AUTOMATED DATA COLLECTION TECHNIQUES

Outline

- 1. Farebox Data
- 2. Operations Data Needs and Availability
- 3. Automatic Passenger Counter Systems (APC)
- 4. Automated Vehicle Location Systems (AVL)
- 5. Trip Time Analyzer

Farebox Data Problems

- Operator error and inattention
- Poor AFC system design
- Poor integration between AFC and other systems
- Lack of management use of data

Farebox can be your primary passenger counting tool, if ...

You invest in Management:

- Someone responsible to check for data quality every day
- Discipline, retraining for non-performing operators
- Priority in maintenance & servicing
- Manual verification counts

Farebox can be your primary passenger counting tool, if ...

You invest in Hardware:

- Card & transfer readers
- Link farebox to destination sign, on-board computer to segment trips, verify sign-in
- Transactional data (new generation farebox)

You invest in Software:

- Develop your own database
- Automate data screening, editing
- Integrate with schedule data, payroll, other data sources

Estimating Ridership from Revenue

Revenue is Accurate

- on sampled trips: read it now or later
- annual, systemwide (but possibly not by route)

Relationship to Ridership Is Variable

- pass use, transfers, discounts, etc., distort the ridershiprevenue relationship
- "average fare" surveys become out-of-date
- wide continued use is an industry weakness

Transactional Farebox Data Innovations

Transfer and Linked Trip Data

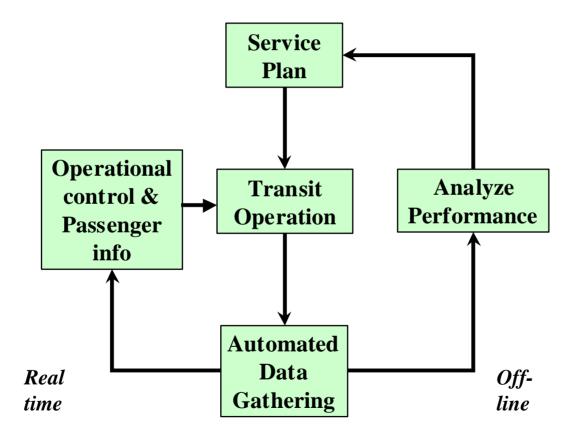
- capture time and route of previous trip encoded on pass or transfer
- successful in NYC subway

Estimate load, passenger-miles

- transactional data with location stamp
- estimate alightings using symmetry

Extensive + Intensive Data

Extensive: farebox


- every trip, every day (weekends, too!)
- only a rough measure of passenger activity

Intensive: ride checks, point checks, surveys

- insight on a sample of trips
- expand using farebox data
 - -- expand a survey by route, period
 - -- apply load-boardings factors found in one day's ride check

APC can be both extensive and intensive

Two Quality Loops: Real-Time and Planning

Off-Line Applications

- Monitoring service quality (several dimensions)
- Schedule improvements
- Match supply to demand
- Support traffic signal priority (schedule)

Operations Data Needs

Scheduling

- -- mean running time usual basis of scheduled running time
- -- 95-percentile running time basis for scheduled recovery time
- -- demands lots of data collected on lots of days

• Analyzing Bunching Effect

- -- late causes early; early causes late
- -- data on sequential buses
- -- integrate operations data with passenger counts

Operations Data Needs (cont.)

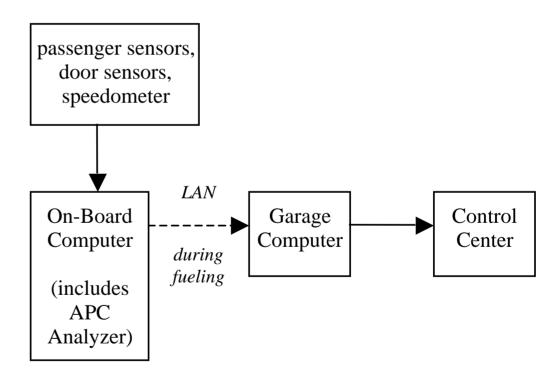
- Analyzing Operator Effect (slow, fast)
 - -- extensive data on each operator for peer comparison
- Analyzing Traffic Impact
 - -- isolating traffic delay from dwell time, holding
- Analyzing Dwell Time
 - -- integrate passenger counts, fare payment, door open times
- Schedule Adherence
 - -- quality: plan what you'll do, do what you plan
 - -- virtue can be lost to passengers and operators

Operations Data Collection Techniques

- Traffic Checkers (with handheld device)
 - -- ride check (running time, sched. adherence)
 - -- point check (headway , sched. adherence)
- But I want both headway and running time!
 - -- ride check on all (or most) buses
 - -- point check at all (or most) points
- Supervisors
 - -- schedule adherence
- Automatic Data Collection

Inadequacy of Manual Data Collection

Running Time


- -- often revised based on a single day's check
- -- frustrates operators; impossible to control

