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Abstract

In this study, a Markovian fluid flow system with two stages separated by a finite buffer is
considered. Fluid flow models have been analyzed extensively to evaluate the performance of
production, computer, and telecommunication systems. Recently, we developed a methodology
to analyze general Markovian continuous flow systems with a finite buffer. The flexibility of this
methodology allows us to analyze a wide range of systems by specifying the transition rates and
the flow rates associated with each state of each stage. In this study, in order to demonstrate
the applicability of our methodology, we model and analyze a range of models studied in the
literature. The examples we analyze as special cases of our general model include systems with
phase-type failure and repair-time distributions, systems with machines that have multiple up
and down states, and systems with multiple unreliable machines in series or parallel in each
stage. For each case, the Markovian model is developed, the transition and flow rates are
determined, and representative numerical results are obtained by using our methodology.

1 Introduction

In this study, we consider the modelling and analysis of various two-stage continuous flow systems
with a finite capacity buffer. The dynamics of each stage are described by a continuous-time,
discrete-state Markov chain where a different flow rate is associated with each state (Figure 1).

By determining the state transition rates for each stage and the flow rates associated with each
state, this model can represent a wide range of systems. For example, it may represent a portion of
a factory in which a stage represents an unreliable machine that may have phase-type up- and down-
time distributions; or a machine with variable quality; or multiple stations in series or in parallel
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Figure 1: A Single Buffer Fluid Flow System with Two Stages

without intermediate buffers. For another example, it can represent a communications network in
which message flow rates change according to Markov processes (e.g. Anick, Mitra, and Sondhi
1982, Elwalid and Mitra 1991, and Mandjes, Mitra, and Scheinhardt 2003). In the following, we
use the terms stage and machine interchangeably.

Recently, Tan and Gershwin (2007, 2009) presented a methodology to analyze a general two-
stage Markovian continuous flow system with a finite buffer. This methodology allows the analysis of
wide variety of systems by only identifying their transition rates and flow rates associated with each
state of each stage. In this study, we model and analyze various systems studied in the literature
to demonstrate the applicability of this methodology as a general tool to analyze the performance
of continuous flow systems.

In the last four decades, a vast number of papers that analyze single-buffer two-stage Markovian
continuous flow systems appeared in the literature starting with Sevast’Yanov (1962). From the
modelling perspective, the main difference in these studies is the way the transition and flow rates
are identified. For a given system, these studies use an analytical method that is based on the
special structure of the system. By using our methodology, all of these models can be analyzed
directly as special cases.

The majority of the papers that focus on analysis of continuous flow production systems consider
models with two unreliable stations and a finite buffer. In the simplest case, each unreliable machine
has only two states: a single up state that represents the condition of a fully productive machine and
a single down state that represent the condition where the machine is not productive due to a failure
and the failure and repair times are exponential random variables. There is a very large literature
on the analysis of this special case (e.g. Wijngaard 1979, Gershwin and Schick 1980, Dubois and
Forestier 1982, Yeralan, Franck, and Quasem 1986, Yeralan and Tan 1997, among others).

In the performance evaluation of computer and telecommunication systems, there exist different
methodologies to analyze general fluid flow models of computer and telecommunication systems
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with a finite buffer, (e.g. Serucola 2001, Ahn and Ramaswami 2003, Mandjes, Mitra, and Schein-
hardt 2003, Ahn, Jeon, and Ramaswami 2005, Soares and Latouche 2006). Due to the operation-
dependent failure mechanism observed in a production setting, the methodologies developed for
telecommunication and computer systems cannot be used directly. Similarly, in the production lit-
erature, Koster (1989) also presented a framework to analyze general two-stage production systems
with time-dependent failures.

In the operation-dependent failure case, an idle machine that is blocked or starved cannot fail.
If a machine is partially blocked or partially starved and operating at a reduced rate, its failure
rate will be lower than its rate when the buffer is partially full. As a result, the boundary processes
when the buffer is empty or full are not the same as the interior process. In order to analyze
the operation-dependent failure mechanism, the methodology presented in this paper analyzes the
interior process and the boundary processes that are governed by different rate matrices jointly.

The two-stage single buffer system is often used as a building block in the decomposition meth-
ods that are used to evaluate the performance of multi-station production systems. In order to
improve the accuracy of the decomposition method, the basic two-stage model has been extended
to approximate non-exponential repair time distributions. For example, Dallery and Bihan (1999)
use a model with exponential failure time and generalized exponential repair time. Bihan and
Dallery (2000) use a model with exponential failure time and two-stage hyper-exponential repair
time. Levantesi, Matta, and Tolio (2003) considers a model with multiple failure modes that is
equivalent to a system with exponential failure time and hyper-exponential repair time. Özdoğru
and Altıok (2003) analyze a system with exponential failure time and two-stage Coxian repair time
distribution.

All the studies discussed above evaluate the performance of a production system in terms of
quantity of output produced. Recently, new models have been developed to investigate not only
quantity but also quality of output produced. These models allow examining quality and quantity
issues jointly in the design and operation of production systems (Kim and Gershwin 2005, Poffe
and Gershwin 2005). In the quality-quantity models, there are multiple up states associated with
different quality production. Accordingly, there are different down states associated with each up
state as well as common down states associated with system failures and maintenance. For example,
Poffe and Gershwin (2005) consider a continuous flow production system where the first stage has
two up and three down states and the second stage has one up and one down state. The flexibility
of our model allows analysis of more elaborate quality-quantity models with more number of states
describing the behavior of each stage.

Models with multiple unreliable machines in series or parallel in each stage and separated by
a finite buffer also received some attention in the literature. Forestier (1980) described the model
and Mitra (1988) provided a general approach to analyze two-stage continuous flow systems with
identical parallel stations in each stage. Tan (2001), Helber and Jusic (2004) and Diamantidis,
Papadopoulos, and Vidalis (2004) consider merge structures where the upstream stage has two
unreliable machines in parallel and the downstream station has one unreliable machine.

In this study, we demonstrate how our methodology can be used to analyze the models sum-
marized above as special cases by specifying the transition rates for each stage and the flow rates
associated with each state. The flexibility of our model shows that it can be used as a general tool
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to analyze Markovian fluid flow systems with a finite buffer. Therefore, the main contribution of
this method is to allow researchers to focus on developing models that describe the behavior of
production systems by removing the burden of analysis.

The organization of the remainder part of the paper is as follows: In Section 2, we summarize
the methodology to analyze general Markovian two-stage continuous flow systems with a finite
buffer. We give an example in Section 3 to show how this methodology can be used to analyze
a given system. In Section 4, we discuss the analysis of different classes of models by using the
methodology, including: models with unreliable stations and phase-type failure and repair time
distributions; models to analyze quality-quantity interactions; and models with series, parallel, and
merge structures. Finally, conclusions are given in Section 5.

