
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Colliding bubble universes in eternal inflation JUN 0 8 2011
Nathaniel C. Thomas

L BA R I E S
Submitted to the Department of Physics

in partial fulfillment of the requirements for the degree of Bachelor of ARC9W'ES
Science at the Massachusetts Institute of Technology

@2011 Nathaniel C. Thomas
CJvne '7o1]

All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or

in part.

Signature of Author -

Department of Physics

May 18, 2011

Certified by

Alan H. Guth

Thesis Supervisor, Department of Physics

Accepted by

Professor Nergis Mavalvala

Senior Thesis Coordinator, Department of Physics



Colliding bubble universes in eternal inflation

Nathaniel C. Thomas

Submitted to the Department of Physics

in partial fulfillment of the Requirements for the Degree of

BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 18, 2011

Abstract
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1 Introduction

With the discovery of galaxies beyond the Milky Way, astronomers increased

the size of the known universe by orders of magnitude. The theory of infla-

tion demands another radical increase in the maximum known scale: Instead

of only a single universe, the theory implies the existence of a large (possibly

infinite) number of other "bubble universes," born from unstable primordial

energy. This collection of bubble universes is called the "multiverse." Infla-

tionary theory requires more than simply adding more space to the universe

because (due to effects from general relativity) these bubble universes are

in general causally disconnected from each other; we can never see most of

these universes or be seen by any scientists that may exist within them.

If we cannot send or receive signals from these regions of spacetime, we

might conclude that any further investigation of them should not be labeled

as scientific. However, under plausible conditions, each bubble will collide

with an unbounded number of other bubbles. If ours has collided with at

least one other bubble in our past, we may be able to observe astronomical

evidence of the collision and therefore directly detect other bubbles.

In this thesis, we suppose that such a collision has happened and inves-

tigate its effects. We briefly discuss the theory of inflation, then consider

the outcome of collisions between different types of bubbles, contributing

calculations of some basic dynamics as seen from the interior of our bubble.



2 Inflationary Cosmology

In a homogeneous and isotropic universe, the most general metric is the

Friedman-Robertson-Walker (FRW) metric

ds2 = -dt 2 + a2 (t) [ r 2 + r2 (d62 + sin 2 0d#2)
11 - kr2I

where 0 < 0 < 7r, 4 ~ 27r, 0 < r < oo, k E {-1, 0, +1}, and a(t) is called

the scale factor [22]. Einstein's field equations imply that all experimentally

detected types of matter cause the universe to decelerate, so 5i(t) < 0. In-

flation refers to a hypothetical period in the early universe during which the

opposite occurred (that is, when &(t) > 0). For this to occur, new types of

matter were proposed. The simplest type of matter that allows the universe

to temporarily accelerate is a scalar field. Proposing a new type of matter

is justified by how successfully and elegantly the theory of inflation explains

the spectrum of primordial density perturbations and resolves the following

three problems with the standard hot Big Bang account of the early universe.

2.1 Three cosmological problems

We briefly present three issues with the standard hot Big Bang model and

describe how they are ameliorated by cosmic inflation.

2.1.1 Horizon problem

The horizon problem is the most severe cosmological problem solved by in-

flation. Without inflation, there is insufficient time for disparate parts of

the universe (that is, regions that are separated by more than a few degrees



in the cosmic microwave background) to thermalize uniformly; however, we

observe near uniformity in cosmic microwave background radiation temper-

atures (i.e. near isotropy). Inflation allows a period during which very large

regions (in comoving coordinates) can equilibrate before the period of expo-

nential expansion that is followed by standard Big Bang cosmology.

2.1.2 Flatness problem

The universe is currently believed to be nearly spatially flat. The Friedman

equation implies that the universe was far flatter in the early universe. With-

out inflation, we must either argue for a symmetry or mechanism that causes

the universe to be perfectly flat at the Big Bang or accept an enormously

fine-tuned initial value of the curvature. Inflation is a mechanism for flat-

tening the universe, and it explains how, from natural initial conditions, the

spatial curvature could have become nearly flat in the early universe.

2.1.3 Relic problem

Many grand unified theories (GUTs) that unify the standard model gauge

group SU(3) x SU(2) x U(1) predict new particles at high energies, such

as magnetic monopoles in SU(5). If these theories were correct and if the

hot Big Bang model held at very high energies, then we would expect to

see stable GUT relic particles such as monopoles now. However, no such

particles have been detected.

One solution to this problem is to assume that the absence of relic par-

ticles strongly constrains the possible GUTs. This is not the only way to

reconcile these data. If a period of inflation occurred after these particles



were produced, it could dilute the densities of relic particles so that they are

consistent with experimental bounds.

2.2 Microphysics of inflation

The simplest model of inflation uses a single scalar field coupled to gravity to

provide both the nearly uniform energy density that causes inflation and the

fluctuations to seed structure formation as the universe evolved. This field

is called the inflaton. The simplest proposal for the inflaton is a real scalar

field # coupled to gravity with the following action:

S d g [gg& ,#8"$ - VM#

By either varying the above action or imposing relativistic energy-momentum

conservation, we find that the equation of motion of the inflaton for a homo-

geneous and isotropic universe is

dV
+q3H4 + o=0d#5

where H =a/a (called the Hubble parameter).

