO

where To = 9, # = -i. However, when this problem is solved by a numerical

integration method with period elongation and amplitude decay, the response is of

the following form

A*sin(T +) (3.2)

where we can notice the A* and T* are

P E
T* = To * (1 + )E (3.3)

100

AD
A Ao * (1 - ) (3.4)

Note that the effective period, T*, is a constant throughout the entire simulation,

while the effective amplitude, A*, is exponentially related to time. Figure 3-1 shows

that the periods of every oscillation of the calculated responses from the Bathe method



and the trapezoidal rule have the same value as T*. The numerical solutions are

calculated for At/To = 0.2. The effective amplitude, A* , is also calculated using each

method's period elongation and amplitude decay at At/To = 0.2. Figure. 3-2 shows

the amplitudes at every oscillation. Since the trapezoidal rule has no amplitude decay,

the amplitudes remain constant. However, the amplitudes of response from the Bathe

method show that they are exponentially related to the simulation time. Again, the

numerical solutions are calculated when the At/To = 0.2 and A* is calculated by using

each method's period elongation and amplitude decay at At/To = 0.2. Figure 3-3 and

Figure 3-4 show that the analytical form of the solution with its period elongation

and amplitude decay accurately represent the solutions from the integration methods,

even after a long time. Of course, these properties (i.e. Eqs.(3.3) and (3.4)) simply

hold because we consider a linear problem.

However, it should be recognized that the value of the integration methods' am-

plitude decay and period elongation, which are used in their analytical forms, are

slightly different from the values used by the method in [5]. To make the analyti-

cal forms represent the calculated results precisely, we adjusted the values from the

method in [5] and used the adjusted values. These adjusted values are the exact am-

plitude decay and period elongation. The difference in values from using the method

in [5] comes from the interpolation step that finds the maximum point between the

calculated points as stated in [5]. It can be easily understood that the error grows as

the At/To. grows since the error from interpolation grows.
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Figure 3-3: A solution of the Bathe method and a solution from its analytical form
at At/T = 0.2.
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Figure 3-4: A solution of the trapezoidal rule and a solution from its analytical form
at At/T = 0.2.



3.2 An accuracy analysis for contact problems

The accuracy of a method in contact problems can be measured in many different

ways. The L1 norm is the most widely used parameter that measures accuracy.

However, it simply represents the differences between the values of the results at each

time step. Therefore, in many cases, it cannot include important information that

can represent accuracy in certain problems.

Therefore, besides using the L' norm as an estimator of errors, there have been

many studies that have tried to find a good error estimator that shows the accuracy

of the response. For the contact problems, the energy-momentum conservation and

inter-penetration condition have been widely used as parameters that measure the

accuracy of the contact algorithm [25]. These conditions are good in seeing whether

the response follows the laws of physics. However, these conditions, such as energy-

momentum conservation, only see the properties of the total system instead of the

individual contact objects. Therefore, when we are interested in not only the overall

accuracy of the response of the total system, but also in detailed predicitons and the

behavior of the individual objects, these conditions are not effective.

In this sense, the conditions at each contact can be a good error estimator for

certain contact problems since these conditions determine the response after contact

and determine the amount of the momentum exchange between the contacting bodies.

Therefore, we notice that the accuracy of the contact conditions affect the accuracy

of the entire response.

In this section, by using the analytical form of the response from the previous

section, we investigate the accuracy characteristics of the time integration methods

in contact problems with a focus on the accuracy of the conditions seen at contact.



3.2.1 Error from the initial condition of the contact

To get an idea of the effect of the ampli-

tude decay and period elongation of the

time integration method, we consider a

simple contact problem (Fig. 3-5). In

this problem, we want to obtain the dif-

ference of the velocities of the ball when

it contacts with the rigid wall. The ball Figure 3-5: 1-D spring pr

has the equilibrium point at the origin.
27r

Initially, the ball is placed at the origin, moving at a velocity of - o.

solution of the response of the rigid ball before contact is

Xe = xO sin (

27r COSd e =T-Oco(

oblem

The exact

t) (3.5)
0

-7t) (3.6)
TO

In this problem, the rigid wall appears sometime between I (2n) and T (2n + 1)

when n = 0, 1, 2, ... so that the contacts happen at the times t, where

T
te = -(2n + 1)

2
n = 0, 1, 2, - - -

Therefore, the velocity of the ball just before the contact is

de |tc= 27ro (3.8)
TO

When the problem is solved by time integration methods which have amplitude

decay and period elongation, the response of the ball before contact is

21r
x* =zo sin ( T* t) (3.9)

(3.7)



where
ADX0 = xo(1 - ) = xoa (3.
100

P E
T* =To(1+ ) =Tob (3.