2 Analysis of the General Model

In this section, we summarize the methodology we developed to analyze general Markovian continu-
ous flow systems with a finite buffer and state the equations that yield the steady-state probabilities
and the desired performance measures. The complete presentation of the methodology with the
derivation of all the results are given in Tan and Gershwin (2007) and Tan and Gershwin (2009).

2.1 Model Description

We consider a continuous flow system with two stages separated by a buffer with capacity N (Figure
1). The state of the system at time t is s(t) = (X,αu, αd) where 0 ≤ X ≤ N is the buffer level,
αu ∈ {1, ..., Iu} is the state of the upstream stage Mu and αd ∈ {1, ..., Id} is the state of the
downstream stage Md. There are IuId discrete states in the machine state space SM , (αu, αd) ∈ SM .

The maximum processing rate of Mu in state i is µu
i ≥ 0 and the maximum processing rate of

Md in state j is µd
j ≥ 0. The vectors mu = {µu

i | 1 ≤ i ≤ Iu} and md = {µd
j | 1 ≤ j ≤ Id} contain

these processing rates for Mu and Md respectively.
The machines operate at their maximum rates unless they are starved or blocked. When the

buffer is empty in the machine state (αu, αd) = (i, j) with µu
i = 0 and µd

j > 0 then Md is said to be
completely starved and it is forced to stop. However, when the buffer is empty and µd

j > µu
i > 0,

Md is said to be partially starved and it can continue its production at a reduced rate of µu
i .

When the buffer is full in machine state (αu, αd) = (i, j) with µu
i > 0 and µd

j = 0 then Mu is said
to be completely blocked and the flow into the buffer is stopped. However, in the same state if
µu

i > µd
j > 0, Mu is said to be partially blocked and it can continue its production at a reduced rate

of µd
j . We assume that Mu is never starved and Md is never blocked.
We partition the discrete states of the system into three sets depending on how the buffer level

changes when 0 < X < N : Υ in which the buffer level goes up ((i, j) ∈ Υ if µu
i > µd

j ); ∆ in which
it goes down ((i, j) ∈ ∆ if µu

i < µd
j ); or Z in which it stays the same ((i, j) ∈ Z if µu

i = µd
j ) in that

state. The number of states in each of these sets are IΥ = |Υ|, I∆ = |∆|, and IZ = |Z| respectively
and IΥ + I∆ + IZ = IuId.

For Mu, when 0 < X < N , the transition time from state i to state i′ is an exponential random
variable with rate λu

ii′ . Similarly for Md, the transition time from state j to state j′ is an exponential
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random variable with rate λd
jj′ . When Mu is partially blocked, the transition time from state i to

state i′ is also an exponential random variable with rate ψu
ii′ . Similarly, when Md is partially starved,

the transition rate from state j to state j′ is ψd
jj′ . We do not make any assumptions regarding the

transition rates ψu
ii′ and ψd

jj′ . With this general setting, operation dependent failure mechanisms
can be modelled easily as shown in Section 4.

The time-dependent probability density while the buffer is neither full nor empty is

f(x, i, j, t) =
∂

∂x
prob[X(t) ≤ x, αu(t) = i, αd(t) = j] for 0 < x < N.

We assume that the process is ergodic and the steady-state probabilities exist. The steady-
state density functions are defined as f(x, i, j) = lim

t→∞ f(x, i, j, t) for 0 < x < N . The probability

of state (0, i, j) at time t when the buffer is empty is denoted by p(0, i, j, t) and the probability
of state (N, i, j) at time t when the buffer is full is denoted by p(N, i, j, t). The steady-state
probabilities at the empty and full buffer states when (αu, αd) = (i, j) are p(0, i, j) = lim

t→∞ p(0, i, j, t)

and p(N, i, j) = lim
t→∞ p(N, i, j, t) respectively.

2.2 Analysis of Interior and Boundary Processes

In the rest of this paper, we only consider steady-state behavior, and we suppress the t argument.
Our solution methodology requires only matrices λu = {λu

ii′}, λd = {λd
jj′}, ψu = {ψu

ii′}, ψd = {ψd
jj′},

vectors µu = {µu
i }, µd = {µd

j}, and the buffer size N as its inputs. In the operation dependent
failure case, ψu and ψd are functions of λu and λd, and the flow rate vectors mu and md. As a
result, once the transition rate matrices λu and λd, and the flow rate vectors mu and md are given,
the methodology summarized below yields the desired performance measures.

We first determine the differential equations that describe the dynamics of the system when the
buffer is in the interior (0 < X < N) and when the buffer is at the boundary, i.e. when the buffer
is empty (X = 0) or full (X = N).

2.2.1 Interior Process

The probability density functions satisfy the following set of equations in steady state:

(µu
i − µd

j )
∂f(x, i, j)

∂x
= −f(x, i, j)




Iu∑

i′ = 1
i′ 6= i

λu
ii′ +

Id∑

j′ = 1
j′ 6= j

λd
jj′




+
Iu∑

i′ = 1
i′ 6= i

f(x, i′, j)λu
i′i +

Id∑

j′ = 1
j′ 6= j

f(x, i, j′)λd
j′j, (i, j) ∈ SM . (1)
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The above equation is written in the matrix form as







∂fΥ(x)
∂x

∂f∆(x)
∂x




0


 =

[
A1 A2

A3 A4

] 


[
fΥ(x)
f∆(x)

]

fZ(x)


 (2)

where fS(x) = {f(x, i, j)} for (i, j) ∈ S, S = Υ, ∆, Z, A1 is a square matrix of size (IΥ + I∆) ×
(IΥ + I∆), A4 is a square matrix of size IZ × IZ , A2 is a matrix of size (IΥ + I∆) × IZ , A3 is a
matrix of size IZ × (IΥ + I∆), and 0 is a column vector of zeroes of length IZ . These matrices are
determined by λu, λd, mu, and md.

The solution of the set of differential and algebraic equations given in Equation 2 is

[
fΥ(x)
f∆(x)

]
= eΛxw (3)

and
fZ(x) = ΩeΛxw. (4)

where Λ = A1 − A2A
−1
4 A3, eΛx is a matrix exponential determined by matrix Λ, Ω = −A−1

4 A3 and
w is a column vector of length IΥ + I∆.

When vector w is determined, all the density functions are determined by Equations (3) and (4).
Since the length of w is IΥ + I∆, IΥ + I∆ equations are needed to determine the weights uniquely.
We determine these equations by analyzing the boundary processes in the following.

2.2.2 Empty Buffer Process

As the buffer level decreases in states (i, j) ∈ ∆, the buffer eventually becomes empty if no other
transition occurs first. Once the buffer becomes empty, it stays empty until the system makes a
transition to a state (i, j) ∈ Υ. When the buffer is empty, the set of states where the buffer stays
empty is S0 = ∆ ∪ Z and IS0 = |S0| = I∆ + IZ .