Cosmic inflation was proposed by Guth [14] and modified by Linde [19]

and Albrecht and Steinhardt [2]. The original proposal ("old" inflation)

assumed a first-order phase transition in the field caused by a quantum tun-

neling event through a barrier from a false vacuum local minimum to the

true vacuum. While the field is sitting in the false vacuum state, the space

contains a uniform energy density (i.e. a positive cosmological constant)

and is accelerating exactly as in de Sitter spacetime, with H constant and

a(t) ~ eHt for t > 1/H. When it decays to the true vacuum state, a bubble



of the true vacuum is nucleated inside of a region of false vacuum. This

bubble can then accelerate outward in the false vacuum. This process will

be described in detail in later sections.

The modified version of inflation ("new" inflation) involves a second-order

phase transition that occurs when the field rolls slowly down a gently-sloped

potential, where the field is slowed to its terminal velocity by the second

term in the equation of motion - the Hubble friction term. While the field

is slowly rolling, the spacetime is approximately de Sitter.

V($)

Figure 1: Potentials for the scalar field in old inflation (blue) versus new

inflation (purple)

There are many more sophisticated models of inflation, but they all in-

volve a transition between a high energy state that drives accelerated ex-

pansion to a low energy state that describes our current universe. Another

simple model is hybrid inflation, where two scalar fields are considered: One

drives the accelerating expansion and the other provides the primordial den-



sity perturbations. Many models are motivated by supersymmetry or string

theory (see [18] for examples and references to original literature).

2.3 Generating the primordial density perturbation

The primordial density fluctuations arise from quantum fluctuations in fields

that grow during inflation and become classical fluctuations. They may be

calculated using semiclassical gravity methods, where the fields propagate

through curved spacetime but do not backreact on the spacetime geometry.

Like black holes, de Sitter space has a non-zero temperature. For a given ob-

server, thermally distributed particles appear to be emitted from the Hubble

horizon.

2.4 Comments about inflation

Inflation dilutes whatever contents the universe has accumulated before the

inflationary period. While this dilution directly solves these important chal-

lenges in cosmology, it also implies that investigating the pre-inflationary

epoch is challenging. Inflation can also dilute the effects of bubble collisions

(described below) if the period of inflation is sufficiently long. There is a

narrow window of parameters for which we may hope to observe the effects

of bubble collisions through astronomical observations, and research in this

area is being pursued in the hope that we are fortunate enough to inhabit

that region of parameter space.



3 Eternal inflation

Inflationary models are generically eternal. This means that in nearly every

model, inflation does not ever end everywhere in space - Some region of space

is always accelerating roughly exponentially [15]. There are two categories of

eternally inflating models: false vacuum eternal inflation (FVEI) and slow roll

eternal inflation (SREI); these correspond to first- and second-order phase

transitions, respectively. The mechanism of bubble nucleation in FVEI is

often considered to be the Coleman-de Luccia instanton. The phenomena

associated with eternal inflation become even richer when many vacua can

be explored, as in the string theory landscape.

3.1 Coleman-de Luccia Instanton

The Coleman-de Luccia instanton is a type of quantum transition between

two classically disconnected vacua (local minima in a potential function for

a scalar field) at different energies. The higher energy is called the "false

vacuum" and the lower energy is called the "true vacuum" (assuming that

there are only two local minima). A field initially in the false vacuum state

may tunnel quantum mechanically to the true vacuum [10]. This nucleates

a bubble of the true vacuum inside of the false vacuum background. This

bubble may accelerate outward in semiclassical evolution after the nucleation

event. Even though the bubble takes up only a finite amount of volume in the

false vacuum background, an infinite volume open universe may be contained

inside of the bubble.



3.2 False vacuum eternal inflation versus slow roll eter-

nal inflation

FVEI does not realistically model the bubble interiors because only nearly

empty bubbles are created. (The deficiency of entropy inside of the bubbles

is one of the reasons why old inflation was replaced.) However, FVEI pro-

vides a convenient framework in which to study bubble collisions because

the thin-wall approximation can be applied. We will employ the thin-wall

approximation for the remaining calculations in this thesis. This approxi-

mation treats the regions of changing scalar field as membranes with energy

density and tension.

3.3 Eternal inflation and the landscape of string theory

String theory implies the existence of a vast number of vacua. These vacua

include positive, negative, and zero cosmological constant solutions. For the

purposes of this thesis, these will be modeled as dS, AdS, and Minkowski

spaces, respectively.

The string theory landscape may help solve the cosmological constant

problem - the problem of addressing why the cosmological constant is so

many orders of magnitude smaller than other scales in nature such as the

scales in the Standard Model or the Planck scale. A solution suggested by

S. Weinberg [21] prefigured the landscape: He proposed that if there were

a mechanism for generating universes with many different cosmological con-

stants (of sufficient density), we should expect to find ourselves in a universe

with a cosmological constant within a few orders of magnitude above or be-



low the one we have. Outside of this range, galaxy formation does not occur

and life may not be possible. This type of reasoning is called "anthropic."

