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We investigate the role of hydrodynamics in the evolution of the morphology and the selection of kinematics
in simple uniflagellated microorganisms. We find that the most efficient swimming strategies are characterized
by symmetrical, nonsinusoidal bending waves propagating from the base of the head to the tip of the tail. In
addition, we show that the ideal tail-to-head length ratio for such a swimmer is ≈12 and that this predicted ratio
is consistent with data collected from over 400 species of mammalian sperm.

DOI: 10.1103/PhysRevE.83.045303 PACS number(s): 47.63.Gd, 47.63.mf, 87.19.ru

It has been asserted that amidst “... increasing calls for
biology to be predictive... [O]ptimization is the only approach
biology has for making predictions from first principles”
[1]. While this may indeed be the case, computing optima
in biology is a nontrivial exercise, owing to the inherent
complexity of biological systems. Even when sensible models
can be constructed from first principles, the parameter space
is vast. Hence there are relatively few examples in which
biological data can be meaningfully compared with com-
puted optimal solutions. Here we address these challenges
by studying the swimming gaits of a highly specialized
cell with a well-defined objective function: the sperm cell.
The spermatozoon represents one of the simplest biological
systems to exhibit locomotion. They are propelled by a beating,
tail-like structure known as the eukaryotic flagellum [2] and
their sole function is to transport genetic material to the
ovum. The high levels of competition experienced by these
cells suggest that they are well-adapted to fast and efficient
locomotion at micron scales. Hence we considered a simple
model problem: the optimization of swimming gaits and
geometries of uniflagellated swimmers. Although solutions
to this problem lie in a vast optimization space, we find well-
defined optimal solutions that are in remarkable agreement
with biological observations.

Studies on the hydrodynamics of flagellar propulsion were
pioneered by Hancock [3] and later extended to investigate the
efficiency of swimming stroke patterns for flagellated micro-
organisms. However, these early studies only considered
prescribed kinematics [4,5], which consisted of traveling
waves. More recent work has demonstrated the existence
of optimal swimming strokes for a discretized swimming
flagellum: the three-link swimmer [6]. In addition, many
swimming mechanisms, which do not involve the deformation
of flagella, have been discussed in the literature (see [7] and
references therein).

The model uniflagellated swimmer in this study consists of
a rigid spherical head of diameter D with a single flagellum
of length L and radius r , swimming by itself in an infinite
surrounding fluid of density ρ, which we assume to be
Newtonian with dynamic viscosity μ. While this Newtonian
assumption is valid for species with external fertilization,
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spermatozoa of species with internal fertilization, particularly
mammals, may be subject to a viscoelastic environment such
as cervical mucus in the cervical canal. It is noteworthy that
this mucus is present in a small—albeit very important—part
of the female reproductive tract, and during fertile periods it
becomes increasingly hydrated, reducing the non-Newtonian
characteristics and facilitating sperm penetrability [8]. Hence,
as a first-order approximation, we model the surrounding fluid
as Newtonian.

The swimmer translates by performing a “stroke” (i.e.,
periodic deformation) at a frequency f corresponding to a
stroke period of τ = 1/f [see Fig. 1(a)]. Via dimensional
analysis, one can deduce that the system involves three dimen-
sionless parameters: the Reynolds number Re = ρD2f/μ, the
inverse slenderness of the tail κ = L/r , and the tail-to-head
length ratio η = L/D. For spermatozoa in water, the Reynolds
number is small (Re ∼ 10−3) and can be neglected. Hence the
dynamics are governed by Stokes equations

∇ · u = 0, − ∇p + μ∇2u = 0, (1)

where p is the pressure field and u is the incompressible
velocity field.

We define the swimming efficiency E associated with a
given stroke as

E = αU 2
0

φ
. (2)

Here the numerator corresponds to the power required to
translate the head alone (i.e., the “payload” of genetic material)
at an average speed U0, where α = 3πμD is the drag
coefficient of the spherical head. The denominator φ represents
the average mechanical power dissipated through viscosity
during one stroke:

φ =
〈∫ ∫

	

(σ · n) · U d	

〉
, (3)

where 	 is the surface of the swimmer, σ is the hydrodynamic
stress tensor, n is the unit normal vector to the surface, and U
is the velocity at the surface of the swimmer. Angular brackets
indicate a time average over one stroke period. The swimming
efficiency, E , can thus be interpreted as the fraction of the total
energy expense effectively used to generate translation. Note
that, because time can be scaled out of the Stokes equations,
the efficiency E is a direct measure of the effectiveness of
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the kinematics, in the sense of both efficiency (minimizing
energy expenditure for a given swimming speed) and speed
(maximizing velocity for a given energy budget).

