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Abstract

This thesis is motivated by the gaps between speech science and technology in an-
alyzing dialects. In speech science, investigating phonetic rules is usually manually
laborious and time consuming, limiting the amount of data analyzed. Without suf-
ficient data, the analysis could potentially overlook or over-specify certain phonetic
rules.

On the other hand, in speech technology such as automatic dialect recognition,
phonetic rules are rarely modeled explicitly. While many applications do not require
such knowledge to obtain good performance, it is beneficial to specifically model pro-
nunciation patterns in certain applications. For example, users of language learning
software can benefit from explicit and intuitive feedback from the computer to alter
their pronunciation; in forensic phonetics, it is important that results of automated
systems are justifiable on phonetic grounds.

In this work, we propose a mathematical framework to analyze dialects in terms
of (1) phonetic transformations and (2) acoustic differences. The proposed Phonetic-
based Pronunciation Model (PPM) uses a hidden Markov model to characterize when
and how often substitutions, insertions, and deletions occur. In particular, cluster-
ing methods are compared to better model deletion transformations. In addition, an
acoustic counterpart of PPM, Acoustic-based Pronunciation Model (APM), is pro-
posed to characterize and locate fine-grained acoustic differences such as formant
transitions and nasalization across dialects.

We used three data sets to empirically compare the proposed models in Arabic
and English dialects. Results in automatic dialect recognition demonstrate that the
proposed models complement standard baseline systems. Results in pronunciation
generation and rule retrieval experiments indicate that the proposed models learn
underlying phonetic rules across dialects. Our proposed system postulates pronunci-
ation rules to a phonetician who interprets and refines them to discover new rules or
quantify known rules. This can be done on large corpora to develop rules of greater
statistical significance than has previously been possible.
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Potential applications of this work include speaker characterization and recog-
nition, automatic dialect recognition, automatic speech recognition and synthesis,
forensic phonetics, language learning or accent training education, and assistive di-
agnosis tools for speech and voice disorders.

Thesis Supervisor: Joseph P. Campbell
Title: Assistant Group Leader, MIT Lincoln Laboratory
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Chapter 1

Introduction

1.1 Motivation

This thesis is motivated by the gap between the fields of speech science and technology
in the study of dialects. (See Figure 1-1.) In speech science or linguistics, discovering
and analyzing dialect-specific phonological rules usually requires specialized expert
knowledge, and thus requires much time and effort, therefore limiting the amount of
data that can be used. Without analyzing sufficient data, there is the potential risk
of overlooking or over-specifying certain rules.

On the other hand, in speech technology, dialect-specific pronunciation patterns
are usually not explicitly modeled. While many applications do not require such
knowledge to obtain good performance, in certain applications it is beneficial to ex-
plicitly learn and model such pronunciation patterns. For example, users of language
learning software can benefit from explicit and intuitive feedback from the computer
to alter their pronunciation; in forensic phonetics, it is important that recognition

results of an automated systems are justiable on linguistic grounds [79].

1.2 Proposed Approach

In this work, we generalize and apply the concept of pronunciation modeling [32] from

automatic speech recognition (ASR) [72] to the field of dialect recognition. We term
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Speech Science

Sociolingquistics
Analyze phonetic rules manually

e
4

Figure 1-1: This thesis bridges the gap between speech science and technology by
combing their strengths together.
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this approach as informative dialect recognition, as it provides interpretable results
that are informative to humans [13, 12].

We propose a mathematical framework using hidden Markov Models (HMM)
to characterize phonetic and acoustic-based pronunciation variations across dialects.
While many dialect recognition methods also take advantage of phonetic and acoustic
information, these models are not set up to learn pronunciation rules explicitly for
further human interpretation. In contrast, our model design is grounded linguistically
to explicitly characterize pronunciation rules. For example, we specify different state
transition arcs in our HMM to represent different phonetic transformations.

We employ decision tree clustering to account for data insufficiency and exploit
phonetic context. This context clustering approach is similar to binary tree language
modeling [64] in spirit, though the probabilistic models are different: in [64], the
probability of a current observation is conditioned on a cluster of past observations,
whereas in our model the probability of a current observation is conditioned on a
reference phone and its context. Using reference phones as a comparison basis, we can
explicitly model phonetic and acoustic transformations occurring in different dialects,
making the dialect recognizer results interpretable to humans. In addition to standard
state clustering used in ASR, we also discuss arc clustering methods to better model

deletion transformations.

1.3 Contributions

This thesis proposes automatic yet informative approaches in analyzing speech vari-
ability, which fills in the gaps between speech science and technology research meth-

ods. The contributions of this thesis are:

1. Introduce a new interdisciplinary research approach: informative dialect recog-

nition.

2. Propose a mathematical framework to automatically characterize phonetic trans-

formations and acoustic differences across dialects.
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3. Demonstrate that the proposed models automatically learn phonetic rules, quan-
tifies occurrence frequencies of the rules, and identify possible regions of interest

that could contain phonetic or acoustic information that is dialect-specific.

4. Empirically show that the proposed models complement existing dialect recog-

nition systems in Arabic and English dialects.

5. Survey corpora resources for dialect research, and address challenges in infor-

mative dialect recognition.

1.4 Thesis Outline

Figure 1-2 shows the structure of the remaining thesis. In Chapter 2 we review the
relevant background of our work in speech science and speech engineering, which
includes dialect studies in speech science and linguistics, pronunciation modeling in
automatic speech recognition, and automatic language and dialect recognition.

In Chapter 3, we propose a framework using hidden Markov model and decision
tree clustering to automatically learn phonetic transformations and acoustic differ-
ences across dialects.

In Chapter 4 we summarize the challenges encountered when searching for suitable
corpora, analyze corpora related for dialect research, and introduce the 3 databases
we chose to empirically evaluate our proposed systems.

Chapters 5 - 7 are the experiments we performed to evaluated the proposed frame-
work. Three different assessment metrics were used. In Chapter 5, we first evaluate
if the proposed systems are able to detect dialect differences by conducting dialect
recognition experiments. In Chapter 6, we evaluate how well the proposed models
generate dialect-specific pronunciations, given a reference dialect’s pronunciation. In
Chapter 7, we evaluate how well the proposed systems retrieve rules documented in
the linguistic literature. Each of these metrics make different assumptions. We at-
tempt to provide a comprehensive analysis of our proposed systems by presenting all

three of them.
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In Chapter 8, we discuss the characterisitics and implications of top ranking
learned rules from the proposed systems.
In Chapter 9 we conclude the contributions of this thesis, discuss future work and

potential applications.

Figure 1-2: Structure of remaining thesis.
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Chapter 2

Background

Dialect differences arise from all levels of the linguistic hierarchy, including acoustics,
phonetics, phonology, vocabulary, syntax, and prosody [22]. Table 2.1 gives examples
of differences between American and British English from various linguistic aspects.
Linguistic and speech science studies have shown that many dialect differences exist
in the acoustics, phonetic, and phonological levels (e.g., [40, 56, 80, 92]). In this

thesis, we will focus on these levels by automatically discovering and analyzing dialect-

specific pronunciation patterns.

In speech science or linguistics, discovering and analyzing dialect-specific phonetic
rules usually requires specialized expert knowledge, which requires time-consuming

manual analysis. In this thesis, we propose automatic approaches that can streamline

Table 2.1: Dialect difference arise from all levels of the linguistic hierarchy. Below
are examples for American and British English. For definitions of phonetic symbols,

refer to Appendix A.

Acoustics, Phonetics & Phonology | bath
(pronunciation) Br: [b aa th]
Am: [b ae th]
Lexicon Br: lift
(vocabulary) Am: elevator
Syntax Br: 1 shall eat.
(grammar) Am: T will eat.
Prosody speaking rate, pitch, voice quality
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traditional methods in studying dialects. Phoneticians, phonologists, and sociolin-
guists can apply these approaches to locate phonetic rules before detailed analyses.
Our research can help speech science and linguistics research be done more efficiently.
In addition, such an automatic approach of learning dialect-specific phonological rules
is useful in forensic phonetics [79].

In speech technology, dialect-specific pronunciation patterns are usually not ex-
plicitly modeled. While many applications do not require such knowledge to obtain
good performance, in certain applications it is beneficial to explicitly learn and model
such pronunciation patterns. For example, the performance of speech recognition of-
ten degrades 20-30% when the dialect of the input speech was not included in the
training set [48]. Modeling pronunciation variation caused by dialects can improve
speech recognition performance. In addition, there are many other applications that
could benefit from explicitly modeling dialect-specific pronunciations. For example,
accent training software, dialect identification, and speaker characterization and iden-
tification.

In this work, we generalize and apply the concept of pronunciation modeling
from automatic speech recognition to the field of dialect recognition. Our proposed
model is able to characterize phonetic transformations across dialects explicitly, thus
contributing to linguistics and speech science as well. Thus, our interdisciplinary
approach of analyzing dialects is related to three bodies of work reviewed below:
(1) linguistic and speech science studies that characterize dialects, (2) automatic
language and dialect recognition, and (3) pronunciation modeling in automatic speech

recognition.

2.1 Terminology and Definitions

e Phoneme
A phoneme is a linguistic term referring to the smallest distinctive units in a
language. Phonemes are typically encased in “/ /” symbols, as we will show

below. If a phoneme of a word is changed, the meaning of the word changes
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as well. For example, the phonemes of the word rice is /r ai s/. If the first
phoneme is changed from /r/ to /1/, then the meaning of the English word

changes completely.

What is considered a phoneme varies by language. Although in English /r/ and
/1/ are different phonemes, they are the same in Japanese. Thus in the previous
example, a native Japanese speaker who only speaks Japanese is unlikely to
perceive the difference if /r/ is replaced by /1/ in the word rice [39]. Therefore,

phonemes are subjective to the native speaker.

Phone

In engineering, Phones are used much more commonly than phonemes to refer
to units of speech sounds. The categorization of phones depends on acoustic
properties and practical modeling considerations. For example, although flaps
are only one acoustic realization of the phoneme /t/, it is modeled separately
as [dx] since its acoustic properties are distinctive from canonical [t]’s. Note
that unlike phonemes, phones are encased in brackets. In this work, we will use

reference phones instead of phonemes to categorize speech sounds.

Phonetics

Phonetics is a branch of linguistics that studies the sounds of human speech.
It is concerned with the physical properties of speech sounds (phones): their
physiological production, acoustic properties, auditory perception, and neuro-

physiological status.

Phonology

Phonology studies how sounds function within a given language or across lan-
guages to encode meaning. Phonology studies the systematic patterns of these
abstract sound units - the grammatical rules of phonemes. For example, phono-
tactics is a branch of phonology that deals with restrictions in a language on
the permissible combinations of phonemes. Phonotactic constraints are lan-
guage specific. For example, in Japanese, consonant clusters like /st/ are not

allowed, although they are in English. Similarly, the sounds /kn/ and /n/ are
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phones

[t], [dx], [?]
(canonical t, flapped t, glottal stop)

Pronunciation

N

how a given phoneme is produced

phoneme
18, 1dl, I, Igl, lael

Figure 2-1: Pronunciation is the mapping between an underlying phoneme and its
various phonetic implementations. [t] is the canonical t, [dx] is the flapped t, and [?]
is glottal stop; all three are different ways a phoneme /t/ can be produced.

not permitted at the beginning of a word in English, but are in German and
Dutch.

In this work, since we are building automated systems, we will use phones
instead of phonemes. We will borrow the concept of phonology to characterize

dialects, while using the basic units as phones instead of phonemes.

¢ Pronunciation
Pronunciation is defined as how a given phoneme is produced by humans (see
Fig. 2-1). Phones are the acoustic implementation of phonemes, and a phoneme
can be implemented acoustically in several different phonetic forms. For exam-
ple, the phoneme /t/ in the word butter could be acoustically implemented as
a canonical t, a flapped t, or a glottal stop. A native English speaker would still
be able to identify all 3 of these phones as the same underlying phoneme /t/
and recognize the word being uttered is butter, despite the phonetic differences.
This thesis attempts to automatically identify when a phoneme is pronounced

differently across dialects, and quantify how the magnitude of these differences.

e Dialect

Dialect is an important, yet complicated, aspect of speaker variability. A dialect
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is defined as the language characteristics of a particular population, where the
categorization is primarily regional though dialect is also related to education,
socioeconomic status, and ethnicity [23, 50, 81]. Dialects are usually mutually
intelligible. For example, speakers of British English and American English
typically understand each other.

e Accent
The term accent refers to the pronunciation characteristics which identify where
a person is from regionally or socially. In our work, we use accent information
to distinguish between dialects of native speakers of a language or non-native

accents.

¢ Language Recognition
Language recognition refers to the task of automatically identifying the language
being spoken by a person. Language recognition is often referred to language
identification (LID) and language detection as well. The three terms will be

used interchangeably in this work.

e Dialect Recognition
Dialect recognition refers to the task of automatically identifying the dialect
being spoken by a person. Dialect recognition is often referred to dialect iden-
tification (DID) as well. The two terms will be used interchangeably in this

work.

2.2 Speech Science and Linguistic Studies

Within the same language, there are particular populations who have their own lan-
guage characteristics. Since our work focuses on speech characteristics at the pronun-

ciation level, we only review studies in acoustics, phonetics, and phonology.
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Figure 2-2: Factors that influence or correlate with dialects.

2.2.1 Factors that Influence Dialects

Dialect is an important, yet complicated, aspect of speaker variability. A dialect is
defined as the language characteristics of a particular population, where the catego-
rization is primarily regional, though dialect is also related to education, socioeco-
nomic status, and ethnicity [23, 50, 81]. Dialects are usually mutually intelligible.
For example, speakers of British English and American English typically understand
each other.

Figure 2-2 illustrated the numerous factors that influence dialects. Below we

discuss these factors in more detail.

e Region
One of the most obvious things a dialect reveals is a person’s geographical
identity: where he grew up, and perhaps where he lives now. The boundaries
of regional dialects could be across nations, such as Levatine Arabic, which in-

clude Palestine, Syria, Lebanon, which are located at the eastern-Mediterranean
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coastal strip. The boundaries of regional dialects could also be defined by na-
tions, such as American, British, and Australian English, where usually the
standard dialect is used for comparison. For example, Received Pronuncia-
tion (RP)! in the U.K. and General American English (GenAm) in the U.S.A.
Dialects could also have much finer boundaries within a country, such as Birm-
ingham, Liverpool, Lancaster, Yorkshire, and Glasgow in U.K., and Boston,

New York City, and Texas in the U.S.A [92].

Apart from using towns, counties, state, province, island and country to catego-
rize dialects, there are often common characteristics to all urban dialect against
rural ones. In addition, new trends in dialects are proposed to be spread from
cities to towns, and from larger towns to smaller towns, skipping over interven-
ing countrysides, which are the last to be affected. For example, H Dropping
in U.K. has spread from London to Norwich and then from Norwich to East

Anglian towns, while the Norfolk countryside still remains /h/-pronouncing [92].

Immigrants of different speech communities have also been proposed to cause
sound change [24]. For example, Labov and colleagues’ findings show that the
Inland North dialect of American English has been undergoing the Northern
City Chain Shift (NCCS)?2. Inland North refers to cities along the Erie Canal
and in the Great Lakes region, as well as a corridor extending across central
Ilinois from Chicago to St. Louis. This switch of dialect characteristics from
the North to the Midland is possibly explained by migration of workers from
the East Coast to the Great Lakes area (epically Scots-Irish settlers) during the
construction of the Erie Canal in the early 19th century [24].

e Time
The fundamental reason why dialects differ is that languages evolve, both spa-

tially and temporally. Any sound change currently in progress can be demon-

1Received Pronunciation (RP), also called the Queen’s (or King’s) English, Oxford English, or
BBC English, is the accent of Standard English in England

2 As illustrated in Fig. 2-3, NCCS is characterized by a clockwise rotation of the low and low-mid
vowels: /ae/ is raised and fronted; /eh/, /ah/ and /ih/ are backed; /ao/ is lowered and fronted;
/aa/ is fronted [56]

37



Py r_ - T ,-’} front F2 back
§ < high

iyl luwl/

lihl —»
low/
lehl—> lahl—p Ja0/ F1
/
lae/ «— laal

v low

Figure 2-3: Northern City Chain Shift in Inland North in U.S.A. The blue regions on
the left indicate the Inland North region, and the vowel plot on the right indicates
the vowel shift occurring in this region, proposed by Labov et. al. [56].

strated to be in progress by examining the speech patterns of different age
groups. For example, Labov found that the percentage of speakers using non-
rhotic vowel in the word nurse correlates with age in New York City in 1966.
All speakers above age 60 showed no rhotic characteristic in the vowel of nurse,
while only 4% of speakers between 8 and 19 did so. This phenomenon is ex-
plained by the fifty-year olds adopting the General American rhotic vowel, which

became the norm for later generations.

e Social Setting
It has long been known that an individual will use different pronunciation pat-
terns in different social circumstances. People tend to use a more standard
dialect at formal settings, and switch to a relatively-more native dialect under
casual conversations with friends or family. For example, a study showed that
the percentage of the alveolar nasal [n] used in words containing -ing (as op-
posed to the velar nasal [ng]) increases as speaking style becomes more casual

[92]: reading a list of words, reading passages, formal speech, and casual speech.

It is also know that speakers of different dialects will accommodate to each oth-
ers dialect when conversing with each other [35]. Therefore an African American
English (AAVE) speaker would show more non-AAVE (e.g., white) dialect char-
acteristics when speaking to a non-AAVE speaker. For example, it has been

shown that Oprah Winfrey, an African-American host of popular U.S. daytime
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talk show, monophthongizes /ay/ more frequently when the guest is an AAVE
speaker [41].

Social-Economic Class

It has been shown that social-economic class also correlates with dialect dif-
ferences. For example, Trudgill (1974b:48) found that there is a correlation
between /t/ being glottalized in syllable-final positions such as butter and bet
with social-economic class in Norwich, U.K.: around 90% of the working class
speakers tend to glottalize syllable-final /t/’s while only half of the middle-class

speakers do so.

Usually the new, fashionable trend originates in the upper or upper-middle class,
and spread to other social-economic classes. However, it has been observed that
this is not the only direction. For example, H Dropping in U.K. originates from

working-class speech, and has spread outwards to other social classes.

Multilingualism
A person’s mother tongue might influence how a person speaks another language
acquired later in life. For example, English dialects in India and Singapore are

influenced by their native languages (such as Hindi and Hokkien).

Ethnicity
Many of the accent characteristics often thought of as ethnic are in fact geo-
graphical [92]. It is likely that ethnicity correlates with where these speakers live

and grow up, which causes dialect differences to be correlated with ethnicity.

Gender

Holding other factors constant, it has repeatedly been found that women’s pro-
nunciation characteristics are closer to the prestige norm than men in studies of
English speakers [92]. There are two main explanations for this phenomenon,
both related to the sexist characteristic of our society. First, in western societies
women are usually more status-conscious than men. Therefore, women make up

for this social insecurity through emphasizing and displaying linguistic trends
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that are of higher social status. Second, working class accents are connected
with masculinity characteristics, which might seem socially inappropriate for

women to adopt [92].

2.2.2 How Dialects differ

e Acoustic Realization
The acoustic realization of a phoneme can be different across dialects. For
example, in GenAm voiceless stops (/p/, /t/, /k/) are always aspirated unless
when proceeded by preceded by /s/. Therefore, when saying the words spray
and pray in GenAm, there is much more air coming out of your mouth in the
latter case due to aspiration. However, this aspiration of voiceless stops is not

found in Indian English and North England and Scotland.

e Phonotactic Distribution
Phonotactics refers to the constraints of phone sequences in a language or di-
alect. Rhoticity in English is the most well-known case of different phonotatic
distributions across dialects. In non-rhotic accents, /r/ is not allowed at pre-
vocalic positions. Therefore, words such as farther sound like father, and the
word far sounds like fa with a longer vowel sound. General American English

(GAE) is rhotic while RP is not [92].

e Splits and Mergers
Phonemic systems within a dialect change over time. Splits occur when new
phonemes arise by evolving away from a previous phoneme. For example, the
vowels in trap and bath used to sound the same in RP, but had developed to
different phonemes of short /ae/ and long /aa/ in the twentieth century. This
so called trap-bath split, can be characterized by its phonological environment to
some extent, as the split also is word-dependent. The pattern of trap-bath split
is that the short vowel /ae/ becomes the long, back vowel /aa/ in RP when it is
followed by a voiceless fricative, or nasal that is followed by a consonant: staff,

past, path, gasp, ask, castle, fasten, dance, aunt, branch, command, sample.
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However, there are words that provide the exact same phonetic context as these
words, yet /ae/ remains /ae/ in RP: gaff, math, mascot, hassle, cancer, ant,

mansion, hand, ample.

