
MIT Open Access Articles

Ubicorder: A mobile device for situated 
interactions with sensor networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mittal, Manas, and Joseph A. Paradiso. “Ubicorder: A Mobile Device for Situated 
Interactions With Sensor Networks.” IEEE Sensors Journal 11.3 (2011) : 818-828. Copyright © 
2011, IEEE

As Published: http://dx.doi.org/10.1109/JSEN.2010.2081976

Publisher: Institute of Electrical and Electronics Engineers / IEEE Sensors Council

Persistent URL: http://hdl.handle.net/1721.1/65342

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/65342
http://creativecommons.org/licenses/by-nc-sa/3.0/


IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Ubicorder: A Mobile Device for Situated
Interactions with Sensor Networks

Manas Mittal, Member, IEEE, and Joseph A. Paradiso, Senior Member, IEEE

Abstract—The Ubicorder is a mobile, location and orientation
aware device for browsing and interacting with real-time sensor
network data. In addition to browsing data, the Ubicorder also
provides a graphical user interface (GUI) that users can use to
define inference rules. These inference rules detect sensor data
patterns, and translate them to higher-order events. Rules can
also be recursively combined to form an expressive and robust
vocabulary for detecting real-world phenomena, thus enabling
users to script higher level and relevant responses to distributed
sensor stimuli. The Ubicorder’s mobile, handheld form-factor
enables users to easily bring the device to the phenomena of
interest, hence simultaneously observe or cause real-world stimuli
and manipulate in-situ the event detection rules easily using its
graphical interface. In a first-use user study, participants without
any prior sensor network experience rated the Ubicorder highly
for its usefulness and usability when interacting with a sensor
network.

I. INTRODUCTION

S IGNIFICANT research effort has been expended in build-
ing sensor network platforms targeted at Ubiquitous Com-

puting applications [1]. These form a subset of a larger
trend of deploying general purpose embedded platforms and
instantiating specific applications on them [2]. Such platforms
are generally designed for engineers and sensor network
specialists. There has been very limited research directed
toward lowering the threshold for interacting with such general
purpose sensor networks. We believe there are significant
advantages in enabling non-experts to explore, experiment
with and utilize the facilities provided by a sensor network.
Firstly, this will enable users of the instrumented environment
to identify and develop their own applications that use the
sensing capabilities available. Secondly, raw sensor data can
often be useful, especially when examined in context of the
location of particular sensor nodes, which could inspire users
to design heuristic-driven inference rules operating on that
data.

In this paper, we present the Ubicorder (Figure 1) [3], a
mobile, location and orientation aware sensor network browser
and inference tool. The Ubicorder lowers the threshold for
users to observe, interact with, and draw inferences from real-
time sensor network data. Consider how humans generally
use sensor data. First, we discover and identify the sensing
capabilities of an instrumented environment. Second, we draw
heuristics to translate sensor data into real-world events of

Manas Mittal is with the MIT Media Lab, Cambridge, MA, 02139 USA
e-mail: (manas@media.mit.edu)

Joseph A. Paradiso is with MIT Media Lab, Cambridge, MA 02139 USA
email: (joep@media.mit.edu)

Manuscript received January 20, 2010; revised April 20, 2010.

interest, and third, we apply these heuristics to infer such
events in the future. The Ubicorder’s subsystems parallel
this process. The Ubicorder’s browser enables discovery of
sensing capabilities and lets users draw correlations between
sensor data and physical phenomena. A second subsystem:
EDITY (Event Detection and Identification System) enables
users to formalize such heuristics into inference rules that
automatically translate future data into real-world events.

For browsing, the Ubicorder provides a mobile location
and orientation-aware interface to sensor networks. Users can
use its point-and-browse affordance to discover and explore
the facilities of a sensor network; the Ubicorder displays an
interactive map of the sensor nodes available, showing the
sensing modalities of each node and renders the real-time data
generated by these sensors.

The Ubicorder’s EDITY subsystem incorporates a graphical
language for defining and combining inference rules, and an
inference engine that detects and flags when such events
occur. EDITY also addresses the scalability issues implied
when viewing real time data from multiple sensors. Instead of
showing raw sensor data limited to a few sensors, inference
rule abstractions make it convenient to monitor an order-of-
magnitude higher number of sensor data streams.

The browsing and event detection/definition functionalities
complement each other. The Ubicorder’s mobile, handheld
form factor enables users to easily bring the device to the
phenomena of interest, hence simultaneously observe or cause
real-world stimuli and manipulate in-situ the event detection
rules using EDITY’s graphical interface. Creating a simple in-
terface for enabling quick creation and iteration of event rules
presents a challenge. Borrowing from the programming by
example/demonstration communities [4], [5], the Ubicorder’s
EDITY (Event Definition and Identification System) allows
users to define inference rules by performing or observing the
action, correlating it with the corresponding sensor data, and
designing a rule to detect such events in the future.

Our vision is that by facilitating the use of such networks by
non-experts, we will promote a richer exploration of the appli-
cation space for sensor networks and the data they generate.
The Ubicorder, enabled by advances in mobile computational,
sensing and communication capabilities, is a step in this
direction. We envision a sensor network utility technician (here
considered a “non-expert” in contrast to engineering expertise
currently needed to deploy such systems) who will use the
Ubicorder at installation to draw up the first few inference
rules, which serve as building blocks and components for other
such rules that are actively constructed and tweaked by users
of the space.



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Fig. 1. Holding the Ubicorder. Custom hardware is mounted at the top of
the tablet

The main contributions of this work are:
• A location and orientation aware sensor network browser

that exposes the capabilities of a sensor network and
graphically renders real-time sensor data.

• A trigger definition language and schema for inferring
events based on sensor stimuli.

• An intuitive, mobile, visual, graphical interface to easily
define, experiment and iterate over sensor rules, and an
inference engine that detects events so defined.

• Techniques and models that support rapid exploration of
inference rules through the application of the design-test-
analyze [6], [7] paradigm on a much shorter timescale as
compared to existing tools.

Next, we describe the Ubicorder’s browsing functionality,
followed by a description of EDITY. We then discuss the
implications of such a system and describe our observations
from a user study. We conclude with a discussion of related
work.

II. SENSOR NETWORK BROWSER

The Ubicorder’s browsing mode allows the user to browse
real-time sensor data through a location and orientation-aware,
map-based interface. Displaying the user’s present location
relative to the sensor nodes assists them in contextualizing
their location. The browsing interface provides, at a glance,
an overview of the current state of the monitored area.