All possible periodic strokes are defined by a local curvature
function γ (s,t), where the coordinate s = 0, . . . ,L denotes
the arc length and t = 0, . . . ,τ is time. We limited our inves-
tigation to planar deformations, which are both biologically
relevant and sufficiently simple to be suited to numerical
optimization. For a given γ (s,t), the motion of the swimmer
can be computed by solving for the flow induced by the
deformation of the flagellum and enforcing force and torque
equilibrium on the swimmer. These governing equations are
solved using slender-body theory for the hydrodynamics
around the flagellum, in which fundamental solutions to the
Stokes equations are distributed along the centerline of the
swimmer such that the no-slip boundary condition is satisfied
to first order along the surface of the body [9]. A separate
system of fundamental solutions is used to represent the
head [10], and the hydrodynamic interactions between the head
and the tail are taken into account using Faxén’s laws [11]. In
the framework of this singularity method, the hydrodynamics
is governed by an integral equation for the distribution of
forces along the swimmer. The governing equations are solved
numerically using a midpoint collocation scheme for which the
tail is discretized into a regular grid of N elements (typically
N ≈ 100).

We seek to find periodic beating patterns for our model
uniflagellated swimmers, which maximize the swimming
efficiency E . These optimal strokes are computed [e.g., using
MATLAB’S fmincon() routine] subject to the constraint that
there is no net rotation of the swimmer after one stroke. A
discrete representation for γ (t,s) is obtained by imposing
the curvature at a finite set Nγ of equidistant nodes of arc
length sNγ

along the tail. The number of nodes Nγ was
increased incrementally from Nγ = 2 to 30. At each of these
nodes, the curvature γ (t,sNγ

) is a periodic function of time
and is represented by the first coefficients of its Fourier
decomposition:

�1 = a
�1
0 +

∞∑
n=0

[
a�1

n cos

(
2π

τ
nt

)
+ b�1

n sin

(
2π

τ
nt

)]
. (4)

Hence, E is a nonlinear function of the Fourier coefficients
parametrizing the kinematics of the stroke. The curvature
for all s along the tail can then be deduced by cubic spline
interpolation.

Since E only depends on the stroke kinematics and two
dimensionless parameters characterizing the geometry of the
swimmer η and κ , we varied the values of the head diameter
and tail length from D = 2 to 20 μm and L = 5 to 200 μm,
respectively, and fixed the value of the tail radius r =
0.150 μm. To explore the space of all acceptable kinematics,
the optimization procedure was started from a wide range
of initial strokes, which varied in structure, symmetry, and
amplitude. Figure 1(b) represents a small sample of the initial
strokes used, including symmetric and asymmetric strokes,
small and large amplitudes, traveling waves of growing am-
plitude, and meandering strokes. The number of initial strokes
used was particularly extensive for small values of Nγ � 5,
for which the reduced number of optimization parameters
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FIG. 1. (a) Model swimmer parameters. (b) A sample of initial
guesses used in the optimization procedure. The gray scale schematics
indicate snapshots at earlier times.

allowed a systematic sampling of initial strokes. In all cases,
the optimization procedure converged to the same solution:
symmetrical undulatory bending waves with localized regions
of high curvature, which form at the base of the head and
propagate toward the end of the flagellum.