Let t0k be the kth time the buffer becomes empty and π(0, i, j, t0k + τ) be the probability that
X = 0 and (αu, αd) = (i, j) at time t0k + τ given that the buffer became empty at time t0k and has
been empty during [t0k, t

0
k + τ ]. The dynamics of the system during an interval when the buffer stays

empty are given by the following equations:

dπ(0, i, j, τ)

dτ
= −π(0, i, j, τ)




Iu∑

i′ = 1
i′ 6= i

λu
ii′ +

Id∑

j′ = 1
j′ 6= j

ψd
jj′




+
Iu∑

i′ = 1
i′ 6= i

(i′, j) ∈ S0

π(0, i′, j, τ)λu
i′i +

Id∑

j′ = 1
j′ 6= j

(i, j′) ∈ S0

π(0, i, j′, τ)ψd
j′j, (i, j) ∈ S0. (5)
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Equation (5) can be written in matrix form as

dπ0
S0

(τ)

dτ
= A0π

0
S0

(τ) (6)

where π0
S0

(τ) = {π(0, i, j, τ)} for (i, j) ∈ S0 and A0 is a IS0 × IS0 square matrix.
The empty buffer process ends with a transition into a state where the buffer level starts in-

creasing. The rate at which the process enters into the state (i, j) ∈ Υ after a time period of length
τ following the buffer becoming empty is

q(0, i, j, τ) =
Iu∑

i′ = 1
i′ 6= i

(i′, j) ∈ S0

π(0, i′, j, τ)λu
i′i +

Id∑

j′ = 1
j′ 6= j

(i, j′) ∈ S0

π(0, i, j′, τ)ψd
j′j, (i, j) ∈ Υ. (7)

Equation (7) can be written in matrix form as

q0
Υ(τ) = B0π

0
S0

(τ) (8)

where q0
Υ(τ) = {q(0, i, j, τ)} for (i, j) ∈ Υ and B0 is a IΥ × IS0 matrix.

We use the relationship between the probability that the buffer becomes empty while the ma-
chines are in a particular state (i, j) ∈ ∆ and the probability that the process exits the empty buffer
state with a transition into state (i, j) ∈ Υ to derive a set of boundary equations. We express the
probability that the buffer becomes empty and the process exits the empty buffer state as ratios
of the number of level crossings in the corresponding states to the total number of level crossings.
Only the matrices A0 and B0 are required to express the resulting boundary equation:

[
diag(mΥ) 0IΥ×I∆

]
w = G0

[
0I∆×IΥ diag(m∆)

]
w (9)

where G0 is a IΥ×I∆ matrix that is obtained by eliminating the columns of −B0A
−1
0 corresponding

to states in Z, mΥ = {(µu
i − µd

j )| (i, j) ∈ Υ}, m∆ = {(µd
j − µu

i )| (i, j) ∈ ∆}, and the notation
diag(a) represents a diagonal matrix formed with the elements of vector a and 0k×l is a k× l matrix
of zeros.

In Equation (9), the left-hand side is the probability vector that the process exits the empty-
buffer process in a state (i, j) ∈ Υ. The matrix G0 is the matrix of conditional probabilities that
the empty buffer process exits in a particular state (i, j) ∈ Υ given that it starts in one of the states
(i′, j′) ∈ S0 where the buffer stays empty. G0 is obtained by eliminating the columns of −B0A

−1
0

corresponding to states in Z. The term that is multiplied by G0 is the probability vector that the
buffer becomes empty while the machine is in a state (i, j) ∈ ∆. Since the probability that the
process exits the empty buffer process in one of the states in Υ is one, Equation (9) gives IΥ − 1
linearly independent equations that will be used to determine w. Once w is determined, the steady
state distribution of the states when the buffer is empty can be determined directly.

Due to the ergodicity of the process, the probability that X = 0 and (αu, αd) = (i, j) is also the
fraction of the total time the process stays in this state in a given time period the long run.

7
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We can determine the total time the process stays in state (i, j) ∈ S0 while X = 0 in a given
time period by determining the number of times the buffer becomes empty and the time the process
stays in this state for each time the buffer becomes empty in the same time period. Given that the
machine states (αu, αd) = (i′, j′) ∈ ∆ at the time the buffer becomes empty, the expected time that
the machine states (αu, αd) stay in (i, j) ∈ S0 before exiting to a state (αu, αd) ∈ Υ is denoted by
E[T 0

(i,j),(i′,j′)].
Using the solution of the density functions given in Equation (3), the steady-state empty buffer

probability distribution can be written as

p0 = E[T 0]
[

0I∆×IΥ diag(m∆)
]
w (10)

where p0 = {p(0, i, j)} and E[T 0] is an IS0 × I∆ matrix that is obtained by eliminating the columns
of −A−1

0 corresponding to states in Z. In Equation (10), the term multiplied with E[T 0] is the
number of times the buffer becomes empty per unit time which is equal to the number of upward
level crossings at x = 0− per unit time expressed in terms of the interior process densities and flow
rates.

2.2.3 Full Buffer Process

The dynamics of the system when the buffer stays full in state (i, j) ∈ SN = Υ∪Z,the set of states
where the buffer stays full, are given below:

dπ(N, i, j, τ)

dτ
= −π(N, i, j, τ)




Id∑

j′ = 1
j′ 6= j

λd
jj′ +

Iu∑

i′ = 1
i′ 6= i

ψu
ii′




+
Id∑

j′ = 1
j′ 6= j

(i, j′) ∈ SN

π(N, i, j′, τ)λd
j′j +

Iu∑

i′ = 1
i′ 6= i

(i′, j) ∈ SN

π(N, i′, j, τ)ψu
i′i, (i, j) ∈ SN . (11)

The above equation can be written in matrix form as

πN
SN

(τ)

dτ
= ANπN

SN
(τ) (12)

where π(N, i, j, tNk + τ) is the probability that X = N and (αu, αd) = (i, j) at time tNk + τ given
that the buffer became full at time tNk and has been full during [tNk , tNk + τ ] and tNk is the kth time
the buffer becomes full, πN

SN
(τ) = {π(N, i, j, τ)} for (i, j) ∈ SN , ISN

= |SN |, and AN is a ISN
× ISN

,
square matrix.

The full buffer process ends with a transition into a state where the buffer level starts decreasing.
The rate vector at which the process enters into one of the states (i, j) ∈ ∆ is

8
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q(N, i, j, τ) =
Id∑

j′ = 1
j′ 6= j

(i, j′) ∈ SN

π(N, i, j′, τ)λd
j′j +

Iu∑

i′ = 1
i′ 6= i

(i′, j) ∈ SN

π(N, i′, j, τ)ψu
i′i, (i, j) ∈ ∆ (13)

or in matrix form
qN

∆(τ) = BNπN
SN

(τ) (14)

where qN
∆(τ) = {q(N, i, j, τ)} for (i, j) ∈ ∆ and BN is a I∆ × ISN

matrix.
Similar to the empty-buffer case, only the matrices AN and BN are required to write the second

boundary equation that relates the entry and exit probabilities when the buffer is full:
[

0I∆×IΥ diag(m∆)
]
eΛNw = GN

[
diag(mΥ) 0IΥ×I∆

]
eΛNw (15)

where GN is a I∆×IΥ matrix that is obtained by eliminating the columns of −BNA−1
N corresponding

to states SN \Υ.
Since the probability that the process exits the full buffer state with a transition into one of the

states in ∆ is one, Equation (15) gives I∆ − 1 linearly independent equations that will be used to
determine w.