A. System Components

Although not designed for a specific sensor network, the
Ubicorder currently displays data from two sensor networks
deployed on the third floor of the MIT Media Lab. The first is a
network of 150 ceiling-mounted motion sensors [9]. The other
sensor network was the 50 node “Spinner” sensor network
[8], [10] that was in the process of being rolled out when
the Ubicorder was developed. Each “Spinner” node contains a
minimum of temperature, light, sound and vibration sensors,
while also serving as radio (Zigbee) and Infrared (IR) beacons.
In our implementation, both “Spinner” and motion sensors
exposed their data over Wi-Fi gateways.

The Ubicorder is composed of a touchscreen (pen sensitive)
Tablet PC (IBM X60) with Wi-Fi and a Universal Serial
Bus (USB) port. Additional hardware (Fig. 1) was necessary
to acquire the location and orientation information. We use

Fig. 2. Browsing Interface of the Ubicorder. Square icons represent move-
ment sensors. Circular black icons correspond to “Spinner” [8] nodes. Icons
jitter to convey vibration, change color to indicate temperature variations,
change the size of their halo to represent sound level variations, and vary the
length of emanated lines to indicate light levels. The square icons “pop” to
indicate motion underneath. The pointed circular icon represents the user’s
location/orientation, and increases in size as the localization resolution grows
coarser. More modalities are detailed in [3].

a three-axis, tilt-compensated digital compass for determin-
ing orientation (Honeywell HMC). We use the Ubicorder’s
wireless radio (Chipcon Zigbee) to provide coarse, room-
level wireless localization. The Ubicorder also supports, where
available, IR-based localization. Sensor nodes incorporate IR
emitters and serve as IR beacons. The Ubicorder maintains a
map of such beacons and uses this information to localize and
point more accurately than afforded by the Zigbee radio and
compass.

B. The Graphical Interface

On the Ubicorder screen, the browsing interface displays
a floor plan overlaid with icons depicting sensor nodes. Icon
shapes indicate the type of sensor node (Fig. 2).

Coarse grained, real-time sensor data is encoded in the
icon’s form. For example, a movement sensor temporarily
“pops out” (i.e., grows larger) upon registering motion under-
neath. Fig. 3 shows a series of motion sensors “pop out” as
a person walks underneath. Similarly, the circular multimodal
“Spinner” icons change form to convey dynamic sensor data.
Some of these variations are shown in Figure 4 and in [3].
The default color scheme (gray/black) of the map is chosen
so that it looks dull when there is no activity or significant
variation in sensor data.

C. Navigation and Context

The user’s approximate physical location and orientation
are conveyed as an icon on a map displayed on the screen.
Situating the user simplifies navigation, both on the screen
and in the physical space. On screen, we place a directional
arrow (a circular “me” icon, Fig. 5) at the center of their icon



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Fig. 3. The six images represent successive time slices, earliest (top left)
to latest (bottom right). Black icons indicate ceiling-mounted motion sensors.
Here, it is easy to infer that at least one person is walking underneath.

Fig. 4. Variations in sensor data (a) low-sound level (b) high-sound level,
(c) low-light level (d) bright-light level

thus indicating the user’s assumed orientation and location.
The icon is dynamically responsive as the user walks around
the building. The location accuracy is variable and depends
upon the network’s support for Zigbee or IR localization. We
convey this locational uncertainty by increasing the diameter
of the “me” icon (see Figure 5). Note that the whole map can
rotate to align with the users view (like in our prior work,
the Tricorder [11]), but some users found it easier to select
a sensor node when the map remained static (i.e., did not
reorient) and the “me” icon’s arrow indicated orientation.

Fig. 5. The large (green and red) circular icon represents user’s location.
The icon’s arrow indicates orientation, and the size of the icon changes with
the localization accuracy.

III. RULE SCRIPTING INTERFACE: EDITY

While the browsing interface provides an overview of the
current state of an area, it is difficult to display precise
quantitative data from multiple nodes and multiple sensors
in parallel via the browsing UI. However, in order to draw
meaningful inferences, it is vital to be able to view such sensor
data, including data from multiple nodes. Users, especially
end users, are typically interested in the inferences that can be
drawn from the data, rather than the data itself.

The Ubicorder’s EDITY subsystem enables users to de-
fine, manipulate, and test simple inference rules that map
sensor data to meaningful higher-level primitives. Commonly
occurring sensor data patterns that correspond with physical
phenomena of interest can be abstracted away as (higher-level)

events. Users can design, experiment and iterate over such
rules for identification of these events. The system can then
apply these rules to detect such events upon receipt of future
sensor data. Rules can be defined/combined in a piecewise and
recursive fashion. The inference rules are organized as either
simple rules or compound rules. Simple rules operate directly
on sensor data, and monitor a single sensor stream. Compound
rules combine multiple simple rules and/or compound rules
to form new compound rules. In the following sections, we
discuss in detail both the formal grammar and the interface
for defining and experimenting with such rules.

Fig. 6. Inference Rule, Input and Output

A. Definitions

We define an event as an occurrence of a physical phe-
nomenon or action in the real world. Users (using EDITY)
construct rules to infer events based on sensor data. A rule
maps a stream of sensor values to Boolean values, testing a
condition (Cd). One or more rules, when true, indicate the
occurrence of an event. Filters (filters) may be applied to the
sensor stream prior to testing for conditions.

Inference rules are of two types: simple and compound.
Simple rules (Simple) test for conditions on a single sensor
stream. Compound rules (Compound) are boolean, time-
dependent combinations of simple rules, and/or compound
rules. Operators (Oper) combine outputs of rules to form new
compound rules. Time Slack (Ts) introduces time dependency
for creating compound rules. If any (filtered) component rule
is true within the time slack, the output of the component rule
is considered true.

B. Simple Rules

Simple rules check for conditions on a single sensor data
stream. Here we discuss the interface and mechanisms for
defining such rules. The process of defining rules can be
categorized into three steps: 1. Selecting a sensor, 2. Defining
and manipulating decision rules, and 3. Linking actions and
recording simple rules.

In keeping with the standard engineering metaphor of data
flowing left to right, the input port, operation, and output port
are placed left-to-right on the screen. The sensor/node selector
forms the left pane (input), the rule definition, manipulation
and detection subsystem forms the middle pane (operation)
and the output, i.e., storing events and or linking actions
(output) forms the right pane.

A user switches from the browsing mode to the rule creation
mode by clicking a toolbar button, then is presented with
the “Simple Rule Interface” (Figure 7). The left pane of this
interface allows the user to choose the sensor stream of interest
- by either tapping on the node’s icon or by physically pointing
the Ubicorder toward a node (if the node has an IR beacon).