Weinberg does not suggest from where this menu of universes comes. The

many vacua of string theory provide the necessary diversity. There are be-

lieved to be over 10"0 solutions to string theory, and simple models have been

constructed that illustrate how varying fluxes in compact extra dimensions

provide a natural way to obtain a small cosmological constant [6].

Gravitational instantons such as Coleman-de Luccia instantons provide

a mechanism through which different classical minima of the string theory

landscape can be populated in different bubbles. If a patch of spacetime

started in a vacuum with large positive cosmological constant, a region may

decay via quantum tunneling into a bubble of lower cosmological constant.

Eventually, one of these bubbles is likely to be one of the vacua in the life-

producing range.

4 Bubble collisions

One of the primary critiques leveled against eternal inflation is that the pre-

diction of other bubble universes cannot be verified. However, in FVEI, each

bubble will suffer an unbounded number of collisions with other bubbles [16].

(The nucleated bubbles will eventually fill all of the original de Sitter space-

time except for a set of measure zero.) If we detect these bubble collisions,

we will have direct evidence for eternal inflation. It may, however, be more

difficult to make any statement about the truth eternal inflation if no bubble

collisions can be detected.



With the exception of the Coleman-de Luccia tunneling process, all fields

are considered to behave classically.

4.1 Spacetimes with SO(2, 1) symmetry and the hyper-

bolic Birkhoff theorem

The symmetry group of de Sitter spacetime is 0(4, 1). One way to see this

is to note that de Sitter can be represented as the hyperboloid

4

-X2 +( JX?= H'2
i=1

embedded in 5D Minkowski space. When a single bubble is nucleated, this

picks a preferred point in the de Sitter spacetime (or a slice of the hyperboloid

in the 5D Minkowski spacetime representation), reducing the spacetime sym-

metry to 0(3,1). When two bubbles are nucleated, this picks two preferred

points (or two slices of 5D Minkowski), further reducing the spacetime sym-

metry to 0(2, 1). We consider the connected SO(2, 1) subgroup of 0(2,1) in

this thesis.

There are three generators of the SO(2, 1) group. If the preferred points

are spacelike separated (as is expected for most cases of bubble collisions),

then two of the generators of the SO(2, 1) group act similarly to boosts

perpendicular to the axis that connects the two preferred points and one

generator acts as a rotation around this axis.

The Birkhoff theorem concludes that the metric of a spherically sym-

metric spacetime must be the Schwarzschild metric. Spherically symmetric

spacetimes possess SO(3) symmetry. (Inversion symmetry is irrelevant for

our discussion, so we will consider only the connected parts of spacetime



symmetry groups.) An analogous result holds for hyperbolic spacetimes, as

can be seen from analytically continuing the coordinates. Both imply that

gravitational waves are excluded by the high degree of symmetry [9].

The most general metric compatible with SO(2, 1) symmetry is

d -= fds) + f (s)dx2+s 2 dHi (1)f f (s) H

where

dH,2 dp2 + sinh2 (p)d42

and

f~~s) =1 s2 _S~O
3 s

where 0 < s < oo, 0 < p < oo, 4 ~+ 2r, and so > 0 [7].

4.2 Bubble collision spacetimes

We consider the most general metric compatible with SO(2, 1) symmetry in

the following six cases: so = 0 with A = 0 (Minkowski), A > 0 (de Sitter),

A < 0 (anti-de Sitter), and so > 0 with A = 0 (hyperbolic Schwarzschild),

A > 0 (hyperbolic Schwarzschild-de Sitter), and A < 0 (hyperbolic Schwarzschild-

anti-de Sitter). For each of these cases, the conformal (or Penrose-Carter

diagram) is presented; in these diagrams, each point corresponds to a two-

hyperboloid. To provide more information about this suppressed two-hyperboloid,

Bousso wedges are placed in each region of the diagram. These V-shaped

wedges are visual aids that are constructed as follows: Intersect two null

geodesics in the conformal diagram. Select the directions along these geodesics

along which the factor multiplying the suppressed part of the geometry in

the metric (in this case, s2 multiplying dH2) is decreasing. Draw the wedge



with the legs pointing in those directions. The wedge therefore points in the

direction in which the suppressed geometry is expanding [7].

4.2.1 Hyperbolic Schwarzschild

In the A = 0 case, the metric simplifies to

dt2
ds2 = + ± h(t)dx2 + t 2dH!

h(t)

where 0 < t < o and -oo <cx < oo and

to
h(t) = 1l- .

The conformal diagram is shown in Figure 2. We see that

R.UV\O'~v'\' -t 6 0

so therefore there is a curvature singularity at t = 0 if to # 0. We will

only need the future diamond of the hyperbolic Schwarzschild spacetime to

construct the bubble collision spacetime geometries.