The full-buffer steady-state distribution is expressed in terms of the solution of the interior
process, the flow rate, and the full-buffer process dynamics:

pN = E[TN ]
[

diag(mΥ) 0IΥ×I∆

]
eΛNw. (16)

where pN = {p(N, i, j)} and E[TN ] is an ISN
× IΥ matrix that is obtained by eliminating the

columns of −A−1
N corresponding to states in SN \ Υ. In Equation (16), the term multiplied with

E[TN ] is the expected number of times the buffer becomes full while the machine state is in a state
in Υ per unit time in the long run.

2.2.4 Determination of the Probability Densities

Once the weight vector w is determined, all the steady-state probabilities are also determined. Since
there are IΥ + I∆ weights and Equations (9) and (15) give a total of IΥ + I∆ − 2 equations, two
additional equations are required to uniquely determine w.

The first equation is the equivalence of the total upward and downward crossings in the interior
region:

[
mΥ −m∆

]



N∫

0

eΛxdx


 w = 0. (17)

The second equation is the normalization equation:

Iu∑

i=1

Id∑

j=1

(p(0, i, j) + p(N, i, j)) +

N∫

0

Iu∑

i=1

Id∑

j=1

f(x, i, j)dx = 1 (18)

9
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or in matrix form


uIS0

E[T 0]
[

0I∆×IΥ diag(m∆)
]
+ ν




N∫

0

eΛxdx


 + uISN

E[TN ]
[

diag(mΥ) 0IΥ×I∆

]
eΛN


 w = 1

(19)
where ν = (uIΥ+I∆ + uIZ

Ω).
Now Equations (9) and (15) with Equations (17) and (19) give IΥ + I∆ linearly independent

equations that uniquely determine w. Therefore all the steady-state probability distributions that
describe the dynamics of the system are determined by these equations.

2.2.5 Performance Measures

When the probability densities are determined, all performance measures of interest can be calcu-
lated. In a production setting, the main performance measures of interest are the production rate
and the expected buffer level.

The production rate is the amount of material processed per unit time in the long run. The
production rate of the first stage can be written as

Π =
∑

(i,j)∈S0

µu
i p(0, i, j) +

∑

(i,j)∈SM

N∫

0

µu
i f(x, i, j)dx +

∑

(i,j)∈SN

µd
jp(N, i, j). (20)

The last term in the above equation reflects the reduced processing rate of the first stage due to
blocking. Note that the amount of material processed by both stages is the same in the long run.

The expected buffer level is determined as

E[X] =
Iu∑

i=1

Id∑

j=1




N∫

0

xf(x, i, j)dx + Np(N, i, j)


 . (21)

Once the steady-state distribution is determined, other performance measures of interest such as
the blocking and starvation probabilities can also be evaluated directly.

3 Analysis of an Example

In this section, we present the detailed analysis of a two-station continuous flow system with expo-
nential failure and repair times to illustrate the methodology. All the variables defined in Section
2 are given explicitly for this model. Tan and Gershwin (2007) give explicit analysis of another
example where each stage has multiple up and down states.

The upstream machine is unreliable and has one up (State 1) and one down state (State 0).
The processing rate of the upstream machine is µu and the failure and repair times are exponential
random variables with rates pu and ru respectively. Similarly, the downstream machine is also

10
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unreliable and has one up (State 1′) and one down state (State 0′).The processing rate of the
downstream machine is µd and the failure and repair rates are also exponential random variables
with rates pd and rd respectively.

We assume that we have operation-dependent failure in this model. Operation-dependent failure
can be modelled as a case where there is a reduction in the transition rates at the boundaries which
is proportional to the reduction in the processing rate. This is the assumption that is made in many
papers in the literature (e.g. Gershwin and Schick 1980). That is, when the buffer is empty and

Md is producing at a reduced rate of µu
i , we have ψd

jj′ =
µu

i

µd
j
λd

jj′ for failure transitions. This implies

that when µu
i = 0 and x = 0, we have ψd

jj′ = 0 and therefore it is not possible for Md to make a
failure transition when it is completely starved.

Similarly, when the buffer is full and Mu is producing at a reduced rate of µd
j , we have ψu

ii′ =
µd

j

µu
i
λd

ii′

for failure transitions. When µd
j = 0 and x = N , we have ψu

ii′ = 0 and therefore Mu cannot have a
failure transition when it is completely blocked.

3.1 Model Inputs

Our solution methodology requires only matrices λu = {λu
ii′}, λd = {λd

jj′}, ψu = {ψu
ii′}, ψd = {ψd

jj′},
vectors µu = {µu

i }, µd = {µd
j}, and the buffer size N as its inputs. In this specific example, since

ψu
ii′ =

µd
j

µu
i
λd

ii′ and ψd
jj′ =

µu
i

µd
j
λd

jj′ , ψu and ψd are defined by the other inputs.

We first order the states of Mu as {1, 0}. The transition rate matrix of Mu is given as

λu =

[
−pu pu

ru −ru

]
. (22)

The processing rates in states {1, 0} are

µu =
[

µu 0
]
.

Similarly, the states of Md are ordered as {1′, 0′}. The transition rate matrix of Md is given as

λd =

[
−pd pd

rd −rd

]
. (23)

In states {1′, 0′} the processing rates of Md are given as

µd =
[

µd 0
]
.

3.2 Analysis of the Model

Once these inputs are given, we can specify matrices A1, A2, A3, A4, A0, B0, AN , BN and vectors
mΥ, m∆, and mZ directly. Once these matrices and vectors are specified, the methodology outlined
in the preceding sections yields the desired performance measures directly.

11
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The table given in (24) lists the states, the corresponding processing rates, and the classification
of each state in sets Υ, ∆, and Z depending on µu and µd. In this section only the case µu > µd is
discussed in detail.

State State S
Mu Md αu αd mS µu > µd µu = µd µu < µd

1 1′ 1 1 µu − µd Υ Z ∆
1 0 2 1 µu Υ Υ Υ
0 1′ 1 2 −µd ∆ ∆ ∆
0 0′ 2 2 0 Z Z Z

(24)

There are 4 discrete states in the state space. When µu > µd, IΥ = 2, I∆ = 1, and IZ = 1. In
this case,

mΥ =
[

µu − µd µu

]
,

m∆ =
[

µd

]
,

mZ =
[

0
]
.

