Performance of a Single Route

Outline

Dwell Time Models

Dwell Times

- Vehicle dwell time affects:
 - system performance
 - service quality
- A critical element in vehicle bunching resulting in:
 - high headway variability
 - high passenger waiting times
 - uneven passenger loads
- Dwell time impact on performance depends on:
 - stop/station spacing
 - mean dwell as proportion of trip time
 - mean headway
 - operations control procedures

EXAMPLES:

Commuter rail ---> little impact of dwell time on performance

Long, high-frequency bus route ---> major impact Light rail ?

Dwell Time Theory

- Dwell time depends on many factors:
 - Human, modal, operating policies & practices, mobility, weather, etc.
- For a given system we have the following possible models:
 - Single door, no congestion and interference:
 DOT = a + b(DONS) + c(DOFFS)
 - 2. Single door with congestion and interference:
 DOT = a + b(DONS) + c(DOFFS) + d(DONS+DOFFS)(DTD)

Dwell Time Theory (cont'd)

- For a given system we have the following possible models ...
 - 3. Single car with m doors:

 $DT = max(DOT_1 ..., DOT_m)$

With balanced flows:

- DT = a + b/m(CONS) + c/m(COFFS) + d/m(CONS+COFFS)(STD)
- 4. *n*-car train:

 $DT = max(DT_1, ..., DT_n)$

With balanced flows:

DT = a + b/nm(TONS) + c/nm(TOFFS) + d/nm(TONS+TOFFS)(STD)

MBTA Green Line Analysis

- Branching network of 28 miles (45 km) and 70 stations
- 52-seat ALRVs operate in 1-, 2-, and 3-car trains
 - high floor, low platform configuration
 - 3 doors per car on each side
 - single side boarding/alighting
- Trunk service in central subway:
 - 10 or 14 stations on round-trip
 - 1- to 2-minute headways
 - peak flows ≈10,000 passengers/hour

Models with Crowding Term

- A. One-car trains:
- DT = 12.50 + 0.55*TONS + 0.23*TOFFS(8.94) (3.76) (2.03)
 - + 0.0078*SUMASLS (R² = 0.62) (6.70)
- SUMASLS = TOFFS*AS + TONS*LS
- **B.** Two-car trains:
- DT = 13.93 + 0.27*TONS + 0.36*TOFFS(7.43) (2.92) (3.79)
 - + 0.0008*SUMASLS (R² = 0.70) (2.03)

Predicted Dwell Times

ONS	LPL	1-Car DT	2-Car DT
0	any #	12.5	13.9
10	<53	20.3	20.2
10	150	35.6	21.0
20	<53	28.1	26.5
20	150	58.7	28.1
30	<53	35.9	32.8
30	150	81.8	35.1

Findings

- Dwell times for ALRVs are quite sensitive to:
 - Passenger flows
 - Passenger loads
- The crowding effect may well be non-linear.
- Dwell times for multi-car trains are different form those for one-car trains.
- The dwell time functions suggest high sensitivity of performance to perturbations
- Effective real-time operations control essential
- Running mixed train lengths dangerous
- Simulation models of high frequency, high ridership light rail lines need to include realistic dwell time functions.