A representative optimized swimmer computed with Nγ =
30 is shown in Fig. 2 with D = 3 μm and L = 36 μm.
Figure 2(a) represents superposed snapshots of the optimal
stroke. The undulatory nature exhibited by this optimal
stroke is in qualitative agreement with strokes observed in
biological uniflagellates swimming in viscous media and in
particular with sperm cells of varying dimensions [3,12,13].
The efficiency of this optimal stroke is E ≈ 1.1%, which
corresponds to an increase of ≈ 37% over the maximum
efficiency of 0.8% attained by the same swimmer using a
sinusoidal waveform [5].
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FIG. 2. Optimal swimming stroke. (a) Time series of opti-
mal stroke. (b) Optimal curvature as a function of arc length.
(c) Angle between the swimming direction and the (local) angle of the
flagellum. Gray-scale images in all three panels indicate snapshots at
earlier times.
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Figure 2(b) represents the curvature of the optimal stroke
γ (s,t) along the flagellum. At each time, the curvature
γ (s,t) remains close to zero at all locations along the tail
except for finite regions of high curvature of alternating sign,
propagating toward the end of the flagellum. The waveform of
the optimized stroke is therefore best described as a rounded
sawtooth, for which the flagellum remains mostly straight
except for narrow regions concentrating most of the bending
deformation. This can also be seen in Fig. 2(c), which shows
the angle θ (t,s) between the swimming direction and the unit
vector tangent to the flagellum t̂ as a function of the arc length s.
For a sawtooth waveform, θ (t,s) would be a perfect square
wave propagating along the flagellum. In contrast, θ (t,s) is a
rounded square wave for the optimized stroke, corresponding
to a rounded sawtooth waveform [see Fig. 2(a)]. This result is
in agreement with experimental observations of the waveforms
of swimming spermatozoa, which have been described as
“circular arcs connected by straight lines” [12,13]. In addition,
the ratio between the wave amplitude b and the wavelength λ

[see Fig. 1(a)] is found to be ≈0.21 for the computed stroke,
while it has been measured experimentally for different species
to be ≈0.20 [12]. Likewise, the number of complete wave
periods per tail is ≈1.23 for our computed stroke and has been
measured experimentally to be ≈1.25–1.4 [12].

It should be stressed that our optimization procedure
always converged to the same optimal stroke regardless of
the initial guess, which suggests a simple structure for the
efficiency in the space of possible strokes. This fact—while
not being rigorous proof of the uniqueness of the solution—is
nevertheless a strong indication that undulatory traveling
waves may be among of the most efficient swimming strategies
for uniflagellated swimmers at low Reynolds number.

Having computed optimal kinematics for given geometries,
we now seek to determine whether hydrodynamics plays a
dominant role, not only in stroke selection but also in the
evolution of sperm morphology. For a given head size D,
corresponding to a given volume of genetic material, we
seek optimal values for the geometric parameter η = L/D.
One can argue that such optimal values of η should exist by
considering two extreme cases: L → 0 and L → ∞. As the
length of the tail approaches zero, the swimmer becomes a
single rigid sphere and can no longer propel itself; hence the
swimming efficiency is zero. Similarly, as the length of the
tail goes to infinity, most of the mechanical power is used
to overcome the drag on the (infinitely long) tail, and again
the efficiency associated with transport of the head (i.e., the
“payload”) decays to zero. Between these two extremes there
exist strokes with efficiencies greater than zero, therefore at
least one optimal value must exist.

To find these optimal morphologies, we selected head
diameters D = 2–10 μm and varied the length of the tail L. For
each geometry, we computed the optimal stroke kinematics and
the associated swimming efficiency by using our optimization
procedure. We found that, for a given head size, optimal
values of L exist, consistent with previous work [5], which
investigated swimmers using prescribed suboptimal sinusoidal
strokes. Values of E are shown in Fig. 3. Each point in
the figure represents a separate optimization calculation of
the kinematics for a given geometry D and L. Hence the
optimal kinematics for a short tail at the far left in the graph
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FIG. 3. (Color online) Black symbols: normalized efficiency of
the computed optimal strokes as a function of the tail-to-head
length ratio η = L/D for D = 2–10 μm and r = 0.150 μm, with
no constraint imposed on the curvature. Gray symbols: normalized
efficiency for swimmers with D = 6 μm and r = 0.5 μm for which a
maximum curvature constraint 1/γ > 30 μm is imposed. Histogram:
distribution of mammalian species as a function of the geometric
parameter η. Colors correspond to the different orders in the data set.
For each order, the first number corresponds to the number of species
in our data set, the second to the total number of species in the order.

may be different from those of a longer tail at the far right.
Our numerical results collapse onto a single curve when the
efficiency is normalized with the maximum efficiency achieved
for each value of D and plotted as a function of η (see
Fig. 3). Thus the optimal morphology of our model swimmer
is fully characterized by a single nondimensional geometric
parameter η = L/D, and maximum efficiencies are obtained at
η ≈ 12 (see Fig. 3). The peak in efficiency is broad around the
optimum and E lies within 80% of the maximum efficiency for
values of η ranging from η = 5.5 to 31. The optimal value of
η ≈ 12 involves no fitting parameters, no material properties,
and stems purely from hydrodynamic considerations, hence we
can expect it to be relevant to a broad range of uniflagellated
microswimmers.