For this specific case, the submatrices A1, A2, A3, and A4 are

A1 =




−pu−pd

µu−µd

rd

µu−µd

ru

µu−µd
pd

µu

−pu−rd

µu
0

− pu

µd
0 ru+pd

µd


 , (25)

A2 =
[

0 ru

µu
− rd

µd

]T
, (26)

A3 =
[

0 pu pd

]
, (27)

A4 =
[
−ru − rd

]
. (28)

The submatrices for the cases µu = µd and µu < µd can be written similarly.
When µu 6= µd, the buffer level does not change when both machines are down. Since these states

cannot be reached when the buffer is empty or full, S0 = ∆ and SN = Υ. Therefore IS0 = I∆ = 1
and ISN

= IΥ = 2.
For the empty buffer process, since Md is completely starved in all transient states, the matrices

A0 and B0 for the empty buffer process are

A0 =
[
−ru

]
(29)

and

B0 =

[
ru

0

]
. (30)

Since S0 = ∆, E[T0] = −A−1
0 = 1

ru
and G0 = −B0A

−1
0 = [−1, 0]T.

12
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For the full buffer process, Mu is partially blocked in state (1, 1′) and completely blocked in
state (1, 0′). Then the matrices AN and BN are

AN =

[ −pu
µd

µu
− pd pd

rd −pd

]
(31)

BN =
[

pu
µd

µu
0

]
. (32)

Since SN = Υ, E[TN ] = −A−1
N , GN = −BNA−1

N .

4 Modelling of Various Systems

In this section, we will model different systems to illustrate the application of our methodology in
the analysis of different production systems. We first discuss models with series or parallel stations
at each stage. This case also includes merge structures analyzed in the literature. We then discuss
unreliable stations with phase-type failure and repair time distributions. Next, we model systems
with exponential up time and hyper-exponential down time, with Erlang-type up and down times,
and exponential up and phase-type down time distributions. Finally, we discuss models to analyze
quality-quantity interactions. In all the examples, we assume operation dependent failures.

In each example, we show how these systems are modelled and we specify the inputs of the
methodology. Our solution methodology requires only matrices λu = {λu

ii′}, λd = {λd
jj′}, ψu =

{ψu
ii′}, ψd = {ψd

jj′}, vectors µu = {µu
i }, µd = {µd

j}, and the buffer size N as its inputs. Consequently,
in the operation dependent failure case, ψu and ψd are defined by λu and λd, and the flow rate vectors
mu and md. As a result, in the examples, we specify the transition rate matrices λu and λd, and
the flow rate vectors mu and md for each case and use the methodology to analyze the performance
of each model.

4.1 Multiple Stations in Each Stage

4.1.1 A Model with Parallel Stations

We now model a system where Mu has mu and Md has md identical stations in parallel similar
to the one described in Forestier (1980) and analyzed for the time-dependent failure case in Mitra
(1988). Each station is unreliable and has one up and one down state. In the upstream stage,
the processing rate of each station is µu and the failure and repair times are exponential random
variables with rates pu and ru respectively. In the downstream stage, the processing rate of each
station is µd and the failure and repair rates are also exponential random variables with rates pd

and rd respectively.
In this model Mu has mu + 1 and Md has md + 1 states. In state i of Mu, i stations are

operational and the effective processing rate is iµu, 0 ≤ i ≤ mu. Similarly, in state j of Md, j
stations are operational and the effective processing rate is jµd, 0 ≤ j ≤ md.

Accordingly, the possible transitions for Mu are

13
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• from state i to state i− 1 with rate ipu for i = 1, ..., mu, and

• from state i to state i + 1 with rate (mu − i)ru for i = 0, ..., mu − 1.

Similarly, possible transitions for Md are

• from state j to state j − 1 with rate jpd for j = 1, ..., md and

• from state j to state j + 1 with rate (md − j)rd for j = 0, ..., md − 1.

Figure 2 depicts the state transitions for Mu and Md for a specific case where Mu has mu = 3
stations and Md has md = 2 stations in parallel.

Mu Md
N

2pu

1 0

µu 0

2

2µu

pu

2ru 3ru

3

3µu
ru

3pu 2pd

1 0

µd 0

2

2µd

pd

2rd 3rd

Figure 2: A system with parallel stations

The matrices λu and λd and the vectors mu and md for this specific case are given below:

λu =




−3ru 3ru 0 0
pu −pu − 2ru 2ru 0
0 2pu −2pu − ru ru

0 0 3pu −3pu


 (33)

where the states are ordered as {0, 1, 2, 3}. The processing rates in these states are

mu =
[

0 µu 2µu 3µu
]
.

Similarly,

λd =



−2rd 2rd 0
pd −pd − rd rd

0 2pd −2pd


 (34)

where the states are ordered as {0, 1, 2}. In these states the processing rates of Md are given as

14



Tan and Gershwin Continuous Flow Systems with a Finite Buffer July 21, 2009

md =
[

0 µd 2µd
]
.

There are a total of twelve states in the state space. Once these inputs are given, the methodology
described above yields the desired performance measures directly. Figure 3 shows the effect of the
number of parallel stations on the production rate and the expected buffer level. In this specific
case, the production rate of the second stage in isolation is kept equal to the production rate of the
first stage in isolation as the number of parallel stations in the second stage increases. The figures
shows that as the number of parallel stations increase both the production rate and the expected
buffer level increases.
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Figure 3: Effect of the number of parallel stations (µu = 1, pu = 0.01, ru = 0.09, mu = 1, µd = µu mu

md
,

pd = 0.01, rd = 0.09, N = 1)

4.1.2 A Model with a Merge Structure

We now consider a three station merge system with a shared buffer. This system was analyzed
in detail in (Tan 2001). Helber and Jusic (2004) also analyzes a similar system. In the upstream
stage, there are two unreliable stations with processing rates µ1 and µ2. In the downstream stage,
there is only one station with processing rate µ3. The failure and repair rates for each station are
pi and ri for i = 1, 2, 3. Figure 4 depicts the state transitions for Mu and Md for this specific case.

Similar to the first example, we will specify the matrices λu and λd and the vectors µu and µd

as the inputs of the solution methodology. The transition rates for Mu are given as

λu =




−p1 − p2 p2 p1 0
r2 −p1 − r2 0 p1

r1 0 −p2 − r1 p2

0 r1 r2 −r1 − r2


 (35)

where the states are ordered as {11, 10, 01, 00}. The processing rates in these states are
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0’

p2 r2 r2p2 p3 r3

Mu Md

µ1+µ2 µ2

0

µ3

0

N

µ1

p1

p1

r1

r1

Figure 4: A system with a shared buffer

mu =
[

µ1 + µ2 µ1 µ2 0
]
.

Similarly,

λd =

[
−p3 p3

r3 −r3

]
(36)

where the states are ordered as {1, 0}. In these states the processing rates of Md are given as

md =
[

µ3 0
]
.

There are eight discrete states in the state space. Once these inputs are given, the methodology
described above yields the desired performance measures directly. We compare this case with the
results given in (Tan 2001). Since a specific case with hot standby is analyzed in (Tan 2001), the
method described above is modified accordingly. Figure 5 shows the effect of µ3 on the production
rate and the expected buffer level obtained by using the methodology given here and the results in
(Tan 2001) that are equal to each other.