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Fig. 7. Screen-shot of the Simple Rule Interface (1) Map indicating location/type of sensor nodes (2) Selected Sensor Node (3) Sensors on Selected Node
(4) Data Stream on Selected Sensor, shaded region indicates sensor samples satisfying thresholds, (5) Node, Sensor name, (6) Action: Name of the Rule
(IN OFFICE)and actuation (Sound - Ding)

The selected node is highlighted on the map, and a list of
sensors exposed by the node is displayed in the lower half of
the left pane (Figure 7(3)). Tapping on a sensor name selects
it, i.e., expands the sensor name box to display filters that may
be applied to it.

While our interface and model are not directly tied to
particular filters, we support five basic filters - Not(N),
Smoothing(S), Derivative(D), Positive(Ph) and Negative Hys-
terisis(Nh), Debouncing(Db) and Deglitching(Dg). Filters ex-
pose a tweakable “k” parameter that varies their sampling
window size, or in the case of hysterisis and de-glitching
filters, holds the signal for k samples. Ideally, for a completely
expressive interface, these filters should be stackable in a user-
defined order. However, in our experience, we found the filters
to be intuitively useful in the following (default) order - N,
Dg, S, Ph, Nh. The filter model is extensible, and additional
filters may be added later. In terms of formal grammar, this
can be expressed as:

Ss
Fs→ Ss

where Ss indicates Simple Stream, Fs indicates a filter.
The real-time sensor signal (post filter application) is dis-

played in the middle pane, as a scrolling strip chart (Fig-
ure 7(4)). The user can also freeze the strip chart, or scroll
back to view past data. The user defines and experiments
with the conditions that specify the rule. We currently support
upper and lower threshold conditions. A pair of user-draggable
horizontal lines signify the upper and lower thresholds being
set. As the user moves the horizontal lines, the section of the
data stream satisfying the constraints are highlighted. Further,
the user can “look-back”into the data stream to examine the
time segments where the constraints are satisfied.

Events may triggered when rule conditions are met. The
right pane enables the user to link the rule with an action and

save it. Currently supported actions are selecting or coloring
the node (in the map on the left pane), playing an audio file,
or sending a keystroke to an external program (through the
Operating System, using the Java Robots API [12]). The last
option allows the user to control external programs. In the
interface, a drop down “action” menu lets the user choose
pre-defined actions. The action is either edge triggered or
level triggered, based on user choice. Formally, this can be
expressed as:

Ss
Cd→ Simple

Where Ss indicates Simple Stream, Cd indicates Condition and
Simple indicates Simple event.

Additionally, the user can “save” the rule and use it as a
component for further rules. Saving implies that the rule (as
defined by the selected node, the sensor on the node, the filters
applied, and the thresholds) will be evaluated whenever new
data is received from the selected sensor. A binary output
stream is exposed by such a saved rule. These simple rules
form the building blocks for compound rules, discussed in the
next section.

C. Compound Rules

While the simple rules provide a simple and effective
mechanism to set threshold events for a sensor stream, real
events of interest can be better inferred by observing multiple
sensor streams simultaneously.

Rules involving multiple sensors (or simple rules) are called
“compound rules” (Compound). A compound rule is defined
by combining the output of multiple simple or (existing) com-
pound rules. When forming a compound rule as a combination
of simple (simple) rules, this effectively translates as directly
applying conditions on two sensor signals. Simple rules may



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

Fig. 8. Screenshot of the Compound Rule Interface. The left panel (1) has a list of existing rules, three of which are selected and have their filters set. The
middle panel displays strip charts for the rules (in order of selection). The time dependency is defined by the black double line(2,4), and by the highlighted
time slack in the strip charts(3,5). The bottom middle panel (6) shows the result of the rule that the user is currently designing(color image)

be combined with Boolean operators (oper) such as and,
or, and xor. Rules may also be linked temporally, using the
concept of time slack discussed later (Ts). Formally, this can
be expressed as:

(TsSimple)Oper(TsSimple) → (Compound)

The Compound rule so defined may be combined further with
previously defined simple rules. The same operators and time
slack concepts are applicable. Compound rules provide the
flexibility to define more and more complex rules that might
be necessary to model a real world phenomenon. This can be
expressed as:

(TsCompound)Oper(TsSimple) → Compound
(TsCompound)Oper(TsCompound) → Compound

For simplicity in describing the workings of the system,
we refer any rule that contributes to a compound rule as a
component rule. Internally, a compound rule is represented as
a node in a directed acyclic graph (DAG), with the component
rules forming the children of a node depicting the current rule.
The simple rules form the leaves of such a graph.

In the UI (Figure 7), clicking on the Compound Event Tab
changes the view to the compound panel (Figure 8). The left
pane contains a list of all existing simple/compound rules.
Clicking on a rule name (Figure 8 (1)) toggles the inclusion
of the rule as a component rule. Selecting a rule for inclusion
also brings up a filter panel (same as that for a simple sensor).
Note that for a compound rule, more than one component rule
can be selected at a time.

In the middle pane, a new strip chart is created for every
(included) component rule, and shows the near-real-time out-
put of this rule. The strip charts are color-coded (lines are
drawn with the color of a component rule as specified in the
left pane).

One of the challenges of defining compound rules is to
describe the temporal connection between the different com-
ponent rule events that define a compound rule.

EDITY supports specification of time dependency in the
form of “Event Y happens between (p,q) seconds after Event
X”. That is, event Y happened at least p seconds after X and
that event Y happened at most q seconds after X. Note that p
and q can be negative numbers.

The concept of time slack is introduced. Time slack implies
that a component rule, if it is ever true within a specified time
window, will be construed as being true when evaluating the
compound rule it participates in. The beginning and end of the
time slack window are specified with respect to the first rule.
The first rule, by definition then, has no time slack (instead,
it sets the zero point). Graphically, the time slack is set by
dragging two vertical lines on the strip chart. The zero line
(black vertical line in the strip chart) is set by default in the
first rule, i.e., the rule first selected, and therefore displayed
at the top of the strip chart pane (Figure 8(2) shows this line).
This zero line is then synchronized across all the other strip
charts (for example, Figure 8(4) shows one such line). Two
additional time slack lines are also drawn in all but the first
strip chart, corresponding to the time slack for each component
rule.

At this point, three lines are visible on a strip chart (except
on the strip chart corresponding to the first selected sensor,
where only the “zero point” thin black double line is visible)
- Figure 8(4). The second line, (Figure 8(3)) drawn in the
color of the current strip chart, indicates the lower bound of
the time slack, i.e., the event must happen at least p seconds
after the first component is found to be true. The third line
(Figure 8(5)) specifies the maximum time slack, that is, the
event must happen by the end of this time period. Setting the
time slack highlights the corresponding region on the graph.



