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When resource consumers select among competing providers based on delayed
information, inefficient oscillations in resource utilization can emerge. This paper
describes an approach, based on selective stochastic resource request rejection, for
dealing with this emergent dysfunction.

1. The Challenge
The convergence of ubiquitous electronic communications such as the Internet,
electronic agents acting as proxies for human consumers, and web/grid service
standards such as XML are rapidly ushering in a world where hordes of software
agents, acting for humans,  can rapidly select among multitudes of competing



providers offering almost every imaginable service.  This is inherently an “open”
world, a marketplace where the agents operate as peers, neither designed nor operated
under central control. Such a world offers the potential for unprecedented speed and
efficiency in getting work done.

In such open peer-to-peer systems we face, however, the potential of highly
dysfunctional dynamics emerging as the result of many locally reasonable agent
decisions [1]. Such “emergent dysfunctions” can take many forms, ranging from
inefficient resource allocation [2] to chaotic inventory fluctuations  [3] [4]. This
problem is exacerbated by the fact that agent societies operate in a realm whose
communication and computational costs and capabilities are radically different from
those in human society, leading to collective behaviors with which we may have little
previous experience. It has been argued, for example, that the 1987 stock crash was
due in part to the action of computer-based “program traders” that were able to
execute trade decisions at unprecedented speed and volume, leading to unprecedented
stock market volatility [5].

Let us focus on one specific example of emergent dysfunctional behavior:
resource use oscillation in request-based resource sharing. Imagine that we have a
collection of consumer agents faced with a range of competing providers for a given
resource (e.g. a piece of information such as a weather report, a sensor or effector, a
communication link, a storage or computational capability, or some kind of data
analysis). Typically, though not exclusively, the utility offered by a resource is
inversely related to how many consumers are using it. Each agent strives to select the
resource with the highest utility (e.g. response time or quality), and resources are
allocated first-come first-served to those who request them. This is a peer-to-peer
mechanism: there is no one ‘in charge’. This kind of resource allocation is widely
used in settings that include fixed-price markets, internet routing, and so on. It is
simple to implement, makes minimal bandwidth requirements, and - in the absence of
delays in resource status information – allows consumers to quickly converge to a
near optimal distribution across resources (see figure 1 below).

Consumers, however, will often have a delayed picture of how busy each
resource is. Agents could imaginably poll every resource before every request. This
would cause, however, a N-fold increase in message traffic (for N servers), and does
not eliminate the delays caused by the travel time for status messages. In a realistic
open system context, moreover, consumers probably cannot fully rely on resource
providers to accurately characterize the utility of their own offerings (in a way that is
comparable, moreover, across providers).  Resource providers may be self-interested
and thus reluctant to release utilization information for fear of compromising their
competitive advantage. In that case, agents will need to estimate resource utilization
using other criteria such as their own previous experience, consulting reputation
services, or watching what other consumers are doing. Such estimates are almost
certain to lag at times behind the actual resource utility.

When status information is delayed in some way, we find that resource use
oscillations emerge, potentially reducing the utility achieved by the consumer agents
far below the optimal value predicted by an equilibrium analysis [6]. What happens is
the following. Imagine for simplicity that we have just two equivalent resources, R1
and R2. We can expect that at some point one of the resources, say R1, will be



utilized less than the other due to the ebb and flow of demand. Consumer agents at
that point will of course tend to select R1. The problem is that, since their image of
resource utilization is delayed, they will continue to select R1 even after it is no
longer the less utilized resource, leading to an “overshoot” in R1’s utilization. When
the agents finally realize that R2 is now the better choice, they will tend to select R2
with the same delay-induced overshoot. The net result is that the utilization of R1 and
R2 will oscillate around the optimal equilibrium value. The range of the oscillations,
moreover, increases with the delay, to the extent that all the consumers may at times
select one server when the other is idle:

- 5

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

T ime

R1
R2
Max

Delay = 50 Delay = 100Delay = 0 Delay = 150

Figure 1: Utilization of two equivalent resources with and without information delays

Oscillations have several undesirable effects. One is that they can reduce the utility
received by consumers below optimal values. This can occur, for example, when the
oscillations are so severe that some of the resources go idle some of the time,
reducing the effective resource availability. The other is that they can increase the
variability of the utility achieved by the consumers, which may be significant in
domains where consistency is important.