Distinct phonemes also merge and become indistinguishable. For example, in-
creasing numbers of speakers in the U.S. are merging the vowels in thought and
lot. Traditionally, the northern dialect (as opposed to midland and southern
areas) in the U.S. pronounce the following minimal pairs differently: collar vs.
caller, cot vs. caught, stock vs. stalk, don vs. dawn, knotty vs naughty. The
former is /aa/, an open, back vowel, while the latter is /ao/, a lightly-rounded
half-open, back vowel. Note that the NCCS phenomenon described above, also

included this merger.

Lexical Diffusion

Differences of lexical diffusion (a.k.a., lexically-specific change) are defined as
those differences between accents of a language which are not pervasive through-
out all eligible words of the language; i.e., it is impossible to define a structural
context in which the alternation takes place. Instead, the alternation refers to
limited groups of words. The most common example in English is the alterna-
tion between /ay/ and /iy/ in the words either and neither. The previously
mentioned trap-bath split is another example where /ae/ and /aa/ are alterna-

tively used in certain words involving final voiceless fricatives.

2.2.3 Second Language Accents

The origin of non-native accents are different from dialects, but the mechanisms

used to characterize non-native accents could be similar. The most common ways to

characterize non-native accents are acoustic realizations and phonotactic distributions

as mentioned before.

One of the mainstream theories explaining second language (L2) accents is that

these speakers carry over phonetic and phonological characteristics of their mother

tongue when learning a new language at an age older than 12 years old [28]. These
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speakers therefore substitute phonemes from their first language (L1) when they en-
counter a new phoneme in the second language. For example, in Spanish and Man-
darin Chinese there are no short vowels such as [ih] in bit. Therefore, the word bit is
likely to sound like beat, substituting the short vowel [ih] to the long vowel [iy] [16].

In addition to substitutions, deletions and insertions can also occur according to
the phonetic and phonological system of the native language. The English phoneme
/h/ does not exist in French, therefore French speakers systematically delete /h/
when speaking English. For instance, the word hair will sound like air instead [69)].
In Spanish, /s/ must immediately precede or follow a vowel; often a word beginning
with /s/ followed by a consonant will be inserted with a schwa before the /s/ (e.g.,
school, stop, spend) [37].

Besides the age when the speaker starts learning the second language, there are
other factors that affect the degree of non-nativeness in second language speakers:
exposure time to L2, L1 and L2 similarity, individual differences in acquiring a new

language. These factors might also complicate the analysis of L2 accents.

2.3 Automatic Language and Dialect Recognition

Automatic language/dialect recognition refers to the task of automatically identi-
fying the language/dialect being spoken by a person. Their applications fall into
two main categories: (1) pre-processing for machine understanding systems, and (2)
pre-processing for humans [100]. For example, a multi-lingual voice-controlled travel
information retrieval system at a hotel lobby could benefit international travelers by
using their native language/dialect to interact with the system. In addition, DID
can be used in customer profiling services. For example, Voice-Rate, an experimental
dialogue system at Microsoft, uses accent classification to perform consumer profile
adaptation and targeted advertisements based on consumer demographics [15]. DID
could be applied to data mining and spoken document retrieval [96], and automated
speech recognition systems (e.g., pronunciation modeling [60], lexicon adaptation [91],

acoustic model training [51].)
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In this chapter, we first introduce the basic structure of a LID/DID system in
Section 2.3.1, and then we delineate the probabilistic framework of LID/DID systems
in Section 2.3.2. In Section 2.3.3 and 2.3.4, we given an historical overview of how
research in LID and DID has developed over the past 4 decades. In Section 77?7, we
discuss how our proposed approach connects the field of DID to speech science and

pronunciation modeling in automatic speech recognition.

2.3.1 System Architecture

Given the pattern recognition framework, language recognition systems involve two
phases: training and recognition. In the training phase, using language-specific in-
formation, one or more models are built for each language. In the recognition phase,
a spoken utterance is compared to the model(s) of each language and then a deci-
sion is made. Thus, the success of a language recognition system relies on the choice
of language-specific information used to discriminate among languages, while being

robust to dialect speaker, gender, channel, and speaking style variability.

Training

1. Feature Extraction
The goal of LID/DID research to date has generally been to develop methods
that do not rely on higher-level knowledge of languages and dialects, but use only
the information that is available directly from the waveform. Typical acoustic
features used in language and dialect recognition include those used in ASR,
such as perceptual linear prediction (PLP) [44] and Mel-frequency cepstrum
coefficients (MFCC) [21]. Shifted-delta cepstrum (SDC) [8] has also led to good
performance [87]. Features characterizing prosody such as pitch, intensity, and
duration, especially in combinations with other features, are sometimes used
as well. Phonetic or phonotactic information, captured by using features that
have longer time spans such as decoded phones and decoded phone sequences

[99].
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2. Training Dialect-Specific Models
During the training phase, dialect-specific models are trained. Common model
choices include Gaussian mixture model (GMM), HMM, N-grams, support vec-
tor machines (SVM), etc. More details on the algorithms of these models are

discussed in Section 5.

Recognition

1. Feature Extraction
The same features extracted during the training phase are extracted during the

recognition phase.

2. Pattern Matching
During the recognition phase, the likelihood scores of the unknown test utter-

ance O are computed for each language-specific model A\;: P(O|\;).

3. Decision

In the decision phase, the log likelihood of each test trial of model ), is scored

as

P(OlN)

8~ PO

(2.1)
As shown below, if the log likelihood of O of model ), is greater than a decision

threshold 6, the decision output is language .

P(O|A)

e PO

> 0, (2.2)

The performance of a recognition system is usually evaluated by the analysis

of detection errors. There are two kinds of detection errors: (1) miss: failure
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to detect a target dialect, and (2) false alarm: falsely identifying a non-target
dialect as the target. The detection error trade-off (DET) curve is a plot of miss
vs. false alarm probability for a detection system as its discrimination threshold
¢ is varied in Eq. (2.2). There is usually a trade-off relationship between the
two detection errors [63]. An example of a DET curve is plotted on normal

deviate scales is shown in Figure 2-5.

As shown in Figure 2-5, the cross over point between the DET curve and y = z
is the equal error rate (EER), indicating the miss and false alarm probabilities

are the same. EER is often used to summarize the performance of a detection

system.
Training
Feature g American
American
-—m-—ami‘h — Feature Vectors Training
—uﬂlw-—-—A g Extraction Algorithm British
ustralian
g Australian
Labeled speech
utterances
Dialect-specific Models
Recognition
_W._. Feature | Dialect | Score |
Feature Vectors | Recognition American
Extraction w British
Speech utterance Australian  0.23

in unknown dialect

Figure 2-4: Dialect Recognition System Architecture.

2.3.2 Probabilistic Framework

Hazen and Zue [42] formulated a formal probabilistic framework to incorporate dif-
ferent linguistic components for the task of language recognition, which we will adopt

here to guide us in explaining the different approaches. Let L = {Ly, ..., L, } represent
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Figure 2-5: Detection error trade-off (DET) and equal error rate (EER) ezample.
the language set of n different languages. When an utterance U is presented to the
LID system, the system must use the information from the utterance U to determine
which of the n languages in L was spoken.

The acoustic information of U can be denoted by (1) w = {wy, ...w,, }, the frame-
based vector sequence that encodes the wide-band spectral information, and (2) f =

{f1, .-, fm}, the frame-based prosodic feature vector sequence (e.g., the fundamental
frequency or the intensity contours).

Let v = {vy,...,u,} represent the most likely linguistic unit sequence obtained
from some system, and € = {ey, ..., 6,4} represent the corresponding alignment seg-
mentation boundary in the utterance (e.g., time offsets for each unit). For example,
if our linguistic units are phones, then these units and segmentations can be obtained
from the best hypothesis of a phone recognizer.

Given the wide-band spectral information w, the prosody information f, the most
likely linguistic-unit sequence v, and its segmentations ¢, the most likely language is

found using the following expression:

arg max P(L;|w, f,v,¢), (2.3)

using standard probability theory this expression can be equivalently written as
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arg max P(L;)P(v|L;)P(e, flu, L;) P(w|f, v, €, L;). (2.4)

To simplify the modeling process, we can model each of the four factors in Eq.
(2.4) instead of the complicated expression in Eq. (2.3). These four terms in Eq.

(2.4) are known as
1. P(L;): The a prior probability of the language.
2. P(v|L;): The phonotactic model.
3. P(e, flv, L;): The prosodic model.
4. P(w|f,v,¢, L;): The acoustic model.

While robust methodologies are available for modeling acoustic and phonotactic
information, well-developed techniques for automatically characterizing prosody, es-
pecially at word- and sentence-levels, are still elusive. Since prosody is beyond the
scope or our work, we do not include a background on prosodic modeling approaches.
Interested readers can refer to work such as (2, 1, 6] for more details.

Below we go into more detail on some basic approaches that has shaped the de-

velopment of LID and DID in phonotactic and acoustic modeling.

Phonotactic Modeling

The phonotatic approach is based on the hypothesis that languages/dialects differ in
their phone sequence distribution. Assuming the prior distribution of the languages L
is uniform, and ignoring the acoustic and prosodic models in Eq. (2.4), the language

recognition problem simply becomes:
arg max P(v|L;) (2.5)

PRLM (Phone Recognition followed by Language Modeling)

A well-known method for modeling phonotactic constraints of languages/dialects is
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PRLM (Phone Recognition followed by Language Modeling) [100]. In PRLM, the
training data are first decoded through a single phone recognizer. Then an N-gram
model is trained on the decoded phones for each language/dialect L;. typical choices
of N are 2 and 3. The interpolated N-gram language model [52] is often used reduce

data sparsity issues. For example, a bigram model is
P(ui|vi-1) = ko P(vs|ve—1) + k1 P(vy) + Ko P, (2.6)

where v, is the phone observed at time ¢, P, is the reciprocal of the total number
of phone symbol types from the phone recognizer, and the s’s can be determined
empirically.

Parallel PRLM

Parallel PRLM is an extension to the PRLM approach, using multiple parallel phone
recognizers, each trained on a different language. Note that the trained languages
need not be any of the languages the LID task is attempting to identify. The intu-
ition behind using multiple phone recognizers as opposed to a single one is to capture
more phonotactic differences across languages, since different languages have different

phonetic inventories.

Acoustic Modeling

Acoustic modeling has received much attention in the past decade both in language
and speaker recognition, due to the simplicity and good performance of GMMs. The
recognition problem can be expressed similarly as in phonotactic modeling from Eq.

(2.4):
arg max P(w|f,v,€, L;) (2.7)

As mentioned in Section 2.3.1, typical acoustic features used in language and
dialect recognition include those used in ASR, such as PLP and MFCC.
Gaussian Mizture Model (GMM)

Most acoustic approaches in language and dialect recognition use a GMM, at some
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point in their system, to characterize the acoustic space of each language/dialect.
GMM assumes that the acoustic vectors w are independent of the linguistic units
v, segmentation €, and prosody f, and the acoustic frames are assumed to be i.i.d

(independent and identically distributed), simplifying Eq. (2.7) to the following
arg max I1Z, P(w|Ly), (2.8)

where T is the total number of frames. Assuming that the acoustic distribution is a

GMM, the recognition problem can further be expressed as:

K
arg m?x H?=1 Z 0k N (we; pik, Lik), (2.9)

k=1
where there are K mixtures, and g, ftix, 2k are the weight, mean, and covariance
matrix of the k-th Gaussian in dialect 4, and N represents the probability density
function of the normal distribution.

Universal Background Model (UBM)

In the UBM approach, a dialect-independent GMM is first trained. Then separate

GMMs for each dialect is derived by adapting the UBM to the acoustic training data
of that dialect using MAP [34]. Advantages of using a UBM approach [75] include
the following.

e Performance: The tight coupling between the dialect-specific models and the

UBM has shown to outperform decoupled models in speaker recognition [75].

o Insufficient Data: If the training data of a particular dialect is insufficient, MAP

can provide an more robust model by weighting the UBM more

e Experiment Speed: Training new dialect models are faster, since it only requires

a few adaptation iterations, instead of running EM again.
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2.3.3 Historical Development of Language Recognition

Language recognition has been an active research area for nearly 40 years. The
pioneering studies date back to Leonard & Doddington (1974) using an acoustic filter-
bank approach to identify languages(59]. House & Neuburg (1977) were the first to
use language-specific phonotactic constraints in LID [45]. Most other approached
proposed in the 1980’s were acoustic modeling such as simple frame-based classifiers
on formant features [29, 38|,

During the past two decades, research in LID developed intensively and rapidly,
which is due to at least three reasons: (1) the availability of large and public corpora,
(2) the NIST Language Recognition Evaluation (LRE) series, and (3) the influence

of the speaker recognition community.

¢ Influence of large, public corpora
Most of the the basic architectural and statistical algorithmic development in
language recognition occurred in the 1990’s, which was enabled by large and
publicly available corpora®. These developments include the popular phonotac-
tics approach of PRLM/PPRLM (42, 99, 94], standard N-grams and bintrees
[65], and acoustic approaches using GMM [43]. Although acoustic modeling ap-
proaches performed considerably worse in NIST LREs than phonotactics, the

two approaches fused well.

¢ Influence of NIST Language Recognition Evaluations
NIST LRE series (1996 -2009) provided a common basis for comparison on well-
defined tasks, enabling researchers to replicate and build on previous approaches
that showed good performance. Methods such as GMM-UBM and phonotac-
tic training on phone lattices [83] have consistently shown robust performance
across datasets and tasks. New front-end features such as shifted delta cep-
stra (SDC), also consistently showed better performance than traditional Mel-

cepstra features, making the performance of SDC-GMM systems comparable to

3e.g., Callfriend, Callhome, and OGI-11L and OGI-22L (including manual phone transcriptions
and 100 speakers/language.)
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that of PRLM, but required less computational resources [87].

e Influence of Speaker Recognition
Language recognition was also recast as a detection problem in the NIST LREs,
which made LID heavily influenced by the speaker recognition community.
Studies inspired by speaker recognition include discriminative training of max-
imum mutual information of GMMs [9] and support vector machines (SVM)
[10], subspace-based modeling techniques such as eigenchannel adaptation [49],
feature-space latent factor analysis (fLFA) [11], and nuisance attribute projec-

tion (NAP) for GMM log likelihood ratio systems [97].

2.3.4 Historical Development of Dialect Recognition

Early studies of DID include work of Arslan and Hansen (1996, 1997), where they
used Mel-cepstrum and traditional linguistic features to analyze and recognize non-
native accents of American English. Research in DID is motivated by applications in
ASR, business, and forensics [4, 15, 13, 7, 26]. The recent addition of dialect tasks in
NIST LREs has drawn many researchers in the language and speaker recognition to

work on the challenging problem of dialect recognition.

Challenges in DID

Dialect recognition is a much more challenging problem than language recognition.

e Dialect Differences: The differences across dialects (of the same language)

are often much more subtle than differences across languages.

¢ Definition of Dialects: The definition of dialects is controversial in its linguis-
tic nature. Speakers of the same language evolve their language characteristics
over time and space. All these differences in language characteristics can be ac-
counted to dialect differences. Dialects that are very similar, might have little
acoustic or phonetic differences (e.g., Central vs. Western Canadian English),

while dialects that are very different are sometimes viewed as virtually different
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languages (e.g., Arabic dialects). In addition, political factors sometimes come
into play, making it difficult to judge whether some classification tasks make

linguistic sense in the first place.

e Dialect Databases: Unlike language recognition, unifying databases for di-

alect recognition research are still limited.

Recognition Approaches in DID

The default approach in tackling DID is to view each dialect as a separate language.
Therefore, similar to LID, modeling techniques in identifying dialects take advantage
of different layers of the linguistic hierarchy [100]. These approaches include (1)
acoustic models (e.g. [84, 15, 89, 4, 47, 13, 26]); (2) phonotactic models (e.g. [7, 98,
76]). Research in dialect recognition is also inspired by that in speaker recognition.
For example, discriminative training such as hybrid SVM/GMM systems showed great
performance [26]; channel compensation techniques such as latent factor analysis also

leads to robust performance [88].

Typical acoustic approaches often model spectral features using Gaussian mixture
models (GMM). While they can achieve good performance, they do not provide insight
into where dialect differences occur. Adapted phonetic models [84] is an extension of
GMM, where acoustic information is modeled in phonetic categories, making it easier
to pinpoint where the acoustic differences lie in. In our previous work [13], acoustic
differences caused by phonetic context were further used to infer underlying phonetic
rules, making the dialect recognizer linguistically-informative to humans.

Compared to acoustic models, phonotactic systems usually contain more human-
interpretable information. However, most phonotactic systems do not focus on their
potentially interpretable results. Exceptions include [76, 7], where discriminative
classifiers are trained to recognize dialects [76, 7], and N-grams or context-dependent
phones helpful in dialect recognition are discussed. To fill in this research gap, in our

work we propose to establish a framework for informative dialect recognition systems.
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2.4 Pronunciation Modeling in Automatic Speech

Recognition

Automatic speech recognition (ASR) is usually accomplished by classifying the speech
signal into small sound units (e.g., phones) and then mapping them to words, and
eventually phrases and utterances [32]. This mapping between sound units to words
is referred to as pronunciation modeling (see Fig. 2-6). The pronunciation model
in an ASR system is often specified as a pronunciation dictionary, which is a list of
words and their corresponding pronunciations, shown in terms of the phoneset of the
ASR system.

Pronunciation models deal with pronunciation variations caused by factors such
as dialect, first language 3, 33, 54, 62, 66, 67|, speaking style [32], degree of formality
[55, 57], anatomical differences, and emotional status [86].

All data-driven approaches in pronunciation modeling require two steps (1) finding

pronunciation rules, and (2) using pronunciation rules (in ASR systems).

2.4.1 Finding Pronunciation Rules

A typical approach of modeling pronunciation variation in ASR is to align canonical
phone transcriptions (any phone transcription that can serve as reference to compare

with) and alternative phone transcriptions (31, 62, 67]:

Speech Speech sounds i
Sig”a_|| | Acoustic (phones) Wores I'| anguage ||, phrases,
—W— modeling butter modeling sentences
[b] {ah] [dx] [er] Ibl fah/ 1Y fer!

Automatic speech recognizer

Figure 2-6: Pronunciation modeling in automatic speech recognition. The alternative
pronunciation of butter is [b ah dx er]. where /t/ is flapped, denoted as [dx]. A flap
is caused by a rapid movement of the tongue tip brushing the alveolar ridge. The
pronunciation model maps [dx] to /t/.

53



Step 1: Generate canonical phone transcription using the baseline pronunciation dic-
tionary, word identities of the training data, and the phone recognizer.

Step 2: Generate alternative phone transcriptions by directly decoding the training
data using the phone recognizer.

Step 3: Align canonical phone transcriptions (from Step 1) and alternative phone
transcriptions (from Step 2).

Step 4: New pronunciation learned in Step 3 are selected and added to the baseline

pronunciation dictionary to form the new pronunciation dictionary.

This procedure can be iterated by modifying Step 2 to generate alternative phone
transcriptions by force-aligning the training data with the new pronunciation dictio-
nary (obtained in Step 4) and word identities. This modification in Step 2 reduces
the noise caused by phone recognition errors [62, 85].

This procedure can be used on a word-by-word basis, but it can be further ex-
tended to a phonetic basis to learn more generalized pronunciation rules. Decision
tree models are useful in learning context-dependent rules, where phones that behave
similarly in different phonetic contexts are grouped together [77].

The selection criteria in Step 4 include (1) frequency occurrences of the alternative
pronunciations, (2) maximum likelihood, (3) confidence measures, and (4) degree of

confusability between variant pronunciations [86].

2.4.2 Using Pronunciation Rules in ASR Systems

The pronunciation rules can be added directly into the pronunciation dictionary in the
ASR system. However, previous results have shown that only adding these pronunci-
ation variants to the lexicon is sub-optimal. Better results are achieved by taking the
probabilities of the pronunciation variants into consideration (either in the lexicon or
language model), and retraining the acoustic models.

Pronunciation modeling is often closely tied with acoustic modeling. Instead of

using the updated pronunciation dictionary (learned in Step 4) acoustic models can
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Figure 2-7: Comparison of work related to Informative Dialect Recognition in the
field of automatic speech recognition.

be retrained according to the learned pronunciation rules. For example, if a pronun-
ciation rule learned is that /er/ is produced as schwa in syllable-final positions, the
acoustic model of /er/ is retrained/adapted with speech data that are canonically
/er/ but produced as schwa, allowing the acoustic model to tolerate more pronunci-
ation variation. In practice, the pronunciation model and acoustic model are often

both adapted to further improve ASR performance.

2.5 Work Related to Informative Dialect Recogni-
tion

There is very limited work related to our work. Below we point out some related work
from the fields of automatic dialect recognition, sociolinguistics, automatic speech
recognition, computer-aided language learning.

In automatic dialect recognition, the primary focus is to improve recognition ac-
curacy. Few studies touch upon the possible linguistic interpretations of their recog-
nition results. In [76, 7], discriminative classifiers are trained to recognize dialects
[76, 7], and N-grams or context-dependent phones helpful in dialect recognition are
discussed. Our work in informative dialect recognition is very complementary with
theirs, as our primary focus is to automatically learn dialect-specific rules, which
could be applied to automatic dialect recognition. See Figure 2-7 for comparison.