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

A drop down menu at the bottom of the middle pane allows
selection of Boolean operators (And, Or, Xor) for combining
the component rules. The output of the rule is displayed in a
strip chart at the bottom of the middle pane (Figure 8(6)).

The right pane is the same as in the simple rule interface.
The selected rule can be saved, and used recursively as a
component rule for the design of another compound rule.
Being able to recursively define rules is crucial to provide the
flexibility to express real-world phenomena. The user study
(discussed later) describes one such scenario in detail.

IV. DISCUSSION

We discuss four important threads about the EDITY system:

A. In-situ Creation of rules

The Ubicorder is a mobile device. Being mobile allows the
user, when defining the rule, to be physically present at the
location of the phenomena, thereby allowing them to correlate
the real event (cause) with the observed sensor data (effect).
Such a configuration has three advantages. First, it simplifies
understanding the sensor behavior, as the user can learn about
the sensors and their data streams by actuating a change in the
real world and observing the corresponding sensor signature.
Second, it facilitates quick testing and tweaking of the rule
being designed. Third, allowing the user to see the correlation
between sensor signals, real phenomena, and the output from
the rule thus designed, exposes to the user to the limitations
of the sensing infrastructure, and could prompt the installation
of new sensors or relocation of old ones.

B. Expressiveness of the rules

While EDITY only supports simple amplitude threshold
based conditions for simple rules, the general model of using
filters and visualizing thresholds is generic and extensible.
More complex conditions can be implemented using well-
designed filters. For example, consider implementing a correla-
tion condition. A correlation filter can be added that translates
a sensor signal to a correlation coefficient with respect to
another signal (specified in the filter), upon which thresholding
can be applied. Similarly, more expressive rule combiners can
be used when forming compound rules.

C. Boolean Operators

Users are known to face problems when designing database
queries that involve Boolean operators, the so called “Boolean
bottleneck” [13], [14]. Some of the reasons behind this dif-
ficulty are (1) difficulty in the use of parenthesis and order
of evaluation when specifying queries, and (2) confusing the
Boolean operators AND, and OR with their counterparts in
common English language. The EDITY system parenthesizes
every component rule, i.e., it evaluates a component rule com-
pletely before plugging its Boolean value into its compound
rule. Thereon, every rule that the user designs is implicitly
parenthesized.

The EDITY system addresses the second problem, i.e.,
confusion between logical AND/OR with normal English

TABLE I
EXPRESSIVENESS OF RULES

Expressiveness
Event Type: Equivalent EDITY

construction
Example

On-Off
(Binary) Events

EDITY event defined
by a threshold-based
Simple Rule

If Light Level is
above threshold,
Floor Lamp is
swiched on

(1-2-3-4 ..)
(Discrete State)
Events

EDITY event defined
by Compound Rule
comprising of mul-
tiple Threshold-based
Simple rules.

Detect if a user is
’busy’, i.e., study
lamp is switched on
and sound level is
below a threshold.

Events
matching a
sensor pattern

Using a correlation,
or dynamic time-
warping filter

Accelerometer
based sensing

X after
Y events
(Temporally
Linked)

Using the concept of
time slack

Trigger a series
of motion sensors
to detect a person
walking. Link a
series of binary
simple rules.

usage of “and”, and “or”. First, we argue that our model of
AND/OR operators closely parallels their equivalent English
usage. In our context, such terms define linkages among the
truth stage of component rules. Each component rule itself
would generally map to some observable phenomena. For
example, a compound rule to detect if someone is in the
office might consist of one component rule for increased light
level, and another for increased sound level. In this case, the
condition will be defined in usual English as “A person is in
the office if the light is switched on and the sound level is
high”, similar to its usage in EDITY. Secondly, by displaying
to the user the graphical output of the rule while she devises
it, we encourage the user to experiment rather than analyze;
the interface lets the user quickly see the result of the rule she
has so far created. Therefore, the user matches the output of
the rule to the desired output.

D. Modularity

Combining multiple sensor streams provides a more expres-
sive language and improves recognition accuracy. Recursively
building rules (using component rules) brings the advantages
of modularity to the rule making process. “High-level” sensor
outputs can be re-used as components for several compound
rules. The modular approach ensures that simpler rules can be
defined and debugged completely before more complex rules
are defined. Further, rules can denote physical phenomena
(for example, “Joe in office” and “Joe in car”) and can be
combined to imply higher order phenomena (“Joe not at home
if in the car or office”). Additionally, this modularity lends
itself well to sharing of rules. A repository of rules describing
standard states of a given space can be incorporated. A subset
of these rules can be designed by domain experts or even
through common-sense databases [15] . Non-expert users can
then incorporate these rules in the compound rules they create.



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

V. EVALUATION

We conducted a controlled first-use user study to evaluate
the utility and the usability of the Ubicorder and its EDITY
system. The study group was comprised of ten participants.
They came from a variety of educational backgrounds: four
from Electrical Engineering/Computer Science, three from
other engineering/science fields, and three from design. Five
participants were graduate students, three were undergradu-
ates, and two were post-doctoral researchers. An additional
two participants served as pilot testers, hence their observa-
tions are not included in the final analysis.

All participants had at least some programming experience.
Half the participants had no knowledge of sensor networks.
Of the remaining five, three had some experience with sensor
networks and two were experts, with experience both in
designing and deploying sensor networks.

Half of the participants also had some experience inter-
preting data from electronic sensors by simple eyeballing
techniques. Two had written computer programs to analyze
and interpret such data. Almost all participants (9) were aware
of, and comfortable with Boolean operators. None of the
participants had any functional knowledge of the deployed
sensor networks in the building, and only four were aware
of the existence of any sensor network in the building. This
was mildly surprising, since most participants worked in the
same building.

Fig. 9. Prior experience of our study participants (5 point scale)

A. Study Protocol

Two sensor networks were deployed around the Media
Lab’s third floor. One was the 150-node ceiling mounted
motion sensor system from MERL [9]. The other was our own
“Spinner” sensor network, which had three nodes deployed in
our lab area, and one in an office nearby.

Each trial lasted for an hour and fifteen minutes. The study
started with a pre-survey questionnaire, followed by a brief
(10 minute) introduction. The user was then asked to perform
a task. The task was divided into two smaller subtasks:

1. Warm Up Task, Task A: Use the Ubicorder’s browser to
locate a “Spinner” node in a dark room. Then author a rule
to detect if the room is occupied. Multiple sensor nodes (with
light, motion, humidity and sound sensors) were deployed in
different rooms. The user was expected to design a simple
single-modality rule.