100

Therefore, the contact time becomes

t* = -*(2n + 1) =teb (3.
o f2

Also, from the equation (3.9), the velocity of the ball before contact becomes

x(a 2srt
T*baT (ln (a) sin
To b To b

+ 27r cos ( ))
To b

Therefore, the velocity of the ball just before the contact ( initial condition of the

contact) is

I a|(2n+)X tC et b

- AD)i(2n+1) (1 + )

100 100
(3.14)

Figure 3-8, 3-9 show the ratios of initial velocities of the ball at contact, Xe.t

10)

11)

12)

(3.13)
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Chapter 4

A simple contact algorithm for

energy-momentum conservation

In contact problems, the contact force on each body appears and disappears abruptly

and its amount and location are unknown a priori. Therefore, even for simple prob-

lems where the only nonlinearity comes from the events of contact, it is hard to

assess the stability of an algorithm by using ideas of spectral radii, amplitude decay,

or period elongation, as we did in the previous chapters.

However, when we study the energy variation of the system in each time step, we

can see the influence of the events of contact and the generic characteristics of time

integration methods. Also, we find that in the time step, when new contact occurs,

the contact force causes the energy to decrease, while in the releasing step, when

the contact disappears, the contact force causes the energy to increase. These facts

motivate ways to eliminate the effect of the contact events on the system's energy by

dealing with the contact force.

In this chapter, we investigate the energy change of the system by using the

solution of two widely used implicit time integration methods: the Newmark method

and the Bathe method. We also propose a simple way to remove the energy change

due to the contact events by considering the work done by the contact force at that

time step and by applying the concept of momentum exchange.



4.1 Energy change in implicit time integration meth-

ods in contact problems

To see the influence of the contact events on the total system energy, we can consider

a simple linear system whose governing equation is

Mt+Atg + Kt+AtU = t+AtRc (4.1)

To focus on the effect of the contact events, we can assume that the nonlinearity comes

only from the contact events. In this simple model system, the M and K matrices are

all constant, symmetric and semi definite. To solve this system implicitly , we apply

two widely used time integration methods : the Newmark method and the Bathe

method. We investigate the energy change in each time step by a similar approach

as proposed in [12]. To simplify the algebra, we use the following four operators.

< (X) >= 1/2( t+At (X) + t (X)) (4.2)

[(X)] = (t+At (X) - t (X)) (4.3)

T(X) = 1/2(X)TM(X) (4.4)

V(X) = 1/2(X)T K(X) (4.5)

4.1.1 Newmark Method

The following assumptions are used in the Newmark method

t+AtG =t G + ((1 - 6)u + 6t+At )At (4.6)

t+AtU =t U +t U/At + ((1 - a)tU + a) )At 2  (4.7)
2



Using the conventions we defined before, we can express the above equations as

[U] =< tUJ> +At(6 -2

[tU] = At <t U> +At 2 (a - )[tu]

(4.8)

(4.9)

The energy change of the total system in each time step, [tE], is the sum of the change

of the kinetic energy, [T(10)], and the change of the strain energy, [V(tU)] where

[T(tU)] = [(T ]T M <t U >
1

= (< T>T +(6 -

[V( tU)] = [tU]TK <t U>

Therefore, the change of the total system energy is

= [T(( T )]+ [V(U)]

= < T >T M[t U] + (6- )[0]TM[tU]

At2(a- ) <t U >T M[to] - At2(a

+[tU]TK <1 U >

Also, we can find the following relations from equation (4.1)

< I >T M[tU]+ <t U >T K[tU] =<' Rc >T [tU)

[t0]T M[t U] + [tU]T UK[U] = [t Rc]T [U]

-)[U]TM[U&]

(4.12)

(4.13)

(4.14)

)[tU]T )M([t U] - At2(a - j) [ ]). (4.10)

(4.11)

['E]



Using the above relations, we can simplify equation (4.12)

['E] = (<tRc > +(6 - )[Rc)T[U]

