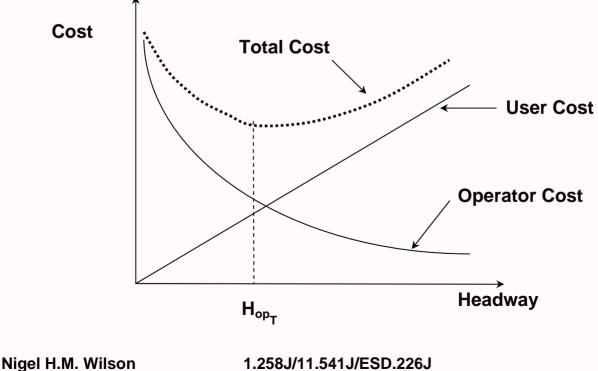
MACRO DESIGN MODELS FOR A SINGLE ROUTE

<u>Outline</u>


- 1. Introduction to analysis approach
- 2. Bus frequency model
- 3. Bus size model
- 4. Stop/station spacing model

Introduction to Analysis Approach

- Basic approach is to establish an aggregate total cost function including:
 - operator cost as f(design parameters)
 - user cost as g(design parameters)
- Minimize total cost function to determine optimal design parameter (s.t. constraints)

Variants include:

- Maximize service quality s.t. budget constraint
- Maximize consumer surplus s.t. budget constraint

Spring 2006, Lecture 16

Bus Frequency Model: the Square Root Model

Problem: define bus service frequency on a route as a function of ridership

Total Cost = operator cost + user cost

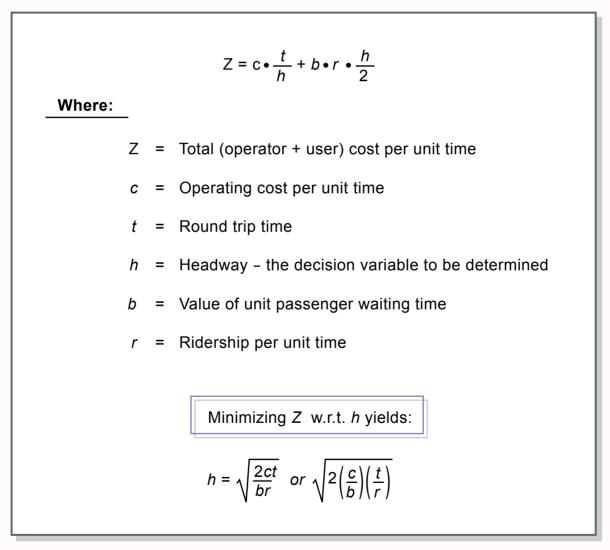
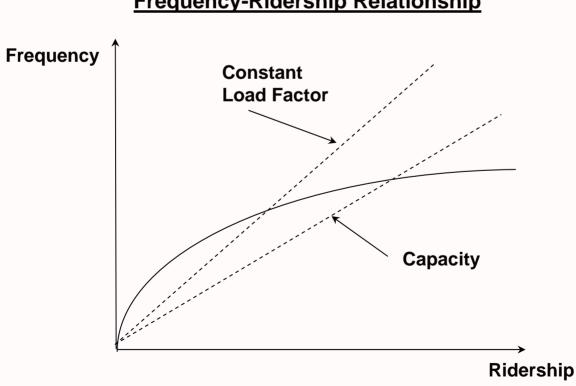
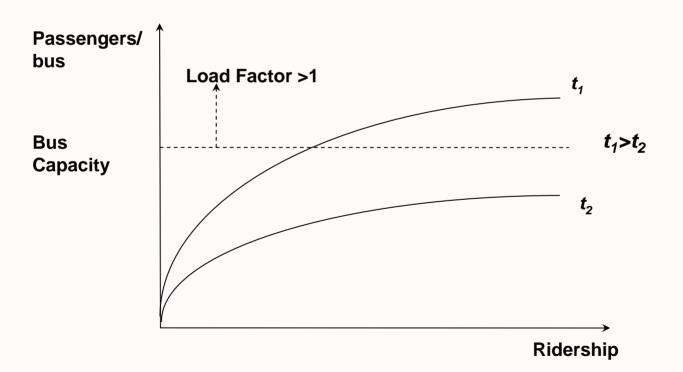



Figure by MIT OCW.

Square Root Model (cont'd)

This is the Square Rule with the following implications:

- high frequency is appropriate where (cost of wait time/cost of operations time) is high
- frequency is proportional to the square root of ridership per unit time for routes of similar length



Frequency-Ridership Relationship

1.258J/11.541J/ESD.226J Spring 2006, Lecture 16

Square Root Model (cont'd)

 load factor is proportional to the square root of the product of ridership and route length.