4.2.2 Hyperbolic Schwarzschild-de Sitter

In the A > 0 case, the metric simplifies to

dt2
ds2 = + g(t)dx2 + t 2 dH2

g(t)

where 0 < t < oo and -oo < x < oo and

g(t) = 1 + 2 - _

3 t

The conformal diagram is shown in Figure 3. We see that

8A 2  12t2

3 0

so therefore there is a curvature singularity at t = 0 if to # 0.



t=00 t=0

t=0

Figure 2: Conformal diagrams for Minkowski and hyperbolic Schwarzschild

spacetimes (each point corresponds to a 2-hyperboloid)



t=oo

t=oo

t=o

t=oo

t=o t=O

Figure 3: Conformal diagrams for dS and hyperbolic Schwarzschild dS space-

times (each point corresponds to a 2-hyperboloid)

4.2.3 Hyperbolic Schwarzschild-anti de Sitter

In the A > 0 case, the metric simplifies to

ds2 =-f(r)dt2 + dr2 +r2dH 2

f (r) 

where 0< r< oo and -oo < t< oo and

A
f (r) = - r2_

3
ro
r

The conformal diagram is shown in Figure 4. We see that

R1OR1"A " 8A 2

yx" 3
12r2
r6

so therefore there is a curvature singularity at r = 0 if ro $ 0.



r=O r=O

>/

r=0o

Figure 4: Conformal diagrams for AdS and hyperbolic Schwarzschild AdS

spacetimes (each point corresponds to a 2-hyperboloid)

4.3 Assumptions

We make the following assumptions in the treatment of bubble collisions that

follows:

" Domain wall - We assume that after two bubbles containing different

vacuum states collide, a domain wall forms between them.

" Null shell of radiation - Null shells of radiation are emitted to satisfy

energy-momentum conservation at the impact surface.

" Thin-wall approximation - We assume that domain walls and shells of

radiation are sufficiently thin that they may be treated as membranes.

" Initially expanding - We assume that both bubbles are initially ex-

panding after the quantum tunneling nucleation process is completed



and they begin semiclassical motion.

e Null Energy Condition

4.4 Kinematics of radiation shells and the domain wall

There will be a domain wall that separates the bubble spacetimes unless the

bubbles were each in the same classical vacuum state.

5/

Figure 5: A spacetime diagram of a two-bubble collision in a frame in which

the bubbles are nucleated simultaneously. The regions have the following

properties (using the notation of the metric in Equation 4.1): (1) background

metastable vacuum state (A > 0, so = 0), (2) left and (3) right bubbles

outside of the future lightcone of the collision (so = 0, A variable), (4) left

and (5) right sides of the domain wall (so #4 0 in general, A variable)

In specific simple models, null shells of radiation may be emitted in a



collision. For example in [17], the model used uses a complex scalar field in

Minkowski space with the potential

V(#) = (k#|2 + a)(1#| 2 - b)2

where a and b are real constants such that b > 2a (see Fig. 6). This potential

has two local minima, one at # = 0 and the other at 1#| = b. A bubble is

formed when an instanton transition occurs between # = 0 and 1#1 = b. No

constraints are placed on the phase of the field in the second local minimum

condition; we therefore expect that different bubble interiors will have field

values with different phases. When these bubbles collide, null shells of scalar

radiation will be emitted from the collision. These shells propagate as a kink

in the phase of the field, interpolating between the original value of the phase

and the average of the two phases. (If the phase difference is nearly r, the field

will be nearly antisymmetric around the plane defined by points equidistant

from the nucleation points of the two bubbles. No phase waves will form, and

the resulting field configuration will remain antisymmetric.) Others report

similar shells of radiation in different models of bubble collisions [1] [4} [13].

It seems plausible a priori that bubble collisions could generate primordial

black holes. However, two-bubble collisions cannot create singularities, as

shown in [20]. Due to the SO(2, 1) symmetry, two-bubble collisions also do

not create large gravitational waves according to the hyperbolic analogue of

the Birkhoff theorem.

At the point of collision of the domain walls of the two bubbles, there is

an inertial reference frame (according to the equivalence principle). This is

equivalent to saying that no conical singularities form at the point of collision.

Consider the general collision of many sheets of matter or radiation shown



V(#I)

141

Figure 6: The shape of the double well potential considered in [17]

in Figure 7. Each (massive) sheet defines an inertial reference frame in which

that sheet is at rest. The sheets of radiation can be treated by taking the

limit as the velocity of massive sheets as the mass goes to zero. A boost from

frame 1 to frame 2 is given by( cosh32,1 sinh #2,1
A2 ,1 -=

sinh32,1 cosh#2,1-

The combination of two boosts results in a boost from frame 1 to frame 3:

A3,1 =A3,2A2,1

cosh #3,2 cosh#2,1

cosh#3,2sinh #2,1

cosh(# 3,2 + P2,1)
sinh(3 3 ,2 +132,1)

+ sinh#3,2 sinh 32,1

+ sinh#3,2cosh32,1

sinh(# 3,2 + #2,1)

cosh(# 3,2 + #2,1))

cosh#3,2 sinh #2,1 + sinh #3,2 cosh #2,1

coshp3,2cosh #2,1+ sinhp3,2sinh #2,1

_( cosh #3,1 sinh #3,1

sinh #3,1 cosh #3,1



n+m n+1

fn+m,i

12 'n

Figure 7: Figure illustrating conservation of energy-momentum at a point

of collision. Time flows upward. Each line represents a sheet of matter or

radiation that is entering or exiting the collision point. The #s refer to the

velocity of sheet one sheet in the reference frame of another sheet.