-At2(a )[T(tU)] - 2(6 - M)V([tU])2 2

-At 2 (2a - 6)(6 - 1)T([U]) (4.15)
2

We can choose the variables a and 6. If we choose a = and 6 = 1 (the trapezoidal

rule) equation (4.15) becomes

[tE] =<t Rc >T [*U) (4.16)

As we can see in the above equation, the average of the contact force at the current

time and at the previous time causes the energy change. Also, as we expected, the

total energy of the system is conserved if there is no contact. On the other hand,

when we choose a = 1 and 6 = as a choice proposed by Chaudhary-Bathe [6], the

energy change is

[tE] = <t Rc >T [tU] - At2[T(tU)] (4.17)

= <t U >T M[ t U]+ <t U > K[ t U]

1 At2(t+AtUTMt+AtUT _t UQTMt) (4.18)
4

In this case, the second term in equation (4.17) somehow compensates the energy

change due to the average of the contact forces. Considering the relation (4.13), we

can clearly see that the total energy of the system is conserved only for the case of a

rigid body with no external force [6].

4.1.2 Bathe Method

For the Bathe method, we use a slightly different notation of the average and jump

operators



< t(X) >= 1/ 2 (t+At/ 2 (X) + t(X))

[,(X)] = (t+At/27(X) - t(X)) (4.20)

<t+At/ 2(X) >= 1/ 2 (t+At(X) + t+At/ 2 (X)) (4.21)

[t+At/2(X)] = (t+At(X) - t+At/ 2 (X)) (4.22)

As we studied in chapter 2, the Bathe method is a combination of the trapezoidal rule

and the Euler 3-point backward method. One can calculate the total energy change in

one time step by considering the energy change in each substep. For the first substep

of the Bathe method, which is the trapezoidal rule, the equilibrium equation and the

assumptions are

Mt+At/ 2 g + Kt+At/2U =t+At/2 Rc (4.23)

t+AtU = tQ + A(t+At/2g +t U) (4.24)

t+AtU = tU + At(t+At/2g ( +t 8) (4.25)

As in section 4.1.1, we can get the energy change as

[tE] =<t Rc >T [tU] (4.26)

For the second substep which is the Euler three point backward method, the equilib-

rium equation and the assumptions are

Mt+Atg + Kt+AtU =t+At Rc (4.27)

. 3 t+At 4 t+At/2 1 +
t+LatU - U -- U+-- U

At / ] - At

3 lt2 ] _ I[t U] (4.28)

(4.19)



t+.tU C =
3 t±At . 4 t+At/2 1it .

U -- U + -U
At At At

[+At/2& _ A tg]At At
(4.29)

The total energy change of the system is obtained by calculating the change of the

kinetic energy and the strain energy as before

T(t+At/2U)]

[V(t+At/ 2U)]

= +At/ 2 U]TM <t+At/2 T >

= [t+t/2 U]TK <t+At/2 U >

We can simplify the sum of the equations (4.30) and (4.31) using following relations

t+At/2g(] =gAtt+At 1[t+At2U].. U+-I tU]
3 3

+At(,At/2 g > +1[t+t/2g] + I [tO])
3 2 At

(4.32)

< t+At/2 &U> -t+At(TjJ 1[t+At/2fj

3 (t+At/2U) - [tU]
At 3

[t U) = At<t U >

[tU] = At <t >
2

< t±/t/2 U >T M~t+At/2 U]+ <t+At/2 U >T K [t+At/2U] =t+t/2 Rc >T

(4.33)

(4.34)

(4.35)

[t+At/2 
U]

(4.36)

After some algebra, we obtain

= [T(t+At/ 2g)]+ [V(t+At/2U)]

- t+At/2 Rc >T [t+At/ 2 U]

S([t+At/2 Tr+ <t U >T)M[t+At/2]
2
1

+_([t At/2C]T+ <t U >T)Mt+zAt/2U] (4.37)

(4.30)

(4.31)

At[t+At/2g])

6



We can also find that the difference between the second term and the third term is

of order At 2 . Therefore, the equation above can be expressed as

t+At/2E] = <t+At/2 Rc >T [t+At/ 2 U] - O(At 2 ) (4.38)

Finally, the total energy change in one time step of the Bathe method is

[tE] + [t+At/2E] =<t Rc >T [tU]+ <t+At/2 Rc >T [t+At/2 U] - O(ZAt 2 ) (4.39)

As we can see, the energy change in the solution of the Bathe method is similar to the

energy change in the solution of the trapezoidal rule and the Bathe method introduces

little numerical damping. From the investigations of the energy change of the total

system in each time step, we can see that the average of the contact forces causes the

energy change in implicit dynamic simulations. In the following subsection, we assess

the effect of the contact force in detail.