Figure 2-8 shows comparison of informative dialect recognition research with other

work based on the purpose and method used. Some studies in sociolinguistics (e.g.,

55



Figure 2-8: Comparison of work related to Informative Dialect Recognition in the
fields of sociolinguistics, computer-aided language learning, and automatic speech
recognition.

(25, 95]) and computer-aided language learning (e.g., [?]) have taken advantage of
tools in automatic speech recognition to reduce manual labor. In particular, forced-
alignment of word transcriptions and the pronunciation dictionary has been used to
determine the time boundaries of phonetic units. This automated procedure improves
speech analysis efficiency, since manual phone transcription is no longer needed (or
only fine tuning is required). The rule analysis phase is still primarily manual in these
cases.

In informative dialect recognition, concepts in automatic speech recognition are
further generalized to make the rule analysis part easier, by postulating phonetic rules
to the analyst or pin-pointing regions of potential interest where acoustic character-
istics are different across dialects.

In multilingual speech recognition, the pronunciation modeling part does automat-
ically learn rules (e.g., [62, 54]). However, most of these studies do not use models
that are linguistically grounded to learn rules explicitly. Qur approach in informative

dialect recognition is to propose a system that is specifically designed to articulate
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the phonetic transformations across dialects.

2.6 Summary and Discussion

In this chapter we surveyed the literature of dialect studies at the acoustics, pho-
netics, phonology, pronunciation levels in the fields of linguistics, speech science, au-
tomatic language and dialect recognition, and pronunciation modeling in automatic
speech recognition. We compare our work with the mainstream research themes and

methodology in these three fields below.

e Pronunciation modeling in Automatic Speech Recognition
There are numerous differences between pronunciation modeling in ASR and

our work.

— In ASR, all aspects of pronunciation variation is modeled, be it dialect,
speaker, speaking style. In contrast, our work focuses on characterizing

pronunciation variation due to dialect differences.

— In ASR, the goal is to decrease word error rate (WER). In contrast, our
goal is to analyze and quantify the generality of found pronunciation pat-
terns, or how well the found pronunciation patterns characterize a dialect.
WER performance on multi-dialect ASR is only one potential approach
to indirectly measure how the found pronunciation patterns characterize
dialects. In addition, the phone error rate of the proposed pronunciation
model (ground-truth phones of a dialect vs. the most likely phone sequence
generated by the proposed model) could serve as a metric to quantify rule

recovery performance (see Chapter 6 for more details).

e Automatic Dialect Recognition
In this work, explicitly model phonetic rules and acoustic differences across di-
alects by generalizing and adopting the concept of pronunciation modeling [32].
We employ decision tree clustering to account for data insufficiency and exploit

acoustic properties of phonetic context. This context clustering approach is
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similar to binary tree language modeling [64] in spirit, though the probabilistic
models are different: in [64], the probability of a current observation is condi-
tioned on a cluster of past observations, whereas in our model the probability
of a current observation is conditioned on a reference phone and its context.
Using reference phones as a comparison basis, we can explicitly model phonetic
transformations occurring in different dialects, making the results of our dialect

recognition system interpretable to humans.

The primary goal of this work is not to improve the performance of automatic
dialect recognition, though the performance of dialect recognition could be an
indirect indicator of how well the proposed models learned pronunciation rules.
If pronunciations differ across dialects, and the proposed model learns dialect
differences perfectly well, it is fair to assume that the proposed model will do

reasonably well in dialect recognition experiments.

Speech Science and Linguistic Analysis

Our work proposes a mathematical framework that can be easily applied to
model pronunciation rules automatically despite the language of interest. Due
to the automatic nature of the model, our work can process more data efficiently.
In addition, the proposed model is free of potential (unconscious) subjective bias

in analyzing dialects.

This framework can serve as a first pass to automatically characterizing un-
known/unfamiliar dialects. This procedure helps linguists pinpoint regions of
interest more efficiently, and provides an initial hypothesis (e.g. a phonetic
transformation rule) for linguists to test. It is possible that the proposed rule
is not characterized in the most optimal way, but it provides the linguist with a
basis hypothesis to be further refined. In traditional methods, the formulation
of this basis hypothesis might take a large amount of perceptual observation
and manual analysis. In our work, we simulate this process automatically, so

the linguists can save time and effort.
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In the following chapter, we discuss approaches to adopt and generalize the concept
of pronunciation modeling in ASR (Chapter 3) to automatically characterize dialect

variations.
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Chapter 3

Pronunciation Model

In this chapter we first introduce the basic structure of Phone-based Pronunciation

Model (PPM). We then address the limitations of PPM, and propose refined models.

3.1 Intuition of Phone-based Pronunciation Model
(PPM)

The intuition behind the proposed model, Phone-based Pronunciation Model (PPM)
is to characterize dialectal pronunciations through phonetic transformations of a ref-
erence dialect. The purpose of the reference dialect is to use one dialect as a basis for
comparison. Figure 3-1 shows an phonetic transformation of [ae] in American English
being substituted by [aa] in British English.

There are three kinds of phonetic transformations: substitution, deletion, and

insertion, which we describe below.

3.1.1 Substitution

A substitution occurs when a phone is acoustically realized differently from the refer-
ence dialect. For example, in Fig. 3-2 we see the word bath is pronounced differently
in American and British English: the reference phone /ae/ become [aa] in British

English. We know that /ae/ does not always transform to [aal, since the vowel in
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trap is [ae] instead of [aa] in British English. Therefore, in the proposed model, we
automatically learn when /ae/ is realized as [aa] in British English, and quantify how

often this substitution occurs.

3.1.2 Deletion

A deletion occurs when a reference phone is not acoustically realized in the dialect of
interest, thus deleted. Fig. 3-2 shows an example of non-rhoticity in British English,
where /r/ is deleted when preceded by /aa/ and followed by a consonant in words

such as park.

How speech sounds in reference dialect is
mapped to speech sounds in dialect of interest

Surface
phones
[b] [aa] [th]

British English
Pronunciation

American English

Pronunciation Phonetic Transformation
[b] [ae] [th]

Reference phones

Word
Bath

Figure 3-1: Phonetic transformation: an example of [ae] in American English pronun-
ciation (reference phones) transforming to [aa) in British English (surface phones).
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3.1.3 Insertion

An insertion occurs when a phone is produced in the dialect of interest, although it
has no corresponding phone in the reference dialect. Fig. 3-2 shows two examples
of the intrusive r insertion rule: [r] is inserted in between a vowel-ending word and a
vowel-initial word in the phrases the idea(r) is and saw(r) a film. Note that [r] is not

inserted after idea and saw when spoken in isolation.

Word bath
- Reference phones b ae th
Surface phones b aa th
Word park
- Reference phones paark
Surface phones paa k
Word (the) idea is ...

Reference phones aidiyah ihz
Surface phones aidiyah r ihz

Word saw a (film)
Reference phones sao ah
Surface phones sao r ah

Figure 3-2: Examples of phonetic transformations that characterize dialects. Ref-
erence phones are American English pronunciation, and surface phones are British
English pronunciation.

3.2 Mathematical Framework

Phonetic-based Pronunciation Model (PPM) is a hidden Markov model (HMM). The

reference dialect’s pronunciation is modeled by the states, and the pronunciation
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Figure 3-3: Each reference phone is denoted by a normal state (black empty circle),
followed by an insertion state (filled circle); squares denote emissions. Arrows are
state transition arcs (black: typical; green: insertion; red: deletion); dash lines are
possible alignments.

of the dialect of interest is modeled by the observations. Phonetic transformations
(insertion, deletion, substitution) across dialects are modeled by state transition prob-

abilities.

3.2.1 HMM (Hidden Markov Model) Architecture

The HMM architecture of PPM is illustrated in Figure 3-3. Below we delineate each
element of the HMM system.

e States
® = {1,2,..., N} is a set of states representing the state space. The state at

time ¢ is denoted as g;.

Suppose the reference phone sequence is C' = ¢y, ¢y, ..., ¢,. Each reference phone
¢; corresponds to two states, a normal state sq;—; followed by an insertion state
sg;. Therefore, the corresponding states of the reference phone sequence C' are

S = s1, 82, ..., San.

Figure 3-4 illustrated the motivation of the 1-2 mapping of reference phones
and states. Each reference phone is mapped to two states, a normal state and
an insertion state, so that insertion phonetic transformations could be handled

more gracefully.

Q = q1,42, ..., gr represents the possible state transition path taken in S;i.e., Q

represents the alignment between the states and observation in Figure 3-3. @

64



- Saw a (film)

Ph s ao ah

ones [s] [ao] ?c?_? [ah]
- O—O"

Observations s aa r ah

States
American

Observations
(Surface phones) | s ao r ah

British

Figure 3-4: A traditional HMM system does not handle insertion transformations, so
insertion states are introduced in the proposed HMM architecture.
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takes on values of phones in S by a monotonic order:

if ¢ =s,q41 =35, then 1< (3.1)

Note that although the reference phone sequence C' and its corresponding states
S are known, we do not know which transition path was taken by Q. This
is because the state transition type (insertion, self-insertion, deletion, typical
transition) taken when leaving each state is unknown. We introduce the state

transition types in the next section.

e State transition types
There are 4 types of state transitions: insertion, self-insertion, deletion, and typ-
ical transitions. State transition types are represented by r € {ins, sel, del, typ}.
Since state transition types are graphically depicted as arcs with arrows, we will

use the term transition arc interchangeably with state transition type.

1. When transition arc r = ins, the origin state is a normal state sg;_,,
and the destination state is an insertion state s,;. Only normal states are
allowed to have insertion arcs.

2. When transition arc r = sel, the origin and destination states are the
same insertion state s,;. Self-insertions are used to characterize consecutive
insertions.

3. When transition arc r = del, one or more normal states in S are skipped.
This is to say, if the origin state is s; and the destination is $,,, then r = del

if and only if m—12> 2.

For simplicity, we will only discuss the case where one normal state is skipped

here, which can be easily generalized to model consecutive deletions.

A transition arc r = typ, when r is not ins, neither sel, nor del.

e Observations (Emissions of the States)

V = {v1,...,un} is the observation alphabet. The observation at time ¢ is
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Phones [p] [aa] [r] [k]

Observations p aa ‘)G? |E|
- O—E O

Observations ¢] aa E

Figure 3-5: Motivation of introducing deletion arcs in proposed HMM network.

denoted as o,. Let the corresponding observations of the states S be O =
{o1,02,...,0r}. In general the length of the states and observations are different;

ie,n#T.

e State transition probability
The state transition probability from state x to state y through transition arc

type r is
Azry = P(ge1 =y, rlae = 2), (3.2)

where 1 < 2,y < N, transition type r € {ins, sel,del,typ}, > >, Aery =
1,Vz. When traversing over all the possible state transition paths of S, the
probability of transitioning from state s; to state s; in S through transition

type r is
Qjrj = Azry, (33)
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where 1 <4,5 <2n,s; =z,s; =y. Note that if » = sel, then i = j.

We are aware that r over-specifies a, since r can be inferred from ¢ and j. We
retain 7 in specifying a for clarity purposes, since the transition arc type r is an

distinctive characteristic of our framework to model phonetic transformations.

Emission (Observation) distribution in state z

The probability emitting observation v, at any time ¢ given state z is

By (k) = P(o; = vklg: = ), (3.4)

where 1 < z < N,1 < k < M. When traversing over all the possible state
transition paths of .S, the probability of s; corresponding to state z and emits

Vk is

b;(0:) = B(k), (3.5)

where s; = 2,1 <1 < 2n.

The entire pronunciation model of dialect d is denoted as Ay = {4, B}. Figure
3-6 compares the traditional and proposed HMM network. The differences are:
insertion states, which emit inserted phones; insertion state transition, which
are state transitions whose target state is an insertion state; deletion state

transition, which are state transitions who skips normal states.

Phone usually refers to monophone, where a phone’s surrounding phones do not

affect the identity of the phone of interest; e.g., monophone [t] is always referred to

as [t], regardless of its surrounding phones. A biphone is a monophone in the context

of another monophone; e.g., biphone [t+a] is defined as the monophone [t] followed

by monophone [a]. Similarly, triphone /x-y+z/ is defined as the monophone /y/

whose preceding phone is /x/ and following phone is /z/. Figure 3-7 illustrates some

examples.
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Reference Phones [s]] [aa] [r1 [t]
OO0 O O
Observations p a;a L?:?? t

States

Observations ih aa t
(surface phones)

Figure 3-6: Comparison between traditional HMM and proposed HMM network.
The underlying word is part, which is represented by reference phones of [p aa r
t]. In the traditional HMM network, each phone is mapped to one state, but in
the proposed HMM network, each phone is mapped to two states, a normal state
and an insertions state. The insertion states model atypical yet systematic phonetic
transformations of insertion. The insertions emit inserted surface phones that do not
have a corresponding normal state. State transitions divided into three different types.
(1) Insertion state transitions are state transitions whose target states are insertion
states. (2) Deletion state transitions are state transitions that skip normal states.
Deletion state transitions are used to model the deletion phonetic transformation,
when there is no surface phone mapping to the reference phone. The deletion state
transition does so by skipping a normal state, therefore the skipped normal state
cannot emit anything. (3) Typical state transitions are state transitions that are
neither insertion nor Deleon.
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text Part

Monophones [aa]

Monophone States @ . @ @
Triphone States @

Figure 3-7: Examples of monophone and triphone and their notation. At the begin-
ning and end of utterances biphones are used instead of triphones.

3.2.2 Scoring

Given the observations O = {01,0,, ...,0r}, and the states S = {sy, 53, ..., San}, and a
model A = {A, B}, we want to compute P(O|), S), the probability of the observation
sequence given the states. The likelihood P(O|A,S) can be obtained by summing

over all possible state transition paths  as shown below.

P(O|A,8) =) P(0,QI,S). (3.6)
Q

Figure 3-8 shows an example of all the possible alignments given the states and

observations.

Forward Algorithm

Consider the forward variable (i) defined as

Cl!t('l,) = P(olog...ot,qt = S,‘l/\, S), 1 S t S T (37)
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States
(reference)

American

Observations
(Surface phones)
British

Word transcript BATH

Figure 3-8: Given the states and observations, all possible alignments between the
states and the observations are shown. The red alignment path shows the path
with the highest likelihood. A likelihood score is computed for each alignment path.
During test time, all the likelihood scores of each possible alignment is summed.

that is, the probability of the partial observation sequence until time £, oy, 09, ...04,
and the state s; at time ¢, given the model A and the states S.

() can be solved inductively, as follows:

1. Initialization

t:].Zal(j)=1ij(01),1SSjSN (38)
2. Induction
2n
t>1: (i) =D D a1(d)ain]bi(or) (3.9)
=1l r
3. Termination
2n
P(OIA,S) = ar(i) (3.10)
i=1
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The final result is similar to the Forward Algorithm in a typical HMM system.

Backward Algorithm

Similarly, we can consider a backward variable f3,(i) defined as

,Bt('L) = P(0t+10t+2---0T|qt = Si,)\,S), 1 S t S T— 1, 1 S S S N (311)

that is, the probability of the partial observation sequence from time t + 1 to the

end, given the state s; at time ¢ and the model .

1. Initialization
Br(i) =1 (3.12)
2. Induction

2n
@) =Y D Girsbi(0041)Beir (i), 1 St < T =11 (3.13)
j=1

r

The forward and backward variables can be used to compute P(O|A, S) efficiently,

and is also useful in estimating model parameters A = (A, B) in Section 3.2.3.

3.2.3 Training: Model Parameter Estimation

There is no known way to analytically solve for the model parameters that maximize
the probability of the observation sequence in a closed form. Alternatively, we can
use an iterative procedure similar to Baum-Welch method [72] (i.e., expectation-

maximization method) to locally maximize the likelihood P(O|\, S).

Derivation of re-estimation formulas from the auxiliary Q function

Baum’s auxiliary function
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Q(X,A) =Y P(0,qlX, S)logP(0,q|), S)

q

P and logP can be further expressed as

P(0O,q|A, S) = quHz;lHrAq:—l,r,q:Bqt(Ot)

T T
logP(0,q|A, S) = logmy, + Z ZloyAqe-l,r,qz + Z By, (o¢)
t=1

t=1 r
Without loss of generality, we set m,, = 1. Thus,
N N
QNN =Y Qa.(N,A) + D Qa.(X,By)
y=1 y=1

where Ax = [Aq1, Az2, -y Azon], Bx = [Bz(v1), ..., Bo(vk)], and

(3.14)

(3.15)

(3.16)

(3.17)

N T
Qa(N,A) = Y Y N P(O,q1=z,1,¢. =y|X,S)log Air;  (3.18)

y=1 t=1 r

Il

T
> P(O,q = z|X,S)log Bz(ox).

t=1

QB.' ()‘Ia Bx)

(3.19)

Since Q(N, A) is separated into three independent terms, we can maximize Q(\', \)

over A by maximizing the individual terms separately, subject to their stochastic

constraints

N
ZZA"”W =1, Vz

y=1l r

K
> B.(k)=1,Vz
k=1

where the individual auxiliary functions all have the form
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N
J(o5) =) u;logo; (3.22)
y=1 .

N
subject to the constraints Zaj = 1,0; > 0. We can reformulate the Eq. (3.22)
y=1
using the Lagrange multiplier p, p > 0:

N N
J(o530) =Y _ piloga; —p(> 0 —1) (3.23)
y=1 y=1
To maximize J(o;; p), we set &]éi/& =0:

7

0J(oj3p) _ p;

= 3.24
9 5, PO (3.24)

N N
We obtain o; = % Since Zaj =1, we get p= Z 5. Therefore,

y=1 y=1

K |
o; = ,y=1,2,..N (3.25)
! Z;\,:l l"’]

then the maximization leads to the model re-estimate A = [7, A, B], where

P(O’ QD = S,;I/\)J(Si,l‘)

o = 2
e P(O]), 9) (3.26)
- T POya = 5T g = 55lA )55, 2)0(s5,9)
Aory = 7 (3.27)
Y i1 2or P(O, g1 = s1|A, S)d(s;, )
T o .
Bo(k) = 211 P(O,q: = 53, |\, 8)0(si, )0 (01, vg) (3.28)

S P(0,¢,=s;, |\, 8)d(si, z)
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where

Sk, 1) = lifk=1 (3.29)
= 0 otherwise (3.30)

For simplicity, the above equations can be represented using the variables ¢ and
v: &(z,,y) is the probability of being in state z at time ¢ and state y at time ¢ + 1

through transition arc r, given the model and observation sequence and the states S.

&z, y) Z Z P(g = 54,7, qr41 = 55|10, ), S) (3.31)
8i=c 8=y
@4(4)@ir;b; (0141) Be1(4)
= .32
gz_y PO\, 5) (3.32)

Ye(z) = ZZ@ z,7,y) (3.33)

y=1 r

Summing 7v;(z) and &(z,y) we get:

T-1
Z Y¢(z) = expected number of transitions from state z (3.34)
t=1

T-1

Z &(z, 7, y) = expected number of transitions from state z to y through arc r

t=1

(3.35)
T-1
Z gt(xa T, y)
Amry = tz;T"—' (3-36)
Z V()
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T

Z Y4(z)

By(k) = Eh2=" (3.37)

T
Z’Yt(w)

Re-estimating until local optimal

It has been proven by Baum and his colleagues that

QNN > QN X) (3.38)
P(O|), 8) > P(O|X, S) ' (3.39)

By maximizing Q(X’, A) over A\, we can improve the model parameters by increasing

the likelihood P(O|A, S).

Remarks

The condition on the reference phone sequence S in the likelihood computation
could be removed without loss of generality. For the informative emphasis of our
work, we retain the conditioning on S to better characterize dialect-specific phonetic
rules/transformations. Conditioning on S helps constrain the possible state transition
paths with the most likely paths. With the additional transition paths of deletion and
insertion in our HMM system, the possible state transition paths grow exponentially
without this constraint.

For future work, we plan to empirically investigate the case where there is no
conditioning on S. This investigation has many practical applications, since no tran-
scription is required (at least) in the scoring phase. It will be more challenging to
obtain a clean reference phone sequence, if there were no transcription to aid in the
training phase. This procedure of unsupervised training might not be the most opti-

mal in phonetic rule analysis, but could be helpful in engineering applications, where

76



the main goal is to achieve good dialect recognition performance.

3.3 Decision Tree Clustering

As discussed in Section 3.1, context independent modeling might not be able to fully
capture the phonetic rules characterizing dialects. Therefore, instead of modeling only
monophones, triphones (or even quinphones) might more appropriately characterize
phonetic rules. The number of phones increases exponentially when considering pho-
netic context, which often results in poor model parameter estimation due to data
insufficiency. Thus in this section, we discuss clustering approaches that could be
used to tie model parameters to better characterize dialect differences.