4.1.3 A Model with Series Stations

We now consider a production line where Mu has mu and Md has md stations in series. The stations
are indexed from 1 to mu +md. Each station is unreliable and has one up and one down state. The

16



Tan and Gershwin Continuous Flow Systems with a Finite Buffer July 21, 2009

x01 x02 x03 x04
v01

v02

v03

v04

v05

str07

st
r0

8

origin1

x05 x06 x07 x08
v06

v07

v08

v09

v10

v11

str05

st
r0

6

origin2

PSfrag replacements

µ3

π
µ3

E[X]

2
3
4
5
2
3
4
5

0.1
0.2
0.3
0.4
0.5
1.7

1.72
1.74
1.76
1.78
1.8

Figure 5: Effect of the processing rate (µ1 = 1.2, µ2 = 1, p1 = 0.1, p2 = 0.1, p3 = 0.2, r1 = 0.9,
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processing rate of station k is µk. The failure and repair times of station k are exponential random
variables with rates pk and rk, k = 1, ..., mu + md.

The state of the upstream stage is a vector of length mu with its ith element is 1 if station i is
operational and 0 otherwise, 1 ≤ i ≤ mu. Similarly, the state of the downstream stage is a vector
of length md with its jth element is 1 if station mu + j is operational and 0 otherwise, 1 ≤ j ≤ md.
Accordingly, Mu has 2mu states and Md has 2md states.

Since each stage is operational only when all the stations are up, Mu produces at the maximum
rate of µu = min{µ1, ..., µmu} when all the stations are up and it can not produce if one of the
machines is down. Similarly, Md produces at the maximum rate of µd = min{µmu+1, ..., µmu+md

}
when all the stations are up and it cannot produce when one of the stations is down.

When all the stations of Mu are up, each station can fail with rate pi
µu

µi
, i = 1, ...,mu due to

operational failures. Similarly, when one station is down, none of the other up stations can fail since
they will be forced to stop due to the down station. As a result, the only possible transition when
station k is down is the repair of station k with rate rk. Therefore although there are 2mu states
for Mu, only mu + 1 of them will be non-transient. The case for Md is similar.

Figure 6 depicts the state transitions for Mu and Md for a specific case where Mu has 3 stations
and Md has 2 stations in series.

The matrices λu and λd and the vectors mu and md for this specific case are given below:

λu =




−µu( p1

µ1
+ p2

µ2
+ p3

µ3
) p1

µu

µ1
p2

µu

µ2
p3

µu

µ3

r1 −r1 0 0
r2 0 −r2 0
r3 0 0 −r3




(37)

where the states are ordered as {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. The processing rates in these
states are

mu =
[

µu 0 0 0
]

where µu = min{µ1, µ2, µ3}. Similarly
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Mu Md
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Figure 6: A system with series stations in each stage

λd =



−µd( p4

µ4
+ p5

µ5
) p4

µd

µ4
p5

µd

µ5

r4 −r4 0
r5 0 −r5


 (38)

where the states are ordered as {(1, 1), (1, 0), (0, 1)}. In these states the processing rates of Md are
given as

md =
[

µd 0 0
]

where µd = min{µ4, µ5}. There are a total of twelve states in the state space. Once these inputs
are given, the methodology described above yields the desired performance measures directly.

Consider the problem of locating a finite buffer in a continuous material flow production line
with no interstation buffers. This problem has not been addressed in the literature before. Once
the buffer is located between machine k and k +1, the line is divided into two stages. The resulting
two-stage system can be analyzed by using the methodology outlined above. Figure 7 shows the
effect of the buffer placement on the production rate for a production line with ten identical stations.
As expected, for this homogeneous system placing the buffer in the middle, between Machine 5 and
6 maximizes the production rate.

However, when the stations are not identical, the buffer location that maximizes the production
rate can be different. Figure 8 shows the effect of the buffer placement on the production rate for
a production line with ten non-identical stations. In this case, placing the buffer between station 5
and 6 maximizes the production rate.
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Figure 7: Effect of the buffer placement on the production rate (µi = 1, pi = 0.01, ri = 0.9,
i = 1, ..., 10, N = 1)

4.2 Phase-Type Failure and Repair Time Distributions

Models of unreliable production systems include states that describe when the machine is up and
operating and down. Our methodology does not classify states as up and down states. States with
zero flow rates can be labelled as down states in this context. Similarly a transition that reduces the
processing rate can be labelled as a failure and a transition that increases the processing rate can
be labelled as a repair. With this view the general model depicted in Figure 1 can include systems
with phase-type failure and repair time distributions.

Most of the studies that focus on unreliable production systems assume exponential failure
and exponential repair times. Although the exponential failure time assumption can be justified,
observed repair time distributions are not generally exponential. Therefore analyzing production
systems with general failure and repair time distributions is of interest. Using phase-type dis-
tributions allows us to handle a wide range of probability distributions within the framework of
continuous time Markov chains.

Another motivation for studying two stage production systems with phase-type distributions
is to develop a building block that can be used to evaluate the performance of a multistation
production system approximately. One effective approximation method to evaluate the performance
of production systems is decomposition. The decomposition approach basically considers each buffer
of a given system and approximates the upstream and downstream flow dynamics of this buffer by
building a two-stage single buffer system. The parameters of the upstream and the downstream
station are then determined by relating the solution of one subsystem to another in a consecutive
way until a convergence criterion is satisfied.

In this section, we first present the general model for a system with exponential failure and
phase-type repair time distribution. Then we present the model discussed above: a system with
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Figure 8: Effect of the buffer placement on the production rate ( pi = 0.01, ri = 0.9, i = 1 : 10,
µj = 1, j = 1 : 8, µk = 4, k = 9, 10, N = 1)

exponential failure and hyper-exponential repair time distribution with different number of stages.
Finally, a model with Erlang-type failure and repair time distributions is discussed.

4.2.1 Exponential Up and Phase-type Down Time

Let us first consider a model with exponential up and phase-type down times. In this model, there
is a single up state and a number of down states. The number of down states in Mu is κu and the
number of down states in Md is κd. When Mu is in its up state, it produces with rate µu and when
Md is in its up state, it produces with rate µd. The up times of Mu and Md are exponential random
variables with rates pu and pd respectively. The probability that Mu fails with a transition to down
state i is qu

i and the probability that Md fails with a transition to down state j is qd
j . The time

spent at each down state is an exponential random variable. The transition rate from down state i
to the up state of Mu is ru

i and the transition rate from down state j to the up state of Md is rd
j .

The transition rate from down state i to down state i′ is λu
r = {λu

ii′} for Mu. Similarly the transition
rate from down state j to down state j′ is λd

r = {λd
jj′} for Md. Figure 9 depicts the system.