2. Main Task, Task B: The participant was asked to design
rules to detect if a lab workbench (with a soldering station)
was in use. An actor portrayed a typical use-case scenario,

i.e., the spotlight and (audible) fume exhaust fan were turned
on. There was a second ambient light that may or may not be
turned on while the unit was being used. A multimodal sensor
node was placed on the workstation. The user was instructed
that they may move this sensor node if needed, and could
freely turn on or off the lights, exhausts etc.

Fig. 10. Zoomed in view of the Spinner Node deployed on the micro-
scope/soldering workbench. (1) Spinner Node, (2) Fume Exhaust Fan, (3)
microscope, (4) Area under the microscope, illuminated by a LED spotlight,
(5) LED spotlight switch, (6) Soldering Iron

This task was chosen because it provides an opportunity
for the participant to design a straightforward (but non-trivial)
compound rule involving sound and light sensors. This setup
also allowed participants to create more intricate rules involv-
ing additional sensors. Around half of our participants were
familiar with the workbench, and so it therefore introduced
invariance with regards to prior knowledge of the task. The
participant was instructed to program an alert or actuation
to be triggered when the soldering area was in use. For
example, participants could set audio alerts (“ding” sound)
or visual alerts (box drawn around a node, changing the
color of the node, etc.). The study concluded with a post-task
questionnaire, which contained both Likert scale and essay
type questions.

B. Observations

Participants were able to successfully make inference rules
that detected the phenomena with varying degrees of accuracy.
Participants took a variety of approaches in defining rules,
some of which had not been originally envisioned by the study
designer when the user study was originally formulated. For
the warm up task, participants always designed a rule that
used light levels as the sensed modality. For the main task of
detecting the soldering workbench in use, participants reused
the first rule (light level), applied to a different sensor stream
and experimented with additional sensing modalities that were
available. Some of our key findings were:

• Exploration of sensor facilities: Participants were able
to discover the location of sensor nodes and the sensing
capabilities they provided. Participants cited the ability
to identify their location and orientation with regards
to sensor nodes as crucial in locating the nodes. Once
they found the sensor nodes, participants experimented
by changing stimuli and seeing the corresponding effect



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

on the sensor data streams. Participants without any expe-
rience working with sensor nodes were able to understand
the stimuli-sensor reading relationship and then used it to
draw rules. For example, Task A, participants identified
where the dark room was and walked to it, and then once
there, switched the ambient light on and off to see the
effect on the light sensor output. In Task B, participants
experimented with different sensors such as light and
audio (e.g., switching on the ambient light, switching on
the spotlight, noticing the sound level due to the exhaust).

• Iteration and experimentation:
Participants also experimented with the various sensing
modalities available. Most users designed rules using
light levels (Task A) and light and sound levels (Task
B). Participants experimented with different modalities
and combinations (light, motion, light and motion, sound,
sound and light, etc). Two participants designed a simple
rule that used data from the Spinner node’s motion sensor.
One of these subjects used this rule in addition to the
Light and Sound rule, while the other used it in place of
a rule for sound level.

• Rule reuse: Eight participants reused the light detection
rule that they designed for Task A in Task B as well.
In Task B, participants first designed simple rules for
light, motion, and sound, then combined them. These
observations indicated that most users felt comfortable
reusing rules.

C. Results

TABLE II
POST-EXPERIMENT QUESTIONNAIRE RESULTS: USEFULNESS. (LIKERT

SCALE, 5: STRONGLY AGREE, 1: STRONGLY DISAGREE)

Usefulness :
Question: µ σ
Made me aware of the sensor network and its
facilities

4.2 0.42

Taught me how I could use sensors to infer
events in the real world

4.2 0.63

I like being able to remotely observe events
using a sensor network

4.1 5.6

Events helped in inferring sensor data 3.6 1.0
I prefer defining rules and observing events
rather than view raw sensor data

4.5 0.7

The Ubicorder encourages me to experiment
with inferences I can make with sensor network
data

4.1 0.73

I would prefer to have someone else define rules
for me

2.0 1.0

Gave me ideas for additional sensors to be
deployed to sense real-life events of interest

3.9 1.1

I will be more forgiving when events are incor-
rectly detected because I can modify and tweak
the rules by myself.

3.6 0.51

All participants were able to use the system to design rules
and define events. Participants with no prior sensor network
experience were able to use the network for useful tasks.
The rules that they designed spanned a range of solutions.
Further, once the participants were familiar with the basic

TABLE III
POST-EXPERIMENT QUESTIONNAIRE RESULTS: USABILITY. (LIKERT

SCALE, 5: STRONGLY AGREE, 1: STRONGLY DISAGREE)

Usability
Question: µ σ
The interface for viewing sensor data was easy
to use

4.3 0.96

The interface for creating and defining events
was easy to use

4.1 0.56

The idea of defining events by creating simple
and compound rules was intuitive

4.5 0.52

Making compound rules from simple rules was
easy

4.8 0.48

Tying multiple sensor values together through
compound rules was easy to do

4.6 0.7

I liked being able to see real world events and
the corresponding sensor signal at the same
time

4.8 0.42

interface of the Ubicorder, the majority of their remaining
time was spent exploring the sensor modalities, defining rules
and experimenting with rule combinations. Users typically
experimented with at least three modalities, often choosing
a subset for their final rule. This rapid iteration enabled the
participants to define robust rules.

The Ubicorder successfully enabled participants with no
prior sensor network experience to discover and explore the
deployed sensor networks (µ = 4.2, σ = 0.42, on a 5 point
Likert scale). Further, participants, including those without any
sensor network experience, were able to learn how to use the
sensors to infer real world events (µ=4.2, σ=0.62). Participants
also liked the idea of using higher-level rules (µ=4.1, σ=0.7),
and found our interface to implement them easy to use
(µ=4.1, σ=0.56). In general, participants found it easy to
create compound rules from simple rules (µ=4.8, σ=0.48).
Participants also liked that the Ubicorder was portable, and
that they could design rules in-situ (µ=4.8, σ=0.42). Being
able to see the real world event and the sensor data at the
same time was often cited as the most appreciated feature.
The Ubicorder also gave participants ideas about new sensors
to add to the sensor network (µ=4.8, σ=0.42) to infer events
they might be interested in. From this data, it can be implied
that users would take a more proactive role with regards to
the sensor network if such a system were to be deployed.