2. Our Approach: Stochastic Request Rejection
We have developed a technique for addressing delay-induced resource inspired by a
scheme developed to improve the allocation of network router bandwidth [7]. We call
our scheme ‘stochastic request rejection’, or SRR. Imagine that every resource
stochastically rejects new requests with a probability proportional to its current load.
This can be implemented by the resource itself, or by ‘sentinel’ agents that track the
number of consumers each resource is currently serving, and stochastically
intercept/reject consumer requests with a probability proportional to that load. When
oscillations occur, we would predict that the increased level of rejections from the
currently more heavily utilized resource will shift the requests to the less-utilized
resource, thereby damping the oscillations and ameliorating their negative impact on
the utility and consistency experienced by consumer agents.



3. Experimental Evaluation
Resource use oscillations will only occur if the utility of a resource to a consumer is a
negative function of its utilization. If the utility of a resource to a consumer increases
when the resource is more heavily utilized (e.g. imagine night-clubbers who want to
select the club which has the most people there) then all consumers will eventually
converge on a single resource. We can divide the remaining cases into two scenarios.
One is the “grocery store scenario” where grocery store customers (consumers)
choose from two checkout lines (resources). Their utility is inversely related to how
long they have to wait, which is a linear function the length of a line. The second
scenario is the “movie theater”, where the utility of the resource is a non-linear
function of how many people are already there (assuming that good seats are
consumed before poorer ones). We did separate evaluations for these two scenarios.

The Grocery Checkout (Linear) Scenario: There were 20 consumers and 2
resources. Each consumer sends a ‘request’ message to the resource it believes has
the smallest backlog, waits until it receives a ‘job completed’ message from the
resource, and then after a randomized delay sends the next ‘request’ message. The
consumers’ estimate of a resources’ utility may lag the correct value. Resources may
either take on requests or reject them. If a consumer receives a ‘reject’ message, it
sends the request to the other resource. Messages take 20 units of time to travel,
resources require 20 units of time to perform each task, and consumers have a
normally distributed delay at 40 ticks, with a standard deviation of 10, between
receiving one result and submitting the next request. The aggregate results reported
below represent averages over 100 simulation runs, each 4000 ticks long, and all the
conclusions we make were statistically significant at p < 0.01.

The impact of applying SRR in this scenario can be visualized as follows:

Figure 2: The impact of SRR on resource oscillations.



In this simulation run, the agents initially made their resource requests using current
information on the length of each resources’ backlog. As we can see, in this case the
resource utilization clusters tightly around the optimal distribution of 50-50 across
resources. At T = 2000, the backlog information provided to the consumers was made
100 time units out of date, rapidly leading to large resource use oscillations. At T =
4000, SRR was turned on, resulting in substantial damping in the magnitude of these
oscillations. At T = 6000, the delay was removed but SRR was left on, whereupon the
resource utilization returns to clustering tightly around the optimal distribution. The
aggregate results confirm the patterns suggested by this example:

Null SRR
No delay 160 +/- 4

0%
160 +/- 6

33%
Short Delay (50) 160 +/- 7

0%
160 +/- 6

34%
Long Delay (100) 167 +/- 8

0%
161 +/- 6

35%

Table 1. Task completion times +/ 1 standard deviation, as well as reject rates, for different
delays, with and without SRR.

As we would expect for the grocery scenario, the variability in task completion times
without SRR increases with the delay in status information, and if the delay is long
enough, the average task completion time can increase as well. If we turn on SRR, we
find that it significantly reduces the variability in task completion times in the
delayed cases, and almost eliminates the increase in task completion times in the long
delay case. Rejecting some requests can thus, paradoxically, actually speed up task
completion when delay-induced oscillations occur. But this does come at a cost.
Message traffic is increased: roughly 1/3rd of the consumer requests elicit a reject
message and must be re-sent. The variability of task completion times in the no delay
case is also increased by SRR. This is because many resource requests that would
otherwise simply have been queued up incur the additional delay of being rejected
and re-submitted. The absolute size of these effects, of course, can be expected to
vary with the ratio of task and messaging times. Ideally, we would be able to enable
SRR only when it is needed, so we can avoid incurring its costs in the no-oscillation
contexts where it is not helpful. We will return to this point later.

The Movie Theater (Nonlinear) Scenario: The parameters for these simulations
were the same as in the grocery store case, except for the following changes.
Resources do not have a waiting line, but instead offer concurrent access to 15
different ‘slots’ with varying utility (the first slot has value 15, the second has value
14, and so on). Tasks take 160 ticks to perform. The aggregate results are as follows:



Null SRR
No delay 9.6 +/- 1.5

0%
331

9.7 +/- 1.2
59%
303

Short Delay (50) 9.1 +/- 1.9
0%
332

9.8 +/- 1.4
60%
303

Long Delay (100) 7.6 +/- 2.1
3%
331

9.6 +/- 1.4
66%
300

Table 2. Average quality +/- 1 standard deviation, as well as reject rates and number of
completed requests, for different delays, with and without SRR.