Recovery Time

- -- too little, too much
- -- rely on rules of thumb, supervisor impressions
- Schedule Adherence
 - -- Measures quality of {schedule + performance}

Automated Data for Off-Line Application: APC Tied to on-board computer w/ nightly upload

- APC Analyzer converts sensor signals into counts
- On-board computer stores one record per stop
- Other events may also trigger records
- Nightly upload can be painless

Passenger Detection Methods

• Breaking light beam

- -- multiple beams (high/low; inner/outer pairs)
- -- sturdy mount to prevent misalignment
- Pressure sensitive mats
 - -- some designs won't work with low floor
 - -- footprint detection
- Infrared (overhead)
 - -- requires ambient temperature < body temperature
- Image interpretation

Event Records & Contents

• Stop record

- -- time door opened, closed
- -- location (GPS, odometer, etc.)
- -- on count, off count
- -- [maximum speed since last stop]
- -- [time at crawl speed with door closed since last stop]
- Other record types (contain time, location)
 - -- speed threshold passed
 - -- signpost or "virtual signpost" passed
 - -- turn began/ended
 - -- periodic (e.g., 10 s)

APC - Historic Uses

- Mimic ride check analysis
 - -- Route load profiles
 - -- Passenger-miles, NTD sampling
 - -- Running time distribution (limited)
 - -- On-time performance (limited)

APC - Historic Deficiencies

High cost, few vendors, short-life vendors

-- Usually, only 10% of the fleet gets equipped

25% to 75% data recovery

- -- On / off imbalance, negative loads
- -- Route / schedule matching problems

End-of-line issues

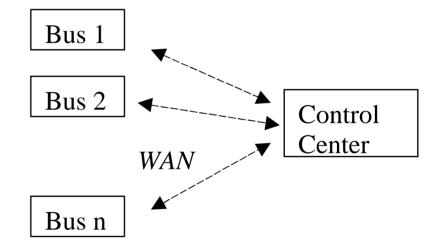
- -- Zero-out load to prevent "drift"
- -- End-of-line operation is often irregular, hard to match
- -- Ons for next trip may begin before offs from previous are finished

Equipping 10% of the Fleet ...

- Logistical problems assigning equipped buses
- Not so bad for passenger count data ...
 - -- Sufficient for NTD
 - -- Superior to any checker force
 - -- Adequate for conventional planning methods
- Barely adequate for scheduling data (running time, schedule adherence)
 - -- 5% effective sample each weekday trip sampled once a month
- Inadequate for detailed operations analysis

Automated Data for Real-Time Application: AVL Tied to Radio and Central Computer

Each bus polled in turn (Wide Area Network)


Polling interval

= [unit poll time]
* [no. of buses]
/[no. of channels]

Ex: 0.5 s per poll

- * 1000 buses
- /4 channels
- = 125 s polling interval

Variable polling interval possible

Problem of Polling Interval

- Analysis demands time at location; AVL gives location at (arbitrary) time of poll
 - -- interpolation errors can be significant
- Too imprecise for efficient signal priority
 - -- predict arrival time to within 5 s
 - -- detect exit time to within 1 s

Location Method 1: GPS

- Interpret signals from 4+ satellites
- Low maintenance
- More \$\$ = more accuracy
 - -- accurate clock
 - -- differential correction
- Lose signal in tunnels canyons & tunnels
 - -- re-radiate in subway tunnel
- Reflection ("multipath") downtown: info deteriorates where you need it most

Other Location Methods

Odometer

- -- buses have electronic odometer/speedometer
- -- subject to calibration error, drift
- -- effective if route is known

• Signpost (broadcasts ID)

- -- positive location; useful at key points
- -- correct drift, calibrate odometer readings
- -- useless off-route
- -- maintenance hassle

Combinations of methods

Poll Message Contents

- Time and Location
 - -- GPS coordinates
 - -- odometer reading (in "clicks")
 - -- ID of last signpost passed
 - -- [odometer reading when signpost was passed]
- ID (bus / run / route / operator)
- Mechanical alarms
- Other info: possible, but longer message slows polling rate

AVL - Historic Uses Control Center Only

- Security
- Crisis management (see big picture)
- Line management (limited)
 - -- What actions can dispatchers take?
 - -- Comparison to schedule often unavailable
- Off-line playback for incident investigations

AVL - Historic Deficiencies

- Data not stored for off-line analysis, except for playback (incident investigation)
- Often unmatched to vehicle route / schedule
- Always unmatched to operator schedule

Trip Time Analyzer

It's APC without the passenger counter; it's AVL without the radio

- Record location and time in on-board computer
- Record events such as door open/close, speed threshold passed, etc.
- Permits analysis of running time, delay, schedule adherence
- Dutch experience: Delft University with several transit agencies
- Equip 100% of the fleet