The study was less conclusive about whether participants
were more forgiving about false event detections, because they
could tweak the rules (µ=3.6, σ=0.51). The question asking if
“events helped in inferring sensor data” was polarizing (µ=3.6,
σ=1.0). Participants having significant experience with sensor
networks and analyzing sensor data wanted to be able to
define probabilistic models for inferring events. On the other
hand, novices were happy with the current Ubicorder system.
Detailed results are presented in Table 1 and Table 2 and are
discussed in [3].

D. Limitations And Future Work

Participants identified some key areas for improvement. The
Ubicorder currently supports only deterministic combinations
of rules, i.e., rules can not be combined “fuzzily”. Users



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

typically employ fuzzy rules when using heuristics (equivalent
to the ’sometimes’ clauses when thinking about sensor rules),
thus the lack of this capability limits the expressivity of rules
in EDITY.

Participants pointed out the need for categorization of the
(previously made) component rules. Currently, all previously
rules are displayed in the order in which they were created.
One approach would be to categorize rules based on partic-
ipating sensor nodes, or sensor types. Future versions of the
Ubicorder will incorporate this.

There is also a two-second latency (i.e., a delay between
when the event happens and subsequently “seeing” resultant
changes in sensor data) in the currently implemented system.
Most of this delay was from inherent latencies in the data
acquisition. For future work, we would like to quantify such
delays, and present them to the user in a meaningful way.

We would also like to improve the point-and-browse in-
terface of the Ubicorder. Based on our user studies, we find
that users would like some way to definitely ascertain that
the node they have physically pointed the device at is indeed
the one depicted by the system. We propose using some form
of feedback on the sensor node, for example, the user can
touch a virtual node and see the corresponding real node light
up (LED’s are pretty common on sensor nodes). Or the user
can make deliberate stimulation of a real node (e.g., shine a
flashlight at it) and see the virtual node change.

VI. RELATED WORK

This work was originally inspired by the “Starfleet Tri-
corder,” a fictional device from the popular science-fiction
TV series, Star Trek. The Tricorder is a handheld device that,
when pointed in a direction, scans that area for virtually any
information [16], [17], then interprets and displays the data.
Typical applications included farfetched scanning for “novel
life forms” and “energy sources”, as well as more mundane
readings for radiation levels and atmospheric composition.
However, unlike the Star Trek Tricorder, our Ubicorder does
not contain all the sensing abilities within the handheld,
but instead gleans such data from a locally available sensor
network. The Ubicorder is more directly related to several
current areas of research, discussed below.

A. Query Languages and Stream Processing

There has been significant research in the systems commu-
nity in building new query languages and stream processing
engines for sensor network applications [18]–[20]. This work
centers around themes such as reducing latency, increasing
computational and power efficiency, and addressing scalability
and robustness concerns. The emphasis of our work lies
in presenting a graphical user interface to such a system
and thereby making sensor networks more accessible, hence
it complements the previous work in this community. The
Ubicorder can serve as a front-end for accessing sensor
infrastructure. For example, stream processing engines such
as Aurora [20] are well suited to processing incoming data
and detecting events. The EDITY interface will enable users
to easily devise such event conditions (rules).

The Ubicorder needs to acquire sensor data from a network.
Acquisition of sensor data through networks is a complex
task, with multiple opportunities for optimizing for power and
latency. Mueller et al. present SwissQM [21], a virtual machine
that presents the sensor network via a single gateway. The
system also allows “event rules” to be pushed further down
into the network, and optimizes the gateway for a given set of
event rules.

B. Sensor Scripting
The idea of scripting simple sensor rules based on a

combination of sensor values is well established. First-order
logic is traditionally used in the artificial intelligence com-
munity for specifying “if-then-else” constructs. Researchers
in the context-aware computing space have built several such
rule-based systems and associated infrastructure [22]–[24]. In
the gesture recognition community, there have been several
projects [25], [26] that incorporate a scripting system. These
scripting systems typically allow the user to write a text
script defining sensor conditions, and combinations thereof. In
[26], the authors describe a sensor network scripting system
for home automation applications. While the above systems
rely on a text based markup language, EDITY, in contrast,
presents a graphical user interface on a mobile device, which
provides an iterative design-test-analyze functionality. This is
particularly valuable, since scripting systems are typically used
at first by users who view the data and then, guessing the
thresholds, test the rule.

Researchers have previously built graphical sensor scripting
sysems, specifically for location-aware applications. In particu-
lar, Li et al.’s Topiary [27] allows users to prototype location-
aware applications by creating storyboards that describe the
interaction sequences (involving people, places and things) on
a map. More recently, the Panaromic system [28] also employs
a storyboard metaphor for specifying location-based events.
Unlike the general-purpose nature of EDITY, such systems
target a particular sensing modality, i.e. location. EDITY, on
the other hand, is a general-purpose system. We believe that
for specific scenarios, a system such as Panoromic might
indeed be more convenient for defining very high-level rules,
at the cost of generality and expressiveness. We can imagine a
scenario where a technically proficient “sensor utility worker”
designs primitives using EDITY that are then employed by
end-users in a Panaromic-like interface.

The Ubicorder’s integrated browsing and EDITY interface
simplifies and streamlines this process by visually overlaying
the thresholds directly over the sensor data. Additionally,
EDITY supports application of rules retroactively, i.e., it
allows looking back in time, thereby helping the user drill
down to the right rules and thresholds quickly. The Ubicorder’s
portability means that the user can be physically present at
location of the event and observe the ground truth. This makes
it significantly easier to correlate sensor data with real world
events of interest.

C. Programming by Demonstration Systems
While the Ubicorder does not directly offer a program-

ming by demonstration system [4], [5], it borrows the notion



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

of “events”, and of explicitly aiding the user in iteratively
crafting rules based on observation (physical phenomena) and
effect(sensor data pattern).

The Ubicorder’s EDITY system is inspired in part by Hart-
mann et al.’s Exemplar system [29]. Exemplar is a program-
ming by demonstration system for prototyping sensor interac-
tions for ubiquitous computing systems. Exemplar allows users
to perform an action (such as “titling an accelerometer”), then
observe and tweak the corresponding sensor (accelerometer)
pattern to detect this action in the future. The Ubicorder,
like Exemplar, allows user to define events based on sensor
signals, but offers significant architectural contributions. First,
Exemplar is designed for a single-sensor paradigm, where the
sensor node is tethered to a desktop computer with Exemplar’s
software running. Second, Exemplar does not have any notion
of compound rules, component rules and simple rules that
allow users to assemble complex rules easily. Third, Exemplar
does not support specifying time offsets for combining sensor
patterns. Sensor networks encompass the idea that multiple,
geographically diverse sensors will enable the specification of
features not possible with single isolated sensors, therefore
linking sensors across time and space domains is a crucial
capability. Fourth, Exemplar limits the number of sensors
that can be viewed (eight sensors are displayed in a small-
multiples configuration). This does not scale well to sensor
networks where large numbers of nodes have to be moni-
tored in parallel. To address this, the Ubicorder includes a
sensor network browser. Furthermore, the browser displays
data mapped directly onto the corresponding node icons, in
contrast to Exemplar’s small multiple strip charts.

