<u>Outline</u>

- 1. Wait time models
- 2. Service variation along route
- 3. Running time models

Wait Time Models

Simple deterministic model: E(w) = E(h)/2

where E(w) = expected waiting time E(h) = expected headway

Model assumptions:

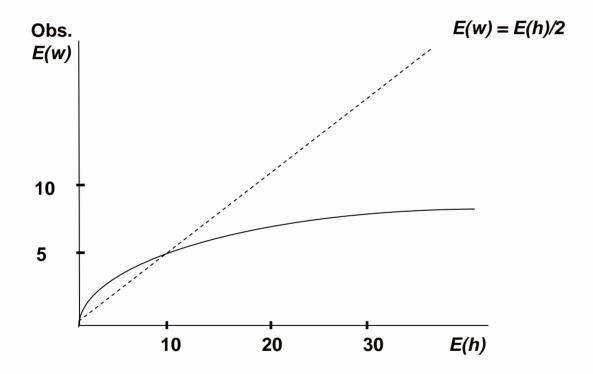
- passenger arrival times are independent of vehicle departure times
- vehicles depart deterministically at equal intervals
- every passenger can board the first vehicle to arrive

Passenger Arrival Process

- Individual, group, and bulk passenger arrivals
- Passengers can be classified in terms of arrival process:
 - random arrivals
 - time arrival to minimize *E(w)*
 - arrive with the vehicle, i.e. have w = 0

Passenger Arrival Process (cont'd)

• For long headway service have "schedule delay" as well as wait time



Vehicle Departure Process

Vehicle departures typically not regular and deterministic

Wait Time Model refinement:

- If: n(h) = # of passengers arriving in a headway h
 - w(h) = mean waiting time for passengers arriving in headway *h*
 - g(h) = probability density function of headway

Then:

E(w) = <u>Expected Total Passenger Waiting Time per vehicle departure</u> Expected Passengers per vehicle departure

$$= \frac{\int_{0}^{\infty} n(h)\overline{w}(h)g(h)dh}{\int_{0}^{\infty} n(h)g(h)dh}$$

Now if: $n(h) = \lambda \cdot h$ where λ is passenger arrival rate

$$\overline{w}(h) = \frac{h}{2}$$

Then:

$$E(w) = \frac{E(h^2)}{2E(h)} = \frac{E(h)}{2} \left[1 + \frac{\operatorname{var}(h)}{(E(h))^2} \right] = \frac{E(h)}{2} \left[1 + (\operatorname{cov}(h))^2 \right]$$

Nigel H.M. Wilson

Vehicle Departure Process Examples

- A. If var(h) = 0: E(w) = E(h)/2
- B. If vehicle departures are as in a Poisson process:

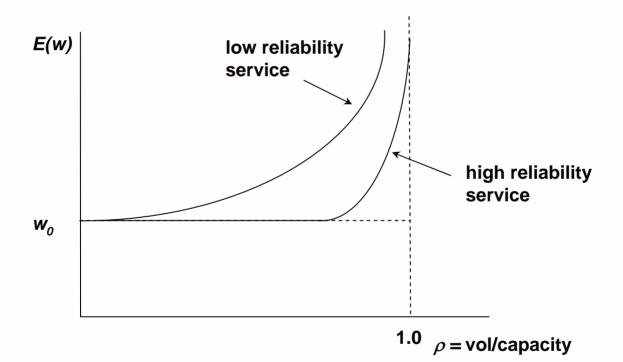
 $var(h) = E(h)^2$ and E(w) = E(h)

C. The headway sequence is 5, 15, 5, 15, ... then:

E(h) = 10E(w) = 2.5 * 0.25 + 7.5 * 0.75 = 6.25 mins

Passenger Loads Approach Vehicle Capacity

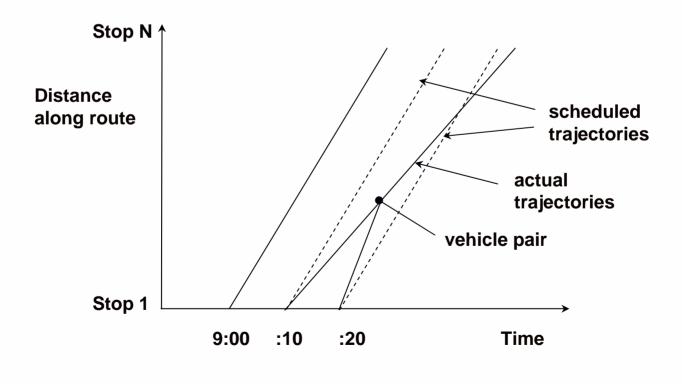
Not all passengers can board the first vehicle to depart:



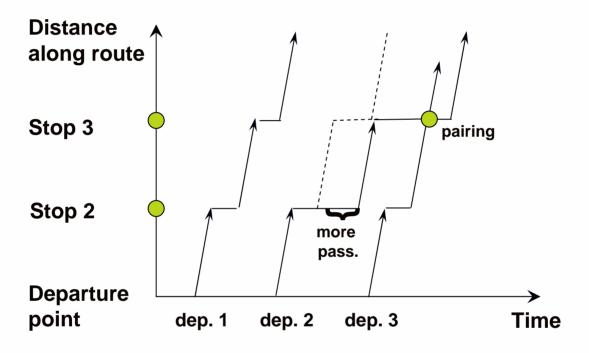
• General queuing relationship

Service Variation Along Route

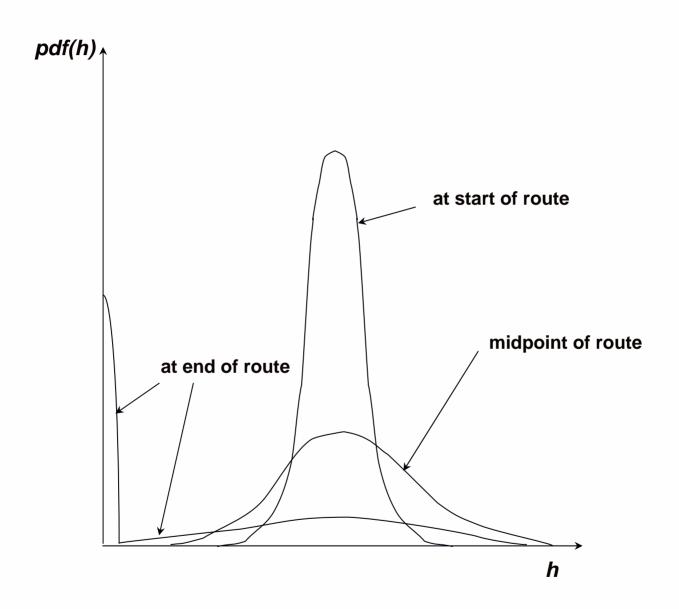
- Service may vary along route even without capacity becoming binding:
 - the headway distribution can vary along the route, affecting E(w)
 - at the limit vehicles can be paired, or bunched
 - this can also result in passenger load variation between vehicles



Service Variation Along Route (cont'd)



Service Variation Along Route (cont'd)



Factors Affecting Headway Deterioration

- Length of route
- Marginal dwell time per passenger
- Stopping probability
- Scheduled headway
- Driver behavior

Simple model:

 $e_i = (e_{i-1} + t_i) (1 + p_{i-1} \cdot b)$

- where e_i = headway deviation (actualscheduled) at stop *i*
 - *t_i* = travel time deviation (actualscheduled) from stop *i*-1 to *i*
 - p_i = passenger arrival rate at stop *i*

b = boarding time per passenger

Mathematical Model for Headway Variance*

$$var(h_{i}) = var(h_{i-1}) + var(\Delta t_{i-1}) + 2p_{i-1}(1-p_{i-1})(c \cdot \overline{q}_{i-1}+I)^{2} + 2c^{2} var(q_{i-1})[1-p_{q} + p_{i-1}p_{q}](1-p_{i+1}) + c(1-p_{i-1})^{2} \cdot cov(\Delta q_{i-1},h_{i-1})$$

Where:

var(<i>h_i</i>)	=	Headway variance at stop <i>i</i>
$var(\Delta t_i)$	=	Variance of the difference in running time between successive buses between stops <i>i</i> -1 and <i>i</i>
p _i	=	Probability bus will skip stop <i>i</i>
С	=	Marginal dwell time per passenger served at a stop
\overline{q}_i	=	Mean number of passengers per bus served at stop <i>i</i>
Ι	=	The constant term of the dwell time function
var(q _i)	=	Variance of the number of passengers served per bus at stop <i>i</i>
p_q	=	Correlation coefficient between the passengers served by successive buses at a stop
$cov(\Delta q_i, h_i)$	=	Covariance of the difference in number of passengers served by successive buses and the headway at stop i

Figure by MIT OCW.

* Adebisi, O., "A Mathematical Model for Headway Variance of Fixed Bus Routes." Transportation Research B, Vol. 20B, No. 1, pp 59-70 (1986).

Nigel H.M. Wilson

Vehicle Running Time Models

Different levels of detail:

- A. Very detailed, microscopic simulation:
 - represents vehicle motion and interaction with other vehicles, e.g. buses operating in mixed traffic, or train interaction through control system
- B. Macroscopic:
 - identify factors which might affect running times
 - collect data and estimate model
- Running Time includes dwell time, movement time, and delay time:
 - dwell time is generally a function of number of passengers boarding and alighting as well as technology characteristics
 - movement time and delay depend on other traffic and control system attributes

Typical bus running time breakdown in mixed traffic:

50-75% movement time

10-25% stop dwell time

10-25% traffic delays including traffic signals