A boost from n to n + 1 is

An+1,n cosh -#n+1,n sinh -#n+1,n
sinh -#n+1,n cosh -#n+1,n

where #n+1,n > 0 since vn - vn+1 < 0

Since the composition of all the boosts must return to the original frame if

the local spacetime is flat (that is, there is no conical singularity), we obtain

the following condition:

n+m-1 n+m-1

A1,n+m Aj+ 1,j = 12 -4 1,n+m + E /j+1,j 0-
j=1 j=1

4.5 Motion of domain walls

We will now solve for the motion of the domain walls in each of these prob-

lems. To do this, we first derive the Israel junction conditions for treating

surfaces in general relativity, then apply the needed conditions to domain

walls in collisions between various types of bubbles (dS, AdS, Flat).

4.5.1 Israel junction conditions

We use the Gauss-Codazzi formalism to obtain the Israel junction conditions.

We will use these conditions to determine the motion of the domain walls,

denoted E, in the true and false vacuum regions. We will use Gaussian

normal coordinates, where n indicates the direction normal to the domain

wall. The metric in the Gaussian normal coordinates satisfies g" = gn= 1

and gni = 0. The extrinsic curvature is then given by Kij = -l'. Let

Sij =_ o-gij be the energy-momentum tensor on the surface E. We make

no assumptions about the functional form of o; we will soon show that it is



constant on E. The components of the Einstein tensor in these coordinates

are

G - (3R +KijK'j- K2)

G n - Ki m -0K=0

G -
3Gij -- On(K'j - & K) - KKj + 2 K2 + 2 JKabKa

where 3R, 3G , 0 m refer to the values of the Ricci scalar, Einstein tensor

components, and partial derivatives defined intrinsically on the codimension-

1 submanifold E [5].

Define

7yi mlim[Kij(n = +E) - Ki2 (n = -E)],

~ 1
Kig j - lim[Kig (n = +c) + Ki3 (n E)],2 e-0O

7 = 97gy, and K - g1'Kij, where the + and - labels denote the value of

the extrinsic curvature on different sides of E. Note that

om 4-647) =0.

We have

(2)

lim Gpdn = 87rSa
e-40 4-fn

(3)

and
/ -~e

lim_ (&mKi" - O&K)dn = 0
e-40 E_

where E ± En' denotes evaluation on a surface moved slightly away from E in

the normal direction. Integrating the Einstein tensor across E in the normal

direction yields

_~~ 6Kbab)dfllim G'gdnlim im ]( 3 Gi - On(K'g - 6 K) - KK% + -o K2 + -KK
e-+0 gE-c e-+0 -en 2 2



= -lim(K' j - 6K+ - K'_j - 6K_)

Combining this with Eq. 3, we find

7ij - gij7 = -8rSig.

This is called the first Israel junction condition.

Using junction condition and Eq. 2, we find that OmSim = 0, so am"o(agim)

0 and 6io = 0. Therefore o is constant on E. Contracting gab with the first

Israel junction condition, we obtain

gab" - ggab7 = 8,rogabg .

This implies that

= -127ra.

4.5.2 Flat / flat collisions

We present a detailed discussion of a possible simple collision scenario in the

case of two Minkowski bubbles colliding in an inflating background de Sitter

space. This will illustrate possible domain wall dynamics. We follow [9] in

this section, filling in details in the calculation at many points.

We assume that the domain walls of the two bubbles suffer an elastic

collision and therefore bounce off of each other. There may be excess energy

that is emitted in a null shell of scalar radiation.

We start by considering the metrics for the false vacuum region of space-

time (A > 0 and m+ = 0), the true vacuum inside of the bubbles (A = 0 and

m_= 0), the region beyond the null shells in the true vacuum (A = 0 and



m- z 0 in general), and the region beyond the null shells in false vacuum

(A > 0 and m+ / 0):

ds2

d2 = - 2 + f (s)dx2 + s 2dH22

where

s2A 2m+
3 S

f_(s) =1 2m_

We note Gn+ - Gn- = -A, so

3R+ KaKa _ K2)+ (3R+ KabK - K) -- A.

This conveniently eliminates the 3 R. Therefore,

(KaK"? - Kc-K"') - (K2 - K2) = 2A. (4)

Contracting Kab with the first Israel junction condition, we find

kabgab(8eo-) - k abg 1.

Evaluating each of the terms in this equation gives

ab -1
Kab = (K±bKb+ KaK_

kcngaby = (K+ + K-)(K+ - K-) = (K2 - K2).
2 2 +

Combining this with Eq. 4, we find

Kbgab A (5)
87ro-

We will now use these equations to calculate the motion of the domain

walls. We parametrize the domain wall motion by sa =.ta(r) and s = s(r),



where s k and ± denotes the x position as seen from the two different

regions of spacetime. The vector tangent to the domain wall is

u" a + = (Y1,7 0, 0,dr

and the normal vector is

n=i = (-A, 0, 0, Y+),

where

We will now begin to suppress the i sub- and superscripts for notational

clarity (except where + or - is specifically intended). Note

Ua na

na"

fY2 _-1A2 =-

=f-Y b _ fy2I

nc" = 0

Taking the covariant derivative of this first equation gives

D
-(uau")dT

Duo
2ua D - 0,d-r

which implies
D 2xr

DuO
ndT

*d-r

D 2 x
-8-

dr2

A D2 S

f 2Y d- 2

D 2s 1 D2 S

fY dr 2

The geodesic equation gives

D2s .= § + r, upu 88 XX*

(6)

Y± = 6F2;-2 _ f1



Since

asss df -1 gx df
ds ds

and

1 f df-' 1 df
S* -g*? .g.,

* 2 2 ds 2fds

1"8 f df
2 xx 2 ds

we have
1 df

A2 F, y+ Y2r : 2 ds

so therefore
D 2s 1 df

T-2 -S2 s

Let A = A'e; be an arbitrary vector in E. Then

OA s
-= (A's-,i)=2*VjA"+A ..