4.1.3 Effect of the contact force on the total energy of the

system

As we saw in the previous subsection, the contact force affects the total energy of the

system in each time step as

[tE]c =<t Rc > T [*U] (4.40)

For the simple case, using the notation in ref [4], the contact force Rc can be expressed

as

Rc = KAA (4.41)

where the matrix Kx is the contact matrix which includes the geometrical information

to transform the scalar Lagrange multiplier vector, A, to a physical force and the



appropriate connectivity information. Also, we can describe the gap function, g, as

g = KTU + go (4.42)

where the admissible condition of contact is

gi 0 (4.43)

Aj 0 (4.44)

gjAi = 0 (4.45)

We refer to reference [1] for a detailed explanation of the above conditions. With the

equations (4.41) and (4.42), we can express the energy change, [tE]c as

[tE]c = <t Rc >T [tU) (4.46)
= (t+AtK\t+AtA +t KAtA)T(t+AtU -t U) (4.47)

2

If we assume that the contact matrix K\ is constant in one time step, the above

equation is simplified to

[tE]c = (t+AtA +t A)TK T(t+At U -t U) (4.48)
2 A

- (t+AtA +t A)(t+Atg _t g) (4.49)
2

- (t+AtAi +t A)(t+Atg, _t gi) (4.50)
i=1

With equation (4.50), we can evaluate [tE]c of three different states in the contact

events : new contact step, continuous contact step and releasing step.

New contact step

When contact appears in the current time step, we have t+AtA > 0 and tA = 0. Also,

from the contact condition (4.43) and (4.45), we notice that t+Atg= 0 and tg > 0.

Therefore, in the this contact step, [tE]c < 0 (Energy decreasing)



Continuous contact step

During the step when the contact forces exist both in the previous time and the

current time, then t+"'A > 0 and 'A > 0. Therefore, t+Atg= 0 and tg = 0 . Therefore,

[tE]c= 0. (Energy is conserved)

Releasing step

In the step when contact disappears, t+AtA = 0 and 'A > 0. Also, from the contact

conditions, we find that t+"'g > 0 and 'g = 0. Therefore, in the releasing step,

[EE]c > 0 . (Energy increasing)

One may notice that the amount of the decreased energy and the increased energy

are different in general. Also, for stability, we want to avoid the energy increasing

step. It should be noticed that the contact force in the previous time in the releasing

step makes the energy increasing. In the next section, a simple implicit method is

proposed which eliminates the increased energy by eliminating the contact force tA in

every contact step using the concept of the momentum exchange. Furthermore, we

can compensate the decreased energy in the new contact time by consideration of work

done by the internal force and contact force while applying the contact constraints.

4.2 A simple implicit contact algorithm for energy-

momentum conservation

4.2.1 Contact problem solutions using impulses

There is another way to approach contact and impact problems other than enforcing

contact constraints, which is expressed in terms of location and contact forces. In this

category, the methods treat contact forces as if they occur instantaneously, namely,

methods treat the contact forces as impulses [10]. In this way, the contact forces

change momentum directly instead of treating the momentum change as a result of



changes in acceleration.

If two bodies, 1 and 2, approach along the direction ft, conservation of the momen-

tum give us the relation between the post-collision velocities, Vif, V2f, and pre-collision

velocities v1, v2 as following.

(vif - v2f) -n= -e(v 1 - v 2 ) i (4.51)

where e is the coefficient of restitution of the collision. And the impulse in this

collision can be expressed as

vif = vi - -n (4.52)

nil

V2f = V2 + -- n (4.53)

_ 1+ e) (Vi -V2)n (4.54)1 1

One may notice that this impulse acts only in the normal direction of the collision, n.

Therefore, it can be separated from the tangential sliding direction [7]. In the follow-

ing sections, we revisit the concept of the decomposed impulse which is introduced

in [7], and then we introduce an implicit method which basically combines the con-

ventional Lagrange multiplier method with the approach, which deals-with contact

problems in impulsive nature. The method is quite stable and accurate by eliminat-

ing the computationally generated energy by contact forces while it still efficient for

practical usage.