The context-aware community has a rich tradition of de-
signing tools for programming and prototyping context-aware
interactions [23], [24], [30], [31]. In Stick-e Note [23], the
concept of trigger-condition is discussed - for example, virtual
stick-e notes appear based on a users location. iCAP [31] was
an early tool for programming context-aware applications, and
“a CAPpella” [30] enables users to program such interactions
by demonstration. Such systems inspire and motivate our
work. First, in [30], the authors make a strong case for empow-
ering end-users to create context-aware applications, the chief
suggestion being to utilizing the user’s implicit understanding
of the environment. The Ubicorder’s notion of empowering
users to explore and use sensor network data is grounded
on a similar argument. Second, [30], [31] states that such
capabilities underscore the importance of an in-situ system for
creating and editing the context-deriving rules. The Ubicorder
is also implemented as a mobile device for similar reasons. On
the other hand, the Ubicorder is significantly different from
these systems. First, EDITY, unlike [23], [30], [31] provides
a real-time interactive interface for defining rules. This allows
users to quickly establish correlations between sensor data
and real-world actions. Second, EDITY has better support for
continuous sensor data streams. Third, while [30] and [31]
abstract away the raw sensor signals, EDITY allows the user
to get “under the hood” of the sensor network by explicitly
exposing the raw sensor signals and involving the user in
defining the rules.

D. Browsing Sensor Networks

Mobile platforms are often used as sensor network con-
figuration tools. For example, the Great Duck Island project
[32] for sensor network habitat monitoring was one of the
first systems to use a handheld Personal Digital Assistant
(PDA) as a network management tool. Going beyond network
management to actual sensor data, in [33] the authors use a
PDA to display the availability of nearby conference rooms.
Similarly, Maroti et al.’s [34] sniper localization system uses
a handheld as an output device, i.e., to display the sniper’s
location as computed by the system. Although smart mobile
phones are beginning to be able to run limited, GPS/vision-
anchored augmented reality applications, they generally don’t
integrate with real-time sensor networks and render mainly
cached or web-based data [35]. The Ubicorder’s sensor net-
work browsing functionality has directly evolved from the
Responsive Environments (ResEnv) Tricorder [11], [36], [37]
built earlier by our research team. This is a location, orienta-
tion, and network-aware hand-held device used to interface
in real-time to a wireless sensor network embedded in a
surrounding domestic or occupational environment. Unlike
the Ubicorder, the ResEnv Tricorder does not incorporate an
inference rule design system such as EDITY. Additionally, the
Ubicorder has an improved localization system (using IR) that
enables new affordances, such as selecting sensor nodes by
pointing at them. Finally, the ResEnv Tricorder was strongly
tied to a particular sensor network. The Ubicorder is designed
ground-up for heterogeneous sensor networks and supports
common metaphors for indicating sensor values.

VII. CONCLUSIONS

In this paper, we presented the Ubicorder, a device that
lowers the difficulty threshold for users to interact with,
customize and utilize the facilities offered by sensor networks.
The Ubicorder includes a sensor network browser and the
EDITY subsystem to enable users to graphically define higher-
level events and script their dependence on sensor network
data. In a first-use user-study, both experienced and novice
participants rated the Ubicorder highly for its usefulness and
usability. Future work will explore porting Ubicorder functions
to lighter platforms (e.g., mobile phones and PDA’s). We will
also explore hybrid applications, where mobile users modify
and adjust classifiers that are derived or suggested by machine
learning systems running on sensor network data.

ACKNOWLEDGMENT

This work was supported by the Things That Think (TTT)
Consortium and other sponsors of the MIT Media Lab. We
thank our colleagues in the Responsive Environments Group
for their technical help.

REFERENCES

[1] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. A. Paradiso, “A Plat-
form for Ubiquitous Sensor Deployment in Occupational and Domestic
Environments,” in Proceedings of the Sixth International Symposium
on Information Processing in Sensor Networks (IPSN), April 2007, pp.
119–127.



IEEE SENSORS JOURNAL CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

[2] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas,
A. Kansal, S. Madden, and J. Reich, “Mobiscopes for human spaces,”
IEEE Pervasive Computing, vol. 6, no. 2, pp. 20–29, 2007.

[3] M. Mittal, “Ubicorder: A Mobile Interface to Sensor Networks,” S.M.
Dissertation, Massachusetts Institute of Technology, Media Arts and
Sciences, Aug. 2008.

[4] A. Cypher, Ed., Watch What I Do: Programming by Demonstration.
MIT Press, 1993.

[5] H. Lieberman, Ed., Your Wish is My Command: Giving Users the Power
to Instruct their Software. Morgan Kaufmann, 2000.

[6] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr,
A. Robinson-Mosher, and J. Gee, “Reflective physical prototyping
through integrated design, test, and analysis,” in UIST ’06: Proceedings
of the 19th annual ACM symposium on User interface software and
technology. New York, NY, USA: ACM, 2006, pp. 299–308.

[7] S. R. Klemmer, A. K. Sinha, J. Chen, J. A. Landay, N. Aboobaker,
and A. Wang, “Suede: a wizard of oz prototyping tool for speech
user interfaces,” in UIST ’00: Proceedings of the 13th annual ACM
symposium on User interface software and technology. New York, NY,
USA: ACM, 2000, pp. 1–10.

[8] M. Laibowitz, “Creating Cohesive Video with the Narrative-Informed
use of Ubiquitous Wearable and Imaging Sensor Networks,” Ph.D.
Dissertation, Massachusetts Institute of Technology, Media Arts and
Sciences, Jan. 2010.

[9] C. R. Wren and R. Srinivasa, “Self-configuring, lightweight sensor
networks for ubiquitous computing,” in International Conference on
Ubiquitous Computing (UBICOMP 2003), 2003, pp. 205–206.

[10] J. Lifton, M. Laibowitz, D. Harry, N.-W. Gong, M. Mittal, and J. A.
Paradiso, “Metaphor and manifestation: Cross-reality with ubiquitous
sensor/actuator networks,” IEEE Pervasive Computing, vol. 8, pp. 24–
33, 2009.