A decision tree is a top-down recursive clustering method commonly used in au-
tomated speech recognition to train acoustic models by pooling triphones of similar
acoustics together. Decision tree clustering is an automatic procedure that can in-
corporate linguistically-defined features to better characterize different acoustic im-
plementations of the same phone. Here we adopt decision tree clustering to learn
phonetic rules across dialects, and determine which parameters to tie to better esti-
mate the model parameters. It should be noted that other clustering methods are

also feasible.

3.3.1 Algorithm

When triphone states are considered, model parameters increases exponentially. To
better estimate model parameters, state-tying is often used to pool parameters that
share common characteristics.

The log likelihood increase of splitting node k to nodes k; and k; using the at-
tribute Hy, where f corresponds to feature f, is

L(Ox, |z € Hy)L(Ow,|z ¢ Hy)

Alog L = log L(Oxl)

(3.40)

The attribute chosen to split the data at node k is arg n}{axA log,. This splitting
f
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OBJECTIVE: Find a set of features that best
describe how [ae] is realized in British English

bath, jazz, laugh, dazzle,
has, fad, Man, cat, class, flap,
trap, math, hassle, ask

v/ &
Jazz, dazzle, O/
has, fad, man )

- Iap, caf. trap, bath, laugh,
class, math, hassle, ask

Figure 3-9: An example of decision tree clustering. At each node, a list of yes-no
questions are asked, and the questions that provides the best split of data (e.g.,
the most likelihood increase) is chosen to split the node into two children nodes.
The splitting process is repeated recursively until the stop criteria is reached. After
clustering, each leaf node represents a rule. Some rules are trivial, mapping [ae| to
[ae], but some show interesting phonetic transformations. For example, the light blue
leaf node shows that 67% of words containing [ae] followed by voiceless fricatives
are transformed into [aa] in British English. The yes-no questions used to split each
node are describes the conditioning phonetic context where phonetic transformation
occurs.
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procedure is done recursively until a stop criterion is reached.

3.3.2 HMM Model Estimation after State Clustering

After state clustering, assume triphone states are clustered into I groups. Group i is
specified by G; = (¢}, (¢, ¢¢), where (} specifies the left context state, ¢?, specifies the
center (middle) state, and (¢ specifies the right context state.

The models estimation equations still have the same form as Eq. (3.27) and Eq.

(3.28):

T
D> P(O,r,q" € G|\, S)

Aéi,r = Tt=1 (1 - PD)’
2.2 PO.r,q-1 € ¥A,5)

t=1 reR

tri

where triphone ¢/ = (¢—1 — ¢: + ¢41), R = {typ,ins} and ¥ =} N (s$ No§N...05)

and

_ T tri ) SVé
BGi(k) _ Ztr_l P(ant € Gul’\v ) (Ot1vk)

. : (3.41)
Zt:l P(O7 q:m € Gi7 I)" S)

3.4 'Training Procedure of PPM

Figure 3-10 shows the training procedure for phonetic-based pronunciation model.
The reference phones are generated through forced-alignment using the audio, word
transcriptions, and pronunciation dictionary for the reference dialect. The surface
phones are generated through phone recognition decoding. A monophone HMM is
first trained, and its estimated model parameters are used to initialize the triphone
HMM. The trained triphone HMM provides the decision tree clustering procedure
the triphone likelihoods used during splitting. The decision tree clustering module
determines which triphone states are clustered. Triphone states that are in the same

clustered group merges their identity to the group identity. Finally, a triphone-
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transcriptions

Reference
phones

Surface
T phones

Pronunciation dictionary
for reference dialect

Figure 3-10: An example of decision tree clustering. At each node, a list of yes-no
questions are asked, and the questions that provides the each node are describes the
conditioning phonetic context where phonetic transformation occurs.

clustered HMM is trained using the clustering results of the decision tree module.

3.5 Limitations of PPM

3.5.1 Constraints in Learning Deletion Rules

Deletion rules are also not characterized comprehensively in PPM. The standard
triphone state tying mechanism used in [12] makes two assumptions about deletion

rules.

1. The phone preceding a deleted phone is affected and characterized phonetically
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through automatic phone recognition or manual phone transcriptions.

2. The phone following a deleted phone does not specify when deletions occur.

These assumptions are over-simplifications and only apply to certain rules.

For example, GAE is rhotic, while Received Pronunciation (RP) in UK is not.
Rhotic speakers pronounce /r/ in all positions, while non-rhotic speakers pronounce
/r/ only if it is followed by a vowel [92]. Therefore, the word park (/p aart k/) in GAE
would sound like pak ([p aa: k]') in RP, since /r/ is followed by a consonant /k/.
Clearly, this non-rhotic rule does not comply with assumption 2. While the vowel
/aa/ before /r/ does change its vowel quality by becoming a longer sound [aa:], this
phenomenon could be too subtle to be captured practically in automated systems,
and might not be true for all deletion transformations across dialects.

In addition, since deletions are modeled by state transition arcs that skip states in
PPM, it is expected that arc clustering rather than state clustering is more suitable

in determining the tying structure for deletions.

3.5.2 Inability to Capture Fine-Grained Acoustic Differences

PPM is a token-based system, which does not directly exploit fine-grained acoustic
differences across dialects. When dialect differences are subtle, such as in the case of
GAE (General American English) and AAVE (African American Vernacular English),
phonotactic information alone are insufficient to characterize dialects.

In our previous work [13], we expanded the usage of acoustic phonetic models
[84] from monophones to biphones to characterize context-dependent phonetic rules.
In this work, we take a step further and use clustering to more effectively model
acoustic differences across phonetic contexts. This proposed method is similar in
spirit to discriminative phonotactics using context-dependent phone classifiers in (7).
However, the focus in (7] is to improve DID accuracy, while our focus is to characterize

dialect differences explicitly.

![aa:] represents a long [aa]
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3.6 PPM Refinement I: Sophisticated Tying

We refine PPM to include arc clustering, since deletions could be more appropri-
ately modeled through arc clustering instead of state clustering, as mentioned in the
previous section.

| Consider a triphone state (sx—1 — sk, + Sg+1)- First, we use arc clustering to deter-
mine which deletion arcs to tie together, and then estimate the tied deletion probabil-
ities accordingly. Next, we estimate the typical and insertion transition probabilities
originating from s as in the state-tying case with a new Lagrange constraint, since

the total sum of deletion probabilities leaving si are pre-determined by arc clustering.

3.6.1 Arc Clustering for Deletions

Unlike other transition arcs, deletion transition arcs are not only specified by its origin
and target state, but also the normal states that are skipped. Expected counts of the

state = being deleted when ¢, corresponds to attribute Hy is

T
Ep, = ZP(th, r =del,d = z|q; € Hy), (3.42)
t=1
where d represents the deleted/skipped state.
Expected counts of the state z not being deleted when ¢; corresponds to attribute

ka is
T ,
Eayty = ZZP(th,'rlqt =z € Hy), (3.43)
t=1 r

since state z could not have been skipped if there were transition arcs leaving it.

The likelihood of ¢; corresponding to attribute Hy is

Ed:w

& v
Eg=x d#z Egys 3.44
B 1 Ed#) ) (3.44)

Ed::z: + Ed;aéa:

L(zlg € Hy) = {

Similarly, the likelihood of g, not belonging to attribute Hy, L(z|g; ¢ Hy) can also be
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obtained. Following the split criteria in Eq. (3.40), decision tree clustering is used to
determine the arc tying structure.

We assume deletion arcs are clustered into J groups. Group j is specified by
D; = (0y,5;,7;), where o; specifies the origin of the transition arc, ¢; specifies the
skipped state, and 7; specifies the target of the arc. The model estimation equation

for deletion transitions belonging to clustered group D is

T
- 1 P(O,qt—1€0;,r=del,d€g;,q: €7;|A,S)
AD,' = Lizt p= 2 T . (345)
Pi=1 2 P(O,1,qe-1€05|A,S)

3.6.2 State Clustering for Substitutions and Insertions

The sum of all deletion probability leaving triphone state (sg—1 — Sk + Sk+1) is

PD =P(Qt+1 = Sk42, T = del]qt = Sk) (346)

= Z P(qi41 = Sk42 € Tj,T = dellg; = sk, Sk41 € §j)
J

P(sk41 € S, Ge41 = Sky2 € 75,7 = del|gy = si)

After state clustering, we assume triphone states are clustered into I groups.
Group 1 is specified by G; = ({}, (., ¢}), where (} specifies the left context state, (¢,
specifies the center state, and (¢ specifies the right context state. Similar to using
Baum’s auxiliary function in typical HMM systems, it can be shown that the tied
typical and insertion transition probabilities obtained in state tying are redistributed

proportionally as

T
> P(O,r,¢" € Gi|A,S)
t=1

A&,‘,T = (1 - PD)7

T

ZEP(O’T, q:TI € G:"\ S)

t=1 reR

where ¢, = (-2 — qt-1 + @), R = {typ, ins} and G} = ({{N(ocfNosN...05), E,, C).
Note that insertion and typical arcs are destination independent, thus it doesn’t

matter what ¢, is in Eq. (3.47).
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3.7 PPM Refinement II: Acoustic-based Pronun-
ciation Model

Instead of decoded phone sequences, acoustic observations such as perceptual linear
prediction can be used to characterize dialect differences as well. Acoustic observa-
tions can characterize pronunciation differences that are not large enough to warrant
a phonetic change. Acoustic observations are typically used to describe spectral in-
formation of speech, such as the formant frequencies, voicing, frication noise.

The acoustic counterpart of PPM can be obtained by replacing the discrete ob-
servation probability B,(k) in Eq. (3.28) to a continuous pdf B,(z), which can be
modeled as a mixture of Gaussians:

M .
B:L‘(Z) = Z ’w-’dN(Z; Mty 212!)) (347)

=1

where N is the normal density, wqi, fs1, Xe are the mixture weight, mean vector, and
covariance matrix of state x and mixture [, 1 <z < N, 1< < M.

In this work we only implement a simplified version of APM. Only normal states
and typical state transition arcs are considered, and triphone states are clustered by

standard tying. We leave the complete implementation of APM for future work.

3.8 Remarks

Below are assumptions of the proposed model.

e We assume that underlying phonetic rules governing dialect differences exist,

and account for a noticeable degree of dialect differences that can be measured.

e We assume the given pronunciatibn dictionary uses phone sets that are able
to capture phonetic transformations across dialects. For example, if the given
phone set does not represent flaps and canonical /t/’s differently, we will not be
able to learn that flaps only occur in American English under certain conditions,

and not in other dialects of English.

84



Given these assumptions, our model design is language and dialect independent.
Given the word transcript of the different dialects and a pronunciation dictionary of
at least one dialect, any dialects can be characterized by our model without additional

linguistic knowledge.

3.9 Summary

In this chapter, we delineate our proposed pronunciation model by deriving the math-
ematical framework of an HMM system with three different state transition types,
which are used to model phonetic transformations across dialects. We also intro-
duced sophisticated tying mechanisms that incorporate transition arc clustering to
characterize deletion phonetic rules. The proposed pronunciation model character-
izes and predicts pronunciation variation across dialects, and can also be used in
automatically recognizing dialects. In the following chapters, we empirically evaluate
our pronunciation model on various datasets of different corpus sizes, speaking styles,

and languages.
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Chapter 4

Corpora Investigation

Due to the interdisciplinary nature of this work, one of the greatest challenges was
to find corpora suitable for both speech analysis and dialect recognition experiments.
Corpora for these two purposes usually have complementary characteristics, and ex-
isting corpora that have both are rare. Usually corpora for analysis and interpretation
of pronunciation rules require word transcription and ideally phone transcriptions, but
corpora with these properties are usually smaller in size, and therefore not suitable
for dialect recognition purposes; dialect recognition results are often inconclusive due
to too few trials. On the other hand, large-scale corpora used for dialect recogni-
tion purposes usually do not have word transcriptions, which makes the interpreting
dialect-specific rules challenging.

In Section 4.1, we analyze ideal properties of corpora for informative dialect recog-
nition, the challenges of choosing such corpora due to the complex nature of dialects
and the practical constraints of existing resources, and evaluate potential corpora
that might be useful in our work. In Section 4.2, we introduce three sets of corpora

chosen for this work, and in Section 4.3 we conclude our discussion on corpora.

4.1 Corpora Analysis

In this section we discuss the requirements of the corpora we need in informative

dialect recognition, the practical constraints of existing linguistic resources, and eval-
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uate corpora that could potentially be used for our work.

4.1.1 Ideal Corpora Properties

The ideal corpora needed for analyzing and characterizing dialects satisfy the follow-

ing properties.

e Linguistic dialect labels: Ideal dialect labels correspond to linguistic cate-
gorization. However, dialect labels in many available databases do not always

correspond with the true dialect label.

e Word transcriptions: Word transcriptions provide canonical references for
~ comparing pronunciation patterns across dialects. In addition, phone recog-
nition accuracy typically increases substantially if word transcriptions and a

reasonable phone recognizer are provided.

e Pronunciation dictionary: A pronunciation dictionary of the reference di-
alect, along with the word transcriptions and a phone recognizer, are used to
generate the reference phones through forced-alignment. Ideally, the phoneset
used in the pronunciation dictionary should be able to distinguish dialect dif-
ferences. For example, if the pronunciation dictionary does not include [dx]
(flaps), making both flaps and canonical [t] are represented the same way, and
if the dialects being compared are American and British English, we would not
be able to learn that canonical [t] transforms into flaps when in intervocalic po-
sitions in American English in the phonetic-based pronunciation modei (PPM).
This is not an issue for acoustic-based pronunciation model (APM), since APM
is not limited to detecting phonetic transformations, which are defined by the

phonesets of the pronunciation dictionary.

e Sufficient speakers: If the number and sampling of speakers is limited, the
proposed algorithms will learn speaker-specific characteristics instead of general

dialect-specific characteristics.
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e Sufficient training data: Machine learning methods require sufficient training

data so the algorithms have enough data to generalize well.

These properties are challenging to fulfil. Below we discuss these challenges in
two aspects: (1) the ambiguous nature of dialects, and (2) practical constraints of

existing resources.

4.1.2 The Ambiguous Nature of Dialects

The true dialect label of a speaker and whether this true dialect label even exists are

not always clear cut:

e Some people are multi-dialectal and they often code switch according to the

other speaker or to the degree of formality of the scenario.

e There are no distinct boundaries between dialects. Some people might have
characteristics of more than one dialect. For example, with the increased
amount of traveling and moving, it is more difficult to determine a speaker’s

dialect just by simple terms such as birthplace or hometown.

e Though traditional categorization of dialects is primarily based on region, it has
been shown that other factors such as education, socio-economic status, race

are related to dialects as well.

4.1.3 Practical Constraints of Existing Resources

There are practical constraints of existing resources in corpora and pronunciation

lexicons for speech technology purposes.

o There are not many large corpora suitable for dialect characterization. If the
original data collection was not for dialect analyses purposes, the dialect labels
might not be appropriate. For example, self-reported dialect labels might not

necessarily correspond well with linguistic definitions.
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e Some well-studied or suitable corpora are often small in size (e.g., TIMIT) or

not publicly available.

e Pronunciation lexicons and letter-to-sound tools for automatic speech recog-
nition are limited, especially for languages such as English where spelling is
irregular. The setup of the pronunciation lexicon can influence the reference
canonical pronunciations, which would also influence the pronunciation rules

learned.

4.1.4 Evaluation of Corpora Candidates for Informative Di-

alect Recognition

Due to the intrinsic and practical challenges discussed above, it is important to eval-
uate whether the chosen corpora are suitable for the informative dialect recognition
experiments. This evaluation process can be done by literature review of the dialects
of interest, corpora candidate, and pronunciation lexicon. The dialect-specific pro-
nunciation rules in the literature could be used to guide the design and setup of the
automatic system. It is important to determine whether the pronunciation lexicon is
suitable in capturing dialect variation in pronunciation. For example, if the phone-
set in the pronunciation lexicon does not distinguish between the vowels in marry,
merry, and Mary, then we would not be able to detect that the dialect spoken in
certain northern regions in the U.S. (e.g., Philadelphia, New York City, and New
England) which make distinctions between these vowels.

In Table 4.1, we list corpora candidates that were investigated in this thesis work,
their properties, and practical issues we encountered in our initial assessment.

In setting up the corpora for the experiments, it is important to make sure di-
alect labels do not correlate with other factors (e.g., gender, channel) that are much
stronger than dialect characteristics [l14]. In our investigation, we unfortunately
found out that WSJO, WSJ1, and WSJ-CAMO are unsuitable for performing dialect
recognition experiments between British and American English. A more detailed

analysis is documented in Appendix B. Fortunately, we were still able to use WSJ-
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CAMO and the pronunciation dictionary from WSJO (American English) to conduct
pronunciation generation experiments to assess how well the proposed models are

able to convert American pronunciation to British pronunciation.

4.2 Adopted Datasets

Despite the many difficulties and challenges in surveying and selecting suitable cor-
pora, we managed to work around constraints and adopted three databases for our
work: WSJ-CAMO, 5-Dialect Arabic Corpus, and StoryCorps. We introduce each of

them in the following sections.

4.2.1 WSJ-CAMO

Corpus Description

WSJ-CAMO stands for the Wall Street Journal recorded at the University of CAM-
bridge (phase 0). WSJ-CAMO is the UK English equivalent of a subset of the US
American English WSJ0 database [78]. The training data contains speech of 15.3 hr
(92 speakers). The test and dev set are each 4 hr (48 speakers). It consists of speaker-
independent (SI) read material, split into training, development test and evaluation
test sets. There are 9 utterances from each of 92 speakers that are designated as
training material for speech recognition algorithms. A further 48 speakers each read
40 sentences utterances containing only words from a fixed 5,000 word vocabulary of
40 sentences from the 64,000 word vocabulary, which will be used as testing mate-
rial. Each of the total of 140 speakers also recorded a common set of 18 adaptation

sentences. The data partition of WSJ-CAMO is listed in Table 4.2.

Pronunciation Dictionary from Corpus WSJ0

Only having a corpus containing speakers of one dialect is insufficient in character-
izing dialect differences. Pooling together different corpora with different dialects is

unsuitable for evaluating our proposed models, because the channel differences across
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Table 4.1: Analysis of word-transcribed corpora candidates for informative dialect
recognition. CTS: conversational telephone speech; Am: American; Br: British;
Conv: conversation.

Corpus - | Language | Dialects | Type, Speakers | Duration Issues
Channel | per  di- | per dialect
alect
AMI (19] | English | Am, UK, | meeting | 14-26 < 100hr limited speak-
Scottish ers '
ANAE English | south & | telephone | N/A N/A small
[56] north Am '
Buckeye | English Ohio Conv, 40 20 - 40hr only 1 dialect
[71] studio
BU Radio | English General Read, 7 12hr limited speak-
[68] Am. studio ers
FAE [30] | English | Foreign | telephone | > 200 71min lack tran-
accents scripts
Fisher English south & | CTS > 100 30hr noisy dialect
[17] north Am labels
NSP [18] | English | 6 regions | studio 10 5-10min small & small
in ANAE perceptual
difference
StoryCorpg English AAVE, studio > 67hr > 200 transcriptions
[46] non- : incomplete
AAVE
S. Renals | English | Br Broadcast | N/A 50hr unattainable
[73] news
TIMIT English 8 dialects | read 33-102 15-45min | limited test
[27] in Am. speech trials
Ivie [20] | English | Br Read 108 1hr limited tran-
, /studio scripts
WSJO, English Am & Br | Read, > 83 14hr see Appendix
-"WSJ- : studio | B
CAMO
[70, 78]
Fisher Spanish | Caribbean | CTS > 44 > 40hr not public
&  non-

_ Caribbean ‘
5-Dialect | Arabic AE, EG, [read & |500 13 hr read portion
Arabic IQ, PS,|CTS is MSA
corpus SY '

[58]
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Table 4.2: WSJ-CAMO data partition

Set | Speaker number | Duration
Train 92 15.3 hr
Dev 48 4 hr
Test 48 4 hr

corpora are likely to strongly correlate with the dialect labels, even when the two
corpora design intended to collect data the same way. This was the case for WSJO0,

WSj1, and WSJ-CAMO as mentioned above.

However, we designed a pronunciation generation experiment to overcome this
challenge. By using the pronunciation dictionary from WSJO, we can obtain the
American pronunciation of a given word in WSJ-CAMO0, which can serve as the refer-
ence phones for the phonetic and acoustic-based pronunciation models. By evaluating
how well the proposed models are able to convert the American pronunciation to the
British pronunciation, we can assess how well the proposed algorithms are charac-
terizing dialect differences. For experimental details and results, please see Chapter

6.