4.2.2 Decomposed impulse

The momentum vector of all nodes involved in the contact can be expressed as

P=Mv (4.55)



If the contact event occurred at time tc, then the relation between the momentum

vector in the post-impact state and the pre-impact state is

[P]" = AVg (4.56)

where A is a scalar parameter. The energy conservation during the impact is described

as

[pTM-lp]tt = 0 (4.57)tcj

where the M- 1 is used to obtain the energy. If the momentum vector just prior to

the impact, P , is known, then we can get the momentum vector after the impact,

P+ using the above two equations. It should be noticed that this momentum in the

post-impact state meets energy conservation as well as the total linear and angular

momentum conservation. The above two equations lead to the following quadratic

equation

(AVg + p )TM-1(AVg + Pt-) - PTM-lP+ = 0 (4.58)

This quadratic equation is solved using iterative methods in [18] and was solved in

closed form in [7] using the decomposition of the momentum. The momentum vector

can be decomposed into normal and tangential components

P = Pn + Pt (4.59)

where the normal component of the momentum vector is defined as orthogonal projec-

tion of the momentum vector onto the span of the gradient of the constraint function

V= 0 (4.60)

We also have

VgTM-1(P - P) = 0 (4.61)

I I -, - mv ' - , , - - I I I I . 1. - , , Z. --I . - - ., I : I . I I I - - I I I -



Using the above equation, after some algebra, we find the expression for the normal

component of the momentum vector

VgTM-P = VgTMlP (4.62)

(VgTM-lPn)Vg = (VgTM-lP)Vg (4.63)

(VgTM-lVg)Pn = (VgTM-1P)Vg (4.64)

P= ( M )Vg (4.65)' ' VgTM-Vg

The momentum vectors at the post-impact state and the pre-impact state can be

decomposed using the above definition

P+ =Pt+ + P (4.66)

P = P- + P- (4.67)

One may notice that a momentum jump occurred only in the direction of Vg from

equation (4.56). Therefore, only the normal components are changed during the

impact

P+ = -P (4.68)

Also, the normal component of the momentum vector after the impact should be in

the form P+ = C * P- where C is constant, and C = 1 and C = -1 are the only

solutions. Since C = 1 indicates a contact free solution, C = -1 is the solution.

Therefore, the normal component of the momentum vector after the impact is

Pn= P- (4.69)

Therefore, the momentum vector after the impact is

P+ Pi- pn (4.70)



One may check that these results meet energy conservation

-p+TM-lp+ _ Ip-TM-P- = AE (4.71)
2 2

1 1
-(P + P+)TM-l(p± + PZ) -- (P- + P-)TM-lP-=0 (4.72)

2 2

where Pn-MP -=0, P+M-1 P +=0

4.2.3 Procedure

From the analysis in chapter 4.1, we notice that contact forces can result into spurious

energy dissipation and generation. There can be many ways to improve the solutions

by adjusting the relationships between displacement, velocity, and acceleration to

meet energy conservation in iterative ways [18] [11] [13]. However, when the contact is

treated by impulses, and the velocity and acceleration are updated appropriately, we

can meet energy consistency without changing any relationships.

In this subsection, we introduce a simple velocity and acceleration update process.

In this approach, the enforcement of the impenetrability constraint and the exchange

of the momenta during the contact events are considered separately. The configura-

tions of the deformed bodies that follow the no-penetration condition and equilibrium

are calculated by using conventional Lagrangian multiplier methods. At the end of

each time step while contact events occur, the velocity and acceleration are updated

by considering the contact events in an "impulsive nature".

To illustrate this updating process, a simple problem is considered in Figure 4-1.

In this schematic problem, contact happens between the times t and t + At. The

configuration of the deformed bodies at t + At are taken from the usual Lagrangian

method. In the solution process, the equations of motion are initially advanced to

time t + At without considering contact constraints (t + At(-)). Subsequently, the

velocities of nodes that participate in the contact are updated by considering the

impact that happened at that time t + At(+) by using the methods described in

chapter 4.2.2. Afterwards, these post-impact velocities are adjusted to meet the



energy conservation by considering the work done by the internal forces during the

moving process to the configuration of the deformed bodies (t + At(*)). Lastly, the

accelerations are updated to meet the equilibrium equation.