[11] J. Lifton, M. Mittal, M. Lapinksi, and J. A. Paradiso, “Tricorder: A mo-
bile sensor network browser,” in Mobile Spatial Interaction Workshop,
CHI 2007, April 2007.

[12] “java.awt class robot.”
[13] C. R. Hildreth, Intelligent Interfaces and Retrieval Methods for Subject

Searching in Bibliographic Retrieval Systems. Cataloging Distribution
Service, Library of Congress, Washington, DC 20541., 1989.

[14] D. Young and B. Shneiderman, “A graphical filter/flow representation
of boolean queries: A prototype implementation and evaluation,” J.
American Society for Information Science, vol. 44, pp. 327–339, 1993.

[15] B. Morgan and P. Singh, “Elaborating sensor data using temporal and
spatial commonsense reasoning,” International Workshop on Wearable
and Implantable Body Sensor Networks, pp. 187–190, 2006.

[16] K. Kleiner, “The star trek tricorder,” New Scien-
tist Blogs, 2007, accessed: 08/17/2008. [Online]. Avail-
able: http://www.newscientist.com/blog/technology/2007/08/star-trek-
like-tricoders-in-works.html

[17] Wikipedia, “Tricorder, From Wikipedia, the free encyclopedia,”
http://en.wikipedia.org/wiki/Tricorder, July 2008, accessed: 07/14/2008.
[Online]. Available: http://en.wikipedia.org/wiki/Tricorder

[18] S. Madden, “The design and evaluation of a query processing architec-
ture for sensor networks,” Ph.D. dissertation, University of California,
Berkeley, 2003.

[19] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, March 2005.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1061322

[20] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, pp. 120–139, 2003.

[21] R. Mueller, G. Alonso, and D. Kossmann, “SwissQM: Next Generation
Data Processing in Sensor Networks,” in Third Biennial Conference on
Innovative Data Systems Research (CIDR 2007), Asilomar, CA, January
2007.

[22] B. N. Schilit, N. Adams, and R. Want, “Context-aware computing
applications,” in Proceedings of the workshop on mobile computing
systems and applications. IEEE Computer Society, 1994, pp. 85–90.

[23] J. Pascoe, “The stick-e note architecture: extending the interface beyond
the user,” in IUI ’97: Proceedings of the 2nd international conference
on Intelligent user interfaces. New York, NY, USA: ACM, 1997, pp.
261–264.

[24] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: aiding the
development of context-enabled applications,” in CHI ’99: Proceedings
of the SIGCHI conference on Human factors in computing systems. New
York, NY, USA: ACM, 1999, pp. 434–441.

[25] A. Y. Benbasat and J. A. Paradiso, “Compact, configurable inertial
gesture recognition,” in Gesture Workshop, 2001.

[26] T. Haenselmann, T. King, M. Busse, W. Effelsberg, and M. Fuchs,
Emerging Directions in Embedded and Ubiquitous Computing. Springer
Berlin / Heidelberg, 2007, ch. Scriptable Sensor Network Based Home-
Automation, pp. 579–591.

[27] Y. Li, J. I. Hong, and J. A. Landay, “Topiary: a tool for prototyping
location-enhanced applications,” in UIST ’04: Proceedings of the 17th
annual ACM symposium on User interface software and technology.
New York, NY, USA: ACM, 2004, pp. 217–226.

[28] E. Welbourne, M. Balazinska, G. Borriello, and J. Fogarty, “Specifi-
cation and verification of complex location events with panoramic,” in
Pervasive, ser. Lecture Notes in Computer Science, vol. 6030. Springer,
2010, pp. 57–75.

[29] B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer, “Authoring
sensor-based interactions by demonstration with direct manipulation and
pattern recognition,” in CHI ’07: Proceedings of the SIGCHI conference
on Human factors in computing systems. New York, NY, USA: ACM,
2007, pp. 145–154.

[30] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, “a cappella:
programming by demonstration of context-aware applications,” in CHI
’04: Proceedings of the SIGCHI conference on Human factors in
computing systems. New York, NY, USA: ACM, 2004, pp. 33–40.

[31] T. Sohn and A. Dey, “icap: an informal tool for interactive prototyping
of context-aware applications,” in CHI ’03: CHI ’03 extended abstracts
on Human factors in computing systems. New York, NY, USA: ACM,
2003, pp. 974–975.

[32] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications. New York, NY, USA: ACM, 2002, pp.
88–97.

[33] W. S. Conner, L. Krishnamurthy, and R. Want, “Making everyday life
easier using dense sensor networks,” in UbiComp ’01: Proceedings of
the 3rd international conference on Ubiquitous Computing. London,
UK: Springer-Verlag, 2001, pp. 49–55.

[34] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits, “Shooter local-
ization in urban terrain,” Computer, vol. 37, no. 8, pp. 60–61, 2004.

[35] A. L. Liu, H. Hile, H. Kautz, G. Borriello, P. A. Brown, M. Harniss, and
K. Johnson, “Indoor wayfinding:: developing a functional interface for
individuals with cognitive impairments,” in Assets ’06: Proceedings of
the 8th international ACM SIGACCESS conference on Computers and
accessibility. New York, NY, USA: ACM, 2006, pp. 95–102.

[36] J. Lifton, “Dual Reality: An Emerging Medium,” Ph.D. Dissertation,
Massachusetts Institute of Technology, Media Arts and Sciences, Sept.
2007.

[37] J. Lifton and J. A. Paradiso, “Dual Reality: Merging the Real and
Virtual,” in Proceedings of the First International ICST Conference on
Facets of Virtual Environments (FaVE), July 2009.

Manas Mittal Manas Mittal is a software engi-
neer at Intuit Inc (Mint.com). His research inter-
ests include sensor networks, ubiquitous computing
and HCI. He has a SM from the Massachusetts
Institute of Technology Media Laboratory and a
BE from NSIT at Delhi University. Contact him at
manas@media.mit.edu

Joseph Paradiso Joseph Paradiso is an Associate
Professor of Media Arts and Sciences at the MIT
Media Laboratory, where he directs the Responsive
Environments group, which explores how sensor
networks augment and mediate human experience,
interaction, and perception. In addition, he co-directs
the Things That Think Consortium, a group of
industrial partners and Media Lab researchers who
explore the extreme fringe of embedded computa-
tion, communication, and sensing. After receiving a
BS in electrical engineering and physics from Tufts

University, Paradiso became a K.T. Compton fellow at the Lab for Nuclear
Science at MIT, receiving his PhD in physics there for research conducted
at CERN in Geneva. He is a senior member of the IEEE and AIAA, and a
member of the APS, ACM, and Sigma Xi.


