TRANSIT PRIORITY and BRT

Outline:

- Introduction
- Bus Stops
- Bus Lanes
- Signal Priority
- Bus Rapid Transit

It's Time for Bus Priority

- Bus service will always be essential
 - Rail's reach is limited / its cost, prohibitive
- Rail gets "ultimate" priority
 - Should bus have no priority at all
- Priority is a strong way to counter bus's negative image
 - Priority indicates that society values bus
 - Priority makes bus service more competitive

Bus Service Quality Is Too Often an Accident

Without Protection:

- Slow
- Unreliable
- Bunched
- Crowded

With Protection:

- Fast
- On time
- Regularly spaced
- Even loads

"Bus Rapid Transit"

Bus Stops Location and Policies

- <u>Far-side</u> (vs. Near-side)
 - less queue interference
 - easier pull-in
 - fewer ped conflicts
 - snowbank problem demands priority in maintenance
- <u>Curb extensions</u> benefit transit, peds, and traffic (0.9 min/mi speed increase)
- <u>Pull-out priority</u> (it's the law in some states)
- <u>Reducing dwell time</u> (vehicle design, fare collection, fare policy)

Bus Priority Measures in Space Bus Lane

The "traditional" priority measure

- Enforcement, especially vs. parking
- Turn restrictions

Political dilemma requires foresight

- If there's little traffic: "Buses don't need it"
- Traffic grows: "Buses can't have it."

Bus Priority in Space Contraflow Bus Lane

Av. Ponce de Leon, Santurce, PR

Queue Jumper Lane

Common in the U.K.

Queue Jumper with Ramp Metering

Metering Needed Due to Oversaturation

Metered on-ramp, Seattle area freeway

Queue Jumper with Bottleneck Metering

Arterial entering inner part of Eindhoven, the Netherlands

Bypass on Saturated Arterial

- Frontage road provides local access, bus bypass
- Bus-activated gate for entry control
- Signal at bus entry meters traffic so entering bus won't join a long queue

Priority in Time = Signal Priority Passive Priority

Signal timing that helps transit without actively detecting a transit vehicle

•Short cycles (help peds, too!)

San Diego Trolley example (downtown, at grade)

- Signals are pretimed for trolley progression
- Through band for trolleys every 2 minutes
- Suitable for high frequency service with predictable running & dwell times

Active Priority at Signals 1. Detection

- Prefer *local* detection: transponder, smart loops, dedicated short-range radio
- Location: *predict* vs. *respond*
 - Near side dilemma (or not)
- Exit detector (stopline) to avoid waste
- Detectors on all approaches for queue management

Active Priority at Signals 2. Control Tactics

- Extend green (++)
- Early green
- Early red (to hurry the next green)
- Skip, insert, or resequence phases
- "Near-side flush:" (a) green to clear bus stop; (b) short red during dwell; (c) green
- Advanced prediction: adjust phase lengths so that transit arrives on green
- Recovery tactics: restore capacity, dissipate queues

"Interruptible" Traffic Signal Control

- For auto traffic, focus on *capacity*, not *progression*
 - lose progression: travel time increases a little
 - lose capacity: travel time increases a lot, jams the road
 - Overlaying priority on arterial progression is too limiting
- Resolve competition between priority calls
- Bus saves 12-15 s per intersection
- No significant capacity loss
- Auto travel time increases a little (justice?)