Note that

i -Ki

since

n - -K--

and Il| 1. Thus
O A

= iVj A" - Ai Kijn'

and

u'- = eiu'Vjut - u t uKii.

The first term is zero because u is a geodesic on E. Therefore

DuoK
= - U.7 Kiind-r



From this, we have

so

Dua
na = -uZUn7Ki, Idr~_ J

1df -u *
2ds.

Adding the + and - equations gives

f..i1 df+\
2 ds2d)

1 1 df_
-2uujiKj-

yij = 8-rogij + ygij -47ro g

duyig = 47roddgig = -47ro-

Subtracting the + and - versions of Eq. 7 gives

1 df_ -47ra.

2 ds
1 .. 1 df+)

f+ Y+ 2 ds )
1 ..

fY_ S

We now compute the entries of the extrinsic curvature in the above metric:

S= - =Ongij

Koo
1 1
-Ongoo = -Ons2
2 2
1

Ko = Ongk = 9(Ons) sinh2  + s2 sinh 08, sinh 0 = A(Ons) sinh2 9
2

Ko. = 1nge = 02

Since Ons = s n' = g"n, fY (up to sign), we have

Koo = sfY=s 2 -f

Koo= sfsinh20Y=ssinh2 0 _2-- f.

(7)

1

Note that

1 (.
fY S

(9-



Therefore

oog -- M -(f+Y+ + f-Y-)
2s

and

Ua Ubkab -Kab(g ab -9 gaD gbO -9 9 aO 9 k)

1
= abg + -(f y + fY)

S

A 1= + - (f+Y+ + f-Y-).
87w- s

We finally obtain

1 1df+ 1 1 df ) 2 2 A
- S - + - + - A2 - f+- A2 _A

f+ Y+ 2 ds f-Y_ 2 ds s s 4,ro-

This is the equation of motion of the domain wall in terms of s(r). We will

now simplify it and solve it in cases of interest.

Define Za - 52 - -fLY± (up to sign) and c 27r-. Then

Z, A 1 df

1 2 A- (Z;+ + Z-_) + -(Z+ + Z-) =A-
s s 2c'

and

(Z+ - Z_) = -2cs. (8)

Define U Z+ + Z_ and V Z+ - Z. Then we have

U+2 A

s s 2c

and
V



which implies that V -2cs + const. The solution for U is

1
U = (f+ - f-)

2cs
sA m+ - m_

6c 2cs 2

-A A (m-m)
6c sac

since it is clear that

sAA
s#+2AU= .

2c

Since Za = !(U i V), we finally have
2f -

fLY = -Zi±= - + f- sc. (9)4sc

We examine this equation in three cases of interest:

CASE 0: A=O andm+=O

This case is the case of flat space in all regions of spacetime. In flat space,

we have f+ = f = 1 and Y+ = VTT2-1. Eq. 9 then simplifies to

2§ + 4_A_4 2 - 1 _ A 2C4

V87---l S 47ro- a

where A = 87rEd (E is the vacuum energy associated with the cosmological

constant A). We have
.1

s =
%/1 -2

and

As2 - =(10)

We have defined
,sd



so x = 'A. Differentiating Eq. 10, we obtain

s xs=x=
(1 - z)3/2 (I ±1 )2'

so

-2)3/2 +

Rearranging this equation gives

o-ss"= -20-'(1 - I2) + sC4 (1 - 2)3/2

This agrees with [17] (after taking the opposite sign of ', which is irrelevant

because the problem is symmetric around z= 0).

CASE 1: Af0,m+=0

This case describes expansion of bubbles before collision. Before collision,

we expect the solution for the bubble walls to be physically identical to

the solution obtained by assuming SO(3,1) symmetry (that is, the solution

presented in [10]) because the two bubbles are not yet in contact with each

other. Eq. 9 implies

(A -s
247ro- +27r R

where

R=
27ro 2 + A/24r

This is the same type of accelerating domain wall behavior presented in [10].

Therefore the general solution holds in two important special cases.



CASE 2: A0,m_=0,m+o

This case describes expansion of bubbles after the collision when no null

shells are emitted. Since m_ 0, we have f_ = 1. From Eq. 9, we have

- I1(S2 A 2m+fkz= A2 -1=2ros+Vs 87rs 3 s

and

s2A 2m+ (s 2 A 2m+)f~i+= i 2 - - - -2-7rus +
3 s 8ros 3 s

1+

We posit that, as measured in de Sitter space, the incoming domain wall

velocity equals the outgoing velocity in subsequent collisions (which occur

whenever 2 0):

This allows us to numerically integrate the equations of motion to compute

the motion of the domain walls (see Figure 8).