4.2.2 5-Dialect Arabic Corpus

The corpus includes Arabic dialects of United Arab Emirates (AE), Egypt (EG),
Iraq (IQ), Palestine (PS), and Syria (SY) [58]. Each dialect has its own regional
pronunciation dictionary. There are 250 telephone conversations with 100 speakers
per dialect. A set of 13 pre-selected topics were chosen with the aim of achieving as
much as possible an equal distribution across all topics for the final database. The
details of the data partition are listed in Table 4.3 Models were trained on 46.3 hours
of speech. The development set was 8.4 hours (1,011 30-second trials) and the test
set was 8.8 hours (1,061 30-second trials). The gender ratio of male vs. female is
1:1 across all 5 dialects for all three partitions (see Table 4.4 for details). Only the

conversational speech data were chosen.
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Table 4.3: Data partition and description

Set | Speaker Number | Duration | Number of 30-sec trials
Train | 276 46.25 h N/A
Dev |83 139 1,011
Test | 88 14.75 1,061

Table 4.4: Number of speakers in each data partition

Train Test Dev
Dialect | M | F [total | M | F |total | M | F | total
AE 26 | 26 | 52 8 |9 |17 7 18 |15
EG 30| 30 | 60 9 |10 (19 9 |9 |18
PS 30| 30| 60 101020 |10 10|20
IQ 26 | 26 | 52 8 |8 |16 7|7 |14
SY 26 | 26 | 52 8 |8 |16 8 |8 |16

4.2.3 StoryCorps: AAVE vs. non-AAVE

Two sets of American English dialects were chosen from StoryCorps [46]: (1) African
American Vernacular English (AAVE), (2) Non-AAVE AI‘nerican English. AAVE
speakers were self-reported as African American. (2) Non-AAVE speakers were self
reported as white or of European decent. The conversations are between speakers of
the same dialect to minimize accommodation issues [35]. The train set is 22.6 hr (69
speakers), fhe dev set is 7.1 hr (38 speakers), and the test set is 7 hr (28 speakers).
The data partition of StoryCorps is listed in Table 4.5.

Table 4.5: StoryCorps data partition

Set | Speaker number | Duration
Train 82 27.4 hr
Dev | 31 8.2 hr
Test 38 9.2 hr
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4.3 Summary

In this chapter we investigated corpora issues in informative dialect recognition re-
search, which is the main challenge in this line of work. We analyzed the properties
and limitations of existing corpora with dialect labels, and introduced the three cor-

pora we selected to evaluate our proposed systems.
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Chapter 5

Dialect Recognition Experiments

Dialect recognition error rates are one measure of how well the phonetic rules are
learned in the proposed pronunciation models. Assuming dialect-specific rules occur
frequently enough in the training and test set, a pronunciation model that learned

these rules should lead to good DID performance.

Note that it is challenging to interpret how well the rules are learned through di-
alect recognition experiments, partly due to the limited resources of available corpora
and characteristics of different dialects. Results could easily be confounded with chan-
nel issues, amount of data, numbers of speakers, completeness of corpora documen-
tation, linguistic aspects other than phonetics and acoustics (e.g.,lexicon, grammar,
prosody, pragmatics). Despite these potential complications, we still present our ex-
periment results, and analyze them with caveats to watch out for. The key innovation
is, again, the introduction of a framework for characterizing dialects quantitatively

at the phonetic and acoustic level.

Below we conduct dialect recognition experiments on two datasets': (1) 5-Dialect
Arabic Corpus in Section 5.1, and (2) StoryCorps in Section 5.2. We summarize the

findings of these two experiments in Section 5.3.

WSJ0 (USA) and WSJ-CAMO (UK) were inappropriate for DID experiments due to strong
channel differences correlating with dialect labels. For more detailed analysis, see Appendix B
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5.1 Experiment I: 5-dialect Arabic Corpus

5.1.1 Experimental Setup
Data

The corpus includes Arabic dialects of United Arab Emirates (AE), Egypt (EG), Iraq
(IQ), Palestine (PS), and Syria (SY) [58]. Each dialect has its own regional pronunci-
ation dictionary. There are 250 telephone conversations with 100 ‘speakers per dialect.
Channel was strictly controlled so there are no channel differences correlating with
dialect labels. Gender and conversation topic were controlled across dialects and sets
(train, dev, test.) Models were trained on 46.3 hours of speech. The development set
was 8.4 hours (1,011 30-second trials) and the test set was 8.8 hours (1,061 30-second
trials). For Ihore details about the 5-Dialect Arabic Corpus, please réfer to Section

42.2.

Pronunciation Dictionaries

We used 2 pronunciation dictionaries: (1) pan-Arabic Dict, combining all regional
dictionaries, which is used to generate surface phones; (2) IQ Dict, used to generate
reference phones. The reference pronunciations of out of vocabulary words were

obtained through an Iraqi letter-to-sound tool trained at MIT Lincoln Laboratory.

Decision of Reference Dialect

There are linguistic and engineering considerations that lead to the determinatiqn
of the reference dialect being Iraqi Arabic. From the engineering standpoint, we
have a lot more additional resources of Iraqgi Arabic to train phone recognizers and
letter-to-sound tools?.

From the linguistic standpoint, Egyptian Arabic was avoided as a reference dialect
due to the popularity of Egyptian media. Many native Arabic speakers, though not
from Egypt, have more knowledge of how Egyptians speaker differently from them.

?Letter to sound tools are trained to map text to phones. This is especially important for
languages where spelling is irregular.
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Native Arabic speakers were asked to perform informal perceptual tests in the initial
phase of the experiment design to determine if the experiments are going in the
intended direction. Palestinian and Syrian Arabic both belonged to the same Levatine
family, so they would be more similar to each other than the other Arabic dialects. If
the differences between Palestinian and Syrian Arabic are subtle, it would be difficult
to determine if the proposed models are unable to detect very fine-grained differences

that exist or the dialect differences are just too subtle to be measured.

Tools: Phone Recognizers and Backend Classifier

The reference dialect is IQ), and so was excluded in dialect recognition experiments.
Two IQ phone recognizers were used: (1) the triphone recognizer (38 monophones,
3 states/triphone, 128 Gaussians/state); (2) the monophone recognizer (38 mono-
phones, 3 states/monophone, 2048 Gaussians/state). The time stamps of the con-
versations in this corpora are not fully specified, therefore we used the triphone I1Q
recognizer and the word transcriptions to force-align to obtain time stamps for each
spoken utterance.

To examine how the proposed PPM systems complement other systems, fusion

experiments were performed using a backend classifier [74].

5.1.2 Implementation Details

Mathematical details of how to train and score dialect identification systems are in

Section 2.3.1. Below we document the implementation details of our DID experiment.

Systems S;-S3: PPM Surface phones obtained through phone decoding

Reference phones were obtained by force-aligning word transcripts with IQ Dict using
the triphone IQ recognizer. Surface phones were obtained by direct decoding using
the IQ triphone recognizer. The following systems were trained. (1) System Si:
Mono PPM, which models context-independent phonetic rules; (2) System Sp: Tri
PPM (standard tying), which models context-dependent phonetic rules by clustering
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triphone states, as mentioned in Section 3.3; (3) System Ss: Tri PPM (sophisticated
tying), which models context-dependent phonetic rules by clustering deletion arcs and
triphone states, as mentioned in Section 3.6.

To simplify the tying mechanism, deletion and typical transitions are constrained

to be destination independent; i.e.,

Qirj = Qip,y r 67 {typa del} (51)

Insertion transitions were destination specific since insertions can only be emitted
by insertion states. Consecutive insertions were allowed through the self insertion

arcs, while consecutive deletions were not allowed.

Systems Fi-F3: PPM Surface phones obtained by forced-alignment

The system setup of System Fj-F5 are exactly the same as System S-S5 except for
the surface phone generation, where in System Fi-F3 surface phones were obtained

through force-alignment using pan-Arabic Dict with the triphone IQ recognizer.

Systems A;~-A;: APM

System A; and Ay are acoustic counterparts of System S; and S: (1) System Aj:
Mono APM, where acoustic characteristics are modeled in monophone categories; (2)
System Az: Tri APM (standard tying), where acoustic characteristics are modeled in
clustered triphone categories. System Aj, is trained exactly the same way as System
Ay, but during test time, scoring is done without transcription aid.

APM were implemented by first training a universal background model using
data from both dialects. Dialect-specific data were then used for state clustering and

adapting the universal background model using 32 Gaussians/state.

Three systems often used in DID are chosen as baseline systems to be compared

with the proposed phone-based and acoustic-based pronunciation models.
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System B;: SDC-GMM

Each GMM has 2048 mixture components, and shifted delta cepstra (SDC) are used
as features. The experiment setup is the same as [89]. A universal background model

was first trained on all dialects, and then each dialect-specific GMM was adapted.

System B,: Adapted Phonetic Models (APMO0)

Adapted phonetic models can be viewed as an extension of GMM systems, where
acoustic information is modeled in phonetic categories, making it easier to pinpoint
where the acoustic differences lie in. An adapted phonetic model was trained accord-
ing to [84]. The IQ monophone recognizer was used to segment the speech signal to

monophone units, where the acoustic observations of each phone were modeled as a

GMM.

System B;: Phone recognition followed by language modeling (PRLM)

PRLM [98] is one of the most classical phonotactic approaches in dialect recognition.
Adapted tokenizers trained in Section 5.1.2 were used to generate phone sequences

to train language models [84] for our PRLM baseline.

5.1.3 Results

EER results of each system are listed in Figure 5-1. The following are some general

observations.

System A, (Triphone APM; standard tying) obtains the lowest EER.

PPM systems (S; — Ss, Fy — F3) outperform baseline systems (B; — Bs).

Triphone PPM and APM outperform their monophone counterparts.

Performance of sophisticated tying is comparable to that of standard tying.

101



Phone-based Pronunciation Model

EER (%)

Confidence
Interval (%)

S;: Mono PPM
S2: Tri PPM (standard tying)
S3: Tri PPM (sophisticated tying

Acoustic-based Pronunciation Model

17.80
16.51
16.66

EER (%)

15.91 - 19.97
14.80 - 18.50
14.45 - 18.91

Confidence
Interval (%)

A;: Mono APM

Az Tri APM (standard tying)
Az.: Tri APM (standard tying;
unsupervised at test

Forced Aligned PPM Systems

18.58
13.77

23.89

EER (%)

16.53 - 20.73
12.04 - 15.32

21.78 < 26.15

Confidence
Interval (%)

F;: Mono PPM
F3: Tri PPM (standard tying)
Fj: Tri APM (sophisticated tyi

Baseline Systems

17.01
16.68
16.71

EER (%)

15.10 - 19.07
14.89 - 18.58
14.96 - 18.80

Confidence
Interval (%)

B;: SDC-GMM
B;: Acoustic phonetic model
B;. PRLM

26.80
24.33
21.20

25.02 - 28.45
22.80 - 26.20
19.51 - 23.00

Figure 5-1: DID performance comparison for 5-Dialect Arabic Corpus.
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Fusion Results (%)

Baseline EER + F,: Tri-PPM + 8, Tri-PPM
System | (%) I"gpR | Confidence | Relativ| EER | Confidence | Relative
Interval e gain Interval gain
B:SDC-GMM | 26.80 | 19.63 | 17.49-2191 | 26.75 17.31 15.45 - 19.44 35.41
B,:APMO 24.33 | 18.71 | 16.71 -20.95 | 23.10 1695 | 15.09 - 19.08 30.33
B,;:PRLM 21.2 | 1436 | 12.53-16.07 | 32.26 14.02 | 12.31-15.97 35.87

Figure 5-2: Baseline performance and fusion results. Units in %.

5.1.4 Discussion

Below we do further analysis and discuss the implications of our DID results on the

5-dialect Arabic Corpus.

PPM Systems

The performance of Systems Sy, Sy, S3 and Fy, Fy, F; are similar. System Sy, Ss, S3
are more practical since they do not require pronunciation dictionaries, which are
time- and labor-intensive to construct. In addition, Systems S, S, S5 can learn more
rules than Systems Fj, F, Fi since they are not constrained by the pronunciation
dictionary, which might be why the relative gains of System S;,S,,5; in fusion ex-
periments are on average 17.2% relative greater than those of System F, Fy, F; (see
Fig. 5-2.) Systems Sy, S,, S3 achieve greater fusion gains despite the additional noise

from phone recognition errors when generating surface phones.

PPM Systems exploiting phonetic context perform better than their monophone
counterparts: System Sy outperforms S; by 7.25% relative, and System F, outper-

forms F} by 1.94% relative. Performance of sophisticated tying comparable to that
of standard tying.
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Figure 5-3: Detection error trade-off (DET) curves of 5-Dialect Arabic Corpus.

Baselines vs. PPM Systems

All PPM systems perform better than the acoustic and phonotactic baselines (see
Figure 5-1) and Figure 5-2. Moreover, the Triphone PPMs fuse well with them:
relative gains are 25-36% and 21-32% after fusion with System S, and F, (see Fig.

5-2), suggesting that PPMs exploit phonetic information not used in these baselines.

Fig. 5-3 shows the detection error trade-off (DET) curves of the baselines systems
B; — Bg, the Triphone PPMs (System S; and F3), and their fusion results between
baseline systems and PPM systems. We see that in general DET performance cor-
responds with the EER performance: Triphone PPM systems perform better than

baselines, and error rates of fused systems are even lower.?

3The trend that EER corresponds with DET performance also holds for other systems, thus their
DET curves are excluded for clarity purposes.
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APM Systems

We list the different versions of APM in Figure 5-4, and compare their differences
according to (1) whether the model exploits phonetic context, (2) word transcriptions

are used during training, and (3) word transcriptions are used during test time.

The simplest model is System B, (APMO0), a monophone acoustic model that
doesn’t use word transcriptions at training nor test time. It is an extension of GMM,
where acoustic information is categorized into phonetic units, which are determined
through a phone recognizer. Among the APM systems, it requires the least resources
to train. It is expected that its performance to be at least as good as GMM, and
possibly better, but worse among the other APM systems. The results in Figure 5-1

and 5-2 match our expectations.

All other versions of APM systems require transcriptions. System A; is a mono-
phone acoustic model that requires transcriptions during train and test. It is expected
that System A, performs better than System B, since there are no phone recognition
errors in determining phonetic units in System A;. System A; outperforms System B,
by 23.6% relative, indicating the importance of having a clean reference to compare

acoustic characteristics across dialects.

It is well-known in linguistics that acoustic or phonetic differences across dialects
are often phonetic-context dependent. This phenomenon is empirically demonstrated:
System Aj; outperforms System A;, by 25.9% relative. System A, (Tri APM) is by
far the best system among APMs and all the other systems.

For mere dialect recognition purposes, it is desirable that transcriptions are not
needed during test time. System Ay, is the unsupervised version of System A,, where
transcriptions are not used during test time. The EER result of System Aj, is com-
parable to System B, (performance difference: 1.8% relative), suggesting that it is
more practical to use System B; in pure DID applications, since no transcription is

required and performance is similar to System A,,.
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Phonetic | Transcription | Transcription o L
APM Systems piE a hnimbag at test EER (%) Description
B;: Mono APM N N N 24.33 | Extension of B;: GMM
Aj;: Mono APM N Y Y 18.58 | Acoustic counterpart of S;: mono PPM
Az Tri APM Y Y Y 13.77 | Acoustic counterpart of S;: Tri PPM
A“: Tri APM Y. Y N 23.89 | Unsupervised version of A;: Tri A_P_M

Figure 5-4: Different versions of APM System.

Baselines vs. APM Systems

We fused the best performing pronunciation model, System A, (Triphone APM) with
the baseline systems, as shown in Figure 5-5. Relative gains are largest when System
Ay is fused with System B; (SDC-GMM), reaching 56%. Relative gains are smallest
when System A is fused with System B; (APMO), which is still pretty high, reaching
42.5%.

Figure 5-3 shows DET curves of the baselines systems B, — Bg, System S, (Tri-
phone PPM), System A, (Triphone APM), and fusion results. We see that in general
DET performance corresponds with the EER performance: System S, and A; (Tri-
phone PPM and Triphone APM) perform better than the baselines, and error rates

of fused systems are even lower.

Word-Usage Differences

Further analysis shows that word-usage differences are large among Arabic dialects.
A l-gram language model of word occurrences achieves EER of 5.43%, outperforming
all proposed models and standard baseline systems. This word-usage difference is
a confounding factor in our analysis, since it is challenging to tease out how much
performance gain of the pronunciation models (and other baseline systems) are from
lexical or phonotactic differences across dialects. Fortunately, the StoryCorps corpus

does have lexical differences that confound our analysis. We will discuss the dialect
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Fusion Results (%)
Baseline EER Baseline + System A4, (Tri-APM)
System | (%) | EER | Confidence | Relative Gain
Interval
B;:SDC-GMM | 26.80| 13.51 |11.78-15.39 49.59
B,:APMO 2433 14.10 |12.37-16.13 42.47
B;:PRLM 21.2 11.29 9.64 - 13.07 46.75

Figure 5-5: Fusion results with System As: tri-APM.

recognition experiments performed on StoryCorps in the next Section, which still

show the effectiveness of the proposed systems.

5.1.5 Summary

Assuming that word-usage difference does not compromise our analysis, the empirical
DID results in Section 5.1 show that on the 5-Dialect Arabic Corpus:

(1) Triphone APM using standard tying is the best performing system.

(2) The proposed PPM and APM systems all perform better than baseline systems
and fuse well with them, achieving relative gains beyond 26-56%.

(3) PPM performance is similar when using standard and sophisticated tying.
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dard tying).
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5.2 Experiment II: StoryCorps

5.2.1 Experimental Setup
Data

Two sets of American English dialects were chosen from StoryCorps [46]. (1) African
American Vernacular English (AAVE): speakers self-reported as African Americans.
(2) Non-AAVE: speakers self reported as white. The conversations are between speak-
ers of the same dialect to minimize accommodation issues [35]. Gender and age were
balanced across all sets and dialects. The train set is 22.6 hr (69 speakers), the dev
set is 7.1 hr (38 speakers), and the test set is 7 hr (28 speakers). There is virtually
no word-usage difference across AAVE and non-AAVE dialects in StorpyCorps, since
1-gram word language models lead to EER performance close to chance. For the PPM
systems, surface phones were obtained through a phone recognizer trained on WSJO
[70]. The dev and test sets were divided into 30-sec trials. For more information

about StoryCorps, please refer to Section 4.2.3 and [46].

5.2.2 Implementation Details

All implementation details are the same as Section 5.1.2, except for Systems Fi-Fj.
The StoryCorps data did not come with dialect-specific pronunciation dictionaries
as the 5-Dialect Arabic Corpus. Instead, we used phonetic rules converted from the
linguistic literature [93], and transformed the WSJO American English dictionary into

an AAVE-version pronunciation dictionary.

5.2.3 Results
EER results are listed in Figure 5-7. The following are some general observations.
e System A, (Triphone APM; standard tying) obtains the lowest EER: 9.97%.

e Performance of APM systems (A; — Ap) are comparable to Baselines (System

B; — By), and better than PRLM (System Bs).
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e Triphone PPM and APM outperform their monophone counterparts.

e Sophisticated tying outperforms standard tying in PPM by a relative gain of
6.1%.

e Acoustic systems outperform phonetic systems in distinguishing AAVE and

non-AAVE dialects.

5.2.4 Discussion
PPM Systems

The performance of forced-aligned PPM systems are virtually the same despite pho-
netic context or tying structure, all around 23%. This resul\t implies that while the
ground-truth phonetic rules encoded in the AAVE pronunciation dictionary are use-
ful in DID to some extent, these phonetic rules are by no means not comprehensive.
System S, Sa, and S3, where surface phones are determined by direct-decoding of
phone recognition, perform better than the forced-aligned PPMs (System F}, Fy, F3)
by at least 26% relative. This result suggests that Systems S;, S, S5 are learning
phonetic rules beyond the ground-truth rules.

The triphone PPMs (System .S; and S3) outperform monophone PPM (System
S1) by 10.9% and 16.4%, respectively. System S; outperform System S, by 6%, ,
suggesting that arc clustering is more appropriate for modeling deletion rules than

state clustering.

APM Systems

The general trend of DID on StoryCorps is that acoustic systems are superior to
phonetic systems, possibly because the main differences between AAVE and non-
AAVE are acoustic rather than phonetic. In Figure 5-7, we see that without using
phonetic context information, monophone APM (System A;) already outperforms

monophone PPM (System S;) by 37.9% relative. The relative gain is even higher
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Confidence
Interval (%)
S;: Mono PPM 17.35 13.32 -22.07
S Tri PPM (standard tying) 15.46 11.68 -9.86
S§;: Tri PPM (sophisticated tyi 14.51 10.79 - 18.94

Phone-based Pronunciation Model EER (%)

Confidence
s 1ati 0,

Acoustic-based Pronunciation Model EER (%) Interval (%)
Aj;: Mono APM 10.78 6.28 - 13.33
Aj: Tri APM (standard tying) 9.97 7.04 - 13.97
Az Tri APM (standard tying; 10.73 7.46 - 14.96
unsupervised at test

Confidence
Interval (%)
F;: Mono PPM 23.65 19.11 - 28.72
F;: Tri PPM (standard tying) 23.29 18.49 - 28.72
F;. Tri APM (sophisticated tyi 23.30 18.47 - 28.36

Forced Aligned PPM Systems EER (%)

Baseline Systems EER (%) Iﬁ:enrf\ir:le 1(1‘:2 )
B;: SDC-GMM 10.86 7.70 - 15.22
B;: Acoustic phonetic model 10.76 7.06 - 15.53
B;: PRLM 13.45 9.73 - 18.16

Figure 5-7: DID performance comparison for StoryCorps (AAVE vs. non-AAVE).
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Figure 5-8: Detection Error Trade-off Curves comparing pronunciation models (Sto-
ryCorps).

when phonetic context is used: triphone APM (System A4) outperforms monophone
PPM (System S;) by 42.5%.

