
NETWORK-BASED ROUTE RIDERSHIP FORECASTING METHODS

Outline

- 1. Components of Network Modeling Computer Packages
- 2. Example Modeling Systems(a)MADITUC(b)EMME/2
- 3. Major Sub-Models
 - (a) Route Assignment
 - (b) Mode Choice

Generalized Network-Based Modeling/Analysis Approach

Transit Network Model Capabilites

- Interactive computer graphics for network editing & display
- Network database management system
- Network assignment procedure
- Flexible display & output of results & base data
 - plots & reports
 - screen displays, printer & plotter hard copies

Transit Network Database

- Geocoded transit links & nodes
- "Mapping" of transit lines onto network links & nodes
- Transit line attributes
 - headways (by service period)
 - travel times (by service period)
 - "mode" of service (bus, subway, etc.)

System attributes

- operating cost data
- energy consumption data
- fares

Transit Origin-Destination Flow Matrix

• Three Levels of Analysis:

- 1. Fixed Transit Flows
 - use observed current transit o-d flows obtained from area-wide survey (e.g., Telephone survey)
 - assumes demand for transit will not change as service changes (at least in the short run)
 - typical approach currently adopted
- 2. Variable Modal Split, Fixed Total Demand
 - use observed current total (all modes) o-d flows
 - apply a modal split model to determine transit flows
 - preferred approach for significant service changes
 - not, however, generally operational
- 3. Variable Total Demand & Modal Split
 - requires full demand modeling capability (i.e., Generation, distribution, modal split)
 - not generally necessary for transit service planning, since total o-d flows are unlikely to change significantly during service planning period

Typical Package Outputs

- Link and line volumes
- Boardings by link, line, node
- O-D travel times

 in-vehicle
 out-of-vehicle (walk, wait, transfer, etc.)
- Revenues, operating costs, energy consumption by link or line
- Revenues, operating costs, rider characteristics by origin or destination zone

Outputs may be displayed in tables, reports, plots (network or zone based).

Examples Of Transit Network Modeling & Analysis Packages

1. MADITUC

Modele d'Analyze Desagregee des Itineraires en Transport Urban Collectif

or

Model for the Disaggregate Analysis of Itineraries on a Transit Network

- Developed at the Ecole Polytechnique, University of Montreal (Robert Chapleau)
- Requires "Montreal-style" O-D survey data, including transit route choice information
 - does <u>not</u> have general demand modeling capabilities
- Designed specifically for transit service planning
- Is "line-oriented" rather than "link/node- oriented" in design
- Uses "all-or-nothing" assignment combined with detailed determination of network access/egress points
- Runs on mainframe/minicomputer & PC's
- Requires SAS for data analysis & graphics
- Used in 4 Canadian cities
 - Montreal, Quebec, Toronto, Winnipeg

Examples of Transit Network Modeling & Analysis Packages, cont'd

2. EMME/2

Equilibre Multi-Modal, Multi-Modal Equilibrium/2

- Developed at the Centre for Transportation Research, University of Montreal (Michael Florian)
- Developed as a general regional transportation modeling package
 - can be used to generate transit O-D flows from a travel demand model
 - or, can input observed transit O-D matrix
 - link/node oriented in its design
- Two types of transit assignment available
 - 1. "Aggregate" zone-to-zone flow multipath assignment procedure
 - generally not precise enough for transit route planning applications
 - 2. "Disaggregate" point-to-point trip assignment procedure
 - intended to be comparable to MADITUC
 - probabilistic (multipath) assignment
- Commercially available package
- Runs on mainframes, minicomputers, microcomputers
- "Stand-alone" package

Transit Route Assignment Procedures

 Assignment procedures "assign" origin-destination trips to specific paths through the transit network, thereby "loading" the specific transit routes with riders.

Two major approaches to transit assignment exist:

- 1. All-or-nothing assignment, in which all flow for a given orgin-destination pair is assigned to a single path, with this path being the least "cost" (travel time, etc.) path between the origin and the destination.
- 2. Multi-path assignment, in which several attractive paths between an origin and a destination are identified, and the flow is split probabilitically over these paths.

For all-or-nothing to be plausible, need:

- simple and low-density transit network
 - little choice in access points
 - little choice in path on transit network

Transit Route Assignment Procedures

- Assignment procedures can also be either:
 - 1. Aggregate, in that they assign total zone-to-zone flows on a centroid-to-centroid basis.
 - 2. Disaggregate, in that they can assign individual trips from "actual" geocoded origin points to "actual" geocoded destination points.
 - --> Disaggregate assignment methods clearly preferrable for service planning purposes, providing sufficiently disaggregate transit trip data are available.

Logit Mode Choice Model

$$P_{it} = \frac{e^{v_{it}}}{\sum_{j=1}^{n} e^{v_{jt}}}$$

- P_{it} = Probability that Individual *t* will choose Alternative *i*
- *V_{it}* = "Systematic Utility" of Alternative *i* for Individual *t*

$$= \beta_1 X_{it,1} + \beta_2 X_{it,2} + ... + \beta_m X_{it,m}$$

 $X_{it,k} = k^{th}$ Explanatory Variable (Travel Time, etc.)

- β_k = Model Coefficient for Variable No. *k*
- *n* = No. of Alternatives Available
- *m* = No. of Explanatory Variables

Typical Variables In A Work Trip Mode Choice Model

- Modal characteristics:
 - In-vehicle travel time
 - Out-of-vehicle travel time
 - Out-of-pocket travel cost
- Traveller characteristics:
 - Income
 - Gender
 - Auto availability
 - Occupation