The general structure of the matrices λu, λd and the vectors mu and md are given below:

λu =




−pu qu
1pu qu

2pu · · · qκupu

ru
1

ru
2
...

ru
κu

λu
r




, (39)

mu =
[

µu 0 · · · 0
]

20



Tan and Gershwin Continuous Flow Systems with a Finite Buffer July 21, 2009

Mu MdN

'
u
iiλ

uµ dµ U

j

U

i
i´

u u
ip q'

u
ir

j´

d d
jp q '

d
jr

'
d
jjλ

up

down

up

down

Figure 9: A system with Exponential Up and Phase-type Down times

where the states are ordered with the up states first and then the down states. Similarly,

λd =




−pd qd
1p

d qd
2p

d · · · qκdpd

rd
1

rd
2
...

rd
κd

λd
r




, (40)

md =
[

µd 0 · · · 0
]
.

4.2.2 Exponential Up and Hyper-Exponential Down Time

A special case of the model with exponential up and phase-type down time distribution is a model
where the up times are exponentially distributed random variables and the repair times are hyper-
exponential random variables with different number of stages and rates. For example, a machine
with multiple down states associated with different type failures and a single up state is an example
for this case.

Bihan and Dallery (2000) present a decomposition method for a continuous material flow produc-
tion line with exponential failure and repair times. In order to capture the behavior of downstream
flow of a given buffer, they analyze a two-machine building block where each machine has expo-
nential up and two-stage hyper-exponential down time distribution. They set the parameters of
the two-stage hyper-exponential distribution to fit the first three moments of a given repair time
distribution. Levantesi, Matta, and Tolio (2003) also present a similar model with exponential
up and hyper-exponential down time with an arbitrary number of stages and analyze this system
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exactly. Their model exploits the special structure of the rate matrix and yields an exact solution
for system with up to 1000 failure modes per station.

Let the upstream machine Mu have κu different failure modes. The failure rate to mode i is
pu

i = puqu
i and the repair rate in mode i is ru

i . When the machine is operational, the processing
rate when it is not blocked or starved is µu. Similarly, the downstream machine Md has κd different
failure modes. The failure rate to mode j is pd

j = pdqd
j and the repair rate in mode j is rd

j . When
the machine is operational, its processing rate when it is not blocked or starved is µd. Figure 10
depicts an example of this system.
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up 3
up
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1
dp 1

dr 2
dr2

dp

uµ dµ

Figure 10: A system with Exponential Up and Hyper-exponential Down times

The possible transitions for Mu are

• from state U to state Di with rate pu
i , i = 1, ..., κu,

• from state Di to state U with rate ru
i , i = 1, ..., κu.

Similarly, the possible transitions for Md are

• from state U to state Dj with rate pd
j , j = 1, ..., κd,

• from state Dj to state U with rate rd
j , j = 1, ..., κd.

For example, in the specific case depicted in Figure 10 with κu = 3, κd = 2, the matrices λu and
λd and the vectors µu and µd are given below:

λu =




−pu
1 − pu

2 − pu
3 pu

1 pu
2 pu

3

ru
1 −ru

1 0 0
ru
2 0 −ru

2 0
ru
3 0 0 −ru

3


 , (41)

mu =
[

µu 0 0 0
]
,
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κu\κd 5 10 15 20 25 30 35 40 45 50
5 0.4 1.1 0.4 0.5 0.6 0.6 0.4 0.5 0.4 0.3
10 0.8 1.0 1.3 0.8 1.2 0.9 1.5 1.2 1.1 1.1
15 0.6 1.4 0.9 1.5 1.6 1.1 1.4 1.3 1.6 1.4
20 1.5 1.1 1.0 2.0 1.7 1.4 1.7 1.2 1.7 2.2
25 0.6 0.9 1.6 0.9 2.0 1.6 1.3 1.8 3.5 2.4
30 1.3 1.3 2.6 1.6 1.8 1.6 3.7 3.1 2.1 3.1
35 0.5 1.6 1.1 1.5 3.0 1.6 2.1 3.1 2.6 3.1
40 0.9 1.1 1.6 2.2 2.0 2.1 1.7 2.2 3.2 2.9
45 0.7 0.9 0.8 1.7 1.4 2.4 3.5 2.5 4.0 2.1
50 0.9 0.7 1.3 1.4 2.6 2.0 2.0 2.2 2.4 2.7

Figure 11: Accuracy of the Two-stage Hyper-Exponential Approximation

λd =



−pd

1 − pd
2 pd

1 pd
2

rd
1 −rd

1 0
rd
2 0 −rd

2


 , (42)

md =
[

µd 0 0
]
.

By using the exact solution of the two-stage continuous flow production system with an expo-
nential up and a hyper-exponential repair time distribution obtained by the proposed methodology,
we can assess the accuracy of the two-stage approximation used by Bihan and Dallery (2000).

In order to evaluate the accuracy of the two-stage approximation, we generated ten random two-
stage systems for each case with different number of stages for the upstream and the downstream
stations with 2 ≤ κu ≤ 50, 2 ≤ κd ≤ 50. For each case we normalized µu = µd = 1, and
pu = 1 and generated other parameters randomly with N ∼ Uniform[1, 10], pd ∼ Uniform[0, 1],

xu
i ∼ Uniform[0, 1] and qu

i =
xu

i∑κuxu
i

i=1

xu
i ∼ Uniform[0, 1] and qu

i =
xu

i∑κu

i=1
xu

i

for i = 1, ..., κu, xd
j ∼

Uniform[0, 1] and qd
j =

xd
j∑κd

j=1
xd

j

for j = 1, ..., κd.

The table shown in Figure 11 gives the absolute percentage error of the two-stage approximation
for the production rate εΠ = 100 |Π−Πa|

Π
(Πa is the production rate with two-stage approximation

and Π is the exact production rate) for systems with different number of stages. As the table shows,
the two-stage approximation may yield errors up to 4% for systems with high number of stages.

Note also that in the model with κu = 50 and κd = 50 stages, there are 2601 machine states
and the analysis requires the solution of 100 differential and 2501 algebraic equations subject to
boundary conditions. Consequently, the exact solution described here takes longer than Bihan and
Dallery’s approximation when the number of stages is large.
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4.2.3 A Model with Erlang Up and Down Times

We now model a production system where the failure and repair times are Erlang-type random
variables. We assume that the failure time of Mu is an Erlang random variable with κu

f stages. The
expected failure time is 1

pu and the squared coefficient of variation of the failure time is scvu
f = 1

κu
f
.

The repair time of Mu is also an Erlang random variable with κu
r stages. The expected failure time

is 1
ru and the squared coefficient of variation of the failure time is scvu

r = 1
κu

r
.

Similarly, failure time of Md is an Erlang random variable with κd
f stages. The expected failure

time is 1
pd and the squared coefficient of variation of the failure time is scvd

f = 1
κd

f

. The repair time

of Md is also an Erlang random variable with κd
r stages. The expected repair time is 1

rd
and the

squared coefficient of variation of the repair time is scvd
r = 1

κd
r
.