As we can see, SRR is also effective in this scenario. Delay-induced oscillations
cause consumers to often select the resource that is actually more heavily utilized and
thus lower in quality, resulting in a reduction of the average achieved quality. Using
SRR eliminates this problem, but with the cost of increasing message traffic, as well
as reducing the rate of task completion (since every time a task is rejected a delay is
incurred while the request is re-submitted). As in the “grocery checkout” case,  we
would ideally prefer to be able to apply SRR selectively, so we do not incur these
costs when oscillations are not occurring. Can this be done?

4. Avoiding Needless Rejects Via Selective SRR
It is in fact straightforward to use spectral analysis to determine if persistent
oscillations are occurring in resource utilization. In our implementation, each
resource periodically (every 20 ticks) sampled its utilization and submitted the last 30
data points to a Fourier analysis. SRR was turned on if above-threshold values were
encountered in the power spectrum so determined. The threshold was determined
empirically. This approach proved to be successful. In the grocery checkout scenario,
selective SRR was as effective as SRR in maintaining throughput and task duration
consistency while avoiding increases in message traffic in the no-delay case:

Null SRR Selective SRR
No delay 160 +/- 4

0%
160 +/- 6

33%
160 +/- 4

0%
Short Delay (50) 160 +/- 7

0%
160 +/- 6

34%
160 +/- 6

29%
Long Delay (100) 167 +/- 8

0%
161 +/- 6

35%
161 +/- 6

33%

Table 3. Task completion times +/ 1 standard deviation, as well as reject rates, for different
delays, with and without [selective] SRR.



In the movie theatre scenario, selective SRR maintained task quality while almost
eliminating increases in message traffic and task time in the no-delay case:

Null SRR Selective SRR
No delay 9.6 +/- 1.5

0%
331

9.7 +/- 1.2
59%
303

9.5 +/- 1.4
6%
327

Short Delay (50) 9.1 +/- 1.9
0%
332

9.8 +/- 1.4
60%
303

9.6 +/- 1.5
41%
311

Long Delay (100) 7.6 +/- 2.1
3%
331

9.6 +/- 1.4
66%
300

9.3 +/- 1.6
54%
305

Table 4. Average quality +/- 1 standard deviation, as well as reject rates and number of
completed requests, for different delays, with and without [selective] SRR.

This simple spectral analysis approach can be fooled, of course, into triggering SRR
when resource use oscillations are due to variations in aggregate demand rather than
status information delays. This problem, however, is easily addressed: whenever a
resource detects significant usage oscillations, it analyzes the correlation of it’s
utilization with that of the other resource. Variations in aggregate demand will show
a positive correlation, while delay-caused oscillations show a negative one. We have
implemented this approach and found that it successfully avoids triggering SRR for
aggregate demand variations while remaining effective in responding to delay-
induced oscillations.

5. Contributions and Next Steps
The problem of resource use oscillation in request-based systems has been studied in
some depth, most notably in the literature on “minority games” [8] [9]. This line of
work has investigated how to design agents so that their local decisions no longer
interact to produce substantial resource use oscillations. One example involves
designing agents that make resource selection decisions using historical resource
utilization values [6]. If the agents look an appropriate distance into the past, they
will be looking at the resource state one oscillation back in time, which should be a
good approximation of the current resource utilization. The agent’s delay parameter
is tuned using survival of the fittest: agents with a range of delay factors are created,
and the ones that get the highest utility survive and reproduce, while others do not.
With this in place the resource utilization, under some conditions, settles down to
near-optimal values. Any such approach, however, predicated as it is on the careful
design of agent resource selection strategies, faces a fundamental flaw in an open
systems context. In open systems, we do not control the design or operation of the
consumer agents and can not be assured that they will adopt strategies that avoid
emergent dysfunctions. Our challenge, therefore, is to find an approach that
moderates or eliminates oscillatory resource utilization dynamics without needing to
control the design or operation of the consumer agents. This paper presents such an



approach, based on stochastic load-proportional rejection of resource requests,
triggered selectively when spectral and cross-resource correlation analyses reveal that
delay-induced oscillations are actually taking place.

Next steps for this work include evaluating the selective SRR approach when
there are more than two resources. This research is part of the author’s long-standing
efforts to develop a systematic enumeration of the different multi-agent system
exception types as well as how they can be addressed in open systems contexts [10]
[11]. See http://cci.mit.edu/klein/ for further details.
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