Bus Capacity-Ridership Relationship

Square Root Model (cont'd)

Critical Assumptions:

- bus capacity is never binding
- only frequency benefits are wait time savings
- ridership $\neq f$ (frequency)
- simple wait time model
- budget constraint is not binding

Possible Remedies:

- introduce bus capacity constraint
- modify objective function
- introduce r=f(h) and re-define objective function
- modify objective function
- introduce budget constraint

Bus Frequency Example

If: c =\$90/bus hour,

- *b* = \$10/passenger hour.
- *t* = 90 mins,
- r = 1000 passengers/hour,

Then: $h_{OPT} = 11$ mins

Bus Size Model

Problem: define optimal bus size on a route

Assumptions:

- Desired load factor is constant
- Labor cost/bus hour is independent of bus size
- Non-labor costs are proportional to bus size
- Bus dwell time costs per passenger are independent of bus size

Using same notation as before plus:

- w = labor cost per bus hour
- *p* = passenger flow past peak load point
- k = desired bus load the decision variable to be determined

Then
$$Z = w \cdot \frac{t}{h} + b \cdot r \cdot \frac{h}{2}$$

Now
$$h = \frac{k}{p}$$
 by assumption above

Therefore
$$Z = \frac{wtp}{k} + \frac{brk}{2p}$$

Minimizing Z w.r.t. k gives:

$$k_{OPT} = \sqrt{\frac{2p^2wt}{rb}}$$

Nigel H.M. Wilson

1.258J/11.541J/ESD.226J Spring 2006, Lecture 16 Figure by MIT OCW.

Bus Size Model (cont'd)

Result is another square root model, implying that optimal bus size increases with:

- round trip time
- ratio of labor cost to passenger wait time cost
- peak passenger flow
- concentration of passenger flows

Previous example extended with:

- p = 500 pass/hour,
- w = \$40/bus hour;

all other parameters as before:

Then:

 $h_{OPT} = 55$

Stop/Station Spacing Model

Problem: determine optimal stop or station spacing

Trade-off is between walk access time (which increases with station spacing), and in-vehicle time (which decreases as station spacing increases) for the user, and operating cost (which decreases as station spacing increases)

Define	Ζ	=	total cost per unit distance along route and per headway
and	T _{st}	=	time lost by vehicle making a stop
	C	=	vehicle operating cost per unit time
	S	=	station/stop spacing - the decision variable to be determined
	Ν	=	number of passengers on board vehicle
	V	=	value of passenger in-vehicle time
	D	=	demand density in passenger per unit route length per headway
	V _{acc}	, =	value of passenger access time
	W	=	walk speed
	c _s	=	station/stop cost per headway

Stop/Station Spacing Model (cont'd)

$$Z = \frac{T_{st}}{s} (c + N \cdot v) + \frac{c_s}{s} + \frac{s}{4} \cdot D \cdot \frac{v_{acc}}{w}$$

Minimizing Z w.r.t. s gives:
$$s_{OPT} = \left[\frac{4w}{Dv_{acc}} \left[c_s + T_{st} (c_v + Nv)\right]\right]^{1/2}$$

Figure by MIT OCW.

Yet another square root relationship, implying that station/stop spacing increases with:

- walk speed
- station/stop cost
- time lost per stop
- vehicle operating cost
- number of passengers on board vehicle
- value of in-vehicle time

and decreases with:

- demand density
- value of access time

1.258J/11.541J/ESD.226J Spring 2006, Lecture 16

Bus Stop Spacing

U.S. Practice

- 200 m between stops (8 per mile)
- shelters are rare
- little or no schedule information

European Practice

- 320 m between stops (5 per mile)
- named & sheltered
- up to date schedule information
- scheduled time for every stop

Stop Spacing Tradeoffs

- Walking time
- Riding time
- Operating cost
- Ride quality

Results: MBTA Route 39*

AM Peak Inbound results with Optimal Spacing

- •Avg walking time up 40 s
- •Avg riding time down 110 s
- •Running time down 4.2 min
- •Save 1, maybe 2 buses

Bus Stop Locations and Policies

- <u>Far-side</u> (vs. Near-side)
 - less queue interference
 - easier pull-in
 - fewer ped conflicts
 - snowbank problem demands priority in maintenance
- <u>Curb extensions</u> benefit transit, peds, and traffic (0.9 min/mi speed increase)
- <u>Pull-out priority</u> (it's the law in some states)
- <u>Reducing dwell time</u> (vehicle design, fare collection, fare policy)