4.5.3 Motion of the domain wall for general collisions

For the general case, we suppose that only one domain wall is results from

the collision and the rest of the energy is expelled in the null radiation shells,

as in Figure 5. We summarize and quote results from [3] and {7].

On the domain wall we assume an energy-momentum tensor of the sim-

plest form, leading to:

_j= 0J



X(S)

S

Figure 8: Motion of the domain wall separating two Minkowski bubbles after

a collision (in a flat background, for simplicity)

The metric must be continuous across the domain wall according to the

junction conditions, so the induced metric is

ds 2w = -dr 2 + R2 (T)dH22

where R(r) = t(r) or r(r) from our previously discussed metrics. The Israel

junction conditions imply

(L R 2 JL() -CR R2 + JR() = oR

analogous to Equation 4.5.2, where C t1 and J = -h(t) or -g(t) or f(r).

Solving for N2, we obtain

1 2 - V () [JL(R) - JR(R) - o.2R2]2

R2  V 5(R) = JR(R)+ 4o 2R2

which reduces the problem of the domain wall motion to that of a particle in

a potential. We will now state the solution of this problem for various values

of the cosmological constants on either side of the domain wall.



dS / AdS or flat / AdS: For collisions between AdS and dS or flat bub-

bles, we have

2 + F /h2 - g=o-R.

For large R, this simplifies to

2 R2

with
2 __Aas/at 1 (,2_ AAds + AdS/flat )2

A- 3 +4o-2 3
Using this in the junction condition gives

1 2 + AAdS AdS/flat 1 1 2 _ AAds + AdS/flat _
2o 3 20 3

We consider the following options in general for the tension a-:

* Tension greater than AdS scale - Domain wall accelerates away

from dS/flat bubble (see potential in Figure 9).

" Tension equal to AdS scale - Domain wall coasts and does not

accelerate (see potential in Figure 10).

* Tension less than AdS scale - Domain wall accelerates towards

the dS/flat bubble. In flat / AdS collisions, this condition is im-

possible if the BPS bound is not violated (which will be true if

supersymmetry is assumed) [3]. In dS / AdS collisions, the dS

bubble is not destroyed because the domain wall can only move

through part of the total expanding spacetime.

dS / flat: In dS / flat collisions, we find through similar calculations to

the previous case that the domain wall accelerates away from the



V(R)

Figure 9: Form of the effective potential governing the motion of the domain

wall in the non-extremal case

V(R)
R

Figure 10: Form of the effective potential governing the motion of the domain

wall in the BPS case



Minkowski bubble. Minkowski bubbles are therefore always safe from

such collisions.

dS / dS: In a collision between two de Sitter bubbles with cosmological con-

stants AL and AR, the domain wall will accelerate towards the bubble

with higher cosmological constant (suppose AL > AR). This may pro-

vide an anthropic argument for a low cosmological constant if collisions

are sufficiently frequent [7].

We see that observers living in bubbles with small positive cosmological

constant are safe from most types of collisions.

4.5.4 Note on Raychaudhuri's Equation

In [3] and [7] it is claimed that the Null Energy Condition and the Ray-

chauduri equation imply that "along radially directed null lines where the

H2 is decreasing it must shrink to zero size." We show this here.

The Raychaudhuri equation for a congruence of null geodesics kA is

dO 62 2  k= _ -- - Rpk~k" v
cIA 2 ,

where or2 = W- 2 = oV/, o, 6 - 1h,, hhVka,

O6V h'hPV(pkA), and hAV = gjV - kykV.

Using Einstein's equation, we see that

Rk~k" = 8,r(T,, - 1gT kk"

= 87rT, kIkv.

Further, V1 kI = OBkAI - IF, k, = 0, so W = 0.



If the Null Energy Condition holds, then T,,k" k" > 0, so

dO 02-K---
dA 2'

since o 2 > 0. Since 9 = Vtki' - -2/s, we have

ds
dA -

Therefore if s (the factor controlling the size of the 2-hyperboloid) is decreas-

ing along a null geodesic, it continues to decrease to zero.

5 The view from inside

We will examine the trajectories of the null shells of scalar radiation and

(asymptotically) the accelerating domain walls as they are seen from the

bubble interior.

5.1 Null shells in flat background and interior

We employ three metrics for the same flat spacetime in order to determine

the equation of motion for the null shells.

Flat SO(2, 1): -ds 2 + dx' 2 + s 2 (dp2 + sinh2 pd# 2 )

This metric is most convenient for describing the bubble collision in the

collision frame.

Flat SO(3, 1): -dt 2 + dx 2 + dy 2 + dz 2

This is the standard metric for Minkowski space.

FRW in open slicing: -dr 2 + r2 (d 2 + sinh 2 ((d9 2 + sin2 9d#2 ))

This is the standard FRW metric that covers the inside of the bubble in an



open slicing. We will center it on one of the bubbles, so the coordinates are

off-center in the above SO(2, 1) coordinates by a distance b in the x direction.