The work done by the internal forces during the moving process ((+) -+ (*))
change the kinetic energy of the nodes. It also can be understood as enforcing that

the sum of the strain energy and the kinetic energy should be conserved during the

process

d(I UMU) = Rd(U)

When we use the linear approximation about the work done by internal forces, the

above equation becomes

*UT M*(j _+ UTM+U (*U _+ U)T (-*R -+ R)

or
n n n

E mij*Vij vtv) n Z(u ±r)
i=1 j=1 i=1

And if we use a lumped mass matrix, ML, just for the update process,

n n

mLi(*v2 _+ o2) 7 (*ui _+ ui)(-*ri _+ ri)
i=1 i=1

Finally, the adjusted post-impact velocity at node i can be approximated as follows.

V +v 2 + 1(*ui -+ ui) (*ri + ri)

+vj V 2i + mLI (ui ....+ ui) (-*ri - ,,]1
|+vi| mLij

In case the work done by the internal forces is negative, the sign of what is in the

squared bracket can be negative when the amount of the work done by internal forces

is larger than the initial kinetic energy of the node. Since the negative work means

that the kinetic energy is transferred to the strain energy, physically the absolute

amount of the work cannot be larger than the initial kinetic energy. However, since
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Figure 4-1: Process of the velocity and acceleration update



the deformed configurations are separately solved, this unwanted case rarely happens

only when the time step size is too large. For simplicity of the simulation, the velocity

of the node is set to zero when the sign of what is in the bracket is negative and when

this situation happens, the energy of the system is increased by the absolute value of

what is in the bracket.

4.2.4 Numerical examples

This subsection presents a few results obtained with two widely used implicit time

integration methods, the trapezoidal rule and the Bathe method with the proposed

update algorithm, giving comparisons also with results obtained using the trapezoidal

rule, the Bathe method and Chaudhary-Bathe method without the update process.

1-D spring problem

First, the one dimensional impact of two

point masses attached to the springs is

considered, as depicted in Figure 4-2. In M1  M 2

this problem, the two masses have the

same equilibrium point at the origin. Ini-

tially, mass 1 is displaced to -5, moving

at a velocity of -3 and mass 2 is displace Figure 4-2: 1-D spring problem

to 2 and moving at a velocity of 1. The

properties are: mi = 2, m 2 = 1, ki = 3 and k2 = 8, all in appropriate units.

Before doing the numerical simulations, we check the reliability of the code de-

veloped in this research by comparing the results with ADINA results. Figure 4-3

shows that the results match well. The numerical solutions are obtained with two

time step sizes, At = 0.01, 0.05. We consider five methods for the temporal integra-

tions: the trapezoidal rule with and without the update process, the Bathe method

with and without update process and Chaudhary-Bathe method. Solutions for these

cases are shown in Figure 4-4. The results show that the trapezoidal rule without
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update process and the Bathe method without update process produce spurious en-

ergy in contact events so that the results blow up after first few impacts. In contrast

to the previous two methods, Chaudhary-Bathe method algorithmically compensates

the spuriously dissipated and generated energy well in the first few contact events, so

that a reasonable solution is produced. However, the solution starts to dissipate the

system energy in the contact events and the response eventually damps out.

Notably, the simple update process significantly enhances the responses predicted

by both time integration methods, the trapezoidal rule and the Bathe method. Both

methods conserve the total energy when combined with the update process for a long

time when the small time step size is used. However, when the time step size becomes

bigger, the nonphysical situation, which is described in chapter 4.2 happens in the

solution of the trapezoidal rule with the update, so the total energy is increased. It is

worth to mention that the small numerical dissipation in the Bathe method prevents

this nonphysical situation so it also conserves the total energy well for the At = 0.05

case.

The Carom problem

The two dimensional Carom problem, or billiard pool problem, involves perfectly

elastic and frictionless impact. The problem consists of the analysis of a single ball

trajectory and total energy in the ten-unit square rigid box. The ball is modeled

by one nine-node element. An initial velocity Vo = (1, -1) unit and a position

(-2.25, -2.25) unit are prescribed. The material properties and the dimensions are

as follows : Young's modulus E = 103 unit, Poisson's ratio v = 0.0001, density p = 1

unit and diameter d = 1 unit. The time step size At = 0.01 unit is utilized in each

simulation, performed using the five methods as in the previous example. The initial

condition causes the ball to hit the lower side at the middle and at an angle of 45

degree.

