PUBLIC TRANSPORTATION NETWORKS

Outline

- Network Structure
- Approaches to Network Design

Comparison of Network Structures

RADIAL (with limited circumferential)

Aim: obtain large share of trips to central business district (CBD)

Observations:

- transit has strongest competitive position w.r.t. auto for CBD:
 - high parking prices
 - limited parking availability
 - auto congestion on radial arterials
- CBD market has been declining share of all urban trips
- network effectiveness for non-CBD trips is poor

Conclusions:

- effectiveness depends on specifics of urban area:
 - strength of CBD as generator
 - highway/auto/parking characteristics
- overall level of transit ridership
- political considerations

Grid And Timed Transfer

Aims:

- provide reasonable level of transit service for many O-D pairs
- decrease the perception of transfers as major disincentive for riders

Observations:

- must avoid negative impact on CBD ridership
- what is impact of restricting headways to set figure e.g. 30 min.?
- how much extra running time is required to guarantee connections?
- will transit be competitive in non-CBD markets?
- well-located transfer centers can enhance suburban mobility

Grid And Timed Transfer

Conclusions:

- grid systems work well with high ridership and dispersed travel patterns -- New York City, Toronto, Los Angeles (key here is high frequencies reduce need for timed transfers)
- timed transfers work well for urban areas with dispersed focused suburban activity centers, multi-modal networks

Pulse

Aim: to provide convenient one transfer service throughout small urban area

Observations:

- route design geared to particular round trip travel time because all routes have same headway
- as number of routes increase, harder to maintain reliability, have to increase recovery/rendezvous time
- depends on availability of effective pulse point

Conclusions:

 well suited for many well focused outer suburban areas and small independent cities

Multimodal

Aim: to provide effective service for both short and long trips

Observations:

- rail (or other guideway) networks are expensive to build and hence network is limited in length
- rail capacity is high, marginal cost of carrying passengers relatively lo
- key issues for new rail lines: to what extent is direct bus service retained as opposed to forcing transfer to rail

Conclusions:

- need to look at total trip time and cost to determine net impact on different O-D trips
- build integrated bus/rail fare policy to encourage riders to take fastest route

Approaches to Network Design

- 1. Idealized Analysis: broad strategic decisions
- 2. Computer Simulation: detailed analysis tool
- 3. Incremental Improvements: seek opportunities to intervene locally in network
- 4. Global Network Design: synthesize new network
 - fully automated
 - man/machine interaction

Computer Simulation

Aim:

• tool to answer what-if questions

Functions:

- 1) specify system (e.g., route characteristics) and operating environment
- 2) model estimates performance -- transit ridership, costs, etc.
- 3) revise as desire and re-run

Computer Simulation

Examples: EMME/2, MADITUC

- network analysis package
 - EMME/2: multimodal, full equilibrium
 - MADITUC: public transporation, fixed transit demand matrix
- strong interactive graphics capabilities for network displays travel flows