The way to convert between the coordinates corresponding to the above

metrics is as follows:

s cosh p = t =T rcosh (

x'+ b = x = Tsinh ( cos 0

s sinh p sin #=

s sinh p cos

y =-rsinh sin 0 sin#

z = T sinh sin 0 cos#.

From these equations, we obtain the following:

T2  s2 -(x + b)2

/ 2

tanh2  8 + tanh2
s2

tan2 6 sinh2 p.
x/2

The motion of the null shell is a simple linear equation in the SO(2, 1) coor-

dinates: x' = s - 2b. This yields the following equations:

((r, p)

tan2 O(,T, P)

tanh-1 2 + tanh2P]( 2 +b
T 2 - b b2 sinh 2 to

Eliminating p, we obtain the following relationship between (, T, and 0:

( T
2

-b2  20~
T

2
-b tan 6

1 +2 b2tan20

72- b2

T2 + b2)
((r 0) = tan-



(-)

Figure 11: Sketch of null shell radius dependence on T as seen from inside

the bubble for 0 = 0 in a flat background and bubble interior.

(o,0)

-1.5 -1. -0.5 0.5 1. 1.50

Figure 12: Sketch of null shell radius dependence on 0 as seen from inside

the bubble for varying T (T is smallest for the blue curve and increases on

higher curves) in a flat background and bubble interior.



5.2 Null radiation shell in de Sitter bubbles

We will consider the motion of the null shells in the limit where to < tc,

where tc is the coordinate at which the collision occurred. This implies that

to good approximation we can treat the spacetime on both sides of the null

shell as flat. We will employ two metrics in this section as we used them in

the previous section:

de Sitter SO(2, 1) metric:

de - dt2 t2 d2 2(P 2

2 = - +2$1 + - dx2 + t2 (dp2 + sinh2 pd$2)
1 + t2/1i2 12)

where x ~ x +7rl, 0 < p < oo, 0 < 0 < 27r. (We will from here on use units

for t such that 1 = 1.)

de Sitter FRW metric in open slicing:

df2 = -dr 2 + sinh2 (d 2 + sinh2  (d9 2 sin2 2d02))

where 0 < < oo, -7r < 0 < 7r.

The equations connecting the two different sets of coordinates are [8]

cosh T = v1 +t2 cos x

sinh T sinh( cos 0 = V1 +t2sin x

sinh r cosh& = t cosh p

sinh T sinh C sin 0 = t sinh p.

It is clear from the above metric that null geodesics in SO(2, 1) obey

dx 1

dt 1+t 2 '

so

x(t) = tan-1 t + 2tan-' d



for some constant of integration d. Let xo = 2 tan-1 d.

We have

tan x = tanh r sinh (cos 0

and

t2 = sinh2 r(cosh2  sinh 2 0sin2)

so

tan-'[tanh r sinh cos 0] = tan-'[sinh r cosh2( - sinh 2 ( sin 2 0] + mo.

ForTr -+0 and 0 0, tan-'(sinh() tan-'(-jle cosh() + xo, where

we have taken the negative square root of cosh 2  . The value of ( at 0 = 0

as T -+ o is

((T -+ oo, 0 = 0) = sinh-1  .

This is the expected behavior of null geodesics in de Sitter space: They

asymptotically approach a finite coordinate distance from any given point.

6 Observational Signatures

The SO(2,1) symmetry implies that if we could observe the effects of a

bubble collision, we would see them affecting a region contained inside of a

disk in the CMB, since the intersection of the future lightcone of the colliding

bubble, the past lightcone of an observer, and the surface of last scattering

is a disk. It is unclear what we should expect to see inside of this disk, but

the boundary of the disk may be a sharp boundary, defined by the maximum

causal influence of the collision. Photons may be reflected by the receding

domain wall between the bubbles. They would receive a red- or blue-shift



from this encounter. Another signal is that pure E-mode polarization is

expected to be generated from the collision, centered around the collision

[11].

7 Conclusions

7.1 Status of Observations

One group has recently presented results of an analysis that identified four

candidate collision sites in WMAP data [12]. Data from the Planck satellite,

especially polarization data, will be helpful in confirming these candidates or

eliminating them.

Bubble collisions may have observable effects on large-scale structure.

High-redshift galaxy surveys may provide evidence for bubble collisions that

could be corroborated with evidence in the CMB.

7.2 Future Directions

One goal is to calculate the modified primordial density perturbation from

the collision of two bubbles in the same classical vacuum. This is the simplest

possible collision scenario. No domain wall would form, and only the null

shells and slight deviations from isotropy would be detectable in the primor-

dial density perturbation. This may yield a model-independent prediction

of the modifications to the fluctuations that we expect to see inside of the

aforementioned disks on the sky.

If we find compelling evidence that bubbles have collided with our uni-



verse, this will provide direct confirmation of eternal inflation and may pro-

vide information about the existence and nature of the string theory land-

scape. However, if collisions are not detected, it may be possible to use this

information to constrain pictures of eternal inflation or the landscape. Such

inferences may rely upon choosing an appropriate measure for calculating

probabilities of events in the multiverse (a challenging problem), so there

may be much work remaining on this approach.
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