Note that these gains are obtained only by a simplified APM system. Inferring
from the results of the PPM systems, the complete triphone APM system, which
uses arc clustering to model deletions, could achieve potentially even better DID
performance. We plan to investigate this hypothesis in future work.

In Figure 5-8 we plot the DET curves all the PPM and APM systems. We see
that the DET curve results are similar to those of EER: System A;, A, performs the
best, followed by System S; — S5 (surface phones obtained through phone recognition
decoding), and Systems F; — F3 (surface phones obtained through forced-alignment

with pronunciation dictionary) are the worst.

System Ay, is the unsupervised version of System A,, where transcriptions are
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not used during test time. Similar to results on the 5-Dialect Arabic Corpus, per-
formance of System A,, is comparable to that of System B, (performance difference:
1.2% relative), suggesting that it is more practical to use System B; in pure DID
applications, since no transcription is required and performance is similar to System

Azq.

PPM vs. Baseline Systems

Both PRLM (System Bj;) and triphone PPM use phonotactic information to recog-
nize dialects. Their performances are close to each other (in the range of 13%-15%
EER), with PRLM performing better than triphone PPM using sophisticated tying
(System S3). SDC-GMM and acoustic phonetic model (System By, B;) both achieve
around 10% EER, outperforming triphone PPM with sophisticated tying by at least
25% relative. Fusion results between PPM and baseline systems did not improve

performance.

APM vs. Baseline Systems

We fused the best performing system triphone APM (System A;) with the baseline
systems (System B; — Bs), which resulted in relative gains beyond 25%. PRLM
achieved the most relative gain (46.6%) when fused with triphone APM, driving
down the EER to 7.18%. This fusion gain is most likely because PRLM is a phonetic
system, which complements triphone-APM the most.

In Figure 5-10, we illustrate the performance comparison and fusion results in a
DET plot. Again, the DET plot performance is similar to that of EER: Triphone
APM performs better than baseline results, and detection errors are even lower when

triphone APM fuses with the baselines.

5.2.5 Summary

The StoryCorps DID experiment suggests that (1) acoustic-based systems such as the

proposed triphone APM is important in recognizing dialects with subtle differences
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Fusion Results (%):
Baseline EER Baseline + System 4, (Tri-APM)
System (%) | EER | Confidence Relative gain
Interval
B;:SDC-GMM | 10.86| 8.10 | 4.83-12.20 254
B,:APMO 10.76 | 7.91 | 435-12.85 26.6
B,.)PRLM 1345 7.18 | 3.94-11.94 46.6

Figure 5-9: Fusion results with System As: tri-APM on StoryCorps.

such as AAVE and non-AAVE, (2) APM has useful applications in DID, and (3) the
complete implementation of triphone APM, which uses sophisticated tying instead of

standard tying can achieve even better DID performance.

5.3 Summary

We performed DID experiments on dialect from two different languages (Arabic: 5-
Dialect Arabic Corpus; American English: StoryCorps.) Although the word-usage
difference across Arabic dialects poses uncertainty on our analysis in Section 5.1, our
results on StoryCorps are free from such criticism. In addition, many conclusions
drawn from results of both experiments are similar. We summarize the main findings
below.

(1) Proposed triphone APM is the best system, and fuses well with baseline sys-
tems on both corpora.

(2) Proposed PPM systems are able to learn rules beyond pronunciation dictio-

nary or linguistic literature, even though surface phones obtained through phone

114



40 g e sy T :

===PRLM
---GMM
_ - .Bz(Mono—APM)
e == Tri=APM :
IRGEE LT == PRLM+Tri~APM|:
DT e O S R — GMM+Tri-APM |:
mtll.lij@lal'_"ﬁr ----- R, T _82+Tri—APM :

10

Miss probability (in %)

0 20
False Alarm probability (in %)

Figure 5-10: Detection error trade-off (DET) curves of StoryCorps.

recognition decoding are prone to errors.
(3) Phonetic context improves performance in PPM and APM systems.
(4) Performance of sophisticated tying in PPM is comparable to standard tying

on the Arabic corpus; performance of sophisticated tying in PPM is slightly better

than standard tying on the American English corpus.

(5) Performance of Unsupervised APM systems (without use of transcriptions dur-

ing test time) are comparable to standard baseline systems in DID on both corpora.
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Chapter 6

Pronunciation Generation

Experiments

In the last chapter, we ran dialect recognition experiments to assess how well the
proposed models learns phonetic rules. In this chapter, we conduct pronunciation
generation experiments, where we evaluate how well a model has learned phonetic
rules by generating dialect-specific pronunciations given a reference dialect’s pronun-
ciation. We ran experiments on two datasets!: (1) WSJ-CAMO (see Section 6.1), and
(2) 5-Dialect Arabic Corpus (see Section 6.2, and summarize the findings in Section

6.3.

6.1 Experiment I: WSJ-CAMO

The objective of this experiment is to assess how well a pronunciation model generates

British pronunciations given American pronunciations.

6.1.1 Assumptions

1. All pronunciation variations across dialects are governed by underlying phonetic

rules.

IWe did not run this experiment on StoryCorps because we do not have pronunciation dictionaries
for AAVE to use as ground-truth surface phones.
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2. The phonetic transcriptions provided by WSJ-CAMO are ground-truth surface
phones O*.

3. The ability to predict ground-truth surface phones from the trained pronuncia-
tion model indicates how well the phonetic rules are learned from the pronun-

ciation model algorithms.

We are aware that some of these assumptions might be oversimplifications in

reality, but they are useful for analysis purposes.

6.1.2 Experimental Setup
Data: WSJ-CAMO

WSJ-CAMO [78] is the UK version of the American English WSJO database [70]. The
training set is 15.3 hr (92 speakers); the test and dev set are each 4 hr (48 speakers).
For more details of WSJ-CAMO please refer to Section 4.2.1 and [78].

PPM and APM systems were trained using WSJ-CAMO’s train set. The reference
phones C are determined by the WSJ0 American English pronunciation dictionary

~and the ground-truth surface phones O* are the phonetic transcriptions provided by

WSJ-CAMO, as mentioned in Section 6.2.1.

PPM Systems

Given a trained pronunciation model, we generate the most likely observations O
given the reference phones C' in the test set?>. Dynamic programming is used to align
O with the ground-truth O*. (See Figure 6-1.)

The phone error rate (PER) between O* and O is listed in Figure 6-3. As shown
in Figure 6-2, the baseline system Sy is the case where no pronunciation model is
used; i.e., the PER between the ground-truth surface phones O* and the reference

phones C' (obtained from the American WSJ dictionary.)

2Total number of phones in the test set: 299,853.
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Reference phones C in test set
(from PRONLEX Am. Dictionary) Most likely surface

[m] [ae] [th] Trained Phoma sequence O
[K1 1] [ae] [s] [p] [aa] [1] [T PPM

Text: math class part

[m] [aa] [th]
[k] [1] [aa] [s] [p] [aa] [t]

A 4

[m] [ae] [th] =
[k]1[1 [aa] [s] [p] [aa] [r] [] — "] Align & compare
Ground-truth surface

phones O*in test
(WSJ-CAMO) [m] [ae] [th] [K] [1] [aa] [s] [p] [aa] [t]

[m] [aa] [th] [k] [1] [aa] [s] [p] [aa] [t]
sub

Phone error rate (PER): 9%

Figure 6-1: Ezperimental setup for pronunciation generation experiment.

Reference phones C in test set
(from PRONLEX Am. Dictionary)

|
[m] [ae] [th] [K] [1] [ae] >
[s] [p] [aa] [r] [t] '1

v
[m] [ae] [th] [K] [1] [aa] .
[sllpllaal 1l — | Align & compare
Ground-truth surface
phones O*in test
[m] [ae] [th] [K] [1] [aa] [s] [p] [aa] [f]
[m] [ae] [th] [K] [1] [ae] [s] [p] [aa] [r] [t]
sub del

Phone error rate (PER): 18%

Figure 6-2: Baseline for pronunciation generation experiment.
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APM Systems

We assess how well triphone APM (System A;) is modeling British dialect acoustics
by comparing it with two systems: (1) System S,, an oracle APM system trained on
WSJ-CAMO’s audio and pronunciation dictionary, and (2) System S, a baseline APM
system trained on WSJ0’s audio and pronunciation dictionary. All 3 systems decode
the test set of WSJ-CAMO, and the decoded phones are aligned with ground-truth
O* to compute PER (see Figure 6-4.) All systems used standard tying for triphone

state clustering.

Note that PPM systems are given the reference phones at test time (i.e., super-
vised), while the APM systems decode phones without transcription aid at test time

(i-e., unsupervised). Thus, it is expected that PPM systems obtain lower PER.

Statistical Test

We used the matched pairs test in [36] to evaluate whether the performance difference
of the two systems being compared are statistically significant. Errors were divided

into deletion, insertion, and substitution; each type of error was analyzed separately.

Method. Let us suppose that we can divide the output stream from a pronunciation
model system into segments in such a way that the errors in one segment are statis-
tically independent of the errors in any other segment. ‘Suppose we are comparing
the performance difference of ¥; and Y, Let N} be the number of errors made in the
i-th segment by System Y;', and N§ the number of errors made by System Y,. Note
that the type of error is unimportant, as long as the method of counting errors is

consistent for each segment and for both systems.

Let Z; = N{ — Ni, i = 1,...,n, where n is the number of segments. Let u, be
the unknown average difference in the number of errors in a segment made by the

two Sysfems. We would like to ascertain whether p, = 0. The maximum likelihood
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estimate of u, and the variance of Z; are

P =
fix = ; - (6.1)
N 1 &
i= Z(Zi — pz)” (6.2)
n—1 p
If W is defined as
_ He
W= —0}/\/7_!’ (6.3)

then assuming n is sufficiently large, W will approximate a standard normal
distribution A(0,1). We can test the null hypothesis Hy: u, = 0, by computing
P = 2Pr(Z > |w|), where Z is a random variable with distribution A'(0,1) and w is

the realized value of W.

Implementation Details. We divided the generated surface phone outputs into
segments where no errors have occurred for some minimal time period T' (good seg-
ments) and segments where errors occur (bad segments), according to [36]. T is
required to be sufficiently long to ensure that after a good segment, the first error in
a bad segment is independent of any previous errors. T' was swept on the develop-
ment set (ranging from values of 9 to 402 phones), and all resulted in similar p-values
(p < 0.001) on the test set. The number of segments n ranged from 756 to 32491,
which is assumed to be sufficiently large enough for W to be normally distributed,

where a reasonable estimate of the variance of Z; can be obtained.

6.1.3 Results

Results of the PPM systems are shown in Figure 6-3, and those of APM are shown
in Figure 6-4. All improvements are shown to be statistically significant (p < 0.001).
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System Phone Error Rate (PER) (%)
Overall Deletion Insertion Substitution
So: Baseline 21.7 4.0 3.6 14.2
§;: Mono PPM 15.1 2,0 33 9.8
S;: Tri PPM (standard tying) 9.0 2.1 1.9 5.0
S:: Tri PPM !sthisticated ﬂinsr 9.0 1.4 2.6 5.0

System Relative improvement to baseline (%)
Overall Deletion Insertion Substitution
S;: Mono PPM 304 50 8.3 31
§;: Tri PPM (standard tying) 59 48 47.2 64.8
S5. Tri PPM (sophisticated tyinE) 59 65 27.8 64.8

Figure 6-3: PPM system performance in generating British pronunciation from Amer-
ican pronunciation.

System Training data Phone Error Rate (PER) (%)
Audio Dictionary | Overall || Del. Ins, Sub.
A,: Oracle (upper bound) | WSJ-CAMO | WSIJ-CAMO 25.3 42 6.6 14.5
Ajy: Baseline wSJo WsJo 42.5 9.0 6.0 275
Az Tri APM WSJ-CAMO WSJO 27.9 5.3 5.0 | 5]
System Relative Improvement to Baseline System A, (%)
Overall Deletion Insertion Substitution
Ay Tri A_PM 34.4 16.7 36.4
System Relative Difference from Oracle System A, (%)
Overall Deletion Insertion Substitution
Az Tri APM 9.3 20.8 -32 17.1

Figure 6-4: APM system performance in generating British pronunciation from Amer-
ican pronunciation.
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6.1.4 Discussion
PPM Systems: Sophisticated Tying is Suitable in Modeling Deletions

Without using phonetic context, monophone PPM (System S;) already beats the
baseline (System Sy) by 30.4%. Relative gains from triphone PPMs (System S; and
S3) are even greater, both reducing the baseline PER by 59% relative. However, the
matched pairs test [36] shows that the two systems are making statistically different
errors (p < 0.001).

Compared to Monophone PPM (System S;), System Sz shows negative improve-
ment in deletion errors (—5%), implying that standard tying over-generalizes deletion
rules. When considering deletion errors, sophisticated tying (System S3) beats stan-
dard tying (System S3) by 33% relative, supporting our hypothesis that arc clustering
is suitable in modeling deletions. It also corresponds with linguistic knowledge that
the phone of interest is generally affected more by its right-context than left-context;
e.g., R-dropping in RP [92]. Among the /r/’s that were incorrectly deleted in stan-
dard tying (System S;), sophisticated tying (System Ss) correctly generated 24%
of these /r/’s. Though sophisticated tying (System S3) reduces deletion errors, its
insertion errors increases when compared to standard tying (System Sz). This phe-
nomenon might be caused by data sparsity, since sophisticated tying requires more

model parameters than standard tying.

APM System

From Figure 6-4, we see that triphone APM (System A,) beats the baseline System
Ay by 34.4% relative. The sub-category relative error reductions are 41%, 16.7%,
and 36.4% for deletions, insertions, and substitutions, respectively. We empirically
discovered large channel differences between WSJO and WSJ-CAMO (see Appendix
B). Therefore, these gains also include channel differences, making them appear
overly optimistic. Nonetheless, the performance of triphone APM (System A,) is
not far from that of the oracle system A,: System A, beats triphone APM (System
A3) only by 2.6% absolute and 9.3% relative, suggesting that triphone APM is fairly

123



capable of transforming American pronunciations to British pronunciations.

6.2 Experiment II: 5-Arabic Dialect Corpus

6.2.1 Assumptions

We adapt the assumptions in Section 6.1 to the following.

1. All pronunciation variation across dialects are governed by underlying phonetic

rules.
2. All pronunciation variation across dialects are captured in pan-Arabic Dict.

3. The ground-truth surface phones O* of each dialect can be obtained by force-

alignment using pan-Arabic Dict, word transcripts, and the IQ phone recognizer.

4. The ability to predict ground-truth surface phones O* using the trained PPM
system indicates how well the underlying phonetic rules are retrieved from the

PPM algorithm.

6.2.2 Experimental Setup
Data: 5-Dialect Arabic Corpus

All experimental setup are the same as Section 6.1.2, except that the ground-truth
surface phones are obtained through force-aligning the test set audio with pan-Arabic

Dict.

6.2.3 Results

The phone error rate between the ground-truth surface phones and the estimated
surface phones (generated from the trained PPMs system) of the test set are averaged

across the four dialects (AE, EG, PS, SY). Results of the PPM systems are shown in
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System Phone Error Rate (PER) (%)
Overall Deletion Insertion Substitution
S,: Baseline 14.73 4.83 2.35 7.55
S§;: Mono PPM 14.61 4.83 2.35 7.43
82 Tri PPM (standard tying) 14.56 4.88 235 7.33
S3: Tri PPM Poghisticated Ez‘“E? 14.48 4.83 2.35 7.30
System Relative improvement to baseline (%)
Overall Deletion Insertion Substitution
S7: Mono PPM 0.81 0 0 1.59
S Tri PPM (standard tying) 1.15 -1 0 291
S35 Tri PPM (sophisticated tyinﬁ? 1.70 0 0 3.31

Figure 6-5: PPM system performance in generating dialect-specific (AE, EG, PS, SY)
pronunciation from reference (1Q)) pronunciation.

Figure 6-5. All improvements are shown to be statistically significant (p < 0.01). The
baseline system Sy is the case where no pronunciation model is used; i.e., the PER
between the ground-truth surface phones O* and the reference phones C' (obtained

from forced-alignment using [Q-Dict.)

6.2.4 Discussion

Relative gains of the PPM systems are small, but statistically significant. The main
performance gain is from substation errors. Insertion errors showed no improvement,
but was low (2.35%) to begin with. Monophone PPM (System S)) improves the
baseline (System Sp) by 0.08% relative. The relative gain from System S, (triphone
PPM; standard tying) is slightly larger (1.15%). Similar to the WSJ-CAMO case,
System S, shows negative improvement in deletion errors (—1%) when compared to
the baseline (System Sj) and monophone PPM (System S;). This result implies that
standard tying is not suitable for modeling deletions. System Sj (triphone PPM:;
sophisticated tying) is the best performing system, reducing the substitution error by

3.31% relative, and overall error by 1.71%.
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6.3 Summary

In this chapter, we evaluate fhe ability of a pronunciation model to learn phonetic
rules by how well it is at generating dialect-specific pronunciation from a reference
dialect. We ran experiments on two datasets: (1) WSJ-CAMO, where we generate
British pronunciation given the American pronunciation, and (2) 5-Dialect Arabic
Corpus, where we generate pronunciations of non-Iraqi Arabic dialects (AE, EG, PS,

SY) from Iragi Arabic pronunciation. Our results suggest that

1. Phonetic context improves performance of generating dialect-specific pronunci-

ations from a reference dialect.
2. Standard tying increases deletion errors, while sophisticated tying does not.

3. Triphone APM could potentially perform even better if sophisticated tying is

used instead of standard tying.
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Chapter 7

Rule Retrieval Experiment

In the last two chapters, we ran dialect recognition and pronunciation generation
experiments to assess how well the proposed models learns phonetic rules. We were
not able to run pronunciation experiments on StoryCorps due to the lack of an AVVE
pronunciation dictionary. Therefore, in this section we run an information retrieval
experiment on StoryCorps to assess how well our proposed pronunciation models are

able to retrieve rules documented in the literature.

7.1 Experimental Setup

We compare automatically learned rules with the linguistic literature, and use infor-
mation retrieval to quantify our results. Only systems exploiting phonetic context

are considered since these rules often depend on context.

7.1.1 Data: StoryCorps

Two sets of American English dialects were chosen from StoryCorps [46]. (1) African
American Vernacular English (AAVE): speakers self-reported as African Americans.
(2) Non-AAVE: speakers self-reported as white. The conversations are between speak-
ers of the same dialect to minimize accommodation issues [35]. Gender and age were

balanced across all sets and dialects. The train set is 22.6 hr (69 speakers), the dev
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set is 7.1 hr (38 speakers), and the test set is 7 hr (28 speakers). For more details of
StoryCorps please refer to Section 4.2.3 and [46].

7.1.2 Ground-Truth Rules

We adopted descriptions of the AAVE dialect from the literature (e.g., [93]), converted
them to 31 phonetic rules with the help of linguists. These rules serve as the ground-

truth rules in this experiment. We list these rules in Figure 7-1 and Figure 7-1.

7.2 Implementation Details

For a given ground-truth rule, a rule retrieval experiment was done. True trials are
triphone states in the test set that match the ground truth rule’s center phone and
phonetic context. False trials are triphone occurrences in the test set that match the
center phone of the ground truth rule but not the phonetic context. The duration-
normalized log likelihood ratio of each trial was used to compute recall' and precision?
for each rule retrieval experiment. To compare pronunciation models, we used two
metrics: (1) the precision rate (when recall is fixed at 0.1), and (2) the optimal
F measure®, determined by tuning the decision threshold on the dev set. These
measurements were averaged across the 30 rule retrieval experiments and listed in

Figure 7-3.