Previous comparative studies have demonstrated a positive
correlation between head and tail sizes [14,15]. To determine
the relevance of the optimal criterion, η ≈ 12, to biological
microswimmers, we collected data on mammalian sperm
morphometry from published sources [14–20]. We found
measurements for 440 mammalian species covering 7.9%
of known mammalian species and including 20 out of 28
mammalian orders. In general, the anatomy of a spermatozoon
can be divided into three sections: the head, the midpiece, and
the tail, the midpiece being a region at the base of the flagellum
that is thicker than the flagellum itself. Since our model
swimmer has a simple two-component head-tail geometry, we
considered the tail length to be the sum of the midpiece Lm

and tail lengths for all species where measurements of head,
midpiece, and tail were available. We found the average value
for the ratio η in our data set to be 11.8 ± 4.0, coinciding with
the computed optimal morphology, η ≈ 12. For 96% (85%)
of all species in our data set, we found that measured values
for η allow for swimming within 80% (90%) of the maximal
efficiency. Hence, sperm cells of nearly all species in our data
set exhibit hydrodynamically efficient morphologies.
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Our data set oversamples some mammalian orders, i.e., we
collected data on 71 of the 240 species of Artiodactyla (even-
toed ungulates, such as goats, pigs, etc.) but only 28 of the 1116
species of Chiroptera (bats). To correct for oversampling of a
given order, the distribution of species in each order is rescaled
with the data coverage. Figure 3 represents the distribution of
mammalian species with respect to the morphological ratio η.
It is noteworthy that, unlike the peak in E that is broad around
the optimum, the peak in the distribution of collected biological
data is sharp. The cluster of data surrounding the optimal value
of η is striking and suggests a strong selective pressure on the
morphology of sperm cells.

While the agreement is particularly remarkable for the
largest mammalian orders Rodentia (rodents) and Chiroptera
(bats) (see Fig. 3), it is worth commenting on the outliers in
the histogram for which η appears to be suboptimal. The first
points of interest are the species with large η (� 25), cor-
responding to rodents and small marsupial bandicoots. Their
tails are unusually long (L � 150 μm) and thick (r � 0.5 μm).
The increased tail thickness has been correlated with enhanced
tensile strength and resistance to shear stress [21]. Sperm
cells with thick tails have been observed to undergo strokes
with larger radii of curvature due to the increased bending
stiffness of the flagellum [22]. The first-order effects of
increasing bending stiffness can be approximated by imposing
a minimum radius of curvature γ0, such that the local curvature
γ (s,t) � γ0 everywhere. Modified results that include the
minimal curvature constraint are represented by the gray
symbols in Fig. 3, indicating that, for stiffer tails, the optimal
morphology shifts toward larger values of η. This effect,

however, is relevant only in very thick tails as the bending
stiffness scales ∼ r4 and hence decreases sharply with r .
At the opposite end of the histogram, the order Monotremata
(egg-laying mammals) displays a very low tail-to-head length
ratio η � 2. However, the dimensions and shape of their heads,
≈ 50 μm long and ≈ 0.7 μm wide [23], are very far from
the spherical head hypothesis of our model, which does not
account for variations in head geometry.

Finally, a more puzzling discrepancy is the existence of
a second smaller peak at η ≈ 6 in the biological histogram
for which there is no corresponding feature in the computed
optimal curve. This peculiar second peak is due primarily
to the orders Lagomorpha (e.g., rabbits and pikas) and
Artiodactyla. From a hydrodynamical standpoint, there is
no obvious rationalization for this shift, which may be
attributed to other factors such as variations in the fluid
rheology and in individual or collective sperm behavior. These
examples highlight the complexity of biological systems and
the importance of species-dependent physical, chemical, and
environmental constraints in the evolution of sperm dynamics
and morphology.

In summary, we have presented a model system relevant
to general aspects of sperm motility. For typical uniflagellated
swimmers, we found the existence of well-defined optimal
stroke kinematics and morphologies. The computed optimal
geometry is in agreement with experimental observations of
sperm cells across a wide range of mammalian species, and
both the existence and the functional form of this correlation
can be theoretically rationalized from hydrodynamic consid-
erations.
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