The results in Figure 4-5, show that in case of the trapezoidal rule without the

update process, the first rebound is too sharp due to gain of energy. Although the

trapezoidal rule is unconditionally stable for linear problems, it is unstable due to
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Figure 4-5: The 2-D Carom problem : ball position at every second for the trapezoidal
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the contact nonlinearities, which generate spurious energy at every contact and it

eventually blows up. The results from the Bathe method also shows similar effect due

to the spurious energy gain (Figure 4-6) but it gives a stable result. The Chaudhary-

Bathe methods has the opposite effect, with the angle of rebound being flat and the

system energy being reduced. However, since the method is designed to conserve total

energy for the rigid body impact, the amount of the spuriously dissipated energy is

not severe(Figure 4-7). Finally, the results from the methods with the update process

(Figure 4-8, 4-9) show that both methods generate energy in every contact. This is

mainly from the linear approximation of the work done by the internal forces, however,

the amount of the generated energy is not severe. Notably, the Bathe method with

the update process predicts all rebounds to be about 45 degree, giving the expected

almost square-shaped trajectory of the ball within the carom board.
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Figure 4-6: The 2-D Carom problem ball position at every second for the Bathe
method without the update
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Figure 4-7: The 2-D Carom problem : ball position at every second for the
Chaudhary-Bathe method without the update
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Figure 4-8: The 2-D Carom problem: ball position at every second for the trapezoidal
rule with the update
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Figure 4-9: The 2-D Carom problem : ball position at every second for the Bathe
method with the update
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Figure 4-10: The 2-D Carom problem total energy vs. time for the five methods

2-D Block impact problem

In this subsection, a soft block impact problem is solved to see how the stress field

is affected by the update process. The problem consists of the analysis of the total

energy of the block and the stress propagations. The block is modeled by a linear

elastic material and the floor is a fixed rigid body. The block has a rectangular shape

of (0.4, 0.6) units and is discretized by 96, four node, squared shaped elements. The

simulation parameters are as follows: Young's modulus E = 200 unit, Poisson's ratio

v = 0.3, density p = 1 unit and the initial velocity V = (3.5, -1.5) units is prescribed.

The time step size At = 0.01 is used.

The results in Figure 4-11, show that every method provides satisfactory results

in terms of the total energy. However, although the system energy is equivalent in the

results, it is not trivial that solutions have similar stress wave propagations. Since the

update process is applied to the nodes participating contact events, it might cause

stress concentration around the surface during the contact events. Figures 4-12, 4-13
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methods

The 2-D block impact problem : total energy vs. time for the five

present the history of the von Mises stress in the blocks every 0.02 time unit of the

Bathe method with the update process and without the update process and it is seen

that the stress fields are almost the same.
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Figure 4-12: History of the von Mises stress for the Bathe method without update
process in every 0.02 time units ( t = from 0.14 to 0.24 )
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Figure 4-13: History of the von Mises stress for the Bathe method without update
process in every 0.02 time units ( t = from 0.28 to 0.38 )
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Figure 4-14: History of the von Mises stress for the Bathe method with update process
in every 0.02 time units ( t = from 0.14 to 0.24)
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Chapter 5

Summary

We evaluated accuracy and stability characteristics of time integration schemes for

contact problems. The presentation can be summarized as follows:

" An analytical form of the time integration schemes' responses, in terms of am-

plitude decay and period elongation, is introduced. This analytical form can

help to understand the characteristics of a method for contact problems. In this

presentation, the contribution of the amplitude decay and period elongation on

the error of the initial condition of the contact events is investigated.

" Using implicit time integration methods, which solve the equilibrium equations

at discrete time points of interest, the contact force spuriously generates or

dissipates energy. These variations of total energy are not compensated algo-

rithmically without a general iteration process. The time integration schemes,

which are unconditionally stable for linear problems, such as the trapezoidal

rule, can be unstable due to this spuriously generated energy.

" The proposed update process, which makes a contact-free state by treating the

contact events in an "impulsive nature", improves the response predicted by the

implicit time integration methods. However, since it uses a linear approximation

for the work done by internal forces and a lumped mass matrix, the response

still has same small energy variation. Also, deformed configurations and post-

impact velocities are separately obtained. Therefore, there can be a non-physical



situation that increases the system's energy when the time step size is too large.

* Results from the numerical examples show that when the update process is

combined with the Bathe method, the small energy variations in the contact

situations and the number of non-physical situations are minimized.
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