7.3 Results and Discussion

Results from the rule retrieval experiment are listed in Figure 7-3 and Figure 7-4.
From Figure 7-3 and Figure 7-4 we see that triphone APM (System Aj) outper-

forms the triphone PPM using standard tying (System S;) by 42% in F measure, and

48% in precision. Triphone APM (System Aj) outperforms the triphone PPM using

recall = P(retrieved rules|ground truth)
2precision = P(ground truth|retrieved rules)
3F — 2XxprecisionXrecall

precision+trecall
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CONSONANTS
Interdental fricatives become labial fricatives

[dh] -> [v]/ [+vowel] _ [+vowel]
[th] -> [f] / [+vowel] [+vowel]
Coronal fricatives become stops
[dh] -> [d] / [+vowel] _[+vowel]
[th] -> [t] / [+vowel] _ [+vowel]
[th] -> [d}/ _ [n]

[s] ->[d) _[n]

velar nasal become alveolar
[ng] -> [n]

VOWELS
/eh/ and /ih/ merger
[eh] -> [ih]

[eh] ->[ih]/ [+nasal]

[eh] -> [ey] / _[1]
[eh] ->[ey]/ _[r]
[ih] elongation
[ih] -> [iy]

[ih ]->[ae] / [th] [ng]
[ao] vowel shift

[ao] -> [aa]

[ay] monophthongization
[ay] -> [ae]

[ay] ->[aa] / [+cons]
[ay] -> [ae] / [+cons]
[ay] vowel shift
ay] -> [oy]

aw] vowel shift
[aw] -> [ow]
[aw] ->[ay]/ [1]
[aw] ->[aa]/ [1]
[aw] > [uw] /_[t]
[aw] ->[ow] /_[t]
[uw] vowel shift

Figure 7-1: Ground-truth substitution rules.
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Consonant cluster deletion

[-voiced +cons] -> & / [+nasal +cons] _
[+voiced +cons] -> & /[+nasal +cons]
R vocalization

r-> g/ [+vowel] _

r-> @ / [+vowel] _[+vowel]

r->g/ [+cons +stop +front]

L vocalization

1-> @ /[+vowel] [+cons]

—=Eme

Figure 7-2: Ground-truth deletion rules.

System Average Average Precision
F measure (Recall=0.1)
Is,; Tri PPM (standard tying) 0.24 0.14
S;5: Tri PPM _(sophisticated tying) 0.13 0.08
IA;: Tri APM sstandard ﬂi“E! 0.42 . 0.27

Figure 7-3: Comparison of rule retrieval results.

sophisticated tying (System S3) by 70% in both F measure and precision. These re-
sults imply that the triphone APM system retrieves dialect-specific rules much better
than the PPM systems, as is also suggested in the DID task.

"The lack of deletion rules in the ground-truth list might be one reason why System
S3 (sophisticated tying) performed poorly. A caveat to this experiment is that the
ground truth rules selected here are not comprehensive. In addition, some of these
rules might be anecdotally used to describe the AAVE dialect, but lack empirical and
statistical verification. In future work, rule candidates from the false alarms could be

further analyzed and potentially complement existing linguistic knowledge.
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0.5

0.4

0.3

0.2

0.H

42%

F-measure

B S2: Tri PPM (standard)
O $83: Tri PPM (sophisticated)
B A2: Tri APM (standard)

Precision (recall=0.1)

Figure 7-4: System Ay Tri-APM improves retrieval rate by at least 42% relative.
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7.4 Summary

In this chapter, we ran a rule retrieval experiment to compare the learned rules
with linguistic descriptions of the AAVE dialect. We found that the acoustic-based
pronunciation model (APM) outperforms the other pronunciation models. In the
next chapter, we will examine the top ranking rules in the proposed pronunciation

models and discuss their implications.
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Chapter 8

Discussion of Automatically

Learned Rules

Automatically learned rules from our proposed systems could be challenging to inter-
pret at first sight, as its appearance seems different from linguistic rules. However,
they provide rich implications that can be further explored and examined. In this
chapter, we compare the top ranking rules from the proposed systems with linguistic
literature descriptions, and discuss the potential implications of these rules, advan-
tages and limitations of the model, and how these results could help linguists further
examine dialect-specific characteristics. We also illustrate examples of where the
learned rules correspond to the linguistic literature, suggesting that the proposed

models are moving in the right direction of learning dialect-specific rules.

8.1 Determination of Top Ranking Rules

We list top ranking rules and compare them with linguistic descriptions in Figure
8-3, Figure 8-10, Figure 8-11, Figure 8-12, Figure 8-5, Figure 8-1, Figure 8-2, Figure
8-13, and Figure 8-14. The occurrence frequency of the phonetic transformation given
the phonetic context of the learned rule (denoted as Prob.) is also listed. Linguistic

descriptions were extracted from [93] for AAVE, [92] for RP, and [90, 53] for Arabic
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dialects?.
The ranking is determined by log likelihood ratio computed just as in in Section
7.1.2 For substitution and insertion rules, only the top 2% were selected. For deletion

rules, the top 25% were selected.?

8.2 Rule Analysis and Interpretation

8.2.1 Refined-Rules with Quantification of Occurrence Fre-

quency

We see in Figure 8-1 that System S; is able to learn the trap-bath split rule: |ae] trans-
forms to [aa] when [ae] is followed by a voiceless fricative. However, this linguistic rule
corresponds to two automatically learned rules. The frequency of this transformation
is also context dependent. If the following voiceless fricative is [+front] (i.e. [f]) the
transformation is more likely to occur as opposed to the case where [ae] is preceded
by a voiceless phone and followed by a un-fronted voiceless fricative (i.e., [s], [sh], [th],
[ch]); the probabilities are 0.843 vs. 0.52. According to these automatically learned
rules, the transformation is more likely to occur in a word like laugh than a word like
pass

These results give us insights into how to further analyze linguistic descriptions,
refine the conditioning of the rules, and quantify how frequently these rules take
place. We discuss another example in the AAVE dialect below. It is documented 7
in the literature that the vowel [ao] transforms to [aa] in the AAVE dialect [93].
However, our results in Figure 8-3 shows that [ao] is is transformed to [aa] when it is
preceded by vowels with mid height (i.., [ah], [eh], [er], [ey], [ow], [uh]). Again, we
see that the probability of this phonetic transformation taking place depends on the

1VVe only found linguistic descnptlons of substation rules in Arabic dialects [90, 53], so we only
compare learned substitution rules with them in Figure 8-13 and Figure 8-14.

For RP (WSJ-CAMO), the log likelihood was computed instead because there is no non-target
model.

3The definition of top ranking is different for substitution/insertion rules and deletion rules
because there are far more substitution and insertion rules (42 times more).
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Literature Proposed System

Rule Learned Rule Prob.
[ae] -> [aa] /_ [+fric, - [ae] -> [aa] /_ [+fric, -voiced, +front] 0.843
voiced] [ae] -> [aa] / [-voiced] _[+fric, -voiced, -front] | 0.520
(trap-bath split)
[f1->@/ _[+cons, #] [er];.s -> [ah] / [+vowel, -nasal] _ [-vowel, -sil, - | 1.00
(R Dropping) glide, +fric, -dipth, -lig, -syl, -stop, +affric]

[er] -> [ah] / [+syl, +liq] _ [-short, +fric, -vowel, | 1.00
-dipth, -glide, -lig, -syl, +voiced, -stop, +affric]

Figure 8-1: RP substitution rule comparison. Learned rules from System S, (Triphone
PPM; standard tying.)

phone following [ao]: the probability is higher (0.254) if the following phone is a stop
as opposed to a non-stop (0.196).

These frequency differences and narrowing of phonetic context conditioning could
reflect the reality that some phonetic contexts more easily lead to transformations. It
should be noted that there are other possible reasons for this phenomenon to occur.
For example, since the training data is not infinite, it is possible that this phenomenon
is a result of under-sampling of certain words, causing rules to be over-specified. More
training data and further investigation is required to verify if under-sampling is an

issue.
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Literature Proposed System
Rule Learned Rule Prob.
[1->w@/ _[+cons] [r]1-> @ / [+low, +long] _ [-vowel] 0.926
(l->e/ _[# [r] -> @ / [-low] _ [-syl] 0.02
(R Dropping) [er] > o 0.006
¥ s [ah] -> @ / [-glide, -voiced, +fric] _ [-syl, 0.772
+nasal, +cent |
?? [ah] -> @ / [+cent, -lig, -stop] - [+syl] 0.623

Figure 8-2: RP deletion rule comparison. Learned rules from System Ss (Triphone
PPM; sophisticated tying.)
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Literature Proposed System

Rule Learned Rule Prob.

[th] -> [d] /_ [n] [th]ies -> [d] 0.079

[eh] -> [ih] [eh] -> [ih] / _ [+nasal] 0.624
[eh] ->[ih] / _ [+nasal]

[eh] -> [ey] /_][l,r] [eh]i,s -> [d] 0.078

[ao] -> [aa] [ao] -> [aa] / [+mid] _ [+stop] 0.254

[ao] -> [aa] / [+mid] _ [-stop] 0.196

[ao] -> [ah] / _ [-mid, +voiced] 0.247

[a0]i,s -> [I] _ [-syl, -lig, -nasal, +voiced] | 0.402

[ay] -> [ae] [ay] -> [ae] / [-lig, +sil] _ 0.124

[ay] -> [ae] / _ [+cons] [ay] -> [ae] / [-liq, -sil, +nasal] _ 0.112

[ay] -> [aa] I= [+cons] [ay] -> [ae] / [-lig, -sil, -nasal, -front] _ 0.209

Figure 8-3: AAVE substitution rule comparison. Learned rules from System S, (Tri-
phone PPM; standard tying; surface phones obtained through phone recognition.
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8.2.2 Redundant phonetic context descriptions

At first sight, automatically learned rules might seem very different from rules from
the linguistic literature. However, this is not necessarily always true. For example, the
first learned rule corresponding to R-dropping in Figure 8-1 has a lot of redundancies
in its phonetic context. It can more tersely be expressed as [er]ins — [ah] /" [+vowel]
_ [+affric]*.

To illustrate that the R-dropping phenomenon is occurring in this phonetic con-
text, we show the speech spectrogram of speaker c21 producing the utterance c21c0224
from WSJ-CAMO in Figure 8-4. The yellow highlighted region illustrates where the
reference phones and surfaces differ. The reference phone [er] becomes non-rhotic,
[ah]. The non-rhoticity of [er] is illustrated by the rising F3 near 1.25 second, since>

rhoticity causes a low F3 near 2K Hz.

8.2.3 Triphone APM Pinpoints Regions with Potential Acous-

tic Differences

For the APM systems, we list triphone examples that have high log likelihood ratio
ranking. In this case, these triphones indicate regions of interest, since the acoustic
characteristics in these regions are diﬁefent across dialects. These differences might
not be large enough to warrant a phonetic transformation, but further examination
might reveal certain acoustic characteristics that are dialect-specific.

Figure 8-6 shows an example of a top ranking triphone [uw-1] in AAVE. In the
surface phone sequence, and the speech spectrogrém, [1] is deleted in the word cool.
This corresponds with the 1 vocalization rule in AAVE descriptions. Figure 8-8 shows
multiple examples of triphones of [ay]. The light blue regions indicate [ay] triphones
that correspond to top ranking triphones in APM. The orange regions indicate [ay]
triphones that do not correspond with top ranking triphones in APM. We see that
APM is able to predict when [ay] deglides and becomes like a monophone, and when

it does not deglide. More examples of top-ranking triphones corresponding to the

4[+fric] was defined as fricative or affricate consonants.
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Surface

phones [dhah s uw  per p awah ch iy fs
Ref. _
phones dh iy S uw per p awer ch iy fs
Words The superpower chiefs

Figure 8-4: Ezample of learned rule [er]ins — [ah] / [+vowel] _ [+affric]. Speech
spectrogram of a British speaker saying the utterance, “The superpower chiefs”. The
yellow highlighted region illustrates where the reference phones and surfaces differ.
The reference phone [er] becomes non-rhotic, [ah]. The non-rhoticity of [er] is illus-

trated by the rising F3 near 1.25 second, since rhoticity causes a low F3 near 2K
Hz.
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Literature System S; (Triphone APM - standard tying)
Rule Dialect-Specifc Triphone Examples

[I]->@a/[+vowel] _ [-back, -[ah]] - [I] + [-vowel, -voiced, -sonorant]
[+cons]
[eh] -> [ih] [-voiced, -cons, -[w] ] — [eh] + [+nasal, +cons, -
[eh] -> [ih] / _ [+nasal] | back, -stop, -cent, -fric, -anterior]
[ay] -> [ae] [-[r]]- [ay] + [+glide, +voiced, -stop, -fric]
[ay] -> [aa] / _ [+cons] | [ay] + [+[w], -back, -stop]
[ay] -> [ae] / _[+cons] | [-sonorant, -cons] — [ay] + [-fric, -hh, +cons]

Figure 8-5: AAVE rule comparison. Examples of learned rules from System Ay (Tri-
phone APM; standard tying.)

literature descriptions are shown in Figure ?77.

8.2.4 Sophisticated Tying for Deletion Rules

In Figure 8-2 we see that the R-dropping rules are more concisely expressed, the closest
to the linguistic equivalent is [r] — @, [+low, +long] _ [-vowel|, with probability of
0.926 of deleting /r/ in such a context. Phones that belong to [+low, +long] are [aa),
[a0]. [aw], and [-vowel] is almost the same as [+cons|. When /r/ is preceded by [+low,
+long| vowels, it usually forms a syllable: [aa r]. [ao 1], [aw 1], which are often word
boundaries (denoted as # in the linguistic rule.)

We see that compared to the R-dropping rules learned in System S, (standard
tying), the R-dropping rules learned from System S; is more general and doesn’t just

cover special cases where [r] is followed by an affricate (see Figure 8-4 and Figure 8-9.)
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11 15 W /d-2anple-CooLvay, Fote: " LU, encod g .15, CTan-eix . lengh U141/ (hra )

sur. | t iy ch ih z|laa r |[ r iy | || k uw |
Ref. | t iy ch er z||laa r || r iy | || k

Words: Teachers are real cool

Figure 8-6: An erample of a top scoring triphone of APM corresponding to the /l/
vocalization rule in AAVE.
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Learned rule: [-sonorant, -cons] - [ay] + [+stop || +nasal

|-ay+k, m-ay+g do not obey learned rule

& oo O

ne

tine

Surface phones Ilay "m aa”m ah dlﬁ" ae n "m ay ” graen mahdh er |

Reference phones [lay l[may[mandhe][ ae  ndl[m  ay || g raendmandh er |

Words Like my mother and my grandmother

Figure 8-7: Ezample of a top scoring triphone of APM corresponding to the /ay/
monophthongization rule in AAVE. ,
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Sur. Iaa”ao | wey zl [ahn"ao I[hl ae k ” s

Ref. |ay|[ao Iwey z |

Words | always wanted to goto an all black

lae k|[|s

Figure 8-8: Ezample of a top scoring triphone of APM corresponding to the /l/ vo-
calization and /ay/ monophthongization rules in AAVE.
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British speaker F3 stays flat

Surface - =

phones [Shiy[[hh ae ch ih d aa k|| s uw t
Ref. hiy || hh ae d h daar k|l s uw t
phones bl 4 gl

Words She  had your dark suit

F3 goes down to near 2k Hz

». .

l'l
A \___

Huwm.& ~
s o -
53 1's s 1!1 1'e 1.9 z

Figure 8-9: Ezample of learned rule [r] — / [+low, +long] _ [-vowel]. Comparison
between of British speaker (top panel) and an American speaker (lower panel) saying
the same sentence, “She had your dark suit in greasy wash water all year”. The
yellow highlighted region illustrates where the reference phones and surfaces differ.
The British speaker’s F3 stays flat in the vowel of dark, while the American Speaker’s
F3 goes down near 2k Hz.

This is another indication that sophisticated tying is more suitable in modeling dele-
tion phonetic transformations, in addition to the DID and pronunciation generation

results in the previous chapters.

To further illustrate the rhoticity difference between RP and GAE, we contrast
the speech spectrograms of a British speaker and an American speaker (from TIMIT)
saying the same sentence, “She had your dark suit in greasy wash water all year” in
Figure 8-9. The yellow highlighted region illustrates where the reference phones and
surfaces differ. The British speaker’s F3 stays flat in the vowel of dark, while the

American Speaker’s F3 goes down near 2k Hz.
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Literature Proposed System

Rule Learned Rule Prob.
[I1-> @/ [+vowel] _[+cons] | [l]-> @ / [+short] _ [-vowel, -dipth, -glide, -liq, -syl, -voiced] | 0.224
[11-> @/ [-short] _ [-short, -dipth, +front] 0.132
[r] -> @ / [+vowel] _ [r] -> @/ [+cent] _ [+vowel, -low, -front, -dipth] 0.146

Evgw’z{] [+vowel] _ [r1 -> @ / [-round] _ [-vowel, -dipth, +glide] 0.11
[f]-> 8/ _[+const+stop, [r] -> @ / [-roundl] _ [-vowel,-dipth, -glide, -liq, -syl, +voiced] | 0.261
+front] [l -> @ / [-roundl] _ [-vowel,-dipth, -glide, +liq] 0.113
[r] -> @ / [-roundl] _ [-vowel,-dipth, -glide, -liq, -syl, +voiced] | 0.114
[r] -> @ / [+roundl] _ [-vowel,-dipth, -glide, -liq] 0.114
[+voiced +cons] -> @ / [in] -> @ / [+nasal ] _ [-vowel] 0.117
PaRal o)., [z] -> @ / [+nasal, -short ] _ [-vowel] 0.069
[-voiced +cons] -> g / [+nasal | [th] -> @/ _ [-vowel, +voiced, -dipth, +glide] 0.051
+cons] _ [s] -> @ / [-stop] iﬂop, -cent, -front, -vowel] 0.091

Figure 8-10: AAVE deletion rule comparison. Learned rules are from System Sy (Tri-
phone PPM; sophisticated tying; surface phones obtained through phone recognition.

Though Sophisticated Tying performed poorly in the information retrieval exper-
iment (StoryCorps) in Section 7.1, we see that in Figure Figure 8-10 and Figure 8-12,
most of the ground-truth deletion rules have corresponding automatically learned
rules. These results imply that the information retrieval result could be overly pes-

simistic for sophisticated tying.

8.2.5 False Alarms: Potential New Rules

In Figure 8-2, we see the last two learned rules correspond to question marks in the
literature column, indicating that we did not find corresponding rules in the literature
for deleting schwa [ah]. One possible explanation is that the schwas in fun, nation, sun

are heavily nasalized, causing the schwa vowel to appear as if it has disappeared /been
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deleted. It might be a common reduction in spoken English, which may or may not
be dialect-specific (we do not have suitable ground-truth surface phones for American
English to determine if this phonetic reduction also occurs in GAE and how often it
occurs.) Further investigation is required to examine if these rules with high rankings

are indeed dialect-specific rules or mere experimental artifacts.

8.3 Fu’tur»e Model Refinement

An interesting observation is that while the insertion states were originally meant to
model insertions, it appears that it is sometimes used to learn uncommon substation
rules. For example, in Figure 8-3 we see that the insertion state of [th], denoted as
[th]ins, models the transformation [th] — [d]. Another example is [eh] in Figure 8-3.
The transformation of [eh] — [ih] is more common than [eh] — [ey]. The former is
modeled by a normal [eh] state, while the latter is modeled by the insertion state of
[eh].

In our current model setup, it is more challenging to interpret insertion rules,
given that it is possible for substation rules modeled by insertion states as previously
mentioned. In addition, for the dialects we are investigating in this thesis, there
appears to be fewer insertion rules documented in the literature, making it more
challenging to interpret them. In future work, we plan to investigate how to model

and interpret insertion rules with more precision and detail.

8.4 Summary

- We compared the automatically learned rules for RP and Arabic Dialects with those
in the literature and discussed the properties of learned rules. Our results suggest
‘that our system could be used to further analyze phonetic rules (in terms of their
occurrence frequency and cbntext conditions) and acoustic characteristics across di-

alects.
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Literature Proposed System
Rule Learned Rule Prob.

[eh] -> [ih] [eh] -> [in] 0.23
[eh] -> [ih] / _ [+nasal]
[dh] -> [d] / [+vowel] _ | [dh],.s -> [th] 0.064
[vowel]
[uh] -> [uw] /_[1] [uh] -> [uw] 0.004
[ao] -> [aa] [ao] -> [aa] 0.009
[aw] -> [uw] [aw]y > [uw] 0.012

Figure 8-11: AAVE substitution rule comparison. Learned rules are from System F,
(Triphone PPM; standard tying; surface phones obtained through forced-alignment. )

Literature Proposed System
Rule Learned Rule Prob.
[r]-> @/ [+vowel] _ [r] -> @ / [+vowel] _ [-cent, -vowel] 0.09
[r)->-exd [vowel]_[+vowe] [r] -> @ / [+vowel] _ [+cent, -vowel] 0.097
[(1-> @/ _[+cons, +stop, +front]
[r] -> @ / [+vowel] _ [+cent, +vowel] 0.101
[-voiced +cons] -> @ / [+nasal +cons] _ [t]-> @/ _ [+voiced] 0.112
[hh] -> @/ _ [-high, -short, +vowel, +dipth] 0.028
[+voiced +cons] -> @ / [+nasal +cons] _ [yl -> @/ _[-round, +vowel] 0.163
[I] -> @& / [+vowel] _ [+cons] (1] -> @ / [+vowel, +short] _ [-vowel, -dipth, +glide] | 0.034
(1] -> @ / [+vowel, -short] _ [-vowel] 0.069
[I] -> @ / [+vowel, +short] _ [-vowel, -dipth, -glide] | 0.094
(1] -> &/ [-vowel] - [+vowel, -dipth] 0.033

Figure 8-12: AAVE deletion rule comparison. Learned rules from System F3 (Tri-
phone PPM; sophisticated tying; surface phones obtained through forced-alignment. )
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Literature Proposed System
Description Dialect Learned Rule Prob | Dialect
0.79 EG
Interdental fricatives become EG |[th]->[t]/_[*long] 0.70 PS
stops PS 0.87 SY
SY | [dh]->[d]/[-back] _ 0.57 EG
[th] > [t] / [-short] _ [-long] 0.62 EG
vowel [0] exists - . 1 [0:] ->[u:] / _ [t+fricative, -voiced] | 0.68 EG
(usually only [a], [i], [u] exist) [0:] ->[a] / _ [+fricative, +voiced] | 0.51 | EG

Figure 8-13: Ezamples of learned rules from System F, (Triphone PPM; standard
tying) trained on 5-Dialect Arabic Corpus.