The processing rates of Mu and Md are µu and µd respectively. In this model Mu has κu
f + κu

r

states and Md has κd
f + κd

r states. The states of Mu are indexed from 1 to κu
f + κu

r and ordered
such that states i = 1, ..., κu

f are for the up states and states i = κu
f + 1, ..., κu

f + κu
r are for the down

states of Mu. Similarly the states of Md are indexed from 1 to κd
f + κd

r and ordered such that states
i = 1, ..., κd

f are for the up states and states i = κd
f + 1, ..., κd

f + κd
r are for the down states of Mu.

The possible transitions for Mu are

• from state i to state i + 1 with rate κu
fp

u, i = 1, ..., κk
f ,

• from state i to state i + 1 with rate κu
rr

u, i = κu
f + 1, ..., κu

f + κu
r − 1,

• from state κu
f + κu

r to state 1 with rate κu
rr

u.

Similarly, the possible transitions for Md are

• from state j to state j + 1 with rate κd
fp

d, j = 1, ..., κd
f ,

• from state j to state i + 1 with rate κd
rrd, j = κd

f + 1, ..., κd
f + κd

r − 1,

• from state κd
f + κd

r to state 1 with rate κd
rrd.

For example, let us consider a specific case with κu
f = 2, κu

r = 2, κd
f = 1, and κu

r = 3. For this
specific system, Figure 12 depicts the state transition diagram.

The matrices λu and λd and the vectors mu and md for this specific case are given below:

λu =




−κu
fp

u κu
fp

u 0 0
0 −κu

fp
u κu

fp
u 0

0 0 −κu
rr

u κu
rr

u

κu
rr

u 0 0 −κu
rr

u


 , (43)

mu =
[

µu µu 0 0
]
,
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µu µd

Figure 12: A system with Erlang Up and Down times

λd =




−κd
fp

d κd
fp

d 0 0
0 −κd

rrd κd
rrd 0

0 0 −κd
rrd κd

rrd

κd
rrd 0 0 −κd

rrd


 , (44)

md =
[

µd 0 0 0
]
.

Figures 13 and 14 show the effects of the failure and repair time variabilities of each stage on the
production rate and the expected buffer level. Figure 13 shows that as the coefficient of variation of
the failure times of first and the second stages increase, the production rate decreases. On the other
hand, a decrease in the variability of the failure time of the upstream machine results in an increase
in the expected buffer level. Similarly, Figure 14 shows the effect of the repair time variability of
the firs and the second stage on the production rate and the expected buffer level. A decrease in
repair time variability of either stage increases the production rate. On the other hand, a decrease
of the repair time variability of only the first stage increases the expected buffer level.

4.3 Quality-Quantity Models

In this section, we consider a production system with two unreliable machines with multiple up
and down states and a finite buffer that is an extension of the one studied by Poffe and Gershwin
(2005).

In the system we consider, the both stages has two up (State 1 and State -1 for Mu and State
1’ and State -1’ for Md) and three down states (State D1, D−1, and DQ for Mu and D1′ , D−1′ , and
DQ′ for Md ). In States 1 and 1’, both machines produce products with no quality problems but
when Mu is in State -1, the quality of the products produced by Mu is not perfect. Similarly, when
Md is in State -1’, the quality of the products produced by Md is not perfect. Furthermore, the
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Figure 13: Effect of the failure time variability (µu = 1, µd = 1, pu = 0.005, pd = 0.01, ru = 0.15,
rd = 0.1, N = 10)
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Figure 14: Effect of the repair time variability (µu = 1, µd = 1, pu = 0.005, pd = 0.01, ru = 0.15,
rd = 0.1, N = 10)

machines are subject to two different failures: operational failures (States D1, D−1, D1′ , and D−1′)
and quality failures (States DQ and DQ′) and they have different mean times to repair. Since these
failures are different in nature, they cannot be modelled with a single down state.

The processing rates of the upstream stage in both of the up states are equal to µu; the processing
rate of the downstream stage in both of its up states are µd; and the processing rates of all the
down states for both stages are equal to 0. Figure 4.3 depicts the state transitions for Mu and Md

for this model.
The states of Mu are ordered as {1,−1, D1, D−1, DQ} and numbered from 1 to Iu = 5. Similarly,

the states of Md are ordered as {1′,−1′, D1′ , D−1′ , DQ′} and numbered from 1 to Id = 5.
The matrices λu and λd and the vectors mu and md for this model are given below:
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1 -1

DQ

D1 D-1

p r rp

g

h
rQ

µu µu

00

1' -1'

DQ'

D1' D-1 '

p' r' r'p'

g'

h'
rQ'

µd µd

00

0 0

Mu MdN

Figure 15: A System with multiple up and down states

λu =




−g − p g p 0 0
0 −p− h 0 p h
r 0 −r 0 0
0 r 0 −r 0
rQ 0 0 0 −rQ




. (45)

λd =




−g′ − p′ g′ p′ 0 0
0 −p′ − h′ 0 p′ h′

r′ 0 −r′ 0 0
0 r′ 0 −r′ 0

rQ′ 0 0 0 −rQ′




. (46)

mu =
[

µu µu 0 0
]
.

md =
[

µd µd 0 0
]
.

5 Conclusion

The methodology we developed allows us to analyze general Markovian continuous-flow material
flow two stage-single buffer production systems. A wide range of models can be analyzed by our
methodology directly by determining the transition rates of each stage and the flow rates associated
with the discrete states of each stage.
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We illustrated the generality of our method by showing how a number of different models
analyzed in the literature can be handled as special cased of our general model. We validated all
the results with simulation.

The run time of the methodology is fast and affected by the number of discrete states of the
system and not by the buffer size. In general, it is known that spectral methods have some accuracy
and stability issues and this is not a limitation to this paper. In that case the size matters. In our
case this can be an issue only when we use this methodology in a decomposition where it is needed
to model the downstream and the upstream processes of a buffer by using a two-stage building
block. In this case, if all the stations in the production system are modelled by using a given set of
assumptions that correspond to a particular structure, this structure can be exploited to improve
the solution efficiency. In other words, a more efficient computational method can be devised to
implement the general methodology to analyze a given system.In all the other two-stage models
previously published in the literature and analyzed as special cases of our methodology, the method
works without any stability issues.

The ability to analyze two-stage systems with general structures yields devising new decomposi-
tion methods for multistation production systems with different machines and finite buffers. More
accurate two-stage building blocks can be built to characterize the dynamics of the flows in and out
of a given buffer by using mixtures of phase-type distributions corresponding to repairs of upstream
and downstream stations. Using the general two-station building block to devise decomposition
methods for general production systems is left for future research.

The main contribution of this method is allowing researchers to focus on developing models
that describe the behavior of production systems and analyzing these models easily by using our
methodology. Therefore we present our methodology as a general tool to analyze Markovian fluid
flow systems with a finite buffer.

Acknowledgement

The first author acknowledges the support from TÜBA and TÜBİTAK. The second author ac-
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