Vehicle Scheduling

Vehicle Scheduling Problem

Input:

- -- A set of vehicle revenue trips to be operated, each characterized by:
 - -- starting point and time
 - -- ending point and time
- -- Possible <u>layover arcs</u> between the end of a trip and the start of a (later) trip at the same location

-- Possible <u>deadhead arcs</u> connecting:

- -- depot(s) to trip starting points
- -- trip ending points to depot(s)
- -- trip ending points to trips starting at a different point

Vehicle Scheduling Problem

Observations:

- -- there are many feasible but unattractive deadhead and layover arcs, generate only plausible non-revenue arcs
- -- layover time affects service reliability, set minimum layover (recovery) time

Vehicle Scheduling Problem (continued)

Objective:

- -- Define vehicle blocks (sequences of revenue and non-revenue activities for each vehicle) covering all trips so as to:
 - -- minimize fleet size (i.e. minimize #crews)
 - -- minimize non-revenue time (i.e. minimize extra crew time)

Observation:

-- these are proxies for cost, but a large portion of cost will depend on crew duties which are unknown at this stage of solution.

Vehicle Scheduling Problem (continued)

Constraints:

- -- Minimum vehicle block length
- -- Maximum vehicle block length

Variations:

- -- each vehicle restricted to a single line vs. interlining permitted
- -- single depot vs multi-depot
- -- vehicle fleet size constrained at depot level
- -- routes (trips) assigned to specific depot
- -- multiple vehicle types

Example: Single Route AB

A B (Central City)

Results of earlier planning and scheduling analysis:

	AM Peak Period	Base Period
	(6-9 AM)	(after 9 AM)
Headways	20 min	30 min
Scheduled trip time	40 min	35 min
(A⇒B or B⇒A)		
Minimum layover time	e 10 min	10 min

Dominant direction of travel in AM is $A \Rightarrow B$

Depart A	Arrive B
6:00	6:40
6:20	7:00
6:40	7:20
7:00	7:40
7:20	8:00
7:40	8:20
8:00	8:40
8:20	9:00
8:40	9:20
9:00	9:35
9:30	10:05
10:00	10:35
10:30	11:05
11:00	11:35

Depart A	Arrive B	Depart B	Arrive A
6:00	6:40	6:50	7:30
6:20	7:00	7:10	7:50
6:40	7:20	7:30	8:10
7:00	7:40	7:50	8:30
7:20	8:00	8:10	8:50
7:40	8:20	8:30	9:10
8:00	8:40	8:50	9:30
8:20	9:00	9:15	9:50
8:40	9:20		
9:00	9:35	9:45	10:20
9:30	10:05	10:15	10:50
10:00	10:35	10:45	11:20
10:30	11:05	11:15	11:50
11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

x = from depot

Veh #	Depart A	Arrive B	Depart B	Arrive A
1 x	>6:00	6:40	6:50	7:30>
2x	6:20	7:00	7:10	7:50
3x	6:40	7:20	7:30	8:10
4x	7:00	7:40	7:50	8:30
5x	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2	8:00	8:40	8:50	9:30>y
3	8:20	9:00	9:15	9:50
4	8:40	9:20>y		
5	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3	10:00	10:35	10:45	11:20
5	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

x = from depot

Example: Vehicle Blocks

Block 1: Depot - A (6:00) - B (6:50) - A (7:40) - B (8:30) - A (9:30) - B (10:15) - A (11:00) - B (11:45) - ...

Block 2: Depot - A (6:20) - B (7:10) - A (8:00) - B (8:50) - Depot

Block 3: Depot - A (6:40) - B (7:30) - A (8:20) - B (9:15) - A (10:00) -B (10:45) - ...

Block 4: Depot - A (7:00) - B (7:50) - A (8:40) - Depot

Block 5: Depot - A (7:20) - B (8:10) - A (9:00) - B (9:45) - A (10:30) -B (11:15) - ...

Nigel H.M. Wilson

1.258J/11.541J/ESD.226J Spring 2006, Lecture 19

Vehicle Scheduling Model Approaches

Heuristic approaches:

1. Define compatible trips at same terminal *k* such that trips *i* and *j* are compatible iff :

$$t_{s_j} - t_{e_i} > M_k$$

$$t_{s_j} - t_{e_i} < 2 D_k$$

- where t_{s_i} = starting time for trip *j*
 - t_{e_i} = ending time for trip *i*
 - M_k = minimum recovery/layover time at terminal k
 - D_k = deadhead time from terminal *k* to depot

Vehicle Scheduling Model Approaches

- 2. Apply Restricted First-in-First-out rules at each terminal
 - (a) Start with (next) earliest arrival at terminal; if none, go to step (d)
 - (b) Link to earliest compatible trip departure; if none, return vehicle to depot and return to step (a)
 - (c) Check vehicle block length against constraint: if constraining, return vehicle to depot and return to step (a); otherwise return to step (b) with new trip arrival time
 - (d) Serve all remaining unlinked departures from depot

Time-Space Network Representation