Literature Proposed System
Description Dialect Learned Rule Prob Dialect
Palatal voiced affricate ;
becomes palatal approximant AE. | [9Z)==]1] 1 [seyl) Vol AR
Palatal voiced affricate EG |[dz]=>[d] 0.25 EG

becomes voiced stop

0.28;0.27; | AE,EQG,

vowel [o] exists Q  lo:]->[a] 0.32;027 | PS,SY
[th] > [t})/_[-short] 0.60 G
o EG | [th] ->[t]/ [-low] _ [+short] 0.59
:?;;gdental fricatives become PS | [th]->[q] 0.42;043 | PS,SY
SY | [dh]->[d] 0.24; 0.29 PS, SY
[dh] -> [d] / [-front] _ 0.33 EG

Figure 8-14: Ezamples of learned rules from System S, (Triphone PPM; standard
tying) trained on 5-Dialect Arabic Corpus.
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Chapter 9

Conclusion

We conclude the work of this thesis by summarizing our contributions and discussing

research directions for future work and potential applications.

9.1 Contributions

The contributions of this thesis are:

1. Proposed automatic yet informative approach in analyzing speech variabil-
ity. This interdisciplinary research direction in dialect studies, combining the
strengths of speech science and engineering, is termed Informative Dialect Recog-

nition.

2. Proposed mathematical framework to characterize phonetic and acoustic trans-

formations across dialects in a rich and explicit manner.

3. Empirical results in rule retrieval, pronunciation generation, and dialect recog-

nition indicate that proposed systems exploit underlying rules across dialects.

4. Proposed models complement existing dialect recognition systems, suggesting
the proposed models exploit information not used in traditional dialect recog-

nition systems.
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5. Proposed system postulates rules from large corpora to a phonetician to dis-

cover, refine, and quantify rules.

6. Surveyed corpora resources for dialect research, and address challenges in infor-

mative dialect recognition.

9.2 Discussion and Future Work

9.2.1 Characterizing Rules
Learning Right-Context Driven Rules More Comprehensively

One limitation of the current implementation setup of the proposed pronunciation
model is that right-context driven substitution /insertion rules might not be learned
comprehensively. For illustration purposes, assume a dialect difference between Amer-
ican and British English is vowel nasalization: all vowels followed by a nasal conso-
nant will be fully nasalized in American English; i.e., [+vowel] — [+vowel, +nasal]
/ _ [+nasal]. In the current setup, these right-context rules might be learned in a
fragmented way separately for each vowel, as illustrated in Figure 9-1. (The rule is
right-context driven because the driving force of the phonetic change is caused by the
nasal consonant on the right context of the vowel.) These vowel nasalization rules
are still being learned, but perhaps not in a manner that fully exploits the generality
of the rule.

This limitation can be gracefully handled by reversing all directions of the state
transition arcs as shown in Figure 9-2. Then both left and right-context driven rules
can be learned appropriately. It is expected that the fusion of these two systems

would yield more gains in dialect recognition experiments.

Rules Beyond Triphone Contexts

Some phonetic rules are influenced by phones beyond their directly neighboring
phones. For example, words such as dance, chance, can’t, and stamp also trans-

form the vowel [a€] to [aa] in British English. In these phonetic transformations, [ae]
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Rule: [+vowel] -> [+vowel], .;aiz0a / _ [*Nasal]

[iy] -> [Ylnasaiizea / _ [*nasal]
[ah] -> [ah],asaizeq / _ [+Nasal] Learned rules are

[aY] el [ay]nasalized l — [+nasa|] Iess general

typ

typ
N OIOIOIOIO
British

Observations e
(Surface phones) | s y n

American Zy

Word transcript SEEN
Figure 9-1: Example of rule learning limitation in current system setup.

is followed by a nasal that is followed by a consonant. These rules could be modeled
by expanding the current implementation setup from triphones to quinphones (or
phones conditioned on even more neighboring phones). Since quinphones face more
data sparsity problems than triphones, more smoothing procedures might be required

to estimate model parameters better.

Articulating Specific Discriminating Acoustic Properties

Characterizing dialect differences (or any kind of speech variability) is a challeng-
ing task, because dialect differences are often not discrete and binary. There are
different degrees of acoustic implementation, which might not fit into any phonetic
category. APM (Acoustic-based Pronunciation Model) is able to handle these fine-
grained changes. It pinpoints locations that are acoustically different across dialects.
In the current system, human examination is required to further understand which

acoustic aspects are different. It could be more efficient for the speech scientist if
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typ

typ
States ° e 0 @
British i :

Observations p
(Surface phones) | s 4 n
American ’Ly
Word transcript SEEN

Figure 9-2: Limitation shown in Figure 9-1 can be elegantly dealt with simply by
reversing the direction of all state transition arcs.

152



APM (Acoustic-based Pronunciation Model) could further pinpoint which acoustic

properties might be different (e.g., voicing, formant transitions, nasalization).

Discriminative Clustering

The splitting criteria for state and arc clustering could be changed to log likelihood
ratio of a target dialect and a non-target dialect. This discriminative clustering

approach could potentially learn more rules and improve DID performance.

Sophisticated Tying in Acoustic-based Pronunciation Model (APM)

Inferring from the StoryCorps PPM results, sophisticated tying could potentially
further improve the performance of triphone APM. This hypothesis could be verified

empirically.

Integrating Higher Linguistic Component

Other linguistic components that contribute to pronunciation differences (such as
prosody, vocabulary, syntax) could also be considered to make the pronunciation
model more comprehensive.

Some of these higher level characterization could be easily integrated at the

decision tree level by adding yes-no questions such as “is the phone at a sylla-

ble/word/utterance final position”.

Characterizing Dialects using Distinctive Features

Instead of using phonetic transformations (substitution, insertion, deletion) we can
characterize dialect differences at a finer level, such as distinctive features [61]. The
main challenge is existing resources would be more even more limited, since it requires

corpora of different dialects with detailed, fine-grained/feature manual transcriptions.
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9.2.2 Redefining Dialects through Unsupervised Clustering

In this work, we used region of residence or ethnicity as a proxy for dialect. As
discussed before, many factors influence and correlate with dialect, so it is challenging
to to determine the single ground-truth dialect of a speaker.

Dialect groups are often defined by convenient cultural indicators rather than on
the basis of similarity [50]. One of the challenges of dialect research stems from
this ill-defined nature of dialects. However, if we categorize speakers based on their
pronunciation characteristics, we could examine dialect characteristics from a different
perspective. For example, we can apply unsupervised clustering to find speakers with
similar pronunciation characteristics. Each speaker could belong to different clustered
groups at the same time. For example, a speaker might be 90% rhotic and 10% non-
rhtoic. These probabilistic and finer-grained results could better characterize dialects.
These unsupervised clustered groups can be compared with traditional dialect labels,

and further our understanding and analysis of dialects.

9.2.3 Further Verification on Model Robustness

We ran experiments on a diverse set of corpora to test out our proposed algorithms,
obtaining empirical results from different languages (Arabic and English) and different
speaking styles (conversation vs. reading). It would be beneficial to empirically verify

that our proposed models work on other dialects, languages, and speaking styles.

9.3 Potential Applications

There are numerous potential applications for this thesis work (see Figure 9-3). We

describe some of them below.

9.3.1 Speech Technology: Dialect and Speaker Recognition

Our dialect recognition results suggest that the proposed systems exploit information

that existing systems do not. Speaker differences could also potentially be char-
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acterized with our proposed systems, and complement existing speaker recognition

systems.

Unsupervised Scoring in Phonetic-based Pronunciation Model (PPM)

Unsupervised scoring (i.e., scoring without transcriptions) can be done under the cur-
rent PPM implementation, but the DID accuracy is low when scoring is unsupervised
without reference phones. The DID accuracy is at least partially due to the con-
straints on insertion and deletion state transitions, which could be relaxed to improve

performance.

9.3.2 Speech Analysis: Verify, Refine, and Propose Rules

As mentioned before, our model can serve as a first pass for linguists to analyze
new rules or re-examine existing rules in a more efficient manner than traditional ap-
proaches. Measures to verify validity of rules include (1) perceptual experiments done

by native bilingual subjects, and (2) further acoustic analysis by speech scientists.

9.3.3 Healthcare: Characterizing Speech and Voice Disor-
ders
Instead of characterizing dialects, our proposed framework can also be applied to

speech disorders. For example, some phonological disordered children do not pro-

nounce word-final consonants, so cat sounds like /k ae/ instead of /k ae t/ [5].

9.3.4 Forensic Phonetics

The proposed system can also help forensic phoneticians tease out which speech char-
acteristics are dialect-specific and which are speaker-specific [82], which is often not

well-documented in the literature.
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9.3.5 Education: Language Learning or Accent Training Soft-
ware '

Other potential applications include accent training/language learning education,
where the automated system can provide explicit feedback on which pronunciation

- patterns that require the most improvement.
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Automatic Speech Recognizer

Speech Speech sounds
signal (phones) words
phrases,
THESIS WORK

Generalize and adopt concept of pronunciation
modeling to explicitly characterize pronunciation rules

2" Janguage learning ' Sociolinguistics '

Figure 9-3: Potential applications of this thesis.
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Appendix A

The Phonetic Alphabet

A.1 English

Figure A-1 lists the English phonetic Alphabet used in this work (the datasets WSJ-
CAMO and StoryCorps). The bold font in the word examples highlight which part
of the word is represented by the phone symbol acoustically. A phone symbol can be
mapped to more than one type of sound.

The third column shows the features that belong to the phone; affric is short
for affricate, cent is short for center, cons is short for consonant, dipth is short for
diphthong, fric is short for fricative, syl is short for syllable. Since affricates do not
occur often and have fricative properties as well, affricatives were also lumped into
the fricative feature for practical reasons in the experiments; i.e., fricative includes
affricate. The feature [syl] means that the phone itself could be a syllable. These

features are used in decision tree clustering.

A.2 Arabic

Figure A-2 lists the Arabic phonetic alphabet used in this work (the dataset 5-Dialect
Arabic Corpus). The second column shows the features that belong to the phone;
affric is short for affricate, cent is short for center, cons is short for consonant, retro

is short for retroflex fric is short for fricative, syl is short for syllable. Unlike English,
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Phone symbol

Word Examples

Features

[aa]

bob

[vowel], [cent], [low], [long]

[ae]

bat

[vowel] , [cent], [low], [short]

[ah]

but, about

[vowel] , [cent], [mid], {short]

[ao]

bought

[vowel] , [cent], [round], [low], [long]

[aw]

bout

[vowel] , [cent], [low], [dipth], [long]

[ay]

bite

[vowell], [cent], [low], [dipth], [long}

[b]

bee

[cons], [voiced], [stop], [front],

[ch]

choke

[cons], [fric], [affric], [back],

[d]

dog

[cons], [voiced], [stop], [cent]

[dh]

that

[cons], [fric], [voiced], [cent]

bet

[vowel], [cent], [mid], [short]

bird, butter

[vowel], [cent], [mid], [short], [syl]

bait

[vowel], [cent], [mid], [dipth], [long]

fox

[cons], [fric], [front]

god

[cons], [voiced], [stop], [back]

hat, ahead

[cons], [back], [glide]

bit

[vowel], [front], [high]

beat

[vowel], [front], [high]

joke

[vowel], [fric], [affric], [voiced], [back]

key

[cons], [stop], [back]

Lake, bottle

[cons], [cent], [liq], [syl]

moon

[cons], [nasal], [voiced], [front]

noon

[cons], [nasal], [voiced], [cent]

[cons], [nasal], [voiced], [back]

sing, washing
boat

[vowel], [back], [round], [mid], [dipth], [long]

boy

[vowel], [back], [round], [high], [dipth], [long

play

[cons], [stop], [front]

rock

[cons], [voiced], [cent], [liq]

sea

[cons], [fric], [cent]

she

[cons], [fric], [cent]

toy, butter

fcons], [stop], [cent]

teeth

[cons], [fric], [cent]

book

[vowel], [back], [round], [mid], [short]

boots

[vowel], [back], [round], [high], [long]

vest

[cons], [voiced], [front]

wash

[cons], [voiced], [front], [round], [glide]

yacht

[cons], [voiced], [back], [glide] .

Z0oo

azure

Figure A-1: English phone symbols used in this thesis. The third column shows the
features that belong to the phone; affric is short for affricate, cent is short for center,
cons is short for consonant, dipth is short for diphthong, fric is short for fricative, syl
is short for syllable. Since affricates do not occur often and have fricative properties
as well, affricatives were also lumped into the fricative feature for practical reasons
in the experiments; i.e., fricative includes affricate. The feature [syl] means that the
phone itself could be a syllable. '
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there are many different variants of affricates and fricatives, therefore they represent

distinct features in the Arabic phonetic alphabet.
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Phone symbol

Features

[vowel], [voiced], [front], [low], [short], [syl]

[vowel] , [voiced], [front], [low], [long], [syl]

[cons] , [voiced], [stop], [front], [lab]

[cons] , [voiced], [stop], [front]

[cons] , [affric], [front]

[cons], [voiced], [stop], [front], [retro]

[cons], [fric], [voiced], [front]

[D*retro]

[cons], [fric], [voiced], [front], [retro]

[e*ong]

[vowel]. [voiced], [front], [mid], [long], [syl]

[f]

[cons], [fric], [front], [lab]

(gl

[cons], [voiced], [stop], [back]

{gs]

[cons], [stop], [back]

[gs”retro]

[cons], [stop], [back], [retro]

[cons], [fric], [voiced], [back]

[cons], [fiic], [back]

[vowel], [voiced], [front], [high], [short], [syl]

[vowel], [voiced], [front], [high], [long], [syl]

[cons], [voiced], [cent], [glide], [syl]

[cons], [stop], [back],

[cons], [voiced], [cent], [liq], [syl]

[cons], [voiced], [cent], [liq], [syl], [retro]

[cons], [nasal], [voiced], [front], [syl], [lab]

[cons], [nasal], [voiced], [cent], [syl]

[vowel], [voiced], [back], [round], [mid], [long]

[cons], [stop], [front], [lab]

[cons], [voiced], [stop], [back]

[cons], [voiced], [cent], [thotic], [syl]

[cons], [fric], [cent]

[cons], [fric], [front]

[cons], [fric], [front], [retro]

[cons], [stop], [front]

[cons], [afric], [front]

[t retro]

[cons], [stop], [front]

[T]

[cons], [fric], [front]

[u]

[vowel], [voiced], [back], [round], [high], [short]

[ulong]

[vowel], [voiced], [back]. [round], [high], [long]

v

[cons], [fric], [voiced], [front], [lab]

[w]

{cons], [voiced], [front], [round], [glide], [syl], [lab]

[x]

[cons], [fric], [back]

[X"pala]

[cons], [fric], [cent]

[z]

Figure A-2: Arabic phone symbols used in this thesis. The second column shows the
features that belong to the phone; affric is short for affricate, cent is short for center,
cons is short for consonant, retro is short for retroflex fric is short for fricative, syl is
short for syllable. Unlike English, there are many different variants of affricates and
fricatives, therefore they represent distinct features in the Arabic phonetic alphabet.
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Appendix B

Channel Issues in WSJ0, WSJ1,
and WSJ-CAMO

Many investigated corpora were not suitable, and the brief reasons are listed in Ta-
ble. 4.1. Below we document the analysis of the channel variations of the WSJO,
WSJ1, WSJ-CAMO corpora. From our analysis, we determined that these corpora

are ineligible for meaningful dialect recognition experiments.

B.1 DID Experiment Setup
We list the data partition of the training and test set in WSJ0 and WSJ-CAMO in

Table 4.2 and Table ?7?. For American English, WSJ1 was used supplemented in the

test set.

Table B.1: WSJ training data

Dialect Speaker number | Duration
American (WSJO) 84 16.5 hr
British (WSJ-CAMO) 92 15.3 hr

163



Table B.2: WSJ test data

Dialect Speaker number | Duration | Number of 30sec trial
American (WSJO, WSJ1) 53 4.2 hr 507
British (WSJ-CAMO) 48 4 hr 484

B.2 DID Baseline Experiments

Baseline experiments using SDC-GMM [89], adapted phonetic models [84], and PRLM
[100] all reach 0% EER. For the SDC-GMM system, number of mixture components
did not influence the EER performance. Mixture components of 2048 or 1, all lead
to 0% EER. This superior performance might be due to (1) British and American di-
alects are very different, or (2) there are other factors other than dialect that strongly
correlates with the dialect labels. Since gender was balanced across all sets and both
dialects, it is unlikely these superior performances are from gender identification.
There is also no speaker overlap between the datasets, so speaker identification is un-
likely either. Since these two corpora are recorded at different locations, it is possible
there are channel differences. In the next section, we investigate the hypothesis that
channel difference is predominant across the two dialects, making the DID baseline

performance 0%.

B.3 Channel Difference Investigation

Good perfOrmance of baseline experiments predominantly due to channel:

B.3.1 Long-Term Average Power Spectra

As shown in Figure B-1, long-term average power spectra is different across recording
sites. Note that the recording locations of WSJ1 involves 3 sites: MIT (Massachusetts
Institute of Technology ), SRI International(founded as Stanford Research Institute),
and TI (Texas Instruments). These 3 sites already have different long-term average

power spectra. These results imply that recording location could lead to noticeable
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Figure B-1: Long-Term Average Power Spectra of 4 recording sites. American En-
glish: MIT (Massachusetts Institute of Technology ), SRI (Stanford Research Insti-

tute), and TI (Texas Instruments).. British English: CUED (Cambridge University
Engineering Department.)

channel differences.

B.3.2 WSJ1 Recording Site Identification

To further investigate whether recording site differences are correlated with acoustic
difference. We perform a site identification experiment on WSJ1. WSJ-CAMO was
taken out so that no dialect difference could be the confounding factor.

Our results show that SDC-GMM system (1024 mixture components) with channel

compensation (RASTA, feature normalization) is able to achieve decent identification

165



Table B.3: WSJ1 Recording site detection rate

Recording site | EER. (%)
SRI 14.8
MIT 8.2
TI 12.3

of recording sites. Detecting the MIT site is the easiest, reaching 8.2% EER. The most
challenging site to detect is SRI, which still obtains EER or 14.8% (see Table B.3.)
It is reasonable to assume that the researchers in WSJ1 tried their best efforts to
make recording conditions match across the 3 sites. Even under such condition, site
identification error rates are still lower than 15%. It is not unreasonable to assume
that site identification error rate between CUED and any of the American sites (MIT,
SRI, TT) would be at least 15%. These results suggest that acoustic differences

correlating with the British and American dialect labels are probably noticeable.

B.3.3 Monophone APM on Non-Dialect-Specific Phones

In the last section, we used SDC-GMM to model the acoustics of WSJ1. In this
experiment, we only model acoustic characteristics of phones that are not known to
be dialect-specific across British and American English dialects. We use System A,
(Monophone APM) to perform this experiment, but only using selective phones. We
chose three sets of phones (1)fricatives and silence: [s], [sh], [f], [v], [z], [zh], [sil], (2)
[f], [v], and (3) [sil]. Figure B-2 shows the detection error trade-off curves of these
three experiments. We see that just by using phone set (1), the EER already is below
10%. Only using [f], [v] (phone set (2)) only makes the EER go up a little beyond
10%. Finally, if only silence is used (phone set (3)), EER is around mid-20%; by
only using non-dialect acoustic characteristics, detection error is still decently below
chance. This last result strongly suggest that non-dialect acoustic characteristics are
correlated with the dialect labels, making the dialect recognition results appear overly
optimistic that no meaningful conclusion can be drawn regarding comparing different

models.
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APM on selective phones
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Figure B-2: Monophone APM scoring only selective phones that are not dialect-
specific.

B.3.4 Conclusion

Our investigations and analyses suggest that non-dialect acoustic characteristics are
correlated with the dialect labels among the WSJ corpora (WSJO, WSJ1, WSJ-
CAMO). Baseline dialect recognition results appear overly optimistic, making it im-
possible to draw meaningful conclusions from empirical comparisons of the baseline
systems and our proposed systems. Therefore, it is unsuitable to use WSJO and

WSJ-CAMO to perform dialect recognition experiments.
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