Differentiating Features of Bus Network Models

1. Demand

- assumed constant
- assumed variable based on service design

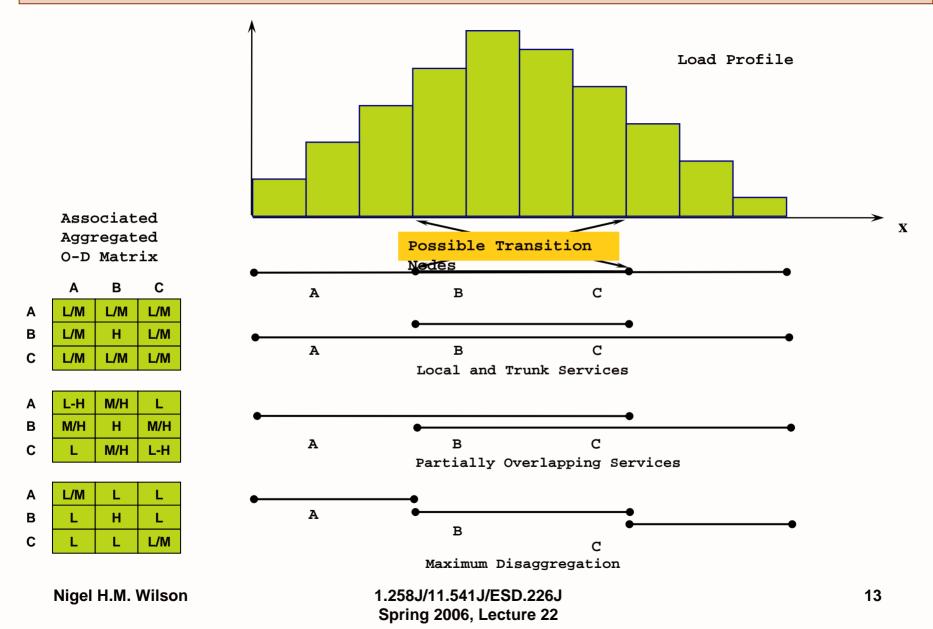
2. Objective Function

- minimize generalized cost
- maximize consumer surplus

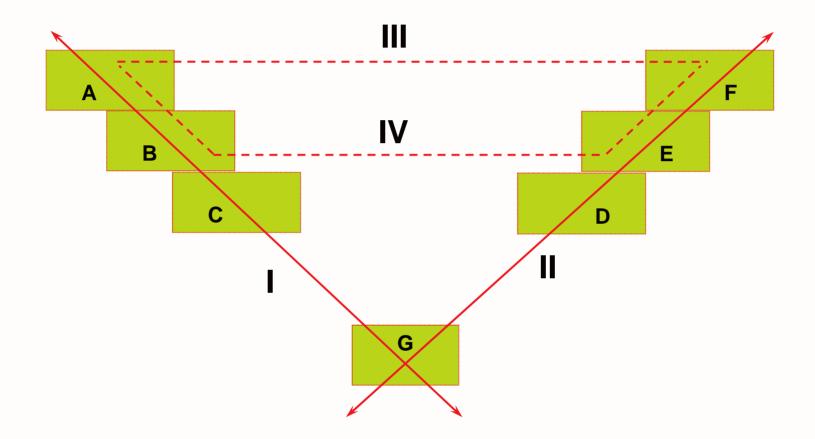
Differentiating Features of Bus Network Models

- 3. Constraints
 - fleet size
 - operator cost
 - vehicle capacity
- 4. Passenger Behavior
 - system or user optimizing
 - single or multiple path assignment
- 5. Solution Technique
 - partition into route generation and frequency determination

Incremental Improvement


Aim:

- examine load profiles of individual routes looking for improvement opportunities
- obtain routes characterized by high frequencies and fairly constant loads


Strategies:

- 1) route decomposition: where frequency is high but load is variable along route
- 2) route aggregation: combine parallel routes to improve frequency or through-route to reduce transfers
- 3) new services: reduce circuity and operating cost, access new markets

Route Disaggregation Options

New Direct Services

VIPS-II Package*

Basic Premises:

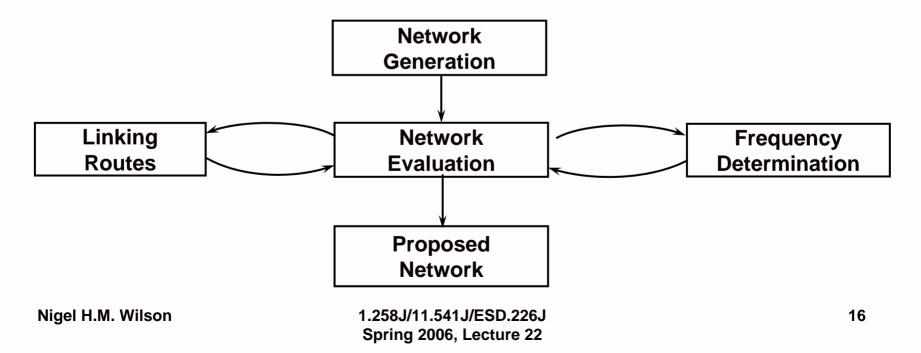
- fully automated planning systems won't work
- computer role is to number crunch and organize information
- also solve specific sub-problems
- need interactive graphics for good man-machine communication
- need variable demand

Main Objective:

Maximize number of passengers subject to constraints on:

- operator cost
- minimum level of service

* from "Public Transportation Planning, a Mathematical Programming Approach" by Dick Hasselström. Göteborg, Sweden, 1981.


Nigel H.M. Wilson

1.258J/11.541J/ESD.226J Spring 2006, Lecture 22

General Model Structure

Specific Sub-Problems:

- evaluation of a proposed network
- frequency determination for given routes
- linking routes at junction
- generation of initial route network

NETWORK DESIGN APPROACHES

- A) Start with fully connected network and eliminate the weakest routes iteratively, reassigning passenger flows to the best remaining routes
- **B) (i)** Start with the following route design principles:
 - most high demand O-D pairs should be served directly
 - only certain modes are suitable for route terminii
 - routes should be direct and not be circuitous
 - routes should meet to facilitate transfers
 - (ii) Generate a large number of possible routes heuristically
 - (iii) Select final set of routes through optimization problem formulation.