Conditional Priority as a Means of Operational Control

Eindhoven, the Netherlands

- On-board computer monitors location, schedule deviation
- Priority granted if bus is 20 s late
- Provides push / pull needed to keep bus on schedule
- Less traffic interruption
- Requires finely tuned schedule, which requires extensive data collection & analysis

Evaluations Based on Mean Values Understate Benefits

- Running time impact (Boston study)
 - mean: reduced 10% (30 min to 27 min)
 - 95-percentile value: reduced 23% (38 to 29 min)
- Crowding impact
 - mean: no change (since headway is fixed)
 - 90-percentile value: reduced 12% (166 to 145)
- Operating cost is usually tied to 90- or 95-percentile: savings is 33%, not 10%
- Passenger satisfaction: also tied more to 90- or 95percentile values

A Policy of Congestion Protection

- Cycle: slow buses ⇔ more cars
- Minimizing person-delay for fixed demand fails to account for demand effect
 - Transit benefits: amplified by new customers
 - Auto losses: diminished by rerouting
- Consistency with other efforts to influence mode choice
- Overcome interagency leadership vacuum

The BRT Challenge

As we move from current conventional bus service (CBS) towards a higher quality system Bus Rapid Transit (BRT)."

- What are the critical choices in system design?
- How do we model the system?
- How do we evaluate it?

Pilar Rodriguez, MST Thesis (MIT, 2002)

Key BRT Attributes

Physical Right-of-way priority Expedited boarding and alighting Stops Vehicles Fare Collection

System

AVL system Signal system Passenger information system

Pilar Rodriguez, MST Thesis (MIT, 2002)

Key BRT Attributes

Service

Knowledge-based planning and operations High frequency High reliability

Control

System Distinct image Connectivity Land use integration

> Pilar Rodriguez, MST Thesis (MIT, 2002)

CBS Typical Travel Time Components

Sample route from CTA

1.258J/11.541J/ESD.226J Spring 2006, Lecture 24

Pilar Rodriguez, MST Thesis (MIT, 2002)

Trade-off: Stop Spacing vs. Access Time

22

Nigel H.M. Wilson

Spring 2006, Lecture 24

Trade-off: Lane Exclusivity vs. Waiting Time

1.258J/11.541J/ESD.226J Spring 2006, Lecture 24

Trade-off: Boarding/Alighting Time vs. Waiting Time

Impact of boarding/alighting time *c* on Passenger waiting time

Pilar Rodriguez, MST Thesis (MIT, 2002)

Trade-off: Signal Priority vs. Waiting Time

Pilar Rodriguez, MST Thesis (MIT, 2002)

Modeling

- Two different scales:
 - Corridor level:
 - Description of the transit experience
 - A building block for BRT
 - Focus on access and operational issues
 - System-wide level
 - The impacts on modal choice and ridership
 - Changing perceptions of choice riders
 - Appropriate network configurations incl. transfers
 - Competing with parallel improvements for the automobile driver

Evaluation Measures

- Primary objective is ridership
- Ridership gains come from LOS improvements
- Two challenges:
 - Forecasting of LOS gains
 - Forecasting of ridership as a result from LOS gains

Typical Evaluation Measures

(Obviously conditioned by our own analytical approach!)

Group	Category	Evaluation measure			
		Access Time			
Users	Travel Time	Waiting Time			
		In-vehicle Time			
	Operation Costs	Running time			
Agency	Conital costa	Infrastructure cost			
	Capital COSIS	Technology cost			

Impact Matrix Evaluation

			CRITICAL VARIABLES								
			Lane exclusivity	Guidance	Spacing	Boarding level	Bus capacity	No. doors	Transaction location	Fare media	Priority method
IMPACTS	Users	Access time			X						
		Waiting time	x			x	x	x	x	x	x
		In-vehicle time	x	x	x	x		x	x	X	x
	Agency	Running time	x	x	x	x		x	x	X	x
		Infrastructure cost (road & vehicles)	x	x	x	x	x	x	x		
		Technology Cost		X					X	X	X

Usual Evaluation Elements

- Ridership gains
- Benefits =time savings as % of current time
- Infrastructure, technology, and operational cost
- Average cost to achieve one percent time reduction for each alternative
- Choice of a prioritization criteria:
 - Users: travel time cost-effectiveness
 - Agency: running time cost effectiveness
 - Both: travel + running time cost effectiveness

BRT Implementation Process

